Influence of FSW process parameters on thermal cycles and mechanical properties of welded joints of AA7075 T651

Autores

DOI:

https://doi.org/10.18265/2447-9187a2025id8878

Palavras-chave:

AA7075-T651 aluminum alloys, friction stir welding, mechanical properties, thermal cycles, welding

Resumo

Aluminum alloys are widely used in the transportation sector due to their favorable characteristics and mechanical properties, which meet the growing demand for high-performance vehicles with enhanced autonomy. The 7XXX series is particularly notable among these alloys, especially in the aeronautical industry. The AA7075-T651 alloy was chosen for this study because of its high mechanical strength, low density, and superior corrosion resistance in comparison to other aluminum alloys typically recommended for aeronautical and aerospace applications. However, its use is constrained when employing conventional welding techniques, mainly due to weldability challenges. To broaden the applicability of this alloy to other structural components, the development of solid-state joining methods is essential. The low weldability of these alloys under fusion-based techniques is linked to the rapid vaporization of zinc and magnesium, key alloying elements, that results in pore formation in the weld metal, thereby compromising joint integrity. Friction Stir Welding (FSW), a solid-state joining process, offers a promising alternative, effectively addressing these limitations. Since the mechanical properties of welded joints in heat-treatable aluminum alloys are significantly influenced by thermal exposure during welding, it is crucial to assess the temperature distribution throughout the FSW process and establish correlations with the thermal cycles experienced by the joints. In this study, AA7075-T651 alloy plates were welded under various process parameters: welding speeds of 117 mm/min and 47 mm/min, along with tool rotation speeds of 1585 rpm and 470 rpm, using a threaded cylindrical tool made of H13 steel. Uniaxial tensile testing, macro- and microstructural characterization, Vickers hardness measurements, and thermal cycle monitoring using K-type thermocouples were performed. The highest peak temperatures, nearing 375 °C, were recorded under elevated welding and tool rotation speeds (117 mm/min and 1585 rpm, respectively). In contrast, joints produced at lower welding (47 mm/min) and tool rotation speeds (470 rpm) displayed lower peak temperatures (~324 °C), reduced cooling rates (~3 °C/s), and enhanced mechanical performance, with ultimate tensile strength (UTS) reaching 353 MPa. Conversely, joints manufactured under higher energy input conditions exhibited brittle behavior and significantly lower UTS values (~176 MPa), attributed to excessive heat input and the accelerated thermal cycles involved.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

ARDIKA, R. D.; TRIYONO, T.; MUHAYAT, N.; TRIYONO. A review porosity in aluminum Welding. Procedia Structural Integrity, v. 33, p. 171-180. 2021. DOI: https://doi.org/10.1016/j.prostr.2021.10.021.

AKBARI, M.; ASADI, P.; SADOWSKI, P. A review on friction stir welding/processing: numerical modeling. Materials, v. 16, n. 17, 5890. 2023. DOI: https://doi.org/10.3390/ma16175890.

BHUKYA, S. N.; WU, Z.; ELMUSTAFA, A.; AL‑ALLAQ, A.; OJHA, M.; MOHAMMED, Y. Cu donor material assisted friction stir welding of AA2024 and AA6061 dissimilar alloys: effect on downward force, temperature profile, and mechanical properties. The International Journal of Advanced Manufacturing Technology, v. 127, p. 3839-3851, 2023. DOI: https://doi.org/10.1007/s00170-023-11778-3.

BISADI, H.; TAVAKOLI, A.; SANGSARAKI, M. T.; SANGSARAKI, K. T. The influences of rotational and welding speed on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints. Materials & Design, v. 43, p. 80-88, 2013. DOI: https://doi.org/10.1016/j.matdes.2012.06.029.

BUGLIONI, L.; TUFARO, L. N.; SVOBODA, H. G. Thermal cycles and residual stresses in FSW of aluminum alloys: experimental measurements and numerical models. Procedia Materials Science, v. 9, p. 87-96, 2015. DOI: https://doi.org/10.1016/j.mspro.2015.04.011.

CINTRA FILHO, J. P.; ARAUJO FILHO, L.; ITIKAVA, R. K.; SILVA, M. M.; PEREZ, R. A. Thermomechanical modelling of FSW process using a cylindrical tool in an aluminum alloy alclad AA 2024-T3. Materials Research. V. 21, n. 4, e20170773, 2018. DOI: https://doi.org/10.1590/1980-5373-MR-2017-0773.

COLAÇO, D. B.; RIBEIRO, M. A.; MACIEL, T. M.; MELO, R. H. F. Characterization and evaluation of mechanical properties and residual stress in aluminum-magnesium alloys welded by the FSW process. Materials Science Forum (MSF), v. 1012, p. 349-353, 2020. DOI: https://doi.org/10.4028/www.scientific.net/msf.1012.349.

COMMIN, L.; DUMONT, M.; MASSE, J.-E.; BARRALLIER, L. Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters. Acta Materialia, v. 57, n. 2, p. 326-334, 2009. DOI: https://doi.org/10.1016/j.actamat.2008.09.011.

GAO, T.; YING, L.; HU, P.; HAN, X.; RONG, H.; WU, Y.; SUN, J. Investigation on mechanical behavior and plastic damage of AA7075 aluminum alloy by thermal small punch test: experimental trials, numerical analysis. Journal of Manufacturing Processes, v. 50, p. 1-16. 2020. DOI: https://doi.org/10.1016/j.jmapro.2019.12.012.

GULER, K. A.; KISASOZ, A.; OZER, G.; KARAASLAN, A. Cooling slope casting of AA7075 alloy combined with reheating and thixoforging. Transactions of Nonferrous Metals Society of China, v. 29, n. 11, p. 2237-2244, 2019. DOI: https://doi.org/10.1016/S1003-6326(19)65129-0.

JEENJITKAEW, C. Kissing bonds in adhesive joints: a holistic approach for surface chemistry and joint mechanics. 2011. Doctoral Thesis (Doctorate of Philosophy) – School of Engineering and Materials Science Queen Mary, University of London, London, 2011. Available at: https://core.ac.uk/download/pdf/30695407.pdf. Accessed on: 25 may 2025.

JIANG, W.; JIANG, Z.; LI, G.; WU, Y.; FAN. Z. Microstructure of Al/Al bimetallic composites by lost foam casting with Zn interlayer. Materials Science and Technology, v. 34, n. 4, p. 487-492, 2018. DOI: https://doi.org/10.1080/02670836.2017.1407559.

KALINENKO, A.; VYSOTSKIY, I.; MALOPHEYEV, S.; MIRONOV, S.; KAIBYSHEV, R. Influence of the weld thermal cycle on the grain structure of friction-stir joined 6061 aluminum alloy. Materials Characterization, v. 178, 111202, 2021. DOI: https://doi.org/10.1016/j.matchar.2021.111202.

KIM, H.; LEE, K.; KIM, J.; LEE, C.; JUNG, Y.; KANG, S. A study on the friction stir welding experiment and simulation of the fillet joint of extruded aluminum material of electric vehicle frame. Applied Sciences, v. 10, n. 24, 9103; 2020. DOI: https://doi.org/10.3390/app10249103.

LIMA, J. S.; SANTOS, O. C.; SILVA, A. A.; MELO, R. H. F.; MACIEL, T. M. Influence of welding parameters on the mechanical properties and microstructure of 7075-T651 aluminum alloys welded joint performed by FSW process. Materials Research, v. 25, e20210629, 2022. DOI: https://doi.org/10.1590/1980-5373-MR-2021-0629.

LI, Y.; ZHOU, Z.; YIN, L.; FU, D.; JIANG, H.; YANG, Y.; LU, J.; JIN, F. Thermal cycling, microstructure, and mechanical properties of Al-Mg-Si-Cu alloy bobbin tool friction stir welded joints based on thermal index. Coatings, v. 13, n. 9, 1607, 2023. DOI: https://doi.org/10.3390/coatings13091607.

MEENGAM, C.; DUNYAKUL, Y.; MAUNKHAW, D.; CHAINARONG, S. Transient liquid phase bonding of semi-solid metal 7075 aluminum alloy using ZA27 zinc alloy interlayer. Metals, v. 18, n. 8, 637, 2018. DOI: https://doi.org/10.3390/met8080637.

NI, Y.; LIU, Y.; ZHANG, P.; HUANG, J.; YU, X. Thermal cycles, microstructures and mechanical properties of AA7075-T6 ultrathin sheet joints produced by high speed friction stir Welding. Materials Characterization, v. 187, 111873, 2022. DOI: https://doi.org/10.1016/j.matchar.2022.111873.

NI, Y.; MAO, Y.; QIN, D.; XIAO, X.; FU, L. Thermal cycles and deformation characters during high-speed micro friction stir welding process of AA7075-T6 sheets. Metals, v. 9, n. 11, 1236, 2019. DOI: https://doi.org/10.3390/met9111236.

QIAN, J.; OU, Y.; LI. J.; XIAO, Y.; WU, L.; XU, Y. An analytical model to calculate the peak temperature for friction stir welding. Science and Technology of Welding and Joining, v. 22, n. 6, 2016. DOI: http://dx.doi.org/10.1080/13621718.2016.1268367.

SILVESTRI, A. T.; COZZOLINO, E.; ALTERIIS G.; ASTARITA, A.; SCHIANO LO MORIELLO, R.; SQUILLACE, A. Monitoring of the friction stir welding process: A preliminary study. Materials Research Proceedings, v. 41, p. 2891-2900. 2024. DOI: https://doi.org/10.21741/9781644903131-316.

SINHMAR, S.; DWIVEDI, D. K. Effect of weld thermal cycle on metallurgical and corrosion behavior of friction stir weld joint of AA2014 aluminium alloy. Journal of Manufacturing Processes, v. 37, p. 305-320, 2019. DOI: https://doi.org/10.1016/j.jmapro.2018.12.001.

THREADGILL, P. L.; LEONARD, A. J.; SHERCLIFF, H. R.; WITHERS, P. J. Friction stir welding of aluminium alloys. International Materials Reviews, v. 54, n. 2, p. 49-93, 2009. Available at: https://www.twi-global.com/technical-knowledge/published-papers/friction-stir-welding-of-aluminium-alloys. Accessed on: 20 may 2025.

TAHERI, H.; KILPATRICK, M.; NORVALLS, M.; HARPER, W. J.; KOESTER, L. W.; BIGELOW, T.; BOND, L. J. Investigation of nondestructive testing methods for friction stir welding. Metals, v. 9, n. , 624, 2019. DOI: https://doi.org/10.3390/met9060624.

VERMA, S.; WU, C. S.; THAKUR, L.; MUHAMMAD, N. A.; LI, S. Material flow behavior and thermal cycle during friction stir welding of AA5083/AZ91 dissimilar metals. Journal of Materials Engineering and Performance, 2024. DOI: https://doi.org/10.1007/s11665-024-10374-0.

YANG, C.; NI, D. R.; XUE, P.; XIAO, B. L.; WANG, W.; WANG, K. S.; MA, Z. Y. A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates. Materials Characterization, v145, p. 20-28, 2018. DOI: https://doi.org/10.1016/j.matchar.2018.08.027.

WIEDENHOFT, A. G.; AMORIM, H. J.; ROSENDO, T. S.; TIER, M. A. D.; REGULY, A. Effect of heat input on the mechanical behaviour of Al-Cu FSW lap joints. Materials Research, v. 21, n. 4, 2018. DOI: https://doi.org/10.1590/1980-5373-MR-2017-0983.

WU, T.; ZHAO, F.; LUO, H.; WANG, H.; LI, Y. Temperature monitoring and material flow characteristics of friction stir welded 2A14-T6 aerospace aluminum Alloy. Materials, v. 12, n. 20, 3387. 2019. DOI: https://doi.org/10.3390/ma12203387.

Downloads

Publicado

16-06-2025

Como Citar

SANTOS, O. C. dos; SOUZA, J. W. de A.; MACIEL, T. M.; SANTOS, M. A. dos; MELO, J. B. da C. A. de; MELO, R. H. F. de. Influence of FSW process parameters on thermal cycles and mechanical properties of welded joints of AA7075 T651. Revista Principia, [S. l.], v. 62, 2025. DOI: 10.18265/2447-9187a2025id8878. Disponível em: https://periodicos.ifpb.edu.br/index.php/principia/article/view/8878. Acesso em: 23 jun. 2025.

Edição

Seção

Engenharias III - Engenharia Mecânica
Smart Citations via scite_

Artigos mais lidos pelo mesmo(s) autor(es)