Cradle-to-gate life cycle assessment of self-compacting concrete incorporating alternative materials: a case study
DOI:
https://doi.org/10.18265/1517-03062015v1n48p70-84Palavras-chave:
Self-compacting-concrete (SCC), Life cycle assessment (LCA), Wastes, Alternative materials (AM), Environmental impactResumo
Many studies have described the successful incorporation of wastes and industrial byproducts, here called alternative materials (AMs), into self-compacting-concrete (SCC) mixtures from a technical point of view. Such studies usually considered a universal truth that incorporating these materials into the concrete matrix helps improve their eco-efficiency. Therefore, the objective of this study is to associate SCC production that incorporates AM with the life cycle assessment (LCA) methodology to compare mixtures in a specific United States scenario. SimaPro software, the IMPACT 2002+ impact assessment method, the Ecoinvent database and a 1 m3 functional unit with the cradle-to-gate system boundary were used. An analysis of total impact, global warming, impact intensity and most impactful processes was performed. According to the criteria analyzed, the mixtures with the best environmental gains are characterized by the partial or total replacement of cement by AMs classified as supplementary cementing materials (SCMs). Other cases did not yield significant environmental gains, such as the use of concrete and glass waste as aggregates, serving only as an alternative to their final disposal. In addition, when there was excessive energy consumption for waste recycling, such as for rubber and polyethylene terephthalate (PET) recycling, the environmental efficiency of the SCC deteriorated.
Downloads
Referências
ALI, E.E.; AL-TERSAWY, S.H. Recycled glass as a partial replacement for fine aggregate in self compacting concrete. Constr. Build. Mater., v. 35, p. 785–791, 2012.
ANDELA, Products glass pulverizer GPT-1. 2016. Available at: http://www.andelaproducts.com/ equipment/glass-pulverizers/gpt-1/index.html. Accessed 22 March 2016.
BJÖRKLUND, A.E.; FINNVEDEN, G. Life cycle assessment of a national policy proposal – the case of a Swedish waste incineration tax. Waste Manag., v. 27, p. 1046–1058, 2007.
BROUWERS, H.J.H.; RADIX, H.J. Self-compacting concrete: theoretical and experimental study. Cem. Concr. Res., v. 35, p. 2116–2136, 2005.
BUYLE, M.; BRAET, J.; AUDENAERT, A. Life cycle assessment in the construction sector: a review. Renew. Sustain. Energy Rev., v. 26, p. 379–388, 2013.
CALMON, J.L. et al. Self-compacting concrete using marble and granite sawing wastes as filler, in: World Sustainable Building Conference (SB05Tokyo), Tokyo, p. 4146–4153, 2005.
CELIK, K. et al. Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder, Cem. Concr. Compos., v. 56, p. 59–72, 2015.
CHEN, C. et al. LCA allocation procedure used as an incitative method for waste recycling: an application to mineral additions in concrete. Resour. Conserv. Recycl., v. 54, p. 1231–1240, 2010.
CLEARY, J. The incorporation of waste prevention activities into life cycle assessments of municipal solid waste management systems: methodological issues. Int. J. Life Cycle Assess., v. 15, p. 579–589, 2010.
CORTI, A.; LOMBARDI, L. End life tyres: alternative final disposal processes compared by LCA. Energy, v. 29, p. 2089–2108, 2004.
ECOINVENT, The world's most consistent & transparent life cycle inventory database. 2015 Available at: http://www.ecoinvent.org/home.html. Accessed 13 June 2015.
FEIZ, R. et al. Improving the CO2 performance of cement, part I: utilizing life-cycle assessment and key performance indicators to assess development within the cement industry. J. Clean. Prod., v. 98, p. 272–281, 2015.
FERALDI, R. et al. Comparative LCA of treatment options for US scrap tires: material recycling and tire-derived fuel combustion. Int. J. Life Cycle Assess., v. 18, p. 613–625, 2013.
GENTIL, E.C. et al. Models for waste life cycle assessment: review of technical assumptions. Waste Manag., v. 30, p. 2636–2648, 2010.
GENTIL, E.C.; GALLO, D.; CHRISTENSEN, T.H. Environmental evaluation of municipal waste prevention. Waste Manag., v. 31, p. 2371–2379, 2011.
GESOGLU, M. et al. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete. J. Hazard. Mater., v. 235-236, p. 352–358, 2012.
GHERNOUTI, Y. et al. Fresh and hardened properties of self-compacting concrete containing plastic bag waste fibers (WFSCC). Constr. Build. Mater., v. 82, p. 89–100, 2015.
GRDIC, Z.J. et al. Properties of self-compacting concrete prepared with coarse recycled concrete aggregate. Constr. Build. Mater., v. 24, p. 1129–1133, 2010.
HABERT, G.; LACAILLERIE, J.B.E.; ROUSSEL, N. An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J. Clean. Prod., v. 19, p. 1229–1238, 2011.
HEATH, A.; PAINE, K.; MCMANUS, M. Minimising the global warming potential of clay based geopolymers. J. Clean. Prod., v. 7, p. 75–83, 2014.
INGRAO, C. et al. The use of basalt aggregates in the production of concrete for the prefabrication industry: environmental impact assessment, interpretation and improvement. J. Clean. Prod., v. 75, p. 195–204, 2014.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 13.315-1: Environmental Management for Concrete and Concrete Structures – Part 1: General Principles. ISO, 2012.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 13.315-2: Environmental Management for Concrete and Concrete structures – Part 2: System Boundary and Inventory Data. ISO, 2014.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 14.040: Environmental Management - Life Cycle Assessment - Principles and Frameworks. ISO, 2006.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 14.044: Environmental Management - Life Cycle Assessment - Requirements and Guidelines. ISO, 2006.
ISMAIL, M.K.; HASSAN, A.A.A. Use of metakaolin on enhancing the mechanical properties of self-consolidating concrete containing high percentages of crumb rubber. J. Clean. Prod., v. 125, p. 282–295, 2016.
JOLLIET, O. et al. IMPACT 2002+: a new life cycle impact assessment methodology. Int. J. Life Cycle Assess., v. 8, p. 324–330, 2003.
KOU, S.C.; POON, C.S. Properties of self-compacting concrete prepared with recycled glass aggregate. Cem. Concr. Compos., v. 31, p. 107–113, 2009.
LANER, D.; RECHBERGER, H. Quantitative evaluation of waste prevention on the level of small and medium sized enterprises (SMEs). Waste Manag., v. 29, p. 606–613, 2009.
LIU, M. Incorporating ground glass in self-compacting concrete. Constr. Build. Mater., v. 25, p. 919–925, 2011.
LIU, R.-X.; POON, C.-S. Utilization of red mud derived from bauxite in self-compacting concrete, J. Clean. Prod., v. 112, p. 384–391, 2016.
MARINKOVI?, S. et al. Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag., v. 30, p. 2255–2264, 2010.
MILLER, S.A.; HORVATH, A.; MONTEIRO, P.J.M. Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%. Environ. Res. Lett., v. 11, 2016.
NGUYEN, H.-A. et al. Engineering properties and durability of high-strength self-compacting concrete with no-cement SFC binder. Constr. Build. Mater., v. 106, p. 670–677, 2016.
PEREIRA-DE-OLIVEIRA, L.A. et al. Permeability properties of self-compacting concrete with coarse recycled aggregates. Constr. Build. Mater., v. 51, p. 113–120, 2014.
PROSINO, Small sized plastic granulator/plastic grinder. 2016. Available at: http://www.sinoshredder.com/shredders/small-sized-plastic-granulator/. Accessed 22 March 2016.
PROSKE, T. et al. Eco-friendly concretes with reduced water and cement contents-mix design principles and laboratory tests. Cem. Concr. Res., v. 51, p. 38–46, 2013.
REBITZER G. et al. Life cycle assessment: part 1: framework, goal and scope definition, inventory analysis, and applications. Environ. Int., v. 30, p. 701–720, 2004.
SADRMOMTAZI, A. et al. The combined effects of waste Polyethylene Terephthalate (PET) particles and pozzolanic materials on the properties of self-compacting concrete. J. Clean. Prod., v. 112, p. 2363–2373, 2016.
SETO. K.E.; PANESAR, D.K.; CHURCHILL, C.J. Criteria for the evaluation of life cycle assessment software packages and life cycle inventory data with application to concrete. Int. J. Life Cycle Assess., v. 22, p. 694–706, 2017.
SIMAPRO, Faculty. Versão 8.2.0.0, Developed by PRéConsultants, 2016.
SUA-IAM, G.; MAKUL, N. Use of recycled alumina as fine aggregate replacement in self-compacting concrete. Constr. Build. Mater., v. 47, p. 701–710, 2013.
TAKANO, A. et al. Comparison of life cycle assessment databases: a case study on building assessment, Build. Environ., v. 79, p. 20–30, 2014.
VAN DEN HEEDE, P.; DE BELIE, N. Environmental impact and Life Cycle Assessment (LCA) of traditional and ‘green’ concretes: literature review and theoretical calculations. Cem. Concr. Compos., v. 34, p. 431–442, 2012.
VIEIRA, D.R.; CALMON, J.L.; COELHO, F.Z. Life Cycle Assessment (LCA) applied to the manufacturing of common and ecological concrete: a review. Constr. Build. Mater., v. 124, p. 656–666, 2016.
VIEIRA, D.R. et al. Consideration of strength and service life in cradle-to-gate life cycle assessment of self-compacting concrete in a maritime area: a study in the Brazilian context. Environ. Dev. Sustain., v. 20, p.1849–1871, 2018.
WENZHOU HERO, International Trade Co. Ltd., SJ-A90/120 recycling machine. 2016. Available at: http://www.herowu.com/products/sj-a90120-recycling-machine-(electric-control-drywet-grain-making-machine)l-ID79.html. Accessed 22 March 2016).
WHIRLSTON, Small scale tire recycling line. 2016. Available at: http://www.tirerecyclingmachines.com/ product/Small-Scale-Tire-Recycling-Line.html. Accessed 22 March 2016.
YUNG, W.H.; YUNG, L.C.; HUA L.H. A study of the durability properties of waste tire rubber applied to self-compacting concrete, Constr. Build. Mater., v. 41, p. 665–672, 2013.
ZHAO, H. et al. The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures. J. Clean. Prod., v. 95, p. 66–74, 2015.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
• O(s) autor(es) autoriza(m) a publicação do artigo na revista;
• O(s) autor(es) garante(m) que a contribuição é original e inédita e que não está em processo de avaliação em outra(s) revista(s), nem esteja publicado em anais de congressos e/ou portais institucionais;
• A revista não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es). Opiniões e perspectivas expressas no texto, assim como a precisão e a procedência das citações, são de responsabilidade exclusiva do(s) autor(es), e contribuem para a promoção dos:
- Princípios FAIR (Findable, Accessible, Interoperable, and Reusable – localizável, acessível, interoperável e reutilizável);
- Princípios DEIA (diversidade, equidade, inclusão e acessibilidade).
• É reservado aos editores o direito de proceder ajustes textuais e de adequação do artigos às normas da publicação.
Responsabilidades dos autores e transferência de direitos autorais
Os autores devem declarar a originalidade do estudo, bem como o fato de que este não foi publicado anteriormente ou está sendo considerado para publicação em outro meio, como periódicos, anais de eventos ou livros. Ao autorizarem a publicação do artigo na Revista Principia, os autores devem também responsabilizar-se pelo conteúdo do manuscrito, cujos direitos autorais, em caso de aprovação, passarão a ser propriedade exclusiva da revista. A Declaração de Responsabilidades dos Autores e Transferência de Direitos Autorais deverá ser assinada por todos os autores e anexada ao sistema como documento suplementar durante o processo de submissão. Clique no link abaixo para fazer o download do modelo.
Esta revista, seguindo as recomendações do movimento de Acesso Aberto, proporciona seu conteúdo em Full Open Access. Assim os autores conservam todos seus direitos permitindo que a Revista Principia possa publicar seus artigos e disponibilizar pra toda a comunidade.
A Revista Principia adota a licença Creative Commons 4.0 do tipo atribuição (CC-BY). Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, inclusive para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
Os autores estão autorizados a enviar a versão do artigo publicado nesta revista em repositório institucionais, com reconhecimento de autoria e publicação inicial na Revista Principia.