People effects on IoT indoor wireless channel characterization

Autores

  • Millena Michely de Medeiros Campos Universidade Federal do Rio Grande do Norte (UFRN) http://orcid.org/0000-0003-3654-7174
  • Mateus de Oliveira e Mattos Centre for Research and Development in Telecommunications (CPqD) http://orcid.org/0000-0002-7399-5868
  • Rafael da Silva Macedo Universidade Federal de Juiz de Fora (UFJF)
  • Alvaro Augusto Machado de Medeiros Universidade Federal de Juiz de Fora (UFJF)
  • Wellerson Viana de Oliveira Universidade Federal do Rio Grande do Norte (UFRN)
  • Vicente Angelo de Sousa Junior Universidade Federal do Rio Grande do Norte (UFRN)

DOI:

https://doi.org/10.18265/1517-0306a2020v1n53p141-149

Palavras-chave:

Wireless Channel, USRP, IoT, Small-scale Fading

Resumo

Wireless communication under 1 GHz is suitable for Internet of Things (IoT) applications due to larger coverage capability with less power consumption. Bearing in mind that people and elements contained in the environment can cause variations in the channel, this paper aims to evaluate the effect of the presence of people on a 900-MHz indoor narrowband wireless channel, as we characterize the small-scale phenomena. With the increase in the number of people, a greater variation in the communication channel was noticed, which is reflected in the parameters of the probability distributions used in the characterization of the random part of the signal. In addition, second-order statistics were used to analyze the data and an adherence test was applied to confirm the behavior of the signal in relation to the distributions.

Downloads

Não há dados estatísticos.

Referências

GPP. Standardization of NB-IoT completed. Available at: https://www.3gpp.org/news-events/1785-nb_iot_complete. Accessed in: Aug. 2020.

AHMED, H. F. T. et al. Higher order feature extraction and selection for robust human gesture recognition using CSI of COTS Wi-Fi devices. Sensors (Basel), v. 19, n. 13, p. 2959, 2019.

BODENSCHATZ, J. S.; NIKIAS, C. L. Maximum-likelihood symmetric ?-stable parameter estimation. IEEE Transactions on Signal Processing, v. 47, n. 5, p. 1382-1384, 1999.

COTTON, S. L.; SCANLON, W. G. Characterization and modeling of the indoor radio channel at 868 MHz for a mobile bodyworn wireless personal area network. IEEE Antennas and Wireless Propagation Letters, v. 6, p. 51-55, 2007.

DUMOUCHEL, W. H. Stable distributions in statistical inference, 1971. Unpublished Ph.D. Thesis, Department of Statistics, Yale University, v. 11, p. 37.

ETTUS RESEARCH. USRP N210. Available at: https://www.ettus.com/all-products/un210-kit/. Accessed in: Aug. 2020a.

ETTUS RESEARCH. WBX 50-2200 MHz Rx/Tx. Available at: https://www.ettus.com/product/details/WBX. Accessed in: Aug. 2020b.

INTERNATIONAL TELECOMMUNICATION UNION. ITU-R. IMT Vision: Framework and overall objectives of the future development of IMT for 2020 and beyond. Geneva (Switzerland): ITU-R, 2015.

JANSSEN, G. J. M; PRASAD, R. Propagation measurements in an indoor radio environment at 2.4 GHz, 4.75 GHz and 11.5 GHz. In: VEHICULAR TECHNOLOGY SOCIETY 42nd VTS CONFERENCE – FRONTIERS OF TECHNOLOGY. 1992. Denver (United States). Proceedings… 1992. p. 617-620.

KARA, A.; BERTONI, H. L. Effect of people moving near short-range indoor propagation links at 2.45 GHz. Journal of Communications and Networks, v. 8, n. 3, p. 286-289, 2006.

KATTENBACH, R.; ENGLERT, T. Investigation of short term statistical distributions for path amplitudes and phases in indoor environment. In: 48th IEEE VEHICULAR TECHNOLOGY CONFERENCE (VTC'98). PATHWAY TO GLOBAL WIRELESS REVOLUTION. 1998. Ottawa (Canada). Proceedings… 1998. p. 2114-2118.

KEYSIGHT. Keysight N9310A Signal Generator: User’s Guide. 3. ed. 2014. Available at: https://bit.ly/2YCYtVX. Accessed in: Aug. 2020.

LEE, H. et al. The effects of housing environments on the performance of activity-recognition systems using Wi-Fi channel state information: an exploratory study. Sensors (Basel), v. 19, n. 5, p. 983, 2019.

LINUX. Manjaro. Available at: https://manjaro.org/. Accessed in: Aug. 2020.

MAYER, L. W.; WRULICH, M.; CABAN, S. Measurements and channel modeling for short range indoor UHF applications. In: 2006 FIRST EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION. 2006, Nice (France). Proceedings… 2006. p. 1-5.

MIURA, K. An introduction to maximum likelihood estimation and information geometry. Interdisciplinary Information Sciences, v. 17, n. 3, p. 155-174, 2011.

MYUNG, I. J. Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, v. 47, n. 1, p. 90-100, 2003.

NOLAN, J. P. Maximum likelihood estimation and diagnostics for stable distributions. In: BARNDOCH-NIELSEN, O. E.; RESNICK, S. I.; MIKOSCH, T. (Eds). Lévy processes. Boston (United States): Birkhäuser, Boston, 2001. p. 379-400.

RAO, T. R.; BALACHANDER, D.; TIWARI, N. Short-range near floor path gain measurements in indoor corridors at UHF for wireless sensor communications. In: 2012 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS (ICCS). 2012. Singapore (Singapore). Proceedings… 2012. p. 189-193.

RAPPAPORT, T. S. Wireless communications: principles and practice. 2. ed. Prentice Hall, 2002.

REGANI, S. D. et al. Time reversal based robust gesture recognition using Wifi. In: ICASSP 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2020, Barcelona (Spain). Proceedings… 2020.

SCZYSLO, S.; DORTMUND, S.; ROLFES, I. Determination of the delay spread of an indoor channel measurement campaign in the UHF band. In: 2012 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION. 2012. Chicago (United States). Proceedings… 2012. p. 1-2.

SEMTECH. LoRa wireless technology. Available at: https://www.semtech.com/technology/lora. Accessed in: Aug. 2020.

SHAHZAD, M.; ZHANG, S. Augmenting user identification with WiFi based gesture recognition. In: ACM ON INTERACTIVE, MOBILE, WEARABLE AND UBIQUITOUS TECHNOLOGIES, 2018. v. 2, n. 3, p. 1-27, Proceedings… 2018.

SIGFOX. Connect and experience a Smart City. Available at: https://www.sigfox.com/en/smart-cities. Accessed in: Aug. 2020.

WALKER, E.; ZEPERNICK, H.-J.; WYSOCKI, T. Fading measurements at 2.4 GHz for the indoor radio propagation channel. In: 1998 INTERNATIONAL ZURICH SEMINAR ON BROADBAND COMMUNICATIONS, ACCESSING, TRANSMISSION, NETWORKING. 1998. Zurich (Switzerland). Proceedings… 1998. p. 171-176

WANG, Y.; LU, W.-J.; ZHU, H.-B. Propagation characteristics of the LTE indoor radio channel with persons at 2.6 GHz. IEEE Antennas and Wireless Propagation Letters, v. 12, p. 991-994, 2013.

WI-FI ALLIANCE. Next generation Wi-Fi: The future of connectivity. 2018.

YACOUB, M. D.; BAUTISTA, J. E. V.; GUEDES, L. G. R. On higher order statistics of the Nakagami-m distribution. IEEE Transactions on Vehicular Technology, v. 48, n. 3, p. 790-794, 1999.

YACOUB, M. D. Foundations of mobile radio engineering. CRC Press, 1993.

Downloads

Publicado

2021-02-03

Como Citar

CAMPOS, M. M. de M.; MATTOS, M. de O. e; MACEDO, R. da S.; MEDEIROS, A. A. M. de; OLIVEIRA, W. V. de; SOUSA JUNIOR, V. A. de. People effects on IoT indoor wireless channel characterization. Revista Principia, [S. l.], v. 1, n. 53, p. 141–149, 2021. DOI: 10.18265/1517-0306a2020v1n53p141-149. Disponível em: https://periodicos.ifpb.edu.br/index.php/principia/article/view/4689. Acesso em: 26 jan. 2025.

Edição

Seção

Engenharias IV - Engenharia Elétrica - Telecomunicações e Processamento de Sinais

Artigos mais lidos pelo mesmo(s) autor(es)