Biotechnological potential of Pectobacterium sp. endophyte on the growth of soy and bean plants

Autores

DOI:

https://doi.org/10.18265/1517-0306a2021id6175

Palavras-chave:

endophyte, IAA, Mikania glomerata, nifH, plant-growth promoter

Resumo

Fertilizers and chemical pesticides supply plants’ nutritional requirements and protect them against pathogens. However, they may cause harm to the environment. Pectobacterium sp. has been reported as an endophyte with the capacity of a plant-growth promoter, especially in the control of phytopathogens. The current paper evaluates the capacity of the endophytic bacterium Pectobacterium sp. MG-60 isolated from Mikania glomerata Spreng. (Asteraceae) to antagonize phytopathogens in vitro, produce IAA, and fix nitrogen (nifH). Growth promotion assessments of bean and soybean plants under greenhouse conditions were also performed. The rate of antagonism against Sclerotinia sclerotiorum was 52.5%. The endophyte Pectobacterium sp. MG-60 produced 3.54 µg mL-1 of IAA when 5 mM L-tryptophan in the culture medium was used. Under greenhouse conditions, significant results for Pectobacterium sp. MG-60 in the growth of soybean and common bean plants were observed, especially in the height of common bean (19%) and soybean (20%), fresh weight of shoot (18.5%) and fresh weight of roots (46.8 %) of soybean plants. This is the first report on Pectobacterium isolated as an endophyte from M. glomerata with plant growth-promoting agent abilities with biotechnological potential for the agricultural field.

Downloads

Não há dados estatísticos.

Referências

ARYANTHA, I. N. P.; HIDIYAH, A. R. M. Colonization and performance of diazotroph endophytic bacteria on palm oil (Elaeis guineensis Jacq L.) leaves. IOP Conference Series: Earth and Environmental Science, v. 166, 012012, 2018. DOI: https://dx.doi.org/10.1088/1755-1315/166/1/012012.

AZEVEDO, J. L.; ARAÚJO, W. L. Diversity and applications of endophytic fungi isolated from tropical plants. In: GANGULI, B. N.; DESHMUKH, S. K. (org.). Fungi: multifaceted microbes. Boca Raton: CRC Press, 2007. p. 189-207.

BAKHTIYARIFAR, M.; ENAYATIZAMIR, N.; KHANLOU, K. M. Biochemical and molecular investigation of non?rhizobial endophytic bacteria as potential biofertilisers. Archives of Microbiology, v. 203, p. 513-521, 2021. DOI: https://doi.org/10.1007/s00203-020-02038-z.

BATISTA, B. D.; LACAVA, P. T.; FERRARI, A.; TEIXEIRA-SILVA, N. S.; BONATELLI, M. L.; TSUI, S.; MONDIN, M.; KITAJIMA, E. W.; PEREIRA, J. O.; AZEVEDO, J. L.; QUECINE, M. C. Screening of tropically derived, multi-trait plant growth-promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiological Research, v. 206, p. 33-42, Jan. 2018. DOI: http://dx.doi.org/10.1016/j.micres.2017.09.007.

BULLA, A. M. Biodiversidade de bactérias endofíticas isoladas de Mikania glomerata Spreng. (Asteraceae) e avaliação do potencial fitossanitário no controle de fitopatógenos. 67 f. 2017. Dissertation (Master in Comparative Biology) – Universidade Estadual de Maringá, Maringá, 2017. In Portuguese.

BREDEMEIER, C.; MUNDOSTOCK, C. M. Regulation of nitrogen absortion and assimilation in plants. Ciência Rural, v. 30, n. 2, p. 365-372, 2000. DOI: https://doi.org/10.1590/S0103-84782000000200029.

CAVALCANTE, J. J. V.; VARGAS, C.; NOGUEIRA, E. M.; VINAGRE, F.; SCHWARCZ, K.; BALDANI, J. I.; FERREIRA, P. C. G.; HEMERLEY, A. S. Members of the ethylene signaling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. Journal of Experimental Botany, v. 58, n. 3, p. 673-86, Feb. 2007. DOI: https://doi.org/10.1093/jxb/erl242.

COCKING, E. C. Endophytic colonization of plat roots by nitrogen-fixing bacteria. Plant and Soil, v. 252, p. 169-175, 2003. DOI: https://doi.org/10.1023/A:1024106605806.

CZERNIAK, M. J.; STÜRMER, S. L. Produção de inoculante micorrízico on farm utilizando resíduos da indústria florestal. Revista Brasileira de Ciência do Solo, v. 38, n. 6, p. 1712-1721, 2014. DOI: https://doi.org/10.1590/S0100-06832014000600006. In Portuguese.

DAMIAN, J. M.; SANTI, A. L.; CHERUBIN, M. R.; PIAS, O. H. C.; SIMON, D. H.; SILVA, R. F. Doses e épocas de aplicação de nitrogênio para o feijoeiro cultivado na safrinha. Revista Agrarian, v. 11, n. 40, p. 105-113, 2018. DOI: https://doi.org/10.30612/agrarian.v11i40.4700. In Portuguese.

DOTY, S. L. Endophytic N-fixation: controversy and a path forward. In: DOTY, S. L. (ed.). Functional importance of the plant microbiome: implications for agriculture, forestry and bioenergy. Cham: Springer, 2017. DOI: https://doi.org/10.1007/978-3-319-65897-1_2.

ELNAHAL, A. S. M.; EL-SAADONY, M. T.; SAAD, A. M.; DESOKY, E-S. M.; EL-TAHAN, A. M.; RADY, M. M.; ABUQAMAR, S. F.; EL-TARABILY, K. A. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: a review. European Journal of Plant Pathology, v. 162, p. 759-792, Jan. 2022. DOI: https://doi.org/10.1007/s10658-021-02393-7.

EMMER, A.; OLIVEIRA, J. A. S.; POLLI, A. D.; POLONIO, J. C.; ALVES, L. H.; POLONIO, C. Z. F.; AZEVEDO, J. L.; PAMPHILE, J. A. Plant growth-promoting activity in bean plants of endophytic bacteria isolated from Echeveria laui. Acta Brasiliensis, v. 5, n. 2, p. 65-71, 2021. DOI: https://doi.org/10.22571/2526-4338496.

FAO – FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. Crops and livestock products. FAOSTAT, 2019. Available at: https://www.fao.org/faostat/en/#data/QCL. Accessed on: 16 June 2021.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, v. 35, n. 6, p. 1039-1042, 2011. DOI: https://doi.org/10.1590/S1413-70542011000600001.

KNEIP, C.; LOCKHART, P.; VOSS, C.; MAIER, U.-G. Nitrogen fixation in eukaryotes: new models for symbiosis. BMC Evolutionary Biology, v. 7, 55, 2007. DOI: https://doi.org/10.1186/1471-2148-7-55.

KUKLINSKY-SOBRAL, J.; ARAÚJO, W. L.; MENDES, R.; GERALDI, I. O.; PIZZIRANI-KLEINER, A. A.; AZEVEDO, J. L. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, v. 6, n. 12, p. 1244-1251, June 2004. DOI: https://doi.org/10.1111/j.1462-2920.2004.00658.x.

KUSARI, S.; SINGH, S.; JAYABASKARAN, C. Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends in Biotechnology, v. 32, n. 6, p. 297-303, June 2014. DOI: https://doi.org/10.1016/j.tibtech.2014.03.009.

LACZESKI, M. E.; ONETTO, A. L.; CORTESE, I. J.; MALLOZZI, G. Y.; CASTRILLO, M. L.; BICH, G. A.; GORTARI, F.; ZAPATA, P. D.; OTEGUI, M. B. Isolation and selection of endophytic spore-forming bacteria with plant growth promoting properties isolated from Ilex paraguariensis St. Hil. (yerba mate). Anais da Academia Brasileira de Ciências, v. 92, suppl. 1, e20181381, 2020. DOI: https://doi.org/10.1590/0001-3765202020181381.

MARCHAL, K.; VANDERLEYDEN J. The “oxygen paradox” of dinitrogen-fixing bacteria. Biology and Fertility of Soils, v. 30, p. 363-373, 2000. DOI: https://doi.org/10.1007/s003740050017.

MIYAZAWA, S.-I.; NISHIGUCHI, M.; FUTAMURA, N.; YUKAWA, T.; MIYAO, M.; MARUYAMA, T. E.; KAWAHARA, T. Low assimilation efficiency of photorespiratory ammonia in conifer leaves. Journal of Plant Research, v. 131, p. 789-802, 2018. DOI: https://doi.org/10.1007/s10265-018-1049-2.

MOYES, A. B.; KUEPPERS, L. M.; PETT-RIDGE, J.; CARPER, D. L.; VANDEHEY, N.; O’NEIL, J.; FRANK, A. C. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytologist, v. 210, n. 2, p. 657-668, Apr. 2016. DOI: https://doi.org/10.1111/nph.13850.

NIEMI, O.; LAINE, P.; KOSKINEN, P.; PASANEN, M.; PENNANEN, V.; HARJUNPAA, H.; NYKYRI, J.; HOLM, L.; PAULIN, L.; AUVINEN, P.; PALVA, E. T.; PIRHONEN, M. Genome sequence of the model plant pathogen Pectobacterium carotovorum SCC1. Standards in Genomic Sciences, v. 12, 87, Dec. 2017. DOI: https://doi.org/10.1186/s40793-017-0301-z.

OLANREWAJU, O. S.; GLICK, B. R.; BABALOLA, O. O. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, v. 33, n. 11, 197, 2017. DOI: https://doi.org/10.1007/s11274-017-2364-9.

OLIVEIRA, J. A. S.; POLLI, A. D.; POLONIO, J. C.; ORLANDELLI, R. C.; CONTE, H.; AZEVEDO, J. L.; PAMPHILE, J. A. Bioprospection and molecular phylogeny of culturable endophytic fungi associated with yellow passion fruit. Acta Scientiarum. Biological Sciences, v. 42, e48321, 2020. DOI: https://doi.org/10.4025/actascibiolsci.v42i1.48321.

OSES, R.; FRANK, A. C.; VALENZUELA, S.; RODRÍGUEZ, J. Nitrogen fixing endophytes in forest trees. In: PIRTTILÄ, A. M.; FRANK, A. C. (eds.). Endophytes of Forest Trees: Biology and Applications. Cham: Springer, 2018. p. 191-205. DOI: https://doi.org/10.1007/978-3-319-89833-9.

PROCÓPIO, R. E. L.; ARAÚJO, W. L.; MACCHERONI JUNIOR, W.; AZEVEDO, J. L. Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genetics and Molecular Research, v. 8, n. 4, p. 1408-1422, 2009. DOI: https://doi.org/10.4238/vol8-4gmr691.

PURI, A.; PADDA, K. P.; CHANWAY, C. P. Can a diazotrophic endophyte originally isolated from lodgepole pine colonize an agricultural crop (corn) and promote its growth? Soil Biology & Biochemistry, v. 89, p. 210-216, 2015. DOI: https://doi.org/10.1016/j.soilbio.2015.07.012.

RABHA, A. J.; NAGLOT, A.; SHARMA, G. D.; GOGOI, H. K.; VEER, V. In vitro evaluation of antagonism of endophytic Colletotrichum gloeosporioides against potent fungal pathogens of Camellia sinensis. Indian Journal of Microbiology, v. 54, p. 302-309, Feb. 2014. DOI: https://doi.org/10.1007/s12088-014-0458-8.

RAJAMANICKAM, S.; KARTHIKEYAN, G.; KAVINO, M.; MANORANJITHAM, S. K. Biohardening of micropropagated banana using endophytic bacteria to induce plant growth promotion and restrain rhizome rot disease caused by Pectobacterium carotovorum subsp. carotovorum. Scientia Horticulturae, v. 231, p. 179-187, Jan. 2018. DOI: https://doi.org/10.1016/j.scienta.2017.12.037.

REES, D. C.; HOWARD, J. B. Nitrogenase: standing at the crossroads. Current Opinion in Chemical Biology, v. 4, n. 5, p. 559-566, Oct. 2000. DOI: https://doi.org/10.1016/S1367-5931(00)00132-0.

RIBEIRO, A. S.; POLLI, A. D.; OLIVEIRA, A.; OLIVEIRA, J. A. S.; EMMER, A.; ALVES, L. H.; PEREIRA, O. C. N.; PAMPHILE, J. A. Ornamental plant Pachystachys lutea as a source of promising endophytes for plant growth and phytoprotective activity. Acta Scientiarum. Biological Sciences, v. 43, e51737, 2021. DOI: https://doi.org/10.4025/actascibiolsci.v43i1.51737.

ROMANO, I.; VENTORINO, V.; AMBROSINO, P.; TESTA, A.; CHOUYIA, F. E.; PEPE, O. Development and application of low-cost and eco-sustainable bio-stimulant containing a new plant growth-promoting strain Kosakonia pseudosacchari TL13. Frontiers in Microbiology, v. 11, 2044, 2020. DOI: https://doi.org/10.3389/fmicb.2020.02044.

SAITOU, N.; NEI, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, v. 4, n. 4, p. 406-425, 1987. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a040454.

SANTOS, M. S.; NOGUEIRA, M. A.; HUNGRIA, M. Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express, v. 9, 205, 2019. DOI: https://doi.org/10.1186/s13568-019-0932-0.

SILVA, C. F.; VITORINO, L. C.; MENDONÇA, M. A. C.; ARAÚJO, W. L.; DOURADO, M. N.; ALBUQUERQUE, L. C.; SOARES, M. A.; SOUCHIE, E. L. Screening of plant growth-promoting endophytic bacteria from the roots of the medicinal plant Aloe vera. South African Journal of Botany, v. 134, p. 3-16, Nov. 2020. DOI: https://doi.org/10.1016/j.sajb.2019.09.019.

SILVA, H. S. A.; TOZZI, J. P. L.; TERRASAN, C. R. F.; BETTIOL, W. Endophytic microorganisms from coffee tissues as plant growth promoters and biocontrol agents of coffee leaf rust. Biological control, v. 63, n. 1, p. 62-67, Oct. 2012. DOI: http://dx.doi.org/10.1016/j.biocontrol.2012.06.005.

SILVA, M. C. S.; POLONIO, J. C.; QUECINE, M. C.; ALMEIDA, T. T.; BOGAS, A. C.; PAMPHILE, J. A.; PEREIRA, J. O.; ASTOLFI-FILHO, S.; AZEVEDO, J. L. Endophytic cultivable bacterial community obtained from the Paullinia cupana seed in Amazonas and Bahia regions and its antagonistic effects against Colletotrichum gloeosporioides. Microbial Pathogenesis, v. 98, p. 16-22, Sept. 2016. DOI: https://doi.org/10.1016/j.micpath.2016.06.023.

SOUZA, G. L. O. D.; SILVA, D. F.; NIETSCHE, S.; XAVIER, A. A.; PEREIRA, M. C. T. Endophytic bacteria used as bioinoculants in micropropagated banana seedlings. Revista Brasileira de Fruticultura, v. 39, n. 2, 2017. DOI: https://doi.org/10.1590/0100-29452017324.

SCHÖLLHORN, R.; BURRIS, R. H. Study of intermediates in nitrogen fixation. Federation Proceedings, v. 25, p. 710, 1966.

SPECIAN, V.; COSTA, A. T.; FELBER, A. C.; POLONIO, J. C.; AZEVEDO, J. L.; PAMPHILE, J. A. Molecular phylogeny and biotechnological potential of bacterial endophytes associated with Malpighia emarginata. Genetics and Molecular Research, v. 15, n. 2, 15027777, 2016. DOI: https://doi.org/10.4238/gmr.15027777.

SZILAGYI-ZECCHIN, V. J.; IKEDA, A. C.; HUNGRIA, M.; ADAMOSKI, D.; KAVA-CORDEIRO, V.; GLIENKE, C.; GALLI-TERASAWA, L. V. Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express, v. 4, 26, May 2014. DOI: https://dx.doi.org/10.1186/S13568-014-0026-Y.

WRIGHT, E. S.; YILMAZ, L. S.; NOGUERA, D. R. Deciper, a search-based approach to chimera identification for 16S rRNA sequences. Applied and Environmental Microbiology, v. 78, n. 3, p. 717-725. Jan. 2012. DOI: https://doi.org/10.1128/AEM.06516-11.

ZEHR, J. P.; MCREYNOLDS, L. A. Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Applied and Environmental Microbiology, v. 55, n. 10, p. 2522-2526, 1989. DOI: https://doi.org/10.1128/aem.55.10.2522-2526.1989.

ZHAO, L.; XU, Y.; LAI, X. Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology, v. 49, n. 2, p. 269-278, 2018. DOI: https://doi.org/10.1016/j.bjm.2017.06.007.

Downloads

Publicado

2023-03-30

Como Citar

OLIVEIRA, J. A. dos S.; MATEUS, N. J.; FERREIRA, A. P.; CONTE, H.; AZEVEDO, J. L. de. Biotechnological potential of Pectobacterium sp. endophyte on the growth of soy and bean plants. Revista Principia, [S. l.], v. 60, n. 1, p. 247–261, 2023. DOI: 10.18265/1517-0306a2021id6175. Disponível em: https://periodicos.ifpb.edu.br/index.php/principia/article/view/6175. Acesso em: 23 jan. 2025.

Edição

Seção

Ciências Biológicas