Técnicas de agrupamento aplicadas aos indicadores de Crescimento Verde da OCDE
DOI:
https://doi.org/10.18265/1517-0306a2022id7168Palavras-chave:
agrupamento, crescimento verde, mineração de dados, OCDE, sustentabilidadeResumo
A Organização para a Cooperação e Desenvolvimento Econômico (OCDE) publica anualmente dados sobre os indicadores de Crescimento Verde de todos os países. Em geral, essa base é discutida na literatura usando estatísticas descritivas, as quais fornecem uma visão geral sobre o desempenho sustentável dos países. No entanto, não há trabalhos que relatem a aplicação de técnicas de agrupamento associadas aos algoritmos de mineração de dados com o intuito de encontrar fatores que explicam as semelhanças e diferenças entre os países avaliados por esses indicadores. Por essa razão, este trabalho relata a aplicação de técnicas de agrupamento k-means e clusterização hierárquica para encontrar grupos de países com desempenhos semelhantes com relação aos indicadores sustentáveis e demográficos avaliados pela OCDE. Para essa aplicação, foram usados os dados do ano de 2019 considerando todos os países de forma individual, excluindo os dados sobre blocos econômicos. Após a limpeza e preparação dos dados, 153 países e 15 indicadores foram avaliados, resultando em 5 grupos de países. Alguns grupos apresentaram características dominantes entre os países nele incluídos. O cluster 3 foi o maior grupo, englobando 96 países subdesenvolvidos ou em desenvolvimento, com economia agroexportadora. O cluster 0 agrupou países com grande crescimento populacional, e o cluster 1 destacou países com altas taxas de mortalidade por exposição ao radônio. Por fim, o cluster 2 teve como destaque as variáveis demográficas referentes a idade e gênero, e o cluster 4 agrupou países com baixas taxas de exposição a poluição decorrente de materiais particulados.
Downloads
Referências
AGGARWAL, C. C. Data mining: the textbook. 1. ed. Cham: Springer International, 2015. 734 p. DOI: https://dx.doi.org/10.1007/978-3-319-14142-8.
AHLBORN, M.; SCHWEICKERT, R. Economic systems in developing countries: a macro cluster approach. Economic Systems, v. 43, n. 3-4, 100692, 2019. DOI: https://doi.org/10.1016/j.ecosys.2019.100692.
ARIAANS, M.; LINDEN, P.; WENDT, C. Worlds of long-term care: a typology of OECD countries. Health Policy, v. 125, n. 5, p. 609-617, 2021. DOI: https://doi.org/10.1016/j.healthpol.2021.02.009.
ARTHUR, C. Tech giants may be huge, but nothing matches big data. The Guardian, 23 ago. 2013. Disponível em: https://www.theguardian.com/technology/2013/aug/23/tech-giants-data. Acesso em: 29 out. 2022.
BHAGESHPUR, K. Data is the new oil -- and that’s a good thing. Forbes, 15 nov. 2019. Disponível em: https://www.forbes.com/sites/forbestechcouncil/2019/11/15/data-is-the-new-oil-and-thats-a-good-thing/. Acesso em: 29 out. 2022.
BRAMER, M. Principles of Data Mining. 3. ed. London: Springer-Verlag London, 2016. 526 p. ISBN 978-1-4471-7307-6. DOI: https://doi.org/10.1007/978-1-4471-7307-6.
BROWN, B. J.; HANSON, M. E.; LIVERMAN, D. M.; MERIDETH JUNIOR, R. W. Global sustainability: toward definition. Environmental Management, v. 11, n. 6, p. 713-719, 1987. DOI: https://doi.org/10.1007/BF01867238.
CAI, B.; LIU, H.; ZHANG, X.; PAN, H.; ZHAO, M.; ZHENG, T.; NIE, J.; DU, M.; DHAKAL, S. High-resolution accounting of urban emissions in China. Applied Energy, v. 325, 119896, 2022. DOI: https://doi.org/10.1016/j.apenergy.2022.119896.
CARB – CALIFORNIA AIR RESOURCES BOARD. Inhalable particulate matter and health (PM2.5 and PM10). [2022]. Disponível em: https://ww2.arb.ca.gov/resources/inhalable-particulate-matter-and-health. Acesso em: 27 mar. 2022.
DUARTE, J.; VIEIRA, L. W.; MARQUES, A. D.; SCHNEIDER, P. S.; PUMI, G.; PRASS, T. S. Increasing power plant efficiency with clustering methods and Variable Importance Index assessment. Energy and AI, v. 5, 100084, 2021. DOI: https://doi.org/10.1016/j.egyai.2021.100084.
EC – EUROPEAN COMMISSION. Joint Research Centre. European Atlas of Natural Radiation. Luxemburgo: Publications Office of the European Union, 2019. DOI: https://dx.doi.org/10.2760/46388.
EVA, M.; CEHAN, A.; CORODESCU-RO?CA, E.; BOURDIN, S. Spatial patterns of regional inequalities: empirical evidence from a large panel of countries. Applied Geography, v. 140, 102638, 2022. DOI: https://doi.org/10.1016/j.apgeog.2022.102638.
FAYYAD, U.; PIATETSKY-SHAPIRO, G.; SMYTH, P. From data mining to knowledge discovery in databases. AI Magazine, v. 17, n. 3, p. 37-53, 1996. DOI: https://doi.org/10.1609/aimag.v17i3.1230.
FERREIRA, J. M. Análise de pesquisas sobre o impacto das tecnologias modernas e as transformações no mundo do trabalho (2013 – 2020). Future Studies Research Journal: Trends and Strategies [FSRJ], v. 13, n. 3, p. 435-462, 2021. DOI: https://doi.org/10.24023/FutureJournal/2175-5825/2021.v13i3.593.
FUJII, H.; IWATA, K.; MANAGI, S. How do urban characteristics affect climate change mitigation policies? Journal of Cleaner Production, v. 168, p. 271-278, 2017. DOI: https://doi.org/10.1016/j.jclepro.2017.08.221.
GASKIN, J.; COYLE, D.; WHYTE, J.; KREWKSI, D. Global estimate of lung cancer mortality attributable to residential radon. Environmental Health Perspectives, v. 126, n. 5, 057009, 2018. DOI: https://doi.org/10.1289/EHP2503.
GOVENDER, P.; SIVAKUMAR, V. Application of k-means and hierarchical clustering techniques for analysis of air pollution: a review (1980-2019). Atmospheric Pollution Research, v. 11, n. 1, p. 40-56, 2020. DOI: https://doi.org/10.1016/j.apr.2019.09.009.
GRUS, J. K-means and hierarchical clustering with Python. Sebastopol: O’Reilly Media, 2016.
HAN, J.; KAMBER, M.; PEI, J. Data mining: concepts and techniques. 3. ed. Burlington, MA, EUA: Morgan Kaufmann Publishers, 2011. 703 p.
HASSE, J.-B.; LAJAUNIE, Q. Does the yield curve signal recessions? New evidence from an international panel data analysis. The Quarterly Review of Economics and Finance, v. 84, p. 9-22, 2022. DOI: https://doi.org/10.1016/j.qref.2022.01.001.
HERMAN, K. S.; SHENK, J. Pattern discovery for climate and environmental policy indicators. Environmental Science & Policy, v. 120, p. 89-98, 2021. DOI: https://doi.org/10.1016/j.envsci.2021.02.003.
IGUAL, L.; SEGUÍ, S. Introduction to data science: a Python approach to concepts, techniques and applications. Cham: Springer International Publishing, 2017. (Undergraduate Topics in Computer Science). DOI: https://doi.org/10.1007/978-3-319-50017-1.
IISD – INTERNATIONAL INSTITUTE FOR SUSTAINABLE DEVELOPMENT. Protocol regulating fine particulate matter enters into force. SDG Knowledge Hub, 15 out. 2019. Disponível em: https://sdg.iisd.org/news/air-pollution-protocol-regulating-fine-particulate-matter-enters-into-force/. Acesso em: 27 mar. 2022.
IOM – INTERNATIONAL ORGANIZATION FOR MIGRATION. Spotlight on labour migration in Asia: A factor analysis study. Geneva: IOM, 2021. Disponível em: https://impact.economist.com/perspectives/sites/default/files/spotlight_on_labour_migration_in_asia_7th_december_1.pdf. Acesso em: 7 nov. 2022.
JACOB, D.; KOTOVA, L.; TEICHMANN, C.; SOBOLOWSKI, S. P.; VAUTARD, R.; DONNELLY C.; KOUTROULIS, A. G.; GRILLAKIS, M. G.; TSANIS, I. K.; DAMM, A.; SAKALLI, A.; VAN VLIET, M. T. H. Climate impacts in Europe Under +1.5°C Global Warming. Earth’s Future, v. 6, n. 2, p. 264-285, 2018. DOI: https://doi.org/10.1002/2017EF000710.
JAMES, G.; WITTEN, D.; HASTIE, T.; TIBSHIRANI, R. An Introduction to Statistical Learning: with applications in R. 8. ed. New York: Springer, 2017. DOI: https://dx.doi.org/10.1007/978-1-4614-7138-7.
JIN, X.; HAN, J. K-means clustering. In: SAMMUT, C.; WEBB, G. I. (ed.). Encyclopedia of machine learning. 1. ed. Boston: Springer, 2011. p. 563-564. DOI: https://doi.org/10.1007/978-0-387-30164-8_425.
JUN, S.-P.; YOO, H. S.; LEE, J.-S. The impact of the pandemic declaration on public awareness and behavior: focusing on COVID-19 google searches. Technological Forecasting and Social Change, v. 166, 120592, 2021. DOI: https://doi.org/10.1016/j.techfore.2021.120592.
LALLOUÉ, B.; PADGET, M.; BROWNWOOD, I.; MINVIELLE, E.; KLAZINGA, N. Does size matter? The impact of caseload and expertise concentration on AMI 30-day mortality: a comparison across 10 OECD countries. Health Policy, v. 123, n. 5, p. 441-448, 2019. DOI: https://dx.doi.org/10.1016/j.healthpol.2019.03.007.
LAMB, W. F.; MINX, J. C. The political economy of national climate policy: architectures of constraint and a typology of countries. Energy Research & Social Science, v. 64, 101429, 2020. DOI: https://doi.org/10.1016/j.erss.2020.101429.
LAROSE, D. T.; LAROSE, C. D. Discovering knowledge in data: an introduction to Data Mining. 1. ed. Hoboken: Wiley, 2014. DOI: https://dx.doi.org/10.1002/9781118874059.
LINDEN, M.; RAY, D. Life expectancy effects of public and private health expenditures in OECD countries 1970–2012: panel time series approach. Economic Analysis and Policy, v. 56, p. 101-113, 2017. DOI: https://doi.org/10.1016/j.eap.2017.06.005.
LÓPEZ, L. A.; ARCE, G.; JIANG, X. Mapping China’s flows of emissions in the world’s carbon footprint: a network approach of production layers. Energy Economics, v. 87, 104739, 2020. DOI: https://doi.org/10.1016/j.eneco.2020.104739.
MACQUEEN, J. Some methods for classification and analysis of multivariate observations. In: BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND PROBABILITY, 5., Berkeley, 1967. Proceedings […]. Berkeley: University of California, 1967. v. 1, p. 281-297. Disponível em: https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Some-methods-for-classification-and-analysis-of-multivariate-observations/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992. Acesso em: 15 out. 2022.
MAHMOOD, N.; ZHAO, Y.; LOU, Q.; GENG, J. Role of environmental regulations and eco-innovation in energy structure transition for green growth: evidence from OECD. Technological Forecasting and Social Change, v. 183, 121890, 2022. DOI: https://doi.org/10.1016/j.techfore.2022.121890.
MANNUCCI, P. M.; FRANCHINI, M. Health effects of ambient air pollution in developing countries. International Journal of Environmental Research and Public Health, v. 14, n. 9, p. 1048, 2017. DOI: https://dx.doi.org/10.3390/ijerph14091048.
MARTI, L.; PUERTAS, R. Influence of environmental policies on waste treatment. Waste Management, v. 126, p. 191-200, 2021. DOI: https://doi.org/10.1016/j.wasman.2021.03.009.
MENNA, A.; WALSH, P. R. Assessing environments of commercialization of innovation for SMEs in the global wine industry: a market dynamics approach. Wine Economics and Policy, v. 8, n. 2, p. 191-202, 2019. DOI: https://doi.org/10.1016/j.wep.2019.10.001.
MNATSAKANIAN, R. Environmental disaster in Eastern Europe. Le Monde Diplomatique, jul. 2000. Disponível em: https://mondediplo.com/2000/07/19envidisaster. Acesso em: 24 mar. 2022.
OECD – THE ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT. OECD Green Growth Indicators. n. March, p. 68, 2018. Disponível em: https://stats.oecd.org/wbos/fileview2.aspx?IDFile=0eddc076-a4f9-4a2b-8e86-4190c8523b59. Acesso em: 30 dez. 2020.
O PAÍS que já foi o “menos desenvolvido” e hoje supera a China em crescimento. BBC News Brasil, 5 mar. 2020. Disponível em: https://www.bbc.com/portuguese/geral-51614697. Acesso em: 24 mar. 2022.
PARKER, S.; LIDDLE, B. Analysing energy productivity dynamics in the OECD manufacturing sector. Energy Economics, v. 67, p. 91-97, 2017a. DOI: https://doi.org/10.1016/j.eneco.2017.07.016.
PARKER, S.; LIDDLE, B. Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries. Energy Economics, v. 62, p. 338-346, 2017b. DOI: https://doi.org/10.1016/j.eneco.2016.07.018.
PROKSCH, D; BUSCH-CASLER, J.; HABERSTROH, M. M.; PINKWART, A. National health innovation systems: clustering the OECD countries by innovative output in healthcare using a multi-indicator approach. Research Policy, v. 48, n. 1, p. 169-179, 2019. DOI: https://doi.org/10.1016/j.respol.2018.08.004.
RADU, C. F.; FENI?ER, C.; SCHEBESCH, K. B.; FENI?ER, F.; DOBREA, F. M. Study of the tax wedge in EU and other OECD Countries, using cluster analysis. Procedia - Social and Behavioral Sciences, v. 238, p. 687-696, 2018. DOI: https://doi.org/10.1016/j.sbspro.2018.04.051.
RASCHKA, S. Python machine learning. 1. ed. Birmingham: Packt Publishing, 2015. ISBN: 978-1-78355-513-0.
REIBLING, N.; ARIAANS, M.; WENDT, C. Worlds of healthcare: a healthcare system typology of OECD countries. Health Policy, v. 123, n. 7, p. 611-620, 2019. DOI: https://doi.org/10.1016/j.healthpol.2019.05.001.
RUGGERI, G.; CORSI, S. An analysis of the Fairtrade cane sugar small producer organizations network. Journal of Cleaner Production, v. 240, 118191, 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.118191.
SOKHI, R. S.; SINGH, V.; QUEROL, X.; FINARDI, S.; TARGINO, A. C.; ANDRADE, M. F. et al. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environment International, v. 157, 106818, 2021. DOI: https://doi.org/10.1016/j.envint.2021.106818.
SREEDHAR, C.; KASIVISWANATH, N.; REDDY, P. C. Clustering large datasets using K-means modified inter and intra clustering (KM-I2C) in Hadoop. Journal of Big Data, v. 4, n. 27, 2017. DOI: https://doi.org/10.1186/s40537-017-0087-2.
VETTORETTI, M.; DI CAMILLO, B. A variable ranking method for machine learning models with correlated features: in-silico validation and application for diabetes prediction. Applied Sciences (Switzerland), v. 11, n. 16, 7740, 2021. DOI: https://doi.org/10.3390/app11167740.
VICEDO-CABRERA, A. M.; SERA, F.; LIU, C.; ARMSTRONG, B.; MILOJEVIC, A.; GUO, Y. et al. Short term association between ozone and mortality: global two stage time series study in 406 locations in 20 countries. The BMJ, v. 368, m108, 2020. DOI: https://doi.org/10.1136/bmj.m108.
WANG, L.; WANG, S.; YUAN Z.; PENG, L. Analyzing potential tourist behavior using PCA and modified affinity propagation clustering based on Baidu index: taking Beijing city as an example. Data Science and Management, v. 2, p. 12-19, 2021. DOI: https://doi.org/10.1016/j.dsm.2021.05.001.
WHO – WORLD HEALTH ORGANIZATION. Radon and health. 2021. Disponível em: https://www.who.int/news-room/fact-sheets/detail/radon-and-health. Acesso em: 24 mar. 2022.
YAN, Z.; DU, K.; YANG, Z.; DENG, M. Convergence or divergence? Understanding the global development trend of low-carbon technologies. Energy Policy, v. 109, p. 499-509, 2017. DOI: https://doi.org/10.1016/j.enpol.2017.07.024.
ZENGIN, K.; ESGI, N.; ERGINER, E.; AKSOY, M. E. A sample study on applying data mining research techniques in educational science: developing a more meaning of data. Procedia - Social and Behavioral Sciences, v. 15, p. 4028-4032, 2011. DOI: https://doi.org/10.1016/j.sbspro.2011.04.408.
ZHANG, J. Z.; SRIVASTASA, P. R.; SHARMA, D.; EACHEMPATI, P. Big data analytics and machine learning: a retrospective overview and bibliometric analysis. Expert Systems with Applications, v. 184, 115561, 2021. DOI: https://doi.org/10.1016/j.eswa.2021.115561.
ZHU, J.; HUA, W. Visualizing the knowledge domain of sustainable development research between 1987 and 2015: a bibliometric analysis. Scientometrics, v. 110, n. 2, p. 893-914, 2017. DOI: https://doi.org/10.1007/s11192-016-2187-8.
ZWEIG, D.; TSAI, K. S.; SINGH, A. D. Reverse entrepreneurial migration in China and India: the role of the state. World Development, v. 138, 105192, 2021. DOI: https://doi.org/10.1016/j.worlddev.2020.105192.
Downloads
Publicado
Edição
Seção
Licença
• O(s) autor(es) autoriza(m) a publicação do artigo na revista;
• O(s) autor(es) garante(m) que a contribuição é original e inédita e que não está em processo de avaliação em outra(s) revista(s), nem esteja publicado em anais de congressos e/ou portais institucionais;
• A revista não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es). Opiniões e perspectivas expressas no texto, assim como a precisão e a procedência das citações, são de responsabilidade exclusiva do(s) autor(es), e contribuem para a promoção dos:
- Princípios FAIR (Findable, Accessible, Interoperable, and Reusable – localizável, acessível, interoperável e reutilizável);
- Princípios DEIA (diversidade, equidade, inclusão e acessibilidade).
• É reservado aos editores o direito de proceder ajustes textuais e de adequação do artigos às normas da publicação.
Responsabilidades dos autores e transferência de direitos autorais
Os autores devem declarar a originalidade do estudo, bem como o fato de que este não foi publicado anteriormente ou está sendo considerado para publicação em outro meio, como periódicos, anais de eventos ou livros. Ao autorizarem a publicação do artigo na Revista Principia, os autores devem também responsabilizar-se pelo conteúdo do manuscrito, cujos direitos autorais, em caso de aprovação, passarão a ser propriedade exclusiva da revista. A Declaração de Responsabilidades dos Autores e Transferência de Direitos Autorais deverá ser assinada por todos os autores e anexada ao sistema como documento suplementar durante o processo de submissão. Clique no link abaixo para fazer o download do modelo.
Esta revista, seguindo as recomendações do movimento de Acesso Aberto, proporciona seu conteúdo em Full Open Access. Assim os autores conservam todos seus direitos permitindo que a Revista Principia possa publicar seus artigos e disponibilizar pra toda a comunidade.
A Revista Principia adota a licença Creative Commons 4.0 do tipo atribuição (CC-BY). Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, inclusive para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
Os autores estão autorizados a enviar a versão do artigo publicado nesta revista em repositório institucionais, com reconhecimento de autoria e publicação inicial na Revista Principia.