- Submissão
- Submissão online
- Diretrizes para Autores
- Declaração de Direito Autoral
- Política de Privacidade
- Sobre este sistema de publicação
- Sobre
- Foco e Escopo
- Equipe Editorial
- História da Revista Principia
- Normas de homogeneidade
- Comitê de ética
- Política de ética para autores, Conselho Editorial e avaliadores
- Política de retirada de artigos
- Perguntas e respostas frequentes
- Equipe de apoio da Revista Principia
- Conflito de interesses
- Plano de Desenvolvimento Editorial da Revista Principia
- Princípios DEIA (Diversidade, Equidade, Inclusão e Acessibilidade)
- Normas para números especiais na Revista Principia
- Princípios FAIR
- Curso de Escrita Científica - ACS - Prof. Osvaldo
- Sites e manuais sobre boas práticas científicas
Caracterização de sementes e de óleos de chia, gergelim e linhaça extraídos por prensagem a frio
Resumo
Este trabalho teve como objetivos caracterizar as sementes de chia (Salvia hispanica L.), gergelim (Sesamum indicum L.) e linhaça (Linum usitassimum L.) quanto à composição centesimal, bem como avaliar as propriedades físico-químicas e capacidade antioxidante dos seus óleos. As sementes apresentaram elevadas quantidades de lipídios (31,3%–46,7%) e proteínas (16,6%–25,5%). O óleo de chia mostrou maior degradação hidrolítica e oxidativa devido aos índices de acidez (5,27 mg KOH/g), peróxidos (2,76 meq/kg), ρ-anisidina (3,15) e, consequentemente, o valor Totox (8,79). Quanto aos ácidos graxos, os óleos mostraram ser predominantemente constituídos por ácidos graxos insaturados, sobressaindo o de chia com maior quantidade de ácido α-linolênico (58%). Os óleos de gergelim mostraram quantidades consideráveis de tocoferóis totais (2538,10 mg/kg–2645,59 mg/kg). O óleo de gergelim branco mostrou teor significativo de carotenoides totais (128,44 µg β-caroteno/g), enquanto o de linhaça dourada se destacou com maior conteúdo de fenólicos totais (287,29 mg/kg) e o de chia com 199,03 mg/kg de fitosteróis totais. Os óleos avaliados também demonstraram elevada capacidade antioxidante. Assim, é possível concluir que são óleos importantes do ponto de vista funcional, devido à presença de compostos bioativos.
Palavras-chave
capacidade antioxidante; composição centesimal; compostos bioativos; propriedades físico-químicas
Texto completo:
Referências
ABREU, D. A. P.; LOSADA, P. P.; MAROTO, J.; CRUZ, J. M. Evaluation of the effectiveness of a new active packaging film containing natural antioxidants (from barley husks) that retard lipid damage in frozen Atlantic salmon (Salmo salar L.). Food Research International, v. 43, n. 5, p. 1277-1282, 2010. DOI: https://doi.org/10.1016/j.foodres.2010.03.019.
ANANTH, D. A.; DEVIRAM, G.; MAHALAKSHMI, V.; SIVASUDHA, T.; TIETEL, Z. Phytochemical composition and antioxidant characteristics of traditional cold pressed seed oils in South India. Biocatalysis and Agricultural Biotechnology, v. 17, p. 416-421, 2019. DOI: https://doi.org/10.1016/j.bcab.2018.12.018.
AOAC – ASSOCIATION OF OFFICIAL AGRICULTURAL CHEMISTS. Official and tentative methods. 18. ed. Arlington, 2005.
AOCS – AMERICAN OIL CHEMISTS’ SOCIETY. Official methods and recommended practices of the American Oil Chemists’ Society. 6. ed. Champaing, 2009.
AYERZA, R.; COATES, W. Composition of chia (Salvia hispanica) grown in six tropical and subtropical ecosystems of South America. Tropical Science, v. 44, n. 3, p. 131-135, Sept. 2004. DOI: https://doi.org/10.1002/ts.154.
BELMIRO, T. M. C.; QUEIROZ, A. J. M.; FIGUEIRÊDO, R. M. F.; FERNANDES, T. K. S.; BEZERRA, M. C. T. Alterações químicas e físico-químicas em grãos de abóboras durante o armazenamento. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 14, n. 9, p. 1000-1007, set. 2010. DOI: https://doi.org/10.1590/S1415-43662010000900013.
BERNACCHIA, R.; PRETI, R.; VINCI, G. Chemical composition and health benefits of flaxseed. Austin Journal of Nutrition and Food Science, v. 2, n. 8, p. 1045, 2014. Disponível em https://austinpublishinggroup.com/nutrition-food-sciences/fulltext/ajnfs-v2-id1045.pdf. Acesso em: 4 set. 2020.
BERSET, C.; CUVELIER, M. E. Methods of estimating the degree of lipid oxidation and of measuring antioxidizing power. Sciences des Aliments, v. 16, n. 3, p. 219-245, 1996. Disponível em: https://eurekamag.com/research/009/017/009017505.php. Acesso em: 4 set. 2020.
CHEN, W.-A.; CHIU, C. P.; CHENG, W.-C.; HSU, C.-K.; KUO, M.-I. Total polar compounds and acid values of repeatedly used frying oils measured by standard and rapid methods. Journal of Food and Drug Analysis, v. 21, n. 1, p. 58-65, 2013. DOI: http://dx.doi.org/10.6227/jfda.2013210107.
CODEX ALIMENTARIUM COMMISSION. Codex stan 210-1999: codex standard for named vegetable oils. Rome, 2009.
COELHO, S.; SALAS-MELLADO, M. M. Chemical characterization of chia (Salvia hispanica L.) for use in food products. Journal of Food and Nutrition Research, v. 2, n. 5, p. 263-269, Jan. 2014. DOI: http://dx.doi.org/10.12691/jfnr-2-5-9.
DUCHATEAU, G. S. M. J. E.; BAUER-PLANK, C. G.; LOUTER, A. J. H.; VAN DER HAM, M.; BOERMA, J. A.; VAN ROOIJEN, J. J. M.; ZANDBELT, P. A. Fast and accurate method for total 4-desmethyl sterol(s) content in spreads, fat-blends, and raw materials. Journal of the American Oil Chemists’ Society, v. 79, n. 3, p. 273-278, Mar. 2002. DOI: https://doi.org/10.1007/s11746-002-0473-y.
EL-KHIER, M. K. S.; ISHAG, K. E. A.; YAGOUB, A. E. A. Chemical composition and oil characteristics of sesame seed cultivars grown in Sudan. Research Journal of Agriculture and Biological Sciences, v. 4, n. 6, p. 761-766, 2008. Disponível em: http://www.aensiweb.net/AENSIWEB/rjabs/rjabs/2008/761-766.pdf. Acesso em: 4 set. 2020.
FREDMAN, G.; SERHAN, C. N. Specialized proresolving mediator targets for RvE1 and RvD1 in peripheral blood and mechanisms of resolution. Biochemical Journal, v. 437, n. 2, p. 185-197, 2011. DOI: https://doi.org/10.1042/bj20110327.
GADADE, B. V.; KACHARE, D. P.; SATBHAI, R. D.; NAIK, R. M. Nutritional composition and oil quality parameters of sesame (Sesamum indicum L.) genotypes. International Research Journal of Multidisciplinary Studies, v. 3, n. 7, p. 1-13, June 2017. Disponível em: https://www.semanticscholar.org/paper/Nutritional-Composition-and-Oil-Quality-Parameters-Gadade-Kachare/584b720a8b863e9aa77045cba9a1871a0a274b47. Acesso em: 4 set. 2020.
GHARBY, S.; HARHAR, H.; BOUZOUBAA, Z.; ASDADI, A.; EL YADINI, A.; CHARROUF, Z. Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco. Journal of the Saudi Society of Agricultural Sciences, v. 16, n. 2, p. 105-111, Apr. 2017. DOI: https://doi.org/10.1016/j.jssas.2015.03.004.
GUILLÉN, M. D.; CABO, N. Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils. Food Chemistry, v. 77, n. 4, p. 503-510, June 2002. DOI: https://doi.org/10.1016/S0308-8146(01)00371-5.
GUNSTONE, F. D. Vegetable oils in food technology: composition, properties and uses. 2. ed. Oxford: Wiley-Blackwell, 2011. 376 p.
IQBAL, S.; BHANGER, M. I. Stabilization of sunflower oil by garlic extract during accelerated storage. Food Chemistry, v. 100, n. 1, p. 246-254, 2007. DOI: https://doi.org/10.1016/j.foodchem.2005.09.049.
IXTAINA, V. Y.; MARTÍNEZ, M. L.; SPOTORNO, V.; MATEO, C. M.; MAESTRI, D. M.; DIEHL, B. W. K.; NOLASCO, S. M.; TOMÁS, M. C. Characterization of chia seed oils obtained by pressing and solvent extraction. Journal of Food Composition Analysis, v, 24, n. 2, p. 166-174, 2011. DOI: https://doi.org/10.1016/j.jfca.2010.08.006.
IXTAINA, V. Y.; NOLASCO, S. M.; TOMÁS, M. C. Oxidative stability of chia (Salvia hispanica L.) seed oil: effect of antioxidants and storage conditions. Journal of the American Oil Chemists’ Society, v. 89, n. 6, p. 1077-1090, June 2012. DOI: https://doi.org/10.1007/s11746-011-1990-x.
KALANTZAKIS, G.; BLEKAS, G.; PEGKLIDOU, K.; BOSKOU, D. Stability and radical-scavenging activity of heated olive oil and other vegetable oils. European Journal of Lipid Science and Technology, v. 108, n. 4, p. 329-335, Apr. 2006. DOI: https://doi.org/10.1002/ejlt.200500314.
KASOTE, D. M. Flaxseed phenolics as natural antioxidants. International Food Research Journal, v. 20, n. 1, p. 27-34, 2013. Disponível em: http://ifrj.upm.edu.my/20%20(01)%202013/4%20IFRJ%2020%20(01)%202013%20Deepak%20(166).pdf. Acesso em: 4 set. 2020.
KULP, K. Handbook of cereal science and technology: revised and expanded. New York: CRC Press, 2000. 808 p.
MALACRIDA, C. R.; JORGE, N. Yellow passion fruit seed oil (Passiflora edulis f. flavicarpa): physical and chemical characteristics. Brazilian Archives of Biology and Technology, v. 55, n. 1, p. 127-134, Feb. 2012. DOI: https://doi.org/10.1590/S1516-89132012000100016.
MARINELI, R. S.; MORAES, E. A.; LENQUISTE, S. A.; GODOY, A. T.; EBERLIN, M. N.; MARÓSTICA JR., M. R. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT – Food Science and Technology, v. 59, n. 2, part 2, p. 1304-1310, 2014. DOI: https://doi.org/10.1016/j.lwt.2014.04.014.
MCLAUGHLIN, P. J.; WEIHRAUCH, J. L. Vitamin E content of foods. Journal of the American Dietetic Association, v. 75, n. 6, p. 647-665, 1979. DOI: https://doi.org/10.1016/S0002-8223(21)05428-6.
MERRIL, A. L.; WATT, B. K. Energy value of foods: basis and derivation. Washington: United States Department of Agriculture, 1973. 105 p.
MICHOTTE, D.; ROGEZ, H.; CHIRINOS, R.; MIGNOLET, E.; CAMPOS, D.; LARONDELLE, Y. Linseed oil stabilization with pure natural phenolic compounds. Food Chemistry, v. 129, n. 3, p. 1228-1231, 2011. DOI: https://doi.org/10.1016/j.foodchem.2011.05.108.
MUÑOZ, L. A.; COBOS, A.; DIAZ, O.; AGUILERA, J. M. Chia seed (Salvia hispanica): an ancient grain and a new functional food. Food Reviews International, v. 29, n. 4, p. 394-408, 2013. DOI: https://doi.org/10.1080/87559129.2013.818014.
NEPA – NÚCLEO DE ESTUDOS E PESQUISA EM ALIMENTAÇÃO. Tabela brasileira de composição de alimentos. 4. ed. Campinas: Unicamp, 2011.
NOVELLO, D.; POLLONIO, M. A. R. Caracterização físico-química e microbiológica da linhaça dourada e marrom (Linum Usitatissimun L.). Revista do Instituto Adolfo Lutz, v. 71, n. 2, p. 291-300, 2012. Disponível em: https://docs.bvsalud.org/biblioref/ses-sp/2012/ses-26493/ses-26493-3824.pdf. Acesso em: 4 set. 2020.
OGBONNA, P. E.; UKAAN, S. I. Chemical composition and oil quality of seeds of sesame accessions grown in the Nsukka plains of South Eastern Nigeria. African Journal of Agricultural Research, v. 8, n. 9, p. 797-803, 2013. DOI: https://doi.org/10.5897/AJAR12.1702.
ORTHOEFER, F. T. Vegetable oils. In: BAILEY, A. E. (ed.). Bailey’s industrial oil & fat products. New York: Wiley, 1996. p. 19-43.
OYINLOYE, B. E.; AJIBOYE, B. O.; OJO, O. A.; NWOZO, S. O.; KAPPO, A. P. Cardioprotective and antioxidant influence of aqueous extracts from Sesamum indicum seeds on oxidative stress induced by cadmium in Wistar rats. Pharmacognosy Magazine, v. 12, n. 46, p. S170-S174, 2016. DOI: https://doi.org/10.4103/0973-1296.182155.
PANZELLA, L.; EIDENBERGER, T.; NAPOLITANO, A.; D’ISCHIA, M. Black sesame pigment: DPPH assay-guided purification, antioxidant/antinitrosating properties, and identification of a degradative structural marker. Journal of Agricultural and Food Chemistry, v. 60, n. 36, p. 8895-8901, 2012. DOI: https://doi.org/10.1021/jf2053096.
PARKER, T. D.; ADAMS, D. A.; ZHOU, K.; HARRIS, M.; YU, L. Fatty acid composition and oxidative stability of cold-pressed edible seed oils. Journal of Food Science, v. 68, n. 4, p. 1240-1243, May 2003. DOI: https://doi.org/10.1111/j.1365-2621.2003.tb09632.x.
PARRY, J. W.; SU, L.; LUTHER, M.; ZHOU, K.; YURAWECZ, M. P.; WHITTAKER, P.; YU, L. Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. Journal of Agricultural and Food Chemistry, v. 53, n. 3, p. 566-573, Feb. 2005. DOI: https://doi.org/10.1021/jf048615t.
PINAZO-DURAN, M. D.; BOSCÁ-GOMAR, L. Anti-inflammatory properties of polyunsaturated fatty acid omega 3. Indications in ophthalmology. Archivos de la Sociedad Española de Oftalmología, v. 87, n. 7, p. 203-220, 2012. DOI: https://doi.org/10.1016/j.oftal.2012.04.003.
RAFALOWSKI, R.; ZEGARSKA, Z.; KUNCEWICZ, A.; BOREJSZO, Z. Fatty acid composition, tocopherol and ß-carotene content in polish commercial vegetable oils. Pakistan Journal of Nutrition, v. 7, n. 2, p. 278-282, 2008. DOI: https://dx.doi.org/10.3923/pjn.2008.278.282.
RE, R.; PELLEGRINI, N.; PROTEGGENTE, A.; PANNALA, A.; YANG, M.; RICE-EVANS, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, v. 26, n. 9-10, p. 1231-1237, 1999. DOI: https://doi.org/10.1016/S0891-5849(98)00315-3.
RODRIGUEZ-AMAYA, D. B. A guide to carotenoids analysis in food. Washington: ILSI Press, 2001. 64 p.
RUDZINSKA, M.; PRZYBYLSKI, R.; WASOWICZ, E. Degradation of phytosterols during storage of enriched margarines. Food Chemistry, v. 142, n. 1, p. 294-298, Jan. 2014. DOI: https://doi.org/10.1016/j.foodchem.2013.07.041.
SAURA-CALIXTO, F.; GOÑI, I. Antioxidant capacity of the Spanish Mediterranean diet. Food Chemistry, v. 94, n. 3, p. 442-447, Feb. 2006. DOI: https://doi.org/10.1016/j.foodchem.2004.11.033.
SCHMIDT, S.; POKORNÝ, J. Potential application of oilseeds as sources of antioxidants for food lipids – a review. Czech Journal of Food Science, v. 23, n. 3, p. 93-102, 2005. DOI: http://dx.doi.org/10.17221/3377-CJFS.
SILVA, E. R.; MARTINO, H. S. D.; MOREIRA, A. V. B.; ARRIEL, N. H. C.; SILVA, A. C.; RIBEIRO, S. M. R. Capacidade antioxidante e composição química de grãos integrais de gergelim creme e preto. Pesquisa Agropecuária Brasileira, v. 46, n. 7, p. 736-742, 2011. DOI: https://doi.org/10.1590/S0100-204X2011000700009.
SINGLETON, V. L.; ROSSI, J. A. Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. American Journal of Enology and Viticulture, v. 16, n. 3, p. 144-158, 1965. Disponível em: https://www.ajevonline.org/content/16/3/144. Acesso em: 4 set. 2020.
SZYDLOWSKA-CZERNIAK, A.; KARLOVITS, G.; DIANOCZKI, C.; RECSEG, K.; SZŁYK, E. Comparison of two analytical methods for assessing antioxidant capacity of rapeseed and olive oils. Journal of the American Oil Chemists’ Society, v. 85, n. 2, p. 141-149, Feb. 2008. DOI: https://doi.org/10.1007/s11746-007-1178-6.
TUNDE-AKINTUNDE, T. Y.; OKE, M. O.; AKINTUNDE, B. O. Sesame seed. In: AKPAN, U. G. (ed.). Oilseeds. Rijeka: InTech, 2012. p. 81-98.
WOOD, J. D.; RICHARDSON, R. I.; NUTE, G. R.; FISHER, A. V.; CAMPO, M. M.; KASAPIDOU, E.; SHEARD, P. R.; ENSER, M. Effects of fatty acids on meat quality: a review. Meat Science, v. 66, n. 1, p. 21-32, Jan. 2004. DOI: https://doi.org/10.1016/s0309-1740(03)00022-6.
YASOTHAI, R. Chemical composition of sesame oil cake – review. International Journal of Science, Environment and Technology, v. 3, n. 3, p. 827-835, 2014. Disponível em: https://www.ijset.net/journal/309.pdf. Acesso em: 4 set. 2020.
ZEBIB, H.; BULTOSA, G.; ABERA, S. Physico-chemical properties of sesame (Sesamum indicum L.) varieties grown in northern area, Ethiopia. Agricultural Sciences, v. 6, n. 2, p. 238-246, Jan. 2015. DOI: http://dx.doi.org/10.4236/as.2015.62024.
Visitas a este artigo: 1643
Total de downloads do artigo: 1189