Influence of chloride, sulfate, and nitrate ions in modified watts electrolytes on the morphology and corrosion resistance of nickel electrodeposits

Autores

DOI:

https://doi.org/10.18265/2447-9187a2026id9095

Palavras-chave:

corrosão, eletrodeposição, eletroquímica, níquel

Resumo

Eletrodepósitos de níquel apresentam ampla aplicação industrial devido à sua resistência, durabilidade e capacidade de ampliar a vida útil de componentes metálicos. Neste estudo, eletrodepósitos de níquel foram obtidos a partir de banhos de Watts modificados, contendo predominantemente os ânions cloreto (ENC), sulfato (ENS) ou nitrato (ENN), mantendo-se constantes as condições operacionais: Ni²⁺ na concentração de 1,34 mol·L⁻¹, H₃BO₃ na concentração de 0,73 mol·L⁻¹, temperatura de 50 °C, pH 4,0, taxa de agitação de 100 rpm e tempo de eletrólise de 15 minutos. Avaliou-se a influência desses ânions na morfologia, espessura dos depósitos, rendimento de corrente catódica e resistência à corrosão. As análises morfológicas foram realizadas por Microscopia Eletrônica de Varredura (MEV), e os ensaios eletroquímicos por Polarização Linear Potenciodinâmica (PLP) e Espectroscopia de Impedância Eletroquímica (EIE), em solução aquosa de NaCl 3,0%. Os resultados mostraram que os eletrodepósitos ENC e ENS apresentaram maiores espessuras e maior rendimento de corrente em relação aos eletrodepósitos ENN. Morfologicamente, os depósitos ENS exibiram estruturas predominantemente nodulares, os revestimentos ENC apresentaram morfologia nodular-dendrítica homogênea, e os revestimentos ENN apresentaram superfícies irregulares e porosas. Do ponto de vista eletroquímico, os revestimentos ENS exibiram comportamento mais nobre (Ecorr = −384,0 mV) e maior resistência à corrosão, enquanto os revestimentos ENN apresentaram desempenho inferior (Ecorr = −706,0 mV). Conclui-se que os ânions cloreto, sulfato e nitrato afetam significativamente as propriedades morfológicas e eletroquímicas dos eletrodepósitos de níquel.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

ASTM INTERNATIONAL. ASTM G102-89(2015): Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. West Conshohocken, Pennsylvania: Astm International, 2015. DOI: https://doi.org/10.1520/G0102-89R15E01.

ABBASI-AMANDI, Abolfazl; AHMADI, Naghi Parvini; OJAGHI-ILKHCHI, Mehdi; ALINEZHADFAR, Mohammad. Physical and electrochemical behavior of black nickel coatings in presence of KNO3 and imidazole additives. Journal Of Electroanalytical Chemistry, [S.L.], v. 893, p. 115310, jul. 2021. DOI: http://dx.doi.org/10.1016/j.jelechem.2021.115310.

AHMAD, Zaki. Principles of Corrosion Engineering and Corrosion Control. 1. ed. [S.L.]: Elsevier, 2006. DOI: https://doi.org/10.1016/B978-0-7506-5924-6.X5000-4. Accessed on:12 jan. 2025.

BARD, Allen J.; FAULKNER, Larry R.. Electrochemical Methods: Fundamentals and Applications. 2. ed. [S.L.]: Wiley, 2000. 864 p.

BASORI; MANSOR, Muhd Ridzuan; AJIRIYANTO, Maman Kartaman; KRISWARINI, Rosika; SOEGIJONO, Bambang; YUDANTO, Sigit Dwi; NANTO, Dwi; ROSYIDAN, Cahaya; SUSETYO, Ferry Budhi. Ni Layer Fabrication in Various Temperature of Watts Solution. Journal of Applied Science of Engineering, [S.L.], v. 28, n. 4, p. 853-864, 1 abr. 2025. DOI: http://dx.doi.org/10.6180/jase.202504_28(4).0016.

CHAT-WILK, Karolina; RUDNIK, Ewa; WłOCH, Grzegorz; OSUCH, Piotr. Importance of anions in electrodeposition of nickel from gluconate solutions. Ionics, [S.L.], v. 27, n. 10, p. 4393-4408, 16 ago. 2021. DOI: http://dx.doi.org/10.1007/s11581-021-04166-y.

DENNIS, J.K.; SUCH, T.e.. Electroplating baths and anodes used for industrial nickel deposition. Nickel And Chromium Plating, [S.L.], p. 41-65, 1993. DOI: http://dx.doi.org/10.1533/9781845698638.41.

DIBARI, George A.. Nickel Plating. In: METAL Finishing: 76th Guidebook and Directory Issue. New York: Elsevier, 2009. p. 202-218. DOI: https://doi.org/10.1016/S0026-0576(00)80334-7

EL-HALLAG, Ibrahim; ELSHARKAWY, Safya; HAMMAD, Sherin. Electrodeposition of Ni nanoparticles from deep eutectic solvent and aqueous solution as electrocatalyst for methanol oxidation in acidic media. International Journal Of Hydrogen Energy, [S.L.], v. 46, n. 29, p. 15442-15453, abr. 2021. DOI: http://dx.doi.org/10.1016/j.ijhydene.2021.02.049.

E, Sharel P.; LIU, Danqing; LAZENBY, Robert A.; SLOAN, Jeremy; VIDOTTI, Marcio; UNWIN, Patrick R.; MACPHERSON, Julie V.. Electrodeposition of Nickel Hydroxide Nanoparticles on Carbon Nanotube Electrodes: correlation of particle crystallography with electrocatalytic properties. The Journal Of Physical Chemistry C, [S.L.], v. 120, n. 29, p. 16059-16068, 17 jun. 2016. American Chemical Society (ACS). DOI: http://dx.doi.org/10.1021/acs.jpcc.5b12741.

FUKUNAGA, Akihiko; UEDA, Shigetomo. Pulse electrodeposition of Ni–P alloy coatings from Watts baths: p content, current efficiency, and internal stress. Electrochimica Acta, [S.L.], v. 502, p. 144839, out. 2024. DOI :http://dx.doi.org/10.1016/j.electacta.2024.144839.

HALLEMANS, Noël; HOWEY, David; BATTISTEL, Alberto; SANIEE, Nessa Fereshteh; SCARPIONI, Federico; WOUTERS, Benny; LAMANTIA, Fabio; HUBIN, Annick; WIDANAGE, Widanalage Dhammika; LATAIRE, John. Electrochemical impedance spectroscopy beyond linearity and stationarity—A critical review. Electrochimica Acta, [S.L.], v. 466, p. 142939, out. 2023. DOI: http://dx.doi.org/10.1016/j.electacta.2023.142939.

JAYASHREE, R.s.; KAMATH, P.Vishnu. Nickel hydroxide electrodeposition from nickel nitrate solutions: mechanistic studies. Journal Of Power Sources, [S.L.], v. 93, n. 1-2, p. 273-278, fev. 2001. Elsevier BV. DOI: http://dx.doi.org/10.1016/s0378-7753(00)00568-1.

JONES, Denny A.. Principles and Prevention of Corrosion. 2. ed. Upper Saddle River, New Jersey: Pearson, 1995. 592 p.

LAZANAS, Alexandros Ch.; PRODROMIDIS, Mamas I.. Correction to “Electrochemical Impedance Spectroscopy─A Tutorial”. Acs Measurement Science Au, [S.L.], v. 5, n. 1, p. 156-156, 31 jan. 2025. DOI: http://dx.doi.org/10.1021/acsmeasuresciau.5c00007.

KUCHARSKA, Beata; BROJANOWSKA, Agnieszka; POPłAWSKI, Karol; SOBIECKI, Jerzy Robert. Corrosion Resistance of Ni/Al2O3 Nanocomposite Coatings. Materials Science, [S.L.], v. 22, n. 1, p. 31-35, 18 fev. 2016. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7407.

MARSHALL, Aaron T.. Using microkinetic models to understand electrocatalytic reactions. Current Opinion In Electrochemistry, [S.L.], v. 7, p. 75-80, jan. 2018. DOI: http://dx.doi.org/10.1016/j.coelec.2017.10.024.

MOHAJERI, S.; DOLATI, A.; REZAGHOLIBEIKI, S.. Electrodeposition of Ni/WC nano composite in sulfate solution. Materials Chemistry And Physics, [S.L.], v. 129, n. 3, p. 746-750, out. 2011. DOI: http://dx.doi.org/10.1016/j.matchemphys.2011.04.053.

MUBSHRAH, Ayesha; MARTIN, Tomas; JONES, Christopher; SCHWARZACHER, Walther. Quantitative Analysis of Chloride Ion Influence on the Surface Morphology of Electrodeposited Polycrystalline Nickel Films. Journal Of The Electrochemical Society, [S.L.], v. 172, n. 3, p. 032504, 1 mar. 2025. DOI: http://dx.doi.org/10.1149/1945-7111/adbc26.

MUÑOZ, A.G,; SALINAS, D.R.. Inhibitory effects of NO2– on Ni deposition. Journal Of Electroanalytical Chemistry, [S.L.], v. 547, n. 2, p. 115-124, maio 2003. DOI: http://dx.doi.org/10.1016/s0022-0728(03)00159-1.

MURTHY, Mahesh; NAGARAJAN, Gowri S.; WEIDNER, John W.; VAN ZEE, J. W.. A Model for the Galvanostatic Deposition of Nickel Hydroxide. Journal Of The Electrochemical Society, [S.L.], v. 143, n. 7, p. 2319-2327, 1 jul. 1996. The Electrochemical Society. DOI: http://dx.doi.org/10.1149/1.1837000.

NAVARRO-AGUILAR, A.I.; RUÍZ-GÓMEZ, M.A.; RODRÍGUEZ-GONZÁLEZ, V.; OBREGÓN, S.; VÁZQUEZ, A.. Effect of the Ni(NO3)2 additive on the electrophoretic deposition of NiO nanoparticles. Ceramics International, [S.L.], v. 46, n. 18, p. 28528-28535, dez. 2020. DOI: http://dx.doi.org/10.1016/j.ceramint.2020.08.010.

NICKEL INSTITUTE. Nickel plating handbook. [S.L.]: Nicke Institute, 2022. Available at: https://nickelinstitute.org/media/lxxh1zwr/2023-nickelplatinghandbooka5_printablepdf.pdf Accessed on: 12 jan. 2025.

OLIVEIRA, Francisco G.s.; SANTOS, Luis P.M.; SILVA, Rodolfo B. da; CORREA, Marcio A.; BOHN, Felipe; CORREIA, Adriana N.; VIEIRA, Luciana; VASCONCELOS, Igor F.; LIMA-NETO, Pedro de. FexNi(1-x) coatings electrodeposited from choline chloride-urea mixture: magnetic and electrocatalytic properties for water electrolysis. Materials Chemistry And Physics, [S.L.], v. 279, p. 125738, mar. 2022. DOI: http://dx.doi.org/10.1016/j.matchemphys.2022.125738.

ORIŇÁKOVÁ, Renáta; TUROňOVÁ, Andrea; KLADEKOVÁ, Daniela; GÁLOVÁ, Miriam; SMITH, Roger M.. Recent developments in the electrodeposition of nickel and some nickel-based alloys. Journal Of Applied Electrochemistry, [S.L.], v. 36, n. 9, p. 957-972, 14 jul. 2006. DOI: http://dx.doi.org/10.1007/s10800-006-9162-7.

RAHIMI, Ali; SARRAF, Shayan; SOLTANIEH, Mansour. The Effects of Soft Anodizing Pretreatments on the Corrosion Properties of Nickel Electroplated AA6061-T6. Journal Of Materials Engineering And Performance, [S.L.], p. 1-14, 17 fev. 2025. DOI: http://dx.doi.org/10.1007/s11665-025-10815-4.

REN, Xiu-Lian; WEI, Qi-Feng; LIU, Zhe; LIU, Jun. Electrodeposition conditions of metallic nickel in electrolytic membrane reactor. Transactions Of Nonferrous Metals Society Of China, [S.L.], v. 22, n. 2, p. 467-475, fev. 2012. DOI: http://dx.doi.org/10.1016/s1003-6326(11)61200-4.

ROMANIV, O. N.; TSIRUL'NIK, A. T.; KRYS'KIV, A. S.; RONCHEVICH, I. Ch.. Electrochemical methods in corrosion monitoring of metals (review). Soviet Materials Science, [S.L.], v. 25, n. 1, p. 1-12, 1989. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/bf00727915.

RUDNIK, Ewa. Black Nickel Coatings: from plating techniques to applications. Coatings, [S.L.], v. 14, n. 12, p. 1588, 19 dez. 2024. DOI: http://dx.doi.org/10.3390/coatings14121588.

RUSU, D. E.; ISPAS, A.; BUND, A.; GHEORGHIES, C.; CÂRÂC, G.. Corrosion tests of nickel coatings prepared from a Watts-type bath. Journal Of Coatings Technology And Research, [S.L.], v. 9, n. 1, p. 87-95, 19 jul. 2011. DOI: http://dx.doi.org/10.1007/s11998-011-9343-0.

SAYED, Manal A. El; EL-HENDAWY, Morad M.; IBRAHIM, Magdy A.M.. Improving the Characteristics of Nickel Coatings Produced on Copper from Watts Bath in the Presence of Ascorbic Acid – Combined Experimental and Theoretical Study. International Journal Of Electrochemical Science, [S.L.], v. 17, n. 4, p. 22044, abr. 2022. DOI: http://dx.doi.org/10.20964/2022.04.12.

SARANGI, Chinmaya Kumar; ACHARY, G. Lilishree; SUBBAIAH, Tondepu; PARAMGURU, Raja Kishore; ROY, Sanat Kumar. Role of Electrochemical Precipitation Parameters in Developing Mixed-Phase Battery-Grade Nickel Hydroxide. Electrochem, [S.L.], v. 6, n. 1, p. 2, 16 jan. 2025. MDPI AG. DOI: http://dx.doi.org/10.3390/electrochem6010002.

SHAMSHIRSAZ, Mohsen; FEREIDOON, Abdolhosein; ALBOOYEH, Alireza; DANAEE, Iman. The Effect of Ni-Al2O3 Nanocomposite Coatings on the Wear and Corrosion Resistance and Thermal Diffusivity of 316 Stainless Steel Plates of Heat Exchangers. Journal Of Materials Engineering And Performance, [S.L.], v. 32, n. 4, p. 1529-1544, 29 ago. 2022. DOI: http://dx.doi.org/10.1007/s11665-022-07242-0.

SZCZYGIEł, Bogdan; KOłODZIEJ, Małgorzata. Composite Ni/Al2O3 coatings and their corrosion resistance. Electrochimica Acta, [S.L.], v. 50, n. 20, p. 4188-4195, jul. 2005. DOI: http://dx.doi.org/10.1016/j.electacta.2005.01.040.

JAYASHREE, R.s.; KAMATH, P.Vishnu. Nickel hydroxide electrodeposition from nickel nitrate solutions: mechanistic studies. Journal Of Power Sources, [S.L.], v. 93, n. 1-2, p. 273-278, fev. 2001. DOI: http://dx.doi.org/10.1016/s0378-7753(00)00568-1.

PESQUEIRA, Camila Melo; LUIZ, Leonardo Augusto; ANDRADE, Juliano de; GARCIA, Carlos Mario; PORTELLA, Kleber Franke. The effect of chloride, sulfate, and ammonium ions on the semiconducting behavior and corrosion resistance of AISI 304 stainless steel passive film. Matéria (Rio de Janeiro), [S.L.], v. 28, n. 4, p. 1-10, out. 2023. DOI: http://dx.doi.org/10.1590/1517-7076-rmat-2023-0139.

RAHIMI, Ali; SARRAF, Shayan; SOLTANIEH, Mansour. The Effects of Soft Anodizing Pretreatments on the Corrosion Properties of Nickel Electroplated AA6061-T6. Journal Of Materials Engineering And Performance, [S.L.], p. 1-15, 17 fev. 2025. DOI: http://dx.doi.org/10.1007/s11665-025-10815-4.

ROMANIV, O. N.; TSIRUL'NIK, A. T.; KRYS'KIV, A. S.; RONCHEVICH, I. Ch.. Electrochemical methods in corrosion monitoring of metals (review). Soviet Materials Science, [S.L.], v. 25, n. 1, p. 1-12, 1989. DOI: http://dx.doi.org/10.1007/bf00727915.

RUDNIK, Ewa. The influence of sulfate ions on the electrodeposition of Ni–Sn alloys from acidic chloride–gluconate baths. Journal Of Electroanalytical Chemistry, [S.L.], v. 726, p. 97-106, jul. 2014. DOI: http://dx.doi.org/10.1016/j.jelechem.2014.05.021.

RUSU, D. E.; ISPAS, A.; BUND, A.; GHEORGHIES, C.; CÂRÂC, G.. Corrosion tests of nickel coatings prepared from a Watts-type bath. Journal Of Coatings Technology And Research, [S.L.], v. 9, n. 1, p. 87-95, 19 jul. 2011. DOI: http://dx.doi.org/10.1007/s11998-011-9343-0.

SHEETAL; KUNDU, Sheetal; THAKUR, Sanjeeve; SINGH, Ashish Kumar; SINGH, Manjeet; PANI, Balaram; SAJI, Viswanathan S.. A Review of Electrochemical Techniques for Corrosion Monitoring – Fundamentals and Research Updates. Critical Reviews In Analytical Chemistry, [S.L.], v. 55, n. 1, p. 161-186, 25 out. 2023. DOI: http://dx.doi.org/10.1080/10408347.2023.2267671. Rev. Principia, João Pessoa, v. 63, 2026,

STREINZ, Christopher C.; HARTMAN, Andrew P.; MOTUPALLY, Sathya; WEIDNER, John W.. The Effect of Current and Nickel Nitrate Concentration on the Deposition of Nickel Hydroxide Films. Journal Of The Electrochemical Society, [S.L.], v. 142, n. 4, p. 1084-1089, 1 abr. 1995. DOI: http://dx.doi.org/10.1149/1.2044134.

SZEPTYCKA, Benigna; GAJEWSKA-MIDZIALEK, Anna; BABUL, Tomasz. Electrodeposition and Corrosion Resistance of Ni-Graphene Composite Coatings. Journal Of Materials Engineering And Performance, [S.L.], v. 25, n. 8, p. 3134-3138, 23 mar. 2016. DOI: http://dx.doi.org/10.1007/s11665-016-2009-4.

TAYLOR, S.R.. Coatings for Corrosion Protection: metallic. Encyclopedia Of Materials: Science and Technology, [S.L.], p. 1-5, 2001. DOI: http://dx.doi.org/10.1016/b0-08-043152-6/00239-4.

ÜNAL, E.; KARAHAN, İ.H.. Production and characterization of electrodeposited Ni-B/hBN composite coatings. Surface And Coatings Technology, [S.L.], v. 333, p. 125-137, jan. 2018. DOI: http://dx.doi.org/10.1016/j.surfcoat.2017.11.016.

WALTER, G.W.. A review of impedance plot methods used for corrosion performance analysis of painted metals. Corrosion Science, [S.L.], v. 26, n. 9, p. 681-703, jan. 1986. DOI: http://dx.doi.org/10.1016/0010-938x(86)90033-8.

WANG, Dongai; LI, Feihui; SHI, Yan; LIU, Meihua; LIU, Bin; CHANG, Qing. Optimization of the Preparation Parameters of High-Strength Nickel Layers by Electrodeposition on Mild Steel Substrates. Materials, [S.L.], v. 14, n. 18, p. 5461, 21 set. 2021. DOI: http://dx.doi.org/10.3390/ma14185461.

WOJCIECHOWSKI, Jarosław; BARANIAK, Marek; PERNAK, Juliusz; LOTA, Grzegorz. Nickel Coatings Electrodeposited from Watts Type Baths Containing Quaternary Ammonium Sulphate Salts. International Journal Of Electrochemical Science, [S.L.], v. 12, n. 4, p. 3350-3360, abr. 2017. DOI: http://dx.doi.org

Downloads

Publicado

21-01-2026

Como Citar

SILVA, G. P. da; DANTAS, V. F.; SILVA FILHO, L. F. da; SANTOS, Z. M. dos; LIMA, R. N. de; BARROS NETO, E. L. de. Influence of chloride, sulfate, and nitrate ions in modified watts electrolytes on the morphology and corrosion resistance of nickel electrodeposits. Revista Principia, [S. l.], v. 63, 2026. DOI: 10.18265/2447-9187a2026id9095. Disponível em: https://periodicos.ifpb.edu.br/index.php/principia/article/view/9095. Acesso em: 27 jan. 2026.

Edição

Seção

Engenharias II - Engenharia de Materiais
Smart Citations via scite_

Artigos mais lidos pelo mesmo(s) autor(es)