- Submissão
- Submissão online
- Diretrizes para Autores
- Declaração de Direito Autoral
- Política de Privacidade
- Sobre este sistema de publicação
- Sobre
- Foco e Escopo
- Equipe Editorial
- História da Revista Principia
- Normas de homogeneidade
- Comitê de ética
- Política de ética para autores, Conselho Editorial e avaliadores
- Política de retirada de artigos
- Perguntas e respostas frequentes
- Equipe de apoio da Revista Principia
- Conflito de interesses
- Plano de Desenvolvimento Editorial da Revista Principia
- Princípios DEIA (Diversidade, Equidade, Inclusão e Acessibilidade)
- Normas para números especiais na Revista Principia
- Princípios FAIR
- Curso de Escrita Científica - ACS - Prof. Osvaldo
- Sites e manuais sobre boas práticas científicas
Physical and mechanical properties of starch films: the role of the cross-linking mechanism through iodine binding capacity
Resumo
In this study, a better knowledge of the influence of cross-linking mechanism on the mechanical properties of starch films is presented. Thus, waxy starch and cassava starch films, cross-linked with trisodium trimetaphosphate (STMP), were produced and characterized concerning their morphology, transport, and mechanical properties. Starch cross-linking was verified by RAMAN spectroscopy and by iodine binding capacity (IBC) values, which were determined by color analysis of digital images. Although cross-linking affects the morphology and crystallinity of the films, it was not observed a relationship between the mechanism of the cross-linking reaction of the starch chain (amylose-amylopectin and amylopectin-amylopectin) and the transport properties. The lower Young Modulus and IBC value and the higher elongation at break observed for cross-linking cassava starch films relative to control and waxy films indicate that cross-linking mechanism influences the mechanical properties of starch films and should be considered to tailor the final properties of packaging and biobased products.
Palavras-chave
amylose content; cassava starch; chemical modification; mechanical properties; waxy maize starch
Texto completo:
Referências
ASTM – AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard test method for water vapor transmission of material. E96-95. Philadelphia: ASTM, 1995.
ASTM – AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard test method for tensile properties of thin plastic sheeting. D882-91. Philadelphia: ASTM, 1996.
BAGHERI, V.; GHANBARZADEH, B.; AYASEH, A.; OSTADRAHIMI, A.; EHSANI, A.; ALIZADEH-SANI, M.; ADUN, P. A. The optimization of physico-mechanical properties of bionanocomposite films based on gluten/ carboxymethyl cellulose/ cellulose nanofiber using response surface methodology. Polymer Testing, v. 78, 105989, 2019. DOI: https://doi.org/10.1016/j.polymertesting.2019.105989.
BAPTESTINI, F. M.; CORRÊA, P. C.; RAMOS, A. M.; JUNQUEIRA, M. S.; ZAIDAN, I. R. GAB model and the thermodynamic properties of moisture sorption in soursop fruit powder. Revista Ciência Agronômica, v. 51, n. 1, e20164781, 2020. Available at: http://periodicos.ufc.br/revistacienciaagronomica/article/view/88787/242157. Accessed on: 9 Aug. 2023.
BIZOT, H.; BULEON, A.; RIOU, N. Study of native starch hydration: influence of sorption hysteresis. Journal de Physique Colloques, v. 45, n. C7, p. C7-259-C7-264, 1984. DOI: https://doi.org/10.1051/jphyscol:1984730.
CAGNIN, C.; SIMÕES, B. M.; YAMASHITA, F.; CARVALHO, G. M.; GROSSMANN, M. V. E. pH sensitive phosphate crosslinked films of starch‐carboxymethyl cellulose. Polymer Engineering & Science, v. 61, n. 2, p. 388-396, 2021. DOI: https://doi.org/10.1002/pen.25582.
CONAB – COMPANHIA NACIONAL DE ABASTECIMENTO (CONAB). Análise mensal. Mandioca: fevereiro de 2020. Brasília, DF: CONAB, 2020. Available at: https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/analises-do-mercado/historico-mensal-de-mandioca/item/download/31054_7353a3a223023f519813432dd4ef8c25. Accessed on: 21 Aug. 2020. In Portuguese.
DANKAR, I.; HADDARAH, A.; OMAR, F. E. L.; PUJOLÀ, M.; SEPULCRE, F. Characterization of food additive-potato starch complexes by FTIR and x-ray diffraction. Food Chemistry, v. 260, p. 7-12, 2018. DOI: https://doi.org/10.1016/j.foodchem.2018.03.138.
DIYANA, Z. N.; JUMAIDIN, R.; SELAMAT, M. Z.; GHAZALI, I.; JULMOHAMMAD, N.; HUDA, N.; ILYAS, R. A. Physical properties of thermoplastic starch derived from natural resources and its blends: a review. Polymers, v. 13, n. 9, p. 1396, 2021. DOI: https://doi.org/10.3390/polym13091396.
DOME, K.; PODGORBUNSKIKH, E.; BYCHKOV, A.; LOMOVSKY, O. Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers, v. 12, n. 3, p. 641, 2020. DOI: https://doi.org/10.3390/polym12030641.
DONG, H.; VASANTHAN, T. Effect of phosphorylation techniques on structural, thermal, and pasting properties of pulse starches in comparison with corn starch. Food Hydrocolloids, v. 109, 106078, 2020. DOI: https://doi.org/10.1016/j.foodhyd.2020.106078.
FORNACIARI, B.; BERNARDINO, B. L.; GÓES, M. M.; CARVALHO, G. M. Filmes de amido reticulado: estudo da incorporação e liberação de sulfato de condroitina / Crosslinked- starch films: study of the incorporation and release of chondroitin sulfate. Brazilian Journal of Development, v. 6, n. 7, p. 51298-51309, 2020. DOI: https://doi.org/10.34117/bjdv6n7-684.
GARCÍA-TEJEDA, Y. V.; SALINAS-MORENO, Y.; HERNÁNDEZ-MARTÍNEZ, Á. R.; MARTÍNEZ-BUSTOS, F. Encapsulation of purple maize anthocyanins in phosphorylated starch by spray drying. Cereal Chemistry, v. 93, n. 2, p. 130-137, 2016. DOI: https://doi.org/10.1094/CCHEM-04-15-0072-R.
GÓES, M. M.; MERCI, A.; ANDRELLO, A. C.; YAMASHITA, F.; CARVALHO, G. M. Design and application of multi-layer Starch-Latex blends as phosphorous delivery system. Journal of Polymers and the Environment, v. 29, p. 2000-2012, 2021. DOI: https://doi.org/10.1007/s10924-020-02018-w.
GONTARD, N.; GUILBERT, S.; CUQ, J.-L. Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. Journal of Food Science, v. 57, n. 1, p. 190-195, 1992. DOI: https://doi.org/10.1111/j.1365-2621.1992.tb05453.x.
GUTIÉRREZ, T. J.; MORALES, N. J.; PÉREZ, E.; TAPIA, M. S.; FAMÁ, L. Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches. Food Packaging and Shelf Life, v. 3, p. 1-8, 2015. DOI: https://doi.org/10.1016/j.fpsl.2014.09.002.
HOOVER, R.; RATNAYAKE, W. S. Determination of total amylose content. Current Protocols in Food Analytical Chemistry, v. 00, n. 1, p. E2.3.1-E2.3, 2001. DOI: https://doi.org/10.1002/0471142913.fae0203s00.
IMBERTY, A.; BULÉON, A.; TRAN, V.; PÉEREZ, S. Recent advances in knowledge of starch structure. Starch‐Stärke, v. 43, n. 10, p. 375-384, 1991. DOI: https://doi.org/10.1002/star.19910431002.
JANE, J.; CHEN, Y. Y.; LEE, L. F.; MCPHERSON, A. E.; WONG, K. S.; RADOSAVLJEVIC, M.; KASEMSUWAN, T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry, v. 76, n. 5, p. 629-637, 1999. DOI: https://doi.org/10.1094/CCHEM.1999.76.5.629.
KOU, T.; GAO, Q. A study on the thermal stability of amylose-amylopectin and amylopectin-amylopectin in cross-linked starches through iodine binding capacity. Food Hydrocolloids, v. 88, p. 86-91, 2019. DOI: https://doi.org/10.1016/j.foodhyd.2018.09.028.
MALI, S.; GROSSMANN, M. V. E.; GARCÍA, M. A.; MARTINO, M. N.; ZARITZKY, N. E. Mechanical and thermal properties of yam starch films. Food Hydrocolloids, v. 19, n. 1, p. 157-164, 2005. DOI: https://doi.org/10.1016/j.foodhyd.2004.05.002.
MASINA, N.; CHOONARA, Y. E.; KUMAR, P.; TOIT, L. C.; GOVENDER, M.; INDERMUN, S.; PILLAY, V. A review of the chemical modification techniques of starch. Carbohydrate polymers, v. 157, p. 1226-1236, 2017. DOI: https://doi.org/10.1016/j.carbpol.2016.09.094.
MATHLOUTHI, M.; KOENIG, J. L. Vibrational spectra of carbohydrates. Advances in Carbohydrate Chemistry and Biochemistry, v. 44, p. 7-89, 1987. DOI: https://doi.org/10.1016/S0065-2318(08)60077-3.
MUSCAT, D.; ADHIKARI, R.; MCKNIGHT, S.; GUO, Q.; ADHIKARI, B. The physicochemical characteristics and hydrophobicity of high amylose starch–glycerol films in the presence of three natural waxes. Journal of Food Engineering, v. 119, n. 2, p. 205-219, 2013. DOI: https://doi.org/10.1016/j.jfoodeng.2013.05.033.
NAZREEN, A. Z.; JAI, J.; ALI, S. A.; MANSHOR, N. M. Moisture adsorption isotherm model for edible food film packaging: a review. Scientific Research Journal, v. 17, n. 2, p. 222-245, 2020. DOI: https://doi.org/10.24191/srj.v17i2.10160.
OTHMAN, S. H.; KECHIK, N. R. A.; SHAPI’I, R. A.; TALIB, R. A.; TAWAKKAL, I. S. M. A. Water sorption and mechanical properties of starch/chitosan nanoparticle films. Journal of Nanomaterials, v. 2019, 3843949, 2019. DOI: https://doi.org/10.1155/2019/3843949.
PELEG, M. An empirical model for the description of moisture sorption curves. Journal of Food Science, v. 53, n. 4, p. 1216-1217, 1988. DOI: https://doi.org/10.1111/j.1365-2621.1988.tb13565.x.
PREZOTTI, F. G.; MENEGUIN, A. B.; EVANGELISTA, R. C.; CURY, B. S. F. Preparation and characterization of free films of high amylose/pectin mixtures cross-linked with sodium trimetaphosphate. Drug Development and Industrial Pharmacy, v. 38, n. 11, p. 1354-1359, 2012. DOI: https://doi.org/10.3109/03639045.2011.650863.
RANGEL-MARRÓN, M.; MANI-LÓPEZ, E.; PALOU, E.; LÓPEZ-MALO, A. Effects of alginate-glycerol-citric acid concentrations on selected physical, mechanical, and barrier properties of papaya puree-based edible films and coatings, as evaluated by response surface methodology. LWT, v. 101, p. 83-91, 2019. DOI: https://doi.org/10.1016/j.lwt.2018.11.005.
RASBAND, W. S. ImageJ: Image processing and analysis in Java. Bethesda, USA: U. S. National Institutes of Health, 1997. Available at: https://imagej.nih.gov/ij/. Accessed on: 15 Mar. 2022.
REDDY, N.; YANG, Y. Citric acid cross-linking of starch films. Food Chemistry, v. 118, n. 3, p. 702-711, 2010. DOI: https://doi.org/10.1016/j.foodchem.2009.05.050.
ROCKLAND, L. B. Saturated salt solutions for static control of relative humidity between 5o and 40o C. Analytical Chemistry, v. 32, n. 10, p. 1375-1376, 1960. DOI: https://doi.org/10.1021/ac60166a055.
SANTOS, T. B.; CARVALHO, C. W. P.; OLIVEIRA, L. A.; OLIVEIRA, E. J.; VILLAS-BOAS, F.; FRANCO, C. M. L.; CHÁVEZ, D. W. H. Functionality of cassava genotypes for waxy starch. Pesquisa Agropecuária Brasileira, v. 56, e02414, 2021. DOI: https://doi.org/10.1590/S1678-3921.pab2021.v56.02414.
SHANNON, J. C.; GARWOOD, D. L.; BOYER, C. D. Genetics and physiology of starch development. In: BEMILLER, J.; WHISTLER, R. (ed.) Starch: Chemistry and Technology. 3. ed. Academic Press, 2009. chapter 3, p. 23-82. DOI: https://doi.org/10.1016/B978-0-12-746275-2.00003-3.
SHARMA, V.; KAUR, M.; SANDHU, K. S.; GODARA, S. K. Effect of cross-linking on physico-chemical, thermal, pasting, in vitro digestibility and film forming properties of Faba bean (Vicia faba L.) starch. International Journal of Biological Macromolecules, v. 159, p. 243-249, 2020. DOI: https://doi.org/10.1016/j.ijbiomac.2020.05.014.
SILVA, M. C.; IBEZIM, E. C.; RIBEIRO, T. A. A.; CARVALHO, C. W. P.; ANDRADE, C. T. Reactive processing and mechanical properties of cross-linked maize starch. Industrial Crops and Products, v. 24, n. 1, p. 46-51, 2006. DOI: http://doi.org/10.1016/j.indcrop.2006.01.001.
SUDHEESH, C.; SUNOOJ, K. V.; JAMSHEER, V.; SABU, S.; SASIDHARAN, A.; AALIYA, B.; NAVAF, M.; AKHILA, P. P.; GEORGE, J. Development of bioplastic films from γ− irradiated kithul (Caryota urens) starch; morphological, crystalline, barrier, and mechanical characterization. Starch‐Stärke, v. 73, n. 5-6, 2000135, 2021. DOI: https://doi.org/10.1002/star.202000135.
SUKHIJA, S.; SINGH, S.; RIAR, C. S. Effect of oxidation, cross-linking and dual modification on physicochemical, crystallinity, morphological, pasting and thermal characteristics of elephant foot yam (Amorphophallus paeoniifolius) starch. Food Hydrocolloids, v. 55, p. 56-64, 2016. DOI: https://doi.org/10.1016/j.foodhyd.2015.11.003.
VAN HUNG, P.; PHI, N. T. L.; VY, T. T. V. Effect of debranching and storage condition on crystallinity and functional properties of cassava and potato starches. Starch/ Stärke, v. 64, n. 12, p. 964-971, 2012. DOI: https://doi.org/10.1002/star.201200039.
VAN SOEST, J. J. G.; HULLEMAN, S. H. D.; WIT, D.; VLIEGENTHART, J. F. G. Crystallinity in starch bioplastics. Industrial Crops and Products, v. 5, n. 1, p. 11-22, 1996. DOI: https://doi.org/10.1016/0926-6690(95)00048-8.
WOO, K.; SEIB, P. A. Cross-linking of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate. Carbohydrate Polymer, v. 33, n. 4, p. 263-271, 1997. https://doi.org/10.1016/S0144-8617(97)00037-4.
XU, H.; CANISAG, H.; MU, B.; YANG, Y. Robust and flexible films from 100% starch cross-linked by biobased disaccharide derivative. ACS Sustainable Chemistry & Engineering, v. 3, n. 11, p. 2631-2639, 2015. DOI: https://doi.org/10.1021/acssuschemeng.5b00353.
YU, Z.; WANG, Y.-S.; CHEN, H.-H.; LI, Q.-Q.; WANG, Q. The gelatinization and retrogradation properties of wheat starch with the addition of stearic acid and sodium alginate. Food Hydrocolloids, v. 81, p. 77-86, 2018. DOI: https://doi.org/10.1016/j.foodhyd.2018.02.041.
ZHOU, W.; YANG, J.; HONG, Y.; LIU, G.; ZHENG, J.; GU, Z.; ZHANG, P. Impact of amylose content on starch physicochemical properties in transgenic sweet potato. Carbohydrate Polymers, v. 122, p. 417-427, 2015. DOI: https://doi.org/10.1016/j.carbpol.2014.11.003.
Visitas a este artigo: 1315
Total de downloads do artigo: 668