- Submissão
- Submissão online
- Diretrizes para Autores
- Declaração de Direito Autoral
- Política de Privacidade
- Sobre este sistema de publicação
- Sobre
- Foco e Escopo
- Equipe Editorial
- História da Revista Principia
- Normas de homogeneidade
- Comitê de ética
- Política de ética para autores, Conselho Editorial e avaliadores
- Política de retirada de artigos
- Perguntas e respostas frequentes
- Equipe de apoio da Revista Principia
- Conflito de interesses
- Plano de Desenvolvimento Editorial da Revista Principia
- Princípios DEIA (Diversidade, Equidade, Inclusão e Acessibilidade)
- Normas para números especiais na Revista Principia
- Princípios FAIR
- Curso de Escrita Científica - ACS - Prof. Osvaldo
- Sites e manuais sobre boas práticas científicas
Time series forecasting with exogenous variables: a literature review to identify promising gaps in computational research
Resumo
This study presents a comprehensive literature review on integrating exogenous variables in time series forecasting, with a particular focus on financial markets. Both traditional statistical methods, such as ARIMA and SARIMA, and machine learning techniques, like neural networks and support vector regression, are systematically examined, emphasizing their impact on prediction accuracy and the practical challenges involved. Significant research gaps are identified through an in-depth analysis of the existing literature, especially regarding the application of hybrid models and advanced computational techniques. Unlike previous reviews, this paper highlights the potential of combining traditional and machine learning approaches to handle multidimensional data from various external sources better. Addressing these gaps could enhance the robustness and precision of financial forecasting models, offering valuable insights to academic researchers and industry practitioners navigating volatile market environments. The paper consolidates current knowledge and underscores promising computational opportunities that could transform time series forecasting.
Palavras-chave
computational techniques; exogenous variables; financial markets; time series forecasting
Texto completo:
Referências
AN, S.; LIU, W.; VENKATESH, S. Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recognition, v. 40, n. 8, p. 2154-2162, 2007. DOI: https://doi.org/10.1016/j.patcog.2006.12.015.
ANGRIST, J. D.; IMBENS, G. W.; RUBIN, D. B. Identification of causal effects using instrumental variables. Journal of the American Statistical Association, v. 91, n. 434, p. 444-455, 1996. DOI: https://doi.org/10.2307/2291629.
ANTWI, A.; KYEI, K. A.; GILL, R. S. The use of mutual information to improve value-at-risk forecasts for exchange rates. IEEE Access, v. 8, p. 179881-179900, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3027631.
AL-ANZI, F. S.; ZEINA, D. A. Statistical Markovian data modeling for natural language processing. International Journal of Data Mining & Knowledge Management Process (IJDKP), v. 7, n. 1, p. 25-35, 2017. DOI: https://doi.org/10.5121/ijdkp.2017.7103.
BANDARA, K.; BERGMEIR, C.; HEWAMALAGE, H. LSTM-MSNet: leveraging forecasts on sets of related time series with multiple seasonal patterns. IEEE Transactions on Neural Networks and Learning Systems, v. 32, n. 4, p. 1586-1599, 2021. DOI: https://doi.org/10.1109/TNNLS.2020.2985720.
BARAKAT, E. H.; QAYYUM, M. A.; HAMED, M. N.; AL-RASHED, S. A. Short term peak demand forecasting in fast developing utility with inherent dynamic load characteristics. IEEE Transactions on Power, v. 5, n. 3, p. 813-824, 1990. DOI: https://doi.org/10.1109/59.65910.
BATRES-ESTRADA, G. Deep learning for multivariate financial time series. 2015. Degree Project (Mathematical Statistics) – KTH Royal Institute of Technology, Stockholm, 2015. Available at: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A820891&dswid=-2616. Accessed on: 06 sep. 2024.
BEERAM, S. R.; KUCHIBHOTLA, S. A survey on state-of-the-art financial time series prediction models. In: 2021 International Conference on Computing Methodologies and Communication (ICCMC), 5., 2021, Erode. Proceedings […]. Erode: IEEE, p. 596-604, 2021. DOI: https://doi.org/10.1109/ICCMC51019.2021.9418313.
BUKHARI, A. H.; RAJA, M. A. Z.; SULAIMAN, M.; ISLAM, S.; SHOAIB, M.; KUMAM, P. Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting. IEEE Access, v. 8, p. 71326-71338, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.2985763.
CHRISTIANSEN, R.; PFISTER, N.; JAKOBSEN, M. E.; GNECCO, N.; PETERS, J. A causal framework for distribution generalization. IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 44, n. 10, p. 6614-6630, 2022. DOI: https://doi.org/10.1109/TPAMI.2021.3094760.
EL-KEIB, A. A.; MA, X. M.; MA, H. Advancement of statistical-based modeling for short-term load forecasting. Electric Power Systems Research, v. 35, n. 1, p. 51-58, 1995. DOI: https://doi.org/10.1016/0378-7796(95)00987-6.
FILIPOVSKA, M.; MAHMASSANI, H. S. Spatio-temporal characterization of stochastic dynamic transportation networks. IEEE Transactions on Intelligent Transportation Systems, v. 24, n. 9, p. 9929-9939, 2023. DOI: https://doi.org/10.1109/TITS.2023.3276190.
GOODWIN, P. The Holt-Winters approach to exponential smoothing: 50 years old and going strong. Foresight, v. 19, p. 30-33, 2010.
HAQ, M. R.; NI, Z. A new hybrid model for short-term electricity load forecasting. IEEE Access, v. 7, p. 125413-125423, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2937222.
HANI’AH, M.; ABDULLAH, M. Z.; SABILLA, W. I.; AKBAR, S.; SHAFARA, D. R. Google trends and technical indicator based machine learning for stock market prediction. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, v. 22, n. 2, p. 271-284, 2023. DOI: https://doi.org/10.30812/matrik.v22i2.2287.
HUANG, C.-L.; WANG, C.-J. A GA-based feature selection and parameters optimization for support vector machines. Expert Systems with Applications, v. 31, n. 2, p. 231-240, 2006. DOI: https://doi.org/10.1016/j.eswa.2005.09.024.
KABRAN, F. B.; ÜNLÜ, K. D. A two-step machine learning approach to predict S&P 500 bubbles. Journal of Applied Statistics, v. 48, n. 13-15, p. 2776-2794, 2021. DOI: https://doi.org/10.1080/02664763.2020.1823947.
KIM, K.-J.; HAN, I. Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert Systems with Applications, v. 19, n. 2, p. 125-132, 2000. DOI: https://doi.org/10.1016/S0957-4174(00)00027-0.
LIMA, R. D. T.; FERNANDES, S. M. M.; MELO, I. P. L. Fourier genetic series: an evolutionary time series modeling technique. In: 2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI), 2019, Guayaquil. Proceedings […]. Guayaquil: IEEE, p. 1-6, 2019. DOI: https://doi.org/10.1109/LA-CCI47412.2019.9037031.
LIU, T. Application of Markov chains to analyze and predict the time series. Modern Applied Science, v. 4, n. 5, 2010. DOI: http://dx.doi.org/10.5539/mas.v4n5p162.
MARES, J. J.; CHARRIS, D.; PARDO, M.; QUINTERO M, C. G. An architecture to improve energy-related time-series model validity based on the novel rMAPE performance metric. IEEE Access, v. 11, p. 36004-36014, 2023. DOI: https://doi.org/10.1109/ACCESS.2023.3264713.
MONTGOMERY, D. C.; PECK, E. A.; VINING, G. G. Introduction to linear regression analysis. 6. ed. Wiley, 2021.
OKKAOGLU, Y.; AKDI, Y.; ÜNLÜ, K. D. Daily PM10, periodicity, and harmonic regression model: the case of London. Atmospheric Environment, v. 238, 117755, 2020. DOI: https://doi.org/10.1016/j.atmosenv.2020.117755.
OZMEN, M. I.; YILMAZ, A.; BAYKARA, C.; OZSOYSAL, O. A. Modelling fuel consumption and NOx emission of a medium-duty truck diesel engine with comparative time-series methods. IEEE Access, v. 9, p. 81202-81209, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3082030.
PENG, H.; OZAKI, T.; HAGGAN-OZAKI, V.; TOYODA, Y. A parameter optimization method for radial bias function type models. IEEE Transactions on Neural Networks, v. 14, n. 2, p. 432-438, 2003. DOI: https://doi.org/10.1109/TNN.2003.809395.
PETTICREW, M.; ROBERTS, H. Systematic reviews in the social sciences: a practical guide. Wiley, 2006. DOI: https://doi.org/10.1002/9780470754887.
REN, Z. J.; LOWRY, G. V.; BOEHM, A. B.; BROOKS, B. W.; GAGO-FERRERO, P.; JIANG, G.; JONES, G. D.; LIU, Q.; WANG, S.; ZIMMERMAN, J. B. Data science for advancing environmental science, engineering, and technology. Environmental Science & Technology, v. 57, n. 46, p. 17661-17662, 2023. DOI: https://doi.org/10.1021/acs.est.3c08700.
RUNDO, F.; TRENTA, F.; STALLO, A. L.; BATTIATO, S. Machine learning for quantitative finance applications: a survey. Applied Sciences, v. 9, n. 24, 5574, 2019. DOI: https://doi.org/10.3390/app9245574.
SASONGKO, R. S; PRASETYO, E.; PURBANINGTYAS, R. System prediction production PT. VICO Indonesia using method Holt-Winters. Journal of Electrical Engineering and Computer Sciences (JEECS), v. 2, n. 1, p. 221-230, 2017. DOI: https://doi.org/10.54732/jeecs.v2i1.166.
SEZER, O. B.; GUDELEK, M. U.; OZBAYOGLU, A. M. Financial time series forecasting with deep learning: a systematic literature review: 2005-2019. Applied Soft Computing, v. 90, 106181, 2020. DOI: https://doi.org/10.1016/j.asoc.2020.106181.
SGARLATO, R.; ZIEL, F. The role of weather predictions in electricity price forecasting beyond the day-ahead horizon. IEEE Transactions on Power Systems, v. 38, n. 3, p. 2500-2511, 2023. DOI: https://doi.org/10.1109/TPWRS.2022.3180119.
SUN, C.-Y.; YIN, Y.-Z.; KANG, H.-B.; MA, H.-J. A quality-related fault detection method based on the dynamic data-driven algorithm for industrial systems. IEEE Transactions on Automation Science and Engineering, v. 19, n. 4, p. 3942-3952, 2022. DOI: https://doi.org/10.1109/TASE.2021.3139766.
TASKAYA-TEMIZEL, T.; CASEY, M. C. A comparative study of autoregressive neural network hybrids. Journal of Neural Networks, v. 18, n. 5-6, p. 781-789, 2005. DOI: https://doi.org/10.1016/j.neunet.2005.06.003.
THOMÉ, A. M. T.; SCAVARDA, L. F. S.; SCAVARDA, A. J. Conducting systematic literature review in operations management. Production Planning Control, v. 27, n. 5, p. 408-420, 2016. DOI: https://doi.org/10.1080/09537287.2015.1129464.
TOLEDO, J. F.; SIQUEIRA, H. V.; BIUK, L. H.; SACCHI, R.; AZAMBUJA, R. R.; ASANO JUNIOR, R.; ASANO, P. T. L. Climate indices impact in monthly streamflow series forecasting. IEEE Access, v. 11, p. 21451-21464, 2023. DOI: https://doi.org/10.1109/ACCESS.2023.3237982.
VAPNIK, V. N. The nature of statistical learning theory. 2. ed. Springer-Verlag, 2000. DOI: https://doi.org/10.1007/978-1-4757-3264-1.
VILMAREST, J.; GOUDE, Y. State-space models for online post-covid electricity load forecasting competition. IEEE Open Access Journal of Power and Energy, v. 9, p. 192-201, 2022. DOI: https://doi.org/10.1109/OAJPE.2022.3141883.
WEN, H.; DU, Y.; CHEN, X.; LIM, E.; WEN, H.; JIANG, L.; XIANG, W. Deep learning based multistep solar forecasting for PV ramp-rate control using sky images. IEEE Transactions on Industrial Informatics, v. 17, n. 2, p. 1397-1406, 2021. DOI: https://doi.org/10.1109/TII.2020.2987916.
XAVIER, A. L. S.; FERNANDES, B. J. T.; OLIVEIRA, J. F. L. A hybrid swarm-based system for commodity price forecasting during the COVID-19 pandemic. IEEE Access, v. 11, p. 74379-74387, 2023. DOI: https://doi.org/10.1109/ACCESS.2023.3293738.
ZHANG, G. P.; QI, M. Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, v. 160, n. 2, p. 501-514, 2005. DOI: https://doi.org/10.1016/j.ejor.2003.08.037.
ZHOU, H.; ZHANG, Y.; YANG, L.; LIU, Q.; YAN, K.; DU, Y. Short-term photovoltaic power forecasting based on long short-term memory neural network and attention mechanism. IEEE Access, v. 7, p. 78063-78074, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2923006.
Visitas a este artigo: 109
Total de downloads do artigo: 33