Tecnologias vestíveis para monitoramento de pacientes com COVID-19 em cuidados domiciliares: revisão sistemática

Autores

DOI:

https://doi.org/10.18265/1517-0306a2021id6171

Palavras-chave:

biossensores, epidemia, monitoramento remoto, sinais vitais, tecnologias vestíveis

Resumo

Os sensores vestíveis são uma tecnologia emergente para monitorar sinais vitais, tendo a vantagem de reduzir o desconforto e interferir amigavelmente nas atividades diárias de qualquer paciente. O foco deste artigo é revisar as tecnologias vestíveis publicadas usadas para monitorar sinais biomédicos em pacientes infectados por coronavírus. Seis tipos diferentes de mecanismos de busca foram utilizados. Os artigos foram selecionados e validados por meio dos critérios da ferramenta AMSTAR 2, a fim de verificar a qualidade desta revisão. Foram selecionados 21 artigos, publicados no período temporal de 2016 a 2021, e tabulados de acordo com o tipo de tecnologia, abordagem de processamento e sinais monitorados. Os artigos selecionados são amplamente discutidos com base na aplicabilidade, eficácia e desafios da tecnologia para o acompanhamento domiciliar. Este artigo chama a atenção para a necessidade de mais investimentos em biossensores vestíveis para monitoramento domiciliar, principalmente devido ao atual cenário pandêmico. Pode-se concluir que os sensores do tipo homecare necessitam de mais investigações em termos de sua eficiência em relação às abordagens padrão ouro de monitoramento domiciliar de pacientes com COVID-19.

Downloads

Não há dados estatísticos.

Referências

ASKARIAN, B.; JUNG, K.; CHONG, J. W. Monitoring of heart rate from photoplethysmographic signals using a Samsung Galaxy Note8 in underwater environments. Sensors, v. 19, n. 13, p. 2846-2861, June 2019. DOI: https://doi.org/10.3390/s19132846.

CAMPUZANO, S.; YÁÑEZ-SEDEÑO, P.; PINGARRÓN, J. M. Revisiting electrochemical biosensing in the 21st century society for inflammatory cytokines involved in autoimmune, neurodegenerative, cardiac, viral and cancer diseases. Sensors, v. 21, n. 1, p. 189-219, Dec. 2020. DOI: https://doi.org/10.3390/s21010189.

CHU, M.; NGUEYEN, T.; PANDEY, V.; ZHOU, Y.; PHAM, H. N.; BAR-YOSEPH, R.; RADOM-AIZIK, S.; JAIN, R.; COOPER, D. M.; KHINE, M. Respiration rate and volume measurements using wearable strain sensors. NPJ Digital Medicine, v. 2, 8, Feb. 2019. DOI: https://doi.org/10.1038/s41746-019-0083-3.

CHUNG, Y.-T.; YEH, C.-Y.; SHU, Y.-C.; CHUANG, K.-T.; CHEN, C.-C.; KAO, H.-Y.; KO, W.-C. CHEN, P.-L.; KO, N.-Y. Continuous temperature monitoring by a wearable device for early detection of febrile events in the SARS-CoV-2 outbreak in Taiwan, 2020. Journal of Microbiology, Immunology and Infection, v. 53, n. 3, p. 503-504, June 2020. DOI: https://doi.org/10.1016/j.jmii.2020.04.005.

DIAS, D.; CUNHA, J. P. S. Wearable health devices: vital sign monitoring, systems and technologies. Sensors, v. 18, n. 8, p. 2414-2441, Aug. 2018. DOI: https://doi.org/10.3390/s18082414.

DING, X.; CLIFTON, D.; JI, N.; LOVELL, N. H.; BONATO, P.; CHEN, W.; YU, X.; XUE, Z.; XIANG, T.; LONG, X.; XU, K. JIANG, X.; WANG, Q.; YIN, B.; FENG, G.; ZHANG, Y.-T. Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic. IEEE Reviews in Biomedical Engineering, v. 14, p. 48-70, 2020. DOI: https://doi.org/10.1109/RBME.2020.2992838.

DONG, Y.; YAO, Y.-D. IoT platform for COVID-19 prevention and control: a survey. IEEE Access, v. 9, p. 49929-49941, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3068276.

HWANG, K. Y.; JIMENEZ, V. O.; MUCHHARLA, B.; EGGERS, T.; LE, A.-T.; LAM, V. D.; PHAN, M.-H. A novel magnetic respiratory sensor for human healthcare. Applied Sciences, v. 11, n. 8, p. 3585-3594, Apr. 2021. DOI: https://doi.org/10.3390/app11083585.

ISLAM, M. M.; RAHAMAN, A.; ISLAM, M. R. Development of smart healthcare monitoring system in IoT environment. SN Computer Science, v. 1, n. 3, p. 185-195, May 2020. DOI: https://doi.org/10.1007/s42979-020-00195-y.

ISLAM, M. M.; MAHMUD, S.; MUHAMMAD, L. J.; ISLAM, M. R.; NOORUDDIN, S.; AYON, S. I. Wearable technology to assist the patients infected with novel coronavirus (COVID-19). SN Computer Science, v. 1, n. 6, p. 320-328, Oct. 2020. DOI: https://doi.org/10.1007/s42979-020-00335-4.

ISSATAYEVA, A.; BEISENOVA, A.; TOSI, D.; MOLARDI, C. Fiber-optic based smart textiles for real-time monitoring of breathing rate. Sensors, v. 20, n. 12, p. 3408-3423, June 2020. DOI: https://doi.org/10.3390/s20123408.

KLUM, M.; URBAN, M.; TIGGES, T.; PIELMUS, A.-G.; FELDHEISER, A.; SCHMITT, T.; ORGLMEISTER, R. Wearable cardiorespiratory monitoring employing a multimodal digital patch stethoscope: estimation of ECG, PEP, LVET and respiration using a 55 mm single-lead ECG and phonocardiogram. Sensors, v. 20, n. 7, p. 2033-2053, 2020. DOI: https://doi.org/10.3390/s20072033.

KRISTOFFERSSON, A.; LINDÉN, M. Wearable sensors for monitoring and preventing noncommunicable diseases: a systematic review. Information, v. 11, n. 11, p. 521-551, jun./nov. 2020. DOI: https://doi.org/10.3390/info11110521.

LI, Y.; LI, S.; SONG, H.; SHAO, B.; YANG, X.; DENG, N. Noninvasive blood pressure estimation with peak delay of different pulse waves. International Journal of Distributed Sensor Networks, v. 15, n. 3, Mar. 2019. DOI: https://doi.org/10.1177/1550147719837877.

LIANG, Y.; CHEN, Z.; LIU, G.; ELGENDI, M. A new, short-recorded photoplethysmogram dataset for blood pressure monitoring in China. Scientific Data, v. 5, 180020, Feb. 2018. DOI: https://doi.org/10.1038/sdata.2018.20.

LIU, C.; CORREIA, R.; BALLAJI, H. K; KORPOSH, S.; HAYES-GILL, B. R.; MORGAN, S. P. Optical fibre-based pulse oximetry sensor with contact force detection. Sensors, v. 18, n. 11, p. 3632-3642, 2018. DOI: https://doi.org/10.3390/s18113632.

MAJUMDER, S.; MONDAL, T.; DEEN, M. J. Wearable sensors for remote health monitoring. Sensors, v. 17, n. 1, p. 130-174, Jan. 2017. DOI: https://doi.org/10.3390/s17010130.

MOHAMMADZADEH, N.; GHOLAMZADEH, M.; SAEEDI, S.; REZAYI, S. The application of wearable smart sensors for monitoring the vital signs of patients in epidemics: a systematic literature review. Journal of Ambient Intelligence and Humanized Computing, v. 13, n. 1, p. 15-29, Nov. 2020. DOI: https://doi.org/10.1007/s12652-020-02656-x.

MOHER, D.; LIBERATI, A.; TETZLAFF, J.; ALTMAN, D. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine, v. 6, n. 7, 2009. DOI: https://doi.org/10.1371/journal.pmed.1000097.

MONY, P. K; THANKACHAN, P.; BHAT, S.; RAO, S.; WASHINGTON, M.; ANTONY, S.; THOMAS, A.; NAGARAJARAO, S. C.; RAO, H.; AMRUTUR, B. Remote biomonitoring of temperatures in mothers and newborns: design, development and testing of a wearable sensor device in a tertiary-care hospital in southern India. BMJ Innovations, v. 4, n. 2, p. 60-67, Apr. 2018. DOI: http://dx.doi.org/10.1136/bmjinnov-2016-000153.

NARANJO-HERNÁNDEZ, D.; TALAMINOS-BARROSO, A.; REINA-TOSINA, J.; ROA, L. M.; BARBAROV-ROSTAN, G.; CEJUDO-RAMOS, P.; MÁRQUEZ-MARTÍN, E.; ORTEGA-RUIZ, F. Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing. Sensors, v. 18, n. 7, p. 2144-2167, May 2018. DOI: https://doi.org/10.3390/s18072144.

PAN, L.; WANG, C.; JIN, H.; LI, J.; YANG, L.; ZHENG, Y.; WEN, Y.; TAN, B. H.; LOH, X. J.; CHEN, X. Lab-on-mask for remote respiratory monitoring. American Chemical Society Materials Letters, v. 2, n. 9, p. 1178-1181, Aug. 2020. DOI: https://doi.org/10.1021/acsmaterialslett.0c00299.

PINTAVIROOJ, C.; KEATSAMARN, T.; TREEBUPACHATSAKUL, T. Multi-parameter vital sign telemedicine system using web socket for COVID-19 pandemics. Healthcare, v. 9, n. 3, p. 285-303, Mar. 2021. DOI: https://doi.org/10.3390/healthcare9030285.

RESTREPO, M.; HUFFENBERGER, A. M.; HANSON III, C. W.; DRAUGELIS, M.; LAUDANSKI, K. Remote monitoring of critically-ill post-surgical patients: lessons from a biosensor implementation trial. Healthcare, v. 9, n. 3, p. 343-352, Mar. 2021. DOI: https://doi.org/10.3390/healthcare9030343.

RUSSELL, C.; WARD, A. C.; VEZZA, V.; HOSKISSON, P.; ALCORN, D.; STEENSON, D. P.; CORRIGAN, D. K. Development of a needle shaped microelectrode for electrochemical detection of the sepsis biomarker interleukin-6 (IL-6) in real time. Biosensors and Bioelectronics, v. 126, n. 1, p. 806-814, Feb. 2019. DOI: https://doi.org/10.1016/j.bios.2018.11.053.

SAHA, R.; BISWAS, S.; SARMAH, S.; KARMAKAR, S.; DAS, P. A working prototype using DS18B20 temperature sensor and Arduino for health monitoring. SN Computer Science, v. 2, n. 1, p. 33-53, Jan. 2021. DOI: https://doi.org/10.1007/s42979-020-00434-2.

SATTI, A. T.; PARK, J.; PARK, J.; KIM, H.; CHO, S. Fabrication of parylene-coated microneedle array electrode for wearable ECG device. Sensors, v. 20, n. 18, p. 5183-5197, jul./sept. 2020. DOI: https://doi.org/10.3390/s20185183.

SHEA, B. J.; REEVES, B. C.; WELLS, G.; THUKU, M.; HAMEL, C.; MORAN, J.; MOHER, D.; TUGWELL, P.; WELCH, V.; KRISTJANSSON, E.; HENRY, D. A. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. The British Medical Journal, v. 358, j4008, 2017. DOI: https://doi.org/10.1136/bmj.j4008.

TEO, J. Early detection of silent hypoxia in covid-19 pneumonia using smartphone pulse oximetry. Journal of Medical Systems, v. 44, n. 8, p. 134-135, June 2020. DOI: https://doi.org/10.1007/s10916-020-01587-6.

UN, K.-C.; WONG, C.-K.; LAU, Y.-M.; LEE, J. C.-Y.; TAM, F. C.-C.; LAI, W.-H.; LAU, Y.-M.; CHEN, H.; WIBOWO, S.; ZHANG, X.; YAN, M.; WU, E.; CHAN, S.-C.; LEE, S.-M.; CHOW, A.; TONG, R. C.-F.; MAJMUDAR, M. D.; RAJPUT, K. S.; HUNG, I. F.-N.; SIU, C.-W. Observational study on wearable biosensors and machine learning-based remote monitoring of COVID-19 patients. Scientific Reports, v. 11, 4388, Feb. 2021. DOI: https://doi.org/10.1038/s41598-021-82771-7.

WANG, D.; HU, B.; HU, C.; ZHU, F.; LIU, X.; ZHANG, J.; WANG, B.; XIANG, H.; CHENG, Z.; XIOMG, Y.; ZHAO, Y.; LI, Y.; WANG, X.; PENG, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. The Journal of the American Medical Association, v. 323, n. 11, p. 1061-1069, 2020. DOI: https://doi.org/10.1001/jama.2020.1585.

WHO – WORLD HEALTH ORGANIZATION. WHO Coronavirus (COVID-19) Dashboard. [Online]. 2021. Disponível em: https://covid19.who.int/. Acesso em: 8 nov. 2022.

YADAV, A. K.; VERMA, D.; KUMAR, A.; KUMAR, P.; SOLANKI, P. R. The perspectives of biomarker-based electrochemical immunosensors, artificial intelligence and the Internet of Medical Things toward COVID-19 diagnosis and management. Materials Today Chemistry, v. 20, 100443, June 2021. DOI: https://doi.org/10.1016/j.mtchem.2021.100443.

ZAKY, Z. A.; AHMED, A. M.; ALY, A. H. Remote temperature sensor based on Tamm resonance. Silicon, v. 14, p. 2765-2777, Mar. 2021. DOI: https://doi.org/10.1007/s12633-021-01064-w.

ZANI, V.; PEDRON, D.; PILOT, R.; SIGNORINI, R. Contactless temperature sensing at the microscale based on titanium dioxide Raman thermometry. Biosensors, v. 11, n. 4, p. 102-118, Apr. 2021. DOI: https://doi.org/10.3390/bios11040102.

Downloads

Publicado

2023-03-30

Como Citar

TEIXEIRA, L. G.; BERTEMES-FILHO, P. Tecnologias vestíveis para monitoramento de pacientes com COVID-19 em cuidados domiciliares: revisão sistemática. Revista Principia, [S. l.], v. 60, n. 1, p. 232–246, 2023. DOI: 10.18265/1517-0306a2021id6171. Disponível em: https://periodicos.ifpb.edu.br/index.php/principia/article/view/6171. Acesso em: 23 jan. 2025.

Edição

Seção

Engenharias IV - Engenharia Biomédica