Evaluation on the influence of piping geometry and valve opening time on an internal combustion engine

Tiago Alceu Resende

ORCID iD Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG) Brasil

Júlio César Costa Campos

ORCID iD Universidade Federal de São João del-Rei (UFSJ) / Universidade Federal de Viçosa (UFV) Brasil

José Antônio Silva

ORCID iD Universidade Federal de São João del-Rei (UFSJ) Brasil

Gustavo Rodrigues Souza

ORCID iD Universidade Federal de São João del-Rei (UFSJ) Brasil

Marco Aurélio Cunha Alves

ORCID iD Universidade Federal de Juiz de Fora (UFJF) Brasil

Alexsander Pires Rezende

ORCID iD Universidade Federal de São João del-Rei (UFSJ) Brasil

Resumo

This research aims to find the best camshaft profile suitable for a single cylinder internal combustion engine aiming at its maximum volumetric efficiency. The methodology employed was an iterative search of the best length and diameter of inlet and exhaust pipes using Lotus Engine Simulation Software. The behavior of the high-pressure pulses due to the acoustic and aerodynamic phenomena of the intake manifold, together with the time of opening and closing of the valves, was considered. A numerical model was validated when compared to the experimental model using a Robin Subaru EH 17-2 engine. The results obtained when comparing the third with the last simulation showed that there was an increase of 11.5% in the maximum power and 6.3% in the torque. There were gains in the specific fuel consumption in almost every rotation regime. In relation to the volumetric efficiency, an improvement was made in its value for the new configuration of opening and closing of the valves and geometry of the pipes. It is concluded that the obtained arrangement of the pipes ensured that the frequency and amplitude of the pressure waves were synchronized to the dynamics of opening and closing the valves to stimulate the filling of the cylinders.

Palavras-chave


Intake system; Exhaust; Volumetric efficiency; Lotus Engine Simulation; Intake manifold


Texto completo:

Referências


ALBRECHT A, CORDE G AND KNOP V. et al. 1D Simulation of Turbocharged Gasoline Direct Injection Engine for Transient Strategy Optimization, SAE Technical Paper No. 2005-01-0693, 2005.

ANDREATTA C AND PEDERIVA R. Valve Train Kinematic and Dynamic Simulation, 25th SAE Brasil International Congress and Display, São Paulo, Brasil. SAE 2016-36-0213 E, October 2016.

CAPETTI A. Effects of Intake Pipe on the Volumetric Efficiency of an Internal Combustion Engine (Translation from Italian “Annalidella R. Scoulad’Ingegnoria di Padova, December 1927.”), UNT Digital Library, http://digital.library.unt.edu/ark:/67531/metadc65350/, 2012.

CERDOUN M, CARCASCI C AND GHENAIET A. An approach for the thermal analysis of internal combustion engines’ exhaust valves, Applied Thermal Engineering 102 1095–1108, 2016.

CEVIZ MA. Intake plenum volume and its influence on the engine performance cyclic variability and emissions. Energy Conversion and Management, Vol. 48, n. 3, p.961 966, 2007.

CHALET D, MAHE A AND MIGAUD J. et al. A frequency modelling of the pressure waves in the inlet manifold of internal combustion engine, Appl. Energy 88(2011) 2988–2994.

CHALLEN B AND BARANESCU R. Engine Reference Book. 2 ed. SAE International, 1999.

COSTA RC, HANRIOT SM AND SODRÉ JR. Influence of intake pipe and diameter on the performance of a spark ignition engine, J. Braz. Soc. Mech. Sci. Eng. 36 (2014)29–35.

DEB M, BANERJEE R AND MAJUMDER A. et al. Multi objective optimization of performance parameters of a single cylinder diesel engine with hydrogen as a dual fuel using pareto-based genetic algorithm, Int. J. Hydrogen Energy 38(2014) 8063–8077.

DOMSCHKE AG AND LANDI FR. Motores de Combustão Interna de Embolo, Departamento de livros e Publicações do Grêmio Politécnico da USP, 1963.

ENGELMAN HW. Design of a Tuned Intake Manifold, ASME Paper 73-WA/DGP-2, 1973.

GALINDO J, ARNAU J AND TISEIRA A. et al. Solution of the turbo compressor boundary condition for one-dimensional gas-dynamic code, Math. Comput. Model. 52 (2010) 1288–1297.

HARRISON MF AND DUNKLEY A., The acoustics of racing engine intake systems, Journal of Sound and Vibration 271 959–984, 2004.

KAKAEE AH, MASHADI B AND GHAJAR M. A novel volumetric efficiency model for spark ignition engines equipped with variable valve timing and variable valve lift Part 1: model development Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 231, 2: pp. 175-191, First Published June 8, 2016.

MEZHER H, CHALET D AND MIGAUD J. et al. Frequency based approach for simulation pressure waves at the inlet of internal combustion engine using parameterized model, Appl. Energy 106 (2013) 275–286.

MONIR H, SALEHI R AND SALARIEH H. et al. Real-time estimation of the volumetric efficiency in spark ignition engines using an adaptive sliding-mode observer, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 229, 14: pp. 1925-1933. First Published March 23, 2015.

OCH H, MOURA M AND MARIANI C. et al. Volumetric efficiency optimization of a single-cylinder D.I. diesel engine using differential evolution algorithm, Applied Thermal Engineering 108 (2016) 660–669.

PROVASE IS, PIMENTA MM AND MARIANI ALC. Analysis of Flow Detachment in the Intake Manifold of a Formula Sae Vehicle. Escola Politécnica Da Universidade De São Paulo, XXIII SIMEA Simpósio Internacional de Engenharia Automotiva, 2014.

RIBEIRO SY, SILVA JA AND MOURA M. Eficiência Volumétrica em Motor Monocilíndrico de Combustão Interna a Gasolina. VI Congresso Nacional de Engenharia Mecânica CONEM, agosto de 2010, Campina Grande, Paraíba, Brasil, 2010.

ROSTEK E, BABIAK M AND WRÓBLEWSKI E. The influence of oil pressure in the engine lubrication system on friction losses, TRANSCOM 2017: International scientific conference on sustainable, modern and safe transport, Procedia Engineering 192 771 – 776, 2017

SILVA FG AND ALVES MAC. Ensaio e Determinação de curvas características para o Motor Eh17-2, Trabalho realizado como parte dos requisitos para aprovação na disciplina de Laboratório de Motores de Combustão Interna, Universidade Federal de Juiz de Fora UFJF, 2017.

TORREGROSA J, GALINDO J AND GUARDIOLA C. et al. Combined experimental and modelling methodology for intake line evaluation in turbocharged diesel engines, Int. J. Automot. Technol. 12 (2011) 359–367.

WINTERBONE DE AND PEARSON RJ. Design Techniques for Engine Manifold: Wave Action Methods for IC Engines. Warrendale: Society of Automotive Engineers, Inc, 1999.


DOI: http://dx.doi.org/10.18265/1517-0306a2020v1n53p112-123

O arquivo PDF selecionado deve ser carregado no navegador caso tenha instalado um plugin de leitura de arquivos PDF (por exemplo, uma versão atual do Adobe Acrobat Reader).

Como alternativa, pode-se baixar o arquivo PDF para o computador, de onde poderá abrí-lo com o leitor PDF de sua preferência. Para baixar o PDF, clique no link abaixo.

Caso deseje mais informações sobre como imprimir, salvar e trabalhar com PDFs, a Highwire Press oferece uma página de Perguntas Frequentes sobre PDFs bastante útil.

Visitas a este artigo: 1022

Total de downloads do artigo: 655