Thermodynamic and kinetic analysis of methylene blue adsorption onto chemically modified cotton
DOI:
https://doi.org/10.18265/2447-9187a2025id8887Palavras-chave:
adsorption, cotton, carboxylation, methylene blue, thermodynamicsResumo
This study investigates the adsorption of methylene blue onto chemically modified cotton, focusing on the kinetic and thermodynamic aspects of the process. The primary objective is to assess how chemical modification through carboxylation enhances the interaction between the methylene blue dye and the adsorbent material. The research is grounded in adsorption and thermodynamic theories, addressing the interactions between the dye and the modified substrate. The methodology includes the carboxylation of cotton using monochloroacetic acid and the execution of adsorption experiments at varying dye concentrations, ranging from 1 to 100 mg·L-1, along with kinetic and thermodynamic evaluations. The results demonstrate that cotton carboxylation significantly increases the adsorption capacity for methylene blue, with kinetic data fitting well to the pseudo-second-order model. Thermodynamic analysis indicates that the adsorption process is spontaneous and favorable, characterized by an increase in enthalpy, suggesting that the interactions between the dye and the modified substrate are chemical in nature. Furthermore, adsorption is enhanced at higher temperatures, indicating that temperature positively influences the efficiency of the process. The maximum adsorption capacities obtained were comparable to or exceeded those reported for other low-cost natural adsorbents, highlighting the potential of chemically modified cotton as an effective material for dye removal from effluents. Integrating chemical modification strategies with adsorption dynamics presents promising opportunities for developing innovative purification technologies.
Downloads
Métricas
Referências
AHMED, N. S. E; EL-SHISHTAWY, R. M. The use of new technologies in coloration of textile fibers. Journal of Materials Science, v. 45, p. 1143-1153, 2010. DOI: https://doi.org/10.1007/s10853-009-4111-6.
AYAD, M. M.; EL-NASR, A. A. Adsorption of cationic dye (methylene blue) from water using polyaniline nanotubes base. The Journal of Physical Chemistry C, v. 114, n. 34, p. 14377-14383, 2010. DOI: https://doi.org/10.1021/jp103780w.
BASHAR, M. M.; KHAN, M. A. An overview on surface modification of cotton fiber for apparel use. Journal of Polymers and the Environment, v. 21, p. 181-190, 2013. DOI: https://doi.org/10.1007/s10924-012-0476-8
CORTESE, B.; CASCHERA, D.; PADELETTI, G.; INGO, G. M.; GIGLI, G. A brief review of surface-functionalized cotton fabrics. Surface Innovations, v. 1, n. 3, p. 140-156, 2013. DOI: https://doi.org/10.1680/si.13.00008.
DARIA, M.; KRZYSZTOF, L.; JAKUB, M. Characteristics of biodegradable textiles used in environmental engineering: a comprehensive review. Journal of Cleaner Production, v. 268, 122129, 2020. DOI: https://doi.org/10.1016/j.jclepro.2020.122129.
DAUL, G. C.; REINHARDT, R. M.; REID, J. D. Studies on the partial carboxymethylation of cotton. Textile Research Journal, v. 22, n. 12, p. 787-792, 1952. DOI: https://doi.org/10.1177/004051755202201204.
FIRMINO, H. B.; VOLANTE, E. K. T. S.; SILVA, A. C. P.; SCACCHETTI, F. A. P.; LIS, M. J.; MARTÍ, M.; SAXENA, S.; TESSARO, A. L.; BEZERRA, F. M. β-cyclodextrin-modified cotton fabric for medical and hospital applications with photodynamic antibacterial activity using methylene blue. Coatings, v. 14, n. 9, 1100, 2024. DOI: https://doi.org/10.3390/coatings14091100.
GÜRSES, A.; DOĞAR, Ç.; YALCIN, M.; AÇIKYILDIZ, M.; BAYRAK, R.; KARACA, S. The adsorption kinetics of the cationic dye, methylene blue, onto clay. Journal of Hazardous Materials, v. 131, n. 1-3, p. 217-228, 2006. DOI: https://doi.org/10.1016/j.jhazmat.2005.09.036.
HENRIKSSON, G.; LENNHOLM, H. Cellulose and carbohydrate chemistry.In: EK, ,M.; GELLERSTEDT, G.; HENRIKSSON, G. (org.). Wood chemistry and wood biotechnology. Berlin: De Gruyter, p. 71-100, 2009. DOI: https://doi.org/10.1515/9783110213409.71.
JOSEPH, P.; TRETSIAKOVA-MCNALLY, S. Chemical modification of natural and synthetic textile fibres to improve flame retardancy. In: Handbook of fire resistant textiles. Woodhead Publishing, p. 37-67, 2013. DOI: https://doi.org/10.1533/9780857098931.1.37.
ORNAGHI JÚNIOR, H. L.; NEVES, R. M.; MONTICELI, F. M.; DALL AGNOL, L. Smart fabric textiles: recent advances and challenges. Textiles, v. 2, n. 4, p. 582-605, 2022. DOI: https://doi.org/10.3390/textiles2040034.
KWON, C. H.; KO, Y.; SHIN, D.; KWON, M.; PARK, J.; BAE, W. K.; LEE, S. W.; CHO, J. High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers. Nature Communications, v. 9, n. 1, 4479, 2018. DOI: https://doi.org/10.1038/s41467-018-06994-5.
LAM, P.-L.; WONG, R. S.-M.; LAM, K.-H.; HUNG, L.-K.; WONG, M.-M.; YUNG, L.-H.; HO, Y.-W.; WANG, W.-Y.; HAU, D. K.-P.; GAMBARI, R.; CHUI, C.-H. The role of reactive oxygen species in the biological activity of antimicrobial agents: an updated mini review. Chemico-Biological Interactions, v. 320, 109023, 2020. DOI: https://doi.org/10.1016/j.cbi.2020.109023.
LARGITTE, L.; PASQUIER, R. J. C. E. R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design, v. 109, p. 495-504, 2016. DOI: https://doi.org/10.1016/j.cherd.2016.02.006.
LIU, H.; ZHU, J.; LI, Q.; LI, L.; HUANG, Y.; WANG, Y.; FAN, G.; ZHANG, L. Adsorption performance of methylene blue by KOH/FeCl3 modified biochar/alginate composite beads derived from agricultural waste. Molecules, v. 28, n. 6, 2507, 2023. DOI: https://doi.org/10.3390/molecules28062507.
MEDRONHO, B.; ROMANO, A.; MIGUEL, M. G.; STIGSSON, L.; LINDMAN, B. Rationalizing cellulose (in) solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose, v. 19, p. 581-587, 2012. DOI: https://doi.org/10.1007/s10570-011-9644-6.
MOREIRA, L. M.; LYON, J. P.; LIMA, A.; CODOGNOTO, L.; SEVERINO, D.; BAPTISTA, M. S.; TESSARO, A. L.; GEROLA, A. P.; HIOKA, N.; RODRIGUES, M. R.; BONACIN, J. A.; SANTOS, S. C.; ROMANI, A. P.; OLIVEIRA, H. P. M. The methylene blue self-aggregation in water/organic solvent mixtures: relationship between solvatochromic properties and singlet oxygen production. Orbital: The Electronic Journal of Chemistry, v. 9, n. 4, p. 279-289, 2017. DOI: http://dx.doi.org/10.17807/orbital.v9i4.996.
NAKHLI, A.; BERGAOUI, M.; TOUMI, K.-H.; KHALFAOUI, M.; BENGUERBA, Y.; BALSAMO, M.; SOETAREDJO, F. E.; ISMANDJI, S.; ERNST, B.; ERTO, A. Molecular insights through computational modeling of methylene blue adsorption onto low-cost adsorbents derived from natural materials: a multi-model's approach. Computers & Chemical Engineering, v. 140, 106965, 2020. DOI: https://doi.org/10.1016/j.compchemeng.2020.106965.
PEREPELKIN, K. E. Principles and methods of modification of fibres and fibre materials. A review. Fibre Chemistry, v. 37, n. 2, p. 123-140, 2005. DOI: https://doi.org/10.1007/s10692-005-0069-6.
PERNI, S.; PICCIRILLO, C.; PRATTEN, J.; PROKOPOVICH, P.; CHRZANOWSKI, W.; PARKIN, I. P.; WILSON, M. The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials, v. 30, n. 1, p. 89-93, 2009. DOI: https://doi.org/10.1016/j.biomaterials.2008.09.020.
SALEH, T. A. Kinetic models and thermodynamics of adsorption processes: classification. In: SALEH, T. A. (org.). Surface science of adsorbents and nanoadsorbents. Elsevier, 2022. p. 65-97. DOI: https://doi.org/10.1016/B978-0-12-849876-7.00003-8.
SARKAR, M.; UPADHYAY, A.; PANDEY, D.; SARKAR, C.; SAHA, S. Cellulose-based biodegradable polymers: synthesis, properties, and their applications. In: SAHA, S.; SARKAR, C. (org.). Biodegradable polymers and their emerging applications. Singapore: Springer Nature Singapore, 2023. p. 89-114. DOI: https://doi.org/10.1007/978-981-99-3307-5_5.
SILVA, A. C. Q.; SILVESTRE, A. J. D.; FREIRE, C. S. R.; VILELA, C. Modification of textiles for functional applications. In: MONDAL, I. H. (ed.). Fundamentals of natural fibres and textiles. Woodhead Publishing, 2021. p. 303-365. DOI: https://doi.org/10.1016/B978-0-12-821483-1.00010-3.
SILVA, A. C. P.; ARRUDA, L. M.; MOREIRA, I. P.; SCACCHETTI, F. A. P.; OLIVEIRA, H. P. M.; SAMULEWSKI, R. B.; FANGUEIRO, R.; TESSARO, A. L. Functionalization of fibrous substrates with mesoporous silica nanoparticles as a strategy to obtain photodynamic antibacterial textiles. Dyes and Pigments, v. 230, 112342, 2024. DOI: https://doi.org/10.1016/j.dyepig.2024.112342.
SIVARAJASEKAR, N.; BASKAR, R. Adsorption of basic red 9 onto activated carbon derived from immature cotton seeds: isotherm studies and error analysis. Desalination and Water Treatment, v. 52, n. 40-42, p. 7743-7765, 2014. DOI: https://doi.org/10.1080/19443994.2013.834518.
SONG, J.; ZOU, W.; BIAN, Y.; SU, F.; HAN, R. Adsorption characteristics of methylene blue by peanut husk in batch and column modes. Desalination, v. 265, n. 1-3, p. 119-125, 2011. DOI: https://doi.org/10.1016/j.desal.2010.07.041.
THAPLIYAL, D.; VERMA, S.; SEN, P.; KUMAR, R.; THAKUR, A.; TIWARI, A. K.; SINGH, D.; VERROS, G. D.; ARYA, R. K. Natural fibers composites: origin, importance, consumption pattern, and challenges. Journal of Composites Science, v. 7, n. 12, 506, 2023. DOI: https://doi.org/10.3390/jcs7120506.
TOSHIKJ, E.; TARBUK, A.; GRGIĆ, K.; MANGOVSKA, B.; JORDANOV, I. Influence of different oxidizing systems on cellulose oxidation level: introduced groups versus degradation model. Cellulose, v. 26, p. 777-794, 2019. DOI: https://doi.org/10.1007/s10570-018-2133-4.
WANG, M.; TAN, Y.; YANG, H.; ZHAN, L.; SUN, G.; LUO, L. On the adsorption characteristics and mechanism of methylene blue by ball mill modified biochar. Scientific Reports, v. 13, 21174, 2023. DOI: https://doi.org/10.1038/s41598-023-48373-1.
YUE, X.; JIANG, F.; ZHANG, D.; LIN, H.; CHEN, Y. Preparation of adsorbent based on cotton fiber for removal of dyes. Fibers and Polymers, v. 18, p. 2102-2110, 2017. DOI: https://doi.org/10.1007/s12221-017-1211-9.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Edson Castro dos Santos Junior, Gabrielly Carvalho Belarmino, Ana Claudia Pedrozo da Silva, Fábio Alexandre Pereira Scacchetti, André Luiz Tessaro, Rafael Block Samulewski

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta revista, seguindo as recomendações do movimento de Acesso Aberto, proporciona seu conteúdo em Full Open Access. Assim os autores conservam todos seus direitos permitindo que a Revista Principia possa publicar seus artigos e disponibilizar pra toda a comunidade.
A Revista Principia adota a licença Creative Commons 4.0 do tipo atribuição (CC-BY). Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, inclusive para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
Os autores estão autorizados a enviar a versão do artigo publicado nesta revista em repositório institucionais, com reconhecimento de autoria e publicação inicial na Revista Principia.
Demais informações sobre a Política de Direitos Autorais da Revista Principia encontram-se neste link.