Microstructural analysis and compressive strength evaluation of interlocking concrete paving blocks incorporating crumb rubber

Matheus David Inocente Domingos

ORCID iD Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, Paraná, Brasil

Allan de Oliveira Gomes

ORCID iD Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, Paraná, Brasil

Rafael de Oliveira Gomes

ORCID iD Instituto Federal do Paraná (IFPR), Curitiba, Paraná, Brasil

Wellington Mazer

ORCID iD Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, Paraná, Brasil

Resumo

Imaging Analysis Techniques (IATs) have become instrumental in civil engineering materials research, providing critical insights into the microstructural characteristics of mixtures and enabling associations between these features, numerical parameters, and laboratory-derived mechanical performance data. However, using IATs specifically for Concrete Paving Blocks (CPBs), particularly when modified with crumb rubber (CR), remains underexplored. In this study, two numerical parameters derived from IATs—interlocking parameter (PINT) and interlocking rate (IR)—were investigated for their correlations with the estimated compressive strength (fpk,est) of CPBs after a 28-day curing period. CPBs were prepared with CR at 5, 10, 15, and 20% by mass, with a reference concrete mixture designed per American standards for no-slump concrete and a target fpk,est of 50 MPa. PINT and IR were calculated using custom Python-based software developed by the authors. Consistent with prior findings, increasing CR content resulted in a decrease in fpk,est, a trend that was well-represented by linear and power regression models. Both IR and PINT showed potential for explaining the reductions in fpk,est, with IR demonstrating stronger predictive capabilities. Consequently, IR proves to be a promising parameter for describing the microstructural characteristics of CPBs, whether containing CR or not, due to its consistently good correlations with both fpk,est, and CR content.

Palavras-chave


compressive strength; concrete paving blocks; crumb rubber; microstructural parameters; slump test


Texto completo:

Referências


ADEBOJE, A. O.; MODUPE, A. E.; FADUGBA, O. G.; BUSARI, A. A. Characterization of modified crumb rubber interlocking paver. IOP Conference Series: Materials Science and Engineering, v. 1107, 012111, 2021. DOI: https://doi.org/10.1088/1757-899X/1107/1/012111.

ACI – AMERICAN CONCRETE INSTITUTE. Guide for selecting proportions for no-slump concrete. Report Number ACI 21.3R-02. Farmington Hills: ACI, 2002.

AMIN, M. A. M.; ZUKI, S. S. M.; SHAHIDAN, S.; GHADZALI, N. S.; NAZRI, F. M.; RAHIM, M. A.; AZMI, M. A. M.; IBRAHIM, M. H. W. Mechanical behaviour of concrete containing crumb rubber as partial fine aggregates replacement. IOP Conference Series: Earth and Environmental Science, v. 1022, 012043, 2022. DOI: https://doi.org/10.1088/1755-1315/1022/1/012043.

AWAN, H. H.; JAVED, M. F.; YOUSAF, A.; ASLAM, F.; ALABDULJABBAR, H.; MOSAVI, A. Experimental evaluation of untreated and pretreated crumb rubber used in concrete. Crystals, v. 11, n. 5, 558, 2021. DOI: https://doi.org/10.3390/cryst11050558.

BESSA, I. S.; BRANCO, V. T. F. C.; SOARES, J. B. Evaluation of different digital image processing software for aggregates and hot mix asphalt characterizations. Construction and Building Materials, v. 37, p. 370-378, 2012. DOI: https://doi.org/10.1016/j.conbuildmat.2012.07.051.

BIGNOZZI, M. C.; SANDROLINI, F. Tyre rubber waste recycling in self-compacting concrete. Cement and Concrete Research, v. 36, n. 4, p. 735-739, 2006. DOI: https://doi.org/10.1016/j.cemconres.2005.12.011.

BOMPA, D. V.; ELGHAZOULI, A. Y. Creep properties of recycled tire rubber concrete. Construction and Building Materials, v. 209, p. 126-134, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.127.

BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS. ABNT NBR 5738: Concreto – procedimento para moldagem e cura de corpos de prova. Rio de Janeiro: ABNT, 2003. In Portuguese.

BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS. ABNT NBR 9780: Peças de concreto para pavimentação – determinação da resistência à compressão. Rio de Janeiro: ABNT, 1987. In Portuguese.

BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS. ABNT NBR 9781: Peças de concreto para pavimentação – especificação e métodos de ensaio. Rio de Janeiro: ABNT, 2013. In Portuguese.

BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS. ABNT NBR NM 67: Concreto – determinação da consistência pelo abatimento do tronco de cone. Rio de Janeiro: ABNT, 2020. In Portuguese.

CAMPOS, H. F.; BELLON, A. L.; SILVA, E. R. L.; JUNIOR, M. V. Eco-efficient concrete, optimized by Alfred’s particle packing model, with partial replacement of Portland cement by stone powder. Revista IBRACON de Estruturas e Materiais, v. 15, n. 2, e15205, 2022. DOI: https://doi.org/10.1590/S1983-41952022000200005.

CARVALHO, A. R.; SILVA JÚNIOR, G.; FONTES, W. C.; SILVA, G. J. B.; PEDROTI, L. G.; OLIVEIRA, T. M. Influência do efeito fíler do pó de mármore na produção de concretos para pavimentos intertravados. Ambiente Construído, v. 23, n. 4, p. 217-239, 2023. DOI: https://doi.org/10.1590/s1678-86212023000400700. In Portuguese.

CHO, J.; KANG, J.; SONG, Y.; LEE, S.; YEON, J. Innovative imaging and analysis techniques for quantifying spalling repair materials in concrete pavements. Sustainability, v. 16, n. 1, 112, 2024. DOI: https://doi.org/10.3390/su16010112.

CRUZ, L. O. M. Pavimento intertravado de concreto: estudo dos elementos e métodos de dimensionamento. Tese (Mestrado em Ciências em Engenharia Civil) – Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2003. Available at: https://oasisbr.ibict.br/vufind/Record/BRCRIS_14185c357e2f4c1063f48a8d986804cf. Accessed on: 14 May 2024. In Portuguese.

DER-PR – DEPARTMENT OF THE STATE ROADS OF PARANÁ. Manual de execução de serviços rodoviários. 2. ed. Curitiba: DER/PR, 1996. In Portuguese.

FANIJO, E. O.; KOLAWOLE, J. T.; BABAFEMI, A. J.; LIU, J. A comprehensive review on the use of recycled concrete aggregate for pavement construction: properties, performance, and sustainability. Cleaner Materials, v. 9, 100199, 2023. DOI: https://doi.org/10.1016/j.clema.2023.100199.

FAUZAN, N. O. F.; ALBARQI, K.; MELINDA, A. P.; JAUHARI, Z. A. The effect of waste tyre rubber on mechanical properties of normal concrete and fly ash concrete. GEOMATE Journal, v. 20, n. 77, p. 55-61, 2021. DOI: https://doi.org/10.21660/2020.77.5737.

IRMAWATY, R.; NOOR, N. M.; MUHAIMIN, A. A. Feasibility of crumb rubber as fine aggregate in concrete. IOP Conference Series: Earth and Environmental Science, v. 419, 012054, 2020. DOI: https://doi.org/10.1088/1755-1315/419/1/012054.

IKPA, C. C.; ALANEME, G. U.; MBADIKE, E. M.; NNADI, E.; CHIGBO, I. C.; ABEL, C.; UDOUSORO, I. M.; ODUM, L. O. Evaluation of water quality impact on the compressive strength of concrete. Jurnal Kejuruteraan, v. 33, n. 3, p. 539-550, 2021. DOI: https://doi.org/10.17576/jkukm-2021-33(3)-15.

JEWELL, L. Concrete pavers. Landscape Architecture Magazine, v. 72, n. 4, p. 93-96, 1982. Available at: https://www.jstor.org/stable/44665631. Accessed on: 14 May 2024.

KIM, H.- T.; RAZAKAMANDIMBY, D. F. T.; SZILAGYI, V.; KIS, Z.; SZENTMIKLÓSI, L.; GLINICKI, M. A.; PARK, K. Reconstruction of concrete microstructure using complementarity of X-ray and neutron tomography. Cement and Concrete Research, v. 148, 106540, 2021. DOI: https://doi.org/10.1016/j.cemconres.2021.106540.

LIM, Z. H.; LEE, F. W.; MO, K. H.; LIM, J. H.; YEW, M. K.; KWONG, K. Z. Compressive strength forecasting of air-entrained rubberized concrete during the hardening process utilizing elastic wave method. Crystals, v. 10, n. 10, 912, 2020. DOI: https://doi.org/10.3390/cryst10100912.

LING, T.-C. Prediction of density and compressive strength for rubberized concrete blocks. Construction and Building Materials, v. 25, n. 11, p. 4303-4306, 2011. DOI: https://doi.org/10.1016/j.conbuildmat.2011.04.074.

LING, T.-C. Effects of compaction method and rubber content on the properties of concrete paving blocks. Construction and Building Materials, v. 28, n. 1, p. 164-175, 2012. DOI: https://doi.org/10.1016/j.conbuildmat.2011.08.069.

LING, T. C.; NOR, H. M.; KIM, S. K. Using recycled waste tyres in concrete paving blocks. Proceedings of the Institution of Civil Engineers – Waste and Resource Management, v. 163, n. 1, p. 37-45, 2010. DOI: https://doi.org/10.1680/warm.2010.163.1.37.

LONDERO, C.; KLEIN, N. S.; MAZER, W. Study of low-cement concrete mix-design through particle packing techniques. Journal of Building Engineering, v. 42, 103071, 2021. DOI: https://doi.org/10.1016/j.jobe.2021.103071.

LONDERO, C.; LENZ, L. A.; SANTOS, I. M. R.; KLEIN, N. S. Determinação da densidade de empacotamento de sistemas granulares compostos a partir da areia normal do IPT: comparação entre modelos de otimização de distribuição granulométrica e composições aleatórias. Cerâmica, v. 63, n. 365, p. 22-33. 2017. DOI: https://doi.org/10.1590/0366-69132017633652018. In Portuguese.

MASAD, E.; MUHUNTHAN, B.; SHASHIDHAR, N.; HARMAN, T. Internal structure characterization of asphalt concrete using image analysis. Journal of Computing in Civil Engineering, v. 13, n. 2, p. 88-95, 1999. DOI: https://doi.org/10.1061/(ASCE)0887-3801(1999)13:2(88).

MENG, Y.; LING, T.-C.; MO, K. H. Recycling of wastes for value-added applications in concrete blocks: an overview. Resources, Conservation and Recycling, v. 138, p. 298-312, 2018. DOI: https://doi.org/10.1016/j.resconrec.2018.07.029.

MOHAMAD, H. M.; BOLONG, N.; SAAD, I.; GUNGAT, L.; TIOON, J.; PILEH, R.; DELTON, M. Manufacture of concrete paver block using waste materials and by-products: a review. GEOMATE Journal, v. 22, n. 93, p. 9-19, 2022. DOI: https://doi.org/10.21660/2022.93.j2363.

MOINI, M.; FLORES-VIVIAN, I.; AMIRJANOV, A.; SOBOLEV, K. The optimization of aggregate blends for sustainable low cement. Construction and Building Materials, v. 93, p. 627-634, 2015. DOI: https://doi.org/10.1016/j.conbuildmat.2015.06.019.

MORENO, S. Brasil descarta, por ano, mais de 450 mil toneladas de pneus. Agência Brasil, Brasília, 14 Jul. 2022. Available at: https://agenciabrasil.ebc.com.br/radioagencia-nacional/geral/audio/2022-07/brasil-descarta-por-ano-mais-de-450-mil-toneladas-de-pneus. Accessed on: 14 May 2024. In Portuguese.

NATIONAL DEPARTMENT OF ROADS. DNER ME 035/98: Agregados – determinação da abrasão “Los Angeles”. Rio de Janeiro: DNER, 1998. In Portuguese.

NATIONAL DEPARTMENT OF ROADS. DNER ME 054/97: Equivalente de areia. Rio de Janeiro: DNER, 1997. In Portuguese.

NATIONAL DEPARTMENT OF TRANSPORT INFRASTRUCTURE. DNIT 031/2006-ES: Pavimentos flexíveis – concreto asfáltico – especificação de serviço. Rio de Janeiro: DNIT, 2006. In Portuguese.

NATIONAL DEPARTMENT OF TRANSPORT INFRASTRUCTURE. Manual de pavimentos rígidos. 2. ed. Rio de Janeiro: DNIT, 2005. In Portuguese.

PATIL, A. R.; SATHE, S. B. Feasibility of sustainable construction materials for concrete paving blocks: a review on waste foundry sand and other materials. Materials Today: Proceedings, v. 43, n. 2, p. 1552-1561, 2021. DOI: https://doi.org/10.1016/j.matpr.2020.09.402.

PEDROSO, L. S. Avaliação de pavers de concreto com agregado reciclado de PET para aplicação em ambiência rural. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Agrícola) – Universidade Federal do Pampa, Alegrete, 2023. Available at: https://repositorio.unipampa.edu.br/jspui/handle/riu/9124. Accessed on: 14 may 2024. In Portuguese.

POLACZYK, P.; MA, Y.; JARRAR, Z.; JIANG, X.; XIAO, R.; HUANG, B. Quantification of asphalt mixture interlocking utilizing 2D and 3D image processing. Journal of Materials in Civil Engineering, v. 35, n. 1, 04022382, 2023. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0004560.

RAHMAN, M. M.; BEECHAM, S.; IQBAL, A.; KARIM, M. R.; RABBI, A. T. Z. Sustainability assessment of using recycled aggregates in concrete block pavements. Sustainability, v. 12, n. 10, 4313, 2020. DOI: https://doi.org/10.3390/su12104313.

RATHAN, R. T. A. S.; SUNITHA, V. Mechanical and microstructural study on interlocking concrete block pavers using waste granite dust. International Journal of Pavement Engineering, v. 23, n. 2, p. 358-371, 2022. DOI: https://doi.org/10.1080/10298436.2020.1746312.

RETHINAVELSAMY, B. M.; CHIDAMBARATHANU, N. Investigation on precast concrete paver block with waste tyre crumb rubber. Road Materials and Pavement Design, v. 17, n. 3, p. 719-736, 2016. DOI: https://doi.org/10.1080/14680629.2015.1119056.

SALÁK, M.; KHMUROVSKA, Y.; STEMBERK, P. Application of imaging techniques and image analysis to concrete samples. In: INATERNATIONAL CONFERE NCE SPECIAL CONCRETE AND COMPOSITES 2020, 17., 2020, Skalsky Dvur. Proceedings […].Skalsky Dvur: AIP, v. 2322, n. 1, 020033, 2021. DOI: https://doi.org/10.1063/5.0041800.

SEFIDMAZGI, N. R.; TASHMAN, L.; BAHIA, H. U. Internal structure characterization of asphalt mixtures for rutting performance using imaging analysis. Road Materials and Pavement Design, v. 13, n. S1, p. 21-37, 2012. DOI: https://doi.org/10.1080/14680629.2012.657045.

SILVA, F. M.; BARBOSA, L. A. G.; LINTZ, R. C. C.; JACINTHO, A. E. P. G. A. Investigation on the properties of concrete tactile paving blocks made with recycled tire rubber. Construction and Building Materials, v. 91, p. 71-79, 2015. DOI: https://doi.org/10.1016/j.conbuildmat.2015.05.027.

SILVA, W.; PICADO-SANTOS, L.; BARROSO, S.; CABRAL, A. E. B.; STEFANUTTI, R. Assessment of interlocking concrete block pavement with by-products and comparison with an asphalt pavement: a review. Applied Sciences, v. 13, n. 10, 5846, 2023a. DOI: https://doi.org/10.3390/app13105846.

SILVA, W. B. C.; BARROSO, S. H. A.; CABRAL, A. E. B.; STEFANUTTI, R.; PICADO-SANTOS, L. G. Analysis of the feasibility of manufacturing concrete paving blocks with recycled aggregates from construction and demolition waste. Transportes, v. 31, n. 1, e2860, 2023b. DOI: https://doi.org/10.58922/transportes.v31i1.2860.

SOHAIL, M. G.; WANG, B.; JAIN, A.; KAHRAMAN, R.; OZERKAN, N. G.; GENCTURK, B.; DAWOOD, M.; BELARBI, A. Advancements in concrete mix designs: high-performance and ultrahigh-performance concretes from 1970 to 2016. Journal of Materials in Civil Engineering, v. 30, n. 3, 04017310, 2018. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002144.

SONI, R.; MATHUR, D. An experimental study on using of commercialized crumb rubber in interlocking concrete paver block. International Journal of Recent Research and Review, v. 13, n. 2, p. 25-29, 2020. Available at: https://www.ijrrr.com/issues13-2.htm. Accessed on: 25 jun. 2024.

STÅHLE, L.; WOLD, S. Analysis of variance (ANOVA). Chemometrics and Intelligent Laboratory Systems, v. 6, n. 4, p. 259-272, 1989. DOI: https://doi.org/10.1016/0169-7439(89)80095-4.

SUKONTASUKKUL, P.; CHAIKAEW, C. Properties of concrete pedestrian block mixed with crumb rubber. Construction and Building Materials, v. 20, n. 7, p. 450-457, 2006. DOI: https://doi.org/10.1016/j.conbuildmat.2005.01.040.

THAKUR, A.; SENTHIL, K.; SHARMA, R.; SINGH, A. P. Employment of crumb rubber tyre in concrete masonry bricks. Materials Today: Proceedings, v. 32, n. 4, p. 553-559, 2020. DOI: https://doi.org/10.1016/j.matpr.2020.02.106.

WANG, X.; CHIN, C. S.; XIA, J. Material characterization for sustainable concrete paving blocks. Applied Sciences, v. 9, n. 6, 1197, 2019. DOI: https://doi.org/10.3390/app9061197.

YEO, J. S.; KOTING, S.; ONN, C. C.; MO, K. H. An overview on the properties of eco-friendly concrete paving blocks incorporating selected waste materials as aggregate. Environmental Science and Pollution Research, v. 28, p. 29009-29036, 2021. DOI: https://doi.org/10.1007/s11356-021-13836-3.

YOU, Z.; ADHIKARI, S.; KUTAY, M. E. Dynamic modulus simulation of the asphalt concrete using the X-ray computed tomography images. Materials and Structures, v. 42, n. 5, p. 617-630, 2009. DOI: https://doi.org/10.1617/s11527-008-9408-4.

YUE, Z. Q.; BEKKING, W.; MORIN, I. Application of digital image processing to quantitative study of asphalt concrete microstructure. Transportation Research Record, n. 1492, p. 53-60, 1995. Available at: https://onlinepubs.trb.org/Onlinepubs/trr/1995/1492/1492-007.pdf. Accessed on: 14 may 2024.

ZHANG, J.; SHE, R.; DAI, Z.; MING, R.; MA, G.; CUI, X.; LI, L. Experimental simulation study on pore clogging mechanism of porous pavement. Construction and Building Materials, v. 187, p. 803-818, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.199.


DOI: http://dx.doi.org/10.18265/2447-9187a2025id8656

O arquivo PDF selecionado deve ser carregado no navegador caso tenha instalado um plugin de leitura de arquivos PDF (por exemplo, uma versão atual do Adobe Acrobat Reader).

Como alternativa, pode-se baixar o arquivo PDF para o computador, de onde poderá abrí-lo com o leitor PDF de sua preferência. Para baixar o PDF, clique no link abaixo.

Caso deseje mais informações sobre como imprimir, salvar e trabalhar com PDFs, a Highwire Press oferece uma página de Perguntas Frequentes sobre PDFs bastante útil.

Visitas a este artigo: 5

Total de downloads do artigo: 3