Physical and mechanical properties of starch films: the role of the cross-linking mechanism through iodine binding capacity

Aline Merci

ORCID iD Universidade Estadual de Londrina (UEL) Brasil

Mariana Moraes Góes

ORCID iD Universidade Estadual de Londrina (UEL) Brasil

Suzana Mali

ORCID iD Universidade Estadual de Londrina (UEL) Brasil

Fabio Yamashita

ORCID iD Universidade Estadual de Londrina (UEL) Brasil

Gizilene Maria de Carvalho

ORCID iD Universidade Estadual de Londrina (UEL) Brasil

Resumo

In this study, a better knowledge of the influence of cross-linking mechanism on the mechanical properties of starch films is presented. Thus, waxy starch and cassava starch films, cross-linked with trisodium trimetaphosphate (STMP), were produced and characterized concerning their morphology, transport, and mechanical properties. Starch cross-linking was verified by RAMAN spectroscopy and by iodine binding capacity (IBC) values, which were determined by color analysis of digital images. Although cross-linking affects the morphology and crystallinity of the films, it was not observed a relationship between the mechanism of the cross-linking reaction of the starch chain (amylose-amylopectin and amylopectin-amylopectin) and the transport properties. The lower Young Modulus and IBC value and the higher elongation at break observed for cross-linking cassava starch films relative to control and waxy films indicate that cross-linking mechanism influences the mechanical properties of starch films and should be considered to tailor the final properties of packaging and biobased products.

Palavras-chave


amylose content; cassava starch; chemical modification; mechanical properties; waxy maize starch


Texto completo:

Referências


ASTM – AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard test method for water vapor transmission of material. E96-95. Philadelphia: ASTM, 1995.

ASTM – AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard test method for tensile properties of thin plastic sheeting. D882-91. Philadelphia: ASTM, 1996.

BAGHERI, V.; GHANBARZADEH, B.; AYASEH, A.; OSTADRAHIMI, A.; EHSANI, A.; ALIZADEH-SANI, M.; ADUN, P. A. The optimization of physico-mechanical properties of bionanocomposite films based on gluten/ carboxymethyl cellulose/ cellulose nanofiber using response surface methodology. Polymer Testing, v. 78, 105989, 2019. DOI: https://doi.org/10.1016/j.polymertesting.2019.105989.

BAPTESTINI, F. M.; CORRÊA, P. C.; RAMOS, A. M.; JUNQUEIRA, M. S.; ZAIDAN, I. R. GAB model and the thermodynamic properties of moisture sorption in soursop fruit powder. Revista Ciência Agronômica, v. 51, n. 1, e20164781, 2020. Available at: http://periodicos.ufc.br/revistacienciaagronomica/article/view/88787/242157. Accessed on: 9 Aug. 2023.

BIZOT, H.; BULEON, A.; RIOU, N. Study of native starch hydration: influence of sorption hysteresis. Journal de Physique Colloques, v. 45, n. C7, p. C7-259-C7-264, 1984. DOI: https://doi.org/10.1051/jphyscol:1984730.

CAGNIN, C.; SIMÕES, B. M.; YAMASHITA, F.; CARVALHO, G. M.; GROSSMANN, M. V. E. pH sensitive phosphate crosslinked films of starch‐carboxymethyl cellulose. Polymer Engineering & Science, v. 61, n. 2, p. 388-396, 2021. DOI: https://doi.org/10.1002/pen.25582.

CONAB – COMPANHIA NACIONAL DE ABASTECIMENTO (CONAB). Análise mensal. Mandioca: fevereiro de 2020. Brasília, DF: CONAB, 2020. Available at: https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/analises-do-mercado/historico-mensal-de-mandioca/item/download/31054_7353a3a223023f519813432dd4ef8c25. Accessed on: 21 Aug. 2020. In Portuguese.

DANKAR, I.; HADDARAH, A.; OMAR, F. E. L.; PUJOLÀ, M.; SEPULCRE, F. Characterization of food additive-potato starch complexes by FTIR and x-ray diffraction. Food Chemistry, v. 260, p. 7-12, 2018. DOI: https://doi.org/10.1016/j.foodchem.2018.03.138.

DIYANA, Z. N.; JUMAIDIN, R.; SELAMAT, M. Z.; GHAZALI, I.; JULMOHAMMAD, N.; HUDA, N.; ILYAS, R. A. Physical properties of thermoplastic starch derived from natural resources and its blends: a review. Polymers, v. 13, n. 9, p. 1396, 2021. DOI: https://doi.org/10.3390/polym13091396.

DOME, K.; PODGORBUNSKIKH, E.; BYCHKOV, A.; LOMOVSKY, O. Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers, v. 12, n. 3, p. 641, 2020. DOI: https://doi.org/10.3390/polym12030641.

DONG, H.; VASANTHAN, T. Effect of phosphorylation techniques on structural, thermal, and pasting properties of pulse starches in comparison with corn starch. Food Hydrocolloids, v. 109, 106078, 2020. DOI: https://doi.org/10.1016/j.foodhyd.2020.106078.

FORNACIARI, B.; BERNARDINO, B. L.; GÓES, M. M.; CARVALHO, G. M. Filmes de amido reticulado: estudo da incorporação e liberação de sulfato de condroitina / Crosslinked- starch films: study of the incorporation and release of chondroitin sulfate. Brazilian Journal of Development, v. 6, n. 7, p. 51298-51309, 2020. DOI: https://doi.org/10.34117/bjdv6n7-684.

GARCÍA-TEJEDA, Y. V.; SALINAS-MORENO, Y.; HERNÁNDEZ-MARTÍNEZ, Á. R.; MARTÍNEZ-BUSTOS, F. Encapsulation of purple maize anthocyanins in phosphorylated starch by spray drying. Cereal Chemistry, v. 93, n. 2, p. 130-137, 2016. DOI: https://doi.org/10.1094/CCHEM-04-15-0072-R.

GÓES, M. M.; MERCI, A.; ANDRELLO, A. C.; YAMASHITA, F.; CARVALHO, G. M. Design and application of multi-layer Starch-Latex blends as phosphorous delivery system. Journal of Polymers and the Environment, v. 29, p. 2000-2012, 2021. DOI: https://doi.org/10.1007/s10924-020-02018-w.

GONTARD, N.; GUILBERT, S.; CUQ, J.-L. Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. Journal of Food Science, v. 57, n. 1, p. 190-195, 1992. DOI: https://doi.org/10.1111/j.1365-2621.1992.tb05453.x.

GUTIÉRREZ, T. J.; MORALES, N. J.; PÉREZ, E.; TAPIA, M. S.; FAMÁ, L. Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches. Food Packaging and Shelf Life, v. 3, p. 1-8, 2015. DOI: https://doi.org/10.1016/j.fpsl.2014.09.002.

HOOVER, R.; RATNAYAKE, W. S. Determination of total amylose content. Current Protocols in Food Analytical Chemistry, v. 00, n. 1, p. E2.3.1-E2.3, 2001. DOI: https://doi.org/10.1002/0471142913.fae0203s00.

IMBERTY, A.; BULÉON, A.; TRAN, V.; PÉEREZ, S. Recent advances in knowledge of starch structure. Starch‐Stärke, v. 43, n. 10, p. 375-384, 1991. DOI: https://doi.org/10.1002/star.19910431002.

JANE, J.; CHEN, Y. Y.; LEE, L. F.; MCPHERSON, A. E.; WONG, K. S.; RADOSAVLJEVIC, M.; KASEMSUWAN, T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry, v. 76, n. 5, p. 629-637, 1999. DOI: https://doi.org/10.1094/CCHEM.1999.76.5.629.

KOU, T.; GAO, Q. A study on the thermal stability of amylose-amylopectin and amylopectin-amylopectin in cross-linked starches through iodine binding capacity. Food Hydrocolloids, v. 88, p. 86-91, 2019. DOI: https://doi.org/10.1016/j.foodhyd.2018.09.028.

MALI, S.; GROSSMANN, M. V. E.; GARCÍA, M. A.; MARTINO, M. N.; ZARITZKY, N. E. Mechanical and thermal properties of yam starch films. Food Hydrocolloids, v. 19, n. 1, p. 157-164, 2005. DOI: https://doi.org/10.1016/j.foodhyd.2004.05.002.

MASINA, N.; CHOONARA, Y. E.; KUMAR, P.; TOIT, L. C.; GOVENDER, M.; INDERMUN, S.; PILLAY, V. A review of the chemical modification techniques of starch. Carbohydrate polymers, v. 157, p. 1226-1236, 2017. DOI: https://doi.org/10.1016/j.carbpol.2016.09.094.

MATHLOUTHI, M.; KOENIG, J. L. Vibrational spectra of carbohydrates. Advances in Carbohydrate Chemistry and Biochemistry, v. 44, p. 7-89, 1987. DOI: https://doi.org/10.1016/S0065-2318(08)60077-3.

MUSCAT, D.; ADHIKARI, R.; MCKNIGHT, S.; GUO, Q.; ADHIKARI, B. The physicochemical characteristics and hydrophobicity of high amylose starch–glycerol films in the presence of three natural waxes. Journal of Food Engineering, v. 119, n. 2, p. 205-219, 2013. DOI: https://doi.org/10.1016/j.jfoodeng.2013.05.033.

NAZREEN, A. Z.; JAI, J.; ALI, S. A.; MANSHOR, N. M. Moisture adsorption isotherm model for edible food film packaging: a review. Scientific Research Journal, v. 17, n. 2, p. 222-245, 2020. DOI: https://doi.org/10.24191/srj.v17i2.10160.

OTHMAN, S. H.; KECHIK, N. R. A.; SHAPI’I, R. A.; TALIB, R. A.; TAWAKKAL, I. S. M. A. Water sorption and mechanical properties of starch/chitosan nanoparticle films. Journal of Nanomaterials, v. 2019, 3843949, 2019. DOI: https://doi.org/10.1155/2019/3843949.

PELEG, M. An empirical model for the description of moisture sorption curves. Journal of Food Science, v. 53, n. 4, p. 1216-1217, 1988. DOI: https://doi.org/10.1111/j.1365-2621.1988.tb13565.x.

PREZOTTI, F. G.; MENEGUIN, A. B.; EVANGELISTA, R. C.; CURY, B. S. F. Preparation and characterization of free films of high amylose/pectin mixtures cross-linked with sodium trimetaphosphate. Drug Development and Industrial Pharmacy, v. 38, n. 11, p. 1354-1359, 2012. DOI: https://doi.org/10.3109/03639045.2011.650863.

RANGEL-MARRÓN, M.; MANI-LÓPEZ, E.; PALOU, E.; LÓPEZ-MALO, A. Effects of alginate-glycerol-citric acid concentrations on selected physical, mechanical, and barrier properties of papaya puree-based edible films and coatings, as evaluated by response surface methodology. LWT, v. 101, p. 83-91, 2019. DOI: https://doi.org/10.1016/j.lwt.2018.11.005.

RASBAND, W. S. ImageJ: Image processing and analysis in Java. Bethesda, USA: U. S. National Institutes of Health, 1997. Available at: https://imagej.nih.gov/ij/. Accessed on: 15 Mar. 2022.

REDDY, N.; YANG, Y. Citric acid cross-linking of starch films. Food Chemistry, v. 118, n. 3, p. 702-711, 2010. DOI: https://doi.org/10.1016/j.foodchem.2009.05.050.

ROCKLAND, L. B. Saturated salt solutions for static control of relative humidity between 5o and 40o C. Analytical Chemistry, v. 32, n. 10, p. 1375-1376, 1960. DOI: https://doi.org/10.1021/ac60166a055.

SANTOS, T. B.; CARVALHO, C. W. P.; OLIVEIRA, L. A.; OLIVEIRA, E. J.; VILLAS-BOAS, F.; FRANCO, C. M. L.; CHÁVEZ, D. W. H. Functionality of cassava genotypes for waxy starch. Pesquisa Agropecuária Brasileira, v. 56, e02414, 2021. DOI: https://doi.org/10.1590/S1678-3921.pab2021.v56.02414.

SHANNON, J. C.; GARWOOD, D. L.; BOYER, C. D. Genetics and physiology of starch development. In: BEMILLER, J.; WHISTLER, R. (ed.) Starch: Chemistry and Technology. 3. ed. Academic Press, 2009. chapter 3, p. 23-82. DOI: https://doi.org/10.1016/B978-0-12-746275-2.00003-3.

SHARMA, V.; KAUR, M.; SANDHU, K. S.; GODARA, S. K. Effect of cross-linking on physico-chemical, thermal, pasting, in vitro digestibility and film forming properties of Faba bean (Vicia faba L.) starch. International Journal of Biological Macromolecules, v. 159, p. 243-249, 2020. DOI: https://doi.org/10.1016/j.ijbiomac.2020.05.014.

SILVA, M. C.; IBEZIM, E. C.; RIBEIRO, T. A. A.; CARVALHO, C. W. P.; ANDRADE, C. T. Reactive processing and mechanical properties of cross-linked maize starch. Industrial Crops and Products, v. 24, n. 1, p. 46-51, 2006. DOI: http://doi.org/10.1016/j.indcrop.2006.01.001.

SUDHEESH, C.; SUNOOJ, K. V.; JAMSHEER, V.; SABU, S.; SASIDHARAN, A.; AALIYA, B.; NAVAF, M.; AKHILA, P. P.; GEORGE, J. Development of bioplastic films from γ− irradiated kithul (Caryota urens) starch; morphological, crystalline, barrier, and mechanical characterization. Starch‐Stärke, v. 73, n. 5-6, 2000135, 2021. DOI: https://doi.org/10.1002/star.202000135.

SUKHIJA, S.; SINGH, S.; RIAR, C. S. Effect of oxidation, cross-linking and dual modification on physicochemical, crystallinity, morphological, pasting and thermal characteristics of elephant foot yam (Amorphophallus paeoniifolius) starch. Food Hydrocolloids, v. 55, p. 56-64, 2016. DOI: https://doi.org/10.1016/j.foodhyd.2015.11.003.

VAN HUNG, P.; PHI, N. T. L.; VY, T. T. V. Effect of debranching and storage condition on crystallinity and functional properties of cassava and potato starches. Starch/ Stärke, v. 64, n. 12, p. 964-971, 2012. DOI: https://doi.org/10.1002/star.201200039.

VAN SOEST, J. J. G.; HULLEMAN, S. H. D.; WIT, D.; VLIEGENTHART, J. F. G. Crystallinity in starch bioplastics. Industrial Crops and Products, v. 5, n. 1, p. 11-22, 1996. DOI: https://doi.org/10.1016/0926-6690(95)00048-8.

WOO, K.; SEIB, P. A. Cross-linking of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate. Carbohydrate Polymer, v. 33, n. 4, p. 263-271, 1997. https://doi.org/10.1016/S0144-8617(97)00037-4.

XU, H.; CANISAG, H.; MU, B.; YANG, Y. Robust and flexible films from 100% starch cross-linked by biobased disaccharide derivative. ACS Sustainable Chemistry & Engineering, v. 3, n. 11, p. 2631-2639, 2015. DOI: https://doi.org/10.1021/acssuschemeng.5b00353.

YU, Z.; WANG, Y.-S.; CHEN, H.-H.; LI, Q.-Q.; WANG, Q. The gelatinization and retrogradation properties of wheat starch with the addition of stearic acid and sodium alginate. Food Hydrocolloids, v. 81, p. 77-86, 2018. DOI: https://doi.org/10.1016/j.foodhyd.2018.02.041.

ZHOU, W.; YANG, J.; HONG, Y.; LIU, G.; ZHENG, J.; GU, Z.; ZHANG, P. Impact of amylose content on starch physicochemical properties in transgenic sweet potato. Carbohydrate Polymers, v. 122, p. 417-427, 2015. DOI: https://doi.org/10.1016/j.carbpol.2014.11.003.


DOI: http://dx.doi.org/10.18265/1517-0306a2021id6430

O arquivo PDF selecionado deve ser carregado no navegador caso tenha instalado um plugin de leitura de arquivos PDF (por exemplo, uma versão atual do Adobe Acrobat Reader).

Como alternativa, pode-se baixar o arquivo PDF para o computador, de onde poderá abrí-lo com o leitor PDF de sua preferência. Para baixar o PDF, clique no link abaixo.

Caso deseje mais informações sobre como imprimir, salvar e trabalhar com PDFs, a Highwire Press oferece uma página de Perguntas Frequentes sobre PDFs bastante útil.

Visitas a este artigo: 1089

Total de downloads do artigo: 504