Reactive extrusion process to obtain a multifunctional fiber-rich ingredient from coffee hull

Jessika Soares Jacinto

ORCID iD State University of Londrina (UEL), Londrina, Paraná, Brasil

Janaina Mantovan

ORCID iD São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brasil

Jaquellyne Bittencourt Moraes Duarte da Silva

ORCID iD State University of Londrina (UEL), Londrina, Paraná, Brasil

Suzana Mali de Oliveira

ORCID iD State University of Londrina (UEL), Londrina, Paraná, Brasil

Resumo

Brazil, known for its robust agricultural sector, generates substantial amounts of lignocellulosic residues annually. The valorization of these residues as ingredients for the food industry aligns with environmental, social, and economic sustainability goals. Coffee hull, a by-product of the coffee industry, holds potential as a source for creating high-value food ingredients. This study aimed to develop a multifunctional, fiber-rich ingredient from the coffee hull using a one-step reactive extrusion process with either alkaline hydrogen peroxide or sulfuric acid. The coffee hull was subjected to extrusion with sulfuric acid (1% and 3%) or alkaline hydrogen peroxide (1% and 3%) in these one-step processes. The resulting materials were then analyzed for their physicochemical and techno-functional properties. All treated samples demonstrated an increased cellulose and insoluble dietary fiber content, along with enhanced porosity, as observed through scanning electron microscopy. The sample treated with 3% alkaline hydrogen peroxide (AHP3) exhibited the highest levels of cellulose (45.17%), insoluble dietary fiber (78.20%), density (3.54), water absorption capacity (1.96 g/g), and oil absorption capacity (0.86 g/g). Furthermore, all samples displayed thermal stability from room temperature up to 300 °C, and a reduction in crystallinity indexes was noted after treatment. The reactive extrusion method proved effective in modifying the coffee hull, offering a green approach to producing high-value products from lignocellulosic waste. This method presents several advantages, including short reaction times, low reagent concentrations, minimal or no effluent generation, and potential scalability for industrial scale.

Palavras-chave


alkaline hydrogen peroxide; coffee hull; insoluble fibers; sulfuric acid


Texto completo:

Referências


ABIC – ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA DE CAFÉ. O café brasileiro na atualidade. Tudo de Café, 28 Jun. 2021. Available at: https://www.abic.com.br/tudo-de-cafe/o-cafe-brasileiro-na-atualidade. Accessed on: 21 Mar. 2022. In Portuguese.

ALVIRA, P.; TOMÁS-PEJÓ, E.; BALLESTEROS, M.; NEGRO, M. J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, v. 101, n. 13, p. 4851-4861, 2010. DOI: https://doi.org/10.1016/j.biortech.2009.11.093.

AOAC – ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS. Official methods of analysis. 19. ed. Washington, DC: AOAC International, 2012.

ARYA, S. S.; VENKATRAM, R.; MORE, P. R.; VIJAYAN, P. The wastes of coffee bean processing for utilization in food: a review. Journal of Food Science and Technology, v. 59, n. 2, p. 429-444, 2022. DOI: https://doi.org/10.1007/s13197-021-05032-5.

ÁVILA, P. F.; MARTINS, M.; GOLDBECK, R. Enzymatic production of xylooligosaccharides from alkali-solubilized arabinoxylan from sugarcane straw and coffee husk. BioEnergy Research, v. 14, n. 3, p. 739-751, 2021. DOI: https://doi.org/10.1007/s12155-020-10188-7.

BELTRÁN-MEDINA, E. A.; GUATEMALA-MORALES, G. M.; PADILLA-CAMBEROS, E.; CORONA-GONZÁLEZ, R. I.; MONDRAGÓN-CORTEZ, P. M.; ARRIOLA-GUEVARA, E. Evaluation of the use of a coffee industry by-product in a cereal-based extruded food product. Foods, v. 9, n. 8, 1008, 2020. DOI: https://doi.org/10.3390/foods9081008.

BENÍTEZ, V.; MOLLÁ, E.; MARTÍN-CABREJAS, M. A.; AGUILERA, Y.; LÓPEZ-ANDRÉU, F. J.; ESTEBAN, R. M. Effect of sterilisation on dietary fibre and physicochemical properties of onion by-products. Food Chemistry, v. 127, n. 2, p. 501-507, 2011. DOI: https://doi.org/10.1016/j.foodchem.2011.01.031.

BENITEZ, V.; REBOLLO-HERNANZ, M.; HERNANZ, S.; CHANTRES, S.; AGUILERA, Y.; MARTIN-CABREJAS, M. A. Coffee parchment as a new dietary fiber ingredient: functional and physiological characterization. Food Research International, v. 122, p. 105-113, 2019. DOI: https://doi.org/10.1016/j.foodres.2019.04.002.

BIZOT, H. Using the GAB model to construct sorption isotherms. In: JOWITT, R.; ESCHER, F.; HALLISTROM, B.; MEFFERT, H. F. T.; SPIESS, W. E. L.; VOS, G. (org.). Physical properties of foods. London: Applied Science Publishers, 1984. p. 27-41.

BRÍGIDA, A. I. S.; CALADO, V. M. A.; GONÇALVES, L. R. B.; COELHO, M. A. Z. Effect of chemical treatments on properties of green coconut fiber. Carbohydrate Polymers, v. 79, n. 4, p. 832-838, 2010. DOI: https://doi.org/10.1016/j.carbpol.2009.10.005.

CARDOSO, M. A. P.; CARVALHO, G. M.; YAMASHITA, F.; MALI, S.; OLIVATO, J. B.; GROSSMANN, M. V. E. Oat fibers modification by reactive extrusion with alkaline hydrogen peroxide. Polímeros, v. 26, n. 4, p. 320-326, 2016. DOI: https://doi.org/10.1590/0104-1428.2316.

CHEN, M.; ZHAO, J.; XIA, L. Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility. Biomass and Bioenergy, v. 33, n. 10, p. 1381-1385, 2009. DOI: https://doi.org/10.1016/j.biombioe.2009.05.025.

DEEPAK, T. S.; JAYADEEP, P. A. Prospects of maize (corn) wet milling by-products as a source of functional food ingredients and nutraceuticals. Food Technology and Biotechnology, v. 60, n. 1, p. 109-120, 2022. DOI: https://doi.org/10.17113/ftb.60.01.22.7340.

DIFONZO, G.; GENNARO, G.; PASQUALONE, A.; CAPONIO, F. Potential use of plant‐based by‐products and waste to improve the quality of gluten‐free foods. Journal of the Science of Food and Agriculture, v. 102, n. 6, p. 2199-2211, 2022. DOI: https://doi.org/10.1002/jsfa.11702.

DUTRA, E. D.; SANTOS, F. A.; ALENCAR, B. R. A.; REIS, A. L. S.; SOUZA, R. F. R.; AQUINO, K. A. S.; MORAIS JUNIOR, M. A.; MENEZES, R. S. C. Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives. Biomass Conversion and Biorefinery, v. 8, p. 225-234, 2018. DOI: https://doi.org/10.1007/s13399-017-0277-3.

GABRIEL, T.; BELETE, A.; SYROWATKA, F.; NEUBERT, R. H. H.; GEBRE-MARIAM, T. Extraction and characterization of celluloses from various plant byproducts. International Journal of Biological Macromolecules, v. 158, p. 1248-1258, 2020. DOI: https://doi.org/10.1016/j.ijbiomac.2020.04.264.

GALDEANO, M. C.; GROSSMANN, M. V. E. Oat hulls treated with alkaline hydrogen peroxide associated with extrusion as fiber source in cookies. Ciência e Tecnologia de Alimentos, v. 26, n. 1, p. 123-126, 2006. DOI: https://doi.org/10.1590/S0101-20612006000100021.

GOUVEA, B. M.; TORRES, C.; FRANCA, A. S.; OLIVEIRA, L. S.; OLIVEIRA, E. S. Feasibility of ethanol production from coffee husks. Biotechnology Letters, v. 31, n. 9, p. 1315-1319, 2009. DOI: https://doi.org/10.1007/s10529-009-0023-4.

HASSAN, S. S.; WILLIAMS, G. A.; JAISWAL, A. K. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, v. 262, p. 310-318, 2018. DOI: https://doi.org/10.1016/j.biortech.2018.04.099.

IAL – INSTITUTO ADOLFO LUTZ. Métodos físico-químicos para análise de alimentos. 4th. ed. São Paulo: Instituto Adolfo Lutz, 2008. Available at: http://www.ial.sp.gov.br/resources/editorinplace/ial/2016_3_19/analisedealimentosial_2008.pdf. Accessed on: 22 Mar. 2024. In Portuguese.

IRIONDO-DEHOND, A.; IRIONDO-DEHOND, M.; CASTILLO, M. D. Applications of compounds from coffee processing by-products. Biomolecules, v. 10, n. 9, 1219, 2020. DOI: https://doi.org/10.3390/biom10091219.

LARREA, M. A.; GROSSMANN, M. V. E.; BELÉIA, A. P.; TAVARES, D. Q. Changes in water absorption and swollen volume in extruded alkaline peroxide pretreated rice hulls. Cereal Chemistry, v. 74, n. 2, p. 98-101, 1997. DOI: https://doi.org/10.1094/CCHEM.1997.74.2.98.

LU, F.; LIU, Y.; LI, B. Okara dietary fiber and hypoglycemic effect of okara foods. Bioactive Carbohydrates and Dietary Fibre, v. 2, n. 2, p. 126-132, 2013. DOI: https://doi.org/10.1016/j.bcdf.2013.10.002.

MANTOVAN, J.; GIRALDO, G. A. G.; MARIM, B. M.; GARCIA, P. S.; BARON, A. M.; MALI, S. Cellulose-based materials from orange bagasse employing environmentally friendly approaches. Biomass Conversion and Biorefinery, v. 13, n. 3, p. 1633-1644, 2023. DOI: https://doi.org/10.1007/s13399-021-01279-2.

MELLO, V. D.; LAAKSONEN, D. E. Fibras na dieta: tendências atuais e benefícios à saúde na síndrome metabólica e no diabetes melito tipo 2. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 53, n. 5, p. 509-518, 2009. DOI: https://doi.org/10.1590/S0004-27302009000500004. In Portuguese.

MENG, F.; LI, N.; YANG, H.; SHI, Z.; ZHAO, P.; YANG, J. Investigation of hydrogen peroxide-acetic acid pretreatment to enhance the enzymatic digestibility of bamboo residues. Bioresource Technology, v. 344, Part A, 126162, 2022. DOI: https://doi.org/10.1016/j.biortech.2021.126162.

MIHRANYAN, A.; LLAGOSTERA, A. P.; KARMHAG, R.; STROMME, M.; EK, R. Moisture sorption by cellulose powders of varying crystallinity. International Journal of Pharmaceutics, v. 269, n. 2, p. 433-442, 2004. DOI: https://doi.org/10.1016/j.ijpharm.2003.09.030.

MILLER, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, v. 31, n. 3, p. 426-428, 1959. DOI: https://doi.org/10.1021/ac60147a030.

MOURA, F. A.; PEREIRA, J. M.; SILVA, D. O.; ZAVAREZE, E. R.; MOREIRA, A. S.; HELBIG, E.; DIAS, A. R. G. Effects of oxidative treatment on the physicochemical, rheological and functional properties of oat β-glucan. Food Chemistry, v. 128, n. 4, p. 982-987, 2011. DOI: https://doi.org/10.1016/j.foodchem.2011.04.003.

OLIVA, J. M.; NEGRO, M. J.; MANZANARES, P.; BALLESTEROS, I.; CHAMORRO, M. A.; SÁEZ, F.; BALLESTEROS, M.; MORENO, A. D. A sequential steam explosion and reactive extrusion pretreatment for lignocellulosic biomass conversion within a fermentation-based biorefinery perspective. Fermentation, v. 3, n. 2, 15, 2017. DOI: https://doi.org/10.3390/fermentation3020015.

OLIVEIRA, G.; PASSOS, C. P.; FERREIRA, P.; COIMBRA, M. A.; GONÇALVES, I. Coffee by-products and their suitability for developing active food packaging materials. Foods, v. 10, n. 3, 683, 2021. DOI: https://doi.org/10.3390/foods10030683.

OLIVEIRA, J. P.; BRUNI, G. P.; LIMA, K. O.; EL HALAL, S. L. M.; ROSA, G. S.; DIAS, A. R. G.; ZAVAREZE, E. R. Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chemistry, v. 221, p. 153-160, 2017. DOI: https://doi.org/10.1016/j.foodchem.2016.10.048.

OU, S.; KWOK, K.-C.; LI, Y.; FU, L. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. Journal of Agricultural and Food Chemistry, v. 49, n. 2, p. 1026-1029, 2001. DOI: https://doi.org/10.1021/jf000574n.

PANDEY, A.; SOCCOL, C. R.; NIGAM, P.; BRAND, D.; MOHAN, R.; ROUSSOS, S. Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochemical Engineering Journal, v. 6, n. 2, p. 153-162, 2000. DOI: https://doi.org/10.1016/S1369-703X(00)00084-X.

PEREIRA, J. F.; MARIM, B. M.; MALI, S. Chemical modification of cellulose using a green route by reactive extrusion with citric and succinic acids. Polysaccharides, v. 3, n. 1, p. 292-305, 2022. DOI: https://doi.org/10.3390/polysaccharides3010017.

PERIYASAMY, S.; KARTHIK, V.; KUMAR, P. S.; ISABEL, J. B.; TEMESGEN, T.; HUNEGNAW, B. M.; MELESE, B. B.; MOHAMED, B. A.; VO, D.-V. N. Chemical, physical and biological methods to convert lignocellulosic waste into value-added products. A review. Environmental Chemistry Letters, v. 20, n. 2, p. 1129-1152, 2022. DOI: https://doi.org/10.1007/s10311-021-01374-w.

PESHEV, D.; MITEV, D.; PEEVA, L.; PEEV, G. Valorization of spent coffee grounds: a new approach. Separation and Purification Technology, v. 192, p. 271-277, 2018. DOI: https://doi.org/10.1016/j.seppur.2017.10.021.

SANTOS, D.; SILVA, J. A. L.; PINTADO, M. Fruit and vegetable by-products’ flours as ingredients: a review on production process, health benefits and technological functionalities. LWT, v. 154, 112707, 2022. DOI: https://doi.org/10.1016/j.lwt.2021.112707.

SCHMITZ, E.; FRANCIS, J.; GUTKE, K.; KARLSSON, E. N.; ADLERCREUTZ, P.; PAULSSON, M. Chemical and biochemical bleaching of oat hulls: the effect of hydrogen peroxide, laccase, xylanase and sonication on optical properties and chemical composition. Biotechnology Reports, v. 30, e00624, 2021. DOI: https://doi.org/10.1016/j.btre.2021.e00624.

SEGAL, L.; CREELY, J. J.; MARTIN JUNIOR, A. E.; CONRAD, C. M. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal, v. 29, n. 10, p. 786-794, 1959. DOI: https://doi.org/10.1177/004051755902901003.

SILVA, J. B. M. D.; PAIVA, M. T. P.; PAVANELLO, A. C. L.; MANTOVAN, J.; MALI, S. Fiber-rich ingredients obtained from agroindustrial residues through combined hydrothermal-chemical processes. Food Chemistry Advances, v. 1, 100149, 2022. DOI: https://doi.org/10.1016/j.focha.2022.100149.

TAPPI – TECHNICAL ASSOCIATION OF THE PULP AND PAPER INDUSTRY. Acid-insoluble lignin wood and pulp: T 222 om-88. Atlanta: Tappi Technology Park, 1999.

TU, W.-C.; HALLETT, J. P. Recent advances in the pretreatment of lignocellulosic biomass. Current Opinion in Green and Sustainable Chemistry, v. 20, p. 11-17, 2019. DOI: https://doi.org/10.1016/j.cogsc.2019.07.004.

USDA – U.S. DEPARTMENT OF AGRICULTURE. Brazil: coffee semi-annual. USDA Foreign Agricultural Service, 22 Nov. 2022. Available at: https://www.fas.usda.gov/data/brazil-coffee-semi-annual-7. Accessed on: 25 Mar. 2023.

VAN BUGGENHOUT, S.; WALLECAN, J.; CHRISTIAENS, S.; DEBON, S. J. J.; DESMET, C.; VAN LOEY, A.; HENDRICKX, M.; MAZOYER, J. Influence of high-pressure homogenization on functional properties of orange pulp. Innovative Food Science & Emerging Technologies, v. 30, p. 51-60, 2015. DOI: https://doi.org/10.1016/j.ifset.2015.05.004.

VAN SOEST, P. J. Symposium on factors influencing the voluntary intake of herbage by ruminants: voluntary intake in relation to chemical composition and digestibility. Journal of Animal Science, v. 24, n. 3, p. 834-843, 1965. DOI: https://doi.org/10.2527/jas1965.243834x.

VANDENBOSSCHE, V.; BRAULT, J.; VILAREM, G.; HERNÁNDEZ-MELÉNDEZ, O.; VIVALDO-LIMA, E.; HERNÁNDEZ-LUNA, M.; BARZANA, E.; DUQUE, A.; MANZANARES, P.; BALLESTEROS, M.; MATA, J.; CASTELLÓN, E.; RIGAL, L. A new lignocellulosic biomass deconstruction process combining thermo-mechano chemical action and bio-catalytic enzymatic hydrolysis in a twin-screw extruder. Industrial Crops and Products, v. 55, p. 258-266, 2014. DOI: https://doi.org/10.1016/j.indcrop.2014.02.022.

VILELA, W. F.; LEÃO, D. P.; FRANCA, A. S.; OLIVEIRA, L. S. Effect of peroxide treatment on functional and technological properties of fiber-rich powders based on spent coffee grounds. International Journal of Food Engineering, v. 2, n. 1, p. 42-47, 2016. DOI: https://doi.org/10.18178/ijfe.2.1.42-47.

XIA, Y.; LIU, Q.; HU, X.; LI, X.; HUANG, Y.; LI, W.; MA, L. Structural evolution during corn stalk acidic and alkaline hydrogen peroxide pretreatment. Industrial Crops and Products, v. 176, 114386, 2022. DOI: https://doi.org/10.1016/j.indcrop.2021.114386.

YOSHIDA, B. Y.; PRUDENCIO, S. H. Alkaline hydrogen peroxide improves physical, chemical, and techno-functional properties of okara. Food Chemistry, v. 323, 126776, 2020. DOI: https://doi.org/10.1016/j.foodchem.2020.126776.


DOI: http://dx.doi.org/10.18265/2447-9187a2024id8130

O arquivo PDF selecionado deve ser carregado no navegador caso tenha instalado um plugin de leitura de arquivos PDF (por exemplo, uma versão atual do Adobe Acrobat Reader).

Como alternativa, pode-se baixar o arquivo PDF para o computador, de onde poderá abrí-lo com o leitor PDF de sua preferência. Para baixar o PDF, clique no link abaixo.

Caso deseje mais informações sobre como imprimir, salvar e trabalhar com PDFs, a Highwire Press oferece uma página de Perguntas Frequentes sobre PDFs bastante útil.

Visitas a este artigo: 347

Total de downloads do artigo: 195