Evaluation of polymorphisms in the MBL2 gene exon 1 and their relevance to susceptibility to bovine papillomatosis in Girolando breed animals

Autores

DOI:

https://doi.org/10.18265/2447-9187a2025id8717

Palavras-chave:

Bovine papillomavirus, cutaneous papilomatosis, innate immunity, MBL2 gene, single nucleotide polymorphisms

Resumo

Bovine papillomatosis is an infectious viral disease caused by Bovine Papillomavirus (BPV). Single nucleotide polymorphisms (SNPs) in genes responsible for innate immunity have been the object of several studies and present great importance in the susceptibility of animals to disease development. Mannose-binding lectins (MBLs) are lectins involved in the innate immune response against various infectious agents, including viruses. Due to the fact that polymorphisms in the MBL2 gene may affect the functionality of the protein, the present study aimed to evaluate the association of MBL2 gene exon 1 polymorphisms with susceptibility to bovine papillomatosis. Blood samples of 167 Brazilian Girolando breed animals (Gir x Holstein) from the Northeast of Brazil were used. All animals were infected with BPV, of which 92 animals were affected by cutaneous papillomatosis and 75 animals did not have cutaneous lesions. The analysis revealed 245 conserved sites and 02 variable sites, G235A and T244C, in the MBL2 gene exon 1. The allelic and genotypic frequencies of the two SNPs showed no association of these SNPs with susceptibility to cutaneous papillomatosis.

Downloads

Não há dados estatísticos.

Referências

ALFARO-MORA, R.; ZOBBA, R.; ANTUOFERMO, E.; BURRAI, G. P.; SOLINAS, R.; DOLZ, G.; PITTAU, M.; ALBERTI, A. Genome typing, histopathology, and evolution of BPV30, a novel Xipapillomavirus type isolated from Bovine papilloma in Costa Rica. Comparative Immunology, Microbiology and Infectious Diseases, v. 83, 101768, 2022. DOI: https://doi.org/10.1016/j.cimid.2022.101768.

AMILLS, M.; RAMIYA, V.; NORIMINE, J.; LEWIN, H. A. The major histocompatibility complex of ruminants. Revue Scientifique et Technique (International Office of Epizootics), v. 17, n. 1, p. 108-120, 1998. DOI: https://doi.org/10.20506/rst.17.1.1092.

ASHRAFI, G. H.; BROWN, D. R.; FIFE, K. H.; CAMPO, M. S. Down-regulation of MHC class I is a property common to papillomavirus E5 proteins. Virus Research, v. 120, n. 1-2, p. 208-211, 2006. DOI: https://doi.org/10.1016/j.virusres.2006.02.005.

BAXTER, R.; CRAIGMILE, S. C.; HALEY, C.; DOUGLAS, A. J.; WILLIAMS, J. L.; GLASS, E. J. BoLA-DR peptide binding pockets are fundamental for foot-and-mouth disease virus vaccine design in cattle. Vaccine, v. 28, n. 1, p. 28-37, 2009. DOI: https://doi.org/10.1016/j.vaccine.2009.09.131.

BEHL, J. D.; VERMA, N. K.; TYAGI, N.; MISHRA, P.; BEHL, R.; JOSHI, B. K. The major histocompatibility complex in bovines: a review. International Scholarly Research Notices, v. 2012, 872710, 2012. DOI: https://doi.org/10.5402/2012/872710.

BERNARD, H.-U.; BURK, R. D.; CHEN, Z.; VAN DOORSLAER, K.; HAUSEN, H.; DE VILLIERS, E.-M. Classification of papillomaviruses (PVs) Based on 189 PV types and proposal of taxonomic amendments. Virology, v.401, n. 1, p.70-79, 2010. DOI: https://dx.doi.org/10.1016/j.virol.2010.02.002.

BOCANETI, F.; ALTAMURA, G.; CORTEGGIO, A.; VELESCU, E.; ROPERTO, F.; BORZACHIELLO, G. Bovine papillomavirus: new insights into an old disease. Transboundary and Emerging Diseases, v. 63, n. 1, p. 14-23, 2014. DOI: https://doi.org/10.1111/tbed.12222.

BORZACCHIELLO, G.; AMBROSIO, V.; ROPERTO, S.; POGGIALI, F.; TSIRIMONAKIS, E.; VENUTI, A.; CAMPO, M. S.; ROPERTO, F. Bovine papillomavirus type 4 in oesophageal papillomas of cattle from the South of Italy. Journal of Comparative Pathology, v. 128, n. 2-3, p. 203-206, 2003. DOI: https://doi.org/10.1053/jcpa.2002.0626.

BORZACCHIELLO, G.; RUSSO, V.; SPOLETO, C.; ROPERTO, S.; BALCOS, L.; RIZZO, C.; VENUTI, A.; ROPERTO, F. Bovine papilomavirus type-2 DNA and expression of E5 and E7 oncoproteins in vascular tumours of the urinary bladder in cattle. Cancer Letters, v. 250, n. 1, p. 82-91, 2007. DOI: https://doi.org/10.1016/j.canlet.2006.09.022.

BORZACCHIELLO, G.; ROPERTO, F. Bovine papillomaviruses, papillomas and cancer in cattle. Veterinary Research, v. 39, n. 5, p. 39-45, 2008. DOI: https://doi.org/10.1051/vetres:2008022.

BLOCH, N.; BREEN, M.; SPRADBROW, P. B. Genomic sequences of bovine papillomaviruses in formalin-fixed sarcoids from Australian horses revealed by polymerase chain reaction. Veterinary Microbiology, v. 41, n. 1-2, p. 163-172, 1994. DOI: https://doi.org/10.1016/0378-1135(94)90145-7.

BLOOD, D. C.; RADOSTITS, O. M., HENDERSON, J. A. Diseases caused by viruses and Chlamydia, II: Papillomatosis. In: Veterinary Medicine: a textbook of the diseases of cattle, horses, sheep, pigs and goats. 6. ed. London: Bailliere Tindall, p. 838-840, 1983.

CAMPO, M. S. Bovine papillomavirus: old system, new lessons? In: CAMPO, M. S. (ed.). Papillomavirus research: from natural history to vaccine and beyond. Caister Academic Press, p. 373-383, 2006.

CAPPARELLI, R.; PARLATO, M.; AMOROSO, M. G.; ROPERTO, S.; MARABELLI, R.; ROPERTO, F.; IANNELLI, D. Mannose-binding lectin haplotypes influence Brucella abortus infection in the water buffalo (Bubalus bubalis). Immunogenetics, v. 60, p. 157-165, 2008. DOI: https://doi.org/10.1007/s00251-008-0284-4.

CARVALHO, C. C. R.; BATISTA, M. V. A.; SILVA, M. A. R.; BALBINO, V. Q.; FREITAS, A. C. Detection of bovine papillomavirus types, co-infection and a putative new BPV11 subtype in cattle. Transboundary and Emerging Diseases, v. 59, n. 5, p. 441-7, 2012. DOI: https://doi.org/10.1111/j.1865-1682.2011.01296.x.

CHUANG, L.-C.; HU, C.-Y.; CHEN, H.-C.; LIN, P.-J.; LEE, B.; LIN, C.-Y.; PAN, M.-H.; YOU, S.-L.; HSIEH, C.-Y.; CHEN, C.-J. Associations of human leukocyte antigen class II genotypes with human papillomavirus 18 infection and cervical intraepithelial neoplasia risk. Cancer: An International Interdisciplinary Journal of the American Cancer Society, v. 118, n. 1, p. 223-231, 2012. DOI: https://doi.org/10.1002/cncr.26227.

CLARK, M. F.; BAUDOUIN, S. V. A systematic review of the quality of genetic association studies in human sepsis. Intensive Care Medicine, v. 32, p. 1706-1712, 2006. DOI: https://doi.org/10.1007/s00134-006-0327-y.

COLIN-FERREYRA, M. C.; DOMÍNGUEZ, M. V.; ROMERO-FIGUEROA, M. S.; MENDIETA, H. Involvement of innate immunity in human papilloma virus infection. Acta Obstétricia e Ginecológica Portuguesa, v. 8, n. 1, p. 45-52, 2014. Available at: https://www.fspog.org/images/editor2/10-aogp-d-13-00008-2014.pdf. Accessed on: 24 dec. 2024.

COSTA, R. M. G.; MEDEIROS, R. Bovine papillomavirus: opening new trends for comparative pathology. Archives of Virology, v. 159, p.191-198, 2014. DOI: https://doi.org/10.1007/s00705-013-1801-9.

DAUDT, C.; SILVA, F. R. C.; LUNARDI, M.; ALVES, C. B. D. T.; WEBER, M. N.; CIBULSKI, S. P.; ALFIERI, A. F.; ALFIERI, A. A.; CANAL, C. W. Papillomaviruses in ruminants: an update. Transboundary and Emerging Diseases, v. 65, n. 5, p. 1381-1395, 2018. DOI: https://doi.org/10.1111/tbed.12868.

EPPA, Ł.; PĄGOWSKA‐KLIMEK, I.; ŚWIERZKO, A. S.; MOLL, M.; KRAJEWSKI, W. R.; CEDZYŃSKI, M. Deposition of mannose‐binding lectin and ficolins and activation of the lectin pathway of complement on the surface of polyurethane tubing used for cardiopulmonary bypass. Journal of Biomedical Materials Research. Part B: Applied Biomaterials, v. 106, n. 3, p. 1202-1208, 2018. DOI: https://doi.org/10.1002/jbm.b.33933.

FRASER, R. S.; LUMSDEN, J. S.; LILLIE, B. N. Identification of polymorphisms in the bovine collagenous lectins and their association with infectious diseases in cattle. Immunogenetics, v. 70, p. 533-546, 2018. DOI: https://doi.org/10.1007/s00251-018-1061-7.

FREITAS, A. C.; CARVALHO, C.; BRUNNER, O.; BIRGEL JUNIOR E. H.; DELLALIBERA, A. M. M. P.; BENESI, F. J.; GREGORY, L.; BEÇAK, W.; SANTOS, R. C. S. Viral DNA sequences in peripheral blood and vertical transmission of the virus: a discussion about BPV-1. Brazilian Journal of Microbiology, v. 34, p. 76-78, 2003. DOI: https://doi.org/10.1590/S1517-83822003000500026.

FREITAS, A. C.; SILVA, M. A. R.; CARVALHO, C. C. R.; BIRGEL JUNIOR, E. H.; SANTOS, J. F.; BEÇAK, W.; SANTOS, R. C. S. Papillomavirus DNA detection in non epithelial tissues: a discussion about bovine papilomavírus. In: VILAS, A. M. (ed.) Communicating Current Research and Educational Topics and Trends in Applied Microbiology, p. 697-704, 2007.

FORD, J. N.; JENNINGS, P. A.; SPRADBROW, P. B.; FRANCIS, J. Evidence for papillomaviruses in ocular lesions in cattle. Research in Veterinary Science, v. 32, n. 2, p. 257-259, 1982.

GARRED, P.; LARSEN, F.; SEYFARTH, J.; FUJITA, R.; MADSEN, H. O. Mannose-binding lectin and its genetic variants. Genes and Immunity, v. 7, p. 85-94, 2006. DOI: https://doi.org/10.1038/sj.gene.6364283.

GARRED, P.; MADSEN, H. O.; BALSLEV, U.; HOFMANN, B.; PEDERSEN, C.; GERSTOFT, J.; SVEJGAARD, A. Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin. The Lancet, v. 349, n. 9047, p. 236-240, 1997. DOI: https://doi.org/10.1016/s0140-6736(96)08440-1.

GIANG, J.; SEELEN, M. A. J.; VAN DOORN, M. B. A.; RISSMANN, R.; PRENS, E. P.; DAMMAN, J. Complement activation in inflammatory skin diseases. Frontiers in Immunology, v. 9, 639, 2018. DOI: https://doi.org/10.3389/fimmu.2018.00639.

GIANG, N. T.; VAN TONG, H.; QUYET, D.; HOAN, N. X.; NGHIA, T. H.; NAM, N. M.; HUNG, H. V.; ANH, D. T.; MAO, C. V.; SON, H. A.; MEYER, C. G.; VELAVAN, T. P.; TOAN, N. L. Complement protein levels and MBL2 polymorphisms are associated with dengue and disease severity. Scientific Reports, v. 10, 14923, 2020. DOI: https://doi.org/10.1038/s41598-020-71947-2.

GJERSTORFF, M.; HANSEN, S.; JENSEN, B.; DUEHOLM, B.; HORN, P.; BENDIXEN, C.; HOLMSKOV, U. The genes encoding bovine SP-A, SP-D, MBL-A, conglutinin, CL-43 and CL-46 form a distinct collectin locus on Bos taurus chromosome 28 (BTA28) at position q.1.8–1.9. Animal Genetics, v. 35, p. 333-337, 2004. DOI: https://doi.org/10.1111/j.1365-2052.2004.01167.x.

GOELDNER, I.; SKARE, T. L.; UTIYAMA, S. R.; NISIHARA, R. M.; TONG, H. V.; MESSIAS-REASON, I. J. T.; VELAVAN, T. P. Mannose binding lectin and susceptibility to rheumatoid arthritis in Brazilian patients and their relatives. PLoS One, v. 9, n. 4, e95519, 2014. DOI: https://doi.org/10.1371/journal.pone.0095519.

GRAUDAL, N. A.; MADSEN, H. O.; TARP, U.; SVEJGAARD, A.; JURIK, A. G.; GRAUDAL, H. K.; GARRED, P. The association of variant mannose‐binding lectin genotypes with radiographic outcome in rheumatoid arthritis. Arthritis & Rheumatism: An Official Journal of the American College of Rheumatology, v. 43, n. 3, p. 515-521, 2000. DOI: https://doi.org/10.1002/1529-0131(200003)43:3%3C515::AID-ANR6%3E3.0.CO;2-T.

GUIMARAES, V.; GUIMARAES, R.; BRANDAO, L.; SILVA, M. F. P. T. B.; MILANESE, M.; SEGAT, L.; CASTELLETTI, H.; BRUNESKA, D.; LIMA FILHO, J. L.; FREITAS, A. C.; ARRAES, L. C.; ROCHA, C.; CROVELLA, S. Association between MBL2 gene functional polymorphisms and high-risk human papillomavirus infection in Brazilian women. Human Immunology, v. 69, n. 4-5, p. 273-278, 2008. DOI: https://doi.org/10.1016/j.humimm.2008.03.002.

HAMMAD, N. M.; EL BADAWY, N. E.; NASR, A. M.; GHRAMH, H. A.; AL KADY, L. M. Mannose‐binding lectin gene polymorphism and its association with susceptibility to recurrent vulvovaginal candidiasis. BioMed Research International, v. 2018, n. 1, 7648152, 2018. DOI: https://doi.org/10.1155/2018/7648152.

HATAMA, S.; NOBUMOTO, K.; KANNO, T. Genomic and phylogenetic analysis of two novelbovine papillomaviruses, BPV-9 and BPV-10. Journal of General Virology, v. 89, n. 1, p. 158-163, 2008. DOI: https://doi.org/10.1099/vir.0.83334-0.

HATAMA, S.; ISHIHARA, R.; UEDA, Y.; KANNO, T.; UCHIDA, I. Detection of a novel bovine papillomavirus type 11 (BPV-11) using xipapillomavirus consensus polymerase chain reaction primers. Archives of Virology, v. 156, p. 1281-1285, 2011. DOI: https://doi.org/10.1007/s00705-011-0970-7.

HOLMSKOV, U.; THIEL, S.; JENSENIUS, J. C. Collections and ficolins: humoral lectins of the innate immune defense. Annual Review of Immunology, v. 21, p. 547-578, 2003. DOI: https://doi.org/10.1146/annurev.immunol.21.120601.140954.

JARRETT, W. F. H.; CAMPO, M. S.; OWEIL, B. W.; LAIRD, H. M.; COGGINS, L. W. A novel bovine papillomavirus (BPV-6) causing true epithelial papillomas of the mammary gland skin: a member of a proposed new BPV subgroup. Virology, v. 136, n. 2, p. 255-264, 1984. DOI: https://doi.org/10.1016/0042-6822(84)90162-4.

JULIARENA, M. A.; POLI, M.; SALA, L.; CERIANI, C.; GUTIERREZ, S.; DOLCINI, G.; RODRÍGUEZ, E. M.; MARIÑO, B.; RODRÍGUEZ-DUBRA, C.; ESTEBAN, E. N. Association of BLV infection profiles with alleles of the BoLA‐DRB3.2 gene. Animal Genetics, v. 39, n. 4, p. 432-438, 2008. DOI: https://doi.org/10.1111/j.1365-2052.2008.01750.x.

JUUL-MADSEN, H. R.; KJAERUP, R. M.; TOFT, C.; HENRYON, M.; HEEGAARD, P. M. H.; BERG, P.; DALGAARD, T. S. Structural gene variants in the porcine mannose-binding lectin 1 (MBL1) gene are associated with low serum MBL-A concentrations. Immunogenetics, v. 63, p. 309-317, 2011. DOI: https://doi.org/10.1007/s00251-011-0512-1.

KAUR, B. P.; SECORD, E. Innate immunity. Pediatric Clinics of North America, v. 66, n. 5, p. 905-911, 2019. DOI: https://doi.org/10.1016/j.pcl.2019.06.011.

KILPATRICK, D. C. Mannan‐binding lectin and its role in innate immunity. Transfusion Medicine: Official Journal of the Britisth Blood Transfusion Society, v. 12, n. 6, p. 335-352, 2002. DOI: https://doi.org/10.1046/j.1365-3148.2002.00408.x.

KOCH, A.; MELBYE, M.; SORENSEN, P.; HOMOE, P.; MADSEN, H. O.; MOLBAK, K.; HANSEN, C. H.; ANDERSEN, L. H.; HAHN, G. W.; GARRED, P. Acute respiratory tract infections and mannose-binding lectin insufficiency during early childhood. Jama, v. 285, n. 10, p. 1316-1321, 2001. DOI: https://doi.org/10.1001/jama.285.10.1316.

KUMAR, P.; NAGARAJAN, N.; SAIKUMAR, G.; ARYA, R. S.; SOMVANSHI, R. Detection of bovine papilloma viruses in wart-like lesions of upper gastrointestinal tract of cattle and buffaloes. Transboundary and Emerging Disease, v. 62, n. 4, p. 264-271, 2015. DOI: https://doi.org/10.1111/tbed.12127.

LARSEN, F.; MADSEN, H. O.; SIM, R. B.; KOCH, C.; GARRED, P. Disease-associated mutations in human mannose-binding lectin compromise oligomerization and activity of the final protein. Journal of Biological Chemistry, v. 279, n. 20, p. 21302-21311, 2004. DOI: https://doi.org/10.1074/jbc.M400520200.

LILLIE, B. N.; BROOKS, A. S.; KEIRSTEAD, N. D.; HAYES, M. A. Comparative genetics and innate immune functions of collagenous lectins in animals. Veterinary Immunology and Immunopathology, v. 108, n. 1-2, p. 97-110, 2005. DOI: https://doi.org/10.1016/j.vetimm.2005.07.001.

LILLIE, B. N.; KEIRSTEAD, N. D.; SQUIRES, E. J.; HAYES, M. A. Gene polymorphisms associated with reduced hepatic expression of porcine mannan-binding lectin C. Developmental & Comparative Immunology, v. 31, n. 8, p. 830-846, 2007. DOI: https://doi.org/10.1016/j.dci.2006.11.002.

LIPSCOMBE, R. J.; SUMIYA, M.; HILL, A.V. S.; LAU, Y. L.; LEVINSKY, R. J.; SUMMERFIELD, J. A.; TURNER, M. W. High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene. Human Molecular Genetics, v. 1, n. 9, p. 709-715, 1992. DOI: https://doi.org/10.1093/hmg/1.9.709.

LITZMAN, J.; FREIBERGER, T.; GRIMBACHER, B.; GATHMANN, B.; SALZER, U.; PAVLÍK, T.; VLCEK, J.; POSTRÁNECKÁ, V.; TRÁVNÍCKOVÁ, Z.; THON, V. Mannose-binding lectin gene polymorphic variants predispose to the development of bronchopulmonary complications but have no influence on other clinical and laboratory symptoms or signs of common variable immunodeficiency. Clinical & Experimental Immunology, v. 153, n. 3, p. 324-330, 2008. DOI: https://doi.org/10.1111/j.1365-2249.2008.03700.x.

LIU, J.; JU, Z.; LI, Q.; HUANG, J.; LI, R.; LI, J.; MA, L.; ZHONG, J.; WANG, C. Mannose-binding lectin 1 haplotypes influence serum MBL-A concentration, complement activity, and milk production traits in Chinese Holstein cattle. Immunogenetics, v. 63, p.727-742, 2011. https://doi.org/10.1007/s00251-011-0548-2.

LONGERI, M.; RUSSO, V.; STRILLACCI, M. G.; PERILLO, A.; CARISETTI, M.; COZZI, M. C.; NEOLA, B.; ROPERTO, S. Association between BoLA-DRB3. 2 polymorphism and bovine papillomavirus infection for bladder tumor risk in Podolica cattle. Frontiers in Veterinary Science, v. 8, 630089, 2021. DOI: https://doi.org/10.3389/fvets.2021.630089.

LUNARDI, M.; ALFIERI, A. A.; OTONEL, R. A. A.; ALCANTARA, B. K.; RODRIGUES, W. B.; MIRANDA, A. B.; ALFIERI, A. F. Genetic characterization of a novel bovine papilloma virus member of the Deltapapillomavirus genus. Veterinary Microbiology, v. 162, n. 1, p. 207-213, 2012. DOI: https://doi.org/10.1016/j.vetmic.2012.08.030.

LUNARDI, M.; ALFIERI, A. A.; OTONEL, R. A. A.; ALFIERI, A. F. Bovine papillomaviruses: taxonomy and genetic features. In: ROMANOWSKI, V. (ed.). Current issues in molecular virology: viral genetics and biotechnological applications. London: Intech, 2013. DOI: http://dx.doi.org/10.5772/56195.

MADSEN, H. O.; GARRED, P.; KURTZHALS, J. A. L.; LAMM, L. U.; RYDER, L. P.; THIEL, S.; SVEJGAARD, A. A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics, v. 40, p. 37-44, 1994. DOI: https://doi.org/10.1007/BF00163962.

MADSEN, H. O.; SATZ, M. L.; HOGH, B.; SVEJGAARD, A.; GARRED, P. Different molecular events result in low protein levels of mannan-binding lectin in populations from Southeast Africa and South America. The Journal of Immunology, v. 161, n. 6, p. 3169-3175, 1998. DOI: https://doi.org/10.4049/jimmunol.161.6.3169.

MALIK, M.; MIKA, O. J.; NAVRÁTILOVÁ, Z.; KILLI, U. K.; TLUSTOS, P.; PATOČKA, J. Health and Environmental Hazards of the Toxic Pteridium aquilinum (L.) Kuhn (Bracken Fern). Plants, v. 13, n. 1, 18, 2023.DOI: https://doi.org/10.3390/plants13010018.

MEDEIROS-FONSECA, B.; ABREU-SILVA, A. L.; MEDEIROS, R.; OLIVEIRA, P. A.; COSTA, R. M. G. Pteridium spp. and bovine papillomavirus: partners in cancer. Frontiers in Veterinary Science, v. 8, 758720, 2021. DOI: https://doi.org/10.3389/fvets.2021.758720.

MARCHETTI, B.; ASHRAFI, G. H.; TSIRIMONAKI, E.; O’BRIEN, P. M. O.; CAMPO, M. S. The bovine papillomavirus oncoprotein E5 retains MHC class I molecules in the Golgi apparatus and prevents their transport to the cell surface. Oncogene, v. 21, n. 51, p. 7808-7816, 2002. DOI: https://doi.org/10.1038/sj.onc.1205885.

MARTINEZ, M. L.; MACHADO, M. A.; NASCIMENTO, C. S.; SILVA, M. V. G. B.; TEODORO, R. L.; FURLONG, J.; PRATA, J. C. A.; CAMPOS, A. L.; GUIMARÃES, M F. M.; AEVEDO, A. L. S.; PIRES, M. F. A.; VERNEQUE, R. S. Association of BoLA-DRB3. 2 alleles with tick (Boophilus microplus) resistance in cattle. Genetics and Molecular Research, v. 5 n. 3, p. 513-524, 2006.

MATSUSHITA, M.; HIJIKATA, M.; OHTA, Y.; IWATA, K.; MATSUMOTO, M.; NAKAO, K.; KANAI, K.; YOSHIDA, N.; BABA, K.; MISHIRO, K. Hepatitis C virus infection and mutations of mannose-binding lectin gene MBL. Archives of Virology, v. 143, n. 4, p. 645-651, 1998. DOI: https://doi.org/10.1007/s007050050320.

MEDEIROS-FONSECA, B.; ABREU-SILVA, A. L.; MEDEIROS, R.; OLIVEIRA, P. A.; COSTA, R. M. G. Pteridium spp. and bovine papillomavirus: partners in cancer. Frontiers in Veterinary Science, v. 9, 80838, 2022. DOI: https://doi.org/10.3389/fvets.2022.860838.

MERLE, N. S.; NOE, R.; HALBWACHS-MECARELLI, L.; FREMEAUX-BACCHI, V.; ROUMENINA, L. T. Complement system part II: role in immunity. Frontiers in Immunology, v. 6, 257, 2015. DOI: https://doi.org/10.3389/fimmu.2015.00257.

MONTEIRO, V. L. C.; COELHO, M. C. O. C.; CARNEIRO, A. S.; SILVA, R. A. A.; TEIXEIRA, M. N.; WANDERLEY, A. G.; WANDERLEY, E. K.; FRANCO, E. S. F. Descrição clínica ehistopatológica da papilomatose cutânea bovina (BPV). Ciência Animal Brasileira, v. 9, n. 4, p. 1079-1088, 2008. Available at: https://revistas.ufg.br/vet/article/view/1181. Accessed on: 25 dec. 2024. In Portuguese.

NARECHANIA, A.; TERAI, M.; CHEN, Z.; DESALLE, R.; BURK, R. D. Lack of the canonical pRB-binding domain in the E7 ORF of artiodactyl papillomaviruses is associated with the development of fibropapillomas. The Journal of General Virology, v. 85, n. 5, p. 1243-1250, 2004. DOI: https://doi.org/10.1099/vir.0.19765-0.

NAMATH, A.; PATTERSON, A. J. Genetic polymorphisms in sepsis. Critical Care Nursing Clinics of North America, v. 23, n. 1, p. 181-202, 2011. DOI: https://doi.org/10.1016/j.ccell.2010.12.011.

NASCIMENTO, C. S.; MACHADO, M. A.; MARTINEZ, M. L.; SILVA, M. V. G. B.; GUIMARÃES, M. F. M.; CAMPOS, A. L.; AZEVEDO, A. L. S.; TEODORO, R. L.; VERNEQUE, R. S.; GUIMARÃES, S. E. F.; OLIVEIRA, D. A. A. (2006). Association of the bovine major histocompatibility complex (BoLA) BoLA-DRB3 gene with fat and protein production and somatic cell score in Brazilian Gyr dairy cattle (Bos indicus). Genetics and Molecular Biology, v. 29, n. 4, p. 641-647, 2006. DOI: https://doi.org/10.1590/S1415-47572006000400011.

NASIR, L., CAMPO, M. S. Bovine papillomaviruses: their role in the aetiology ofcutaneous tumours of bovids and equids. Veterinary Dermatology, v. 19, n. 5, p. 243-254, 2008. DOI: https://doi.org/10.1111/j.1365-3164.2008.00683.x.

O’BRIEN, P. M.; CAMPO, M. S. Papillomaviruses: a correlation between immune evasion and oncogenicity? Trends in Microbiology, v. 11, n. 7, p. 300-305, 2003. DOI: https://doi.org/10.1016/S0966-842X(03)00145-8.

OGAWA, T.; TOMITA, Y.; OKADA, M.; SHIRASAWA, H. Complete genome and phylogenetic position of bovine papillomavirus type 7. J. Gen.Virol., v. 88, n. 7, p. 1934-1938, 2007. DOI: https://doi.org/10.1099/vir.0.82794-0.

ORNELAS, A. M. M.; XAVIER-DE-CARVALHO, C.; ALVARADO-ARNEZ, L. E.; RIBEIRO-ALVES, M.; ROSSI, A. D.; TANURI, A.; AGUIAR, R. S.; MORAES, M. O.; CARDOSO, C. C. Association between MBL2 haplotypes and dengue severity in children from Rio de Janeiro, Brazil. Memorias do Instituto Oswaldo Cruz, v. 114, e190004, 2019. DOI: https://doi.org/10.1590/0074-02760190004.

PANGTY, K.; SINGH, S.; GOSWAMI, R.; SAIKUMAR, G.; SOMVANSHI, R. Detection of BPV-1 and -2 and quantification of BPV-1 by real-time PCR in cutaneous warts in cattle and buffaloes. Transboundary and Emerging Diseases, v. 57, n. 3, p. 185-196, 2010. DOI: https://doi.org/10.1111/j.1865-1682.2009.01096.x.

PENG, S.; FRAZER, I. H.; FERNANDO, G. J.; ZHOU, J. Papillomavirus virus-like particles can deliver defined CTL epitopes to the MHC class I pathway. Virology, v. 240, n. 1, p. 147-157, 1998. DOI: https://doi.org/10.1006/viro.1997.8912.

PATEL, K. R.; SMITH, K. T.; CAMPO, M. S. The nucleotide sequence and genome organization of bovine papillomavirus type 4. Journal of General Virology, v. 68, n. 8, p. 2117-2128, 1987. DOI: 10.1099/0022-1317-68-8-2117. DOI: https://doi.org/10.1099/0022-1317-68-8-2117.

PFISTER, H.; LINZ, U.; GISSMANN, L.; HUCHTHAUSEN, B.; HOFFMANN, D.; HAUSEN, H. Partial characterization of a new type of bovine papilloma viroses. Virology, v. 96, n. 1, p. 1-8, 1979. DOI: https://doi.org/10.1016/0042-6822(79)90166-1.

SASAGAWA, T.; TAKAGI, H.; MAKINODA, S. Immune responses against human papillomavirus (HPV) infection and evasion of host defense in cervical cancer. Journal of Infection and Chemotherapy, v. 18, n. 6, p. 807-815, 2012. DOI: https://doi.org/10.1007/s10156-012-0485-5.

SANTOS, R. C. S.; LINDSEY, C. J.; FERRAZ, O. P.; PINTO, J. R.; MIRANDOLA, R. S.; BENESI F. J.; BIRGEL, E. H.; PEREIRA, C. A. B.; BEÇAK, W. Bovine papillomavirus transmission and chromosomal aberrations: an experimental model. Journal of General Virology, v. 79, n. 9, p. 2127-2135, 1998. DOI: https://doi.org/10.1099/0022-1317-79-9-2127.

SAUTHIER, J. T.; DAUDT, C.; SILVA, F. R. C.; ALVES, C. D. B. T.; MAYER, F. Q.; BIANCHI, R. M.; DRIEMEIER, D.; STREIT, R. S. A.; STAATS, C. C.; CANAL, C. W.; WEBER, M. N. The genetic diversity of “papillomaviruses” in bovine teat papilloma lesions. Animal Microbiome, v. 3, 51, 2021. DOI: https://doi.org/10.1186/s42523-021-00114-3.

SCHILLER, J. T.; VASS, W. C.; LOWY, D. R. Identification of a second transforming region in bovine papillomavirus DNA. PNAS, v. 81, n. 24, p. 7880-7884, 1984. DOI: https://doi.org/10.1073/pnas.81.24.7880.

SHERGOJRY, S. A.; VERMA, A.; GHANI, M.; GUPTA, I. D.; MIR, N. A. Identification of genetic polymorphism of the MBL2 gene and its association with clinical mastitis in Murrah buffaloes. Journal of Genetics, v. 102, n. 1, 21, 2023. DOI: https://doi.org/10.1007/s12041-023-01419-9.

SOLÉ, X.; GUINÓ, E.; VALLS, J.; INIESTA, R.; MORENO, V. SNPStats: a web tool for the analysis of association studies. Bioinformatics, v. 22, n. 15, p. 1928-1929, 2006. DOI: https://doi.org/10.1093/bioinformatics/btl268.

UFFREDINI, A. F.; CHANOCK, S. J. Genetic variation and the assessment of risk in septic patients. Intensive Care Medicine, v. 32, n. 11, p. 1679-1680, 2006. DOI: https://doi.org/10.1007/s00134-006-0328-x.

TAKAHASHI, R.; TSUTSUMI, A.; OHTANI, K.; MURAKI, Y.; GOTO, D.; MATSUMOTO, I.; WAKAMIYA, N.; SUMIDA, T. Association of mannose binding lectin (MBL) gene polymorphism and serum MBL concentration with characteristics and progression of systemic lupus erythematosus. Annals of the Rheumatic Diseases, v. 64, n. 2, p. 311-314, 2005. DOI: https://doi.org/10.1136/ard.2003.020172.

TAKESHIMA, S.; SARAI, Y.; SAITOU, N.; AIDA, Y. MHC class II DR classification based on antigen-binding groove natural selection. Biochemical and Biophysical Research Communications, v. 385, n. 2, p. 137-142, 2009. DOI: https://doi.org/10.1016/j.bbrc.2009.04.142.

TAMURA, K.; STECHER, G.; PETERSON, D.; FILIPSKI, A.; KUMAR, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, v. 30, n. 12, p. 2725-2729, 2013. DOI: https://doi.org/10.1093/molbev/mst197.

TAYLOR, M. E.; BRICKELL, P. M.; CRAIG, R. K.; SUMMERFIELD, J. A. Structure and evolutionary origin of the gene encoding a human serum mannose-binding protein. Biochemical Journal, v. 262, n. 3, p. 763-771, 1989. DOI: https://doi.org/10.1042/bj2620763.

TERAI, I.; KOBAYASHI, K.; MATSUSHITA, M.; MIYAKAWA, H.; MAFUNE, N.; KIKUTA, H. Relationship between gene polymorphisms of mannose‐binding lectin (MBL) and two molecular forms of MBL. European Journal of Immunology, v. 33, n. 10, p. 2755-2763, 2003. DOI: https://doi.org/10.1002/eji.200323955.

THOMAS, H. C.; FOSTER, G. R.; SUMIYA, M.; MCINTOSH, D.; JACK, D. L.; TURNER, M. W.; SUMMERFIELD, J. A. Mutation of gene of mannose-binding protein associated with chronic hepatitis B viral infection. The Lancet, v. 348, n. 9039, p. 1417-1419, 1996. DOI: https://doi.org/10.1016/s0140-6736(96)05409-8.

THIEL, S.; GADJEVA, M. Humoral pattern recognition molecules: mannan-binding lectin and ficolins. In: KISHORE, U. (ed.). Target pattern recognition in innate immunity, p. 58-73, 2009. DOI: https://doi.org/10.1007/978-1-4419-0901-5_5.

TOMITA, Y.; LITERAK, I.; OGAWA, T.; JIN, Z.; SHIRASAWA, H. Complete genomes and phylogenetic positions of bovine papillomavirus type 8 and a variant type from a European bison. Virus Genes, v. 35, n. 2, p. 243-249, 2007. DOI: https://doi.org/10.1007/s11262-006-0055-y.

TOKARNIA, C. H.; DOBEREINER, J.; PEIXOTO, P. V.: Plantas tóxicas do Brasil. Rio de Janeiro: Helianthus, 2000. In Portuguese.

TSAI, C.-C.; LIN, T.-M.; YOU, H.-L.; ENG, H.-L. Mannose-binding lectin in high-risk human papillomavirus infection. American Journal of Obstetrics and Gynecology, v. 200, n. 6, p. 618E1-618E6, 2009. DOI: https://doi.org/10.1016/j.ajog.2009.02.016.

SILVA, M. A. R.; PONTES, N. E.; SILVA, K. M. G.; GUERRA, M. M. P.; FREITAS, A. C. Detection of bovine papillomavirus type 2 DNA in commercial frozen semen of bulls (Bos taurus). Animal Reproduction Science, v. 129, n. 3-4, p. 146-151, 2011. DOI: https://doi.org/10.1016/j.anireprosci.2011.11.005.

SILVESTRE, O.; BORZACCHIELLO, G.; NAVA, D.; IOVANE, G.; RUSSO, V.;VECCHIO, D.; D’AUSILIO, F.; GAULT, E. A.; CAMPO, M. S.; PACIELLO, O. Bovine papillomavirus type 1 DNA and E5 oncoprotein expression in water buffalo fibropapillomas. Veterinary Pathology, v. 46, n. 4, p. 636-641, 2009. DOI: https://doi.org/10.1354/vp.08-vp-0222-p-fl.

SULLIVAN, K. E.; WOOTEN, C.; GOLDMAN, D.; PETRI, M. Mannose‐binding protein genetic polymorphisms in black patients with systemic lupus erythematosus. Arthritis & Rheumatism, v. 39, n. 12, p. 2046-2051, 1996. DOI: https://doi.org/10.1002/art.1780391214.

SUMIYA, M.; TABONA, P.; ARAI, T.; SUMMERFIELD, J. A.; SUPER, M.; LEVINSKY, R. J.; TURNER, M. W. Molecular basis of opsonic defect in immunodeficient children. The Lancet, v. 337, n. 8757, p. 1569-1570, 1991. DOI: https://doi.org/10.1016/0140-6736(91)93263-9.

UGOCHUKWU, I. C. I.; ANEKE, C. I.; IDOKO, I. S.; SANI, N. A.; AMOCHE, A. J.; MSHIELA, W. P.; EDE, R. E.; IBRAHIM, N. D. G.; NJOKU, C. I. O.; SACKEY, A. K. B. Bovine papilloma: aetiology, pathology, immunology, disease status, diagnosis, control, prevention and treatment: a review. Comparative Clinical Pathology, v. 28, p. 737-745, 2019. DOI: https://doi.org/10.1007/s00580-018-2785-3.

WALLIS, R.; CHENG, J. Y. T. Molecular defects in variant forms of mannose-binding protein associated with immunodeficiency. The Journal of Immunology, v. 163, n. 9, p. 4953-4959, 1999. DOI: https://doi.org/10.4049/jimmunol.163.9.4953.

WANG, H.-L.; LU, X.; YANG, X.; XU, N. Association of MBL2 exon1 polymorphisms with high-risk human papillomavirus infection and cervical cancers: a meta-analysis. Archives of Gynecology and Obstetrics, v. 294, p. 1109-1116, 2016. DOI: https://doi.org/10.1007/s00404-016-4201-z.

WANG, X.; JU, Z.; HUANG, J.; HOU, M.; ZHOU, L.; QI, C.; ZHAN,G Y.; GAO, Q.;PAN, Q.; LI, G.; ZHONG, J.; WANG, C. The relationship between the variants of the bovine MBL2 gene and milk production traits, mastitis, serum MBL-C levels and complement activity. Veterinary Immunology and Immunopathology, v. 148, n. 3-4, p. 311-319, 2012. DOI: https://doi.org/10.1016/j.vetimm.2012.06.017.

YAMASHITA-KAWANISHI, N.; ITO, S.; ISHIYAMA, D.; CHAMBERS, J. K.; UCHIDA, K.; KASUYA, F.; HAGA, T. Characterization of bovine papillomavirus 28 (BPV28) and a novel genotype BPV29 associated with vulval papillomas in cattle. Veterinary Microbiology, v. 250, 108879, 2020. DOI: https://doi.org/10.1016/j.vetmic.2020.108879.

YUAN, Z. Q..; GOBEIL, P. A. M.; CAMPO, M. S.; NASIR, L. Equine sarcoid fibroblasts over-express matrix metalloproteinases and are invasive. Virology, v. 396, n. 1, p. 143-151, 2010. DOI: https://doi.org/10.1016/j.virol.2009.10.010.

YUAN, Z. Q.; GAULT, E. A.; CAMPO, M. S.; NASIR, L. Upregulation of equine matrix metalloproteinase 1 by bovine papillomavirus type 1 is through the transcription factor activator protein-1. Journal of General Virology, v. 92, n. 11, p. 2608-2619, 2011. DOI: https://doi.org/10.1099/vir.0.033431-0.

YUEN, M.-F.; LAU, C.-S.; LAU, Y.-L.; WONG, W.-M.; CHENG, C.-C.; LAI, C.-L. Mannose binding lectin gene mutations are associated with progression of liver disease in chronic hepatitis B infection. Hepatology, v. 29, n. 4, p. 1248-1251, 1999. DOI: https://doi.org/10.1002/hep.510290417.

ZHAO, Z. L.; WANG, C. F.; LI, Q. L.; JU, Z. H.; HUANG, J. M.; LI, J. B.; ZHONG, J. F.; ZHANG, J. B. Novel SNPs of the mannan-binding lectin 2 gene and their association with production traits in Chinese Holsteins. GMR: Genetics and Molecular Research, v. 11, n. 4, p. 3744-3754, 2012. DOI: https://doi.org/10.4238/2012.october.15.6.

ZHOU, C.; TUONG, Z. K.; FRAZER, I. H. Papillomavirus immune evasion strategies target the infected cell and the local immune system. Frontiers in Oncology, v. 9, 682, 2019. DOI: https://doi.org/10.3389/fonc.2019.00682.

ZHU, W.; DONG, J.; SHIMIZU, E.; HATAMA, S.; KADOTA, K.; GOTO, Y.; HAGA, T. Characterization of novel bovine papillomavirus type 12 (BPV-12) causing epithelial papilloma. Archives of Virology, v. 157, p. 85-91, 2012. DOI: https://doi.org/10.1007/s00705-011-1140-7.

Downloads

Publicado

2025-02-04

Como Citar

PESSOA JUNIOR, M. E.; CARRAZZONI, P. G.; TENÓRIO FILHO, F.; ALVES, R. V.; FREITAS, A. C. de; SILVA, M. A. R. da. Evaluation of polymorphisms in the MBL2 gene exon 1 and their relevance to susceptibility to bovine papillomatosis in Girolando breed animals. Revista Principia, [S. l.], v. 62, 2025. DOI: 10.18265/2447-9187a2025id8717. Disponível em: https://periodicos.ifpb.edu.br/index.php/principia/article/view/8717. Acesso em: 12 fev. 2025.

Edição

Seção

Medicina Veterinária

Artigos mais lidos pelo mesmo(s) autor(es)