Tecnologias vestíveis para monitoramento de pacientes com COVID-19 em cuidados domiciliares: revisão sistemática
DOI:
https://doi.org/10.18265/1517-0306a2021id6171Palavras-chave:
biossensores, epidemia, monitoramento remoto, sinais vitais, tecnologias vestíveisResumo
Os sensores vestíveis são uma tecnologia emergente para monitorar sinais vitais, tendo a vantagem de reduzir o desconforto e interferir amigavelmente nas atividades diárias de qualquer paciente. O foco deste artigo é revisar as tecnologias vestíveis publicadas usadas para monitorar sinais biomédicos em pacientes infectados por coronavírus. Seis tipos diferentes de mecanismos de busca foram utilizados. Os artigos foram selecionados e validados por meio dos critérios da ferramenta AMSTAR 2, a fim de verificar a qualidade desta revisão. Foram selecionados 21 artigos, publicados no período temporal de 2016 a 2021, e tabulados de acordo com o tipo de tecnologia, abordagem de processamento e sinais monitorados. Os artigos selecionados são amplamente discutidos com base na aplicabilidade, eficácia e desafios da tecnologia para o acompanhamento domiciliar. Este artigo chama a atenção para a necessidade de mais investimentos em biossensores vestíveis para monitoramento domiciliar, principalmente devido ao atual cenário pandêmico. Pode-se concluir que os sensores do tipo homecare necessitam de mais investigações em termos de sua eficiência em relação às abordagens padrão ouro de monitoramento domiciliar de pacientes com COVID-19.
Downloads
Referências
ASKARIAN, B.; JUNG, K.; CHONG, J. W. Monitoring of heart rate from photoplethysmographic signals using a Samsung Galaxy Note8 in underwater environments. Sensors, v. 19, n. 13, p. 2846-2861, June 2019. DOI: https://doi.org/10.3390/s19132846.
CAMPUZANO, S.; YÁÑEZ-SEDEÑO, P.; PINGARRÓN, J. M. Revisiting electrochemical biosensing in the 21st century society for inflammatory cytokines involved in autoimmune, neurodegenerative, cardiac, viral and cancer diseases. Sensors, v. 21, n. 1, p. 189-219, Dec. 2020. DOI: https://doi.org/10.3390/s21010189.
CHU, M.; NGUEYEN, T.; PANDEY, V.; ZHOU, Y.; PHAM, H. N.; BAR-YOSEPH, R.; RADOM-AIZIK, S.; JAIN, R.; COOPER, D. M.; KHINE, M. Respiration rate and volume measurements using wearable strain sensors. NPJ Digital Medicine, v. 2, 8, Feb. 2019. DOI: https://doi.org/10.1038/s41746-019-0083-3.
CHUNG, Y.-T.; YEH, C.-Y.; SHU, Y.-C.; CHUANG, K.-T.; CHEN, C.-C.; KAO, H.-Y.; KO, W.-C. CHEN, P.-L.; KO, N.-Y. Continuous temperature monitoring by a wearable device for early detection of febrile events in the SARS-CoV-2 outbreak in Taiwan, 2020. Journal of Microbiology, Immunology and Infection, v. 53, n. 3, p. 503-504, June 2020. DOI: https://doi.org/10.1016/j.jmii.2020.04.005.
DIAS, D.; CUNHA, J. P. S. Wearable health devices: vital sign monitoring, systems and technologies. Sensors, v. 18, n. 8, p. 2414-2441, Aug. 2018. DOI: https://doi.org/10.3390/s18082414.
DING, X.; CLIFTON, D.; JI, N.; LOVELL, N. H.; BONATO, P.; CHEN, W.; YU, X.; XUE, Z.; XIANG, T.; LONG, X.; XU, K. JIANG, X.; WANG, Q.; YIN, B.; FENG, G.; ZHANG, Y.-T. Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic. IEEE Reviews in Biomedical Engineering, v. 14, p. 48-70, 2020. DOI: https://doi.org/10.1109/RBME.2020.2992838.
DONG, Y.; YAO, Y.-D. IoT platform for COVID-19 prevention and control: a survey. IEEE Access, v. 9, p. 49929-49941, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3068276.
HWANG, K. Y.; JIMENEZ, V. O.; MUCHHARLA, B.; EGGERS, T.; LE, A.-T.; LAM, V. D.; PHAN, M.-H. A novel magnetic respiratory sensor for human healthcare. Applied Sciences, v. 11, n. 8, p. 3585-3594, Apr. 2021. DOI: https://doi.org/10.3390/app11083585.
ISLAM, M. M.; RAHAMAN, A.; ISLAM, M. R. Development of smart healthcare monitoring system in IoT environment. SN Computer Science, v. 1, n. 3, p. 185-195, May 2020. DOI: https://doi.org/10.1007/s42979-020-00195-y.
ISLAM, M. M.; MAHMUD, S.; MUHAMMAD, L. J.; ISLAM, M. R.; NOORUDDIN, S.; AYON, S. I. Wearable technology to assist the patients infected with novel coronavirus (COVID-19). SN Computer Science, v. 1, n. 6, p. 320-328, Oct. 2020. DOI: https://doi.org/10.1007/s42979-020-00335-4.
ISSATAYEVA, A.; BEISENOVA, A.; TOSI, D.; MOLARDI, C. Fiber-optic based smart textiles for real-time monitoring of breathing rate. Sensors, v. 20, n. 12, p. 3408-3423, June 2020. DOI: https://doi.org/10.3390/s20123408.
KLUM, M.; URBAN, M.; TIGGES, T.; PIELMUS, A.-G.; FELDHEISER, A.; SCHMITT, T.; ORGLMEISTER, R. Wearable cardiorespiratory monitoring employing a multimodal digital patch stethoscope: estimation of ECG, PEP, LVET and respiration using a 55 mm single-lead ECG and phonocardiogram. Sensors, v. 20, n. 7, p. 2033-2053, 2020. DOI: https://doi.org/10.3390/s20072033.
KRISTOFFERSSON, A.; LINDÉN, M. Wearable sensors for monitoring and preventing noncommunicable diseases: a systematic review. Information, v. 11, n. 11, p. 521-551, jun./nov. 2020. DOI: https://doi.org/10.3390/info11110521.
LI, Y.; LI, S.; SONG, H.; SHAO, B.; YANG, X.; DENG, N. Noninvasive blood pressure estimation with peak delay of different pulse waves. International Journal of Distributed Sensor Networks, v. 15, n. 3, Mar. 2019. DOI: https://doi.org/10.1177/1550147719837877.
LIANG, Y.; CHEN, Z.; LIU, G.; ELGENDI, M. A new, short-recorded photoplethysmogram dataset for blood pressure monitoring in China. Scientific Data, v. 5, 180020, Feb. 2018. DOI: https://doi.org/10.1038/sdata.2018.20.
LIU, C.; CORREIA, R.; BALLAJI, H. K; KORPOSH, S.; HAYES-GILL, B. R.; MORGAN, S. P. Optical fibre-based pulse oximetry sensor with contact force detection. Sensors, v. 18, n. 11, p. 3632-3642, 2018. DOI: https://doi.org/10.3390/s18113632.
MAJUMDER, S.; MONDAL, T.; DEEN, M. J. Wearable sensors for remote health monitoring. Sensors, v. 17, n. 1, p. 130-174, Jan. 2017. DOI: https://doi.org/10.3390/s17010130.
MOHAMMADZADEH, N.; GHOLAMZADEH, M.; SAEEDI, S.; REZAYI, S. The application of wearable smart sensors for monitoring the vital signs of patients in epidemics: a systematic literature review. Journal of Ambient Intelligence and Humanized Computing, v. 13, n. 1, p. 15-29, Nov. 2020. DOI: https://doi.org/10.1007/s12652-020-02656-x.
MOHER, D.; LIBERATI, A.; TETZLAFF, J.; ALTMAN, D. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine, v. 6, n. 7, 2009. DOI: https://doi.org/10.1371/journal.pmed.1000097.
MONY, P. K; THANKACHAN, P.; BHAT, S.; RAO, S.; WASHINGTON, M.; ANTONY, S.; THOMAS, A.; NAGARAJARAO, S. C.; RAO, H.; AMRUTUR, B. Remote biomonitoring of temperatures in mothers and newborns: design, development and testing of a wearable sensor device in a tertiary-care hospital in southern India. BMJ Innovations, v. 4, n. 2, p. 60-67, Apr. 2018. DOI: http://dx.doi.org/10.1136/bmjinnov-2016-000153.
NARANJO-HERNÁNDEZ, D.; TALAMINOS-BARROSO, A.; REINA-TOSINA, J.; ROA, L. M.; BARBAROV-ROSTAN, G.; CEJUDO-RAMOS, P.; MÁRQUEZ-MARTÍN, E.; ORTEGA-RUIZ, F. Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing. Sensors, v. 18, n. 7, p. 2144-2167, May 2018. DOI: https://doi.org/10.3390/s18072144.
PAN, L.; WANG, C.; JIN, H.; LI, J.; YANG, L.; ZHENG, Y.; WEN, Y.; TAN, B. H.; LOH, X. J.; CHEN, X. Lab-on-mask for remote respiratory monitoring. American Chemical Society Materials Letters, v. 2, n. 9, p. 1178-1181, Aug. 2020. DOI: https://doi.org/10.1021/acsmaterialslett.0c00299.
PINTAVIROOJ, C.; KEATSAMARN, T.; TREEBUPACHATSAKUL, T. Multi-parameter vital sign telemedicine system using web socket for COVID-19 pandemics. Healthcare, v. 9, n. 3, p. 285-303, Mar. 2021. DOI: https://doi.org/10.3390/healthcare9030285.
RESTREPO, M.; HUFFENBERGER, A. M.; HANSON III, C. W.; DRAUGELIS, M.; LAUDANSKI, K. Remote monitoring of critically-ill post-surgical patients: lessons from a biosensor implementation trial. Healthcare, v. 9, n. 3, p. 343-352, Mar. 2021. DOI: https://doi.org/10.3390/healthcare9030343.
RUSSELL, C.; WARD, A. C.; VEZZA, V.; HOSKISSON, P.; ALCORN, D.; STEENSON, D. P.; CORRIGAN, D. K. Development of a needle shaped microelectrode for electrochemical detection of the sepsis biomarker interleukin-6 (IL-6) in real time. Biosensors and Bioelectronics, v. 126, n. 1, p. 806-814, Feb. 2019. DOI: https://doi.org/10.1016/j.bios.2018.11.053.
SAHA, R.; BISWAS, S.; SARMAH, S.; KARMAKAR, S.; DAS, P. A working prototype using DS18B20 temperature sensor and Arduino for health monitoring. SN Computer Science, v. 2, n. 1, p. 33-53, Jan. 2021. DOI: https://doi.org/10.1007/s42979-020-00434-2.
SATTI, A. T.; PARK, J.; PARK, J.; KIM, H.; CHO, S. Fabrication of parylene-coated microneedle array electrode for wearable ECG device. Sensors, v. 20, n. 18, p. 5183-5197, jul./sept. 2020. DOI: https://doi.org/10.3390/s20185183.
SHEA, B. J.; REEVES, B. C.; WELLS, G.; THUKU, M.; HAMEL, C.; MORAN, J.; MOHER, D.; TUGWELL, P.; WELCH, V.; KRISTJANSSON, E.; HENRY, D. A. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. The British Medical Journal, v. 358, j4008, 2017. DOI: https://doi.org/10.1136/bmj.j4008.
TEO, J. Early detection of silent hypoxia in covid-19 pneumonia using smartphone pulse oximetry. Journal of Medical Systems, v. 44, n. 8, p. 134-135, June 2020. DOI: https://doi.org/10.1007/s10916-020-01587-6.
UN, K.-C.; WONG, C.-K.; LAU, Y.-M.; LEE, J. C.-Y.; TAM, F. C.-C.; LAI, W.-H.; LAU, Y.-M.; CHEN, H.; WIBOWO, S.; ZHANG, X.; YAN, M.; WU, E.; CHAN, S.-C.; LEE, S.-M.; CHOW, A.; TONG, R. C.-F.; MAJMUDAR, M. D.; RAJPUT, K. S.; HUNG, I. F.-N.; SIU, C.-W. Observational study on wearable biosensors and machine learning-based remote monitoring of COVID-19 patients. Scientific Reports, v. 11, 4388, Feb. 2021. DOI: https://doi.org/10.1038/s41598-021-82771-7.
WANG, D.; HU, B.; HU, C.; ZHU, F.; LIU, X.; ZHANG, J.; WANG, B.; XIANG, H.; CHENG, Z.; XIOMG, Y.; ZHAO, Y.; LI, Y.; WANG, X.; PENG, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. The Journal of the American Medical Association, v. 323, n. 11, p. 1061-1069, 2020. DOI: https://doi.org/10.1001/jama.2020.1585.
WHO – WORLD HEALTH ORGANIZATION. WHO Coronavirus (COVID-19) Dashboard. [Online]. 2021. Disponível em: https://covid19.who.int/. Acesso em: 8 nov. 2022.
YADAV, A. K.; VERMA, D.; KUMAR, A.; KUMAR, P.; SOLANKI, P. R. The perspectives of biomarker-based electrochemical immunosensors, artificial intelligence and the Internet of Medical Things toward COVID-19 diagnosis and management. Materials Today Chemistry, v. 20, 100443, June 2021. DOI: https://doi.org/10.1016/j.mtchem.2021.100443.
ZAKY, Z. A.; AHMED, A. M.; ALY, A. H. Remote temperature sensor based on Tamm resonance. Silicon, v. 14, p. 2765-2777, Mar. 2021. DOI: https://doi.org/10.1007/s12633-021-01064-w.
ZANI, V.; PEDRON, D.; PILOT, R.; SIGNORINI, R. Contactless temperature sensing at the microscale based on titanium dioxide Raman thermometry. Biosensors, v. 11, n. 4, p. 102-118, Apr. 2021. DOI: https://doi.org/10.3390/bios11040102.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Esta revista, seguindo as recomendações do movimento de Acesso Aberto, proporciona seu conteúdo em Full Open Access. Assim os autores conservam todos seus direitos permitindo que a Revista Principia possa publicar seus artigos e disponibilizar pra toda a comunidade.
A Revista Principia adota a licença Creative Commons 4.0 do tipo atribuição (CC-BY). Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, inclusive para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
Os autores estão autorizados a enviar a versão do artigo publicado nesta revista em repositório institucionais, com reconhecimento de autoria e publicação inicial na Revista Principia.
Demais informações sobre a Política de Direitos Autorais da Revista Principia encontram-se neste link.