Bibliometric analysis of AZ31 alloy welding: trends in the use of the friction stir welding process

Autores

DOI:

https://doi.org/10.18265/2447-9187a2025id8942

Palavras-chave:

AZ31 magnesium alloy, bibliometric analysis, double-pass friction stir welding, sustainable manufacturing, welding process optimization

Resumo

 

 

 

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

AALCO. Aluminium alloys: aluminium 6082 properties, fabrication and applications. AZoM, 2005. Available at: https://www.azom.com/article.aspx?ArticleID=2813. Accessed on: 02 jul. 2025.

ADITYA, S. K.; MAJUMDAR, M. C.; DE, N. R. Characterization and study of friction stir welding of AA6101 aluminum alloy. International Journal of Engineering Research an Applications, v. 6, n. 5, p. 57-60, 2016. Available at: https://www.ijera.com/papers/Vol6_issue5/Part%20-%207/J0605075760.pdf. Accessed on: 23 may 2025.

AFRIN, N.; CHEN, D. L.; CAO, X.; JAHAZI, M. Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy. Materials Science and Engineering: A, v. 472, n. 1-2, p. 179-186, 2008. DOI: https://doi.org/10.1016/j.msea.2007.03.018.

ANM – Agência Nacional de Mineração. Sumário Mineral Brasileiro 2018. 2024. Brasília: ANM, 2024. Available at: https://www.gov.br/anm/pt-br/assuntos/economia-mineral/publicacoes/sumario-mineral/sumario-mineral-brasileiro-2018. Accessed on: 23 may 2025. In Portuguese.

ARY, D.; UBAIDILLAH; TRIYONO; MUHAYAT, N.; LENGGANA, B. W.; AZIZ, S. A. A.. A bibliometric review of dissimilar welding between stainless steel and carbon steel. Mechanical Science Reports, v. 1, n. 1, p. 21-38, 2023. Available at: https://msr.bkstm.org/index.php/msr/article/view/7. Accessed on: 23 may 2025.

AZO MATERIALS. Magnesium AZ31B Alloy (UNS M11311). 2012. AZO Materials. Available at: https://doi.org/10.1016/j.msea.2007.03.018. Accessed on: 23 may 2025.

BAGAL, D. K.; JEET, S.; BARUA, A.; PRADHAN, S.; PANDA, S. N.; SAHU, S. K. Bibliometric analysis of friction stir spot welded joints using SCOPUS database. In:PRAKASH, C.; SINGH, S.; KROLCZYK, G. (eds.). Advances in functional and smart materials. Lecture Notes in Mechanical Engineering. Singapore: Springer, 2023. p. 499-514. DOI: https://doi.org/10.1007/978-981-19-4147-4_46.

BEHMAND, S. A.; MIRSALEHI, S. E.; OMIDVAR, H.; SAFARKHANIAN, M. A. Single- and double-pass FSW lap joining of AA5456 sheets with different thicknesses. Materials Science and Technology, v. 32, n. 5, p. 438-445, 2016. DOI: https://doi.org/10.1179/1743284715Y.0000000107.

BERGMANN, L.; CALLIL, V. M.; GOMES, E. V. M. A.; SOUZA, M. I. L.; CAPRACE, J.-D.; SANTOS, J. F.; BERGMANN, J. P.; KLUSEMANN, B. Friction stir welding of the dissimilar materials AA6082 and AISI316 for marine applications. The International Journal of Advanced Manufacturing Technology, v. 138, p. 3007-3020, 2025. DOI: https://doi.org/10.1007/s00170-025-15599-4.

BHATTACHARJEE, R.; DATTA, S.; HAMMAD, A.; BISWAS, P. Prediction of various defects and material flow behavior during dissimilar FSW of DH36 shipbuilding steel and marine grade AA5083 using FE-based CEL approach. Modelling and Simulation in Materials Science and Engineering, v. 31, 035004, 2023. DOI: https://doi.org/10.1088/1361-651X/acbe5a.

BRASIL. Presidência da República. Câmara de Comércio Exterior. Comitê-Executivo de Gestão. Resolução GECEX no. 569, de 11 de março de 2024. Prorroga direito antidumping definitivo ..]. Brasília: Diário Oficial da União, 2024. Available at: https://www.in.gov.br/en/web/dou/-/resolucao-gecex-n-569-de-11-de-marco-de-2024-547762934. Accessed on: 13 jun. 2025. In Portuguese.

CHA, S.; HOU, H.; ZHANG, Y. The influence of the mechanism of double-sided FSW on microstructure and mechanical performance of AZ31 alloy. Metals, v. 11, n. 12, 1982, 2021. DOI: https://doi.org/10.3390/met11121982.

CHADHA, U.; SELVARAJ, S. K.; GUNREDDY, N.; BABU, S. S.; MISHRA, S.; PADALA, D.; SHASHANK, M.; MATHEW, R. M.; KISHORE, S. R.; PANIGRAHI, S.; NAGALAKSHMI, R.; KUMAR, R. L.; ADEFRIS, A. A survey of machine learning in friction stir welding, including unresolved issues and future research directions. Material Design & Processing Communications, v. 2022, 2022. DOI: https://doi.org/10.1155/2022/2568347.

CHEN, J.; FUJII, H.; SUN, Y.; MORISADA, Y.; UEJI, R. Fine grained Mg-3Al-1Zn alloy with randomized texture in the double-sided friction stir welded joints. Materials Science and Engineering: A, v. 580, p. 83-91, 2013. DOI: https://doi.org/10.1016/j.msea.2013.05.044.

CHEN, J.; UEJI, R.; FUJII, H. Double-sided friction-stir welding of magnesium alloy with concave-convex tools for texture control. Materials & Design, v. 76, p. 181-189, 2015. DOI: https://doi.org/10.1016/j.matdes.2015.03.040.

CHEN, T.; FU, B.; SUHUDDIN, U. F. H. R.; SHEN, T.; LI, G.; MAAWAD, E.; SHEN, J.; DOS SANTOS, J. F.; BERGMANN, J. P.; KLUSEMANN, B. Improving mechanical properties of constrained friction processing Mg-Zn-Ca alloys by modifying texture using multiple pass processing. Journal of Materials Science & Technology, v. 232, p. 209-226, 2025. DOI: https://doi.org/10.1016/J.JMST.2025.01.026.

CHOWDHURY, S. M.; CHEN, D. L.; BHOLE, S. D.; CAO, X.; POWIDAJKO, E.; WECKMAN, D. C.; ZHOU, Y. Tensile properties and strain-hardening behavior of double-sided arc welded and friction stir welded AZ31B magnesium alloy. Materials Science and Engineering: A, v. 527, n. 12, p. 2951-2961, 2010. DOI: https://doi.org/10.1016/j.msea.2010.01.031.

COLAÇO, D. B.; RIBEIRO, M. A.; MACIEL, T. M.; MELO, R. H. F. de. Characterization and evaluation of mechanical properties and residual stress in aluminum-magnesium alloys welded by the FSW process. Materials Science Forum, v. 1012, p. 349-353, 2020. DOI: https://doi.org/10.4028/www.scientific.net/MSF.1012.349.

COMMIN, L.; DUMONT, M.; MASSE, J.-E.; BARRALLIER, L. Friction stir welding of AZ31 magnesium alloy rolled sheets: influence of processing parameters. Acta Materialia, v. 57, n. 2, p. 326-334, 2009. DOI: https://doi.org/10.1016/J.ACTAMAT.2008.09.011.

DONTHU, N.; KUMAR, S.; MUKHERJEE, D.; PANDEY, N.; LIM, W. M. How to conduct a bibliometric analysis: an overview and guidelines. Journal of Business Research, v. 133, p. 285-296, 2021. DOI: https://doi.org/10.1016/j.jbusres.2021.04.070.

EMBRAER. Embraer market outlook 2025. Available at: https://www.embraercommercialaviation.com/marketoutlook. Accessed on: 24 jun. 2025.

HEIDARZADEH, A.; MIRONOV, S.; KAIBYSHEV, R.; ÇAM, G.; SIMAR, A.; GERLICH, A.; KHODABAKHSHI, F.; MOSTAFAEI, A.; FIELD, D. P.; ROBSON, J. D.; DESCHAMPS, A.; WITHERS P. J. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Progress in Materials Science, v. 117, 100752, 2021. DOI: https://doi.org/10.1016/j.pmatsci.2020.100752.

HONG, K.-M.; SHIN, Y. C. Prospects of laser welding technology in the automotive industry: a review. Journal of Materials Processing Technology, v. 245, p. 46-69, 2017. DOI: https://doi.org/10.1016/J.JMATPROTEC.2017.02.008.

HUANG, L.; WU, D.; HUA, X.; LIU, S.; JIANG, Z.; LI, F.; WANG, H.; SHI, S. Effect of the welding direction on the microstructural characterization in fiber laser-GMAW hybrid welding of 5083 aluminum alloy. Journal of Manufacturing Processes, v. 31, p. 514-522, 2018. DOI: https://doi.org/10.1016/j.jmapro.2017.12.010.

IMA – International Magnesium Association. 2014 IMA environmental responsibility award, 2014. Available at: https://www.intlmag.org/general/custom.asp?page=2014_res_award_ima. Accessed on: 22 jun. 2025

KE, W. C.; OLIVEIRA, J. P.; AO, S. S.; TESHOME, F. B.; CHEN, L.; PENG, B.; ZENG, Z. Thermal process and material flow during dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys. Journal of Materials Research and Technology, v. 17, p. 1942-1954, 2022. DOI: https://doi.org/10.1016/j.jmrt.2022.01.097.

KLENAM, D. E. P.; OGUNWANDE, G. S.; OMOTOSHO, T.; OZAH, B.; MALEDI, N. B.; HANGO, S. I.; FABUYIDE, A. A.; MOHLALA, L.; VAN DER MERWE, J. W.; BODUNRIN, M. O. Welding of magnesium and its alloys: an overview of methods and process parameters and their effects on mechanical behaviour and structural integrity of the welds. Manufacturing Review, v. 8, 29, 2021. DOI: https://doi.org/10.1051/mfreview/2021028.

LIU, H. T.; WANG, R. C.; LIU, Q.; ZHOU, J. X.; CHEN, Y. F.; MA, B. C.; YANG, Y. S. Microstructure characterization of AZ31B Mg alloy welds processed by Nd:YAG laser welding. Materials Science Forum, v. 898, p. 1051-1055, 2017. Disponível em: https://doi.org/10.4028/www.scientific.net/msf.898.1051.

MATITOPANUM, S.; PITAKASO, R.; SETHANAN, K.; SRICHOK, T.; CHOKANAT, P. Prediction of the ultimate tensile strength (UTS) of asymmetric friction stir welding using ensemble machine learning methods. Processes, v. 11, n. 2, 391, 2023. DOI: https://doi.org/10.3390/pr11020391.

MEHDI, H.; MISHRA, R. S. Investigation of mechanical properties and heat transfer of welded joint of AA6061 and AA7075 using TIG+FSP welding approach. Journal of Advanced Joining Processes, v. 1, 100003, 2020. DOI: https://doi.org/10.1016/j.jajp.2020.100003.

MORDOR INTELLIGENCE. Magnesium metal market size and share analysis. Growth trends and forecast (2024 – 2029). 2025. Available at: https://www.mordorintelligence.com/industry-reports/metal-magnesium-market. Accessed on: 16 jun. 2025.

MORISADA, Y.; FUJII, H.; NAGAOKA, T.; FUKUSUMI, M. MWCNTs/AZ31 surface composites fabricated by friction stir processing. Materials Science and Engineering: A, v. 419, n. 1-2, p. 344-348, 2006a. DOI: https://doi.org/10.1016/j.msea.2006.01.016.

MORISADA, Y.; FUJII, H.; NAGAOKA, T.; FUKUSUMI, M. Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Materials Science and Engineering: A, v. 433, n. 1-2, p. 50-54, 2006b. DOI: https://doi.org/10.1016/J.MSEA.2006.06.089.

NUKATHOTI, R. S.; VANTHALA, V. S. P.; BATTINA, N. M.; CHIRALA, H. K. Influence of double-pass friction stir welding and blank position on formability of aluminum tailor welded alloy blanks. International Journal on Interactive Design and Manufacturing (IJIDeM), v. 19, p. 815-830, 2025. DOI: https://doi.org/10.1007/s12008-024-02047-y.

POMPERMAYER, F. M.; CAMPOS NETO, C. A. S.; MORAIS, J. M. Perspectivas da indústria naval Brasileira considerando as capacitações e demandas domésticas e a concorrência internacional. Radar, n. 33, Instituto de Pesquisas Econômicas Aplicada (IPEA), 2014, p. 7-16. Available at: https://repositorio.ipea.gov.br/handle/11058/11690. Accessed on: 4 jul. 2025.

RIBEIRO, R. R. C.; SOUZA, L. G. P.; CALIARI, J. C. S.; TEODORO, C. L.; GOMES, J. H. F. Bibliometric and systematic analysis on electric resistance spot welding of 22MnB5 steel. The International Journal of Advanced Manufacturing Technology, v. 132, p. 2129-2156, 2024. DOI: https://doi.org/10.1007/s00170-024-13487-x.

RIMA. Magnesium. 202?. Available at: https://www.rima.com.br/en/magnesium. Accessed on: 13 jun. 2025.

SATO, Y. S.; PARK, S. H. C.; MICHIUCHI, M.; KOKAWA, H. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scripta Materialia, v. 50, n. 9, p. 1233-1236, 2004. DOI: https://doi.org/10.1016/J.SCRIPTAMAT.2004.02.002.

SILVA, J. J.; SILVA, R. G. C.; MORELLI, C. L.; LÓPEZ, E. A. T.; SANTOS, T. F. A. Trends and future projections in ultrasonic welding research for hybrid materials. Polymers, v. 17, n. 8, 114, 2025. DOI: https://doi.org/10.3390/polym17081124.

SINGH, H.; MEHTA, A.; SHARMA, Y.; VASUDEV, H. Role of expert systems to optimize the friction stir welding process parameters using numerical modelling: a review. International Journal on Interactive Design and Manufacturing (IJIDeM), v. 18, p. 2609-2625, 2024. DOI: https://doi.org/10.1007/s12008-023-01458-7.

SONG, J.; SHE, J.; CHEN, D.; PAN, F. Latest research advances on magnesium and magnesium alloys worldwide. Journal of Magnesium and Alloys, v. 8, n. 1, p. 1-41, 2020. Disponível em: https://doi.org/10.1016/j.jma.2020.02.003.

SUHUDDIN, U. F. H. R.; MIRONOV, S.; SATO, Y. S.; KOKAWA, H.; LEE, C.-W. Grain structure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Materialia, v. 57, n. 18, p. 5406-5418, 2009. DOI: https://doi.org/10.1016/J.ACTAMAT.2009.07.041.

THAKUR, A.; SHARMA, V.; BHADAURIA, S. S. Effect of tool tilt angle on weld joint strength and microstructural characterization of double-sided friction stir welding of AZ31B magnesium alloy. CIRP Journal of Manufacturing Science and Technology, v. 35, p. 132-145, 2021. DOI: https://doi.org/10.1016/j.cirpj.2021.05.009.

THAKUR, A.; SHARMA, V.; BHADAURIA, S. S. Improving tensile properties by varying the welding conditions of the passes of the double-sided friction stir welding of AZ31B magnesium alloy. Materials Today Communications, v. 34, 105406, 2023. DOI: https://doi.org/10.1016/j.mtcomm.2023.105406.

USGS – United States Geological Survey. Mineral commodity summaries mineral commodity summaries. 2020. Reston: USGS, 2020. DOI: https://doi.org/10.3133/mcs2020.

VERMA, S.; GUPTA, M.; MISRA, J. P. Friction stir welding of aerospace materials: a state of art review. In: KATALINIC, B. (ed.). DAAAM International Scientific Book 2016. Vienna, DAAAM, 2016. p. 135-150. DOI: https://doi.org/10.2507/daaam.scibook.2016.13.

VIJAYARAGHAVAN, P.; BISHT, Y. S.; ALMUSAWI, M.; K, S.; SHARMA, D. Mechanical properties of FSW joints magnesium alloy at different rotational speeds. E3S Web of Conferences, v. 491, 04015, 2024. DOI: https://doi.org/10.1051/e3sconf/202449104015.

WANG, X.; MORISADA, Y.; FUJII, H. Interface strengthening in dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys by adjustable probes. Journal of Materials Science & Technology, v. 85, p. 158-168, 2021. DOI: https://doi.org/10.1016/j.jmst.2021.01.024.

WENG, F.; LIU, Y.; CHEW, Y.; LEE, B. Y.; NG, F. L.; BI, G. Double-side friction stir welding of thick magnesium alloy: microstructure and mechanical properties. Science and Technology of Welding and Joining, v. 25, n. 5, p. 359-368, 2020. DOI: https://doi.org/10.1080/13621718.2019.1706810.

WOO, W.; CHOO, H.; BROWN, D. W.; LIAW, P. K.; FENG, Z. Texture variation and its influence on the tensile behavior of a friction-stir processed magnesium alloy. Scripta Materialia, v. 54, n. 11, p. 1859-1864, 2006. DOI: https://doi.org/10.1016/J.SCRIPTAMAT.2006.02.019.

YANG, Q.; LI, X.; CHEN, K.; SHI, Y. J. Effect of tool geometry and process condition on static strength of a magnesium friction stir lap linear weld. Materials Science and Engineering: A, v. 528, n. 6, p. 2463-2478, 2011. DOI: https://doi.org/10.1016/j.msea.2010.12.030.

ZHANG, J.; ZHANG, Y.; CHEN, X.; LI, Z.; HUANG, G.; PAN, F. Improving joint performance of friction stir welded AZ31/ AM60 dissimilar Mg alloys by double-sided welding. Materials Science and Engineering: A, v. 882, 145444, 2023. DOI: https://doi.org/10.1016/j.msea.2023.145444.

Downloads

Arquivos adicionais

Publicado

07-07-2025

Como Citar

FIGUEIRÊDO, A. F. de; MELO, R. H. F. de. Bibliometric analysis of AZ31 alloy welding: trends in the use of the friction stir welding process. Revista Principia, [S. l.], v. 62, 2025. DOI: 10.18265/2447-9187a2025id8942. Disponível em: https://periodicos.ifpb.edu.br/index.php/principia/article/view/8942. Acesso em: 14 jul. 2025.

Edição

Seção

Engenharias III - Engenharia Mecânica
Smart Citations via scite_

Artigos mais lidos pelo mesmo(s) autor(es)