Properties of mucilage blends using psyllium husk (Plantago psyllium L) and chia seed (Salvia hispanica L)

Mariana Menconi Chinellato

ORCID iD Universidade Estadual de Maringá (UEM) Brasil

Kimberli Pauline Berwig

ORCID iD Universidade Estadual de Maringá (UEM) Brasil

Antonio Roberto Giriboni Monteiro

ORCID iD Universidade Estadual de Maringá (UEM) Brasil


The food industries face a constant challenge to use fewer and fewer ingredients in food composition and to increase the sustainability and nutritional value of these ingredients. The interaction and efficiency of gels can be enhanced by using polysaccharide mixtures. As an alternative for using gels as thickeners and stabilizers, this study used mucilage mixtures of psyllium (P) and chia (C) obtained by blending or combined extraction to investigate the interaction properties of these potential polysaccharide ingredients. After the extraction of psyllium husk and chia seed, separately, and a third extraction combining the two sources simultaneously, six samples were prepared with the following percentages: 100% P, 75-25% P-C, 50%-50% P-C, 25%-75% P-C and 100% C, named T1 to T5. The combined mucilage extraction was called T6. Factors such as pH, oBrix, and oil-holding capacity revealed no significant difference between the samples; higher carbohydrates values were indicated for the content of chia seed (13.14 g/L). Water solubility ranged from 7 to 51.25% without the occurrence of an interaction effect. The thermal effects were similar to natural hydrogels and the chia mucilage revealed less weight loss during the major breakdown stage of decomposition. The corroboration of the interaction property occurred through the viscosity factor. The viscosity of the combined sample (T6) had higher values than the other samples and the attenuated total reflection (ATR) spectra indicated more molecule conformation similarities with the psyllium than chia. 


Gels; Hydrocolloid; Stabilizer; Thermal analyses (TGA/DSC); Thickener

Texto completo:


AHMADI, R. et al. Development and characterization of a novel biodegradable edible film obtained from psyllium seed (Plantago ovata Forsk). Journal of Food Engineering, v. 109, p. 745-751, 2012.

BORNEO, R.; AGUIRRE, A.; LEON, A. Chia (Salvia hispanica L) gel can be used as egg or oil replacer in cake formulations. Journal of the American Dietetic Association, p. 946-949, 2010.

CAPITANI, M. et al. Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT - Food Science and Technology, v. 45, p. 94-102, 2012.

CASAS, K. G. O. Estudio de la interacción de hidrocoloides empleados em alimentos y su efecto em las propriedades reológicas y de textura sensorial e instrumental. Tesis – Magister em Ciencia y Tecnología de Alimentos. Universidad Nacional de Colombia. Colombia, 2016.

CERQUEIRA, M. A. et al. Structural and thermal characterization ofgalactomannans from non-conventional sources. Carbohydrate Polymers, v. 83, n. 1, p. 179–185, 2011.

COATES, J. Interpretation of ifrared spectra: A practical aproach. In R. Meyers, Encyclopedia of analytical chemistry, p. 10815-10837. Chichester: John Wiley & Sons LTD, 2006.

DUBOIS, M. et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, v. 28, n. 3, p. 350-356, 1956.

FELISBERTO, M. et al. Use of chia (Salvia hispanica L.) mucilage gel to reduce fat in pound cakes. LWT - Food Science and Technology, p. 1-7, 2015.

FERNANDES, S. S.; SALAS-MELLADO, M. M. Addition of chia seed mucilage for reduction of fat content in bread and cakes. Food Chemistry, v. 227, p. 237-244, 2017.

GOFF, H. D.; GUO, Q. Chapter 1: The role of hydrocolloids in the development of food structure. In: Handbook of Food Structure Development, p. 1-28, 2019.

GUO, Q. et al. Microstructure and rheological properties of psyllium polysaccharide gel. Food Hydrocolloids, p. 1542–1547, 2009.

IQBAL, M. et al. Evaluation of hot-water extracted arabinoxylans from ispaghula seeds as drug carriers. Carbohydrate Polymers, p. 1218–1225, 2011a.

IQBAL, M. et al. Thermal studies of plant carbohydrate polymer hydrogels. Carbohydrate Polymers, p. 1775– 1783, 2011b.

LEÓN-MARTÍNEZ, F. M.; MÉNDEZ-LAGUNAS, L. L.; RODRÍGUEZ-RAMÍREZ, J. Spray drying of nopal mucilage (Opuntia ficus-indica): Effects on powder properties and characterization. Carbohydrate Polymers, v. 81, n. 4, p. 864–870, 2010.

MUÑOZ, L. et al. Chia seeds: Microstruture, mucilage extraction and hydration. Journal of Food Engineering, p. 216-224, 2012.

RAHAIE, S. et al. Recent developments on new formulations based on nutrient-dense ingredients for the production of healthy-functional bread: a review. Journal of Food Science and Technology, v. 51, p. 2896-2906, 2012.

SOUKOULIS, C.; GAIANI, C.; HOFFMANN, L. Plant seed mucilage as emerging biopolymer in food industry applications. Current Opinion in Food Science, v. 2, p. 28-42, 2018.

THAKUR, V.; THAKUR, M. Recent trends in hydrogels based on psyllium polysaccharide: a review. Journal of Cleaner Production, v. 82, p. 1-15, 2014.

TIMILSENA, Y. P. et al. Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydrate Polymers, p. 126-136, 2016a.

TIMILSENA, Y. P. et al. Preparation and characterization of chia seed protein isolate–chia seed gum complex coacervates. Food Hydrocolloids, p. 554–563, 2016b.

TIPSON, R. Infrared spectroscopy of carbohydrates: A review of the literature. Washington, D.C.: National bureau of standards, 1968.

TOGRUL, H.; ASLAN, N. Flow properties of sugar beet pulp cellulose andintrinsic viscosity–molecular weight relationship. Carbohydrate Polymers, v. 54, n. 1, p. 63–71, 2003.

WALSTRA, P.; VLIET, T. Sistemas Dispersos: Considerações Básicas. Em S. Damodaran, K. Parkin, & O. Fennema, Química de Alimentos Fennema, p. 611-658. Porto Alegre, Brasil: Artmed, 2010.

YEMENICIOGLU, A. et al. A review of current and future food applications of natural hydrocolloids. International Journal of Food Science and Technology, v. 55, n. 4, p. 1-18, 2019.


O arquivo PDF selecionado deve ser carregado no navegador caso tenha instalado um plugin de leitura de arquivos PDF (por exemplo, uma versão atual do Adobe Acrobat Reader).

Como alternativa, pode-se baixar o arquivo PDF para o computador, de onde poderá abrí-lo com o leitor PDF de sua preferência. Para baixar o PDF, clique no link abaixo.

Caso deseje mais informações sobre como imprimir, salvar e trabalhar com PDFs, a Highwire Press oferece uma página de Perguntas Frequentes sobre PDFs bastante útil.

Visitas a este artigo: 449

Total de downloads do artigo: 440