Greenhouse gas emissions associated with traditional and alternative concretes

Mikaely Renaly Carlos da Silva

ORCID iD Universidade Federal da Paraíba (UFPB) Brasil

Kalliny dos Santos Gonçalves

Universidade Federal da Paraíba (UFPB) Brasil

Dener Delmiro Martins

Universidade Federal da Paraíba (UFPB) Brasil

Kelly Cristiane Gomes

ORCID iD Universidade Federal da Paraíba (UFPB) Brasil

Monica Carvalho

ORCID iD Universidade Federal da Paraíba (UFPB) Brasil

Resumo

Life Cycle Assessment (LCA) quantifies the environmental impacts associated with products throughout their life cycle. LCA also assists in the interpretation of impact assessment results, enabling improvements in a product or process. This paper applied the LCA methodology to quantify and compare the greenhouse gas emissions associated with different types of concrete: with a traditional binder (Portland cement) and with alkali-activated materials (Metakaolin, Lateritic Soil, and Lateritic Concretion) as precursors. The environmental impact was evaluated by means of greenhouse gas emissions (kg CO2-eq/m³), considering 1m³ of each binder and resistance of approximately 30 MPa, obtained by a recommended mix ratio. The main objective is to evaluate whether alkali-activated binders present lower emissions than Portland cement. The results demonstrated that Portland cement is responsible for over 92% of the environmental impacts of traditional concrete production. The use of alternative materials in civil construction, such as laterite soil, reduces carbon dioxide emissions by 79% compared to Portland cement concrete emissions.

Palavras-chave


Life Cycle Assessment; Carbon Footprint; Concrete; Portland cement; Alkali-activated materials


Texto completo:

Referências


ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8953: Concreto para fins estruturais - Classificação pela massa específica, por grupos de resistência e consistência. ABNT: Rio de Janeiro, 2015. In Portuguese.

BORGES, P. H. R.; LOURENÇO, T. M. F.; FOUREAUX, A. F. S.; PACHECO, L. S. Estudo comparativo da análise de ciclo de vida de concretos geopoliméricos e de concretos à base de cimento Portland composto (CP II). Ambiente Construído, Porto Alegre, v. 14, n. 2, p. 153-168, abr./jun. 2014. DOI: https://doi.org/10.1590/S1678-86212014000200011. In Portuguese.

ÇANKAYA, S. PEKEY, B. A comparative life cycle assessment for sustainable cement production in Turkey. Journal of Environmental Management, v. 249, p. 109362, 2019. DOI: https://doi.org/10.1016/j.jenvman.2019.109362.

CARVALHO, M.; DELGADO, D. Potential of photovoltaic solar energy to reduce the carbon footprint of the Brazilian electricity matrix. LALCA: Revista Latino-Americana em Avaliação do Ciclo de Vida, v. 1, n. 1, p. 64-85, 2017. DOI: https://doi.org/10.18225/lalca.v1i1.3779.

CEN – Comite Europeen de Normalisation European Standard. EN 197-1, 2000. Cement – part 1: composition, specifications and conformity criteria for common cements. Brussels: Comite Europeen de Normalisation (CEN), 2000.

DAVIDOVITS, J. False values on CO2 emission for geopolymer cement/concrete published in scientific papers. Technical Paper, v. 24, 2015. Disponível em: http://www.geopolymer.org/fichiers_pdf/False-CO2-values.pdf . Acesso em 09 dez 2019.

ECOINVENT v3.5 DATABASE. Swiss Centre for Life Cycle Inventories. Dübendorf, Switzerland, 2019.

GOMES, K. C. et al. Carbon emissions associated with two types of foundations: CP-II Portland cement-based composite vs. geopolymer concrete. Matéria, Rio de Janeiro, v. 24, n. 4, p. 2019. DOI: https://doi.org/10.1590/S1517-707620190004.0850.

GUINÉE, J. B. et al. Life cycle assessment: an operational guide to the ISO Standards. Leiden University. Center of Environment Science. Leiden University, The Netherlands, 2001.

GURSEL, A. P.; MASANET, E.; HORVATH, A.; STADEL, A. Life cycle inventory analysis of concrete production: a critical review. Cement and Concrete Composites, v. 51, p. 38-48, 2014. DOI: https://doi.org/10.1016/j.cemconcomp.2014.03.005.

HABERT, G.; LACAILLERIE, J. B. D.; ROUSSEL, N. An environmental evaluation of geopolymer based concrete production: reviewing current research trends. Cleaner Production, v. 19, n. 11, p. 1229-1238, 2011. DOI: https://doi.org/10.1016/j.jclepro.2011.03.012.

HOSSAIN, M. U.; POON, C. S.; LO, I. M. C.; CHENG, J. C. P. Comparative LCA on using waste materials in the cement industry: a Hong Kong case study. Resources, Conservation and Recycling, v. 120, p. 199-208, 2017. DOI: https://doi.org/10.1016/j.resconrec.2016.12.012.

IPCC – Intergovernmental Panel on Climate Change. Report climate change 2013: The Physical Science Basis. Cambridge University Press, NY, USA, 1535 p., 2013.

ISO – International Organization for Standardization. ISO 14040: Environmental management - Life cycle assessment - Principles and framework. Geneve: International Organization for Standardization (ISO), 2006.

ISO – International Organization for Standardization. ISO 14044: Environmental management - Life cycle assessment - Requirements and guidelines. Geneve: International Organization for Standardization (ISO), 2006.

KAN, A. L.; LVA, J.; DUANA, B.; WUB, M. Self-healing of Engineered Geopolymer Composites prepared by fly ash and metakaolin. Cement and Concrete Research, 2019.

KWASNY, J.; SOUTSOS, M. N.; MCINTOSH, J. A.; CLELAND, D. J. Comparison of the effect of mix proportion parameters on behavior of geopolymer and Portland cement mortars. Construction and Building Materials, v. 187, p. 635-651, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.165.

MCLELLAN, B. C. et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, v. 19, n. 9-10, p. 1080-1090, 2011. DOI: https://doi.org/10.1016/j.jclepro.2011.02.010.

MESGARI, S.; AKBARNEZHAD, A.; XIAO, J. Z. Recycled geopolymer aggregates as coarse aggregates for Portland cement concrete and geopolymer concrete: effects on mechanical properties. Construction and Building Materials, v. 236, p. 117571, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117571.

MESHRAM, R. B.; KUMAR, S. Comparative life cycle assessment (LCA) of geopolymer cement manufacturing with Portland cement in Indian context. International Journal of Environmental Science and Technology, p. 1-12, 2021. DOI: https://doi.org/10.1007/s13762-021-03336-9.

NAZARI, A.; BAGHERI, A.; SANJAYAN, J. G.; DAO, M.; MALLAWA, C.; ZANNIS, P.; ZUMBO, S. Thermal shock reactions of ordinary Portland cement and geopolymer concrete: microstructural and mechanical investigation. Construction and Building Materials, v. 196, p. 492-498, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.098.

NIDHEESH, P. V.; KUMAR, M. S. An overview of environmental sustainability in cement and steel production. Cleaner Production, v. 231, p. 856-871, 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.05.251.

OLIVEIRA, F. A. C.; FERNANDES, J. C.; GALINDO, J.; RODRÍGUEZ, J.; CAÑADAS, I.; VERMELHUDO, V.; NUNES, A.; ROSA, L. G. Portland cement clinker production using concentrated solar energy: a proof-of-concept approach. Solar Energy, v. 183, p. 677-688, 2019. DOI: https://doi.org/10.1016/j.solener.2019.03.064.

PRÉ SUSTAINABILITY. SimaPro – Life cycle assessment software. 2019. Informação obtida em https://network.simapro.com/pre/, em novembro de 2019. In Portuguese.

PROVIS, J. L.; VAN DEVENTER S. J. Introduction to geopolymers. In: PROVIS, J. L.; VAN DEVENTER, S. J. (eds.) Geopolymers: structure, processing, properties and industrial applications. Woodhead Publishing: Cambridge, 2009. Cap.1, p.1-11.

ROBAYO-SALAZAR, R. et al. Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: a comparative analysis to OPC concrete. Construction and Building Materials, v. 176, p. 103-111, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.017.

SALAS, D. A.; RAMIREZ, A. D.; ULLOA, N.; BAYKARA, H.; BOERO, A. J. Life cycle assessment of geopolymer concrete. Construction and Building Materials, v. 190, p. 170-177, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.09.123.

SINGH, N. B.; MIDDENDORF, B. Geopolymers as an alternative to Portland cement: an overview. Construction and Building Materials, v. 237, p. 117455, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117455.

SONG, D.; YANG, J.; CHEN, B.; HAYAT, T.; ALSAEDI, A. Life-cycle environmental impact analysis of a typical cement production chain. Applied Energy, v. 164, p. 916-923. 2016. DOI: https://doi.org/10.1016/j.apenergy.2015.09.003.

STAFFORD, F. N.; RAUPP-PEREIRA, F.; LABRINCHA, J. A.; HOTZA, D. Life cycle assessment of the production of cement: A Brazilian case study. Journal of Cleaner Production, v. 137, p. 1293-1299, 2016. DOI: https://doi.org/10.1016/j.jclepro.2016.07.050.

VAN OSS, H. G. Cement. In: U.S. Geological Survey, Mineral commodity summaries, p. 42-43, 2018.


DOI: http://dx.doi.org/10.18265/1517-0306a2021id6262

O arquivo PDF selecionado deve ser carregado no navegador caso tenha instalado um plugin de leitura de arquivos PDF (por exemplo, uma versão atual do Adobe Acrobat Reader).

Como alternativa, pode-se baixar o arquivo PDF para o computador, de onde poderá abrí-lo com o leitor PDF de sua preferência. Para baixar o PDF, clique no link abaixo.

Caso deseje mais informações sobre como imprimir, salvar e trabalhar com PDFs, a Highwire Press oferece uma página de Perguntas Frequentes sobre PDFs bastante útil.

Visitas a este artigo: 266

Total de downloads do artigo: 104