Ação antibacteriana do linalol contra Klebsiella pneumoniae e suas interações com a ATP sintase in silico

Françueuda Alves da Silva

ORCID iD Centro Universitário de Patos (UniFIP) Brasil

Eliane Alves Lustosa

ORCID iD Universidade Federal de Campina Grande (UFCG) Brasil

Gislaine da Silva Rodrigues

ORCID iD Universidade Estadual de Londrina (UEL) Brasil

Abrahão Alves de Oliveira Filho

ORCID iD Universidade Federal de Campina Grande (UFCG) Brasil

Cássio Ilan Soares Medeiros

ORCID iD Centro Universitário de Patos (UniFIP) Brasil

Resumo

As infecções bacterianas e a resistência antimicrobiana, particularmente de Klebsiella pneumoniae, continuam sendo uma das questões mais desafiadoras que ameaçam a saúde das pessoas em todo o mundo. Compostos naturais derivados de plantas têm recebido atenção considerável por seu papel potencial como antibacteriano e para mitigar a resistência a antibióticos. Sendo assim, o linalol é um importante metabólito secundário encontrado em grande variedade de plantas e apresenta diversas propriedades farmacológicas, incluindo atividade antibacteriana. Portanto, este estudo teve como objetivo investigar a atividade antibacteriana do linalol contra Klebsiella pneumoniae e suas interações com a ATP sintase através do docking molecular. Nesse trabalho foram realizados ensaios in vitro, onde foi aplicado a técnica de microdiluição em caldo obtendo a concentração inibitória e bactericida mínima (CIM e CBM). Além disso, o procedimento adotado para o docking molecular foi o de ancoramento com a proteína rígida e os ligantes flexíveis. As análises in vitro mostraram que o linalol teve efeito bactericida contra K. pneumoniae na concentração de 256 µg/mL. E o docking molecular revelou que o linalol interage com o centro ativo da subunidade B da ATP sintase com energia de ligação ΔΕ = -3,63 kcal/mol. Nesse estudo foi demonstrado que o linalol é uma molécula capaz de induzir a morte bacteriana e que preditivamente esse efeito possivelmente ocorre por interrupção na síntese de ATP.

Palavras-chave


docking molecular; farmacologia; fitoterapia; Klebsiella pneumoniae; microbiologia


Texto completo:

Referências


AFONSO, L S. R.; SILVA, L. L. M.; GARRIDO, R. G. Estratégias terapêuticas para infecções por Klebsiella pneumoniae carbapenem resistente: uma revisão narrativa. Research, Society and Development, v. 11, n. 7, e46211730296, 2022. DOI: http://dx.doi.org/10.33448/rsd-v11i7.30296.

AMINUL, P.; ANWAR, S.; MOLLA, M. A.; MIAH, R. A. Evaluation of antibiotic resistance patterns in clinical isolates of Klebsiella pneumoniae in Bangladesh. Biosafety and Health, v. 3, p. 301-306, 2021. DOI: https://doi.org/10.1016/j.bsheal.2021.11.001.

AN, Q.; REN, J. N.; LI, X.; FAN, G.; QU, S.; SONG, Y.; LI, Y.; PAN, S. Recent updates on bioactive properties of linalool. Food and Function, v. 12, p. 10370-10389, 2021. DOI: https://doi.org/10.1039/d1fo02120f.

BAJPAI, V. K.; SHARMA, A.; BAEK, K.-H. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control, v. 32, p. 582-590, 2013. DOI: https://dx.doi.org/10.1016/j.foodcont.2013.01.032.

BENGOECHEA, J. A.; PESSOA, J. S. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiology Reviews, v. 43, p. 123-144, 2019. DOI: https://doi.org/10.1093/femsre/fuy043.

BUENO-DUARTE, Y.; MENDEZ-SÁNCHEZ, S. C. Linalool effect on mitochondrial bioenergetics rat liver. Revista de La Facultad de Ciencias Farmacéuticas y Alimentarias, Medellín, Colombia, v. 22, n. 1, p. 33-41, 2015. DOI: https://dx.doi.org/10.17533/udea.vitae.v22n1a04.

CARBONE, C.; MARTINS-GOMES, C.; CADDEO, C.; SILVA, A. M.; MUSUMECI, T.; PIGNATELO, R.; PUGLISI, G.; SOUTO, E. B. Mediterranean essential oils as precious matrix components and active ingredients of lipid nanoparticles. International Journal of Pharmaceutics, v. 548, n. 1, p. 217-226, 2018. DOI: https://doi.org/10.1016/j.ijpharm.2018.06.064.

CARNEIRO, S. B.; DUARTE, F. Í. C.; HEIMFARTH, L.; QUINTANS, J. S. S.; QUINTANS-JÚNIOR, L. J.; VEIGA JÚNIOR, V. F.; LIMA, Á. A. N. Cyclodextrin–drug inclusion complexes: in vivo and in vitro approaches. International Journal of Molecular Sciences, v. 20, 642, 2019. DOI: https://doi.org/10.3390/ijms20030642.

CHADHA, A.; MADYASTHA, M. Metabolism of geraniol and linalool in the rat and effects on liver and lung microsomal enzymes. Xenobiotica, v. 14, n. 5, p. 365-374, 1984. DOI: https://doi.org/10.3109/00498258409151425.

CHASSAGNE, F.; SAMARAKOON, T.; PORRAS, G.; LYLES, J. T.; DETTWEILER, M.; MARQUEZ, L.; SALAM, A. M.; SHABIH, S.; FARROKHI, D. R.; QUAVE, C. L. A systematic review of plants with antibacterial activities: a taxonomic and phylogenetic perspective. Frontiers in Pharmacology, v. 11, 586548, 2021. DOI: https://doi.org/10.3389/fphar.2020.586548.

CLSI. Methods for dilution antimicrobial susceptibility. Tests for bacteria that grow aerobically; aproved standard – Ninth Edition. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute, 2012.

EL-BAKY, R. M.; HASHEM, Z. S. Eugenol and linalool: comparison of their antibacterial and antifungal activities. African Journal of Microbiology Research, v. 10, n. 44, p. 1869-1872, 2016. DOI: https://doi.org/10.5897/AJMR2016.8283.

GUEDES, I. A.; MAGALHÃES, C. S.; DARDENNE, L. E. Docking molecular receptor-ligante. Biophys Reviews, v. 6, p. 75-87, 2014. DOI: https://doi.org/10.1007/s12551-013-0130-2.

GUO, F.; CHEN, Q.; LIANG, Q.; ZHANG, M.; CHEN, W.; CHEN, H.; YUN, Y.; ZHONG, Q.; CHEN, W. Antimicrobial activity and proposed action mechanism of linalool against Pseudomonas fluorescens. Frontiers in Microbiology, v. 12, 562094, 2021. DOI: https://doi.org/10.3389/fmicb.2021.562094.

GUO, H.; SUZUKI, T.; RUBINSTEIN, J. L. Structure of a bacterial ATP synthase. eLife, v. 8, e43128, 2019. DOI: https://doi.org/10.7554/eLife.43128.

GWOREK, B., KIJEŃSKA, M., WRZOSEK, J.; GRANIEWSKA, M. Pharmaceuticals in the soil and plant environment: a review. Water, Air, & Soil Pollution, v. 232, 145, 2021. DOI: https://doi.org/10.1007/s11270-020-04954-8.

HADACEK, F.; GREGER, H. Testing of antifungal natural products: methodologies, comparability of results and assay choice. Phytochemical Analysis, v. 11, n. 3, p. 137-147, 2000. DOI: https://doi.org/10.1002/(sici)1099-1565(200005/06)11:3<137::aid-pca514>3.0.co;2-i.

HERMAN, A.; TAMBOR, K.; HERMAN, A. Linalool affects the antimicrobial efficacy of essential oils. Current Microbiology, v. 72, p. 165-172, 2016. DOI: https://doi.org/10.1007/s00284-015-0933-4.

HOOD, J. R.; WILKINSON, J. M.; CAVANAGH, H. M. A. Evaluation of common antibacterial screening methods utilized in essential oil research. Journal of Essential Oil Research, v. 15, n. 6, p. 428-433, 2003. DOI: https://doi.org/10.1080/10412905.2003.9698631.

KATIYAR, C.; GUPTA, A.; KANJILAL, S.; KATIYAR, S. Drug discovery from plant sources: An integrated approach. Ayu, v. 33, n. 1, p. 10-19, 2012. DOI: https://doi.org/10.4103/0974-8520.100295.

KOZIOL, A.; STRYJEWSKA, A.; LIBROWSKI, T.; SALAT, K.; GAWEL, M.; MONICZEWSKI, A.; LOCHYNSKI, S. An overview of the pharmacological properties and potential applications of natural monoterpenes. Mini reviews in medicinal chemistry, v. 14, n. 14, p. 1156-1168, 2014. DOI: https://dx.doi.org/10.2174/1389557514666141127145820.

KOLPA, M.; WAŁASZEK, M.; GNIADEK, A.; WOLAK, Z. DOBROŚ, W. Incidence, microbiological profile and risk factors of healthcare-associated infections in intensive care units: a 10 year observation in a Provincial Hospital in Southern Poland. International Journal of Environmental Health Research, v. 15, 112, 2018. DOI: https://dx.doi.org/10.3390/ijerph15010112.

LAN, W.; ZHANG, N.; LIU, S.; CHEN, M.; XIE, J. Epsilon-Polylysine inhibits Shewanella putrefaciens with membrane disruption and cell damage. Molecules, v. 24, n. 727, 2019. DOI: https://doi.org/10.3390/molecules24203727.

LENCHENKO, E.; BLUMENKRANTS, D.; SACHIVKINA, N.; SHADROVA, N.; IBRAGIMOVA, A. Morphological and adhesive properties of Klebsiella pneumoniae biofilms. Veterinary world, v. 13, n. 1, 197, 2020. DOI: www.doi.org/10.14202/vetworld.2020.197-200.

LEVISON, M. E. Pharmacodynamics of antimicrobial drugs. Infectious Disease Clinics of North America, v. 18, p. 451-465, 2004. DOI: https://doi.org/10.1016/j.idc.2004.04.012.

LIN, L.; GU, Y.; LI, C.; VITTAYAPADUNG, S.; CUI, H. Antibacterial mechanism of ε-Poly-lysine against Listeria monocytogenes and its application on cheese. Food Control, v. 91, p. 76-84, 2018. DOI: https://doi.org/10.1016/j.foodcont.2018.03.025.

MAHIZAN, N. A; YANG, S. K.; MOO, C. L.; SONG, A. A. L.; CHONG, C. M.; CHONG, C. W.; ABUSHELAIBI, A.; LIM, S. H. E.; LAI, K. S. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules, v. 24, 2019. DOI: https://doi.org/10.3390/molecules24142631.

MOO, C. L.; OSMAN, M. A.; YANG, S. K.; YAP, W. S.; ISMAIL, S.; LIM, S. H. E.; CHONG, C. M.; LAI, K. S. Antimicrobial activity and mode of action of 1,8‑cineol against carbapenemase‑producing Klebsiella pneumoniae. Scientific Reports, v. 11, 20824, 2021. DOI: https://doi.org/10.1038/s41598-021-00249-y.

NASCIMENTO, P. F. C.; NASCIMENTO, A. L. C.; RODRIGUES, C. S.; ANTONIOLLI, A. R.; SANTOS, P. O.; BARBOSA JUNIOR, A. M.; TRINDADE, R. C. Atividade antimicrobiana dos óleos essenciais: uma abordagem multifatorial dos métodos. Revista Brasileira de Farmacognosia, v. 17, n. 1, p. 108-113, 2007, DOI: https://doi.org/10.1590/S0102-695X2007000100020.

TROTT O, OLSON A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, v. 31, n. 2, p. 455-461, 2010. DOI: https://doi.org/10.1002/jcc.21334.

OSTROSKY, E. A.; MIZUMOTO, M. K.; LIMA, M. E. L.; KANEKO, T. M.; NISHIKA, W. A. S. O.; FREITAS, B. R. Métodos para avaliação da atividade antimicrobiana e determinação da Concentração Mínima Inibitória (CMI) de plantas medicinais. Revista Brasileira de Farmacognosia, v. 18, n. 2, p. 301-307, 2008. DOI: https://doi.org/10.1590/s0102-695x2008000200026.

PEI, Q.; LI, Y.; GE, X.; TIAN, P. Multipath effects of berberine on peach Brown rot fungus Monilinia fructicola. Crop Protection, v. 116, p. 92-100, 2019. DOI: https://doi.org/10.1016/j.cropro.2018.10.017.

PEREIRA, I.; SEVERINO, P.; SANTOS, A.C.; SILVA, A. M.; SOUTO, E. B. Linalool bioactive properties and potential applicability in drug delivery systems. Colloids and Surfaces B: Biointerfaces, v. 171, p. 566-578, 2018a. DOI: https://doi.org/10.1016/j.colsurfb.2018.08.001.

PEREIRA, I.; ZIELINSKA, A.; FERREIRA, N. R.; SILVA, A. M.; SOUTO, E. B. Optimization of linalool-loaded solid lipid nanoparticles using experimental factorial design and long-term stability studies with a new centrifugal sedimentation method. International Journal of Pharmaceutics, v. 549, n. 1-2, p. 261-270, 2018b. DOI: https://doi.org/10.1016/j.ijpharm.2018.07.068.

PINZI, L.; RASTELLI, G. Molecular docking: shifting paradigms in drug discovery. International Journal of Molecular Sciences, v. 20, n. 18, p. e4331, 2019. DOI: https://dx.doi.org/10.3390/ijms20184331.

PRAKASH, A.; VADIVEL, V.; RUBINI, D.; NITHYANAND, P. Antibacterial and antibiofilm activities of linalool nanoemulsions against Salmonella Typhimurium. Food Bioscience, v. 28, p. 57-65, 2019. DOI: https://doi.org/10.1016/j.fbio.2019.01.018.

RODRÍGUEZ-LÓPEZ, M. I.; MERCADER-ROS, M. T.; LUCAS-ABELLÁN, C.; PELLICER, J. A.; PÉREZ-GARRIDO, A.; PÉREZ-SÁNCHEZ, H.; YÁÑEZ-GASCÓN, M. J.; GABALDÓN, J. A.; NÚÑEZ-DELICADO, E. Comprehensive characterization of Linalool-HP-β-Cyclodextrin inclusion complexes. Molecules, v. 25, 5069, 2020. DOI: https://doi.org/10.3390/molecules25215069.

SARTORATTO, A.; MACHADO, A .L. M.; DELARMELINA, C.; FIGUEIRA, G. M.; DUARTE, M. C. T.; REHDER, V. L. G. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Brazilian Journal of Microbiology, v. 35, n. 4, p. 275-280, 2004, DOI: https://doi.org/10.1590/S1517-83822004000300001.

SCHRÖDINGER, L.; DELANO, W. PyMOL. 2020. Disponível em: http://www.pymol.org/pymol. Acesso em: 05 jul. 2022.

TAVARES, C. Klebsiella pneumoniae e fatores associados que contribuem para a resistência antimicrobiana: Uma Revisão de Literatura. 2019. Monografia (Bacharelado em Biomedicina) – Universidade Federal do Rio Grande do Norte, Natal, 2019. Disponível em: https://repositorio.ufrn.br/handle/123456789/43230. Acesso em: 01 ago. 2022.

THEURETZBACHER, U. Resistance drives antibacterial drug development. Current Opinion in Pharmacology, v. 11, n. 5, p. 433-438, 2011. DOI: https://doi.org/10.1016/j.coph.2011.07.008.

THOMAS, B. T.; ADELEKE, A. J.; RAHEEM-ADEMOLA, R. R.; KOLAWOLE, R.; MUSA, O. S. Efficiency of some disinfectants on bacterial wound pathogens. Life Science Journal, v. 9, n. 2, p. 752-755, 2012. Disponível em: http://www.lifesciencesite.com/lsj/life0902/111_9034life0902_752_755.pdf. Acesso em: 13 de julho de 2022.

VAN DER PAAL, J.; NETYS, E. C.; VERLACKT, C. C. W.; BOGAERTS, A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chemical Science, v. 7, p. 489-498, 2016. DOI: https://doi.org/10.1039/C5SC02311D.

WESTERMAIER, Y.; BARRIL, X.; SCAPOZZA, L. Virtual screening: an in silico tool for interlacing the chemical universe with the proteome. Methods, v. 71, n. 1, p. 44-57, 2015. DOI: https://doi.org/10.1016/j.ymeth.2014.08.001.

WHO – WORLD HEALTH ORGANIZATION. Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline, including tuberculosis. Geneva, Switzerland, 2017. Disponível em: https://apps.who.int/iris/handle/10665/258965. Acesso em: 04 dez. 2022.

WYRES, K. L.; LAM, M. M. C.; HOLT, K. E. Population genomics of Klebsiella pneumoniae. Nature Reviews Microbiology, v. 18, n. 6, p. 344-359, 2020. DOI: http://dx.doi.org/10.1038/s41579-019-0315-1.

WONG-EKKABUT, J.; XU, Z.; TRIAMPO, W.; TANG, I. M.; TIELEMAN, D. P.; MONTICELLI, L. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys Journal, v. 93, n. 12, p. 4225-4236, 2007. DOI: https://doi.org/10.1529/biophysj.107.112565.

YANG, S. K.; YUSOFF, K.; WARREN, T.; AKSEER, R.; ALHOSANI, M. S.; ABUSHELAIBI, A.; LIM, S. H. E.; LAI, K. S. Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae. Scientific Reports, v. 10, n. 819, 2019. DOI: https://doi.org/10.1038/s41598-019-55601-0.

YANG, S. K.; YUSOFF, K.; AJAT, M.; WEE, C. Y.; YAP, P. S. X.; LIM, S. H. E.; LAI, K. S. Combinatorial antimicrobial efficacy and mechanism of linalool against clinically relevant Klebsiella pneumoniae. Frontiers in Microbiology, v. 12, 17, 2021. DOI: https://doi.org/10.3389/fmicb.2021.635016.

YU, Y.; ANDREY, D. O.; YANG R. S.; SANDS, K.; TANSAWAI, U.; LI, M.; EDUARDO, P.; GALES, A. C.; NIUMSUP, P. R.; SUN, J.; LIAO, X.; LIU, Y. H.; WALSH, T. R. A Klebsiella pneumoniae strain co-harbouring mcr-1 and mcr-3 from a human in Thailand. Journal of Antimicrobial Chemotherapy, v. 75, n. 8, p. 2372-2374, 2020. DOI: https://doi.org/10.1093/jac/dkaa133.


DOI: http://dx.doi.org/10.18265/1517-0306a2022id7245

O arquivo PDF selecionado deve ser carregado no navegador caso tenha instalado um plugin de leitura de arquivos PDF (por exemplo, uma versão atual do Adobe Acrobat Reader).

Como alternativa, pode-se baixar o arquivo PDF para o computador, de onde poderá abrí-lo com o leitor PDF de sua preferência. Para baixar o PDF, clique no link abaixo.

Caso deseje mais informações sobre como imprimir, salvar e trabalhar com PDFs, a Highwire Press oferece uma página de Perguntas Frequentes sobre PDFs bastante útil.

Visitas a este artigo: 611

Total de downloads do artigo: 372