Obtenção e caracterização de fitas cerâmicas de NiO-CDG obtidos por tape casting

Autores

  • Luana Barbosa da Cruz Universidade Federal do Rio Grande do Norte (UFRN)
  • Hugo Plínio de Andrade Alves Universidade Federal do Rio Grande do Norte (UFRN)
  • Rubens Alves Junior Universidade Federal de Campina Grande (UFCG)
  • Daniel Araújo de Macedo Universidade Federal da Paraíba (UFPB)
  • Wilson Acchar Universidade Federal do Rio Grande do Norte (UFRN) http://orcid.org/0000-0002-5585-1799

DOI:

https://doi.org/10.18265/1517-0306a2021id4888

Palavras-chave:

Céria dopada com gadolínio, Óxido de níquel, Compósitos, Tape casting

Resumo

Este trabalho tem como objetivo analisar as propriedades microestruturais, físicas, mecânicas e elétricas de compósitos NiO-CDG obtidos pela técnica tape casting e sinterizados em diferentes temperaturas. Os resultados revelaram que os compósitos têm fases cristalinas bem definidas de óxido de níquel (NiO) e céria dopada com gadolínio (CDG). As amostras sinterizadas a 1400 ºC apresentaram a melhor relação entre densidade relativa (98,00 %) e resistência mecânica (107,39 MPa). Além disso, amostras a verde mostraram uma resposta elétrica semelhante às sinterizadas, tornando-as excelentes candidatas para aplicações como materiais precursores de ânodos para células a combustível de óxido sólido (SOFCs).

Downloads

Não há dados estatísticos.

Referências

ACCHAR, W.; CRUZ, L. B.; PAES JUNIOR, H. R. Study of NiO-GDC material produced by aqueous tape casting. Matéria, Rio de Janeiro, v. 22, p. 11942, 2017.

ALVES, H. P. A. et al. Structural, magnetic and electric properties of ZrO2 tapes decorated with magnetic nanoparticles. Ceramics International, v. 45, n. 12, p. 14500-14504, 2019.

ALVES, H. P. A. et al. Incorporating graphene into a sintered ceramic tape: Structural and magnetic properties of a zirconia-graphene composite. Materials Letters, v. 270, p. 127689, 2020.

ARABACI, A.; ÖKSÜZÖMER, M. F. Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications. Ceramics International, v. 38, n. 8, p. 6509-6515, 2012.

ARAÚJO, A. J. M. et al. Designing experiments for the preparation of Ni-GDC cermets with controlled porosity as SOFC anode materials: effects on the electrical properties. Ceramics International, v. 44, n. 18, p. 23088-23093, 2018.

ATHANASIOU, M. et al. Steam effect on Gerischer impedance response of a Ni/GDC|YSZ|LSM fuel cell/anode. Journal of Power Sources, v. 448, p. 227404, 2020.

AYAWANNA, J. et al. Electrochemical Performance of Ni1-xCox-GDC Cermet Anodes for SOFCs. Energy Procedia, v. 34, p. 439-448, 2013.

CHANDRADASS, J.; NAM, B.; KIM, K. H. Fine tuning of gadolinium doped ceria electrolyte nanoparticles via reverse microemulsion process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 348, n. 1, p. 130-136, 2009.

CHOOLAEI, M. et al. Nanocrystalline gadolinium-doped ceria (GDC) for SOFCs by an environmentally-friendly single step method. Ceramics International, v. 44, n. 11, p. 13286-13292, 2018.

CHOURASHIYA, M. G.; JADHAV, L. D. Synthesis and characterization of 10 % Gd doped ceria (GDC) deposited on NiO-GDC anode-grade-ceramic substrate as half cell for IT-SOFC. International Journal of Hydrogen Energy, v. 36, n. 22, p. 14984-14995, 2011.

CODDET, P. et al. YSZ/GDC bilayer and gradient barrier layers deposited by reactive magnetron sputtering for solid oxide cells. Surface and Coatings Technology, v. 357, p. 103-113, 2019.

COSTA, A. C. S. et al. Iron oxide/PVA flexible magnetic tape engineered by microwave combustion and tape casting. Materials Chemistry and Physics, v. 232, p. 1-5, 2019.

DING, C. et al. Synthesis of NiO–Ce0.9Gd0.1O1.95 nanocomposite powders for low-temperature solid oxide fuel cell anodes by co-precipitation. Scripta Materialia, v. 60, n. 4, p. 254-256, 2009.

DING, C. et al. Improvement of electrochemical performance of anode-supported SOFCs by NiO–Ce0.9Gd0.1O1.95 nanocomposite powders. Solid State Ionics, v. 181, n. 25, p. 1238-1243, 2010a.

DING, C. et al. A simple, rapid spray method for preparing anode-supported solid oxide fuel cells with GDC electrolyte thin films. Journal of Membrane Science, v. 350, n. 1, p. 1-4, 2010b.

HONG, Y. S. et al. Fabrication and characterization GDC electrolyte thin films by e-beam technique for IT-SOFC. Current Applied Physics, v. 11, n. 5, Supplement, p. S163–S168, 2011.

HOTZA, D. et al. Tape casting of preceramic polymers toward advanced ceramics: A review. International Journal of Ceramic Engineering & Science, v. 1, n. 1, p. 21-41, 2019.

IONOV, I. V. et al. Reactive co-sputter deposition of nanostructured cermet anodes for solid oxide fuel cells. Japanese Journal of Applied Physics, v. 57, n. 1S, p. 01AF07, 2017.

JADHAV, S. T.; PURI, V. R.; JADHAV, L. D. NiO-GDC-BCY composites as an anode for SOFC. Journal of Alloys and Compounds, v. 685, p. 626-632, 2016.

JAMIL, S. M. et al. Anode supported micro-tubular SOFC fabricated with mixed particle size electrolyte via phase-inversion technique. International Journal of Hydrogen Energy, v. 42, n. 14, p. 9188-9201, 2017.

JANG, I. et al. Interface engineering of yttrium stabilized zirconia/gadolinium doped ceria bi-layer electrolyte solid oxide fuel cell for boosting electrochemical performance. Journal of Power Sources, v. 435, p. 226776, 2019.

KHAN, M. S. et al. Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: A review. Ceramics International, v. 42, n. 1, Part A, p. 35-48, 2016.

LIN, H. et al. Preparation of SDC electrolyte thin films on dense and porous substrates by modified sol–gel route. Materials Science and Engineering: B, v. 148, n. 1, p. 73-76, 2008.

LIU, X.; LI, Y.; HAO, X. Ultra-high energy-storage density and fast discharge speed of (Pb0.98?xLa0.02Srx)(Zr0.9Sn0.1)0.995O3 antiferroelectric ceramics prepared via the tape-casting method. Journal of Materials Chemistry A, v. 7, n. 19, p. 11858-11866, 2019.

MISONO, T. et al. Morphology Control of Ni-GDC Cermet Anode for Lower Temperature SOFC. ECS Transactions, v. 7, p. 1355, 2007.

MYUNG, J. H. et al. Synthesis and characterization of NiO/GDC–GDC dual nano-composite powders for high-performance methane fueled solid oxide fuel cells. International Journal of Hydrogen Energy, v. 37, n. 15, p. 11351-11359, 2012.

NEOFYTIDIS, C. et al. Electrocatalytic performance and carbon tolerance of ternary Au-Mo-Ni/GDC SOFC anodes under CH4-rich Internal Steam Reforming conditions. Catalysis Today, v. 310, p. 157-165, 2018.

NEOFYTIDIS, C. et al. Affecting the H2O electrolysis process in SOECs through modification of NiO/GDC; experimental case of Au-Mo-Ni synergy. Journal of Catalysis, v. 373, p. 260-275, 2019.

NIAKOLAS, D. K. et al. Study of the synergistic interaction between nickel, gold and molybdenum in novel modified NiO/GDC cermets, possible anode materials for CH4 fueled SOFCs. Applied Catalysis A: General, v. 456, p. 223-232, 2013.

PRAKASH, B. S. et al. Evaluation of solution combustion synthesized NiO/GDC ceramic powders for anode substrate and anode functional layers of intermediate temperature solid oxide fuel cell. Ceramics International, v. 43, n. 15, p. 12138-12144, 2017.

RADENAHMAD, N. et al. A review on biomass derived syngas for SOFC based combined heat and power application. Renewable and Sustainable Energy Reviews, v. 119, p. 109560, 2020.

REDDY, M. N. et al. Structural, mechanical and electrical properties of NiO-GDC20 composite anodes for low or intermediate temperature solid oxide fuel cells. Journal of Physics: Conference Series, v. 1495, p. 12020, 2020.

SANDOVAL, M. V. et al. Barium-modified NiO–YSZ/NiO–GDC cermet as new anode material for solid oxide fuel cells (SOFC). Solid State Ionics, v. 261, p. 36-44, 2014.

SKALAR, T.; ZUPAN, K.; MARINŠEK, M. Microstructure tailoring of combustion-derived Ni-GDC and Ni-SDC composites as anode materials for intermediate temperature solid oxide fuel cells. Journal of the Australian Ceramic Society, v. 55, n. 1, p. 123-133, 2019.

TIMURKUTLUK, B. et al. Influence of sintering support design on the properties of NiO-YSZ anode support micro-tubes. Ceramics International, v. 44, n. 5, p. 5587-5593, 2018.

UHLENBRUCK, S. et al. Application of electrolyte layers for solid oxide fuel cells by electron beam evaporation. Solid State Ionics, v. 181, n. 8, p. 447-452, 2010.

USUBA, J. B. et al. Flash sintering of one-step synthesized NiO-Ce0.9Gd0.1O1.95 (NiO-GDC) composite. Materials Research Express, v. 6, n. 12, p. 125535, 2020.

WANDEKAR, R. V. et al. Physicochemical studies of NiO–GDC composites. Materials Chemistry and Physics, v. 99, n. 2, p. 289-294, 2006.

ZHANG, J. N. et al. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Materials, v. 14, p. 1-7, 2018.

ZUVICH, A. F. et al. Time resolved DXAS study on micro and nano NiO/Ce0.9Gd0.1O1.95 cermets for intermediate temperature solid oxide fuel cells. ECS Transactions, v. 72, n. 7, p. 215-224, 2016.

Downloads

Publicado

2021-12-08

Como Citar

CRUZ, L. B. da; ALVES, H. P. de A.; ALVES JUNIOR, R.; MACEDO, D. A. de; ACCHAR, W. Obtenção e caracterização de fitas cerâmicas de NiO-CDG obtidos por tape casting. Revista Principia, [S. l.], v. 1, n. 56, p. 301–311, 2021. DOI: 10.18265/1517-0306a2021id4888. Disponível em: https://periodicos.ifpb.edu.br/index.php/principia/article/view/4888. Acesso em: 7 jan. 2025.

Edição

Seção

Engenharias II - Engenharia de Materiais

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>