Effects of reconstitution rate and hydration time on the yield of fresh cheese from reconstituted milk

Autores

DOI:

https://doi.org/10.18265/2447-9187a2025id9034

Palavras-chave:

cheese yield, dairy processing, milk powder, milk technology, protein retention

Resumo

Powdered milk, due to its versatility, extended shelf life, and ease of transport, serves as a viable alternative for cheese production, especially in regions with limited access to fresh milk. However, the cheese yield from reconstituted milk may vary depending on factors such as the concentration of milk powder in the solution and the degree of casein hydration. This study aimed to evaluate the effects of reconstitution rate and hydration time of powdered milk on cheese yield. A 3 × 3 factorial design with three replicates per treatment was employed, testing reconstitution rates of 10%, 20%, and 30%, along with hydration times of 0, 1, and 2 hours. Cheeses were prepared by reconstituting whole milk powder in heated water, followed by the addition of calcium chloride and Ha-la® chymosin. The mixture was incubated at 37 °C for coagulation, then the curd was cut and stirred, concluding with hot-water syneresis and moulding. The resulting cheeses were evaluated based on yield parameters, including weight yield, adjusted yield, protein losses in whey, and protein retention in cheese. Results showed that higher concentrations of milk powder significantly increased yield, rising from 17.5% at 10% concentration to 22.6% at 30%, whereas hydration time had no notable effect. This may be due to the rapid solubilization of casein or the possibility that hydration periods longer than 2 hours are necessary to influence protein interactions. Protein retention in cheese improved from 58.4% to 78.5%, while protein losses in whey decreased from 41.6% to 21.5% with increasing concentration. Production costs remained consistent across treatments; however, the 30% concentration yielded more cheese per batch, thus enhancing the cost–benefit ratio for processors. These findings support the use of reconstituted milk for cheese production in areas where fresh milk is scarce, offering a practical and economical option for the dairy industry. In conclusion, increasing the concentration of milk powder in reconstituted milk enhances cheese yield, while hydration time does not significantly influence these parameters.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

AL-BEDRANI, D. I. J.; HASAN, S. T.; ALTAEE, A. A.; ALQOTBI, A. A. Improving low-fat soft cheese quality properties made from reconstituted skim milk by using whey protein concentrate as a fat replacer. IOP Conference Series: Earth and Environmental Science, v. 910, e012040, 2021. DOI: https://doi.org/10.1088/1755-1315/910/1/012040.

ALINOVI, M.; TIDONA, F.; MONTI, L.; FRANCOLINO, S.; BRUSA, G.; GHIGLIETTI, R.; LOCCI, F; GIRAFFA, G. Physicochemical and rheological characteristics of Crescenza cheese made with 40% of recombined milk during manufacture and storage. International Journal of Dairy Technology, v. 75, n. 3, p. 643-652, 2022. DOI: https://doi.org/10.1111/1471-0307.12865.

AOAC – Association of Official Agricultural Chemists. Official Methods of Analysis of the AOAC. 22. ed. v.1. Arlington: AOAC International, 2023. p. 4-30.

AVSAR, Y. K. Milk fat globule size, powder hydration time, para-κ-casein content and textural properties of recombined white-brined cheese produced by direct recombination system. Journal of Food Processing and Preservation, v. 34, p. 223-240, 2010. DOI: https://doi.org/10.1111/j.1745-4549.2008.00335.x.

AWAD, R. A.; SALAMA, W. M.; RAGB, W. A. Enhancing yield and acceptability of Kareish cheese made of reformulated milk. Annals of Agricultural Sciences, v. 60, n. 1, p. 87-93, 2015. DOI: https://doi.org/10.1016/j.aoas.2015.03.004.

BAIG, D.; SABIKHI, L.; KHETRA, Y.; KUMAR, D. Effect of casein to fat ratio of camel milk on solids losses in cheese whey and their recovery in camel milk cheese. International Dairy Journal, v. 124, e105185, 2022. DOI: https://doi.org/10.1016/j.idairyj.2021.105185.

BRAZIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 53, de 1º de outubro de 2018. Regulamento técnico sobre identidade e qualidade do leite em pó integral. Diário Oficial da União, Brasília, DF, 2 out. 2018. Seção 1, p. 11-12. In Portuguese.

BIHOLA, A.; JANA, A. H.; PARMAR, S. C.; GILL, A.; VASHISHT, P.; SAIN, M.; ADIL, S. Recombined milk cheeses: a review. International Dairy Journal, v. 166, e106219, 2025. DOI: https://doi.org/10.1016/j.idairyj.2025.106219.

BYLUND, G. Dairy processing handbook. Lund: Tetra Pak Processing Systems AB, 2003.

FAION, A. M.; BECKER, J.; FERNANDES, I. A.; STEFFENS, J.; VALDUGA, E. Sheep's milk concentration by ultrafiltration and cheese elaboration. Journal of Food Process Engineering, v. 42, n. 4, e13058, 2019. DOI: https://doi.org/10.1111/jfpe.13058.

FAMEAU, A. L.; HOUINSOU HOUSSOU, B.; RIAUBLANC, A.; COUSIN, F. Interplay of temperature and calcium content in beta-casein solutions: From controlled self-aggregation of micelles in bulk to the design of stable foams. Frontiers in Soft Matter, v. 2, p. 1008965, 2022. DOI: https://doi.org/10.3389/frsfm.2022.1008965.

.

FOX, P. F.; GUINEE, T. P.; COGAN, T. M.; McSWEENEY, P. L. Fundamentals of cheese science. v. 1. Boston: Springer, 2017. p. 271.

GAZI, I.; HUPPERTZ, T. Influence of protein content and storage conditions on the solubility of caseins and whey proteins in milk protein concentrates. International Dairy Journal, v. 46, p. 22-30, 2015. DOI: https://doi.org/10.1016/j.idairyj.2014.09.009.

GILLES, J.; LAWRENCE, R. C.; CZULAK, J.; CONOCHIE, J.; HAMMOND, L. A. Recombined cheese. A. Cheddar, Edan and Cottage cheese. Bulletin International Dairy Federation, n. 116, p. 33-35, 1979.

GIMÉNEZ, P.; PERALTA, G. H.; BATISTELA, M. E.; GEORGE, G. A.; ALE, E. C.; QUINTERO, J. P.; HYNES, E. R.; BERGAMINI, C. V. Impact of the use of skim milk powder and adjunct cultures on the composition, yield, proteolysis, texture and melting properties of Cremoso cheese. International Dairy Journal, v. 140, e105595, 2023. DOI: https://doi.org/10.1016/j.idairyj.2023.105595.

INTERNATIONAL DAIRY FEDERATION. Cream and evaporated milk: determination of total solids content. IDF Standard 21B. Bruxelas: IDF, 1987. 5p.

KARAMAN, A. D.; ÖZER, B.; PASCALL, M. A.; ALVAREZ, V. Recent advances in dairy packaging. Food Reviews International, v. 31, n. 4, p. 295-318, 2015. DOI: https://doi.org/10.1080/87559129.2015.1015138.

KATZ, G.; MERIN, U.; BEZMAN, D.; LAVIE, S.; LEMBERSKIY-KUZIN, L.; LEITNER, G. Real-time evaluation of individual cow milk for higher cheese-milk quality with increased cheese yield. Journal of Dairy Science, v. 99, n. 6, p. 4178-4187, 2016. DOI: https://doi.org/10.3168/jds.2015-10599.

KAYIHURA, J. F. Reconstituted skim milk concentration affects partitioning of some individual caseins between rennet curd and whey. International Journal of Dairy Technology, v. 76, n. 4, p. 852-860, 2023. DOI: https://doi.org/10.1111/1471-0307.13003.

KAYIHURA, J. F. Exploring the impact of reconstituted skim milk pre-treatments on partitioning of caseins and rennet activity during cheese-making. 2024. PhD Thesis (Doctorate in Food Science) – Victoria University, Melbourne, 2024. Available at: https://vuir.vu.edu.au/48578. Accessed on: 15 Mar. 2025.

LI, Y. H.; WANG, W. J.; GUO, L.; SHAO, Z. P.; XU, X. J. Comparative study on the characteristics and oxidation stability of commercial milk powder during storage. Journal of Dairy Science, v. 102, n. 10, p. 8785-8797, 2019. DOI: https://doi.org/10.3168/jds.2018-16089.

LIMA, A. S.; JÚNIOR, L. C. G. C.; PINTO, M. S. Aspectos relacionados à higienização em processos de separação por membranas na indústria de laticínios. Revista do Instituto de Laticínios Cândido Tostes, v. 63, n. 364, p. 3-13, 2008. In Portuguese.

MAGENIS, R. B.; PRUDÊNCIO, E. S.; FRITZEN-FREIRE, C. B.; STEPHAN, M. P.; EGITO, A. S.; DAGUER, H. Rheological, physicochemical and authenticity assessment of Minas Frescal cheese. Food Control, v. 45, p. 22-28, 2014. DOI: https://doi.org/10.1016/j.foodcont.2014.04.012.

MELILLI, C.; LYNCH, J. M.; CARPINO, S.; BARBANO, D. M.; LICITRA, G.; CAPPA, A. An empirical method for prediction of cheese yield. Journal of Dairy Science, v. 85, n. 10, p. 2699-2704, 2002. DOI: https://doi.org/10.3168/jds.S0022-0302(02)74356-7.

PHOSANAM, A.; CHANDRAPALA, J.; ZISU, B.; ADHIKARI, B. Storage stability of powdered dairy ingredients: a review. Drying Technology, v. 39, n. 11, p. 1529-1553, 2021. DOI: https://doi.org/10.1080/07373937.2021.1910955.

PIRES, A. F.; MARNOTES, N. G.; RUBIO, O. D.; GARCIA, A. C.; PEREIRA, C. D. Dairy by-products: a review on the valorization of whey and second cheese whey. Foods, v. 10, n. 5, e1067, 2021. DOI: https://doi.org/10.3390/foods10051067.

PRESENTE, J. G.; FRAGA, H. B.; SCHMIDT, C. G. Aceitação e conservação de queijos frescos elaborados com óleos essenciais. Revista do Instituto de Laticínios Cândido Tostes, v. 71, n. 3, p. 153-165, 2016. DOI: https://doi.org/10.14295/2238-6416.v71i3.531. In Portuguese.

RYABOVA, A. E.; SEMIPYATNY, V. K.; GALSTYAN, A. G. Effects of storage conditions on milk powder properties. Journal of Dairy Science, v. 106, n. 10, p. 6741-6758, 2023. DOI: https://doi.org/10.3168/jds.2022-23094.

.

SHARMA, A.; JANA, A. H.; CHAVAN, R. S. Functionality of milk powders and milk-based powders for end use applications: a review. Comprehensive Reviews in Food Science and Food Safety, v. 11, n. 5, p. 518-528, 2012. DOI: https://doi.org/10.1111/j.1541-4337.2012.00199.x.

SILVA, F. R. N.; PEREIRA, A. D.; BAPTISTA, D. P.; PEREIRA, M. U.; SPISSO, B .F.; GIGANTE, M. L.; BRAGA, P. A. C.; REYES, F. G. R.; ARISSETO-BRAGOTTO, A. P. Monensin residues in the production of Minas Frescal cheese: stability, effects on fermentation, fate and physicochemical characteristics of the cheese. Food Research International, v. 137, e109440, 2020. DOI: https://doi.org/10.1016/j.foodres.2020.109440.

TIDONA, F.; ALINOVI, M.; FRANCOLINO, S.; BRUSA, G.; GHIGLIETTI, R.; LOCCI, F.; MUCCHETTI, G.; GIRAFFA, G. Partial substitution of 40 g/100 g fresh milk with reconstituted low heat skim milk powder in high-moisture mozzarella cheese production: rheological and water-related properties. LWT, v. 137, e110391, 2021. DOI: https://doi.org/10.1016/j.lwt.2020.110391.

WHITE, C. H.; RYAN, J. M. Defining optimal conditions for making cottage cheese from reconstituted milk powder. Journal of Food Protection, v. 46, n. 8, p. 686-690, 1983. DOI: https://doi.org/10.4315/0362-028X-46.8.686.

YADAV, J. S. S.; YAN, S.; PILLI, S.; KUMAR, L.; TYAGI, R. D.; SURAMPALLI, R. Y. Cheese whey: a potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnology Advances, v. 33, n. 6, Part 1, p. 756-774, 2015. DOI: https://doi.org/10.1016/j.biotechadv.2015.07.002.

ZAKARI, S.; MARTHA, M.; BAWA, I.; OGBU, C. O.; ZAKARI, H.; ITODO, O.M.; MATILDA, A. F. Comparative analysis of protein in selected infant formula using dye-binding and formol methods. International Journal of Biochemistry Research & Review, v. 31, n. 4, p. 11-16, 2022. DOI: https://doi.org/10.9734/ijbcrr/2022/v31i430313.

Downloads

Publicado

04-10-2025

Como Citar

TEMPONI, M. S. R.; LOPES, K. M. P.; SANTOS, E. E. dos; VALENTE, G. L. C. Effects of reconstitution rate and hydration time on the yield of fresh cheese from reconstituted milk. Revista Principia, [S. l.], v. 62, 2025. DOI: 10.18265/2447-9187a2025id9034. Disponível em: https://periodicos.ifpb.edu.br/index.php/principia/article/view/9034. Acesso em: 8 out. 2025.

Edição

Seção

Ciências de Alimentos
Smart Citations via scite_