Biossistemas aplicados à mitigação de metano em emissões fugitivas de aterros sanitários: uma breve revisão

Waldir Nagel Schirmer

ORCID iD Universidade Estadual do Centro-Oeste (UNICENTRO) Brasil

Matheus Vitor Diniz Gueri

ORCID iD Universidade Federal da Integração Latino-americana (UNILA) Brasil

Liliana Andréa dos Santos

ORCID iD Universidade Federal de Pernambuco (UFPE) Brasil

Guilherme José Correia Gomes

ORCID iD Universidade Federal de Pernambuco (UFPE) Brasil

José Fernando Thomé Jucá

ORCID iD Universidade Federal de Pernambuco (UFPE) Brasil

Resumo

Os biossistemas têm sido uma importante ferramenta na mitigação de gases de efeito estufa emitidos a partir da camada de cobertura de aterros sanitários. Independentemente da sua configuração (biojanela, biorrecobrimento ou biofiltro), essa tecnologia baseia-se, fundamentalmente, no princípio da oxidação biológica de gases de natureza orgânica, inorgânica, odorantes, entre outros, formados na massa residual durante as diferentes fases de decomposição dos resíduos sólidos urbanos. O presente trabalho traz uma síntese dos biossistemas mais comumente reportados na literatura aplicados à oxidação passiva de metano (um importante gás de efeito estufa) em camadas de cobertura de aterros sanitários. Além disso, discute os principais parâmetros relacionados à eficiência deste bioprocesso, como temperatura, pH, umidade do meio, carga de metano aplicada no biossistema, teor de matéria orgânica e nutrientes presentes no leito biofiltrante, bem como a porosidade do meio. De um modo geral, o uso de substratos de elevado teor de matéria e baixo custo, como rejeitos de processos industriais e estações de tratamento de efluentes domésticos, turfa, composto, dentre outros, tem se mostrado uma excelente alternativa como agregado do solo, contribuindo para a redução de gases de efeito estufa no setor de gestão de resíduos sólidos.

Palavras-chave


biorrecobrimento; gases de efeito estufa; poluição atmosférica; resíduos sólidos municipais


Texto completo:

Referências


ABUSHAMMALA, M. F. M.; BASRI, N. E. A.; IRWAN, D.; YOUNES, M. K. Methane oxidation in landfill cover soils: a review. Asian Journal of Atmospheric Environment, v. 8, n. 1, p. 1-14, 2014. DOI: http://dx.doi.org/10.5572/ajae.2014.8.1.001.

AHOUGHALANDARI, B.; CABRAL, A. R.; LEROUEIL, S. Elements of design of passive methane oxidation biosystems: fundamental and practical considerations about compaction and hydraulic characteristics on biogas migration. Geotechnical and Geological Engineering, v. 36, p. 2593-2609, 2018. DOI: https://dx.doi.org/10.1007/s10706-018-0485-z.

ALBANNA, M.; FERNANDES, L. Effects of temperature, moisture content, and fertilizer addition on biological methane oxidation in landfill cover soils. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, v. 13, n. 3, p. 187-195, 2009. DOI: https://dx.doi.org/10.1061/(ASCE)1090-025X(2009)13:3(187).

BENDER, M.; CONRAD, R. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil, Biology and Biochemistry, v. 27, n. 12, p. 1517-1527, 1995. DOI: https://doi.org/10.1016/0038-0717(95)00104-M.

BOECKX, P.; VAN CLEEMPUT, O. Methane oxidation in a neutral landfill cover soil: influence of moisture content, temperature, and nitrogen-turnover. Journal of Environmental Quality, v. 25, n. 1, p. 178-183, 1996. DOI: https://doi.org/10.2134/jeq1996.00472425002500010023x.

BRANDT, E. M. F.; DUARTE, F. V.; VIEIRA, J. P. R.; MELO, V. M.; SOUZA, C. L.; ARAÚJO, J. C.; CHERNICHARO, C. A. L. The use of novel packing material for improving methane oxidation in biofilters. Journal of Environmental Management, v. 182, n. 1, p. 412-420, 2016. DOI: https://doi.org/10.1016/j.jenvman.2016.07.075.

CAPANEMA, M. A.; CABRAL, A. R. Evaluating methane oxidation efficiencies in experimental landfill biocovers by mass balance and carbon stable isotopes. Water, Air, & Soil Pollution, v. 223, n. 9, p. 5623-5635, 2012. DOI: https://dx.doi.org/10.1007/s11270-012-1302-6.

CHIEMCHAISRI, C.; CHIEMCHAISRI, W.; KUMAR, S.; WICRAMARACHCHI, P. N. Reduction of methane emission from landfill through microbial activities in cover soil: a brief review. Critical Reviews in Environmental Science and Technology, v. 42, n. 4, p. 412-434, 2012. DOI: https://dx.doi.org/10.1080/10643389.2010.520233.

COSTA, M. D.; MARIANO, M. O. H.; ARAÚJO, L. B.; JUCÁ, J. F. T. Estudos laboratoriais para avaliação do desempenho de camadas de cobertura de aterros sanitários em relação à redução de emissões de gases e infiltrações. Revista Engenharia Sanitária e Ambiental, v. 23, n. 1, p. 77-90, 2018. DOI: https://doi.org/10.1590/S1413-41522018160393.

DEUBLEIN, D.; STEINHAUSER, A. (ed.). Biogas from waste and renewable resources: an introduction. Weinheim: Wiley, 2008. DOI: https://doi.org/10.1002/9783527621705.

DEVINNY, J. S.; DESHUSSES, M. A.; WEBSTER, T. S. Biofiltration for air pollution control. Boca Raton: CRC Press, 1999.

DUAN, Z.; HANSEN, P. O. R.; SCHEUTZ, C.; KJELDSEN, P. Mitigation of methane and trace gas emissions through a large-scale active biofilter system at Glatved landfill, Denmark. Waste Management, v. 126, n. 1, p. 367-376, 2021. DOI: https://dx.doi.org/10.1016/j.wasman.2021.03.023.

FEDRIZZI, F.; CABANA, H.; NDANGA, É. M.; CABRAL, A. R. Biofiltration of methane from cow barns: effects of climatic conditions and packing bed media acclimatization. Waste Management, v. 78, p. 669-676, 2018. DOI: https://doi.org/10.1016/j.wasman.2018.06.038.

FRANQUETO, R.; CABRAL, A. R.; CAPANEMA, M. A.; SCHIRMER, W. N. Fugitive methane emissions from two experimental biocovers constructed with tropical residual soils: field study using a large flux chamber. Detritus, v. 7, p. 119-127, 2019. DOI: https://dx.doi.org/10.31025/2611-4135/2019.13844.

FRASI, N.; ROSSI, E.; PECORINI, I.; IANNELLI, R. Methane oxidation efficiency in biofiltration systems with different moisture content treating diluted landfill gas. Energies, v. 13, n. 11, p. 1-15, 2020. DOI: https://dx.doi.org/10.3390/en13112872.

GEBERT, J.; GROENGROEFT, A.; MIEHLICH, G. Kinetics of microbial landfill methane oxidation in biofilters. Waste Management, v. 23, n. 7, p. 609-619, 2003. DOI: https://doi.org/10.1016/S0956-053X(03)00105-3.

HAN, J.-S.; MAHANTY, B.; YOON, S.-U.; KIM, C.-G. Activity of a methanotrophic consortium isolated from landfill cover soil: response to temperature, pH, CO2, and porous adsorbent. Geomicrobiology Journal, v. 33, n. 10, p. 878-885, 2016. DOI: https://dx.doi.org/10.1080/01490451.2015.1123330.

HANSON, R. S.; HANSON, T. E. Methanotrophic bacteria. Microbiological Reviews, v. 60, n. 2, p. 439-471, 1996. DOI: https://dx.doi.org/10.1128/mr.60.2.439-471.1996.

HUANG, Q.; ZHANG, Q.; CICEK, N.; MANN, D. Biofilter: a promising tool for mitigating methane emission from manure storage. Journal of Arid Land, v. 3, n. 1, p. 61-70, 2011. DOI: https://dx.doi.org/10.3724/SP.J.1227.2011.00061.

HUBER-HUMER, M.; GEBERT, J.; HILGER, H. Biotic systems to mitigate landfill methane emissions. Waste Management & Research, v. 26, n. 1, p. 33-46, 2008. DOI: https://dx.doi.org/10.1177/0734242X07087977.

HUBER-HUMER, M.; RÖDER, S.; LECHNER, P. Approaches to assess biocover performance on landfills. Waste Management, v. 29, n. 7, p. 2092-2104, 2009. DOI: https://doi.org/10.1016/j.wasman.2009.02.001.

HUETE, A.; COBOS-VASCONCELOS, D.; GÓMEZ-BORRAZ, T.; MORGAN-SAGASTUME, J. M.; NOYOLA, A. Control of dissolved CH4 in a municipal UASB reactor effluent by means of a desorption – Biofiltration arrangement. Journal of Environmental Management, v. 216, p. 383-391, 2018. DOI: https://doi.org/10.1016/j.jenvman.2017.06.061.

HUMER, M.; LECHNER, P. Alternative approach to the elimination of greenhouse gases from old lanfills. Waste Management & Research, v. 17, n. 6, p. 443-452, 1999. DOI: https://dx.doi.org/10.1177/0734242X9901700607.

HWANG, J. W.; JANG, S. J.; LEE, E. Y.; CHOI, C. Y.; PARK, S. Evaluation of composts as biofilter packing material for treatment of gaseous p-xylene. Biochemical Engineering Journal, v. 35, n. 2, p. 142-149, 2007. DOI: https://dx.doi.org/10.1016/j.bej.2007.01.008.

IPCC – INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate change 2007: mitigation of climate change. Working Group III Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [METZ, B.; DAVIDSON, O. R.; BOSCH, P. R.; DAVE, R.; MEYER, L. A. (ed.)]. Cambridge: Cambridge University Press, 2007. Disponível em: https://www.ipcc.ch/report/ar4/wg3. Acesso em: 19 fev. 2022.

JUNG, H.; OH, K.-C.; RYU, H.-W.; JEON, J.-M.; CHO, K.-S. Simultaneous mitigation of methane and odors in a biowindow using a pipe network. Waste Management, v. 100, p. 45-56, 2019. DOI: https://doi.org/10.1016/j.wasman.2019.09.004.

KJELD, A. Microbial methane oxidation at the Fíflholt landfill in Iceland. 2013. 87 p. Thesis (Master in Environmental Engineering) – Faculty of Civil and Environmental Engineering, University of Iceland, Reykjavik, 2013.

KORMI, T.; MHADHEBI, S.; BEL HADJ ALI, N.; ABICHOU, T.; GREEN, R. Estimation of fugitive landfill methane emissions using surface emission monitoring and Genetic Algorithms optimization. Waste Management, v. 72, p. 313-328, 2018. DOI: https://doi.org/10.1016/j.wasman.2016.11.024.

LA, H.; HETTIARATCHI, J. P. A.; ACHARI, G.; DUNFIELD, P. F. Biofiltration of methane. Bioresource Technology, v. 268, p. 759-772, 2018. DOI: https://doi.org/10.1016/j.biortech.2018.07.043.

LAKHOUIT, A.; SCHIRMER, W. N.; JOHNSON, T. R.; CABANA, H.; CABRAL, A. R. Evaluation of the efficiency of an experimental biocover to reduce BTEX emissions from landfill biogas. Chemosphere, v. 97, p. 98-101, 2014. DOI: https://dx.doi.org/10.1016/j.chemosphere.2013.09.120.

LEE, E.-H.; MOON, K.-E.; CHO, K.-S. Long-term performance and bacterial community dynamics in biocovers for mitigating methane and malodorous gases. Journal of Biotechnology, v. 242, p. 1-10, 2017. DOI: https://dx.doi.org/10.1016/j.jbiotec.2016.12.007.

LEE, Y.-Y.; JUNG, H.; RYU, H.-W.; OH, K.-C.; JEON, J.-M.; CHO, K.-S. Seasonal characteristics of odor and methane mitigation and the bacterial community dynamics in an on-site biocover at a sanitary landfill. Waste Management, v. 71, p. 277-286, 2018. DOI: https://dx.doi.org/10.1016/j.wasman.2017.10.037.

MENARD, C.; RAMIREZ, A. A.; NIKIEMA, J.; HEITZ, M. Biofiltration of methane and trace gases from landfills: a review. Environmental Reviews, v. 20, n. 1, p. 40-53, 2012. DOI: https://dx.doi.org/10.1139/a11-022.

MEYER-DOMBARD, D’A. R.; BOGNER, J. E.; MALAS, J. A Review of landfill microbiology and ecology: A call for modernization with ‘next generation’ technology. Frontiers in Microbiology, v. 11, n. 1127, p. 1-22, 2020. DOI: https://dx.doi.org/10.3389/fmicb.2020.01127.

MOR, S.; DE VISSCHER, A.; RAVINDRA, K.; DAHIYA, R. P.; CHANDRA, A.; VAN CLEEMPUT, O. Induction of enhanced methane oxidation in compost: temperature and moisture response. Waste Management, v. 26, n. 4, p. 381-388, 2006. DOI: https://doi.org/10.1016/j.wasman.2005.11.005.

NDANGA, É. M.; BRADLEY, R. L.; CABRAL, A. R. Does vegetation affect the methane oxidation efficiency of passive biosystems? Waste Management, v. 38, p. 240-249, 2015. DOI: https://dx.doi.org/10.1016/j.wasman.2015.01.031.

NIEMCZYK, M.; BERENJKAR, P.; WILKINSON, N.; LOZECZNIK, S.; SPARLING, R.; YUAN, Q. Enhancement of CH4 oxidation potential in bio-based landfill cover materials. Process Safety and Environmental Protection, v. 146, p. 943-951, 2021. DOI: https://dx.doi.org/10.1016/j.psep.2020.12.035.

NIKIEMA, J.; HEITZ, M. The influence of the gas flow rate during methane biofiltration on an inorganic packing material. Canadian Journal of Chemical Engineering, v. 87, n. 1, p. 136-142, 2009. DOI: https://dx.doi.org/10.1002/cjce.20131.

PARIATAMBY, A.; CHEAH, W. Y.; SHRIZAL, R.; THAMLARSON, N.; LIM, B. T.; BARASARATHI, J. Enhancement of landfill methane oxidation using different types of organic wastes. Environmental Earth Sciences, v. 73, n. 5, p. 2489-2496, 2015. DOI: https://dx.doi.org/10.1007/s12665-014-3600-3.

PARK, S.; LEE, C.-H.; RYU, C.-R.; SUNG, K. Biofiltration for reducing methane emissions from modern sanitary landfills at the low methane generation stage. Water, Air & Soil Pollution, v. 196, p. 19-27, 2009. DOI: https://dx.doi.org/10.1007/s11270-008-9754-4.

PECORINI, I.; IANNELLI, R. Landfill GHG reduction through different microbial methane oxidation biocovers. Processes, v. 8, n. 5, 591, 2020. DOI: https://dx.doi.org/10.3390/pr8050591.

SAARI, A.; RINNAN, R.; MARTIKAINEN, P. J. Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium. Soil Biology & Biochemistry, v. 36, n. 7, p. 1037-1046, 2004. DOI: https://doi.org/10.1016/j.soilbio.2004.01.018.

SADASIVAM, B. Y.; REDDY, K. R. Landfill methane oxidation in soil and bio-based cover systems: a review. Reviews in Environmental Science and Bio/Technology, v. 13, n. 1, p. 79-107, 2014. DOI: https://dx.doi.org/10.1007/s11157-013-9325-z.

SCHEUTZ, C.; FREDENSLUND, A. M.; CHANTON, J.; PEDERSEN, G. B.; KJELDSEN, P. Mitigation of methane emission from Fakse landfill using a biowindow system. Waste Management, v. 31, n. 5, p. 1018-1028, 2011. DOI: https://dx.doi.org/10.1016/j.wasman.2011.01.024.

SCHEUTZ, C.; KJELDSEN, P. Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. Journal of Environmental Quality, v. 33, n. 1, p. 72-79, 2004. DOI: https://dx.doi.org/10.2134/jeq2004.7200.

SCHEUTZ, C.; KJELDSEN, P.; BOGNER, J. E.; DE VISSCHER, A.; GEBERT, J.; HILGER, H. A.; HUBER-HUMER, M.; SPOKAS, K. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management & Research, v. 27, n. 5, p. 409-455, 2009. DOI: https://dx.doi.org/10.1177/0734242X09339325.

SHANGARI, G. S.; AGAMUTHU, P. Enhancing methane oxidation in landfill cover using brewery spent grain as biocover. Malaysian Journal of Science, v. 31, n. 2, p. 91-97, 2012. DOI: https://dx.doi.org/10.22452/mjs.vol31no2.8.

STREESE, J.; STEGMANN, R. Microbial oxidation of methane from old landfills in biofilters. Waste Management, v. 23, n. 7, p. 573-580, 2003. DOI: https://dx.doi.org/10.1016/S0956-053X(03)00097-7.

USEPA – UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Available and emerging technologies for reducing greenhouse gas emissions from municipal solid waste landfills. Durham, NC, EUA: USEPA, 2011. Disponível em: https://www.epa.gov/sites/production/files/2015-12/documents/landfills.pdf. Acesso em: 18 fev. 2022.

USEPA – UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Global Mitigation of Non-CO2 Greenhouse Gases: 2010-2030. EPA-430-R-13-011. Washington, DC: USEPA, 2013. Disponível em: https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases/global-mitigation-non-co2-ghgs-report-2010-2030. Acesso em: 18 fev. 2022.

VAN TIENEN, Y. M. S.; LIMA, G. M.; MAZUR, D. L.; MARTINS, K. G.; STROPARO, E. C.; SCHIRMER, W. N. Methane oxidation biosystem in landfill fugitive emissions using conventional cover soil and compost as alternative substrate – a field study. Clean Technologies and Environmental Policy, v. 23, p. 2627-2637, 2021. DOI: https://dx.doi.org/10.1007/s10098-021-02179-9.

ZEISS, C. A. Accelerated methane oxidation cover system to reduce greenhouse gas emissions from MSW landfills in cold, semi-arid regions. Water, Air, and Soil Pollution, v. 176, p. 285-306, 2006. DOI: https://dx.doi.org/10.1007/s11270-006-9169-z.


DOI: http://dx.doi.org/10.18265/1517-0306a2021id6451

O arquivo PDF selecionado deve ser carregado no navegador caso tenha instalado um plugin de leitura de arquivos PDF (por exemplo, uma versão atual do Adobe Acrobat Reader).

Como alternativa, pode-se baixar o arquivo PDF para o computador, de onde poderá abrí-lo com o leitor PDF de sua preferência. Para baixar o PDF, clique no link abaixo.

Caso deseje mais informações sobre como imprimir, salvar e trabalhar com PDFs, a Highwire Press oferece uma página de Perguntas Frequentes sobre PDFs bastante útil.

Visitas a este artigo: 1533

Total de downloads do artigo: 525