Bibliometric analysis of AZ31 alloy welding: trends in the use of the friction stir welding process
DOI:
https://doi.org/10.18265/2447-9187a2025id8942Palavras-chave:
AZ31 magnesium alloy, bibliometric analysis, double-pass friction stir welding, sustainable manufacturing, welding process optimizationResumo
Downloads
Métricas
Referências
AALCO. Aluminium alloys: aluminium 6082 properties, fabrication and applications. AZoM, 2005. Available at: https://www.azom.com/article.aspx?ArticleID=2813. Accessed on: 02 jul. 2025.
ADITYA, S. K.; MAJUMDAR, M. C.; DE, N. R. Characterization and study of friction stir welding of AA6101 aluminum alloy. International Journal of Engineering Research an Applications, v. 6, n. 5, p. 57-60, 2016. Available at: https://www.ijera.com/papers/Vol6_issue5/Part%20-%207/J0605075760.pdf. Accessed on: 23 may 2025.
AFRIN, N.; CHEN, D. L.; CAO, X.; JAHAZI, M. Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy. Materials Science and Engineering: A, v. 472, n. 1-2, p. 179-186, 2008. DOI: https://doi.org/10.1016/j.msea.2007.03.018.
ANM – Agência Nacional de Mineração. Sumário Mineral Brasileiro 2018. 2024. Brasília: ANM, 2024. Available at: https://www.gov.br/anm/pt-br/assuntos/economia-mineral/publicacoes/sumario-mineral/sumario-mineral-brasileiro-2018. Accessed on: 23 may 2025. In Portuguese.
ARY, D.; UBAIDILLAH; TRIYONO; MUHAYAT, N.; LENGGANA, B. W.; AZIZ, S. A. A.. A bibliometric review of dissimilar welding between stainless steel and carbon steel. Mechanical Science Reports, v. 1, n. 1, p. 21-38, 2023. Available at: https://msr.bkstm.org/index.php/msr/article/view/7. Accessed on: 23 may 2025.
AZO MATERIALS. Magnesium AZ31B Alloy (UNS M11311). 2012. AZO Materials. Available at: https://doi.org/10.1016/j.msea.2007.03.018. Accessed on: 23 may 2025.
BAGAL, D. K.; JEET, S.; BARUA, A.; PRADHAN, S.; PANDA, S. N.; SAHU, S. K. Bibliometric analysis of friction stir spot welded joints using SCOPUS database. In:PRAKASH, C.; SINGH, S.; KROLCZYK, G. (eds.). Advances in functional and smart materials. Lecture Notes in Mechanical Engineering. Singapore: Springer, 2023. p. 499-514. DOI: https://doi.org/10.1007/978-981-19-4147-4_46.
BEHMAND, S. A.; MIRSALEHI, S. E.; OMIDVAR, H.; SAFARKHANIAN, M. A. Single- and double-pass FSW lap joining of AA5456 sheets with different thicknesses. Materials Science and Technology, v. 32, n. 5, p. 438-445, 2016. DOI: https://doi.org/10.1179/1743284715Y.0000000107.
BERGMANN, L.; CALLIL, V. M.; GOMES, E. V. M. A.; SOUZA, M. I. L.; CAPRACE, J.-D.; SANTOS, J. F.; BERGMANN, J. P.; KLUSEMANN, B. Friction stir welding of the dissimilar materials AA6082 and AISI316 for marine applications. The International Journal of Advanced Manufacturing Technology, v. 138, p. 3007-3020, 2025. DOI: https://doi.org/10.1007/s00170-025-15599-4.
BHATTACHARJEE, R.; DATTA, S.; HAMMAD, A.; BISWAS, P. Prediction of various defects and material flow behavior during dissimilar FSW of DH36 shipbuilding steel and marine grade AA5083 using FE-based CEL approach. Modelling and Simulation in Materials Science and Engineering, v. 31, 035004, 2023. DOI: https://doi.org/10.1088/1361-651X/acbe5a.
BRASIL. Presidência da República. Câmara de Comércio Exterior. Comitê-Executivo de Gestão. Resolução GECEX no. 569, de 11 de março de 2024. Prorroga direito antidumping definitivo ..]. Brasília: Diário Oficial da União, 2024. Available at: https://www.in.gov.br/en/web/dou/-/resolucao-gecex-n-569-de-11-de-marco-de-2024-547762934. Accessed on: 13 jun. 2025. In Portuguese.
CHA, S.; HOU, H.; ZHANG, Y. The influence of the mechanism of double-sided FSW on microstructure and mechanical performance of AZ31 alloy. Metals, v. 11, n. 12, 1982, 2021. DOI: https://doi.org/10.3390/met11121982.
CHADHA, U.; SELVARAJ, S. K.; GUNREDDY, N.; BABU, S. S.; MISHRA, S.; PADALA, D.; SHASHANK, M.; MATHEW, R. M.; KISHORE, S. R.; PANIGRAHI, S.; NAGALAKSHMI, R.; KUMAR, R. L.; ADEFRIS, A. A survey of machine learning in friction stir welding, including unresolved issues and future research directions. Material Design & Processing Communications, v. 2022, 2022. DOI: https://doi.org/10.1155/2022/2568347.
CHEN, J.; FUJII, H.; SUN, Y.; MORISADA, Y.; UEJI, R. Fine grained Mg-3Al-1Zn alloy with randomized texture in the double-sided friction stir welded joints. Materials Science and Engineering: A, v. 580, p. 83-91, 2013. DOI: https://doi.org/10.1016/j.msea.2013.05.044.
CHEN, J.; UEJI, R.; FUJII, H. Double-sided friction-stir welding of magnesium alloy with concave-convex tools for texture control. Materials & Design, v. 76, p. 181-189, 2015. DOI: https://doi.org/10.1016/j.matdes.2015.03.040.
CHEN, T.; FU, B.; SUHUDDIN, U. F. H. R.; SHEN, T.; LI, G.; MAAWAD, E.; SHEN, J.; DOS SANTOS, J. F.; BERGMANN, J. P.; KLUSEMANN, B. Improving mechanical properties of constrained friction processing Mg-Zn-Ca alloys by modifying texture using multiple pass processing. Journal of Materials Science & Technology, v. 232, p. 209-226, 2025. DOI: https://doi.org/10.1016/J.JMST.2025.01.026.
CHOWDHURY, S. M.; CHEN, D. L.; BHOLE, S. D.; CAO, X.; POWIDAJKO, E.; WECKMAN, D. C.; ZHOU, Y. Tensile properties and strain-hardening behavior of double-sided arc welded and friction stir welded AZ31B magnesium alloy. Materials Science and Engineering: A, v. 527, n. 12, p. 2951-2961, 2010. DOI: https://doi.org/10.1016/j.msea.2010.01.031.
COLAÇO, D. B.; RIBEIRO, M. A.; MACIEL, T. M.; MELO, R. H. F. de. Characterization and evaluation of mechanical properties and residual stress in aluminum-magnesium alloys welded by the FSW process. Materials Science Forum, v. 1012, p. 349-353, 2020. DOI: https://doi.org/10.4028/www.scientific.net/MSF.1012.349.
COMMIN, L.; DUMONT, M.; MASSE, J.-E.; BARRALLIER, L. Friction stir welding of AZ31 magnesium alloy rolled sheets: influence of processing parameters. Acta Materialia, v. 57, n. 2, p. 326-334, 2009. DOI: https://doi.org/10.1016/J.ACTAMAT.2008.09.011.
DONTHU, N.; KUMAR, S.; MUKHERJEE, D.; PANDEY, N.; LIM, W. M. How to conduct a bibliometric analysis: an overview and guidelines. Journal of Business Research, v. 133, p. 285-296, 2021. DOI: https://doi.org/10.1016/j.jbusres.2021.04.070.
EMBRAER. Embraer market outlook 2025. Available at: https://www.embraercommercialaviation.com/marketoutlook. Accessed on: 24 jun. 2025.
HEIDARZADEH, A.; MIRONOV, S.; KAIBYSHEV, R.; ÇAM, G.; SIMAR, A.; GERLICH, A.; KHODABAKHSHI, F.; MOSTAFAEI, A.; FIELD, D. P.; ROBSON, J. D.; DESCHAMPS, A.; WITHERS P. J. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Progress in Materials Science, v. 117, 100752, 2021. DOI: https://doi.org/10.1016/j.pmatsci.2020.100752.
HONG, K.-M.; SHIN, Y. C. Prospects of laser welding technology in the automotive industry: a review. Journal of Materials Processing Technology, v. 245, p. 46-69, 2017. DOI: https://doi.org/10.1016/J.JMATPROTEC.2017.02.008.
HUANG, L.; WU, D.; HUA, X.; LIU, S.; JIANG, Z.; LI, F.; WANG, H.; SHI, S. Effect of the welding direction on the microstructural characterization in fiber laser-GMAW hybrid welding of 5083 aluminum alloy. Journal of Manufacturing Processes, v. 31, p. 514-522, 2018. DOI: https://doi.org/10.1016/j.jmapro.2017.12.010.
IMA – International Magnesium Association. 2014 IMA environmental responsibility award, 2014. Available at: https://www.intlmag.org/general/custom.asp?page=2014_res_award_ima. Accessed on: 22 jun. 2025
KE, W. C.; OLIVEIRA, J. P.; AO, S. S.; TESHOME, F. B.; CHEN, L.; PENG, B.; ZENG, Z. Thermal process and material flow during dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys. Journal of Materials Research and Technology, v. 17, p. 1942-1954, 2022. DOI: https://doi.org/10.1016/j.jmrt.2022.01.097.
KLENAM, D. E. P.; OGUNWANDE, G. S.; OMOTOSHO, T.; OZAH, B.; MALEDI, N. B.; HANGO, S. I.; FABUYIDE, A. A.; MOHLALA, L.; VAN DER MERWE, J. W.; BODUNRIN, M. O. Welding of magnesium and its alloys: an overview of methods and process parameters and their effects on mechanical behaviour and structural integrity of the welds. Manufacturing Review, v. 8, 29, 2021. DOI: https://doi.org/10.1051/mfreview/2021028.
LIU, H. T.; WANG, R. C.; LIU, Q.; ZHOU, J. X.; CHEN, Y. F.; MA, B. C.; YANG, Y. S. Microstructure characterization of AZ31B Mg alloy welds processed by Nd:YAG laser welding. Materials Science Forum, v. 898, p. 1051-1055, 2017. Disponível em: https://doi.org/10.4028/www.scientific.net/msf.898.1051.
MATITOPANUM, S.; PITAKASO, R.; SETHANAN, K.; SRICHOK, T.; CHOKANAT, P. Prediction of the ultimate tensile strength (UTS) of asymmetric friction stir welding using ensemble machine learning methods. Processes, v. 11, n. 2, 391, 2023. DOI: https://doi.org/10.3390/pr11020391.
MEHDI, H.; MISHRA, R. S. Investigation of mechanical properties and heat transfer of welded joint of AA6061 and AA7075 using TIG+FSP welding approach. Journal of Advanced Joining Processes, v. 1, 100003, 2020. DOI: https://doi.org/10.1016/j.jajp.2020.100003.
MORDOR INTELLIGENCE. Magnesium metal market size and share analysis. Growth trends and forecast (2024 – 2029). 2025. Available at: https://www.mordorintelligence.com/industry-reports/metal-magnesium-market. Accessed on: 16 jun. 2025.
MORISADA, Y.; FUJII, H.; NAGAOKA, T.; FUKUSUMI, M. MWCNTs/AZ31 surface composites fabricated by friction stir processing. Materials Science and Engineering: A, v. 419, n. 1-2, p. 344-348, 2006a. DOI: https://doi.org/10.1016/j.msea.2006.01.016.
MORISADA, Y.; FUJII, H.; NAGAOKA, T.; FUKUSUMI, M. Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Materials Science and Engineering: A, v. 433, n. 1-2, p. 50-54, 2006b. DOI: https://doi.org/10.1016/J.MSEA.2006.06.089.
NUKATHOTI, R. S.; VANTHALA, V. S. P.; BATTINA, N. M.; CHIRALA, H. K. Influence of double-pass friction stir welding and blank position on formability of aluminum tailor welded alloy blanks. International Journal on Interactive Design and Manufacturing (IJIDeM), v. 19, p. 815-830, 2025. DOI: https://doi.org/10.1007/s12008-024-02047-y.
POMPERMAYER, F. M.; CAMPOS NETO, C. A. S.; MORAIS, J. M. Perspectivas da indústria naval Brasileira considerando as capacitações e demandas domésticas e a concorrência internacional. Radar, n. 33, Instituto de Pesquisas Econômicas Aplicada (IPEA), 2014, p. 7-16. Available at: https://repositorio.ipea.gov.br/handle/11058/11690. Accessed on: 4 jul. 2025.
RIBEIRO, R. R. C.; SOUZA, L. G. P.; CALIARI, J. C. S.; TEODORO, C. L.; GOMES, J. H. F. Bibliometric and systematic analysis on electric resistance spot welding of 22MnB5 steel. The International Journal of Advanced Manufacturing Technology, v. 132, p. 2129-2156, 2024. DOI: https://doi.org/10.1007/s00170-024-13487-x.
RIMA. Magnesium. 202?. Available at: https://www.rima.com.br/en/magnesium. Accessed on: 13 jun. 2025.
SATO, Y. S.; PARK, S. H. C.; MICHIUCHI, M.; KOKAWA, H. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scripta Materialia, v. 50, n. 9, p. 1233-1236, 2004. DOI: https://doi.org/10.1016/J.SCRIPTAMAT.2004.02.002.
SILVA, J. J.; SILVA, R. G. C.; MORELLI, C. L.; LÓPEZ, E. A. T.; SANTOS, T. F. A. Trends and future projections in ultrasonic welding research for hybrid materials. Polymers, v. 17, n. 8, 114, 2025. DOI: https://doi.org/10.3390/polym17081124.
SINGH, H.; MEHTA, A.; SHARMA, Y.; VASUDEV, H. Role of expert systems to optimize the friction stir welding process parameters using numerical modelling: a review. International Journal on Interactive Design and Manufacturing (IJIDeM), v. 18, p. 2609-2625, 2024. DOI: https://doi.org/10.1007/s12008-023-01458-7.
SONG, J.; SHE, J.; CHEN, D.; PAN, F. Latest research advances on magnesium and magnesium alloys worldwide. Journal of Magnesium and Alloys, v. 8, n. 1, p. 1-41, 2020. Disponível em: https://doi.org/10.1016/j.jma.2020.02.003.
SUHUDDIN, U. F. H. R.; MIRONOV, S.; SATO, Y. S.; KOKAWA, H.; LEE, C.-W. Grain structure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Materialia, v. 57, n. 18, p. 5406-5418, 2009. DOI: https://doi.org/10.1016/J.ACTAMAT.2009.07.041.
THAKUR, A.; SHARMA, V.; BHADAURIA, S. S. Effect of tool tilt angle on weld joint strength and microstructural characterization of double-sided friction stir welding of AZ31B magnesium alloy. CIRP Journal of Manufacturing Science and Technology, v. 35, p. 132-145, 2021. DOI: https://doi.org/10.1016/j.cirpj.2021.05.009.
THAKUR, A.; SHARMA, V.; BHADAURIA, S. S. Improving tensile properties by varying the welding conditions of the passes of the double-sided friction stir welding of AZ31B magnesium alloy. Materials Today Communications, v. 34, 105406, 2023. DOI: https://doi.org/10.1016/j.mtcomm.2023.105406.
USGS – United States Geological Survey. Mineral commodity summaries mineral commodity summaries. 2020. Reston: USGS, 2020. DOI: https://doi.org/10.3133/mcs2020.
VERMA, S.; GUPTA, M.; MISRA, J. P. Friction stir welding of aerospace materials: a state of art review. In: KATALINIC, B. (ed.). DAAAM International Scientific Book 2016. Vienna, DAAAM, 2016. p. 135-150. DOI: https://doi.org/10.2507/daaam.scibook.2016.13.
VIJAYARAGHAVAN, P.; BISHT, Y. S.; ALMUSAWI, M.; K, S.; SHARMA, D. Mechanical properties of FSW joints magnesium alloy at different rotational speeds. E3S Web of Conferences, v. 491, 04015, 2024. DOI: https://doi.org/10.1051/e3sconf/202449104015.
WANG, X.; MORISADA, Y.; FUJII, H. Interface strengthening in dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys by adjustable probes. Journal of Materials Science & Technology, v. 85, p. 158-168, 2021. DOI: https://doi.org/10.1016/j.jmst.2021.01.024.
WENG, F.; LIU, Y.; CHEW, Y.; LEE, B. Y.; NG, F. L.; BI, G. Double-side friction stir welding of thick magnesium alloy: microstructure and mechanical properties. Science and Technology of Welding and Joining, v. 25, n. 5, p. 359-368, 2020. DOI: https://doi.org/10.1080/13621718.2019.1706810.
WOO, W.; CHOO, H.; BROWN, D. W.; LIAW, P. K.; FENG, Z. Texture variation and its influence on the tensile behavior of a friction-stir processed magnesium alloy. Scripta Materialia, v. 54, n. 11, p. 1859-1864, 2006. DOI: https://doi.org/10.1016/J.SCRIPTAMAT.2006.02.019.
YANG, Q.; LI, X.; CHEN, K.; SHI, Y. J. Effect of tool geometry and process condition on static strength of a magnesium friction stir lap linear weld. Materials Science and Engineering: A, v. 528, n. 6, p. 2463-2478, 2011. DOI: https://doi.org/10.1016/j.msea.2010.12.030.
ZHANG, J.; ZHANG, Y.; CHEN, X.; LI, Z.; HUANG, G.; PAN, F. Improving joint performance of friction stir welded AZ31/ AM60 dissimilar Mg alloys by double-sided welding. Materials Science and Engineering: A, v. 882, 145444, 2023. DOI: https://doi.org/10.1016/j.msea.2023.145444.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Amós Freitas de Figueirêdo, Raphael Henrique Falcão de Melo

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta revista, seguindo as recomendações do movimento de Acesso Aberto, proporciona seu conteúdo em Full Open Access. Assim os autores conservam todos seus direitos permitindo que a Revista Principia possa publicar seus artigos e disponibilizar pra toda a comunidade.
A Revista Principia adota a licença Creative Commons 4.0 do tipo atribuição (CC-BY). Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, inclusive para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
Os autores estão autorizados a enviar a versão do artigo publicado nesta revista em repositório institucionais, com reconhecimento de autoria e publicação inicial na Revista Principia.
Demais informações sobre a Política de Direitos Autorais da Revista Principia encontram-se neste link.