Alumina-NbC composites fabricated by spark plasma sintering

Wilson Henrique Acchar

ORCID iD Universidade Federal do Rio Grande do Norte (UFRN) Brasil

Paulo Henrique Chibério

ORCID iD Universidade Federal do Rio Grande do Norte (UFRN) Brasil

Marcello Filgueira

ORCID iD Universidade Estadual do Norte Fluminense (UENF) Brasil

Resumo

The incorporation of niobium carbide in alumina-based composites has been shown to improve the properties of composite material. The main disadvantage to get a dense composite material is the necessary high sintering temperature. The spark plasma sintering (SPS) process uses a high heating and cooling speed and lower sintering temperature, making this sintering process a suitable method to produce an alumina-NbC composite material at lower temperatures. The sintering behavior of alumina-NbC composites fabricated by spark plasma sintering (SPS) was investigated at 1350, 1400, and 1450 ˚C. X-ray diffraction patterns of sintered bodies revealed only the presence of alumina and NbC crystalline phases. No oxidation products or new crystalline phases were presented after the sintering process. SPS process has produced dense alumina-NbC samples comparable to other alumina-hard particle systems. Microstructural observation revealed inhibition of alumina grain growth in regions near NbC particles. Fracture surfaces showed a mixture of intergranular and transgranular fracture mode.

Palavras-chave


Alumina; Niobium carbide; Spark plasma sintering


Texto completo:

Referências


ACCHAR W.; CAIRO C. A. A.; CHIBERIO, P. Nano-structured alumina reinforced with NbC. Composite Structures, v. 225, n. 111109, 2019.

ACCHAR, W. et al. Effect of Y2O3 on the densification and mechanical properties of alumina-niobium carbide composites. Ceramics International, v. 27, n. 2, p. 225-230, 2001.

ACCHAR W.; SEGADAES, A. M. Properties of sintered alumina reinforced with niobium carbide. International Journal of Refractory Metals and Hard Materials, v. 27, n. 2, p. 427-430, 2009.

ACCHAR, W.; SILVA, Y.B.F.; CAIRO, C. A. Mechanical properties of hot-pressed ZrO2 reinforced with (W, Ti)C and Al2O3 additions. Materials Science and Engineering: A, v. 527, n. 3, p. 480-484, 2010.

ACCHAR, W.; WOLFF, D.M.B. Ceramic composites derived from poly[phenylsilsesquioxane]/Al2O3/Nb. Materials Science and Engineering: A, v. 396, n. 1-2, p. 251-254, 2005.

ALECRIM L. R. R. et al. Effect of reinforcement NbC phase on the mechanical properties of Al2O3-NbC nanocomposites by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, v. 64, p. 255-260, 2017.

BENAVENTE, R. et al. Mechanical properties and microstructural evolution of alumina-zirconia nanocomposite by microwave sintering. Ceramics International, v. 40, n. 7, part B, p. 11291-11297, 2014.

BORRELL, A. et al. Microstructural design for mechanical and electrical properties of spark plasma sintered Al2O3-SiC nanocomposites. Materials Science and Engineering: A. v. 534, p. 693-698, 2012.

BROOK, R. J.; MACKENZIE, R. A. D. Nanocomposite materials. Composite Materials, v. 14, p. 27-30, 1993.

CASTRO, R.; BENTHEM, K. Sintering: mechanism of convention, nano-densification, assisted processes. New York: Springer, 2013.

CHEN, W.-H. et al. Microstructure and wear behavior of spark plasma sintering sintered Al2O3/WC-based composite. International Journal of Refractory Metals and Hard Materials, v. 54, p. 279-283, 2016.

CHEN, W.-H. et al. Sintering behavior and mechanical properties of WC-Al2O3 composites prepared by spark plasma sintering (SPS). International Journal of Refractory Metals and Hard Materials, v. 48, p. 414-417, 2015.

DEMUYNCK, M. et al. Densification of alumina by SPS and HP: a comparative study. Journal of the European Ceramic Society, v. 32, n. 9, p. 1957-1964, 2012.

DORRE, E.; HUBNER, H. Alumina: processing, properties, and Applications. Heidelberg: Springer-Verlag, 1984.

GITZEN, W. H. Alumina as a ceramic material. Wiley, 1970.

GORYNSKI, G.; ANSELMI-TAMBURINI, U.; WINTERER, M. Controlling current flow in sintering: A facile method coupling flash with spark plasma sintering. Review of Scientific Instruments, v. 91, n. 1, 015112, 2020.

GUSTAFSSON, S. et al. Presureless sintered Al2O3-SiC nanocomposites. Ceramics International, v. 34, n. 7, p. 1609-1615, 2008.

HUANG, S. et al. Pulsed electric current sintering and characterization of ultrafine Al2O3-WC composites. Materials Science and Engineering: A, v. 527, v. 3, p. 584-589, 2010.

HUSSAINOVA, I. et al. Densification and characterization of spark plasma sintered ZrC-ZrO2 composites. Materials Science and Engineering: A, v. 597, p. 75-81, 2014.

KUMAR, R. et al. Synthesis and characterization of Al2O3-TiC nano-composite by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, v. 54, p. 304-308, 2016.

LIU, L. et al. A new heating route of spark plasma sintering and its effect on alumina ceramic densification. Materials Science and Engineering: A. v. 559, p. 462-466, 2013.

MUNIR, Z. A.; ANSELMI-TAMBURINI, U.; OHYANAGI, M. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. Journal of Materials Science, v. 41, p. 763-777, 2006.

NAYAK P. K. et al. Microstructure analysis and mechanical properties of a new class of Al2O3/WC nanocomposites fabricated by spark plasma sintering. Journal of the European Cermaic Society, v. 33, n. 15-16, p. 3095-3100, 2013.

PALLONE, E. M. J. A. et al. Synthesis of Al2O3-NbC by reactive milling and production of nanocomposites. Journal of Materials Processing Technology, v. 143-144, p. 185-190, 2003.

QUINA, F. H. Nanotecnologia e o meio ambiente: perspectivas e riscos. Química Nova, v. 27, n. 6, p. 1028-1029, 2004.

SCHMITT-RADLOFF, U.; KERN, F.; GADOW, R. Spark plasma sintering and hot pressing of ZTA-NbC materials: a comparison of mechanical and electrical properties. Journal of the European Ceramic Society, v. 38, n. 11, p. 4003-4013, 2018.

SAEIDABADI, E. K.; SALAHI, E.; EBADZADEH, T. Preparation mullite/Si3N4 composites by reaction spark plasma sintering and their characterization. Ceramics International, v. 45, n. 5, p. 5367-5383, 2019.

SALEM, R. E. P. et al. Effect of Al2O3-NbC nanopowder incorporation on the mechanical properties of 3Y-TZP/Al2O3-NbC nanocomposites obtained by conventional and spark plasma sintering. Ceramics International, v. 44, n. 2, p. 2504-2509, 2018.

SCHUBERT, V. A; LEWIS, S. P. Size-dependence of infrared spectra in niobium carbide nanocrystals. International Journal of Modern Physics C, v. 23, n. 8, 1240001, 2012.

TROMBINI, V. et al. Sintering study of Al2O3-NbC-WC micro-nanocomposite. Materials Science Forum, v. 727-728, p. 597-602, 2012.

U. S. GEOLOGICAL SURVEY. Mineral commodity sumaries 2018. Reston: U. S. Geological Survey, 2018.

XIA, X. et al. Transitional/eutectic microstructure of Al2O3-ZrO2 (Y2O3) ceramics prepared by spark plasma sintering. Materials Letters, v. 175, p. 212-214, 2016.

ZHAO, D. et al. Densification and microstructural evolution of bulk Al2O3-Y3Al5O12 (YAG) eutectic ceramic fabricated by spark plasma sintering. Ceramics International, v. 45, n. 9, p. 12337-12343, 2019.


DOI: http://dx.doi.org/10.18265/1517-0306a2021id4685

O arquivo PDF selecionado deve ser carregado no navegador caso tenha instalado um plugin de leitura de arquivos PDF (por exemplo, uma versão atual do Adobe Acrobat Reader).

Como alternativa, pode-se baixar o arquivo PDF para o computador, de onde poderá abrí-lo com o leitor PDF de sua preferência. Para baixar o PDF, clique no link abaixo.

Caso deseje mais informações sobre como imprimir, salvar e trabalhar com PDFs, a Highwire Press oferece uma página de Perguntas Frequentes sobre PDFs bastante útil.

Visitas a este artigo: 287

Total de downloads do artigo: 146