Tecnologias vestíveis para monitoramento de pacientes com COVID19 em cuidados domiciliares: revisão sistemática

Leonardo Giannine Teixeira

ORCID iD Universidade do Estado de Santa Catarina (UDESC) Brasil

Pedro Bertemes-Filho

Universidade do Estado de Santa Catarina (UDESC) Brasil

Resumo

Os sensores vestíveis são uma tecnologia emergente para monitorar sinais vitais, tendo a vantagem de reduzir o desconforto e interferir amigavelmente nas atividades diárias do paciente. O foco deste artigo é revisar as tecnologias vestíveis publicadas usadas para monitorar sinais biomédicos em pacientes infectados por coronavírus. Seis tipos diferentes de mecanismos de busca foram utilizados. Os artigos foram selecionados e validados por meio dos critérios da ferramenta AMSTAR2, a fim de verificar a qualidade desta revisão. 21 artigos foram selecionados entre 2016 e 2021 e tabulados de acordo com o tipo de tecnologia, abordagem de processamento e sinais monitorados. Os artigos são apresentados e uma ampla discussão traz sua aplicabilidade, eficácia e desafios para o acompanhamento domiciliar. O artigo chama a atenção para a necessidade de mais investimentos em biossensores vestíveis para monitoramento domiciliar, principalmente devido ao atual cenário pandêmico. Pode-se concluir que os sensores do tipo homecare necessitam de mais investigações em termos de sua eficiência em relação às abordagens padrão ouro de monitoramento domiciliar de pacientes com COVID-19.

Palavras-chave


Biossensores; Epidemia; Monitoramento Remoto; Sinais Vitais; Tecnologias Vestíveis


Texto completo:

Referências


ASKARIAN, B.; JUNG, K.; CHONG, J. W. Monitoring of heart rate from photoplethysmographic signals using a Samsung Galaxy Note8 in underwater environments. Sensors, v. 19, n. 13, p. 2846-2861, 2019. DOI: https://doi.org/10.3390/s19132846 10.33. Disponível em: https://www.mdpi.com/1424-8220/19/13/2846. Acesso em: mai. 2021.

CAMPUZANO, S.; YÁÑEZ-SEDEÑO, P.; PINGARRÓN, J. M. Revisiting electrochemical biosensing in the 21st century society for inflammatory cytokines involved in autoimmune, neurodegenerative, cardiac, viral and cancer Diseases. Sensors, v. 21, n. 1, p. 189-219, 2020. DOI: https://doi.org/10.3390/s21010189. Disponível em: https://www.mdpi.com/1424-8220/21/1/189. Acesso em: abr. 2021.

CHU, M. et al. Respiration rate and volume measurements using wearable strain sensors. NPJ Digital Medicine, v. 2, n. 8, 2019. DOI: https://doi.org/10.1038/s41746-019-0083-3. Disponível em: https://www.nature.com/articles/s41746-019-0083-3. Acesso em: mai. 2021.

CHUNG, Y. T. et al. Continuous temperature monitoring by a wearable device for early detection of febrile events in the SARS-CoV-2 outbreak in Taiwan. Journal of Microbiology, Immunology and Infection, v. 53, n. 3, p. 503-504, 2020. DOI: https://doi.org/10.1016/j.jmii.2020.04.005. Disponível em: https://www.sciencedirect.com/science/article/pii/S1684118220300992. Acesso em: mai. 2021.

DIAS, D.; CUNHA, J. P. S. Wearable health devices: vital sign monitoring, systems and technologies. Sensors, v. 18, n. 8, p. 2414-2441, aug. 2018. DOI: https://doi.org/10.3390/s18082414. Disponível em: https://www.mdpi.com/1424-8220/18/8/2414. Acesso em: mai. 2021.

DING, X. et al. Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic, IEEE Reviews in Biomedical Engineering, v. 14, p. 48-70, 2020. DOI: https://doi.org/10.1109/RBME.2020.2992838. Disponível em: https://ieeexplore.ieee.org/document/9090987. Acesso em: mai. 2021.

DONG, Y.; YAO, Y. D. IoT platform for COVID-19 prevention and control: a survey. IEEE Access, v. 9, p. 49929-49941, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3068276. Disponível em: https://ieeexplore.ieee.org/document/9383291. Acesso em: abr. 2021.

HWANG, K. Y.; JIMENEZ V. O.; MUCHHARLA, B.; EGGERS, T.; LE, A. T.; LAM, V. D.; PHAN, M. H. A novel magnetic respiratory sensor for human healthcare. Applied Sciences, v. 11, n. 8, p. 3585-3594, 2021. DOI: https://doi.org/10.3390/app11083585. Disponível em: https://www.mdpi.com/2076-3417/11/8/3585. Acesso em: abr. 2021.

ISLAM, M. M.; RAHAMAN, A.; ISLAM, M. R. Development of smart healthcare monitoring system in IoT environment. SN Computer Science, v. 1, n. 3, p. 185-195, 2020. DOI: https://doi.org/10.1007/s42979-020-00195-y. Disponível em: https://link.springer.com/article/10.1007/s42979-020-00195-y. Acesso em: mai. 2021.

ISLAM, M. M. et al. Wearable technology to assist the patients infected with novel coronavirus (COVID-19). SN Computer Science, v. 1, n. 6, p. 320-328, 2020. DOI: https://doi.org/10.1007/s42979-020-00335-4. Disponível em: https://link.springer.com/article/10.1007%2Fs42979-020-00335-4. Acesso em: abr. 2021.

ISSATAYEVA, A.; BEISENOVA, A.; TOSI, D.; MOLARDI, C. Fiber-optic based smart textiles for real-time monitoring of breathing rate. Sensors, v. 20, n. 12, p. 3408-3423, 2020. DOI: https://doi.org/10.3390/s20123408. Disponível em: https://www.mdpi.com/1424-8220/20/12/3408. Acesso em: mai. 2021.

KLUM, M.; URBAN, M.; TIGGES, T.; PIELMUS, A. G.; FELDHEISER, A.; SCHMITT, T.; ORGLMEISTER, R. Wearable cardiorespiratory monitoring employing a multimodal digital patch stethoscope: estimation of ECG, PEP, LVETand respiration using a 55 mm single-lead ECG and phonocardiogram. Sensors, Basel, v. 20, n. 7, p. 2033-2053, 2020. DOI: https://doi.org/10.3390/s20072033. Disponível em: https://www.mdpi.com/1424-8220/20/7/2033. Acesso em: abr. 2021.

KRISTOFFERSSON, A.; LINDÉN, M. Wearable sensors for monitoring and preventing noncommunicable diseases: a systematic review. Information, v. 11, n. 11, p. 521-551, jun/nov. 2020. DOI: https://doi.org/10.3390/info11110521. Disponível em: https://www.mdpi.com/2078-2489/11/11/521. Acesso em: abr. 2021.

LI, Y.; LI, S.; SONG, H.; SHAO, B.; YANG, X.; DENG, N. Noninvasive blood pressure estimation with peak delay of different pulse waves. International Journal of Distributed Sensor Networks, v. 15, n. 3, 2019. DOI: https://doi.org/10.1177/1550147719837877. Disponível em: https://journals.sagepub.com/doi/full/10.1177/1550147719837877. Acesso em: mai. 2021.

LIANG, Y.; CHEN, Z.; LIU, G.; ELGENDI, M. A new, short-recorded photoplethysmogram dataset for blood pressure monitoring in China. Scientific Data, v. 5, n. 180020, 2018. DOI: https://doi.org/10.1038/sdata.2018.20. Disponível em: https://www.nature.com/articles/sdata201820. Acesso em: 11 mai. 2021.

LIU, C.; CORREIA, R.; BALLAJI, H. K; KORPOSH, S.; HAYES-GILL, B. R.; MORGAN, S. P. Optical fibre-based pulse oximetry sensor with contact force detection. Sensors, v. 18, n. 11, p. 3632-3642, 2018. DOI: https://doi.org/10.3390/s18113632. Disponível em: https://www.mdpi.com/1424-8220/18/11/3632. Acesso em: mai. 2021.

MAJUMDER, S.; MONDAL, T.; DEEN, M. J. Wearable sensors for remote health monitoring. Sensors, Basel, v. 17, n. 1, p. 130-174, 2017. DOI: https://doi.org/10.3390/s17010130. Disponível em: https://www.mdpi.com/1424-8220/17/1/130. Acesso em: 07 mai. 2021.

MOHAMMADZADEH, N.; GHOLAMZADEH, M.; SAEEDI, S.; REZAYI, S. The application of wearable smart sensors for monitoring the vital signs of patients in epidemics: a systematic literature review. Journal of Ambient Intelligence and Humanized Computing, v. 13, n. 1, p. 15-29, 2020. DOI: https://doi.org/10.1007/s12652-020-02656-x. Disponível em: https://link.springer.com/article/10.1007%2Fs12652-020-02656-x. Acesso em: abr. 2021.

MOHER, D. et al. Preferred reporting items for systematic reviews and meta analyses: the PRISMA statement. PLoS medicine, v. 6, n. 7, 2009. DOI: https://doi.org/10.1371/journal.pubmed.1000097. Disponível em: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000097. Acesso em: abr. 2021.

MONY, P. K; THANKACHAN, P.; BHAT, S.; RAO, S.; WASHINGTON, M.; ANTONY, S.; THOMAS, A.; NAGARAJARAO, S. C.; RAO, H.; AMRUTUR, B. Remote biomonitoring of temperatures in mothers and newborns: design, development and testing of a wearable sensor device in a tertiary-care hospital in southern India. BMJ Innovations, v. 4, n. 2, p. 60-67, 2018. DOI: http://dx.doi.org/10.1136/bmjinnov-2016-000153. Disponível em: https://innovations.bmj.com/content/4/2/60. Acesso em: abr. 2021.

NARANJO-HERNÁNDEZ, D.; TALAMINOS-BARROSO, A.; REINA-TOSINA, J.; ROA, L. M.; BARBAROV-ROSTAN, G.; CEJUDO-RAMOS, P.; MÁRQUEZ-MARTÍN, E.; ORTEGA-RUIZ, F. Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing. Sensors, v. 18, n. 7, p. 2144-2167, 2018. DOI: https://doi.org/10.3390/s18072144. Disponível em: https://www.mdpi.com/1424-8220/18/7/2144. Acesso em: mai. 2021.

PAN, L.; WANG, C.; JIN, H.; LI, J.; YANG, L.; ZHENG, Y.; WEN, Y.; TAN, B.H.; LOH, X. J.; CHEN, X. Lab-on-mask for remote respiratory monitoring. ACS Materials Letters, v. 2, n. 9, p. 1178-1181, 2020. DOI: https://doi.org/10.1021/acsmaterialslett.0c00299. Disponível em: https://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00299. Acesso em: mai. 2021.

PINTAVIROOJ, C.; KEATSAMARN, T.; TREEBUPACHATSAKUL, T. Multi-parameter vital sign telemedicine system using web socket for COVID-19 pandemics. Healthcare, v. 9, n. 3, p. 285-303, 2021. DOI: https://doi.org/10.3390/healthcare9030285. Disponível em: https://www.mdpi.com/2227-9032/9/3/285. Acesso em: abr. 2021.

RESTREPO, M.; HUFFENBERGER, A. M.; HANSON, C. W.; DRAUGELIS, M.; LAUDANSKI, K. Remote monitoring of critically-Ill post-surgical patients: lessons from a biosensor implementation trial. Healthcare, Basel, v. 9, n. 3, p. 343-352, 2021. DOI: https://doi.org/10.3390/healthcare9030343. Disponível em: https://www.mdpi.com/2227-9032/9/3/343. Acesso em: abr. 2021.

RUSSELL, C.; WARD, A. C.; VEZZA, V.; HOSKISSON, P.; ALCORN, D.; STEENSON, D. P.; CORRIGAN, D. K. Development of a needle shaped microelectrode for electrochemical detection of the sepsis biomarker interleukin-6 (IL-6) in real time. Biosensors and Bioelectronics, v. 126, n. 1, p. 806-814, 2019. DOI: https://doi.org/10.1016/j.bios.2018.11.053. Disponível em: https://www.sciencedirect.com/science/article/pii/S0956566318309540. Acesso em: abr. 2021.

SAHA, R. et al. A working prototype using DS18B20 temperature sensor and Arduino for health monitoring. SN Computer Science, v. 2, n. 1, p. 33-53, 2021. DOI: https://doi.org/10.1007/s42979-020-00434-2. Disponível em: https://link.springer.com/article/10.1007%2Fs42979-020-00434-2. Acesso em: abr. 2021.

SATTI, A. T.; PARK, J.; PARK, J.; KIM, H.; CHO, S. Fabrication of parylene-coated microneedle array electrode for wearable ECG device. Sensors, v. 20 n. 18, p. 5183-5197, jul./sep. 2020. DOI: https://doi.org/10.3390/s20185183. Disponível em: https://www.mdpi.com/1424-8220/20/18/5183. Acesso em: abr. 2021.

SHEA, B. J. et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ (Clinical Research ed.), v. 358, n. j4008, 2017. DOI: https://doi.org/10.1136/bmj.j4008. Disponível em: https://www.bmj.com/content/358/bmj.j4008. Acesso em: abr. 2021.

TEO, J. Early detection of silent hypoxia in covid-19 pneumonia using smartphone pulse oximetry. Journal of Medical Systems, v. 44, n. 8, p. 134-135, 2020. DOI: https://doi.org/10.1007/s10916-020-01587-6. Disponível em: https://link.springer.com/article/10.1007%2Fs10916-020-01587-6. Acesso em: mai. 2021.

UN, K. C. et al. Observational study on wearable biosensors and machine learning-based remote monitoring of COVID-19 patients. Scientific Reports, v. 11, n. 4388, 2021. DOI: https://doi.org/10.1038/s41598021827717. Disponível em: https://www.nature.com/articles/s41598-021-82771-7. Acesso em: abr. 2021.

WANG, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA, v. 323, n. 11, p. 1061–1069, 2020. DOI: https://doi.org/10.1001/jama.2020.1585. Disponível em: https://jamanetwork.com/journals/jama/fullarticle/2761044. Acesso em: abr. 2021.

WHO COVID. [Online]. Disponível em: https://covid19.who.int/. Acesso em: Mai. 2021.

YADAV, A. K.; VERMA, D.; KUMAR, A.; KUMAR, P.; SOLANKI, P. R. The perspectives of biomarker-based electrochemical immunosensors, artificial intelligence and the Internet of Medical Things toward COVID-19 diagnosis and management. Materials Today Chemistry, v. 20, n. 100443, 2021. DOI: https://doi.org/10.1016/j.mtchem.2021.100443. Disponível em: https://www.sciencedirect.com/science/article/pii/S2468519421000239. Acesso em: mai. 2021.

ZAKY, Z. A.; AHMED, A. M.; ALY, A. H. Remote temperature sensor based on Tamm resonance. Silicon, 2021. DOI: https://doi.org/10.1007/s12633-021-01064-w. Disponível em: https://link.springer.com/article/10.1007%2Fs12633-021-01064-w. Acesso em: abr. 2021.

ZANI, V.; PEDRON, D.; PILOT, R.; SIGNORINI, R. Contactless temperature sensing at the microscale based on titanium dioxide Raman thermometry. Biosensors, v. 11, n. 4, p. 102-118, 2021. DOI: https://doi.org/10.3390/bios11040102. Disponível em: https://www.mdpi.com/2079-6374/11/4/102. Acesso em: abr. 2021.


DOI: http://dx.doi.org/10.18265/1517-0306a2021id6171

O arquivo PDF selecionado deve ser carregado no navegador caso tenha instalado um plugin de leitura de arquivos PDF (por exemplo, uma versão atual do Adobe Acrobat Reader).

Como alternativa, pode-se baixar o arquivo PDF para o computador, de onde poderá abrí-lo com o leitor PDF de sua preferência. Para baixar o PDF, clique no link abaixo.

Caso deseje mais informações sobre como imprimir, salvar e trabalhar com PDFs, a Highwire Press oferece uma página de Perguntas Frequentes sobre PDFs bastante útil.

Visitas a este artigo: 173

Total de downloads do artigo: 100