A neighborhood search-based heuristic for the dynamic vehicle routing problem
DOI:
https://doi.org/10.18265/2447-9187a2024id8297Palavras-chave:
2-Opt*, DSNR, dynamic vehicle routing, local search heuristic, k-means greedy, QRP sweepResumo
The Vehicle Routing Problem (VRP) is a classical optimization problem focused on determining routes for a fleet of vehicles to fulfill the demands of a set of customers. Due to its wide applicability, particularly in the logistics sector, numerous variants of the VRP have been developed. One such variant is the Dynamic Vehicle Routing Problem (DVRP), characterized by the emergence of new customer demands after the initial routing has been established. The combinatorial complexity of the DVRP poses significant challenges in finding high-quality, feasible solutions within practical runtime limits for real-world, large-scale problems, thereby driving the development of heuristic approaches. This paper introduces a novel heuristic algorithm, Dynamic Search per Neighbors Routes (DSNR), which employs neighborhood search techniques based on the 2-Opt* operator to incorporate new delivery requests into existing routes. The DSNR algorithm was tested using instances from the Loggibud benchmark, representing real-world data from three distinct Brazilian cities. In terms of distance and the number of vehicles required, the proposed approach demonstrated superior performance compared to two existing methods from the literature: the QRP Sweep (QRPS) and K-Means Greedy (KG). The DSNR achieved improvements of 15% to 17% in terms of distance and final delivery costs.
Downloads
Métricas
Referências
BARÁN, B.; SCHAERER, M. A multiobjective ant colony system for vehicle routing problem with time windows. In: IASTED INTERNATIONAL CONFERENCE APPLIED INFORMATICS, 21., 2003, Innsbruck. Proceedings […]. Innsbruck: International Association of Science and Technology for Development, 2003. p. 97-102. Available at: https://www.cnc.una.py/publicaciones/1_75.pdf. Accessed on: 11 June 2024.
BERTSIMAS, D. J.; VAN RYZIN, G. Stochastic and dynamic vehicle routing with general demand and interarrival time distributions. Advances in Applied Probability, v. 25, n. 4, p. 947-978, 1993. DOI: https://doi.org/10.2307/1427801.
BRÄYSY, O.; GENDREAU, M. Vehicle routing problem with time windows, Part II: Metaheuristics. Transportation Science, v. 39, n. 1, p. 119-139, 2005. DOI: https://doi.org/10.1287/trsc.1030.0057.
CHEN, S.; CHEN, R.; GAO, J. A monarch butterfly optimization for the dynamic vehicle routing problem. Algorithms, v. 10, n. 3, 107, 2017. DOI: https://doi.org/10.3390/a10030107.
COMERT, S. E.; YAZGAN, H. R.; KIR, S.; YENER, F. A cluster first-route second approach for a capacitated vehicle routing problem: a case study. International Journal of Procurement Management (IJPM), v. 11, n. 4, p. 399-419, 2018. DOI: https://dx.doi.org/10.1504/IJPM.2018.092766.
DANTZIG, G. B.; RAMSER, J. H. The truck dispatching problem. Management Science, v. 6, n. 1, p. 80-91, 1959. Available at: https://www.jstor.org/stable/2627477. Accessed on: 18 May 2025.
FAHRION, R.; WREDE, M. On a principle of chain-exchange for vehicle-routing problems (1-VRP). Journal of the Operational Research Society, v. 41, n. 9, p. 821-827, 1990. DOI: https://doi.org/10.2307/2583497.
FONSECA-GALINDO, J. C.; SURITA, G. C.; MAIA NETO, J.; CASTRO, C. L.; LEMOS, A. P. A multi-agent system for solving the Dynamic Capacitated Vehicle Routing Problem with stochastic customers using trajectory data mining. Expert Systems with Applications, v. 195, 116602, 2022. DOI: https://doi.org/10.1016/j.eswa.2022.116602.
GAMBARDELLA, L. M.; TAILLARD, É.; AGAZZI, G. MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. In: CORNE, D.; DORIGO, M.; GLOVER, F. (ed.). New ideas in optimization. London: McGraw-Hill, 1999. p. 63-76.
GILLETT, B. E.; MILLER, L. R. A heuristic algorithm for the vehicle-dispatch problem. Operations Research, v. 22, n. 2, p. 340-349, 1974. Available at: https://www.jstor.org/stable/169591. Accessed on: 18 May 2025.
HONG, L. An improved LNS algorithm for real-time vehicle routing problem with time windows. Computers & Operations Research, v. 39, n. 2, p. 151-163, 2012. DOI: https://doi.org/10.1016/j.cor.2011.03.006.
KILBY, P.; PROSSER, P.; SHAW, P. Dynamic VRPs: a study of scenarios. Report APES-06-1998. University of Strathclyde Technical Report, v. 1, n. 11, 1998. Available at: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=19df8728e4a9b273b6e0a6f84b7f39ff4543e565. Accessed on: 18 May 2025.
KOÇ, Ç.; BEKTAŞ, T.; JABALI, O.; LAPORTE, G. Thirty years of heterogeneous vehicle routing. European Journal of Operational Research, v. 249, n. 1, p. 1-21, 2016. DOI: https://doi.org/10.1016/j.ejor.2015.07.020.
LACKNER, A. Dynamische Tourenplanung mit ausgewählten metaheuristiken: eine untersuchung am beispiel des kapazitätsrestriktiven dynamischen tourenplanungsproblems mit zeitfenstern. Göttingen: Cuvillier Verlag, 2004. (Göttinger Wirtschaftsinformatik, v. 47). Available at: https://cuvillier.de/de/shop/publications/2964-dynamische-tourenplanung-mit-ausgewahlten-metaheuristiken. Accessed on: 18 May 2025. In German.
LARSEN, A. The dynamic vehicle routing problem. 2000. Ph.D Thesis (Doctorate in Mathematical Modelling) – Technical University of Denmark, Lyngby, 2000. Available at: https://backend.orbit.dtu.dk/ws/portalfiles/portal/5261816/imm143.pdf. Accessed on: 18 May 2025.
LARSEN, A.; MADSEN, O.; SOLOMON, M. Partially dynamic vehicle routing: models and algorithms. Journal of the Operational Research Society, v. 53, n. 6, p. 637-646, 2002. DOI: https://doi.org/10.1057/palgrave.jors.2601352.
LENSTRA, J. K.; KAN, A. H. G. R. Complexity of vehicle routing and scheduling problems. Networks, v. 11, n. 2, p. 221-227, 1981. DOI: https://doi.org/10.1002/net.3230110211.
LOGGIBUD. LoggiBUD: Loggi Benchmark for Urban Deliveries. GitHub Repository, 2021. Available at: https://github.com/loggi/loggibud. Accessed on: 11 June 2024.
MARINAKIS, Y.; MARINAKI, M. A hybrid genetic: Particle Swarm Optimization Algorithm for the vehicle routing problem. Expert Systems with Applications, v. 37, n. 2, p. 1446-1455, 2010. DOI: https://doi.org/10.1016/j.eswa.2009.06.085.
MARINAKIS, Y.; MIGDALAS, A.; PARDALOS, P. M. Multiple phase neighborhood search: GRASP based on Lagrangean relaxation, random backtracking Lin-Kernighan and path relinking for the TSP. Journal of Combinatorial Optimization, v. 17, n. 2, p. 134-156, 2009. DOI: https://doi.org/10.1007/s10878-007-9104-2.
MILLER, C. E.; TUCKER, A. W.; ZEMLIN, R. A. Integer programming formulation of traveling salesman problems. Journal of the ACM (JACM), v. 7, n. 4, p. 326-329, 1960. DOI: https://doi.org/10.1145/321043.321046.
MONTEMANNI, R.; GAMBARDELLA, L. M.; RIZZOLI, A. E.; DONATI, A. V. Ant colony system for a dynamic vehicle routing problem. Journal of Combinatorial Optimization, v. 10, n. 4, p. 327-343, 2005. DOI: https://doi.org/10.1007/s10878-005-4922-6.
NECULA, R.; BREABAN, M.; RASCHIP, M. Tackling dynamic vehicle routing problem with time windows by means of ant colony system. In: 2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, Donostia. Proceedings […]. Donostia: IEEE, 2017. p. 2480-2487. DOI: https://doi.org/10.1109/CEC.2017.7969606.
PILLAC, V.; GENDREAU, M.; GUÉRET, C.; MEDAGLIA, A. L. A review of dynamic vehicle routing problems. European Journal of Operational Research, v. 225, n. 1, p. 1-11, 2013. DOI: https://doi.org/10.1016/j.ejor.2012.08.015.
PILLAC, V.; GUÉRET, C.; MEDAGLIA, A. A fast re-optimization approach for dynamic vehicle routing: Research Report. Nantes: École des Mines de Nantes, 2012. Available at: https://hal.science/hal-00739782. Accessed on: 11 June 2024.
PSARAFTIS, H. N. Dynamic vehicle routing problems. In: GOLDEN, B. L.; ASSAD, A. A. (ed.). Vehicle routing: methods and studies. Amsterdam: North Holland: Elsevier, 1988. v. 16, p. 223-248.
RALPHS, T. K.; KOPMAN, L.; PULLEYBLANK, W. R.; TROTTER, L. E. On the capacitated vehicle routing problem. Mathematical Programming, v. 94, n. 2, p. 343-359, 2003. DOI: https://doi.org/10.1007/s10107-002-0323-0.
RESENDE, M. G. C.; RIBEIRO, C. C. Greedy randomized adaptive search procedures. In: GLOVER, F.; KOCHENBERGER, G. A. (ed.). Handbook of metaheuristics. Boston: Springer, 2003. p. 219-249. DOI: https://doi.org/10.1007/0-306-48056-5_8.
RIOS, B. H. O.; XAVIER, E. C.; MIYAZAWA, F. K.; AMORIM, P.; CURCIO, E.; SANTOS, M. J. Recent dynamic vehicle routing problems: a survey. Computers & Industrial Engineering, v. 160, 107604, 2021. DOI: https://doi.org/10.1016/j.cie.2021.107604.
SILVA JÚNIOR, O. S.; LEAL, J. E.; REIMANN, M. A multiple ant colony system with random variable neighborhood descent for the dynamic vehicle routing problem with time windows. Soft Computing, v. 25, n. 4, p. 2935-2948, 2021. DOI: https://doi.org/10.1007/s00500-020-05350-4.
SOLOMON, M. M. Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research, v. 35, n. 2, p. 254-265, 1987. Available at: https://www.jstor.org/stable/170697. Accessed on: 18 May 2025.
VAN VEEN, B.; EMMERICH, M.; YANG, Z.; BÄCK, T.; KOK, J. Ant colony algorithms for the dynamic vehicle routing problem with time windows. In: VICENTE, J. M. F.; SÁNCHEZ, J. R. Á.; LÓPEZ, F. P.; MOREO, F. J. T. (ed.). Natural and Artificial Computation in Engineering and Medical Applications. Berlin: Springer, 2013. p. 1-10. DOI: https://doi.org/10.1007/978-3-642-38622-0_1.
YANG, Z.; VAN OSTA, J.-P.; VAN VEEN, B.; VAN KREVELEN, R.; VAN KLAVEREN, R.; STAM, A.; KOK, J.; BÄCK, T.; EMMERICH, M. Dynamic vehicle routing with time windows in theory and practice. Natural Computing, v. 16, n. 1, p. 119-134, 2017. DOI: https://doi.org/10.1007/s11047-016-9550-9.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Wilton Gustavo Gomes da Costa, Ricardo Santos, Willy Alves de Oliveira Soler, Bianca de Almeida Dantas

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta revista, seguindo as recomendações do movimento de Acesso Aberto, proporciona seu conteúdo em Full Open Access. Assim os autores conservam todos seus direitos permitindo que a Revista Principia possa publicar seus artigos e disponibilizar pra toda a comunidade.
A Revista Principia adota a licença Creative Commons 4.0 do tipo atribuição (CC-BY). Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, inclusive para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
Os autores estão autorizados a enviar a versão do artigo publicado nesta revista em repositório institucionais, com reconhecimento de autoria e publicação inicial na Revista Principia.
Demais informações sobre a Política de Direitos Autorais da Revista Principia encontram-se neste link.