Evaluation of polymorphisms in the MBL2 gene exon 1 and their relevance to susceptibility to bovine papillomatosis in Girolando breed animals

Autores

DOI:

https://doi.org/10.18265/2447-9187a2025id8717

Palavras-chave:

bovine papillomavirus, cutaneous papillomatosis, innate immunity, MBL2 gene, single nucleotide polymorphisms

Resumo

Bovine papillomatosis is an infectious viral disease caused by Bovine Papillomavirus (BPV). Single-nucleotide polymorphisms (SNPs) in genes associated with innate immunity have been widely investigated due to their relevance to animal disease susceptibility. Mannose-binding lectins (MBLs) are critical components of the innate immune response against various infectious agents, including viruses. Polymorphisms in the MBL2 gene may influence protein functionality, and this study aimed to evaluate the association between polymorphisms in exon 1 of the MBL2 gene and susceptibility to bovine papillomatosis. Blood samples were collected from 167 Girolando cattle (Gir × Holstein) from Northeastern Brazil, all carriers of BPV. Among these, 92 animals presented cutaneous symptoms of the disease, while 75 were asymptomatic. DNA was extracted from the samples, followed by PCR to detect BPV and polymorphisms, sequencing, and sequence alignment. SNPs were analyzed using SNPStats software, with a significance threshold set at 5%. The association between polymorphisms in exon 1 of the MBL2 gene and the development of papillomatosis was assessed using the Odds Ratio test, with a 95% confidence interval. Sequence analysis revealed 245 conserved sites and two variable sites, G235A and T244C, in exon 1 of the MBL2 gene. However, no significant association was identified between these SNPs' allele and genotype frequencies and susceptibility to cutaneous papillomatosis.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

ALFARO-MORA, R.; ZOBBA, R.; ANTUOFERMO, E.; BURRAI, G. P.; SOLINAS, R.; DOLZ, G.; PITTAU, M.; ALBERTI, A. Genome typing, histopathology, and evolution of BPV30, a novel Xipapillomavirus type isolated from Bovine papilloma in Costa Rica. Comparative Immunology, Microbiology and Infectious Diseases, v. 83, 101768, 2022. DOI: https://doi.org/10.1016/j.cimid.2022.101768.

AMILLS, M.; RAMIYA, V.; NORIMINE, J.; LEWIN, H. A. The major histocompatibility complex of ruminants. Revue Scientifique et Technique (International Office of Epizootics), v. 17, n. 1, p. 108-120, 1998. DOI: https://doi.org/10.20506/rst.17.1.1092.

ANDRADE, T. E. G.; PEÑA, M. S.; FOROTTI, J.; BIN, R. S.; CAETANO, A. R.; CONNELLEY, T.; SANTOS, I. K. F. M. The DRB3 gene of the bovine major histocompatibility complex: discovery, diversity, and distribution of alleles in commercial breeds of cattle and applications for development of vaccines. Journal of Dairy Science, v. 107, n. 12, p. 11324-11341, 2024. DOI: https://doi.org/10.3168/jds.2023-24628.

ASHRAFI, G. H.; BROWN, D. R.; FIFE, K. H.; CAMPO, M. S. Down-regulation of MHC class I is a property common to papillomavirus E5 proteins. Virus Research, v. 120, n. 1-2, p. 208-211, 2006. DOI: https://doi.org/10.1016/j.virusres.2006.02.005.

BAXTER, R.; CRAIGMILE, S. C.; HALEY, C.; DOUGLAS, A. J.; WILLIAMS, J. L.; GLASS, E. J. BoLA-DR peptide binding pockets are fundamental for foot-and-mouth disease virus vaccine design in cattle. Vaccine, v. 28, n. 1, p. 28-37, 2009. DOI: https://doi.org/10.1016/j.vaccine.2009.09.131.

BEHL, J. D.; VERMA, N. K.; TYAGI, N.; MISHRA, P.; BEHL, R.; JOSHI, B. K. The major histocompatibility complex in bovines: a review. International Scholarly Research Notices, v. 2012, 872710, 2012. DOI: https://doi.org/10.5402/2012/872710.

BERNARD, H.-U.; BURK, R. D.; CHEN, Z.; VAN DOORSLAER, K.; HAUSEN, H.; DE VILLIERS, E.-M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology, v. 401, n. 1, p. 70-79, 2010. DOI: https://dx.doi.org/10.1016/j.virol.2010.02.002.

BLOCH, N.; BREEN, M.; SPRADBROW, P. B. Genomic sequences of bovine papillomaviruses in formalin-fixed sarcoids from Australian horses revealed by polymerase chain reaction. Veterinary Microbiology, v. 41, n. 1-2, p. 163-172, 1994. DOI: https://doi.org/10.1016/0378-1135(94)90145-7.

BLOOD, D. C.; RADOSTITS, O. M.; HENDERSON, J. A. Diseases caused by viruses and Chlamydia, II: Papillomatosis. In: BLOOD, D. C.; RADOSTITS, O. M.; HENDERSON, J. A. Veterinary Medicine: a textbook of the diseases of cattle, horses, sheep, pigs and goats. 6. ed. London: Bailliere Tindall, 1983. p. 838-840.

BOCANETI, F.; ALTAMURA, G.; CORTEGGIO, A.; VELESCU, E.; ROPERTO, F.; BORZACHIELLO, G. Bovine papillomavirus: new insights into an old disease. Transboundary and Emerging Diseases, v. 63, n. 1, p. 14-23, 2014. DOI: https://doi.org/10.1111/tbed.12222.

BORZACCHIELLO, G.; AMBROSIO, V.; ROPERTO, S.; POGGIALI, F.; TSIRIMONAKIS, E.; VENUTI, A.; CAMPO, M. S.; ROPERTO, F. Bovine papillomavirus type 4 in oesophageal papillomas of cattle from the South of Italy. Journal of Comparative Pathology, v. 128, n. 2-3, p. 203-206, 2003. DOI: https://doi.org/10.1053/jcpa.2002.0626.

BORZACCHIELLO, G.; ROPERTO, F. Bovine papillomaviruses, papillomas and cancer in cattle. Veterinary Research, v. 39, n. 5, p. 39-45, 2008. DOI: https://doi.org/10.1051/vetres:2008022.

BORZACCHIELLO, G.; RUSSO, V.; SPOLETO, C.; ROPERTO, S.; BALCOS, L.; RIZZO, C.; VENUTI, A.; ROPERTO, F. Bovine papillomavirus type-2 DNA and expression of E5 and E7 oncoproteins in vascular tumours of the urinary bladder in cattle. Cancer Letters, v. 250, n. 1, p. 82-91, 2007. DOI: https://doi.org/10.1016/j.canlet.2006.09.022.

CAMPO, M. S. Bovine papillomavirus: old system, new lessons? In: CAMPO, M. S. (ed.). Papillomavirus research: from natural history to vaccine and beyond. Wymondham: Caister Academic Press, 2006. p. 373-383.

CAPPARELLI, R.; PARLATO, M.; AMOROSO, M. G.; ROPERTO, S.; MARABELLI, R.; ROPERTO, F.; IANNELLI, D. Mannose-binding lectin haplotypes influence Brucella abortus infection in the water buffalo (Bubalus bubalis). Immunogenetics, v. 60, p. 157-165, 2008. DOI: https://doi.org/10.1007/s00251-008-0284-4.

CARVALHO, C. C. R.; BATISTA, M. V. A.; SILVA, M. A. R.; BALBINO, V. Q.; FREITAS, A. C. Detection of bovine papillomavirus types, co-infection and a putative new BPV11 subtype in cattle. Transboundary and Emerging Diseases, v. 59, n. 5, p. 441-447, 2012. DOI: https://doi.org/10.1111/j.1865-1682.2011.01296.x.

CHUANG, L.-C.; HU, C.-Y.; CHEN, H.-C.; LIN, P.-J.; LEE, B.; LIN, C.-Y.; PAN, M.-H.; YOU, S.-L.; HSIEH, C.-Y.; CHEN, C.-J. Associations of human leukocyte antigen class II genotypes with human papillomavirus 18 infection and cervical intraepithelial neoplasia risk. Cancer: An International Interdisciplinary Journal of the American Cancer Society, v. 118, n. 1, p. 223-231, 2012. DOI: https://doi.org/10.1002/cncr.26227.

CLARK, M. F.; BAUDOUIN, S. V. A systematic review of the quality of genetic association studies in human sepsis. Intensive Care Medicine, v. 32, p. 1706-1712, 2006. DOI: https://doi.org/10.1007/s00134-006-0327-y.

COLIN-FERREYRA, M. C.; DOMÍNGUEZ, M. V.; ROMERO-FIGUEROA, M. S.; MENDIETA, H. Involvement of innate immunity in Human Papilloma Virus infection. Acta Obstétrica e Ginecológica Portuguesa, v. 8, n. 1, p. 45-52, 2014. Available at: https://www.fspog.org/images/editor2/10-aogp-d-13-00008-2014.pdf. Accessed on: 24 Dec. 2024.

COSTA, R. M. G.; MEDEIROS, R. Bovine papillomavirus: opening new trends for comparative pathology. Archives of Virology, v. 159, p. 191-198, 2014. DOI: https://doi.org/10.1007/s00705-013-1801-9.

DAUDT, C.; SILVA, F. R. C.; LUNARDI, M.; ALVES, C. B. D. T.; WEBER, M. N.; CIBULSKI, S. P.; ALFIERI, A. F.; ALFIERI, A. A.; CANAL, C. W. Papillomaviruses in ruminants: an update. Transboundary and Emerging Diseases, v. 65, n. 5, p. 1381-1395, 2018. DOI: https://doi.org/10.1111/tbed.12868.

EPPA, Ł.; PĄGOWSKA‐KLIMEK, I.; ŚWIERZKO, A. S.; MOLL, M.; KRAJEWSKI, W. R.; CEDZYŃSKI, M. Deposition of mannose‐binding lectin and ficolins and activation of the lectin pathway of complement on the surface of polyurethane tubing used for cardiopulmonary bypass. Journal of Biomedical Materials Research. Part B: Applied Biomaterials, v. 106, n. 3, p. 1202-1208, 2018. DOI: https://doi.org/10.1002/jbm.b.33933.

FORD, J. N.; JENNINGS, P. A.; SPRADBROW, P. B.; FRANCIS, J. Evidence for papillomaviruses in ocular lesions in cattle. Research in Veterinary Science, v. 32, n. 2, p. 257-259, 1982. DOI: https://doi.org/10.1016/S0034-5288(18)32425-1.

FRASER, R. S.; LUMSDEN, J. S.; LILLIE, B. N. Identification of polymorphisms in the bovine collagenous lectins and their association with infectious diseases in cattle. Immunogenetics, v. 70, p. 533-546, 2018. DOI: https://doi.org/10.1007/s00251-018-1061-7.

FREITAS, A. C.; CARVALHO, C.; BRUNNER, O.; BIRGEL-JUNIOR, E. H.; DELLALIBERA, A. M. M. P.; BENESI, F. J.; GREGORY, L.; BEÇAK, W.; SANTOS, R. C. S. Viral DNA sequences in peripheral blood and vertical transmission of the virus: a discussion about BPV-1. Brazilian Journal of Microbiology, v. 34, suppl. 1, p. 76-78, 2003. DOI: https://doi.org/10.1590/S1517-83822003000500026.

FREITAS, A. C.; SILVA, M. A. R.; CARVALHO, C. C. R.; BIRGEL JUNIOR, E. H.; SANTOS, J. F.; BEÇAK, W.; SANTOS, R. C. S. Papillomavirus DNA detection in non epithelial tissues: a discussion about bovine papillomavirus. In: MENDEZ-VILAS, A. (ed.). Communicating Current Research and Educational Topics and Trends in Applied Microbiology. Badajoz: Formatex Research Center, 2007. p. 697-704.

GARRED, P.; LARSEN, F.; SEYFARTH, J.; FUJITA, R.; MADSEN, H. O. Mannose-binding lectin and its genetic variants. Genes and Immunity, v. 7, p. 85-94, 2006. DOI: https://doi.org/10.1038/sj.gene.6364283.

GARRED, P.; MADSEN, H. O.; BALSLEV, U.; HOFMANN, B.; PEDERSEN, C.; GERSTOFT, J.; SVEJGAARD, A. Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin. The Lancet, v. 349, n. 9047, p. 236-240, 1997. DOI: https://doi.org/10.1016/s0140-6736(96)08440-1.

GIANG, J.; SEELEN, M. A. J.; VAN DOORN, M. B. A.; RISSMANN, R.; PRENS, E. P.; DAMMAN, J. Complement activation in inflammatory skin diseases. Frontiers in Immunology, v. 9, 639, 2018. DOI: https://doi.org/10.3389/fimmu.2018.00639.

GIANG, N. T.; VAN TONG, H.; QUYET, D.; HOAN, N. X.; NGHIA, T. H.; NAM, N. M.; HUNG, H. V.; ANH, D. T.; MAO, C. V.; SON, H. A.; MEYER, C. G.; VELAVAN, T. P.; TOAN, N. L. Complement protein levels and MBL2 polymorphisms are associated with dengue and disease severity. Scientific Reports, v. 10, 14923, 2020. DOI: https://doi.org/10.1038/s41598-020-71947-2.

GJERSTORFF, M.; HANSEN, S.; JENSEN, B.; DUEHOLM, B.; HORN, P.; BENDIXEN, C.; HOLMSKOV, U. The genes encoding bovine SP-A, SP-D, MBL-A, conglutinin, CL-43 and CL-46 form a distinct collectin locus on Bos taurus chromosome 28 (BTA28) at position q.1.8–1.9. Animal Genetics, v. 35, n. 4, p. 333-337, 2004. DOI: https://doi.org/10.1111/j.1365-2052.2004.01167.x.

GOELDNER, I.; SKARE, T. L.; UTIYAMA, S. R.; NISIHARA, R. M.; TONG, H. V.; MESSIAS-REASON, I. J. T.; VELAVAN, T. P. Mannose binding lectin and susceptibility to rheumatoid arthritis in Brazilian patients and their relatives. PLoS One, v. 9, n. 4, e95519, 2014. DOI: https://doi.org/10.1371/journal.pone.0095519.

GRAUDAL, N. A.; MADSEN, H. O.; TARP, U.; SVEJGAARD, A.; JURIK, A. G.; GRAUDAL, H. K.; GARRED, P. The association of variant mannose‐binding lectin genotypes with radiographic outcome in rheumatoid arthritis. Arthritis & Rheumatism: An Official Journal of the American College of Rheumatology, v. 43, n. 3, p. 515-521, 2000. DOI: https://doi.org/10.1002/1529-0131(200003)43:3%3C515::AID-ANR6%3E3.0.CO;2-T.

GUIMARAES, V.; GUIMARAES, R.; BRANDAO, L.; SILVA, M. F. P. T. B.; MILANESE, M.; SEGAT, L.; CASTELLETTI, H.; BRUNESKA, D.; LIMA FILHO, J. L.; FREITAS, A. C.; ARRAES, L. C.; ROCHA, C.; CROVELLA, S. Association between MBL2 gene functional polymorphisms and high-risk human papillomavirus infection in Brazilian women. Human Immunology, v. 69, n. 4-5, p. 273-278, 2008. DOI: https://doi.org/10.1016/j.humimm.2008.03.002.

HAMMAD, N. M.; EL BADAWY, N. E.; NASR, A. M.; GHRAMH, H. A.; AL KADY, L. M. Mannose‐binding lectin gene polymorphism and its association with susceptibility to recurrent vulvovaginal candidiasis. BioMed Research International, v. 2018, n. 1, 7648152, 2018. DOI: https://doi.org/10.1155/2018/7648152.

HATAMA, S.; ISHIHARA, R.; UEDA, Y.; KANNO, T.; UCHIDA, I. Detection of a novel bovine papillomavirus type 11 (BPV-11) using xipapillomavirus consensus polymerase chain reaction primers. Archives of Virology, v. 156, p. 1281-1285, 2011. DOI: https://doi.org/10.1007/s00705-011-0970-7.

HATAMA, S.; NOBUMOTO, K.; KANNO, T. Genomic and phylogenetic analysis of two novel bovine papillomaviruses, BPV-9 and BPV-10. Journal of General Virology, v. 89, n. 1, p. 158-163, 2008. DOI: https://doi.org/10.1099/vir.0.83334-0.

HOLMSKOV, U.; THIEL, S.; JENSENIUS, J. C. Collectins and ficolins: humoral lectins of the innate immune defense. Annual Review of Immunology, v. 21, p. 547-578, 2003. DOI: https://doi.org/10.1146/annurev.immunol.21.120601.140954.

JARRETT, W. F. H.; CAMPO, M. S.; OWEIL, B. W.; LAIRD, H. M.; COGGINS, L. W. A novel bovine papillomavirus (BPV-6) causing true epithelial papillomas of the mammary gland skin: a member of a proposed new BPV subgroup. Virology, v. 136, n. 2, p. 255-264, 1984. DOI: https://doi.org/10.1016/0042-6822(84)90162-4.

JULIARENA, M. A.; POLI, M.; SALA, L.; CERIANI, C.; GUTIERREZ, S.; DOLCINI, G.; RODRÍGUEZ, E. M.; MARIÑO, B.; RODRÍGUEZ-DUBRA, C.; ESTEBAN, E. N. Association of BLV infection profiles with alleles of the BoLA‐DRB3.2 gene. Animal Genetics, v. 39, n. 4, p. 432-438, 2008. DOI: https://doi.org/10.1111/j.1365-2052.2008.01750.x.

JUUL-MADSEN, H. R.; KJAERUP, R. M.; TOFT, C.; HENRYON, M.; HEEGAARD, P. M. H.; BERG, P.; DALGAARD, T. S. Structural gene variants in the porcine mannose-binding lectin 1 (MBL1) gene are associated with low serum MBL-A concentrations. Immunogenetics, v. 63, p. 309-317, 2011. DOI: https://doi.org/10.1007/s00251-011-0512-1.

KAUR, B. P.; SECORD, E. Innate immunity. Pediatric Clinics of North America, v. 66, n. 5, p. 905-911, 2019. DOI: https://doi.org/10.1016/j.pcl.2019.06.011.

KILPATRICK, D. C. Mannan‐binding lectin and its role in innate immunity. Transfusion Medicine: Official Journal of the British Blood Transfusion Society, v. 12, n. 6, p. 335-352, 2002. DOI: https://doi.org/10.1046/j.1365-3148.2002.00408.x.

KOCH, A.; MELBYE, M.; SØRENSEN, P.; HOMØE, P.; MADSEN, H. O.; MØLBAK, K.; HANSEN, C. H.; ANDERSEN, L. H.; HAHN, G. W.; GARRED, P. Acute respiratory tract infections and mannose-binding lectin insufficiency during early childhood. Jama, v. 285, n. 10, p. 1316-1321, 2001. DOI: https://doi.org/10.1001/jama.285.10.1316.

KUMAR, P.; NAGARAJAN, N.; SAIKUMAR, G.; ARYA, R. S.; SOMVANSHI, R. Detection of bovine papilloma viruses in wart-like lesions of upper gastrointestinal tract of cattle and buffaloes. Transboundary and Emerging Disease, v. 62, n. 3, p. 264-271, 2015. DOI: https://doi.org/10.1111/tbed.12127.

LARSEN, F.; MADSEN, H. O.; SIM, R. B.; KOCH, C.; GARRED, P. Disease-associated mutations in human mannose-binding lectin compromise oligomerization and activity of the final protein. Journal of Biological Chemistry, v. 279, n. 20, p. 21302-21311, 2004. DOI: https://doi.org/10.1074/jbc.M400520200.

LILLIE, B. N.; BROOKS, A. S.; KEIRSTEAD, N. D.; HAYES, M. A. Comparative genetics and innate immune functions of collagenous lectins in animals. Veterinary Immunology and Immunopathology, v. 108, n. 1-2, p. 97-110, 2005. DOI: https://doi.org/10.1016/j.vetimm.2005.07.001.

LILLIE, B. N.; KEIRSTEAD, N. D.; SQUIRES, E. J.; HAYES, M. A. Gene polymorphisms associated with reduced hepatic expression of porcine mannan-binding lectin C. Developmental & Comparative Immunology, v. 31, n. 8, p. 830-846, 2007. DOI: https://doi.org/10.1016/j.dci.2006.11.002.

LIPSCOMBE, R. J.; SUMIYA, M.; HILL, A. V. S.; LAU, Y. L.; LEVINSKY, R. J.; SUMMERFIELD, J. A.; TURNER, M. W. High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene. Human Molecular Genetics, v. 1, n. 9, p. 709-715, 1992. DOI: https://doi.org/10.1093/hmg/1.9.709.

LITZMAN, J.; FREIBERGER, T.; GRIMBACHER, B.; GATHMANN, B.; SALZER, U.; PAVLÍK, T.; VLČEK, J.; POSTRÁNECKÁ, V.; TRÁVNÍČKOVÁ, Z.; THON, V. Mannose-binding lectin gene polymorphic variants predispose to the development of bronchopulmonary complications but have no influence on other clinical and laboratory symptoms or signs of common variable immunodeficiency. Clinical & Experimental Immunology, v. 153, n. 3, p. 324-330, 2008. DOI: https://doi.org/10.1111/j.1365-2249.2008.03700.x.

LIU, J.; JU, Z.; LI, Q.; HUANG, J.; LI, R.; LI, J.; MA, L.; ZHONG, J.; WANG, C. Mannose-binding lectin 1 haplotypes influence serum MBL-A concentration, complement activity, and milk production traits in Chinese Holstein cattle. Immunogenetics, v. 63, p.727-742, 2011. https://doi.org/10.1007/s00251-011-0548-2.

LONGERI, M.; RUSSO, V.; STRILLACCI, M. G.; PERILLO, A.; CARISETTI, M.; COZZI, M. C.; NEOLA, B.; ROPERTO, S. Association between BoLA-DRB3.2 polymorphism and bovine papillomavirus infection for bladder tumor risk in Podolica cattle. Frontiers in Veterinary Science, v. 8, 630089, 2021. DOI: https://doi.org/10.3389/fvets.2021.630089.

LUNARDI, M.; ALFIERI, A. A.; OTONEL, R. A. A.; ALCÂNTARA, B. K.; RODRIGUES, W. B.; MIRANDA, A. B.; ALFIERI, A. F. Genetic characterization of a novel bovine papillomavirus member of the Deltapapillomavirus genus. Veterinary Microbiology, v. 162, n. 1, p. 207-213, 2013a. DOI: https://doi.org/10.1016/j.vetmic.2012.08.030.

LUNARDI, M.; ALFIERI, A. A.; OTONEL, R. A. A.; ALFIERI, A. F. Bovine papillomaviruses: taxonomy and genetic features. In: ROMANOWSKI, V. (ed.). Current issues in molecular virology: viral genetics and biotechnological applications. London: Intech, 2013b. p. 95-116. DOI: http://dx.doi.org/10.5772/56195.

MADSEN, H. O.; GARRED, P.; KURTZHALS, J. A. L.; LAMM, L. U.; RYDER, L. P.; THIEL, S.; SVEJGAARD, A. A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics, v. 40, p. 37-44, 1994. DOI: https://doi.org/10.1007/BF00163962.

MADSEN, H. O.; SATZ, M. L.; HOGH, B.; SVEJGAARD, A.; GARRED, P. Different molecular events result in low protein levels of mannan-binding lectin in populations from Southeast Africa and South America. The Journal of Immunology, v. 161, n. 6, p. 3169-3175, 1998. Available at: https://academic.oup.com/jimmunol/article-abstract/161/6/3169/8043937. Accessed on: 10 Dec. 2025.

MALIK, M.; MIKA, O. J.; NAVRÁTILOVÁ, Z.; KILLI, U. K.; TLUSTOŠ, P.; PATOČKA, J. Health and Environmental Hazards of the Toxic Pteridium aquilinum (L.) Kuhn (Bracken Fern). Plants, v. 13, n. 1, 18, 2023. DOI: https://doi.org/10.3390/plants13010018.

MARCHETTI, B.; ASHRAFI, G. H.; TSIRIMONAKI, E.; O’BRIEN, P. M.; CAMPO, M. S. The bovine papillomavirus oncoprotein E5 retains MHC class I molecules in the Golgi apparatus and prevents their transport to the cell surface. Oncogene, v. 21, n. 51, p. 7808-7816, 2002. DOI: https://doi.org/10.1038/sj.onc.1205885.

MARTINEZ, M. L.; MACHADO, M. A.; NASCIMENTO, C. S.; SILVA, M. V. G. B.; TEODORO, R. L.; FURLONG, J.; PRATA, M. C. A.; CAMPOS, A. L.; GUIMARÃES, M F. M.; AZEVEDO, A. L. S.; PIRES, M. F. A.; VERNEQUE, R. S. Association of BoLA-DRB3.2 alleles with tick (Boophilus microplus) resistance in cattle. Genetics and Molecular Research, v. 5, n. 3, p. 513-524, 2006. Available at: https://archives.geneticsmr.com/2006/09/14/association-of-bola-drb3-2-alleles-with-tick-boophilus-microplus-resistance-in-cattle/. Accessed on: 12 Sept. 2025.

MATSUSHITA, M.; HIJIKATA, M.; OHTA, Y.; IWATA, K.; MATSUMOTO, M.; NAKAO, K.; KANAI, K.; YOSHIDA, N.; BABA, K.; MISHIRO, S. Hepatitis C virus infection and mutations of mannose-binding lectin gene MBL. Archives of Virology, v. 143, n. 4, p. 645-651, 1998. DOI: https://doi.org/10.1007/s007050050320.

MEDEIROS-FONSECA, B.; ABREU-SILVA, A. L.; MEDEIROS, R.; OLIVEIRA, P. A.; COSTA, R. M. G. Pteridium spp. and bovine papillomavirus: partners in cancer. Frontiers in Veterinary Science, v. 9, 80838, 2022. DOI: https://doi.org/10.3389/fvets.2022.860838.

MERLE, N. S.; NOE, R.; HALBWACHS-MECARELLI, L.; FREMEAUX-BACCHI, V.; ROUMENINA, L. T. Complement system part II: role in immunity. Frontiers in Immunology, v. 6, 257, 2015. DOI: https://doi.org/10.3389/fimmu.2015.00257.

MURO, L. F. F.; BOTTURA, C. R. P.; PICCININ, A. Papilomatose Bovina. Revista Científica Eletrônica de Medicina Veterinária, v. 6, n. 10, 2008. Available at: https://www.yumpu.com/pt/document/read/12673715/papilomatose-bovina-revistas-eletronicas. Accessed on: 10 Dec. 2025. In Portuguese.

MONTEIRO, V. L. C.; COELHO, M. C. O. C.; CARNEIRO, A. S.; SILVA, R. A. A.; TEIXEIRA, M. N.; WANDERLEY, A. G.; WANDERLEY, E. K.; FRANCO, E. S. F. Descrição clínica e histopatológica da papilomatose cutânea bovina (BPV). Ciência Animal Brasileira, v. 9, n. 4, p. 1079-1088, 2008. Available at: https://revistas.ufg.br/vet/article/view/1181. Accessed on: 25 Dec. 2024. In Portuguese.

NAMATH, A.; PATTERSON, A. J. Genetic polymorphisms in sepsis. Critical Care Nursing Clinics of North America, v. 23, n. 1, p. 181-202, 2011. DOI: https://doi.org/10.1016/j.ccell.2010.12.011.

NARECHANIA, A.; TERAI, M.; CHEN, Z.; DESALLE, R.; BURK, R. D. Lack of the canonical pRB-binding domain in the E7 ORF of artiodactyl papillomaviruses is associated with the development of fibropapillomas. Journal of General Virology, v. 85, n. 5, p. 1243-1250, 2004. DOI: https://doi.org/10.1099/vir.0.19765-0.

NASCIMENTO, C. S.; MACHADO, M. A.; MARTINEZ, M. L.; SILVA, M. V. G. B.; GUIMARÃES, M. F. M.; CAMPOS, A. L.; AZEVEDO, A. L. S.; TEODORO, R. L.; VERNEQUE, R. S.; GUIMARÃES, S. E. F.; OLIVEIRA, D. A. A. Association of the bovine major histocompatibility complex (BoLA) BoLA-DRB3 gene with fat and protein production and somatic cell score in Brazilian Gyr dairy cattle (Bos indicus). Genetics and Molecular Biology, v. 29, n. 4, p. 641-647, 2006. DOI: https://doi.org/10.1590/S1415-47572006000400011.

NASIR, L.; CAMPO, M. S. Bovine papillomaviruses: their role in the aetiology of cutaneous tumours of bovids and equids. Veterinary Dermatology, v. 19, n. 5, p. 243-254, 2008. DOI: https://doi.org/10.1111/j.1365-3164.2008.00683.x.

O’BRIEN, P. M.; CAMPO, M. S. Papillomaviruses: a correlation between immune evasion and oncogenicity? Trends in Microbiology, v. 11, n. 7, p. 300-305, 2003. DOI: https://doi.org/10.1016/S0966-842X(03)00145-8.

OGAWA, T.; TOMITA, Y.; OKADA, M.; SHIRASAWA, H. Complete genome and phylogenetic position of bovine papillomavirus type 7. Journal of General Virology, v. 88, n. 7, p. 1934-1938, 2007. DOI: https://doi.org/10.1099/vir.0.82794-0.

ORNELAS, A. M. M.; XAVIER-DE-CARVALHO, C.; ALVARADO-ARNEZ, L. E.; RIBEIRO-ALVES, M.; ROSSI, A. D.; TANURI, A.; AGUIAR, R. S.; MORAES, M. O.; CARDOSO, C. C. Association between MBL2 haplotypes and dengue severity in children from Rio de Janeiro, Brazil. Memorias do Instituto Oswaldo Cruz, v. 114, e190004, 2019. DOI: https://doi.org/10.1590/0074-02760190004.

PANGTY, K.; SINGH, S.; GOSWAMI, R.; SAIKUMAR, G.; SOMVANSHI, R. Detection of BPV-1 and -2 and quantification of BPV-1 by real-time PCR in cutaneous warts in cattle and buffaloes. Transboundary and Emerging Diseases, v. 57, n. 3, p. 185-196, 2010. DOI: https://doi.org/10.1111/j.1865-1682.2009.01096.x.

PATEL, K. R.; SMITH, K. T.; CAMPO, M. S. The nucleotide sequence and genome organization of bovine papillomavirus type 4. Journal of General Virology, v. 68, n. 8, p. 2117-2128, 1987. DOI: https://doi.org/10.1099/0022-1317-68-8-2117.

PENG, S.; FRAZER, I. H.; FERNANDO, G. J.; ZHOU, J. Papillomavirus virus-like particles can deliver defined CTL epitopes to the MHC class I pathway. Virology, v. 240, n. 1, p. 147-157, 1998. DOI: https://doi.org/10.1006/viro.1997.8912.

PFISTER, H.; LINZ, U.; GISSMANN, L.; HUCHTHAUSEN, B.; HOFFMANN, D.; HAUSEN, H. Partial characterization of a new type of bovine papilloma viruses. Virology, v. 96, n. 1, p. 1-8, 1979. DOI: https://doi.org/10.1016/0042-6822(79)90166-1.

SANTOS, R. C. S.; LINDSEY, C. J.; FERRAZ, O. P.; PINTO, J. R.; MIRANDOLA, R. S.; BENESI, F. J.; BIRGEL, E. H.; PEREIRA, C. A. B.; BEÇAK, W. Bovine papillomavirus transmission and chromosomal aberrations: an experimental model. Journal of General Virology, v. 79, n. 9, p. 2127-2135, 1998. DOI: https://doi.org/10.1099/0022-1317-79-9-2127.

SASAGAWA, T.; TAKAGI, H.; MAKINODA, S. Immune responses against human papillomavirus (HPV) infection and evasion of host defense in cervical cancer. Journal of Infection and Chemotherapy, v. 18, n. 6, p. 807-815, 2012. DOI: https://doi.org/10.1007/s10156-012-0485-5.

SAUTHIER, J. T.; DAUDT, C.; SILVA, F. R. C.; ALVES, C. D. B. T.; MAYER, F. Q.; BIANCHI, R. M.; DRIEMEIER, D.; STREIT, R. S. A.; STAATS, C. C.; CANAL, C. W.; WEBER, M. N. The genetic diversity of “papillomavirome” in bovine teat papilloma lesions. Animal Microbiome, v. 3, 51, 2021. DOI: https://doi.org/10.1186/s42523-021-00114-3.

SCHILLER, J. T.; VASS, W. C.; LOWY, D. R. Identification of a second transforming region in bovine papillomavirus DNA. PNAS, v. 81, n. 24, p. 7880-7884, 1984. DOI: https://doi.org/10.1073/pnas.81.24.7880.

SHERGOJRY, S. A.; VERMA, A.; GHANI, M.; GUPTA, I. D.; MIR, N. A. Identification of genetic polymorphism of the MBL2 gene and its association with clinical mastitis in Murrah buffaloes. Journal of Genetics, v. 102, 21, 2023. DOI: https://doi.org/10.1007/s12041-023-01419-9.

SILVA, M. A. R.; PONTES, N. E.; SILVA, K. M. G.; GUERRA, M. M. P.; FREITAS, A. C. Detection of bovine papillomavirus type 2 DNA in commercial frozen semen of bulls (Bos taurus). Animal Reproduction Science, v. 129, n. 3-4, p. 146-151, 2011. DOI: https://doi.org/10.1016/j.anireprosci.2011.11.005.

SILVESTRE, O.; BORZACCHIELLO, G.; NAVA, D.; IOVANE, G.; RUSSO, V.; VECCHIO, D.; D’AUSILIO, F.; GAULT, E. A.; CAMPO, M. S.; PACIELLO, O. Bovine papillomavirus type 1 DNA and E5 oncoprotein expression in water buffalo fibropapillomas. Veterinary Pathology, v. 46, n. 4, p. 636-641, 2009. DOI: https://doi.org/10.1354/vp.08-vp-0222-p-fl.

SOLÉ, X.; GUINÓ, E.; VALLS, J.; INIESTA, R.; MORENO, V. SNPStats: a web tool for the analysis of association studies. Bioinformatics, v. 22, n. 15, p. 1928-1929, 2006. DOI: https://doi.org/10.1093/bioinformatics/btl268.

SUFFREDINI, A. F.; CHANOCK, S. J. Genetic variation and the assessment of risk in septic patients. Intensive Care Medicine, v. 32, n. 11, p. 1679-1680, 2006. DOI: https://doi.org/10.1007/s00134-006-0328-x.

SULLIVAN, K. E.; WOOTEN, C.; GOLDMAN, D.; PETRI, M. Mannose‐binding protein genetic polymorphisms in black patients with systemic lupus erythematosus. Arthritis & Rheumatism, v. 39, n. 12, p. 2046-2051, 1996. DOI: https://doi.org/10.1002/art.1780391214.

SUMIYA, M.; TABONA, P.; ARAI, T.; SUMMERFIELD, J. A.; SUPER, M.; LEVINSKY, R. J.; TURNER, M. W. Molecular basis of opsonic defect in immunodeficient children. The Lancet, v. 337, n. 8757, p. 1569-1570, 1991. DOI: https://doi.org/10.1016/0140-6736(91)93263-9.

TAKAHASHI, R.; TSUTSUMI, A.; OHTANI, K.; MURAKI, Y.; GOTO, D.; MATSUMOTO, I.; WAKAMIYA, N.; SUMIDA, T. Association of mannose binding lectin (MBL) gene polymorphism and serum MBL concentration with characteristics and progression of systemic lupus erythematosus. Annals of the Rheumatic Diseases, v. 64, n. 2, p. 311-314, 2005. DOI: https://doi.org/10.1136/ard.2003.020172.

TAKESHIMA, S.; SARAI, Y.; SAITOU, N.; AIDA, Y. MHC class II DR classification based on antigen-binding groove natural selection. Biochemical and Biophysical Research Communications, v. 385, n. 2, p. 137-142, 2009. DOI: https://doi.org/10.1016/j.bbrc.2009.04.142.

TAMURA, K.; STECHER, G.; PETERSON, D.; FILIPSKI, A.; KUMAR, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, v. 30, n. 12, p. 2725-2729, 2013. DOI: https://doi.org/10.1093/molbev/mst197.

TAYLOR, M. E.; BRICKELL, P. M.; CRAIG, R. K.; SUMMERFIELD, J. A. Structure and evolutionary origin of the gene encoding a human serum mannose-binding protein. Biochemical Journal, v. 262, n. 3, p. 763-771, 1989. DOI: https://doi.org/10.1042/bj2620763.

TERAI, I.; KOBAYASHI, K.; MATSUSHITA, M.; MIYAKAWA, H.; MAFUNE, N.; KIKUTA, H. Relationship between gene polymorphisms of mannose‐binding lectin (MBL) and two molecular forms of MBL. European Journal of Immunology, v. 33, n. 10, p. 2755-2763, 2003. DOI: https://doi.org/10.1002/eji.200323955.

THIEL, S.; GADJEVA, M. Humoral pattern recognition molecules: mannan-binding lectin and ficolins. In: KISHORE, U. (ed.). Target pattern recognition in innate immunity. New York: Springer, 2009. p. 58-73. (Advances in Experimental Medicine and Biology, 653). DOI: https://doi.org/10.1007/978-1-4419-0901-5_5.

THOMAS, H. C.; FOSTER, G. R.; SUMIYA, M.; MCINTOSH, D.; JACK, D. L.; TURNER, M. W.; SUMMERFIELD, J. A. Mutation of gene of mannose-binding protein associated with chronic hepatitis B viral infection. The Lancet, v. 348, n. 9039, p. 1417-1419, 1996. DOI: https://doi.org/10.1016/s0140-6736(96)05409-8.

TOKARNIA, C. H.; DOBEREINER, J.; PEIXOTO, P. V. Plantas tóxicas do Brasil. Rio de Janeiro: Helianthus, 2000. In Portuguese.

TOMITA, Y.; LITERAK, I.; OGAWA, T.; JIN, Z.; SHIRASAWA, H. Complete genomes and phylogenetic positions of bovine papillomavirus type 8 and a variant type from a European bison. Virus Genes, v. 35, n. 2, p. 243-249, 2007. DOI: https://doi.org/10.1007/s11262-006-0055-y.

TSAI, C.-C.; LIN, T.-M.; YOU, H.-L.; ENG, H.-L. Mannose-binding lectin in high-risk human papillomavirus infection. American Journal of Obstetrics and Gynecology, v. 200, n. 6, p. 618E1-618E6, 2009. DOI: https://doi.org/10.1016/j.ajog.2009.02.016.

UGOCHUKWU, I. C. I.; ANEKE, C. I.; IDOKO, I. S.; SANI, N. A.; AMOCHE, A. J.; MSHIELA, W. P.; EDE, R. E.; IBRAHIM, N. D. G.; NJOKU, C. I. O.; SACKEY, A. K. B. Bovine papilloma: aetiology, pathology, immunology, disease status, diagnosis, control, prevention and treatment: a review. Comparative Clinical Pathology, v. 28, p. 737-745, 2019. DOI: https://doi.org/10.1007/s00580-018-2785-3.

WALLIS, R.; CHENG, J. Y. T. Molecular defects in variant forms of mannose-binding protein associated with immunodeficiency. The Journal of Immunology, v. 163, n. 9, p. 4953-4959, 1999. Available at: https://academic.oup.com/jimmunol/article-abstract/163/9/4953/8040369. Accessed on: 9 Dec. 2025.

WANG, H.-L.; LU, X.; YANG, X.; XU, N. Association of MBL2 exon1 polymorphisms with high-risk human papillomavirus infection and cervical cancers: a meta-analysis. Archives of Gynecology and Obstetrics, v. 294, p. 1109-1116, 2016. DOI: https://doi.org/10.1007/s00404-016-4201-z.

WANG, X.; JU, Z.; HUANG, J.; HOU, M.; ZHOU, L.; QI, C.; ZHAN, Y.; GAO, Q.; PAN, Q.; LI, G.; ZHONG, J.; WANG, C. The relationship between the variants of the bovine MBL2 gene and milk production traits, mastitis, serum MBL-C levels and complement activity. Veterinary Immunology and Immunopathology, v. 148, n. 3-4, p. 311-319, 2012. DOI: https://doi.org/10.1016/j.vetimm.2012.06.017.

YAMASHITA-KAWANISHI, N.; ITO, S.; ISHIYAMA, D.; CHAMBERS, J. K.; UCHIDA, K.; KASUYA, F.; HAGA, T. Characterization of bovine papillomavirus 28 (BPV28) and a novel genotype BPV29 associated with vulval papillomas in cattle. Veterinary Microbiology, v. 250, 108879, 2020. DOI: https://doi.org/10.1016/j.vetmic.2020.108879.

YUAN, Z. Q.; GAULT, E. A.; CAMPO, M. S.; NASIR, L. Upregulation of equine matrix metalloproteinase 1 by bovine papillomavirus type 1 is through the transcription factor activator protein-1. Journal of General Virology, v. 92, n. 11, p. 2608-2619, 2011. DOI: https://doi.org/10.1099/vir.0.033431-0.

YUAN, Z. Q.; GOBEIL, P. A. M.; CAMPO, M. S.; NASIR, L. Equine sarcoid fibroblasts over-express matrix metalloproteinases and are invasive. Virology, v. 396, n. 1, p. 143-151, 2010. DOI: https://doi.org/10.1016/j.virol.2009.10.010.

YUEN, M.-F.; LAU, C.-S.; LAU, Y.-L.; WONG, W.-M.; CHENG, C.-C.; LAI, C.-L. Mannose binding lectin gene mutations are associated with progression of liver disease in chronic hepatitis B infection. Hepatology, v. 29, n. 4, p. 1248-1251, 1999. DOI: https://doi.org/10.1002/hep.510290417.

ZHAO, Z. L.; WANG, C. F.; LI, Q. L.; JU, Z. H.; HUANG, J. M.; LI, J. B.; ZHONG, J. F.; ZHANG, J. B. Novel SNPs of the mannan-binding lectin 2 gene and their association with production traits in Chinese Holsteins. GMR: Genetics and Molecular Research, v. 11, n. 4, p. 3744-3754, 2012. Available at: https://www.geneticsmr.org/abstract/novel-snps-of-the-mannanbinding-lectin-2-gene-and-their-association-with-production-traits-in-chinese-holsteins-4722.html. Accessed on: 12 Sept. 2025.

ZHOU, C.; TUONG, Z. K.; FRAZER, I. H. Papillomavirus immune evasion strategies target the infected cell and the local immune system. Frontiers in Oncology, v. 9, 682, 2019. DOI: https://doi.org/10.3389/fonc.2019.00682.

ZHU, W.; DONG, J.; SHIMIZU, E.; HATAMA, S.; KADOTA, K.; GOTO, Y.; HAGA, T. Characterization of novel bovine papillomavirus type 12 (BPV-12) causing epithelial papilloma. Archives of Virology, v. 157, p. 85-91, 2012. DOI: https://doi.org/10.1007/s00705-011-1140-7.

Downloads

Publicado

04-02-2025

Como Citar

PESSOA JUNIOR, M. E.; CARRAZZONI, P. G.; TENÓRIO FILHO, F.; ALVES, R. V.; FREITAS, A. C. de; SILVA, M. A. R. da. Evaluation of polymorphisms in the MBL2 gene exon 1 and their relevance to susceptibility to bovine papillomatosis in Girolando breed animals. Revista Principia, [S. l.], v. 62, 2025. DOI: 10.18265/2447-9187a2025id8717. Disponível em: https://periodicos.ifpb.edu.br/index.php/principia/article/view/8717. Acesso em: 12 dez. 2025.

Edição

Seção

Medicina Veterinária
Smart Citations via scite_

Artigos mais lidos pelo mesmo(s) autor(es)