Influence of chloride, sulfate, and nitrate ions in modified watts electrolytes on the morphology and corrosion resistance of nickel electrodeposits
DOI:
https://doi.org/10.18265/2447-9187a2026id9095Palavras-chave:
corrosão, eletrodeposição, eletroquímica, níquelResumo
Eletrodepósitos de níquel apresentam ampla aplicação industrial devido à sua resistência, durabilidade e capacidade de ampliar a vida útil de componentes metálicos. Neste estudo, eletrodepósitos de níquel foram obtidos a partir de banhos de Watts modificados, contendo predominantemente os ânions cloreto (ENC), sulfato (ENS) ou nitrato (ENN), mantendo-se constantes as condições operacionais: Ni²⁺ na concentração de 1,34 mol·L⁻¹, H₃BO₃ na concentração de 0,73 mol·L⁻¹, temperatura de 50 °C, pH 4,0, taxa de agitação de 100 rpm e tempo de eletrólise de 15 minutos. Avaliou-se a influência desses ânions na morfologia, espessura dos depósitos, rendimento de corrente catódica e resistência à corrosão. As análises morfológicas foram realizadas por Microscopia Eletrônica de Varredura (MEV), e os ensaios eletroquímicos por Polarização Linear Potenciodinâmica (PLP) e Espectroscopia de Impedância Eletroquímica (EIE), em solução aquosa de NaCl 3,0%. Os resultados mostraram que os eletrodepósitos ENC e ENS apresentaram maiores espessuras e maior rendimento de corrente em relação aos eletrodepósitos ENN. Morfologicamente, os depósitos ENS exibiram estruturas predominantemente nodulares, os revestimentos ENC apresentaram morfologia nodular-dendrítica homogênea, e os revestimentos ENN apresentaram superfícies irregulares e porosas. Do ponto de vista eletroquímico, os revestimentos ENS exibiram comportamento mais nobre (Ecorr = −384,0 mV) e maior resistência à corrosão, enquanto os revestimentos ENN apresentaram desempenho inferior (Ecorr = −706,0 mV). Conclui-se que os ânions cloreto, sulfato e nitrato afetam significativamente as propriedades morfológicas e eletroquímicas dos eletrodepósitos de níquel.
Downloads
Métricas
Referências
ASTM INTERNATIONAL. ASTM G102-89(2015): Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. West Conshohocken, Pennsylvania: Astm International, 2015. DOI: https://doi.org/10.1520/G0102-89R15E01.
ABBASI-AMANDI, Abolfazl; AHMADI, Naghi Parvini; OJAGHI-ILKHCHI, Mehdi; ALINEZHADFAR, Mohammad. Physical and electrochemical behavior of black nickel coatings in presence of KNO3 and imidazole additives. Journal Of Electroanalytical Chemistry, [S.L.], v. 893, p. 115310, jul. 2021. DOI: http://dx.doi.org/10.1016/j.jelechem.2021.115310.
AHMAD, Zaki. Principles of Corrosion Engineering and Corrosion Control. 1. ed. [S.L.]: Elsevier, 2006. DOI: https://doi.org/10.1016/B978-0-7506-5924-6.X5000-4. Accessed on:12 jan. 2025.
BARD, Allen J.; FAULKNER, Larry R.. Electrochemical Methods: Fundamentals and Applications. 2. ed. [S.L.]: Wiley, 2000. 864 p.
BASORI; MANSOR, Muhd Ridzuan; AJIRIYANTO, Maman Kartaman; KRISWARINI, Rosika; SOEGIJONO, Bambang; YUDANTO, Sigit Dwi; NANTO, Dwi; ROSYIDAN, Cahaya; SUSETYO, Ferry Budhi. Ni Layer Fabrication in Various Temperature of Watts Solution. Journal of Applied Science of Engineering, [S.L.], v. 28, n. 4, p. 853-864, 1 abr. 2025. DOI: http://dx.doi.org/10.6180/jase.202504_28(4).0016.
CHAT-WILK, Karolina; RUDNIK, Ewa; WłOCH, Grzegorz; OSUCH, Piotr. Importance of anions in electrodeposition of nickel from gluconate solutions. Ionics, [S.L.], v. 27, n. 10, p. 4393-4408, 16 ago. 2021. DOI: http://dx.doi.org/10.1007/s11581-021-04166-y.
DENNIS, J.K.; SUCH, T.e.. Electroplating baths and anodes used for industrial nickel deposition. Nickel And Chromium Plating, [S.L.], p. 41-65, 1993. DOI: http://dx.doi.org/10.1533/9781845698638.41.
DIBARI, George A.. Nickel Plating. In: METAL Finishing: 76th Guidebook and Directory Issue. New York: Elsevier, 2009. p. 202-218. DOI: https://doi.org/10.1016/S0026-0576(00)80334-7
EL-HALLAG, Ibrahim; ELSHARKAWY, Safya; HAMMAD, Sherin. Electrodeposition of Ni nanoparticles from deep eutectic solvent and aqueous solution as electrocatalyst for methanol oxidation in acidic media. International Journal Of Hydrogen Energy, [S.L.], v. 46, n. 29, p. 15442-15453, abr. 2021. DOI: http://dx.doi.org/10.1016/j.ijhydene.2021.02.049.
E, Sharel P.; LIU, Danqing; LAZENBY, Robert A.; SLOAN, Jeremy; VIDOTTI, Marcio; UNWIN, Patrick R.; MACPHERSON, Julie V.. Electrodeposition of Nickel Hydroxide Nanoparticles on Carbon Nanotube Electrodes: correlation of particle crystallography with electrocatalytic properties. The Journal Of Physical Chemistry C, [S.L.], v. 120, n. 29, p. 16059-16068, 17 jun. 2016. American Chemical Society (ACS). DOI: http://dx.doi.org/10.1021/acs.jpcc.5b12741.
FUKUNAGA, Akihiko; UEDA, Shigetomo. Pulse electrodeposition of Ni–P alloy coatings from Watts baths: p content, current efficiency, and internal stress. Electrochimica Acta, [S.L.], v. 502, p. 144839, out. 2024. DOI :http://dx.doi.org/10.1016/j.electacta.2024.144839.
HALLEMANS, Noël; HOWEY, David; BATTISTEL, Alberto; SANIEE, Nessa Fereshteh; SCARPIONI, Federico; WOUTERS, Benny; LAMANTIA, Fabio; HUBIN, Annick; WIDANAGE, Widanalage Dhammika; LATAIRE, John. Electrochemical impedance spectroscopy beyond linearity and stationarity—A critical review. Electrochimica Acta, [S.L.], v. 466, p. 142939, out. 2023. DOI: http://dx.doi.org/10.1016/j.electacta.2023.142939.
JAYASHREE, R.s.; KAMATH, P.Vishnu. Nickel hydroxide electrodeposition from nickel nitrate solutions: mechanistic studies. Journal Of Power Sources, [S.L.], v. 93, n. 1-2, p. 273-278, fev. 2001. Elsevier BV. DOI: http://dx.doi.org/10.1016/s0378-7753(00)00568-1.
JONES, Denny A.. Principles and Prevention of Corrosion. 2. ed. Upper Saddle River, New Jersey: Pearson, 1995. 592 p.
LAZANAS, Alexandros Ch.; PRODROMIDIS, Mamas I.. Correction to “Electrochemical Impedance Spectroscopy─A Tutorial”. Acs Measurement Science Au, [S.L.], v. 5, n. 1, p. 156-156, 31 jan. 2025. DOI: http://dx.doi.org/10.1021/acsmeasuresciau.5c00007.
KUCHARSKA, Beata; BROJANOWSKA, Agnieszka; POPłAWSKI, Karol; SOBIECKI, Jerzy Robert. Corrosion Resistance of Ni/Al2O3 Nanocomposite Coatings. Materials Science, [S.L.], v. 22, n. 1, p. 31-35, 18 fev. 2016. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7407.
MARSHALL, Aaron T.. Using microkinetic models to understand electrocatalytic reactions. Current Opinion In Electrochemistry, [S.L.], v. 7, p. 75-80, jan. 2018. DOI: http://dx.doi.org/10.1016/j.coelec.2017.10.024.
MOHAJERI, S.; DOLATI, A.; REZAGHOLIBEIKI, S.. Electrodeposition of Ni/WC nano composite in sulfate solution. Materials Chemistry And Physics, [S.L.], v. 129, n. 3, p. 746-750, out. 2011. DOI: http://dx.doi.org/10.1016/j.matchemphys.2011.04.053.
MUBSHRAH, Ayesha; MARTIN, Tomas; JONES, Christopher; SCHWARZACHER, Walther. Quantitative Analysis of Chloride Ion Influence on the Surface Morphology of Electrodeposited Polycrystalline Nickel Films. Journal Of The Electrochemical Society, [S.L.], v. 172, n. 3, p. 032504, 1 mar. 2025. DOI: http://dx.doi.org/10.1149/1945-7111/adbc26.
MUÑOZ, A.G,; SALINAS, D.R.. Inhibitory effects of NO2– on Ni deposition. Journal Of Electroanalytical Chemistry, [S.L.], v. 547, n. 2, p. 115-124, maio 2003. DOI: http://dx.doi.org/10.1016/s0022-0728(03)00159-1.
MURTHY, Mahesh; NAGARAJAN, Gowri S.; WEIDNER, John W.; VAN ZEE, J. W.. A Model for the Galvanostatic Deposition of Nickel Hydroxide. Journal Of The Electrochemical Society, [S.L.], v. 143, n. 7, p. 2319-2327, 1 jul. 1996. The Electrochemical Society. DOI: http://dx.doi.org/10.1149/1.1837000.
NAVARRO-AGUILAR, A.I.; RUÍZ-GÓMEZ, M.A.; RODRÍGUEZ-GONZÁLEZ, V.; OBREGÓN, S.; VÁZQUEZ, A.. Effect of the Ni(NO3)2 additive on the electrophoretic deposition of NiO nanoparticles. Ceramics International, [S.L.], v. 46, n. 18, p. 28528-28535, dez. 2020. DOI: http://dx.doi.org/10.1016/j.ceramint.2020.08.010.
NICKEL INSTITUTE. Nickel plating handbook. [S.L.]: Nicke Institute, 2022. Available at: https://nickelinstitute.org/media/lxxh1zwr/2023-nickelplatinghandbooka5_printablepdf.pdf Accessed on: 12 jan. 2025.
OLIVEIRA, Francisco G.s.; SANTOS, Luis P.M.; SILVA, Rodolfo B. da; CORREA, Marcio A.; BOHN, Felipe; CORREIA, Adriana N.; VIEIRA, Luciana; VASCONCELOS, Igor F.; LIMA-NETO, Pedro de. FexNi(1-x) coatings electrodeposited from choline chloride-urea mixture: magnetic and electrocatalytic properties for water electrolysis. Materials Chemistry And Physics, [S.L.], v. 279, p. 125738, mar. 2022. DOI: http://dx.doi.org/10.1016/j.matchemphys.2022.125738.
ORIŇÁKOVÁ, Renáta; TUROňOVÁ, Andrea; KLADEKOVÁ, Daniela; GÁLOVÁ, Miriam; SMITH, Roger M.. Recent developments in the electrodeposition of nickel and some nickel-based alloys. Journal Of Applied Electrochemistry, [S.L.], v. 36, n. 9, p. 957-972, 14 jul. 2006. DOI: http://dx.doi.org/10.1007/s10800-006-9162-7.
RAHIMI, Ali; SARRAF, Shayan; SOLTANIEH, Mansour. The Effects of Soft Anodizing Pretreatments on the Corrosion Properties of Nickel Electroplated AA6061-T6. Journal Of Materials Engineering And Performance, [S.L.], p. 1-14, 17 fev. 2025. DOI: http://dx.doi.org/10.1007/s11665-025-10815-4.
REN, Xiu-Lian; WEI, Qi-Feng; LIU, Zhe; LIU, Jun. Electrodeposition conditions of metallic nickel in electrolytic membrane reactor. Transactions Of Nonferrous Metals Society Of China, [S.L.], v. 22, n. 2, p. 467-475, fev. 2012. DOI: http://dx.doi.org/10.1016/s1003-6326(11)61200-4.
ROMANIV, O. N.; TSIRUL'NIK, A. T.; KRYS'KIV, A. S.; RONCHEVICH, I. Ch.. Electrochemical methods in corrosion monitoring of metals (review). Soviet Materials Science, [S.L.], v. 25, n. 1, p. 1-12, 1989. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/bf00727915.
RUDNIK, Ewa. Black Nickel Coatings: from plating techniques to applications. Coatings, [S.L.], v. 14, n. 12, p. 1588, 19 dez. 2024. DOI: http://dx.doi.org/10.3390/coatings14121588.
RUSU, D. E.; ISPAS, A.; BUND, A.; GHEORGHIES, C.; CÂRÂC, G.. Corrosion tests of nickel coatings prepared from a Watts-type bath. Journal Of Coatings Technology And Research, [S.L.], v. 9, n. 1, p. 87-95, 19 jul. 2011. DOI: http://dx.doi.org/10.1007/s11998-011-9343-0.
SAYED, Manal A. El; EL-HENDAWY, Morad M.; IBRAHIM, Magdy A.M.. Improving the Characteristics of Nickel Coatings Produced on Copper from Watts Bath in the Presence of Ascorbic Acid – Combined Experimental and Theoretical Study. International Journal Of Electrochemical Science, [S.L.], v. 17, n. 4, p. 22044, abr. 2022. DOI: http://dx.doi.org/10.20964/2022.04.12.
SARANGI, Chinmaya Kumar; ACHARY, G. Lilishree; SUBBAIAH, Tondepu; PARAMGURU, Raja Kishore; ROY, Sanat Kumar. Role of Electrochemical Precipitation Parameters in Developing Mixed-Phase Battery-Grade Nickel Hydroxide. Electrochem, [S.L.], v. 6, n. 1, p. 2, 16 jan. 2025. MDPI AG. DOI: http://dx.doi.org/10.3390/electrochem6010002.
SHAMSHIRSAZ, Mohsen; FEREIDOON, Abdolhosein; ALBOOYEH, Alireza; DANAEE, Iman. The Effect of Ni-Al2O3 Nanocomposite Coatings on the Wear and Corrosion Resistance and Thermal Diffusivity of 316 Stainless Steel Plates of Heat Exchangers. Journal Of Materials Engineering And Performance, [S.L.], v. 32, n. 4, p. 1529-1544, 29 ago. 2022. DOI: http://dx.doi.org/10.1007/s11665-022-07242-0.
SZCZYGIEł, Bogdan; KOłODZIEJ, Małgorzata. Composite Ni/Al2O3 coatings and their corrosion resistance. Electrochimica Acta, [S.L.], v. 50, n. 20, p. 4188-4195, jul. 2005. DOI: http://dx.doi.org/10.1016/j.electacta.2005.01.040.
JAYASHREE, R.s.; KAMATH, P.Vishnu. Nickel hydroxide electrodeposition from nickel nitrate solutions: mechanistic studies. Journal Of Power Sources, [S.L.], v. 93, n. 1-2, p. 273-278, fev. 2001. DOI: http://dx.doi.org/10.1016/s0378-7753(00)00568-1.
PESQUEIRA, Camila Melo; LUIZ, Leonardo Augusto; ANDRADE, Juliano de; GARCIA, Carlos Mario; PORTELLA, Kleber Franke. The effect of chloride, sulfate, and ammonium ions on the semiconducting behavior and corrosion resistance of AISI 304 stainless steel passive film. Matéria (Rio de Janeiro), [S.L.], v. 28, n. 4, p. 1-10, out. 2023. DOI: http://dx.doi.org/10.1590/1517-7076-rmat-2023-0139.
RAHIMI, Ali; SARRAF, Shayan; SOLTANIEH, Mansour. The Effects of Soft Anodizing Pretreatments on the Corrosion Properties of Nickel Electroplated AA6061-T6. Journal Of Materials Engineering And Performance, [S.L.], p. 1-15, 17 fev. 2025. DOI: http://dx.doi.org/10.1007/s11665-025-10815-4.
ROMANIV, O. N.; TSIRUL'NIK, A. T.; KRYS'KIV, A. S.; RONCHEVICH, I. Ch.. Electrochemical methods in corrosion monitoring of metals (review). Soviet Materials Science, [S.L.], v. 25, n. 1, p. 1-12, 1989. DOI: http://dx.doi.org/10.1007/bf00727915.
RUDNIK, Ewa. The influence of sulfate ions on the electrodeposition of Ni–Sn alloys from acidic chloride–gluconate baths. Journal Of Electroanalytical Chemistry, [S.L.], v. 726, p. 97-106, jul. 2014. DOI: http://dx.doi.org/10.1016/j.jelechem.2014.05.021.
RUSU, D. E.; ISPAS, A.; BUND, A.; GHEORGHIES, C.; CÂRÂC, G.. Corrosion tests of nickel coatings prepared from a Watts-type bath. Journal Of Coatings Technology And Research, [S.L.], v. 9, n. 1, p. 87-95, 19 jul. 2011. DOI: http://dx.doi.org/10.1007/s11998-011-9343-0.
SHEETAL; KUNDU, Sheetal; THAKUR, Sanjeeve; SINGH, Ashish Kumar; SINGH, Manjeet; PANI, Balaram; SAJI, Viswanathan S.. A Review of Electrochemical Techniques for Corrosion Monitoring – Fundamentals and Research Updates. Critical Reviews In Analytical Chemistry, [S.L.], v. 55, n. 1, p. 161-186, 25 out. 2023. DOI: http://dx.doi.org/10.1080/10408347.2023.2267671. Rev. Principia, João Pessoa, v. 63, 2026,
STREINZ, Christopher C.; HARTMAN, Andrew P.; MOTUPALLY, Sathya; WEIDNER, John W.. The Effect of Current and Nickel Nitrate Concentration on the Deposition of Nickel Hydroxide Films. Journal Of The Electrochemical Society, [S.L.], v. 142, n. 4, p. 1084-1089, 1 abr. 1995. DOI: http://dx.doi.org/10.1149/1.2044134.
SZEPTYCKA, Benigna; GAJEWSKA-MIDZIALEK, Anna; BABUL, Tomasz. Electrodeposition and Corrosion Resistance of Ni-Graphene Composite Coatings. Journal Of Materials Engineering And Performance, [S.L.], v. 25, n. 8, p. 3134-3138, 23 mar. 2016. DOI: http://dx.doi.org/10.1007/s11665-016-2009-4.
TAYLOR, S.R.. Coatings for Corrosion Protection: metallic. Encyclopedia Of Materials: Science and Technology, [S.L.], p. 1-5, 2001. DOI: http://dx.doi.org/10.1016/b0-08-043152-6/00239-4.
ÜNAL, E.; KARAHAN, İ.H.. Production and characterization of electrodeposited Ni-B/hBN composite coatings. Surface And Coatings Technology, [S.L.], v. 333, p. 125-137, jan. 2018. DOI: http://dx.doi.org/10.1016/j.surfcoat.2017.11.016.
WALTER, G.W.. A review of impedance plot methods used for corrosion performance analysis of painted metals. Corrosion Science, [S.L.], v. 26, n. 9, p. 681-703, jan. 1986. DOI: http://dx.doi.org/10.1016/0010-938x(86)90033-8.
WANG, Dongai; LI, Feihui; SHI, Yan; LIU, Meihua; LIU, Bin; CHANG, Qing. Optimization of the Preparation Parameters of High-Strength Nickel Layers by Electrodeposition on Mild Steel Substrates. Materials, [S.L.], v. 14, n. 18, p. 5461, 21 set. 2021. DOI: http://dx.doi.org/10.3390/ma14185461.
WOJCIECHOWSKI, Jarosław; BARANIAK, Marek; PERNAK, Juliusz; LOTA, Grzegorz. Nickel Coatings Electrodeposited from Watts Type Baths Containing Quaternary Ammonium Sulphate Salts. International Journal Of Electrochemical Science, [S.L.], v. 12, n. 4, p. 3350-3360, abr. 2017. DOI: http://dx.doi.org
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2026 Gecilio Pereira da Silva, Valdessandro Farias Dantas, Luiz Ferreira da Silva Filho, Zilvam Melo dos Santos, Richelly Nayhene de Lima, Eduardo Lins de Barros Neto

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta revista, seguindo as recomendações do movimento de Acesso Aberto, proporciona seu conteúdo em Full Open Access. Assim os autores conservam todos seus direitos permitindo que a Revista Principia possa publicar seus artigos e disponibilizar pra toda a comunidade.
A Revista Principia adota a licença Creative Commons 4.0 do tipo atribuição (CC-BY). Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, inclusive para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
Os autores estão autorizados a enviar a versão do artigo publicado nesta revista em repositório institucionais, com reconhecimento de autoria e publicação inicial na Revista Principia.
Demais informações sobre a Política de Direitos Autorais da Revista Principia encontram-se neste link.






















(precisa estar logado)





