Enhanced modeling of photovoltaic modules through optimized estimation of series and shunt resistances from measured I-V curves
DOI:
https://doi.org/10.18265/2447-9187a2025id9098Palavras-chave:
I-V curves, modeling, photovoltaics, series resistanceResumo
The five-parameter single-diode model is widely employed to simulate the current-voltage (I-V) characteristics of photovoltaic (PV) modules. However, the estimation of series resistance (Rs) and shunt resistance (Rsh) from measured curves depends on the specific data ranges selected for linear regressions: in the short-circuit region for Rsh and in the open-circuit region for Rs. This study investigates the impact of the data range selection in the I-V curve on the analytical determination of Rs and Rsh. I-V curves measured under standard test conditions (STC) were used to calibrate the model, and its performance was assessed under varying irradiance and temperature levels. Differences in maximum power and RMSE of the modeled curves were analyzed. Selecting the I-V data range from zero current to 10% of the current at maximum power (IMP) for Rs, and from zero voltage to 50% of the voltage at maximum power (VMP) for Rsh, yielded the most accurate results, particularly under low-irradiance conditions (< 500 W/m2). Differences in modeled maximum power reached up to 12.9% when less appropriate data ranges were used. These findings contribute to a more robust modeling of PV modules under real-world operating conditions and may serve as a baseline for post-processing measured I-V curves of polycrystalline silicon PV modules to determine series and shunt resistances.
Downloads
Métricas
Referências
ARABSHAHI, M. R.; TORKAMAN, H.; KEYHANI, A. A method for hybrid extraction of single-diode model parameters of photovoltaics. Renewable Energy, v. 158, p. 236-252, 2020. DOI: https://doi.org/10.1016/j.renene.2020.05.035.
AYOP, R.; TAN, C. W.; MAHMUD, M. S. A.; NASIR, S. N. S.; AL-HADHRAMI, T.; BUKAR, A. L. A simplified and fast computing photovoltaic model for string simulation under partial shading condition. Sustainable Energy Technologies and Assessments, v. 42, e100812, 2020. DOI: https://doi.org/10.1016/j.seta.2020.100812.
BADER, S.; MA, X.; OELMANN, B. One-diode photovoltaic model parameters at indoor illumination levels: a comparison. Solar Energy, v. 180, p. 707-716, 2019. DOI: https://doi.org/10.1016/j.solener.2019.01.048.
BAI, J.; LIU, S.; HAO, Y.; ZHANG, Z.; JIANG, M.; ZHANG, Y. Development of a new compound method to extract the five parameters of PV modules. Energy Conversion and Management, v. 79, p. 294-303, 2014. DOI: https://doi.org/10.1016/j.enconman.2013.12.041.
BLAS, M. A.; TORRES, J. L.; PRIETO, E.; GARCÍA, A. Selecting a suitable model for characterizing photovoltaic devices. Renewable Energy, v. 25, n. 3, p. 371-380, 2002. DOI: https://doi.org/10.1016/S0960-1481(01)00056-8.
BÜHLER, A. J.; GASPARIN, F. P.; KRENZINGER, A. Post-processing data of measured I-V curves of photovoltaic devices. Renewable Energy, v. 68, p. 602-610, 2014. DOI: https://doi.org/10.1016/j.renene.2014.02.048.
BÜHLER, A. J.; KRENZINGER, A. Method for photovoltaic parameter extraction according to a modified double‐diode model. Progress in Photovoltaics: Research and Applications, v. 21, n. 5, p. 884-893, 2013. DOI: https://doi.org/10.1002/pip.2170.
CELIK, A. N.; ACIKGOZ, N. Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models. Applied Energy, v. 84, n. 1, p. 1-15, 2007. DOI: https://doi.org/10.1016/j.apenergy.2006.04.007.
CHAN, D. S. H.; PHANG, J. C. H. Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics. IEEE Transactions on Electron Devices, v. 34, n. 2, p. 286-293, 1987. DOI: https://doi.org/10.1109/T-ED.1987.22920.
CHEGAAR, M., HAMZAOUI, A., NAMODA, A., PETIT, P., AILLERIE, M., HERGUTH, A. Effect of illumination intensity on solar cells parameters. Energy Procedia, v. 36, p. 722-729, 2013. DOI: https://doi.org/10.1016/j.egypro.2013.07.084.
CHIN, V. J.; SALAM, Z.; ISHAQUE, K. Cell modelling and model parameters estimation techniques for photovoltaic simulator application: a review. Applied Energy, v. 154, p. 500-519, 2015. DOI: https://doi.org/10.1016/j.apenergy.2015.05.035.
CUBAS, J.; PINDADO, S.; VICTORIA, M. On the analytical approach for modeling photovoltaic systems behavior. Journal of Power Sources, v. 247, p. 467-474, 2014. DOI: https://doi.org/10.1016/j.jpowsour.2013.09.008.
DE SOTO, W.; KLEIN, S. A.; BECKMAN, W. A. A. Improvement and validation of a model for photovoltaic array performance. Solar Energy, v. 80, n. 1, p. 78-88, 2006. DOI: https://doi.org/10.1016/j.solener.2005.06.010.
FÉBBA, D. M.; RUBINGER, R. M.; OLIVEIRA, A. F.; BORTONI, E. C. Impacts of temperature and irradiance on polycrystalline silicon solar cells parameters. Solar Energy, v. 174, p. 628-639, 2018. DOI: https://doi.org/10.1016/j.solener.2018.09.051.
GASPARIN, F. P.; KIPPER, F. D.: OLIVEIRA, F. S.; KRENZINGER, A. Assessment on the variation of temperature coefficients of photovoltaic modules with solar irradiance. Solar Energy, v. 244, p. 126-133, 2022. DOI: https://doi.org/10.1016/j.solener.2022.08.052.
HUMADA, A. M.; HOJABRI, M.; MEKHILEF, S.; HAMADA, H. M. Solar cell parameters extraction based on single and double-diode models: a review. Renewable and Sustainable Energy Reviews, v. 56, p. 494-509, 2016. DOI: https://doi.org/10.1016/j.rser.2015.11.051.
IBRAHIM, H.; ANANI, N. Variations of PV module parameters with irradiance and temperature. Energy Procedia, v. 134, p. 276-285, 2017. DOI: https://doi.org/10.1016/j.egypro.2017.09.617.
KHAN, F.; BAEK, S.-H.; KIM, J. H. Intensity dependency of photovoltaic cell parameters under high illumination conditions: an analysis. Applied Energy, v. 133, p. 356-362, 2014. DOI: https://doi.org/10.1016/j.apenergy.2014.07.107.
LO BRANO, V.; ORIOLI, A.; CIULLA, G.; DI GANGI, A. An improved five-parameter model for photovoltaic modules. Solar Energy Materials and Solar Cells, v. 94, n. 8, p. 1358-1370, 2010. DOI: https://doi.org/10.1016/j.solmat.2010.04.003.
MA, M.; ZHANG, Z.; XIE, Z.; YUN, P.; ZHANG, X.; LI, F. Fault diagnosis of cracks in crystalline silicon photovoltaic modules through I-V curve. Microelectronics Reliability, v. 114, e113848, 2020. DOI: https://doi.org/10.1016/j.microrel.2020.113848.
MOREIRA, H. S.; SILVA, J. L. S.; REIS, M.V. G.; MESQUITA, D. B.; PAULA, B. H. K.; VILLALVA, M. G. Experimental comparative study of photovoltaic models for uniform and partially shading conditions. Renewable Energy, v. 164, p. 58-73, 2021. DOI: https://doi.org/10.1016/j.renene.2020.08.086.
ORIOLI, A.; DI GANGI, A. A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data. Applied Energy, v. 102, p. 1160-1177, 2013. DOI: https://doi.org/10.1016/j.apenergy.2012.06.036.
POLVERINI, D.; TZAMALIS, G.; MÜLLEJANS, H. A validation study of photovoltaic module series resistance determination under various operating conditions according to IEC 60891. Progress in Photovoltaics: Research and Applications, v. 20, n. 6, p. 650-660, 2012. DOI: https://doi.org/10.1002/pip.1200.
RUSCHEL, C. S.; GASPARIN, F. P.; KRENZINGER, A. Experimental analysis of the single diode model parameters dependence on irradiance and temperature. Solar Energy, v. 217, p. 134-144, 2021. DOI: https://doi.org/10.1016/j.solener.2021.01.067.
VILLALVA, M. G.; GAZOLI, J. R.; RUPPERT FILHO, E. Modeling and circuit-based simulation of photovoltaic arrays. In: 2009 BRAZILIAN POWER ELECTRONICS CONFERENCE (COBEP), 2009, Bonito. Proceedings […]. Bonito: IEEE, 2009. DOI: https://doi.org/10.1109/COBEP.2009.5347680.
YANG, B.; WANG, J.; ZHANG, X.; YU, T.; YAO, W.; SHU, H.; ZENG, F.; SUN, L. Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification. Energy Conversion and Management, v. 208, e112595, 2020. DOI: https://doi.org/10.1016/j.enconman.2020.112595.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Ellen David Chepp, Fabiano Perin Gasparin, Arno Krenzinger

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta revista, seguindo as recomendações do movimento de Acesso Aberto, proporciona seu conteúdo em Full Open Access. Assim os autores conservam todos seus direitos permitindo que a Revista Principia possa publicar seus artigos e disponibilizar pra toda a comunidade.
A Revista Principia adota a licença Creative Commons 4.0 do tipo atribuição (CC-BY). Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, inclusive para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
Os autores estão autorizados a enviar a versão do artigo publicado nesta revista em repositório institucionais, com reconhecimento de autoria e publicação inicial na Revista Principia.
Demais informações sobre a Política de Direitos Autorais da Revista Principia encontram-se neste link.






















(precisa estar logado)





