Increasing the bending strength of hardened AISI 1045 steel by milling process
DOI:
https://doi.org/10.18265/2447-9187a2025id8871Palavras-chave:
flexural strength, hard machining, mechanical property, surface integrity, three-point bending testResumo
Surface characteristics play a critical role in initiating and propagating defects when metallic components are subjected to static or dynamic loading, directly influencing their mechanical performance and service life. Therefore, selecting an appropriate finishing process is essential for improving surface integrity and mechanical resistance. This study investigates the effects of cutting speed and feed per tooth on the flexural strength of AISI 1045 steel specimens subjected to hard machining using an 80 mm diameter end mill, with cutting speeds of 100 and 400 m/min. Specifically, it evaluates the influence of surface roughness and the resulting changes in surface hardness on the bending behavior of the material. The findings indicate that surface roughness significantly impacts bending strength more than the metallurgical alterations caused by the machining process. A reduction in maximum surface roughness from 4.66 µm to 3.02 µm, approximately 35%, resulted in a 51% increase in rupture stress and a 137% increase in deflection at fracture. In contrast, variations in surface hardness induced by machining were found to have a negligible effect on mechanical strength. Once failure is initiated, the material's hardness becomes even less relevant, as it does not influence crack propagation. These results highlight the importance of optimizing surface finishing parameters to improve the structural performance of hardened steels, particularly in the metalworking and automotive industries, where mechanical reliability and durability are crucial.
Downloads
Métricas
Referências
ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 136: Tratamentos térmicos de aço – Terminologia e definições. Rio de Janeiro: ABNT, 2000. In Portuguese.
AROLA, D.; WILLIAMS, C. L. Estimating the fatigue stress concentration factor of machined surfaces. International Journal of Fatigue, v. 24, n. 9, p. 923-930 2002. DOI: https://doi.org/10.1016/S0142-1123(02)00012-9.
ASTM – AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM A576–17: Standard specification for steels bars, carbon, hot-wrought, special quality. ASTM International, 2017.
ASTM – AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM C1161: standard test method for flexural strength of advanced ceramics at ambient temperature. ASTM International, 2018.
ASTM – AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM E384-17: Standard test method for microindentation hardness of materials. ASTM International, 2017.
ASTM – AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM E855-08: Standard test methods for bend testing of metallic flat materials for spring applications involving static loading. ASTM International, 2013.
BERTOLINI, R.; STRAMARE, A.; BRUSCHI, S.; GHIOTTI, A.; CAMPAGNOLO, A. Impact of cryogenic machining on the fatigue strength and surface integrity of wrought Ti6Al4V with equiaxed microstructure. Engineering Failure Analysis, 2025. DOI: https://doi.org/10.1016/j.engfailanal.2025.109274.
BENSOUILAH, H.; AOUICI, H.; MEDDOUR, I.; YALLESE, M. A.; MABROUKI, T.; GIRARDIN, F. Performance of coated and uncoated mixed ceramic tools in hard turning process. Measurement: Journal of the International Measurement Confederation, v. 82, p. 1-18, 2016. DOI: https://doi.org/10.1016/j.measurement.2015.11.042.
CALLISTER, W. D.; RETHWISCH, D. G. Materials Science and Engineering: an introduction. 10. ed. Wiley, 2020.
CASTANHERA, I. C.; DINIZ, A. E. High speed milling of hardened steel convex surface. Procedia Manufacturing, v. 5, p. 220-231, 2016. DOI: https://doi.org/10.1016/j.promfg.2016.08.020.
COTO, B.; NAVAS, V. G.; GONZALO, O.; ARANZABE, A.; SANZ, C. Influences of turning parameters in surface residual stresses in AISI 4340 steel. The International Journal of Advanced Manufacturing Technology, v. 53, p. 911-919, 2011. DOI: https://doi.org/10.1007/s00170-010-2890-1.
DAS, S. R.; PANDA, A.; DHUPAL, D. Experimental investigation of surface roughness, flank wear, chip morphology and cost estimation during hardened AISI 4340 steel machining with coated carbide insert. Mechanics of Advanced Materials and Modern Processes, v. 3, 9, 2017. DOI: https://doi.org/10.1186/s40759-017-0025-1.
FANGYUAN, Z.; CHUNZHENG, D.; WEI, S.; KANG, J. Effects of cutting conditions on the microstructure and residual stress of white and dark layers in cutting hardened steel. Journal of Materials Processing Technology, v. 266, p. 599-611, 2019. DOI: https://doi.org/10.1016/j.jmatprotec.2018.11.038.
FRODAL, B. H.; MORIN, D.; BORVIK, T.; HOPPERSTAD, O. S. On the effect of plastic anisotropy, strength and work hardening on the tensile ductility of aluminum alloys. International Journal of Solids and Structures, v. 188-189, p. 118-132, 2020. DOI: https://doi.org/10.1016/j.ijsolstr.2019.10.003.
GAITONDE, V. N.; KARNIK, S. R.; MACIEL, C.; RUBIO, J. C. C.; ABRÃO, A. M. Machinability evaluation in hard milling of AISI D2 steel. Materials Research, v. 19, n. 2, p. 360-369, 2016. DOI: https://doi.org/10.1590/1980-5373-MR-2015-0263.
GERE, J. M.; TIMOSHENKO, S. P. Mechanics of materials. 5. ed. Boston: PWS Publishing, 2001.
HASSANPOUR, H.; SADEGHI, M. H.; RASTI, A.; SHAJARI, S. Investigation of surface roughness, microhardness, and white layer thickness in hard milling of AISI 4340 using minimum quantity lubrication. Journal of Cleaner Production, v. 120, p. 124-134, 2016. DOI: https://doi.org/10.1016/j.jclepro.2015.12.091.
HUANG, W.; ZHAO, J.; NIU, J.; WANG, G.; CHENG, R. Comparison in surface integrity and fatigue performance for hardened steel ball-end milled with different milling speeds. Procedia CIRP, v. 71, p. 267-271, 2018. DOI: https://doi.org/10.1016/j.procir.2018.05.059.
IZOTOV, V. I.; GETMANOVA, M. E.; BURZHANOV, A. A.; KIREEVA, E. Y.; FILIPPOV, G. A. Effect of the pearlitic steel structure on the mechanical properties and fracture upon loading by static bending. The Physics of Metals and Metallography, v. 108, p. 606-615, 2009. DOI: https://doi.org/10.1134/S0031918X09120126.
JAMSHIDI, H.; MEJÍAS, F. C.; GHADBEIGI, H. A finite element assessment of the workpiece plastic deformation in machining of Ti-6Al-4V. Procedia CIRP, v.117, p. 62-67, 2023. DOI: https://doi.org/10.1016/j.procir.2023.03.012.
KERLINS, V. Modes of fracture. In: ASM International. ASM Metals Handbook Vol. 12 – Fractography. Cleveland, 1987. p. 34-63. DOI: https://doi.org/10.31399/asm.hb.v12.a0001831.
KUMAR, S.; SINGH, D.; KALSI, N. S. Analysis of surface roughness during hardened AISI 4340 steel machining using minimum quantity lubrication. Materials Today: Proceedings, v. 4, n. 2, Part A, p. 3627-3635, 2017. DOI: https://doi.org/10.1016/j.matpr.2017.02.255.
LEE, G. M.; LEE, J. U.; PARK, S. H. Effects of surface roughness on bending properties of rolled AZ31 alloy. Journal of Magnesium and Alloys, v. 11, n. 4, p. 1224-1235, 2023. DOI: https://doi.org/10.1016/j.jma.2021.11.029.
LI, M.; ZHAO, W.; LI, L.; HE, N.; STEPAN, G. Influence of milling stability on machined surface integrity and fatigue performance of Ti-6Al-4V titanium alloy. Engineering Failure Analysis, v. 168, 109103, 2025. DOI: https://doi.org/10.1016/j.engfailanal.2024.109103.
LI, W.; GUO, Y.; GUO, C. Superior surface integrity by sustainable dry hard milling and impact on fatigue. CIRP Annals, v. 62, n. 1, p. 567-570, 2013. DOI: https://doi.org/10.1016/j.cirp.2013.03.024.
LI, X.; GUAN, C.; ZHAO, P. Influences of milling and grinding on machined surface roughness and fatigue behavior of GH4169 superalloy workpieces. Chinese Journal of Aeronautics, v. 31, n. 6, p. 1399-1405, 2018. DOI: https://doi.org/10.1016/j.cja.2017.07.013.
LIANG, X.; LIU, Z.; WANG, B. State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: a review. Measurement, v. 132, p. 150-181, 2018. DOI: https://doi.org/10.1016/j.measurement.2018.09.045.
LIU, H.; SCHRAKNEPPER, D.; BERGS, T. Investigation of residual stresses and workpiece distortion during high-feed milling of slender stainless steel components. Procedia CIRP, v. 108, p. 495-500, 2022. DOI: https://doi.org/10.1016/j.procir.2022.03.077.
LU, X.; JIA, Z.; WANG, H.; FENG, Y.; LIANG, S. Y. The effect of cutting parameters on micro-hardness and the prediction of Vickers hardness based on a response surface methodology for micro-milling Inconel 718. Measurement, v. 140 p. 56-62, 2019. DOI: https://doi.org/10.1016/j.measurement.2019.03.037.
MOLCHANOV, L. N. Fractures and fracture energy of alloy steels are subject to static, impact, and repeated impact bending. Strength of Materials, v. 8, p. 651-655, 1976. DOI: https://doi.org/10.1007/BF01528123.
MÜNSTERMANN, S.; WECHSUWANMANEE, P.; LIU, W.; LIAN, J. Surface roughness influences on localization and damage during forming of DP1000 sheet steel. Procedia Manufacturing, v. 29, p. 504-511, 2019. DOI: https://doi.org/10.1016/j.promfg.2019.02.168.
NGUYEN, T.-T. Prediction and optimization of machining energy, surface roughness, and production rate in SKD61 milling. Measurement, v. 136, p. 525-544, 2019. DOI: https://doi.org/10.1016/j.measurement.2019.01.009.
PATEL, V. D.; GANDHI, A. H. Analysis and modeling of surface roughness based on cutting parameters and tool nose radius in turning of AISI D2 steel using CBN tool. Measurement, v. 138, p. 34-38, 2019. DOI: https://doi.org/10.1016/j.measurement.2019.01.077.
PEREIRA, J. C. C.; RODRIGUES, P. C. M.; ABRÃO, A. M. The surface integrity of AISI 1010 and AISI 4340 steels subjected to face milling. Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 39, p. 4069-4080, 2017. DOI: https://doi.org/10.1007/s40430-017-0870-1.
PEREZ, I.; MADARIAGA, A.; CUESTA, M.; GARAY, A.; ARRAZOLA, P. J.; RUIZ, J. J.; RUBIO, F. J.; SANCHEZ, R. Effect of cutting speed on the surface integrity of face milled 7050-T7451 aluminum workpieces. Procedia CIRP, v. 71, p. 460-465, 2018. DOI: https://doi.org/10.1016/j.procir.2018.05.034.
SALES, W. F.; SCHOOP, J.; SILVA, L. R. R.; MACHADO, Á. R.; JAWAHIR, I. S. A review of surface integrity in machining of hardened steels. Journal of Manufacturing Processes, v. 58, p 136-162, 2020. DOI: https://doi.org/10.1016/j.jmapro.2020.07.040.
SINGH, J.; KIM, M.-S.; CHOI, S.-H. The effect of initial texture on micromechanical deformation behaviors in Mg alloys under a mini-V-bending test. International Journal of Plasticity, v. 117. p. 33-57, 2019. DOI: https://doi.org/10.1016/j.ijplas.2018.01.008.
TAN, L.; YAO, C.; ZHANG, D.; REN, J.; ZHOU, Z.; ZHANG, J. Evolution of surface integrity and fatigue properties after milling, polishing, and shot peening of TC17 alloy blades. International Journal of Fatigue, v. 136, 105630, 2020. DOI: https://doi.org/10.1016/j.ijfatigue.2020.105630.
TOMADI, S.H.; GHANI, J. A.; HARON, C. H. C.; AYU, H. M.; DAUD, R. Effect of cutting parameters on surface roughness in end milling of AlSi/AlN metal matrix composite. Procedia Engineering, v. 184, p. 58-69, 2017. DOI: https://doi.org/10.1016/j.proeng.2017.04.071.
WECHSUWANMANEE, P.; LIAN, J.; SHEN, F.; MÜNSTERMANN, S. Influence of surface roughness on cold formability in bending processes: a multiscale modeling approach with the hybrid damage mechanics model. International Journal of Material Forming, v. 14, p. 235-248, 2021. DOI: https://doi.org/10.1007/s12289-020-01576-7.
WILLIANS, J.A.; DWYER-JOYCE, R. S. Contact between solid surfaces. In: BHUSHAN, B. (ed.). Modern tribology handbook. Boca Raton: CRC Press, 2001.
ZHAO, Y.; GONG, B.; LIU, Y.; ZHANG, W.; DENG, C. Fatigue behaviors of ultrasonic surface rolling processed AISI 1045: The role of residual stress and gradient microstructure. International Journal of Fatigue, v. 178, 107993, 2024. DOI: https://doi.org/10.1016/j.ijfatigue.2023.107993.
ZHENG, G.; CHENG, X.; DONG, Y.; LIU, H.; YU, Y. Surface integrity evaluation of high-strength steel with a TiCN-NbC composite coated tool by dry milling. Measurement, v. 166, 108204, 2020. DOI: https://doi.org/10.1016/j.measurement.2020.108204.
ZHOU, J.; QI, Q.; LIU, Q.; WANG, Z.; REN, J. Determining residual stress profile induced by end milling from measured thin plate deformation. Thin-Walled Structures, v. 200, 111862, 2024. DOI: https://doi.org/10.1016/j.tws.2024.111862.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Ueliton Carvalho Alves, Gian Narciso de Oliveira Remundini, Carlos Eiji Hirata Ventura

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta revista, seguindo as recomendações do movimento de Acesso Aberto, proporciona seu conteúdo em Full Open Access. Assim os autores conservam todos seus direitos permitindo que a Revista Principia possa publicar seus artigos e disponibilizar pra toda a comunidade.
A Revista Principia adota a licença Creative Commons 4.0 do tipo atribuição (CC-BY). Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, inclusive para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
Os autores estão autorizados a enviar a versão do artigo publicado nesta revista em repositório institucionais, com reconhecimento de autoria e publicação inicial na Revista Principia.
Demais informações sobre a Política de Direitos Autorais da Revista Principia encontram-se neste link.