Hygroscopic behavior of spray dried acerola and seriguela mixed juice powder stored

Christine Maria Carneiro Maranhão Ribeiro

Universidade Federal da Paraíba (UFPB) Brasil

Larry Oscar Chañi Paucar

ORCID iD Universidade Estadual de Campinas (UNICAMP) Brasil

Enayde de Almeida Melo

ORCID iD Universidade Federal Rural de Pernambuco (UFRPE) Brasil

Josivanda Palmeira Gomes

ORCID iD Universidade Federal de Campina Grande (UFCG) Brasil

Josilene de Assis Cavalcante

Universidade Federal da Paraíba (UFPB) Brasil

Flávio Luiz Honorato da Silva

ORCID iD Universidade Federal da Paraíba (UFPB) Brasil

Maria Inês Sucupira Maciel

Universidade Federal Rural de Pernambuco (UFRPE) Brasil


Spray drying is an alternative to extend the shelf life of fruits. However, fruit juice powders present problems during their storage because they are hygroscopic. The objectives of this study were to determine adsorption isotherms of mixed juice powder of acerola and seriguela at different temperatures, to identify the best-fit isotherms models and to assess their physicochemical properties. Following physics properties were assessed: apparent and absolute density, solubility, porosity, flowability, cohesiveness, morphology, mean particle size, surface analysis and pore distribution, thermal properties and antioxidant activity. Static-indirect method was used to determine the adsorption isotherms. Experimental data of the water activity and equilibrium moisture were fitted to five mathematical models. The models best fitted to the adsorption curves were the Guggenheim-Anderson-de Boer (GAB), Linearized Brunauer–Emmett–Teller (BET) and Oswin models, P < 10%. The value of the solubility was 79.45%, the absolute density was 1.03 g cm-3, the porosity was 84.47%, and the apparent density was 0.16 g cm-3. The mixed juice powder showed an irregular surface morphology and shape. The results indicated that the mixed juice powder has high thermal stability and can be used as a source of antioxidant with market potential by the food industry.


Thermal analyses (TG/DSC). Adsorption curves. Physicochemical properties.

Texto completo:


AKSIL, T. et al. Water adsorption on lyophilized Arbutus unedo L. fruit powder: Determination of thermodynamic parameters. Microchemical Journal, v. 145, p. 35–41, 2019. DOI: 10.1016/j.microc.2018.10.012. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0026265X18307227. Access on: 20 jan. 2017.

BARBOSA, K. F. et al. Desorption isotherms and isosteric heat of “cajuzinho-do-cerrado” achenes. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 20, n. 5, p. 481–486, 2016. DOI: 10.1590/18071929/agriambi.v20n5p481-486. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S141543662016000500481&lng=en&nrm=iso&tlng=en. Access on: 26 apr. 2017.

BISINELLA, R. Z. B. et al. Thermal analysis as screening technique to assess spray-drying process of encapsulated “yacon” juice. Journal of Thermal Analysis and Calorimetry, v. 126, n. 3, p. 1841–1849, 2016. DOI: 10.1007/s10973-016-5696-z. Available from: https://link.springer.com/article/10.1007/s10973-016-5696-z. Access on: 26 apr. 2017.

BRUNAUER, S.; EMMETT, P.; TELLER, E. Adsorption of gases in multimolecular layers. Journal of American Chemical Society, v. 60, n. 2, p. 309–319, 1938. DOI: 10.1021/ja01269a023. Available from: https://pubs.acs.org/doi/abs/10.1021/ja01269a023. Access on: 25 apr. 2018.

CANO-CHAUCA, M. et al. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science and Emerging Technologies, v. 6, n. 4, p. 420–428, 2005. DOI: 10.1016/j.ifset.2005.05.003. Available from: https://www.sciencedirect.com/science/article/pii/S1466856405000834. Access on: 25 apr. 2017.

CAPARINO, O. A. et al. Effect of drying methods on the physical properties and microstructures of mango (Philippine “Carabao” var.) powder. Journal of Food Engineering, v. 111, n. 1, p. 135–148, 2012. DOI: 10.1016/j.jfoodeng.2012.01.010 Available from: https://www.sciencedirect.com/science/article/abs/pii/S0260877412000301. Access on: 25 apr. 2017.

CAVALCANTE, M. D et al. Isotherms and isostatic heat of foam-mat dried yellow mombin pulp. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 22, n. 6, p. 436–441, 2018. DOI: 10.1590/1807-1929/agriambi.v22n6p436-441. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662018000600436&lng=en&nrm=iso. Access on: 18 feb. 2019.

CONEGERO, J. et al. Hygroscopic trend of lyophilized 'mangaba' pulp powder. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 21, n. 5, p. 356–360, 2017. DOI: 10.1590/1807-1929/agriambi.v21n5p356-360. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662017000500356&nrm=iso. Access on: 26 apr. 2017.

FERRARI, C. C. et al. Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. International Journal of Food Science and Technology, v. 47, n. 6, p. 1237–1245, 2012. DOI: 10.1111/j.1365-2621.2012.02964. Available from: https://ifst.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2621.2012.02964.x. Access on: 18 feb. 2018.

HIDAYAT, A.; SUTRISNO, B. Comparison on pore development of activated carbon produced by chemical and physical activation from palm empty fruit bunch. IOP Conference Series: Materials Science and Engineering, v. 162, n. 1, 2016. DOI: 10.1088/1757-899X/162/1/012008. Available from: https://iopscience.iop.org/article/10.1088/1757-899X/162/1/012008. Access on: 15 jul. 2018.

ISLAM, M. Z. et al. Effect of vacuum spray drying on the physicochemical properties, water sorption and glass transition phenomenon of orange juice powder. Journal of Food Engineering, v. 169, p. 131–140, 2016. DOI: 10.1016/j.jfoodeng.2015.08.024. Available from: http://www.sciencedirect.com/science/article/pii/S0260877415003775. Access on: 21 nov. 2015.

ISLAM, M. Z. et al. Effects of micro wet milling and vacuum spray drying on the physicochemical and antioxidant properties of orange (Citrus unshiu) juice with pulp powder. Food and Bioproducts Processing, v. 101, p. 132–144, 2017. DOI: 10.1016/j.fbp.2016.11.002. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0960308516301535. Access on: 25 oct. 2019.

JINAPONG, N.; SUPHANTHARIKA, M.; JAMNONG, P. Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, v. 84, n. 2, p. 194–205, 2008. DOI:10.1016/j.jfoodeng.2007.04.032. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0260877407002853. Access on: 25 oct. 2018.

LIU, X. et al. Thermal degradation and stability of starch under different processing conditions. Starch/Staerke, v. 65, n. 1–2, p. 48–60, 2013. DOI: 10.1002/star.201200198. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/star.201200198. Access on: 25 oct. 2018.

MALDONADO-ASTUDILLO, Y. I. et al. Postharvest physiology and technology of Spondias purpurea L. and S. mombin L. Scientia Horticulturae, v. 174, p. 193–206, 2014. DOI: 10.1016/j.scienta.2014.05.016. Available from: http://www.sciencedirect.com/science/article/pii/S0304423814002799. Access on: 18 feb. 2016.

MEDINA-TORRES, L. et al. Microencapsulation by spray drying of laurel infusions (Litsea glaucescens) with maltodextrin. Industrial Crops and Products, v. 90, p. 1–8, 2016. DOI: 10.1016/j.indcrop.2016.06.009. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0926669016303934. Access on: 7 aug. 2017.

MILLER, N. J. et al. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science, v. 84, n. 4, p. 407–412, 1993. DOI: 10.1042/cs0840407. Available from: https://www.ncbi.nlm.nih.gov/pubmed/8482045. Access on: 18 apr. 2017.

MITRA, H. et al. Influence of moisture content on the flow properties of basundi mix. Powder Technology, v. 312, p. 133–143, 2017. DOI: 10.1016/j.powtec.2017.02.039. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0032591017301675. Access on: 25 oct. 2018.

MORAES, F. P. et al. Estimation of Ascorbic Acid in Intact Acerola (Malpighia emarginata DC) Fruit by NIRS and Chemometric Analysis. Horticulturae, v. 5, n. 12, p. 1–10, 2019. DOI: 10.3390/horticulturae5010012. Available from: https://www.mdpi.com/2311-7524/5/1/12. Access on: 15 jul. 2019.

NEGRÃO-MURAKAMI, A. N. et al. Influence of DE-value of maltodextrin on the physicochemical properties, antioxidant activity, and storage stability of spray dried concentrated mate (Ilex paraguariensis A. St. Hil.). LWT - Food Science and Technology, v. 79, p. 561–567, 2017. DOI: 10.1016/j.lwt.2016.11.002. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0023643816306739. Access on: 9 aug. 2017.

NUNES, G. L. et al. Microencapsulation of freeze concentrated Ilex paraguariensis extract by spray drying. Journal of Food Engineering, v. 151, p. 60–68, 2015. DOI: 10.1016/j.jfoodeng.2014.10.031. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0260877414004993. Access on: 9 aug. 2017.

OTÁLORA, M. C et al. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chemistry, v. 187, p. 174–181, 2015. DOI: 10.1016/j.foodchem.2015.04.090. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0308814615006366. Access on: 9 aug. 2017.

RIBEIRO, L. C.; COSTA, J. M. C.; AFONSO, M. R. A. Hygroscopic behavior of acerola powder obtained by spray-drying. Acta Scientiarum - Technology, v. 41, p. 1–9, 2019. DOI: 10.4025/actascitechnol.v41i1.35382. Available from: http://periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/35382. Access on: 9 jul. 2019.

RIBEIRO, C. M. C. M. et al. Optimization of the spray drying process conditions for acerola and seriguela juice mix. Food Science and Technology, v. 39, supl. 1, p. 48–55, 2019. DOI: 10.1590/fst.36217. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612019000500048&lng=en&nrm=iso. Access on: 25 apr. 2019.

SAIKIA, S.; MAHNOT, N. K.; MAHANTA, C. L. Effect of Spray Drying of Four Fruit Juices on Physicochemical, Phytochemical and Antioxidant Properties. Journal of Food Processing and Preservation, v. 39, n. 6, p. 1656–1664, 2015. DOI: 10.1111/jfpp.12395. Available from: https://ifst.onlinelibrary.wiley.com/doi/abs/10.1111/jfpp.12395. Access on: 25 apr. 2019.

SANCHEZ-MORENO, C.; LARRAURI, J. A.; SAURA-CALIXTO, F. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, v. 76, n. 2, p. 270–276, 1998. DOI: 10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1097-0010(199802)76:2%3C270::AID-JSFA945%3E3.0.CO;2-9. Access on: 25 apr. 2019.

SANTHALAKSHMY, S.; DON BOSCO, S. J.; FRANCIS, S.; SABEENA, M. Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology, v. 274, p. 37–43, 2015. DOI: 10.1016/j.powtec.2015.01.016. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0032591015000303. Access on: 9 jul. 2019.

SHAO, P. et al. Encapsulation efficiency and controlled release of Ganoderma lucidum polysaccharide microcapsules by spray drying using different combinations of wall materials. International Journal of Biological Macromolecules, v. 125, p. 962–969, 2019. DOI: 10.1016/j.ijbiomac.2018.12.153. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30572060. Access on: 9 jul. 2019.

SILVA, I. C. et al. Caracterização, tratamento e utilização do carvão ativado para adequação de parâmetros físico-químicos de efluentes oleosos através da adsorção em banho finito. Revista Principia - Divulgação Científica e Tecnológica do IFPB, n. 45, p. 171–179, 2019. DOI: 10.18265/1517-03062015v1n45p171-179. Available from: https://periodicos.ifpb.edu.br/index.php/principia/article/view/2784. Access on: 15 jan. 2019.

SILVA FILHO, E. et al. Modelagem matemática para descrição da cinética de secagem do caldo de cana in natura. Revista Principia - Divulgação Científica e Tecnológica do IFPB, n. 40, p. 28–34, 2018. DOI: 10.18265/1517-03062015v1n40p28-34. Available from: https://periodicos.ifpb.edu.br/index.php/principia/article/view/1306. Access on: 15 apr. 2019.

SOUZA, A. S. et al. Influence of spray drying conditions on the physical properties of dried pulp tomato. Ciência e Tecnologia de Alimentos, v. 29, n. 2, p. 291–294, 2009. DOI: 10.1590/S0101-20612009000200008. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-206120090. Access on: 15 apr. 2018.

SUN-WATERHOUSE, D.; WATERHOUSE, G. I. N. Spray-Drying of Green or Gold Kiwifruit Juice–Milk Mixtures; Novel Formulations and Processes to Retain Natural Fruit Colour and Antioxidants. Food and Bioprocess Technology, v. 8, n. 1, p. 191–207, 2015. DOI: 10.1007/s11947-014-1397-4. Available from: https://link.springer.com/article/10.1007/s11947-014-1397-4. Access on: 25 apr. 2019.

TONTUL, I.; TOPUZ, A. Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science and Technology, v. 63, p. 91–102, 2017. DOI: 10.1016/j.tifs.2017.03.009. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0924224417300729. Access on: 25 apr. 2019.

TSAMI, E. Net isosteric heat of sorption in dried fruits. Journal of Food Engineering, v. 14, n. 4, p. 327–335, 1991. DOI: 10.1016/0260-8774(91)90022-K. Available from: https://www.sciencedirect.com/science/article/abs/pii/026087749190022K. Access on: 15 apr. 2018.

VILLACREZ, J. L.; CARRIAZO, J. G.; OSORIO, C. Microencapsulation of Andes Berry (Rubus glaucus Benth.) Aqueous Extract by Spray Drying. Food and Bioprocess Technology, v. 7, n. 5, p. 1445–1456, 2014. DOI: 10.1007/s11947-013-1172-y. Available from: https://link.springer.com/article/10.1007/s11947-013-1172-y. Access on: 15 apr. 2018.

DOI: http://dx.doi.org/10.18265/1517-0306a2020v1n50p109-119

O arquivo PDF selecionado deve ser carregado no navegador caso tenha instalado um plugin de leitura de arquivos PDF (por exemplo, uma versão atual do Adobe Acrobat Reader).

Como alternativa, pode-se baixar o arquivo PDF para o computador, de onde poderá abrí-lo com o leitor PDF de sua preferência. Para baixar o PDF, clique no link abaixo.

Caso deseje mais informações sobre como imprimir, salvar e trabalhar com PDFs, a Highwire Press oferece uma página de Perguntas Frequentes sobre PDFs bastante útil.

Visitas a este artigo: 1572

Total de downloads do artigo: 1021