Encapsulation of Japanese grape (Hovenia dulcis) pseudofruits by freeze drying: characterization and antioxidant potential

Autores

DOI:

https://doi.org/10.18265/2447-9187a2024id8259

Palavras-chave:

ABTS, DPPH, encapsulation techniques, particle size, phenolic compounds, α-amylase inhibition

Resumo

The pseudofruit of Hovenia dulcis is recognized as a source of bioactive compounds; however, like most fruits, it is highly susceptible to deterioration. Encapsulation techniques are used to protect and stabilize compounds while also minimizing changes in the properties of the supplemented product. This study analyzed freeze-dried pulp of H. dulcis pseudofruit (HD) and pseudofruit pulp microencapsulated by freeze-drying using whey protein concentrate and gum arabic as coating materials (En-HD). The samples (HD and En-HD) were characterized for their physicochemical properties, total phenolic compounds (TPC), antioxidant activity (ABTS and DPPH), α-amylase inhibition, particle size distribution, and scanning electron microscopy. Microencapsulation retained 95.8% of TPC after 75 days of storage at –80 ºC. En-HD showed higher antioxidant activity by the ABTS assay and greater inhibition of the α-amylase enzyme, demonstrating the protective effect of microencapsulation. This technique, with further testing, particularly in vivo, could be promising for managing blood sugar levels. En-HD exhibited a smaller particle size and 76% greater solubility than HD, likely due to the coating materials used in the microencapsulation process and the freeze-drying of the encapsulated sample made with previously freeze-dried HD. En-HD shows potential as a functional additive for use in food industry.

Downloads

Não há dados estatísticos.

Referências

AOAC – ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTRY. Official methods of analysis. 20. ed. Arlington: AOAC International, 2016.

CAI, W.; XU, S.; MA, T.; ZHANG, X.; LIU, B.; XU, F. Five novel triterpenoid saponins from Hovenia dulcis and their Nrf2 inhibitory activities. Arabian Journal of Chemistry, v. 14, n. 8, 103292, 2021. DOI: https://doi.org/10.1016/j.arabjc.2021.103292.

CAVALHEIRO, D.; MORANDIM, G. C.; SCHAEFER, S. V.; AMARAL, A. M. P.; BETTANIN, L.; SEHN, G. A. R. Hovenia dulcis T. extract and Glycyrrhiza glabra as natural antioxidants in Bologna-type mortadella. Revista Principia, v. 62, 2025. DOI: http://dx.doi.org/10.18265/2447-9187a2024id8195.

DAG, D.; KILERCIOGLU, M.; OZTOP, M. H. Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT – Food Science and Technology, v. 83, p. 86-94, 2017. DOI: https://doi.org/10.1016/j.lwt.2017.05.007.

EL-MESSERY, T. M.; EL-SAID, M. M.; SHAHEIN, N. M.; EL-DIN, H. M. F.; FARRAG, A. Functional yoghurt supplemented with extract orange peel encapsulated using coacervation technique. Pakistan Journal of Biological Sciences, v. 22, n. 5, p. 231-238, 2019. DOI: https://doi.org/10.3923/pjbs.2019.231.238.

FANG, Z.; BHANDARI, B. Encapsulation of polyphenols: a review. Trends in Food Science & Technology, v. 21, n. 10, p. 510-523, 2010. DOI: https://doi.org/10.1016/j.tifs.2010.08.003.

GONZÁLEZ-MUÑOZ, A.; QUESILLE-VILLALOBOS, A. M.; FUENTEALBA, C.; SHETTY, K.; RANILLA, L. G. Potential of Chilean native corn (Zea mays L.) accessions as natural sources of phenolic antioxidants and in vitro bioactivity for hyperglycemia and hypertension management. Journal of Agricultural and Food Chemistry, v. 61, n. 46, p. 10995-11007, 2013. DOI: https://doi.org/10.1021/jf403237p.

GRGIĆ, J.; ŠELO, G.; PLANINIĆ, M.; TIŠMA, M.; BUCIĆ-KOJIĆ, A. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants, v. 9, n. 10, 923, 2020. DOI: https://doi.org/10.3390/antiox9100923.

HINESTROZA-CÓRDOBA, L. I.; SERNA, S. D.; SEGUÍ, L.; BARRERA, C.; BETORET, N. Characterization of powdered lulo (Solanum quitoense) bagasse as a functional food ingredient. Foods, v. 9, n, 6, 723, 2020. DOI: https://doi.org/10.3390/foods9060723.

HUSSAIN, S. A.; HAMEED, A.; NAZIR, Y.; NAZ, T.; WU, Y.; SULERIA, H. A. R.; SONG, Y. Microencapsulation and the characterization of polyherbal formulation (PHF) rich in natural polyphenolic compounds. Nutrients, v. 10, n. 7, 843, 2018. DOI: https://doi.org/10.3390/nu10070843.

INDRAWATI, R.; SUKOWIJOYO, H.; INDRIATMOKO; WIJAYANTI, R. D. E.; LIMANTARA, L. Encapsulation of brown seaweed pigment by freeze drying: characterization and its stability during storage. Procedia Chemistry, v. 14, p. 353-360, 2015. DOI: https://doi.org/10.1016/j.proche.2015.03.048.

JAMBRAK, A. R.; MASON, T. J.; LELAS, V.; PANIWNYK, L.; HERCEG, Z. Effect of ultrasound treatment on particle size and molecular weight of whey proteins. Journal of Food Engineering, v. 121, p. 15-23, 2014. DOI: https://doi.org/10.1016/j.jfoodeng.2013.08.012.

KUCK, L. S.; NOREÑA, C. P. Z. Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chemistry, v. 194, p. 569-576, 2016. DOI: https://doi.org/10.1016/j.foodchem.2015.08.066.

LARRAURI, J. A.; RUPÉREZ, P.; SAURA-CALIXTO, F. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agricultural and Food Chemistry, v. 45, n. 4, p. 1390-1393, 1997. DOI: https://doi.org/10.1021/jf960282f.

LOURENÇO, S. C.; MOLDÃO-MARTINS, M.; ALVES, V. D. Microencapsulation of pineapple peel extract by spray drying using maltodextrin, inulin, and Arabic gum as wall matrices. Foods, v. 9, n. 6, 718, 2020. DOI: https://doi.org/10.3390/FOODS9060718.

MONTGOMERY, D. C.; RUNGER, G. C. Estatística aplicada e probabilidade para engenheiros. 7. ed. Barueri: LTC, 2021. 416 p. In Portuguese.

RAMÍREZ, M. J.; GIRALDO, G. I.; ORREGO, C. E. Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulates. Powder Technology, v. 277, p. 89-96, 2015. DOI: https://doi.org/10.1016/j.powtec.2015.02.060.

REZENDE, Y. R. R. S.; NOGUEIRA, J. P.; NARAIN, N. Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: chemical, morphological and chemometric characterization. Food Chemistry, v. 254, p. 281-291, 2018. DOI: https://doi.org/10.1016/j.foodchem.2018.02.026.

ROBERT, P.; GORENA, T.; ROMERO, N.; SEPULVEDA, E.; CHAVEZ, J.; SAENZ, C. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science and Technology, v. 45, n. 7, p. 1386-1394, 2010. DOI: https://doi.org/10.1111/j.1365-2621.2010.02270.x.

ROESLER, R.; MALTA, L. G.; CARRASCO, L. C.; HOLANDA, R. B.; SOUSA, C. A. S.; PASTORE, G. M. Atividade antioxidante de frutas do cerrado. Food Science and Technology, v. 27, n. 1, p. 53-60, 2007. DOI: https://doi.org/10.1590/S0101-20612007000100010. In Portuguese.

RUFINO, M. S. M.; ALVES, R. E.; BRITO, E. S.; MORAIS, S. M.; SAMPAIO, C. G.; PÉREZ-JIMÉNEZ, J.; SAURA-CALIXTO, F. D. Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Comunicado Técnico 127, Embrapa Agroindústria Tropical, Fortaleza, p. 1-4, jul. 2007a. Available at: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAT/10224/1/Cot_127.pdf. Accessed on: 9 Dec. 2023. In Portuguese.

RUFINO, M. S. M.; ALVES, R. E.; BRITO, E. S.; MORAIS, S. M.; SAMPAIO, C. G.; PÉREZ-JIMÉNEZ, J.; SAURA-CALIXTO, F. D. Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS+. Comunicado Técnico 128, Embrapa Agroindústria Tropical, Fortaleza, p. 1-4, jul. 2007b Available at: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAT/10225/1/Cot_128.pdf. Accessed on: 9 Dec. 2023. In Portuguese.

SÁNCHEZ-MADRIGAL, M. Á.; QUINTERO-RAMOS, A.; AMAYA-GUERRA, C. A.; MELÉNDEZ-PIZARRO, C. O.; CASTILLO-HERNÁNDEZ, S. L.; AGUILERA-GONZÁLEZ, C. J. Effect of agave fructans as carrier on the encapsulation of blue corn anthocyanins by spray drying. Foods, v. 8, n. 7, 268, 2019. DOI: https://doi.org/10.3390/foods8070268.

SANTOS, F. H.; SILVEIRA, B. M. P.; SOUZA, L. L.; DUARTE, A. K. C.; RIBEIRO, M. C.; PEREIRA, K. C.; COSTA, J. M. G. Influence of wall materials on the microencapsulation of pequi oil by spray drying. Brazilian Journal of Food Technology, v. 23, 2020. DOI: https://doi.org/10.1590/1981-6723.13219.

SCHAEFER, S. V.; AMARAL, A. M. P.; CHEROBIN, A. K.; MONTEIRO, L. K.; MORANDIN, G. C.; FISCHER, C.; CAVALHEIRO, D.; SEHN, G. A. R. Japanese grape (Hovenia dulcis) powder as an antioxidant agent in Bologna sausages. Journal of the Science of Food and Agriculture, v. 102, n. 14, p. 6255-6262, 2022. DOI: https://doi.org/10.1002/jsfa.11974.

SIMÕES, L. S.; MADALENA, D. A.; PINHEIRO, A. C.; TEIXEIRA, J. A.; VICENTE, A. A.; RAMOS, O. L. Micro- and nano bio-based delivery systems for food applications: in vitro behavior. Advances in Colloid and Interface Science, v. 243, p. 23-45, 2017. DOI: https://doi.org/10.1016/j.cis.2017.02.010.

WANG, L.; CLARDY, A.; HUI, D.; GAO, A.; WU. Y. Antioxidant and antidiabetic properties of Chinese and Indian bitter melons (Momordica charantia L.). Food Bioscience, v. 29, p. 73-80, 2019. DOI: https://doi.org/10.1016/j.fbio.2019.03.010.

YADAV, K.; BAJAJ, R. K.; MANDAL, S.; MANN, B. Encapsulation of grape seed extract phenolics using whey protein concentrate, maltodextrin, and gum arabica blends. Journal of Food Science and Technology, v. 57, n. 2, p. 426-434, 2020. DOI: https://doi.org/10.1007/s13197-019-04070-4.

Downloads

Publicado

2025-01-24

Como Citar

RIGO, E.; HANAUER, D. C.; KNAKIEWICZ, L.; SEHN, G. A. R.; CAVALHEIRO, D. Encapsulation of Japanese grape (Hovenia dulcis) pseudofruits by freeze drying: characterization and antioxidant potential. Revista Principia, [S. l.], v. 62, 2025. DOI: 10.18265/2447-9187a2024id8259. Disponível em: https://periodicos.ifpb.edu.br/index.php/principia/article/view/8259. Acesso em: 5 fev. 2025.

Edição

Seção

Ciências de Alimentos

Artigos mais lidos pelo mesmo(s) autor(es)