General aspects of 3D printing applied to civil construction: a review
DOI:
https://doi.org/10.18265/1517-0306a2022id7104Palavras-chave:
3D printing, additive manufacturing, cement compounds, industrial automation, printing systemResumo
Additive manufacturing, also called 3D printing, has been gaining ground in different sectors of industry, the arts, in addition to the biomedical environment. In recent years, this has been incorporated as a research and practice niche in civil engineering. The execution of works, at the stage where the inclusion of this technology stands, is crucial in understanding the variants and challenges of the process. In this sense, the present study aims to raise and discuss issues involving the 3D printing of cementitious compounds, bringing aspects of the printing system and the materials of the mixtures used, and observing the effects that these can cause on the quality and the final performance of the structure built. It is a review of the literature developed based on the search in the scientific databases ScienceDirect, Scopus, and Francis & Taylor, using selected descriptors, which resulted, after applying the inclusion and exclusion criteria, in a total of 295 findings. Among other characteristics, it was possible to perceive the predominance of the extrusion-based procedure, in addition to how the components of the different execution approaches, as well as constituents of the mixture, modify the characteristics of the product in its fresh and hardened state. In general, additive manufacturing proves to be suitable for use, making the improvements and discoveries brought by researchers an impulse for the technique to be a possible advance in the automation of the sector.
Downloads
Referências
ABDULHAMEED, O.; AL-AHMARI, A.; AMEEN, W.; MIAN, S. H. Additive manufacturing: challenges, trends, and applications. Advances in Mechanical Engineering, v. 11, n. 2, p. 1-27, 2019. DOI: https://doi.org/10.1177/1687814018822880.
AL RASHID, A.; KHAN, S. A.; AL-GHAMDI, S. G.; KOÇ, M. Additive manufacturing: Technology, applications, markets, and opportunities for the built environment. Automation in Construction, v. 118, n. 1, 103268, 2020. DOI: https://doi.org/10.1016/j.autcon.2020.103268.
ALBAR, A.; CHOUGAN, M.; AL-KHEETAN, M. J.; SWASH, M. R.; GHAFFAR, S. H. Effective extrusion-based 3D printing system design for cementitious-based materials. Results in Engineering, v. 6, n. 1, 100135, 2020. DOI: https://doi.org/10.1016/j.rineng.2020.100135.
ALHUMAYANI, H.; GOMAA, M.; SOEBARTO, V.; JABI, W. Environmental assessment of large-scale 3D printing in construction: A comparative study between cob and concrete. Journal of Cleaner Production, v. 270, n. 1, 122463, 2020. DOI: https://doi.org/10.1016/j.jclepro.2020.122463.
ANTON, A.; REITER, L.; WANGLER, T.; FRANGEZ, V.; FLATT, R. J.; DILLENBURGER, B. A 3D concrete printing prefabrication platform for bespoke columns. Automation in Construction, v. 122, n. 1, 103467, 2021. DOI: https://doi.org/10.1016/j.autcon.2020.103467.
ARUNOTHAYAN, A. R.; NEMATOLLAHI, B.; RANADE, R.; BONG, S. H.; SANJAYAN, J. Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Construction and Building Materials, v. 257, n. 1, 119546, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119546.
ASPRONE, D.; AURICCHIO, F.; MENNA, C.; MERCURI, V. 3D printing of reinforced concrete elements: Technology and design approach. Construction and Building Materials, v. 165, n. 1, p. 218-231, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.018.
ASTM – AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM C1437-15: Standard test method for flow of hydraulic cement mortar. West Conshohocken: ASTM, 2015.
BAZ, B.; AOUAD, G.; LEBLOND, P.; AL-MANSOURI, O.; D'HONDT, M.; REMOND, S. Mechanical assessment of concrete – Steel bonding in 3D printed elements. Construction and Building Materials, v. 256, n. 1, 119457, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119457.
BAZ, B.; AOUAD, G.; REMOND, S. Effect of the printing method and mortar’s workability on pull-out strength of 3D printed elements. Construction and Building Materials, v. 230, n. 1, 17002, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117002.
BOURELL, D. L.; BEAMAN, J. B; LEU, M. C.; ROSEN, D. W. A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: looking back and looking ahead. In: RAPIDTECH: US – TURKEY WORKSHOP ON RAPID TECHNOLOGIES, 2009, Istanbul. Proceedings [...]. Ankara: Scientific and Technical Research Council of Turkey, 2009. Available at: https://www.turkcadcam.net/haber/2009/rapidtech-workshop/presentations/Presentation02.pdf. Accessed on: 21 Sep. 2022.
BSI – BRITISH STANDARDS INSTITUTION. BS EN 12390-3: Testing Hardened Concrete - Compressive Strength of Test Specimens. Milton Keynes, 2009a.
BSI – BRITISH STANDARDS INSTITUTION. BS EN 12390-5: Testing Hardened Concrete - Flexural Strength of Test Specimens. Milton Keynes, 2009b.
BSI – BRITISH STANDARDS INSTITUTION. BS EN 14488-4: Testing Sprayed Concrete - Bond Strength of Cores by Direct Tension. Milton Keynes, 2008.
BUSWELL, R. A.; SILVA, W. R. L.; JONES, S. Z.; DIRRENBERGER, J. 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research, v. 112, n. 1, p. 37-49, 2018. DOI: https://doi.org/10.1016/j.cemconres.2018.05.006.
BUSWELL, R. A.; SOAR, R. C.; GIBB, A. G. F.; THORPE, A. Freeform Construction: Mega-scale Rapid Manufacturing for construction. Automation in Construction, v. 16, n. 2, p. 224-231, 2007. DOI: https://doi.org/10.1016/j.autcon.2006.05.002.
CEN – EUROPEAN COMMITTEE FOR STANDARDIZATION. Standard sand certified in accordance with EN 196-1 – ISO Standard Sand Conforming to ISO 679. Bruxelles, 2009.
CHEN, M.; YANG, L.; ZHENG, Y.; HUANG, Y.; LI, L.; ZHAO, P.; WANG, S.; LU, L.; CHENG, X. Yield stress and thixotropy control of 3D-printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up. Construction and Building Materials, v. 252, n. 1, 119090, 2020a. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119090.
CHEN, Y.; FIGUEIREDO, S. C.; LI, Z.; CHANG, Z.; JANSEN, K.; ÇOPURO?LU, O.; SCHLANGEN, E. Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture. Cement and Concrete Research, v. 132, n. 1, 106040, 2020b. DOI: https://doi.org/10.1016/j.cemconres.2020.106040.
CHEN, Y.; RODRIGUEZ, C. R.; LI, Z.; CHEN, B.; ÇOPURO?LU, O.; SCHLANGEN, E. Effect of different grade levels of calcined clays on fresh and hardened properties of ternary-blended cementitious materials for 3D printing. Cement and Concrete Composites, v. 114, n. 1, 103708, 2020c. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103708.
CHINA NATIONAL STANDARD. GB/T 2419-2005: Test method for fluidity of cement mortar. Beijing: China Standards Press, 2005.
CHOUGAN, M.; GAFFAR, S. H.; JAHANZAT, M.; ALBAR, A.; MUJADDEDI, N.; SWASH, R. The influence of nano-additives in strengthening mechanical performance of 3D printed multi-binder geopolymer composites. Construction and Building Materials, v. 250, n. 1, 118928, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118928.
DE SCHUTTER, G.; LESAGE, K.; MECHTCHERINE, V.; NERELLA, V. N.; HABERT, G.; AGUSTÍ-JUAN, I. Vision of 3D printing with concrete: Technical, economic and environmental potentials. Cement and Concrete Research, v. 112, n. 1, p. 25-36, 2018. DOI: https://doi.org/10.1016/j.cemconres.2018.06.001.
DEDENIS, M.; ANZIANE, S.; PERROT, A.; AMATO, G. Effect of metakaolin, fly ash and polypropylene fibres on fresh and rheological properties of 3D printing based cement materials. In: RILEM INTERNATIONAL CONFERENCE ON CONCRETE AND DIGITAL FABRICATION, 2., 2020, Eindhoven. Proceedings […]. Cham: Springer, 2020. p. 206-215. (RILEM Bookseries, v. 28). DOI: https://doi.org/10.1007/978-3-030-49916-7_21.
DIGGS-MCGEE, B. N.; KREIGER, E. L.; KREIGER, M. A.; CASE, M. P. Print time vs. elapsed time: A temporal analysis of a continuous printing operation for additive constructed concrete. Additive Manufacturing, v. 28, n. 1, p. 205-214, 2019. DOI: https://doi.org/10.1016/j.addma.2019.04.008.
DING, T.; XIAO, J.; QIN, F.; DUAN, Z. Mechanical behavior of 3D printed mortar with recycled sand at early ages. Construction and Building Materials, v. 248, n. 1, 118654, 2020a. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118654.
DING, T.; XIAO, J.; ZOU, S.; WANG, Y. Hardened properties of layered 3D printed concrete with recycled sand. Cement and Concrete Composites, v. 113, n. 1, 103724, 2020b. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103724.
EL CHEIKH, K.; RÉMOND, S.; KHALIL, N.; AOUAD, G. Numerical and experimental studies of aggregate blocking in mortar extrusion. Construction and Building Materials, v. 145, n. 1, p. 452-463, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.04.032.
FALLIANO, D.; SCIARRONE, A.; DE DOMENICO, D.; MAUGERI, N.; LONGO, P.; GUGLIANDOLO, E.; RICCIARDI, G. Fiber-reinforced lightweight foamed concrete panels suitable for 3D printing applications. IOP Conference Series: Materials Science and Engineering, v. 615, 012018, 2019. DOI: https://doi.org/10.1088/1757-899X/615/1/012018.
FIORETTI, M.; KOMPELLA, K. S.; MONTE, F. L.; ESPOSITO, L.; MENNA, C.; MORO, S.; ASPRONE, D.; FERRARA, L. Experimental investigation on the early age tensile strength of fiber reinforced mortar used in 3D concrete printing. In: RILEM INTERNATIONAL CONFERENCE ON CONCRETE AND DIGITAL FABRICATION, 2., 2020, Eindhoven. Proceedings […]. Cham: Springer, 2020. p. 255-261. (RILEM Bookseries, v. 28). DOI: https://doi.org/10.1007/978-3-030-49916-7_26.
FURET, B.; POULLAIN, P.; GARNIER, S. 3D printing for construction based on a complex wall of polymer-foam and concrete. Additive Manufacturing, v. 28, n. 1, p. 58-64, 2019. DOI: https://doi.org/10.1016/j.addma.2019.04.002.
GIBSON, I.; ROSEN, D. W.; STUCKER, B. Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. 2nd. ed. New York: Springer, 2009.
HAMEED, R.; PAPON, A.; PERROT, A.; RANGEARD, D. Effect of metallic fibers on the print quality and strength of 3D printed concrete. In: RILEM INTERNATIONAL CONFERENCE ON CONCRETE AND DIGITAL FABRICATION, 2., 2020, Eindhoven. Proceedings […]. Cham: Springer, 2020. p. 439-448. (RILEM Bookseries, v. 28). DOI: https://doi.org/10.1007/978-3-030-49916-7_45.
HOSSEINI, E.; ZAKERTABRIZI, M.; KORAYEM, A. H.; XU, G. A novel method to enhance the interlayer bonding of 3D printing concrete: An experimental and computational investigation. Cement and Concrete Composites, v. 99, n. 1, p. 112-119, 2019. DOI: https://doi.org/10.1016/j.cemconcomp.2019.03.008.
HUBS. 3D printing trends 2020: Industry highlights and market trends. Chicago: Hubs Manufacturing LLC, 2020. Available at: https://downloads.hubs.com/3D_printing_trends_report_2020.pdf. Accessed on: 21 Sep. 2022.
INGAGLIO, J.; FOX, J.; NAITO, C. J.; BOCCHINI, P. Material characteristics of binder jet 3D printed hydrated CSA cement with the addition of fine aggregates. Construction and Building Materials, v. 206, n. 1, p. 494-503, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.02.065.
INOVAHOUSE3D. Desenvolvimento de produto em impressão 3D em Brasília. 2020. Available at: https://www.inovahouse3d.com.br. Accessed on: 7 Oct. 2021. In Portuguese.
KHALIL, N.; AOUAD, G.; EL CHEIKH, K.; RÉMOND, S. Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars. Construction and Building Materials, v. 157, n. 1, p. 382-391, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.109.
KHAN, M. A. Mix suitable for concrete 3D printing: A review. Materials Today: Proceedings, v. 32, part 4, p. 831-837, 2020. DOI: https://doi.org/10.1016/j.matpr.2020.03.825.
KHAN, M. S.; SANCHEZ, F.; ZHOU, H. 3-D printing of concrete: Beyond horizons. Cement and Concrete Research, v. 133, 106070, 2020. DOI: https://doi.org/10.1016/j.cemconres.2020.106070.
KHOSHNEVIS, B. Robotic systems for automated construction. Depositor: University of Southern California USC. US 7,641,461 B2, Filed: 21 Jan. 2005, Application granted: 5 Jan. 2010. Available at: https://patents.google.com/patent/US7641461B2/en. Accessed on: 10 Oct. 2021.
KRUGER, J.; ZERANKA, S.; ZIJL, G. V. A rheology-based quasi-static shape retention model for digitally fabricated concrete. Construction and Building Materials, v. 254, n. 1, 119241, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119241.
KRUGER, J.; ZERANKA, S.; ZIJL, G. V. An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete. Construction and Building Materials, v. 224, n. 1, p. 372-386, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.078.
LAO, W.; LI, M.; WONG, T. N.; TAN, M. J.; TJAHJOWIDODO, T. Improving surface finish quality in extrusion-based 3D concrete printing using machine learning-based extrudate geometry control. Virtual and Physical Prototyping, v. 15, n. 2, p. 178-193, 2020. DOI: https://doi.org/10.1080/17452759.2020.1713580.
LE, T. T.; AUSTIN, S. A.; LIM, S.; BUSWELL, R. A.; LAW, R.; GIBB, A. G. F.; THORPE, T. Hardened properties of high-performance printing concrete. Cement and Concrete Research, v. 42, n. 3, p. 558-566, 2012. DOI: https://doi.org/10.1016/j.cemconres.2011.12.003.
LI, Z.; WANG, L.; MA, G. Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3D printing subjected to different loading conditions. Composites Part B: Engineering, v. 187, n. 1, 107796, 2020. DOI: https://doi.org/10.1016/j.compositesb.2020.107796.
LONG, W.-J.; TAO, J.-L.; LIN, C.; GU, Y.-C.; MEI, L.; DUAN, H.-B.; XING, F. Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing. Journal of Cleaner Production, v. 239, n. 1, 118054, 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.118054.
LOWKE, D.; DINI, E.; PERROT, A.; WEGER, D.; GEHLEN, C.; DILLENBURGER, B. Particle-bed 3D printing in concrete construction: Possibilities and challenges. Cement and Concrete Research, v. 112, n. 1, p. 50-65, 2018. DOI: https://doi.org/10.1016/j.cemconres.2018.05.018.
LU, B.; ZHU, W.; WENG, Y.; LIU, Z.; YANG, E.-H.; LEONG, K. F.; TAN, M. J.; WONG, T. N.; QIAN, S. Study of MgO-activated slag as a cementless material for sustainable spray-based 3D printing. Journal of Cleaner Production, v. 258, n. 1, 120761, 2020. DOI: https://doi.org/10.1016/j.jclepro.2020.120671.
MA, G.; LI, Y.; WANG, L.; ZHANG, J.; LI, Z. Real-time quantification of fresh and hardened mechanical property for 3D printing material by intellectualization with piezoelectric transducers. Construction and Building Materials, v. 241, n. 1, 117982, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117982.
MANIKANDAN, K.; WI, K.; ZHANG, X.; WANG, K.; QIN, H. Characterizing cement mixtures for concrete 3D printing. Manufacturing Letters, v. 24, n. 1, p. 33-37, 2020. DOI: https://doi.org/10.1016/j.mfglet.2020.03.002.
MECHTCHERINE, V.; BOS, F. P.; PERROT, A.; SILVA, W. R. L.; NERELLA, V. N.; FATAEI, S.; WOLFS, R. J. M.; SONEBI, M.; ROUSSEL, N. Extrusion-based additive manufacturing with cement-based materials – Production steps, processes, and their underlying physics: A review. Cement and Concrete Research, v. 132, n. 1, 106037, 2020. DOI: https://doi.org/10.1016/j.cemconres.2020.106037.
MECHTCHERINE, V.; NERELLA, V. N.; WILL, F.; NÄTHER, M.; OTTO, J.; KRAUSE, M. Large-scale digital concrete construction: CONPrint3D concept for on-site, monolithic 3D-printing. Automation in Construction, v. 107, n. 1, 102933, 2019. DOI: https://doi.org/10.1016/j.autcon.2019.102933.
MOEINI, M. A.; HOSSEINPOOR, M.; YAHIA, A. Effectiveness of the rheometric methods to evaluate the build-up of cementitious mortars used for 3D printing. Construction and Building Materials, v. 257, n. 1, 119551, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119551.
MOHAN, M. K.; RAHUL, A. V.; DE SCHUTTER, G.; TITTELBOOM, K. V. Extrusion-based concrete 3D printing from a material perspective: A state-of-the-art review. Cement and Concrete Composites, v. 115, n. 1, 103855, 2021. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103855.
MOHAN, M. K.; RAHUL, A. V.; TITTELBOOM, K. V.; DE SCHUTTER, G. Evaluating the Influence of Aggregate Content on Pumpability of 3D Printable Concrete. In: RILEM INTERNATIONAL CONFERENCE ON CONCRETE AND DIGITAL FABRICATION, 2., 2020, Eindhoven. Proceedings […]. Cham: Springer, 2020. p. 333-341. (RILEM Bookseries, v. 28). DOI: https://doi.org/10.1007/978-3-030-49916-7_34.
NERELLA, V. N.; HEMPEL, S.; MECHTCHERINE, V. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Construction and Building Materials, v. 205, n. 1, p. 586-601, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.235.
PANDA, B.; PAUL, S. C.; MOHAMED, N. A. N.; TAY, Y. W. D.; TAN, M. J. Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement, v. 113, n. 1, p. 108-116, 2018. DOI: https://doi.org/10.1016/j.measurement.2017.08.051.
PANDA, B.; SINGH, G. B.; UNLUER, C.; TAN, M. J. Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing. Journal of Cleaner Production, v. 220, n. 1, p. 610-619, 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.02.185.
PEGNA, J. Exploratory investigation of layered fabrication applied to construction automation. In: ASME DESIGN ENGINEERING TECHNICAL CONFERENCE, 1995, Boston. Proceedings […]. Boston: ASME, 1995, p. 219-226. DOI: https://doi.org/10.1115/DETC1995-0029.
RAHUL, A. V.; SANTHANAM, M. Evaluating the printability of concretes containing lightweight coarse aggregates. Cement and Concrete Composites, v. 109, n. 1, 103570, 2020. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103570.
SHAKOR, P.; NEJADI, S.; PAUL, G. Investigation into the effect of delays between printed layers on the mechanical strength of inkjet 3DP mortar. Manufacturing Letters, v. 23, n. 1, p. 19-22, 2020. DOI: https://doi.org/10.1016/j.mfglet.2019.11.004.
SHAKOR, P.; NEJADI, S.; PAUL, G.; SANJAYAN, J. Dimensional accuracy, flowability, wettability, and porosity in inkjet 3DP for gypsum and cement mortar materials. Automation in Construction, v. 110, n. 1, 102964, 2020. DOI: https://doi.org/10.1016/j.autcon.2019.102964.
SHAKOR, P.; NEJADI, S.; PAUL, G.; SANJAYAN, J.; ASLANI, F. Heat curing as a means of postprocessing influence on 3D printed mortar specimens in powderbased 3D printing. The Indian Concrete Journal, v. 93, n. 9, p. 65-74, 2019. Available at: http://hdl.handle.net/1959.3/452532. Accessed on: 10 Oct. 2021.
SOLTAN, D. G.; LI, V. C. A self-reinforced cementitious composite for building-scale 3D printing. Cement and Concrete Composites, v. 90, n. 1, p. 1-13, 2018. DOI: https://doi.org/10.1016/j.cemconcomp.2018.03.017.
TAO, Y.; LESAGE, K.; TITTELBOOM, K. V.; YUAN, Y.; DE SCHUTTER, G. Effect of limestone powder substitution on fresh and hardened properties of 3D printable mortar. In: RILEM INTERNATIONAL CONFERENCE ON CONCRETE AND DIGITAL FABRICATION, 2., 2020, Eindhoven. Proceedings […]. Cham: Springer, 2020. p. 135-143. (RILEM Bookseries, v. 28). DOI: https://doi.org/10.1007/978-3-030-49916-7_14.
TAY, Y. W. D.; LI, M. Y.; TAN, M. J. Effect of printing parameters in 3D concrete printing: Printing region and support structures. Journal of Materials Processing Technology, v. 271, n. 1, p. 261-270, 2019. DOI: https://doi.org/10.1016/j.jmatprotec.2019.04.007.
TAY, Y. W. D.; TING, G. H. A.; QIAN, Y.; PANDA, B.; HE, L.; TAN, M. J. Time gap effect on bond strength of 3D-printed concrete. Virtual and Physical Prototyping, v. 14, n. 1, p. 104-113, 2019. DOI: https://doi.org/10.1080/17452759.2018.1500420.
WU, P.; WANG, J.; WANG, X. A critical review of the use of 3-D printing in the construction industry. Automation in Construction, v. 68, n. 1, p. 21-31, 2016. DOI: https://doi.org/10.1016/j.autcon.2016.04.005.
XU, J.; BUSWELL, R. A.; KINNELL, P.; BIRO, I.; HODGSON, J.; KONSTANTINIDIS, N.; DING, L. Inspecting manufacturing precision of 3D printed concrete parts based on geometric dimensioning and tolerancing. Automation in Construction, v. 117, n. 1, 103233, 2020. DOI: https://doi.org/10.1016/j.autcon.2020.103233.
XU, Y.; ŠAVIJA, B. Development of strain hardening cementitious composite (SHCC) reinforced with 3D printed polymeric reinforcement: Mechanical properties. Composites Part B: Engineering, v. 174, n. 1, 107011, 2019. DOI: https://doi.org/10.1016/j.compositesb.2019.107011.
YU, S.; DU, H.; SANJAYAN, J. Aggregate-bed 3D concrete printing with cement paste binder. Cement and Concrete Research, v. 136, n. 1, 106169, 2020. DOI: https://doi.org/10.1016/j.cemconres.2020.106169.
ZAREIYAN, B.; KHOSHNEVIS, B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Automation in Construction, v. 83, n. 1, p. 212-221, 2017a. DOI: https://doi.org/10.1016/j.autcon.2017.08.019.
ZAREIYAN, B.; KHOSHNEVIS, B. Interlayer adhesion and strength of structures in Contour Crafting - Effects of aggregate size, extrusion rate, and layer thickness. Automation in Construction, v. 81, n. 1, p. 112-121, 2017b. DOI: https://doi.org/10.1016/j.autcon.2017.06.013.
ZHANG, Y.; ZHANG, Y.; SHE, W.; YANG, L.; LIU, G.; YANG, Y. Rheological and harden properties of the high-thixotropy 3D printing concrete. Construction and Building Materials, v. 201, n. 1, p. 278-285, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.061.
ZHU, B.; PAN, J.; NEMATOLLAHI, B.; ZHOU, Z.; ZHANG, Y.; SANJAYAN, J. Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction. Materials & Design, v. 181, n. 1, 108088, 2019. DOI: https://doi.org/10.1016/j.matdes.2019.108088.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Revista Principia - Divulgação Científica e Tecnológica do IFPB
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
• O(s) autor(es) autoriza(m) a publicação do artigo na revista;
• O(s) autor(es) garante(m) que a contribuição é original e inédita e que não está em processo de avaliação em outra(s) revista(s), nem esteja publicado em anais de congressos e/ou portais institucionais;
• A revista não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es). Opiniões e perspectivas expressas no texto, assim como a precisão e a procedência das citações, são de responsabilidade exclusiva do(s) autor(es), e contribuem para a promoção dos:
- Princípios FAIR (Findable, Accessible, Interoperable, and Reusable – localizável, acessível, interoperável e reutilizável);
- Princípios DEIA (diversidade, equidade, inclusão e acessibilidade).
• É reservado aos editores o direito de proceder ajustes textuais e de adequação do artigos às normas da publicação.
Responsabilidades dos autores e transferência de direitos autorais
Os autores devem declarar a originalidade do estudo, bem como o fato de que este não foi publicado anteriormente ou está sendo considerado para publicação em outro meio, como periódicos, anais de eventos ou livros. Ao autorizarem a publicação do artigo na Revista Principia, os autores devem também responsabilizar-se pelo conteúdo do manuscrito, cujos direitos autorais, em caso de aprovação, passarão a ser propriedade exclusiva da revista. A Declaração de Responsabilidades dos Autores e Transferência de Direitos Autorais deverá ser assinada por todos os autores e anexada ao sistema como documento suplementar durante o processo de submissão. Clique no link abaixo para fazer o download do modelo.
Esta revista, seguindo as recomendações do movimento de Acesso Aberto, proporciona seu conteúdo em Full Open Access. Assim os autores conservam todos seus direitos permitindo que a Revista Principia possa publicar seus artigos e disponibilizar pra toda a comunidade.
A Revista Principia adota a licença Creative Commons 4.0 do tipo atribuição (CC-BY). Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, inclusive para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
Os autores estão autorizados a enviar a versão do artigo publicado nesta revista em repositório institucionais, com reconhecimento de autoria e publicação inicial na Revista Principia.