Numerical study of cough droplets dispersion in indoor and quiescent environment: influence of droplet size and air humidity
DOI:
https://doi.org/10.18265/2447-9187a2025id8833Palavras-chave:
computational fluid dynamics, droplet dispersion, Eulerian-Lagrangian model, indoor transmission, phase coupling, relative humidity, respiratory dropletsResumo
The transmission of infectious respiratory diseases (IRDs) has been widely studied across various fields using different methods. The emergence of SARS-CoV-2 (COVID-19) in late 2019 has increased the importance of such research. While many quantitative studies have examined how phase coupling, droplet size, and relative humidity affect respiratory droplet behavior, this study specifically looks at how these factors influence horizontal and vertical dispersion distances. It also evaluates the impact of phase coupling between the continuous and discrete phases. An Eulerian-Lagrangian approach was used to simulate droplet dispersion in a calm indoor environment under different humidity conditions. The results show that both droplet size and relative humidity significantly affect dispersion distances. Notably, smaller droplets (1 µm in diameter) evaporated almost instantly after release. Droplets measuring 10 µm traveled shorter horizontal and vertical distances under low humidity compared to higher humidity environments, where they evaporated quickly. Larger droplets (100 µm) formed more compact particle clouds and traveled shorter overall distances. Among the sizes tested, intermediate droplets (50 µm) created the most dispersed clouds, resulting in the greatest travel distances. At 80% relative humidity, these droplets reached a maximum horizontal distance of about 1.40 meters, the furthest noted in this study, highlighting a potential critical condition for airborne IRD transmission. Larger droplets tend to contribute more to surface contamination because they fall quickly, while the tiniest droplets pose less risk for airborne transmission due to their rapid evaporation. The effects of phase coupling on both horizontal and vertical dispersion were minimal. In conclusion, this study enhances understanding of environmental factors that influence IRD transmission in enclosed, still-air settings. Based on these findings, it is recommended that indoor environments maintain low relative humidity and adequate spacing between occupants to reduce the spread of droplets produced by coughing.
Downloads
Métricas
Referências
ALIABADI, A. A.; ROGAK, S. N.; GREEN, S. I.; BARTLETT, K. H. CFD simulation of human coughs and sneezes: a study in droplet dispersion, heat, and mass transfer. In: ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, Vancouver, 2010. Proceedings [...]. Vancouver: ASME, 2010. p. 1051-1060, 2010. DOI: https://doi.org/10.1115/IMECE2010-37331.
ANSYS. ANSYS meshing user’s guide. Canonsburg, 2012.
AULER, A. C.; CÁSSARO, F. A. M.; SILVA, V. O.; PIRES, L. F. Evidence that high temperatures and intermediate relative humidity might favor the spread of COVID-19 in tropical climate: a case study for the most affected Brazilian cities. Science of the Total Environment, v. 729, 139090, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.139090.
AYTOGAN, H; AYINTAP, E.; YILMAZ, N. Ö. Detection of coronavirus disease 2019 viral material on environmental surfaces of an ophthalmology examination room. JAMA Ophthalmology, v. 138, n. 9, p. 990-993, 2020. DOI: http://dx.doi.org/10.1001/jamaophthalmol.2020.3154.
AYUBA, N.; LOPES, G. C. Investigation of the influence of turbulence models on cough droplet evaporation: comparing (SST) k-Ω, k-ε, and Reynolds stress (RSM) turbulence models. In: IANO, Y.; SAOTOME, O.; VÁSQUEZ, G. L. K.; PEZZUTO, C. C.; ARTHUR, R.; OLIVEIRA, G. G. (ed.). Proceedings of the 7th Brazilian Technology Symposium (BTSym’21). Cham: Springer, 2023. p. 151-162. DOI: https://doi.org/10.1007/978-3-031-04435-9_15.
AYUBA, N.; JUSTI, G. H.; LOPES, G. C. Numerical study of coughing in indoor environments: comparison between tetrahedral and hexahedral meshes. Computational and Applied Mathematics, v. 44, 222, 2025. DOI: https://doi.org/10.1007/s40314-025-03184-0.
BAHRAMIAN, A.; MOHAMMADI, M.; AHMADI, G. Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: an experimental study and transient CFD modeling. Science of The Total Environment, v. 858, Part 2, 159444, 2023. DOI: https://doi.org/10.1016/j.scitotenv.2022.159444.
BAZANT, M. Z.; BUSH, J. W. M. A guideline to limit indoor airborne transmission of COVID-19. Proceedings of the National Academy of Sciences, v. 118, n. 17, e2018995118, 2021. DOI: https://doi.org/10.1073/pnas.2018995118.
BRANCHE, A. R.; FALSEY, A. R. Respiratory syncytial virus infection in older adults: an under-recognized problem. Drugs & Aging, v. 32, p. 261-269, 2015. DOI: https://doi.org/10.1007/s40266-015-0258-9.
BHATTACHARJEE, S.; TOM, J.; CARBONE, M.; BRAGG, A. D. Investigating the parametric dependence of the impact of two-way coupling on inertial particle settling in turbulence. Journal of Fluid Mechanics, v. 987, A17, 2024. DOI: http://doi.org/10.1017/jfm.2024.322.
CENGEL, Y. A.; BOLES, M. A. Thermodynamics: an Engineering approach. 8. ed. New York: McGraw-Hill, 2015.
CHAO, C. Y. H.; WAN, M. P.; MORAWSKA, L.; JOHNSON, G. R.; RISTOVSKI, Z. D.; HARGREAVES, M.; MENGERSEN, K.; CORBETT, S.; LI. Y.; XIE. X.; KATOSHEVSKI, D. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. Journal of Aerosol Science, v. 40, n. 2, p. 122-133, 2009. DOI: https://doi.org/10.1016/j.jaerosci.2008.10.003.
CHILLÓN, S. A.; FERNANDEZ-GAMIZ, U.; ZULUETA, E.; UGARTE-ANERO, A.; BLANCO, J. M. Numerical performance of CO2 accumulation and droplet dispersion from a cough inside a hospital lift under different ventilation strategies. Scientific Reports, v. 14, 6843, 2024. DOI: https://doi.org/10.1038/s41598-024-57425-z.
CIBSE. Guide C: Reference Data. London: Chartered Institution of Building Services Engineers, 2015.
COLE, E. C.; COOK, C. E. Characterization of infectious aerosols in health care facilities: an aid to effective engineering controls and preventive strategies. American Journal of Infection Control, v. 26, n. 4, p. 453-464, 1998. DOI: https://doi.org/10.1016/S0196-6553(98)70046-X.
D'ALESSANDRO, V.; FALONE, M.; GIAMMICHELE, L.; RICCI, R. Eulerian-Lagrangian modeling of cough droplets irradiated by ultraviolet-C light in relation to SARS-CoV-2 transmission. Physics of Fluids, v. 33, n. 3, 031905, 2021. DOI: https://doi.org/10.1063/5.0039224.
DE BERTODANO, Martin A. Lopez. Two fluid model for two-phase turbulent jets. Nuclear engineering and design, v. 179, n. 1, p. 65-74, 1998.
DBOUK, T; DRIKAKIS, D. On coughing and airborne droplet transmission to humans. Physics of Fluids, v. 32, n. 5, 053310, 2020. DOI: https://doi.org/10.1063/5.0011960.
DHAND, R.; LI, J. Coughs and sneezes: their role in transmission of respiratory viral infections, including SARS-CoV-2. American Journal of Respiratory and Critical Care Medicine, v. 202, n. 5, p. 651-659, 2020. DOI: https://doi.org/10.1164/rccm.202004-1263PP.
ELGHANNAY, H. A.; TAFTI, D. K. Revised partial coupling in fluid-particulate systems. The Journal of Computational Multiphase Flows, v. 10, n. 4, p. 215-227, 2018. DOI: https://doi.org/10.1177/1757482X18791885.
FENG, Y.; LI, D.; MARCHISIO, D.; VANNI, M.; BUFFO, A. A computational fluid dynamics: population balance equation approach for evaporating cough droplets transport. International Journal of Multiphase Flow, v. 165, 104500, 2023.DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2023.104500.
GE, H.; ZHAO, P.; CHOI, S.; DENG, T.; FENG, Y.; CUI, X. Effects of face shield on an emitter during a cough process: a large-eddy simulation study. Science of The Total Environment, v. 831, 154856, 2022. DOI: https://doi.org/10.1016/j.scitotenv.2022.154856.
GRALTON, J.; TOVEY, E.; MCLAWS, M.-L.; RAWLINSON, W. D. The role of particle size in aerosolised pathogen transmission: a review. Journal of Infection, v. 62, n. 1, p. 1-13, 2011. DOI: https://doi.org/10.1016/j.jinf.2010.11.010.
GUAN, J. et al. Modeling the transmission of respiratory infectious agents: Does respiratory droplet size matter? Environmental Science & Technology, Washington, v. 54, n. 19, p. 11828–11835, 2020. DOI: https://doi.org/10.1021/acs.est.0c05895.
GUERRA, V. G.; ACHILES, A. E.; BÉTTEGA, R. Influence of droplet size distribution on liquid dispersion in a Venturi scrubber: experimental measurements and CFD simulation. Industrial & Engineering Chemistry Research, v. 56, n. 8, p. 2177-2187, 2017. DOI: https://doi.org/10.1021/acs.iecr.6b03761.
GUPTA, J. K.; LIN, C.-H.; CHEN, Q. Flow dynamics and characterization of a cough. Indoor Air – International Journal of Indoor Environment and Health, v. 19, n. 6, p. 517-525, 2009. DOI: https://doi.org/10.1111/j.1600-0668.2009.00619.x.
HAN, Z. Y.; WENG, W. G.; HUANG, Q. Y. Characterizations of particle size distribution of the droplets exhaled by sneeze. Journal of the Royal Society Interface, v. 10, n. 88, 20130560, 2013. DOI: https://doi.org/10.1098/rsif.2013.0560.
HINDS, W.C.; ZHU, Y. Aerosol technology: properties, behavior, and measurement of airborne particles. 3. ed. Wiley, 2022.
HONKINEN, M.; LAHTI, E.; ÖSTERBACK, R.; RUUSKANEN, O.; WARIS, M. Viruses and bacteria in sputum samples of children with community-acquired pneumonia. Clinical Microbiology and Infection, v. 18, n. 3, p. 300-307, 2012. DOI: https://doi.org/10.1111/j.1469-0691.2011.03603.x.
HÖPPE, P. Temperatures of expired air under varying climatic conditions. International Journal of Biometeorology, v. 25, p. 127-132, 1981. https://doi.org/10.1007/BF02184460.
KAMPF, G.; TODT, D.; PFAENDER, S.; STEINMANN, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection, v. 104, n. 3, p. 246-251, 2020. DOI: https://doi.org/10.1016/j.jhin.2020.01.022.
KUCHARSKI, A. J.; KLEPAC, P.; CONLAN, A. J.; KISSLER, S. M.; TANG, M. L.; FRY, H.; GOG, J. R; EDMUNDS, W. H. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. The Lancet Infectious Diseases, v. 20, n. 10, p. 1151-1160, 2020. DOI: https://doi.org/10.1016/s1473-3099(20)30457-6.
LANCMANOVÁ, A.; BODNÁR, T. Numerical simulations of human respiratory flows: a review. Discover Applied Sciences, v. 7, 24, 2025. DOI: https://doi.org/10.1007/s42452-025-06617-x.
LEE, J.; YOO, D.; RYU, S.; HAM, S.; LEE, K.; YEO, M.; MIN, K.; YOON, C. Quantity, size distribution, and characteristics of cough-generated aerosol produced by patients with an upper respiratory tract infection. Aerosol and Air Quality Research, v. 19, n. 4, p. 840-853, 2019. DOI: https://doi.org/10.4209/aaqr.2018.01.0031.
LI, H.; LEONG, F. Y.; XU, G.; GE, Z.; KANG, C. W.; LIM, K. H. Dispersion of evaporating cough droplets in tropical outdoor environment. Physics of Fluids, v. 32, n. 11, 2020. DOI: https://doi.org/10.1063/5.0026360.
LI, X.; SHANG, Y.; YAN, Y.; YANG, L.; TU, J. Modelling of evaporation of cough droplets in inhomogeneous humidity fields using the multi-component Eulerian-Lagrangian approach. Building and Environment, v. 128, p. 68-76, 2018. DOI: https://doi.org/10.1016/j.buildenv.2017.11.025.
MAGAR, A. M.; JOSHI, M.; RAJAGOPAL, P. S.; KHAN, A.; RAO, M. M.; SAPRA, B. K. CFD simulation of the airborne transmission of COVID-19 vectors emitted during respiratory mechanisms: revisiting the concept of safe distance. ACS Omega, v. 6, n. 26, p. 16876-16889, 2021. DOI: https://doi.org/10.1021/acsomega.1c01489.
MALALASEKERA, W; VERSTEEG, H. K. An introduction to computational fluid dynamics. Pearson, 2007.
MENTER, F. R.; KUNTZ, M.; LANGTRY, R. Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, v. 4, n. 1, p. 625-632, 2003.
MISHRA, P.; DAS, S. S.; YADAV, S.; KHAN, W.; AFZAL, M.; ALARIFI, A.; KENAWY, E-R.; ANSARI, M. T.; HASNAIN, S.; NAYAK, A. K. Global impacts of pre-and post-COVID-19 pandemic: focus on socio-economic consequences. Sensors International, v. 1, 100042, 2020. DOI: https://doi.org/10.1016/j.sintl.2020.100042.
MORAWSKA, L. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air – International Journal of Indoor Environment and Health, v. 16, p. 335-347, 2006. DOI: https://doi.org/10.1111/j.1600-0668.2006.00432.x.
MORRIS, S. J.; PARSONS, S. A. Introduction to rnvironmental rngineering. London: E & FN Spon, 2000.
NICAS, M.; NAZAROFF, W. W.; HUBBARD, A. Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. Journal of Occupational and Environmental Hygiene, v. 2, n. 3, p. 143-154, 2005. DOI: https://doi.org/10.1080/15459620590918466.
NINGTHOUJAM, R. COVID 19 can spread through breathing, talking, study estimates. Current Medicine Research and Practice, v. 10, n. 3, p. 132-133, 2020. DOI: https://doi.org/10.1016/j.cmrp.2020.05.003.
NORVIHOHO, L. K.; YIN, J.; ZHOU, Z.-F.; HAN, J.; CHEN, B.; FAN, L.-H.; LICHTFOUSE, E.
Mechanisms controlling the transport and evaporation of human exhaled respiratory droplets containing the severe acute respiratory syndrome coronavirus: a review. Environmental Chemistry Letters, v. 21, p. 1701-1727, 2023. DOI: https://doi.org/10.1007/s10311-023-01579-1.
OH, W.; OOKA, R.; KIKUMOTO, H.; HAN, M. Numerical modeling of cough airflow: Establishment of spatial-temporal experimental dataset and CFD simulation method. Building and Environment, v. 207, 108531, 2022. DOI: https://doi.org/10.1016/j.buildenv.2021.108531.
PATANKAR, S. V. Numerical heat transfer and fluid flow. CRC Press, 1980. DOI: https://doi.org/10.1201/9781482234213.
PERELLA, P.; TABARRA, M.; HATAYSAL, E.; POURNASR, A.; RENFREW, I. Minimising exposure to droplet and aerosolised pathogens: a computational fluid dynamics study. British Journal of Anaesthesia, v. 126, n. 2, p. 544-549, 2021. DOI: https://doi.org/10.1016/j.bja.2020.09.047.
POKHAREL, A.; AKKERMAN, V.; CELIK, I. B.; AXELBAUM, R. L.; ISLAS, A.; YANG, Z. Impact of particle loading and phase coupling on gas–solid flow dynamics: a case study of a two-phase, gas-solid flow in an annular pipe. Physics of Fluids, v. 33, n. 7, 073308, 2021. DOI: https://doi.org/10.1063/5.0054906.
REDROW, J.; MAO, S.; CELIK, I.; POSADA, J. A.; FENG, Z.-G. Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough. Building and Environment, v. 46, n. 10, p. 2042-2051, 2011. DOI: https://doi.org/10.1016/j.buildenv.2011.04.011.
ROACHE, P. J. Verification and validation in computational science and engineering. Albuquerque: Hermosa, 1998.
SANTANA, H. S.; SILVA, A. G. P.; LOPES, M. G. M.; RODRIGUES, A. C.; TARANTO, O. P.; SILVA JUNIOR, J. L. Computational methodology for the development of microdevices and microreactors with ANSYS CFX. MethodsX, v. 7, 100765, 2020. DOI: https://doi.org/10.1016/j.mex.2019.12.006.
SCHARFMAN, B. E.; TECHET, A. H.; BUSH, J. W. M.; BOUROUIBA, L. Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets. Experiments in Fluids, v. 57, 24, 2016. DOI: https://doi.org/10.1007/s00348-015-2078-4.
SCHILLER, L.; NAUMANN, A. A drag coefficient correlation. Zeitschrift des Vereins Deutscher Ingenieure, v. 77, p. 318-320, 1935.
SIRIGNANO, W. A. Fluid dynamics and transport of droplets and sprays. Cambridge University Press, 2009. DOI: https://doi.org/10.1017/CBO9780511529566.
SHYY, W.; THAKUR, S.; WRIGHT, J. Second-order upwind and central difference schemes for recirculating flow computation. AIAA Journal, v. 30, n. 4, p. 923-932, 1992. DOI: https://doi.org/10.2514/3.11010.
TAKII, A.; YAMAKAWA, M.; KITAGAWA, A.; WATAMURA, T.; CHUNG, Y. M.; KIM, M. Numerical model for cough‐generated droplet dispersion on moving escalator with multiple passengers. Indoor Air, v. 32, n. 11, e13131, 2022. DOI: https://doi.org/10.1111/ina.13131.
THAKUR, N.; MURTHY, H. Simulation study of droplet formation in inkjet printing using ANSYS FLUENT. Journal of Physics: Conference Series, v. 2161, 012026, 2022. DOI: https://doi.org/10.1088/1742-6596/2161/1/012026.
TRIVEDI, S.; GKANTONAS, S.; MESQUITA, L. C. C.; IAVARONE, S.; OLIVEIRA, P. M.; MASTORAKOS, E. Estimates of the stochasticity of droplet dispersion by a cough. Physics of Fluids, v. 33, n. 11, 115130, 2021. DOI: https://doi.org/10.1063/5.0070528.
TOM, J.; CARBONE, M.; BRAGG, A. D. How does two-way coupling modify particle settling and the role of multiscale preferential sweeping? Journal of Fluid Mechanics, v. 947, A7, 2022. DOI: https://doi.org/10.1017/jfm.2022.615.
VAN DER REIJDEN, W. A.; VEERMAN, E. C. I.; AMERONGEN, A. V. N. Shear rate dependent viscoelastic behavior of human glandular salivas. Biorheology, v. 30, n. 2, p. 141-152, 1993. DOI: https://doi.org/10.3233/BIR-1993-30205.
VEJERANO, E. P.; MARR, L. C. Physico-chemical characteristics of evaporating respiratory fluid droplets. Journal of The Royal Society Interface, v. 15, n. 139, 20170939, 2018. DOI: https://doi.org/10.1098/rsif.2017.0939.
WAI, K.-M.; YUAN, C.; LAI, A.; YU, P. K. N. Relationship between pedestrian-level outdoor thermal comfort and building morphology in a high-density city. Science of the Total Environment, v. 708, 134516, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2019.134516.
WANG, F; ZENG, Y; YAN, H. CFD-DEM study of impacts of the porous distributor medium on fluidization characteristics of a 2D-fluidized bed. Particuology, v. 87, p. 54-73, 2024. DOI: https://doi.org/10.1016/j.partic.2023.07.017.
WEBER, T. P.; STILIANAKIS, N. I. Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. Journal of Infection, v. 57, n. 5, p. 361-373, 2008. DOI: https://doi.org/10.1016/j.jinf.2008.08.013.
WEI, J; LI, Y. Enhanced spread of expiratory droplets by turbulence in a cough jet. Building and Environment, v. 93, Part 2, p. 86-96, 2015. DOI: https://doi.org/10.1016/j.buildenv.2015.06.018.
WHO – World Health Organization. Tuberculosis control and research strategies for the 1990's: memorandum from a WHO meeting. Bulletin of the World Health Organization (WHO), v. 70, n. 1, p. 17-21, 1992. Available at: https://europepmc.org/article/pmc/2393335. Accessed on: 02 jun. 2025.
WHO – World Health Organization. COVID-19 Cases, World. WHO COVID-19 dashboard, 2025. Available at: https://data.who.int/dashboards/covid19/cases?n=o. Accessed on: 02 jun. 2025.
WÖLFEL, R.; CORMAN, V. M.; GUGGEMOS, W.; SEILMAIER, M.; ZANGE, S.; MÜLLER, M. A.; NIEMEYER, D.; JONES, T. C.; VOLLMAR, P.; ROTHE, C.; HOELSCHER, M.; BLEICKER, T.; BRÜNINK, S.; SCHNEIDER, J.; EHMANN, R.; ZWIRGLMAIER, K.; DROSTEN, C.; WENDTNER, C. Virological assessment of hospitalized patients with COVID-2019. Nature, v. 581, p. 465-469, 2020. DOI: https://doi.org/10.1038/s41586-020-2196-x.
WU, J.; HE, F.; XIE, Z.; FU, M.; LI, Y.; WANG, J.; PAN, Y.; WENG, W. Review on respiratory infectious disease transmission mechanism: effects of human movement and facemask use. Emergency Management Science and Technology, v. 4, e004, 2024. DOI: https://doi.org/10.48130/emst-0024-0006.
YAN, Y.; LI, X.; TU, J. Thermal effect of human body on cough droplets evaporation and dispersion in an enclosed space. Building and Environment, v. 148, p. 96-106, 2019. DOI: https://doi.org/10.1016/j.buildenv.2018.10.039.
YANG, S.; LEE, G. W. M.; CHEN, C.-M.; WU, C.-C.; YU, K.-P. The size and concentration of droplets generated by coughing in human subjects. Journal of Aerosol Medicine, v. 20, n. 4, p. 484-494, 2007. DOI: https://doi.org/10.1089/jam.2007.0610.
ZAHARI, N. M.; ZAWAWI, M. H.; SIDEK, L. M.; MOHAMAD, D.; ITAM, Z.; RAMLI, M. Z.; SYAMSIR, A.; ABAS, A.; RASHID, M. Introduction of discrete phase model (DPM) in fluid flow: a review. AIP Conference Proceedings, v. 2030, n. 1, 020234, 2018. DOI: https://doi.org/10.1063/1.5066875.
ZHAO, Y.; CHENG, Y.; WU, C.; DING, Y.; JIN, Y. Eulerian-Lagrangian simulation of distinct clustering phenomena and RTDs in riser and downer. Particuology, v. 8, n. 1, p. 44-50, 2010. DOI: https://doi.org/10.1016/j.partic.2009.11.002.
ZODO, G.; KONKA, H.; STEVANOVIC, S.; SCHLUTER, J. Simulation of the transition of respiratory droplets to aerosol states: Implications for pathogen spread. Physics of Fluids, v. 37, n. 1,015188, 2025. DOI: https://doi.org/10.1063/5.0246654.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Nuhu Ayuba, Gabriel Henrique Justi, Gabriela Cantarelli Lopes

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta revista, seguindo as recomendações do movimento de Acesso Aberto, proporciona seu conteúdo em Full Open Access. Assim os autores conservam todos seus direitos permitindo que a Revista Principia possa publicar seus artigos e disponibilizar pra toda a comunidade.
A Revista Principia adota a licença Creative Commons 4.0 do tipo atribuição (CC-BY). Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, inclusive para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
Os autores estão autorizados a enviar a versão do artigo publicado nesta revista em repositório institucionais, com reconhecimento de autoria e publicação inicial na Revista Principia.
Demais informações sobre a Política de Direitos Autorais da Revista Principia encontram-se neste link.