Evaluation of surfactant nonylphenol polyethoxylated 9.5 as a corrosion inhibitor of SAE1020 steel in saline medium

Gecilio Pereira da Silva

ORCID iD Federal Rural University of the Semiarid (UFERSA), Pau dos Ferros, Rio Grande do Norte, Brasil

Luiz Ferreira da Silva Filho

ORCID iD Federal Rural University of the Semiarid (UFERSA), Pau dos Ferros, Rio Grande do Norte, Brasil

Alessandro Alisson de Lemos Araujo

ORCID iD Federal Rural University of the Semiarid (UFERSA), Pau dos Ferros, Rio Grande do Norte, Brasil

Victor Augusto Freire Costa

ORCID iD Federal Rural University of the Semiarid (UFERSA), Pau dos Ferros, Rio Grande do Norte, Brasil

Richelly Nayhene de Lima

ORCID iD Federal Rural University of the Semiarid (UFERSA), Mossoró, Rio Grande do Norte, Brasil

Simone Cristina Freitas Carvalho

ORCID iD Federal Rural University of the Semiarid (UFERSA), Pau dos Ferros, Rio Grande do Norte, Brasil

Resumo

Due to its relatively low cost and good chemical stability, nonylphenol polyethoxylated with an ethoxylation degree of 9.5 (NPE95) is produced on a large scale and widely used in the industry as an emulsifier, detergent, and solubilizer. Despite its extensive applicability, there is a gap in the literature regarding its corrosion inhibition properties. This study evaluated the surfactant NPE95 as a corrosion inhibitor for SAE1020 steel in 3% NaCl aqueous solution at concentrations of 5 ppm, 10 ppm, and 25 ppm. Measurements of mass loss and visual and microscopic verification of the corrosion products on the metal surface were performed using photographic records obtained with an Olympus® SZ61 optical stereoscope and an Olympus® BX51M microscope. In addition to these techniques, electrochemical impedance spectroscopy (EIS) was conducted using an AUTOLAB PGSTAT 204 potentiostat/galvanostat to better confirm the surfactant's inhibitory potential. The impedance results with the inhibitor in the corrosive medium show two capacitive arcs. The first capacitive arc is attributed to the adsorbed film on carbon steel, while the second, at low frequencies, indicates a charge transfer process at the metal/electrolyte interface, or corrosion process. The ΔGads values obtained from the Langmuir and El-Awady models were –21.987 kJ.mol-1 and –10.061 kJ.mol-1, respectively, indicating spontaneous physisorption processes. Data on total mass loss showed that the lowest mass loss occurred in the sample exposed to the highest surfactant concentration (25 ppm), demonstrating a reduction of approximately 17% in the corrosion rate in the saline medium.

Palavras-chave


adsorption; corrosion inhibitor; electrochemical impedance spectroscopy; polyethoxylated nonylphenol; surfactant


Texto completo:

Referências


ABDALLAH, M.; HEGAZY, M. A.; ALFAKEER, M.; AHMED, H. Adsorption and inhibition performance of the novel cationic Gemini surfactant as a safe corrosion inhibitor for carbon steel in hydrochloric acid. Green Chemistry Letters and Reviews, v. 11, n. 4, p. 457-468, 2018. DOI: https://doi.org/10.1080/17518253.2018.1526331.

ARELLANES-LOZADA, P.; OLIVARES-XOMETL, O.; LIKHANOVA, N. V.; LIJANOVA, I. V.; VARGAS-GARCÍA, J. R.; HERNÁNDEZ-RAMÍREZ, R. E. Adsorption and performance of ammonium-based ionic liquids as corrosion inhibitors of steel. Journal of Molecular Liquids, v. 265, p. 151-163, 2018. DOI: https://doi.org/10.1016/j.molliq.2018.04.153.

ASTM INTERNATIONAL – AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM G1-03(2017)e1. Standard practice for preparing, cleaning, and evaluation corrosion test specimens. West Conshohocken: ASTM, 1999. DOI: https://doi.org/10.1520/G0001-03R17E01.

BAJARES, R. A.; MELLA, L. Study of the corrosion rate in the couple of steels ASTM A-36 and AISI/SAE 304 in a water-coke of petroleum system. Procedia Materials Science, v. 8, p. 702-711, 2015. DOI: http://dx.doi.org/10.1016/j.mspro.2015.04.127.

BOULINGUIEZ, B.; CLOIREC, P.; WOLBERT, D. Revisiting the determination of Langmuir parameters-application to tetrahydrothiophene adsorption onto activated carbon. Langmuir, v. 24, n. 13, p. 6420-6424, 2008. DOI: https://doi.org/10.1021/la800725s.

BRYCKI, B. E.; KOWALCZYK, I. H.; SZULC, A.; KACZEREWSKA, O.; PAKIET, M.; Organic corrosion inhibitors. In: ALIOFKHAZRAEI, M. (ed.). Corrosion inhibitors, principles and recent applications. [S.l.]: IntechOpen, 2017. p. 3-34. Available at: https://www.intechopen.com/chapters/58695. Accessed on: 9 Out. 2023.

DWIVEDI, D.; LEPKOVÁ, K.; BECKER, T. Carbon steel corrosion: a review of key surface properties and characterization methods. RSC Advances, v. 8, p. 4580-4610, 2017. DOI: https://doi.org/10.1039/C6RA25094G.

EL-HADDAD, M. A M.; RADWAN, A. B.; SLIEM, M. H.; HASSAN, W. M. I.; ABDULLAH, A. M. Highly efficient eco-friendly corrosion inhibitor for mild steel in 5 M HCl at elevated temperatures: experimental & molecular dynamics study. Scientific Reports, v. 9, 3695, 2019. DOI: http://dx.doi.org/10.1038/s41598-019-40149-w.

FARSAK, M.; KELES, H.; KELES, M. A new corrosion inhibitor for protection of low carbon steel in HCl solution. Corrosion Science, v. 98, p. 223-232, 2015. DOI: https://doi.org/10.1016/j.corsci.2015.05.036.

FOO, K Y; HAMEED, B H. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, v. 156, n. 1, p. 2-10, 2010. DOI: https://doi.org/10.1016/j.cej.2009.09.013.

FOUDA, A. S.; EL-ASKALANY, A.; EL-HABAB, A. T.; AHMED, S. Anticorrosion properties of some nonionic surfactants on carbon steel in 1 M HCl environment. Journal of Bio- and Tribo-Corrosion, v. 5, 56, 2019. DOI: https://doi.org/10.1007/s40735-019-0248-2.

GOYAL, A.; POUYA, H. S.; GANJIAN, E.; CLAISSE, P. A review of corrosion and protection of steel in concrete. Arabian Journal for Science and Engineering, v. 43, p. 5035-5055, 2018. DOI: https://doi.org/10.1007/s13369-018-3303-2.

JAVADIAN, S.; YOUSEFI, A.; NESHATI, J. Synergistic effect of mixed cationic and anionic surfactants on the corrosion inhibitor behavior of mild steel in 3.5% NaCl. Applied Surface Science, v. 285, Part B, p. 674-681, 2013. DOI: http://dx.doi.org/10.1016/j.apsusc.2013.08.109.

KHAKSAR, L.; SHIROKOFF, J. Effect of elemental sulfur and sulfide on the corrosion behavior of Cr-Mo low alloy steel for tubing and tubular components in oil and gas industry. Materials, v. 10, n. 4, 430, 2017. DOI: https://doi.org/10.3390/ma10040430.

MELO, R. P. F.; BARROS NETO, E. L.; MOURA, M. C. P. A.; DANTAS, T. N. C.; DANTAS NETO, A. A.; OLIVEIRA, H. N. M. Removal of reactive blue 19 using nonionic surfactant in cloud point extraction. Separation and Purification Technology, v. 138, p. 71-76, 2014. DOI: https://doi.org/10.1016/j.seppur.2014.10.009.

NACE INTERNATIONAL – NATIONAL ASSOCIATION OF CORROSION ENGINEERS. NACE Standard RP0775-2005. Standard Recommended Practice: Preparation, installation, analysis, and interpretation of corrosion coupons in oilfield operations. Houston: NACE International, 1999. Available at: https://lopei.wordpress.com/wp-content/uploads/2011/07/nace-rp077505-evaluacion-de-cupones-de-corrosion-en-la-industria-petrolera.pdf. Accessed on: 9 Out. 2023.

PEDEFERRI, P. Cathodic and anodic protection. In: LAZZARI, L.; PEDEFERRI, M. P. (ed.). Corrosion Science and Engineering. Cham: Springer, 2018. p. 383-422. DOI: https://doi.org/10.1007/978-3-319-97625-9_19.

REFAIT, P.; GROLLEAU, A.-M.; JEANNIN, M.; RÉMAZEILLES, C.; SABOT, R. Corrosion of carbon steel in marine environments: role of the corrosion product layer. Corrosion and Materials Degradation, v. 1, n. 1, p. 198-218, 2020. DOI: https://doi.org/10.3390/cmd1010010.

RIBEIRO, D. V.; SOUZA, C. A. C.; ABRANTES, J. C. C. Use of Electrochemical Impedance Spectroscopy (EIS) to monitoring the corrosion of reinforced concrete. Revista IBRACON de Estruturas e Materiais, v. 8, n. 4, p. 529-546, 2015. DOI: https://doi.org/10.1590/S1983-41952015000400007.

RODRIGUES, M. A. F.; ARRUDA, G. M.; SILVA, D. C.; COSTA, F. M. F.; BRITO, M. F. P.; ANTONINO, A. C. D.; WANDERLEY NETO, A. O. Application of nonionic surfactant nonylphenol to control acid stimulation in carbonate matrix. Journal of Petroleum Science and Engineering, v. 203, 108654, 2021. DOI: https://doi.org/10.1016/j.petrol.2021.108654.

SARKAR, R.; PAL, A.; RAKSHIT, A.; SAHA, B. Properties and applications of amphoteric surfactant: a concise review. Journal of Surfactants and Detergents, v. 24, n. 5, p. 709-730, 2021. DOI: https://doi.org/10.1002/jsde.12542.

SHABAN, S. M.; KANG, J.; KIM, D.-H. Surfactants: recent advances and their applications. Composites Communications, v. 22, 100537, 2020. DOI: https://doi.org/10.1016/j.coco.2020.100537.

TIWARI, S.; MALL, C.; SOLANKI, P. P. Surfactant and its applications: a review. International Journal of Engineering Research and Application, v. 8, n. 9, p. 61-66, 2018. Available at: https://www.ijera.com/papers/vol8no9/p1/M0809016166.pdf. Accessed on: 25 Mar. 2022.

TORRES, V. V.; CABRAL, G. B.; SILVA; A. C. G.; FERREIRA, K. C. R.; D’ELIA, E. Ação inibidora de extratos da semente do mamão papaia na corrosão do aço-carbono 1020 em HCl 1 mol.L-1. Química Nova, v. 39, n. 4, p. 423-430, 2016. DOI: https://doi.org/10.5935/0100-4042.20160046.

ZHU, Y.; FREE, M. L. Experimental investigation and modeling of the performance of pure and mixed surfactant inhibitors: micellization and corrosion inhibition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 489, p. 407-422, 2016. DOI: http://dx.doi.org/10.1016/j.colsurfa.2015.11.005.


DOI: http://dx.doi.org/10.18265/2447-9187a2022id7759

O arquivo PDF selecionado deve ser carregado no navegador caso tenha instalado um plugin de leitura de arquivos PDF (por exemplo, uma versão atual do Adobe Acrobat Reader).

Como alternativa, pode-se baixar o arquivo PDF para o computador, de onde poderá abrí-lo com o leitor PDF de sua preferência. Para baixar o PDF, clique no link abaixo.

Caso deseje mais informações sobre como imprimir, salvar e trabalhar com PDFs, a Highwire Press oferece uma página de Perguntas Frequentes sobre PDFs bastante útil.

Visitas a este artigo: 472

Total de downloads do artigo: 300