- Submissão
- Submissão online
- Diretrizes para Autores
- Declaração de Direito Autoral
- Política de Privacidade
- Sobre este sistema de publicação
- Sobre
- Foco e Escopo
- Equipe Editorial
- História da Revista Principia
- Normas de homogeneidade
- Comitê de ética
- Política de ética para autores, Conselho Editorial e avaliadores
- Política de retirada de artigos
- Perguntas e respostas frequentes
- Equipe de apoio da Revista Principia
- Conflito de interesses
- Plano de Desenvolvimento Editorial da Revista Principia
- Princípios DEIA (Diversidade, Equidade, Inclusão e Acessibilidade)
- Normas para números especiais na Revista Principia
- Princípios FAIR
- Curso de Escrita Científica - ACS - Prof. Osvaldo
- Sites e manuais sobre boas práticas científicas
Evaluation of the energy performance of refrigeration systems using nanofluids: a systematic and critical review
Resumo
In recent years, nanotechnology has emerged in the development of nanofluids. Research aimed at applying the nanorefrigerants and nanolubricants in vapor compression refrigeration systems is arousing much interest in the scientific community. This is thanks to the effect of the nanoparticles (NPs) in the thermodynamic properties of the base fluid, providing an improvement in the thermal exchanges of the system. In this context, the present work aims to carry out a systematic literature review, addressing the energetic influence of the applications of nanofluids in vapor compression refrigeration systems, highlighting parameters that can directly affect the performance of the system, such as compressor energy consumption, cooling capacity, and the coefficient of performance of the system (COP). In order to cover the most relevant works on this subject, the ordination method was used as a methodology for the selection and classification of the bibliographic database. It is possible to affirm that the use of NPs in refrigeration systems reduces the system's energy consumption, providing an increase in its energy performance. Furthermore, it was possible to verify that the use of nanofluids increases the cooling capacity in refrigeration systems by vapor compression, making them potential candidates for replacing conventional lubricants and refrigerants.
Palavras-chave
energy efficiency; energy performance; nanolubricants; nanorefrigerants; refrigeration system
Texto completo:
Referências
ADELEKAN, D. S.; OHUNAKIN, O. S.; GILL, J.; ATAYERO, A. A.; DIARRA, C. D.; ASUZU, E. A. Experimental performance of a safe charge of LPG refrigerant enhanced with varying concentrations of TiO2 nano-lubricant in a domestic refrigerator. Journal of Thermal Analysis and Calorimetry, v. 136, n. 6, p. 2439-2448, 2019a. DOI: https://doi.org/10.1007/s10973-018-7879-2.
ADELEKAN, D. S.; OHUNAKIN, O. S.; GILL, J.; ATIBA, O. E.; OKOKPUJIE, I. P.; ATAYERO, A. A. Experimental investigation of a vapour compression refrigeration system with 15nm TiO2-R600a nano-refrigerant as the working fluid. Procedia Manufacturing, v. 35, p. 1222-1227, 2019b. DOI: https://doi.org/10.1016/j.promfg.2019.06.079.
BABARINDE, T. O.; AKINLABI, S. A.; MADYIRA, D. M.; EKUNDAYO, F. M. Enhancing the energy efficiency of vapour compression refrigerator system using R600a with graphene nanolubricant. Energy Reports, v. 6, suppl. 2, p. 1-10, 2020. DOI: https://doi.org/10.1016/j.egyr.2019.11.031.
BABU, J. A. R.; KUMAR, K. K.; RAO, S. S. State-of-art review on hybrid nanofluids. Renewable and Sustainable Energy Reviews, v. 77, p. 551-565, 2017. DOI: https://doi.org/10.1016/j.rser.2017.04.040.
BRASIL. Ministerio de Minas e Energia. Boletim mensal de monitoramento do Sistema Elétrico Brasileiro: Fevereiro/2021. Brasília, DF: Ministério de Minas e Energia, 2021. Available at: https://www.gov.br/mme/pt-br/assuntos/secretarias/energia-eletrica/publicacoes/boletim-de-monitoramento-do-sistema-eletrico/2021/02-boletim-de-monitoramento-do-sistema-eletrico-fev-2021.pdf. Accessed on: 19 may 2021. In Portuguese.
CARDOSO, R. B. Impactos da lei de eficiência energética 10.295/2001, em equipamentos elétricos e a gás. Research, Society and Development, v. 4, n. 2, p. 116-124, 2017. DOI: https://doi.org/10.17648/rsd-v4i2.73. In Portuguese.
CHOI, S. U. S; EASTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. Argonne: Argonne National Lab, 1995. Available at: https://www.osti.gov/biblio/196525. Accessed on: 24 may 2021.
FONSECA, L. F. S.; SILVA JÚNIOR, J. M.; FARIAS NETO, J. R.; ABRAHÃO, R.; CARVALHO, M. Vulnerabilidade das regiões semiáridas às mudanças climáticas: impactos na produção de energia fotovoltaica. Research, Society and Development, v. 10, n. 3, e4010312931, 2021. DOI: http://dx.doi.org/10.33448/rsd-v10i3.12931. In Portuguese.
HARICHANDRAN, R.; PAULRAJ, P.; RAJA, S. M. P.; RAMAN, J. K. Effect of h-BN solid nanolubricant on the performance of R134a–polyolester oil-based vapour compression refrigeration system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 41, n. 3, 140, 2019. DOI: https://doi.org/10.1007/s40430-019-1645-7.
JATINDER, G; OHUNAKIN, O. S.; ADELEKAN, D. S.; ATIBA, O. E.; DANIEL, A. B.; SINGH, J.; ATAYERO, A. A. Performance of a domestic refrigerator using selected hydrocarbon working fluids and TiO2–MO nanolubricant. Applied Thermal Engineering, v. 160, 114004, 2019. DOI: https://doi.org/10.1016/j.applthermaleng.2019.114004.
KRISHNAN, R. S.; ARULPRAKASAJOTHI, M.; LOGESH, K.; RAJA, N. D.; RAJENDRA, M. Analysis and feasibilty of nano-lubricant in vapour compression refrigeration system. Materials Today: Proceedings, v. 5, n. 9, part 3, p. 20580-20587, 2018. DOI: https://doi.org/10.1016/j.matpr.2018.06.437.
KUMAR, R.; SINGH, J. Effect of ZnO nanoparticles in R290/R600a (50/50) based vapour compression refrigeration system added via lubricant oil on compressor suction and discharge characteristics. Heat and Mass Transfer, v. 53, n. 5, p. 1579-1587, 2017. DOI: https://doi.org/10.1007/s00231-016-1921-3.
LEE, K.; HWANG, Y.; CHEONG, S.; KWON, L.; KIM, S.; LEE, J. Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil. Current Applied Physics, v. 9, n. 2 suppl., p. e128-e131, 2009. DOI: https://doi.org/10.1016/j.cap.2008.12.054.
MANIKANDEN, V. S.; AVINASH, A. An experimental insight into the effects of silver-doped cupric oxide nanoparticles on the performance of hydrocarbon refrigeration system. SN Applied Sciences, v. 1, n. 11, 1462, 2019. DOI: https://doi.org/10.1007/s42452-019-1528-7.
MARQUES, A. S.; CARVALHO, M.; OCHOA, A. A. V.; SOUZA, R. J.; SANTOS, C. A. C. Exergoeconomic assessment of a compact electricity-cooling cogeneration unit. Energies, v. 13, n. 20, 5417, 2020. DOI: https://doi.org/10.3390/en13205417.
MOHAN, K.; SUNDARARAJ, S.; KANNAN, K. G.; KANNAN, A. Experimental analysis on refrigeration system using CNT, gold & HAUCL4 nano fluids. Materials Today: Proceedings, v. 33, part 1, p. 360-366, 2020. DOI: https://doi.org/10.1016/j.matpr.2020.04.156.
NAIR, V.; PAREKH, A. D.; TAILOR, P. R. Experimental investigation of a vapour compression refrigeration system using R134a/nano-oil mixture. International Journal of Refrigeration, v. 112, p. 21-36, 2020. DOI: https://doi.org/10.1016/j.ijrefrig.2019.12.009.
OLIVEIRA, A. M.; GONÇALVES, L. M.; MESQUITA, A. Z.; BANDARRA FILHO, E. P.; FERREIRA, A. G. Desempenho termo-hidráulico de nanofluidos compostos por nanotubos de carbono de paredes múltiplas funcionalizados (MWCNT-OH/água). Research, Society and Development, v. 10, n. 3, e5910313031, 2021. DOI: http://dx.doi.org/10.33448/rsd-v10i3.13031. In Portuguese.
PAGANI, R. N.; KOVALESKI, J. L.; RESENDE, L. M. Methodi ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics, v. 105, n. 3, p. 2109-2135, 2015. DOI: https://doi.org/10.1007/s11192-015-1744-x.
SENTHILKUMAR, A.; ANDERSON, A.; PRAVEEN, R. Prospective of nanolubricants and nano refrigerants on energy saving in vapour compression refrigeration system: a review. Materials Today: Proceedings, v. 33, part 1, p. 886-889, 2020. DOI: https://doi.org/10.1016/j.matpr.2020.06.416.
SENTHILKUMAR, A.; SAHALUDDEEN, P. A. M.; NOUSHAD, M. N.; MUSTHAFA, E. K M. Experimental investigation of ZnO / Sio2 hybrid nano-lubricant in R600a vapour compression refrigeration system. Materials Today: Proceedings, v. 45, part 7, p. 6087-6093, 2021. DOI: https://doi.org/10.1016/j.matpr.2020.10.180.
SHARIF, M. Z.; AZMI, W. H.; MAMAT, R.; SHAIFUL, A. I. M. Mechanism for improvement in refrigeration system performance by using nanorefrigerants and nanolubricants: a review. International Communications in Heat and Mass Transfer, v. 92, p. 56-63, 2018. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2018.02.012.
SOLIMAN, A. M. A.; RAHMAN, A. K. A.; OOKAWARA, S. Enhancement of vapor compression cycle performance using nanofluids: experimental results. Journal of Thermal Analysis and Calorimetry, v. 135, n. 2, p. 1507-1520, 2019. DOI: https://doi.org/10.1007/s10973-018-7623-y.
SOUZA, R. J.; SANTOS, C. A. C.; OCHOA, A. A. V.; MARQUES, A. S.; M. NETO, J. L.; MICHIMA, P. S. A. Proposal and 3E (energy, exergy, and exergoeconomic) assessment of a cogeneration system using an organic Rankine cycle and an absorption refrigeration system in the Northeast Brazil: thermodynamic investigation of a facility case study. Energy Conversion and Management, v. 217, 113002, 2020. DOI: https://doi.org/10.1016/j.enconman.2020.113002.
YANG, S.; CUI, X.; ZHOU, Y.; CHEN, C. Study on the effect of graphene nanosheets refrigerant oil on domestic refrigerator performance. International Journal of Refrigeration, v. 110, p. 187-195, 2020. DOI: https://doi.org/10.1016/j.ijrefrig.2019.11.008.
Visitas a este artigo: 1157
Total de downloads do artigo: 611