Encapsulation of Hovenia dulcis pseudofruits by freeze drying: characterization and antioxidant potential

Elisandra Rigo

ORCID iD Universidade do Estado de Santa Catarina (UDESC) Brasil

Dalana Cecília Hanauer

ORCID iD Universidade do Estado de Santa Catarina (UDESC) Brasil

Leticia Knakiewicz

ORCID iD Universidade do Estado de Santa Catarina (UDESC) Brasil

Georgia Ane Raquel Sehn

ORCID iD Universidade do Estado de Santa Catarina (UDESC) Brasil

Darlene Cavalheiro

ORCID iD Universidade do Estado de Santa Catarina (UDESC) Brasil

Resumo

The pseudofruit of Hovenia dulcis is known as a source of bioactive compounds; however, like the majority of fruits, it is easily susceptible to deterioration. Encapsulation techniques have been used to protect and stabilize compounds, in addition to minimizing changes in the characteristics of the supplemented product. In the present study, the freeze-drying pulp of H. dulcis pseudofruit (HD) and pulp of pseudofruits microencapsulated by freeze-drying using whey protein concentrate and gum arabic as coating materials (En-HD) were investigated. The samples (HD and EN-HD) were characterized for the physicochemical properties, total phenolic compounds (TPC), antioxidant activity (ABTS and DPPH), α-amylase inhibition, particle size distribution, and scanning electron microscopy. The microencapsulation retained 95.8% TPC after 75 days of storage at -80 ºC. En-HD showed higher antioxidant activity by the ABTS assay, and inhibition of the α-amylase enzyme, demonstrating the protective effect of the microencapsulation technique, which can be promising for controlling blood sugar levels. The En-HD presented a smaller particle size and higher solubility when compared to HD (76% higher), probably due to the coating materials used in the microencapsulation process, as well as the freeze-drying of the encapsulated sample made with HD previously subjected to freeze-drying. En-HD proved to be a promising candidate to provide functional properties for use as additive in food industries.

Palavras-chave


ABTS; DPPH; particle size; phenolic compounds; α-amylase inhibition.


Texto completo:

Referências


AOAC – ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTRY. Official methods of analysis, 20. ed. Arlington: AOAC International, 2016.

CAI, W.; XU, S.; MA, T.; ZHANG, X.; LIU, B.; XU, F. Five novel triterpenoid saponins from Hovenia dulcis and their Nrf2 inhibitory activities. Arabian Journal of Chemistry, v. 14, n. 8, 103292, 2021. DOI: https://doi.org/10.1016/j.arabjc.2021.103292.

CAVALHEIRO, D.; MORANDIM, G. C.; SCHAEFER, S. V.; AMARAL, A. M. P.; BETTANIN, L.; SEHN, G. A. R. Hovenia dulcis T. extract and Glycyrrhiza glabra as natural antioxidants in Bologna-type mortadella. Revista Principia - Divulgação Científica e Tecnológica do IFPB, Early View, 2024. DOI: http://dx.doi.org/10.18265/2447-9187a2024id8195.

DAG, D.; KILERCIOGLU, M.; OZTOP, M. H. Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT – Food Science and Technology, v. 83, p. 86-94, 2017. DOI: https://doi.org/10.1016/j.lwt.2017.05.007.

EL-MESSERY, T. M.; EL-SAID, M. M.; SHAHEIN, N. M.; EL-DIN, H. M. F.; FARRAG, A. Functional yoghurt supplemented with extract orange peel encapsulated using coacervation technique. Pakistan Journal of Biological Sciences, v. 22, n. 5, p. 231-238, 2019. DOI: https://doi.org/10.3923/pjbs.2019.231.238.

FANG, Z.; BHANDARI, B. Encapsulation of polyphenols: a review. Trends in Food Science & Technology, v. 21, n. 10, p. 510-523, 2010. DOI: https://doi.org/10.1016/j.tifs.2010.08.003.

GONZÁLEZ-MUÑOZ, A.; QUESILLE-VILLALOBOS, A. M.; FUENTEALBA, C.; SHETTY, K.; RANILLA, L. G. Potential of Chilean native corn (Zea mays L.) accessions as natural sources of phenolic antioxidants and in vitro bioactivity for hyperglycemia and hypertension management. Journal of Agricultural and Food Chemistry, v. 61, n. 46, p. 10995-11007, 2013. DOI: https://doi.org/10.1021/jf403237p.

GRGIĆ, J.; ŠELO, G.; PLANINIĆ, M.; TIŠMA, M.; BUCIĆ-KOJIĆ, A. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants, v. 9, n. 10, 923, 2020. DOI: https://doi.org/10.3390/antiox9100923.

HINESTROZA-CÓRDOBA, L. I.; SERNA, S. D.; SEGUÍ, L.; BARRERA, C.; BETORET, L. Characterization of powdered lulo (Solanum quitoense) bagasse as a functional food ingredient. Foods, v. 9, n, 6, 723, 2020. DOI: https://doi.org/10.3390/foods9060723.

HUSSAIN, S. A.; HAMEED, A.; NAZIR, Y.; NAZ, T.; WU, Y.; SULERIA, H. A. R.; SONG, Y. Microencapsulation and the characterization of polyherbal formulation (PHF) rich in natural polyphenolic compounds. Nutrients, v. 10, n. 7, 843, 2018. DOI: https://doi.org/10.3390/nu10070843.

INDRAWATI, R.; SUKOWIJOYO, H.; INDRIATMOKO; WIJAYANTI, R. D. E.; LIMANTARA, L. Encapsulation of brown seaweed pigment by freeze drying: characterization and its stability during storage. Procedia Chemistry, v. 14, p. 353-360, 2015. DOI: https://doi.org/10.1016/j.proche.2015.03.048.

JAMBRAK, A. R.; MASON, T. J.; LELAS, V.; PANIWNYK, L.; HERCEG, Z. Effect of ultrasound treatment on particle size and molecular weight of whey proteins. Journal of Food Engineering, v. 121, p. 15-23, 2014. DOI: https://doi.org/10.1016/j.jfoodeng.2013.08.012.

KUCK, L. S.; NOREÑA, C. P. Z. Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chemistry, v. 194, p. 569-576, 2016. DOI: https://doi.org/10.1016/j.foodchem.2015.08.066.

LARRAURI, J. A.; RUPÉREZ, P.; SAURA-CALIXTO, F. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agricultural and Food Chemistry, v. 45, n. 4, p. 1390-1393, 1997. DOI: https://doi.org/10.1021/jf960282f.

LOURENÇO, S. C.; MOLDÃO-MARTINS, M.; ALVES, V. D. Microencapsulation of pineapple peel extract by spray drying using maltodextrin, inulin, and Arabic gum as wall matrices. Foods, v. 9, n. 6, 718, 2020. DOI: https://doi.org/10.3390/FOODS9060718.

MONTGOMERY, D. C.; RUNGER, G. C. Estatística aplicada e probabilidade para engenheiros. 7. ed. Barueri: LTC, 2021, 416p.

RAMÍREZ, M. J.; GIRALDO, G. I.; ORREGO, C. E. Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulates. Powder Technology, v. 277, p. 89-96, 2015. DOI: https://doi.org/10.1016/j.powtec.2015.02.060.

REZENDE, Y. R. R. S.; NOGUEIRA, J. P.; NARAIN, N. Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: chemical, morphological and chemometric characterization. Food Chemistry, v. 254, p. 281-291, 2018. DOI: https://doi.org/10.1016/j.foodchem.2018.02.026.

ROBERT, P.; GORENA, T.; ROMERO, N.; SEPULVEDA, E.; CHAVEZ, J.; SAENZ, C. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science and Technology, v. 45, n. 7, p. 1386-1394, 2010. DOI: https://doi.org/10.1111/j.1365-2621.2010.02270.x.

ROESLER, R.; MALTA, L. G.; CARRASCO, L. C.; HOLANDA, R. B.; SOUSA, C. A. S.; PASTORE, G. M. Atividade antioxidante de frutas do cerrado. Food Science and Technology, v. 27, n. 1, p. 53-60, 2007. DOI: https://doi.org/10.1590/S0101-20612007000100010. In Portuguese.

RUFINO, M. S. M.; ALVES, R. E.; BRITO, E. S.; MORAIS, S. M.; SAMPAIO, C. G.; PÉREZ-JIMÉNEZ, J.; SAURA-CALIXTO, F. D. Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Comunicado Técnico 127, Embrapa Agroindústria Tropical, Fortaleza, p. 1-4, julho, 2007a. Available at: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAT/10224/1/Cot_127.pdf. Acessed on: 9 dec 2023.

RUFINO, M. S. M.; ALVES, R. E.; BRITO, E. S.; MORAIS, S. M.; SAMPAIO, C. G.; PÉREZ-JIMÉNEZ, J.; SAURA-CALIXTO, F. D. Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS+. Comunicado técnico 128, Embrapa Agroindústria Tropical. Fortaleza, p. 1-4, julho, 2007b Available at: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAT/10225/1/Cot_128.pdf. Acessed on: 9 dec 2023.

SÁNCHEZ-MADRIGAL, M. Á.; QUINTERO-RAMOS, A.; AMAYA-GUERRA, C. A.; MELÉNDEZ-PIZARRO, C. O.; CASTILLO-HERNÁNDEZ, S. L.; AGUILERA-GONZÁLEZ, C. J. Effect of agave fructans as carrier on the encapsulation of blue corn anthocyanins by spray drying. Foods, v. 8, n. 7, 268, 2019. DOI: https://doi.org/10.3390/foods8070268.

SANTOS, F. H.; SILVEIRA, B. M. P.; SOUZA, L. L.; DUARTE, A. K. C.; RIBEIRO, M. C.; PEREIRA, K. C.; COSTA, J. M. G. Influence of wall materials on the microencapsulation of pequi oil by spray drying. Brazilian Journal of Food Technology, v. 23, 2020. DOI: https://doi.org/10.1590/1981-6723.13219.

SCHAEFER, S. V.; AMARAL, A. M. P.; CHEROBIN, A. K.; MONTEIRO, L. K.; MORANDIN, G. C.; FISCHER, C.; CAVALHEIRO, D.; SEHN, G. A. R. Japanese grape (Hovenia dulcis) powder as an antioxidant agent in Bologna sausages. Journal of the Science of Food and Agriculture, v. 102, n. 14, p. 6255-6262, 2022. DOI: https://doi.org/10.1002/jsfa.11974.

SOUZA, L. S.; MADALENA, D. A.; PINHEIRO, A. C.; TEIXEIRA, J. A.; VICENTE, A. A.; RAMOS, O. L. Micro- and nano bio-based delivery systems for food applications: in vitro behavior. Advances in Colloid and Interface Science, v. 243, p. 23-45, 2017. DOI: https://doi.org/10.1016/j.cis.2017.02.010.

WANG, L.; CLARDY, A.; HUI, D.; GAO, A.; WU. Y. Antioxidant and antidiabetic properties of Chinese and Indian bitter melons (Momordica charantia L.). Food Bioscience, v. 29, p. 73-80, 2019. DOI: https://doi.org/10.1016/j.fbio.2019.03.010.

YADAV, K.; BAJAJ, R. K.; MANDAL, S.; MANN, B. Encapsulation of grape seed extract phenolics using whey protein concentrate, maltodextrin and gum arabica blends. Journal of Food Science and Technology, v. 57, n. 2, p. 426-434, 2020. DOI: https://doi.org/10.1007/s13197-019-04070-4.


DOI: http://dx.doi.org/10.18265/2447-9187a2024id8259

O arquivo PDF selecionado deve ser carregado no navegador caso tenha instalado um plugin de leitura de arquivos PDF (por exemplo, uma versão atual do Adobe Acrobat Reader).

Como alternativa, pode-se baixar o arquivo PDF para o computador, de onde poderá abrí-lo com o leitor PDF de sua preferência. Para baixar o PDF, clique no link abaixo.

Caso deseje mais informações sobre como imprimir, salvar e trabalhar com PDFs, a Highwire Press oferece uma página de Perguntas Frequentes sobre PDFs bastante útil.

Visitas a este artigo: 34

Total de downloads do artigo: 29