- Submissão
- Submissão online
- Diretrizes para Autores
- Declaração de Direito Autoral
- Política de Privacidade
- Sobre este sistema de publicação
- Sobre
- Foco e Escopo
- Equipe Editorial
- História da Revista Principia
- Normas de homogeneidade
- Comitê de ética
- Política de ética para autores, Conselho Editorial e avaliadores
- Política de retirada de artigos
- Perguntas e respostas frequentes
- Equipe de apoio da Revista Principia
- Conflito de interesses
- Plano de Desenvolvimento Editorial da Revista Principia
- Princípios DEIA (Diversidade, Equidade, Inclusão e Acessibilidade)
- Normas para números especiais na Revista Principia
- Princípios FAIR
- Curso de Escrita Científica - ACS - Prof. Osvaldo
- Sites e manuais sobre boas práticas científicas
Identification of short-circuits in electronic boards using electrical impedance spectroscopy
Resumo
The increasing dependence on electronics in both industrial and public sectors highlights the critical importance of high-quality printed circuit boards (PCBs) to ensure reliability and user confidence. Traditional fault detection methods include visual inspections, automated optical inspection (AOI), in-circuit testing (ICT), and functional testing. However, these methods may not effectively detect subtle faults, such as early-stage corrosion or tiny unintended conductive paths, which could later lead to failures. Electrical Impedance Spectroscopy (EIS) emerges as a powerful tool in this context due to its non-destructive nature and its ability to provide detailed insights into the electrical properties of materials and structures within a PCB. This study aims to investigate the types of faults in printed circuits using Electrical Impedance Spectroscopy (EIS). A printed circuit board was developed using phenolic material with varying track thicknesses to simulate short circuits and different levels of corrosion. Measurements of the electrical impedance spectrum between the track and the ground plane were conducted over a range of 1 to 500 kHz. The distances between tracks were measured using high-resolution microscope images. The key finding from this study is that the phase of the electrical impedance increases with the severity of the short circuit, particularly in thinner tracks. This demonstrates the potential of EIS to detect and quantify faults that other methods may misidentify, offering a quantitative approach to assessing and potentially predicting PCB failures before they lead to device malfunctions.
Palavras-chave
corrosion; electrical impedance spectroscopy; printed circuit board; short-circuit
Texto completo:
Referências
ABREU, C. P.; ASSIS, C. M.; SUEGAMA, P. H.; COSTA, I.; KEDDAM, M.; MELO, H. G.; VIVIER, V. Influence of probe size for local electrochemical impedance measurements. Electrochimica Acta, v. 233, p. 256-261, 2017. DOI: https://doi.org/10.1016/j.electacta.2017.03.017.
AMBAT, R. A review of corrosion and environmental effects on electronics. The Technical University of Denmark, DMS vintermøde proceedings, 2006. Available at: https://www.er-emergency.com/wp-content/uploads/2012/02/A-review-of-Corrosion-and-environmental-effects-on-electronics.pdf. Accessed on: 13 set. 2024.
ASTM – AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard test method for calibration of atmospheric corrosion test chambers by change in mass of copper coupons. B810–01a, West Conshohocken: ASTM, 2022. DOI: https://doi.org/10.1520/B0810-01AR22.
ASTM – AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard test method for coulometric reduction of surface films on metallic test samples, B825-19, West Conshohocken: ASTM, 2019. DOI: https://doi.org/10.1520/B0825-19.
CHEN, Y.; HUA, Y.; KHOO, B. S.; LEONG, H.; BAGULBAGUL, V.; WANG, Y;, PAN, Y.; CHAN, E.; CHEN, M.; WANG, J. Y.; SHEN, Y.; NIU, Z.; GOH, J. X.; ABELLA, E. T. S.; LI, X. Comprehensive physical and chemical characterization of the galvanic corrosion induced failures. In: 2016 INTERNATIONAL SYMPOSIUM ON THE PHYSICAL AND FAILURE ANALYSIS OF INTEGRATED CIRCUITS (IPFA), 23., 201, Singapore. Proceedings […]. Singapore: IEEE, 2016. DOI: https://doi.org/10.1109/IPFA.2016.7564312.
DAS, A.; REDDY, C. C. An analytical approach to locate short circuit fault in a cable using sweep frequency response analysis. IEEE Transactions on Industrial Electronics, v. 70, n. 5, p. 5235-5244, 2022. DOI: https://doi.org/10.1109/TIE.2022.3189080.
DRESLINSKI, R. G.; WIECKOWSKI, M.; BLAAUW, D.; SYLVESTER, D.; MUDGE, T. Near-threshold computing: reclaiming Moore’s law through energy efficient integrated circuits. Proceedings of the IEEE, v. 98, n. 2, p. 253-266, 2010. DOI: https://doi.org/10.1109/JPROC.2009.2034764.
FLORÊNCIO, H. M.; CORREA, E. F.; AMORIM, L. G. P. Prototipagem e montagem de placa de circuito impresso. Natal: EdUFRN, 2014. Available at: https://materialpublic.imd.ufrn.br/curso/disciplina/2/64. Accessed on: 09 set. 2024. In Portuguese.
FU, H.; LEE, D.; LEE, J.; TONG, G.; LEE, S.; SINGH, P.; KAZI, A.; NAILOS, M.; ABLES, W.; GUO, K.; JIANG, G. D. Creep corrosion failure analysis on ENIG printed circuit boards. In: 2015 INTERNATIONAL MICROSYSTEMS, PACKAGING, ASSEMBLY, AND CIRCUITS TECHNOLOGY CONFERENCE (IMPACT), 10., 2015, Taipei. Proceedings […]. Taipei: IEEE, 2015. DOI: https://doi.org/10.1109/IMPACT.2015.7365207.
GONG, L.; DU, C.; ZHAO, K.; ZHAO, S.; WANG, W. Location of cable joint with moisture based on short-circuit response. In: 2022 INTERNATIONAL CONFERENCE ON POWER AND ENERGY TECHNOLOGY (ICPET), 4., 2022, Beijing. Proceedings […]. Beijing: IEEE, 2022, p. 5235-5244. DOI: https://doi.org/10.1109/ICPET55165.2022.9918440.
JADHAV, N.; GELLING, V. J. Review: the use of localized electrochemical techniques for corrosion studies. Journal of The Electrochemical Society, v. 166, n. 11, p. C3461-C3476, 2019. DOI: https://doi.org/10.1149/2.0541911jes.
JELLESEN, M. S.; MINZARI, D.; RATHINAVELU, U.; MOLLER, P.; AMBAT, R.. Corrosion in electronics at device level. ECS Transactions, v. 25, n. 30, p. 1-14, 2010. DOI: https://doi.org/10.1149/1.3321952.
KIM, J.; KO, J.; CHOI, H.; KIM, H. Printed circuit board defect detection using deep learning via a skip-connected convolutional autoencoder. Sensors, v. 21, n. 15, 4968, 2021. DOI: https://doi.org/10.3390/s21154968.
LEE, D.; YAO, L.; LEE, J. An effective accelerated method to verify the creep corrosion failure occurrence on electronics. In: 2020 INTERNATIONAL MICROSYSTEMS, PACKAGING, ASSEMBLY, AND CIRCUITS TECHNOLOGY CONFERENCE (IMPACT 2020), 15., 2020, Taipei. Proceedings […]. Taipei: IEEE, 2020. DOI: https://doi.org/10.1109/IMPACT50485.2020.9268558.
LEE, D.; CHEN, C.; LEE, J.; YAO, L.; CHEN, C. C.; LIN, A. Evaluation of the metal coating porosity of gold finger for secure digital memory card by way of flower of sulfur test methodology. In: 2017 INTERNATIONAL MICROSYSTEMS, PACKAGING, ASSEMBLY, AND CIRCUITS TECHNOLOGY CONFERENCE (IMPACT 2017), 12., 2017, Taipei. Proceedings […]. Taipei: IEEE, 2017. DOI: https://doi.org/10.1109/IMPACT.2017.8255946.
LEE, D.; LEE, J.; CHEN, C. C.; LIN, A. Evaluation of the anti-corrosion capacity for various electronics by way of accelerated corrosion testing platform. In: 2016 INTERNATIONAL MICROSYSTEMS, PACKAGING, ASSEMBLY, AND CIRCUITS TECHNOLOGY CONFERENCE (IMPACT 2016), 11., 2016, Taipei. Proceedings […]. Taipei: IEEE, 2016a. DOI: https://doi.org/10.1109/IMPACT.2016.7800066.
LEE, N. H.; YU, C. F.; O'HALLORAN, O.; FIRITI, A.; ACAR, Z.; CANNESEN, N.; HAO, Y. W.; CHEN, J. J.; TSAI, J.; SUN, P.; CHEN, S. Bromine induces corrosion in reliability test. In: 2016 ELECTRONICS PACKAGING TECHNOLOGY CONFERENCE (EPTC 2016), 18., 2016, Singapore. Proceedings […]. Singapore: IEEE, 2016b. DOI: https://doi.org/10.1109/EPTC.2016.7861537.
LI, H.; CHEN, Z.; LIU, X.; HOU, J.; SUN, M.; ZENG, R. Study on the mechanism of the photoelectrochemical effect on the initial NaCl-induced atmospheric corrosion process of pure copper exposed in humidified pure air. Journal of The Electrochemical Society, v. 165, n. 10, p. C608-C617, 2018. DOI: https://doi.org/10.1149/2.0771810jes.
ŁOSIEWICZ, B.; POPCZYK, M.; SMOLKA, A.; SZKLARSKA, M.; OSAK, P.; BUDNIOK, A. Localized electrochemical impedance spectroscopy for studying the corrosion processes in a nanoscale. Solid State Phenomena, v. 228, p. 383-393, 2015. DOI: https://doi.org/10.4028/www.scientific.net/SSP.228.383.
MANSFELD, F. The use of electrochemical techniques for the investigation and monitoring of microbiologically influenced corrosion and its inhibition: a review. Materials and Corrosion, v. 54, n. 7, p. 489-502, 2003. DOI: https://doi.org/10.1002/MACO.200390111.
NARAYANAN, S. R.; SHEN, D. H.; SURAMPUDI, S.; ATTIA, A. I.; HALPERT, G. Electrochemical impedance spectroscopy of lithium‐titanium disulfide rechargeable cells. Journal of the Electrochemical Society, v. 140, n. 7, 1854, 1993. DOI: https://doi.org/10.1149/1.2220729.
OLARTE-ECHEVERRI, G.; ARISTIZÁBAL-BOTERO, W.; OSORIO-G. F.; ROJAS-DÍAZ, J. Espectroscopia de impedancia eléctrica en cáncer invasivo del cuello uterino en mujeres de Caldas (Colombia), 2008-2009. Revista Colombiana de Obstetricia y Ginecología, v. 61, n. 1, p. 18-22, 2010. Available at: http://www.scielo.org.co/scielo.php?pid=s0034-74342010000100004&script=sci_arttext. Accessed on: 13 set. 2024. In Spanish
PAUL, C. R. Introduction to electromagnetic compatibility. 2. ed. Wiley Interscience, 2005.
PARKER, K. P. Defect coverage of boundary-scan tests: what does it mean when a boundary-scan test passes? In: IEEE INTERNATIONAL TEST CONFERENCE (ITC 2003), 2003, Charlotte. Proceedings […]. Charlotte: IEEE, 2003. DOI: https://doi.org/10.1109/TEST.2003.1271208.
PIUMATTI, D.; BORLO, S.; REORDA, M. S.; BOJOI, I. R. Assessing the effectiveness of different test approaches for power devices in a PCB. IEEE Journal of Emerging and Selected Topics in Power Electronics, v. 9, n. 3, p. 3671-3685, 2021. DOI: https://doi.org/10.1109/JESTPE.2020.3013229.
RAJ, A.; SAJEENA, A. Defects detection in PCB using image processing for industrial applications. In: 2018 INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT 2018), 2., 2018, Coimbatore. Proceedings […]. Coimbator: IEEE, 2018. DOI: https://doi.org/10.1109/ICICCT.2018.8473285.
RIGO, C. A. Projeto de placas de circuito impresso com FPGAs para uso em ambiente especial. 2019. Dissertação (Mestrado em Engenharia Elétrica) –Universidade Federal de Santa Catarina, Florianópolis, 2019. Available at: https://repositorio.ufsc.br/handle/123456789/215498. Accessed on: 11 set. 2024. In Portuguese.
SALAHINEJAD, E.; ESLAMI-FARSANI, R.; TAYEBI, L. Corrosion failure analysis of printed circuit boards exposed to H2S-containing humid environments. Engineering Failure Analysis, v. 79, p. 538-546, 2017. DOI: https://doi.org/10.1016/j.engfailanal.2017.05.038.
SOMPHOTCH, C.; HAYASHIBARA, H.; OOI, A.; TADA, E.; NISHIKATA, A. Corrosion behavior of zinc under thin solution films of different thicknesses. Journal of The Electrochemical Society, v. 165, n. 9, p. C590-C600, 2018. DOI: https://doi.org/10.1149/2.1521809jes.
TAIT, W. S. An introduction to electrochemical corrosion testing for practicing engineers and scientists. PairODocs Publications, 1994.
VOLKERT, C. A.; MINOR, A. M. Focused ion beam microscopy and micromachining. MRS Bulletin, v. 32, n. 5, p. 389-395, 2007. DOI: https://doi.org/10.1557/mrs2007.62.
XIA, D.-H.; SONG, S.; QIN, Z.; HU, W.; BEHNAMIAN, Y. Review: electrochemical probes and sensors designed for time-dependent atmospheric corrosion monitoring: fundamentals, progress, and challenges. Journal of The Electrochemical Society, v. 167, n. 3, 037513, 2020. DOI: https://doi.org/10.1149/2.0132003jes.
Visitas a este artigo: 139
Total de downloads do artigo: 90