Avanços no estudo experimental e analítico de vigas de concreto armado reforçadas ao cisalhamento com PRF – um estudo na literatura

Autores

DOI:

https://doi.org/10.18265/1517-0306a2021id5446

Palavras-chave:

cisalhamento, material compósito, reforço, vigas de concreto armado

Resumo

Por apresentar alta resistência, leveza e propriedades não corrosivas, o Polímero Reforçado com Fibras (PRF) é um material compósito inovador e tem sido usado em muitas estruturas de concreto armado como reforço. Esse material é composto por fibras, sejam elas de carbono, vidro, basalto ou aramida, embebidas em uma matriz polimérica. Uma viga reforçada com tal material ao cisalhamento possui diversos modos de falha. Entre eles, destaca-se o descolamento da interface devido a fissura crítica de cisalhamento, o que torna o estudo mais complexo. Baseado em estudos existentes da literatura, este trabalho tem por objetivo revisar e apresentar os avanços e aplicações dos materiais PRF no reforço de vigas de concreto armado sujeitas ao cisalhamento. De início, foram introduzidas as propriedades fundamentais do PRF, seu modo de fabricação e suas principais formas de aplicação ao cisalhamento. Posteriormente, os principais estudos experimentais e analíticos sobre o assunto são revistos, desde o início da utilização dos materiais compósitos até atualmente, destacando os avanços mais relevantes de cada pesquisa. Em todos os estudos, o PRF se mostrou bastante eficiente, no entanto, a falha por descolamento ainda foi um grande problema. Esse fato fez com que os pesquisadores desenvolvessem diversos métodos de ancoragem, os quais foram eficazes em aumentar a eficiência do reforço. Essa revisão foi útil para compreender e melhorar a forma como os profissionais de engenharia aplicam o reforço ao cisalhamento com PRF.

Downloads

Não há dados estatísticos.

Referências

ACI – AMERICAN CONCRETE INSTITUTE. ACI 440.2R-08 - Guide for the design and construction of externally bonded FRP Systems for strengthening concrete structures. Farmington Hills: American Concrete Institute, 2008. Disponível em: https://edisciplinas.usp.br/pluginfile.php/3435659/mod_resource/content/1/4402r_08.pdf. Acesso em: 15 jan. 2021.

BAGGIO, D.; SOUDKI, K.; NOËL, M. Strengthening of shear critical RC beams with various FRP systems. Construction and Building Materials, v. 66, p. 634-644, Sept, 2014. DOI: https://doi.org/10.1016/j.conbuildmat.2014.05.097.

BEBER, A. J. Comportamento estrutural de vigas de concreto armado reforçadas com compósitos de fibra de carbono. 2003. 317 f. Tese (Doutorado em Engenharia Civil) – Universidade Federal do Rio Grande do Sul, Porto Alegre. Disponível em: https://www.lume.ufrgs.br/handle/10183/2974. Acesso em: 10 jan. 2021.

BELARBI, A.; ACUN, B. FRP systems in shear strengthening of reinforced concrete structures. Procedia Engineering, v. 57, n. 57, p. 2-8, 2013. DOI: https://doi.org/10.1016/j.proeng.2013.04.004.

BELARBI, A.; BAE, S.; AYOUB, A.; KUCHMA, D.; MIRMIRAN, A.; OKEIL, A. NCHRP Report 678: Design of FRP systems for strengthening concrete girders in shear. Washington, DC: The National Academies Press, 2011. 129 p. DOI: https://dx.doi.org/10.17226/14465.

BELARBI, A.; BAE, S. W.; BRANCACCIO, A. Behavior of full-scale RC T-beams strengthened in shear with externally bonded FRP sheets. Construction and Building Materials, v. 32, p. 27-40, 2012. DOI: https://doi.org/10.1016/j.conbuildmat.2010.11.102.

BENZEGUIR, Z. E. A.; EL-SAIKALY, G.; CHAALLAL, O. Size effect of RC T-beams strengthened in shear with externally bonded CFRP L-shaped laminates. Journal of Composites for Construction, v. 24, n. 4, p. 1-10, Aug. 2020. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0001045.

BSISU, K. A. D.; HUSSEIN, H. H.; SARGAND, S. M. The use of hashin damage criteria, CFRP–concrete interface and concrete damage plasticity models in 3D finite element modeling of retrofitted reinforced concrete beams with CFRP sheets. Arabian Journal for Science and Engineering, v. 42, n. 3, p. 1171-1184, 2017. DOI: https://doi.org/10.1007/s13369-016-2356-3.

CALLISTER JR., W. D.; RETHWISCH, D. G. Materials Science and Engineering: an Intoduction. 7. ed. York, PA, USA: John Wiley & Sons, 2007.

CAROLIN, A. Carbon Fibre Reinforced Polymers for Strengthening of Structural Elements. 2003. 194 p. Doctoral Thesis, Department of Civil and Mining Engineering – Division of Structural Engineering, Lulea University of Technology, Lulea, Switzerland, 2003. Disponível em: https://www.diva-portal.org/smash/get/diva2:989866/FULLTEXT01.pdf. Acesso em: 10 dez. 2020.

CAROLIN, A. Strengthening of concrete structures with CFRP: shear strengthening and full scale applications. 2001. 137 p. Licentiate Thesis, Department of Civil and Mining Engineering – Division of Structural Engineering, Lulea University of Technology, Lulea, Switzerland, 2001. Disponível em: https://www.diva-portal.org/smash/get/diva2:990943/FULLTEXT01.pdf. Acesso em: 10 dez. 2020.

COLALILLO, M. A.; SHEIKH, S. A. Behavior of shear-critical reinforced concrete beams strengthened with fiber-reinforced polymer-experimentation. ACI Structural Journal, v. 111, n. 6, p. 1373-1384, Nov. 2014. DOI: https://doi.org/10.14359/51687035.

DE LORENZIS, L.; NANNI, A. Shear strengthening of reinforced concrete beams with Near-Surface Mounted Fiber-Reinforced Polymer Rods. ACI Structural Journal, v. 98, n. 1, p. 60-68, 2001. DOI: https://doi.org/10.14359/10147.

EL-SAIKALY, G.; CHAALLAL, O. Fatigue behavior of RC T-beams strengthened in shear with EB CFRP L-shaped laminates. Composites Part B, v. 68, p. 100-112, Jan. 2015. DOI https://doi.org/10.1016/j.compositesb.2014.08.014.

EL MAADDAWY, T.; SHERIF, S. FRP composites for shear strengthening of reinforced concrete deep beams with openings. Composite Structures, v. 89, n. 1, p. 60-69, June 2009. DOI: https://doi.org/10.1016/j.compstruct.2008.06.022.

ESLAMI, A.; MOGHAVEM, A.; SHAYEGH, H, R.; RONAGH, H. R. Effect of FRP stitching anchors on ductile performance of shear-deficient RC beams retrofitted using FRP U-wraps. Structures, v. 23, p. 407-414, Feb. 2020. DOI: https://doi.org/10.1016/j.istruc.2019.11.007.

FIB – FÉDÈRATION INTERNATIONALE DU BÉTON. Fib Bulletin 14: Externally Bonded FRP Reinforcement for RC Structures. Technical report by Task Group 9.3 FRP reinforcement for concrete structures, Lausanne, Switzerland, 2001. Disponível em: https://afzir.com/wp-content/uploads/2017/11/Externally-bonded-FRP-Reinforcemen-for-RC-structures.pdf. Acesso em: 15 nov. 2020.

FOSTER, R. M.; BRINDLEY, M.; LEES, J.; IBELL, T.; MORLEY, C.; DARBY, A.; EVERNDEN, M. Experimental investigation of reinforced concrete T-Beams strengthened in shear with externally bonded CFRP sheets. Journal of Composites for Construction, v. 21, n. 2, p. 1-13, Apr. 2017. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000743.

GALAL, K.; MOFIDI, A. Shear strengthening of RC T-beams using mechanically Anchored Unbonded Dry Carbon Fiber Sheets. Journal of Performance of Constructed Facilities, v. 24, n. 1, p. 31-39, 2010. DOI: https://doi.org/10.1061/(ASCE)CF.1943-5509.0000067.

GODAT, A.; HAMMAD, F.; CHAALLAL, O. State-of-the-art review of anchored FRP shear-strengthened RC beams: A study of influencing factors. Composite Structures, v. 254, p. 1-19, Dec. 2020. DOI: https://doi.org/10.1016/j.compstruct.2020.112767.

GRACE, N. F.; SAYED, G. A.; SOLIMAN, A. K.; SALEH, K. R. Strengthening reinforced concrete beams using fiber reinforced polymer (FRP) laminates. ACI Structural Journal, v. 96, n. 5, p. 865-875, Jan. 1999. Disponível em: https://www.researchgate.net/publication/242550596_Strengthening_Reinforced_Concrete_Beams_Using_Fiber_Reinforced_Polymer_FRP_Laminates. Acesso em: 10 jan. 2021.

IBRAHIM, M.; WAKJIRA, T.; EBEAD, U. Shear strengthening of reinforced concrete deep beams using near-surface mounted hybrid carbon/glass fibre reinforced polymer strips. Engineering Structures, v. 210, p. 1-16, May. 2020. DOI: https://doi.org/10.1016/j.engstruct.2020.110412.

JALALI, M.; SHARBATDAR, M. K.; CHEN, J.-F.; ALAEE, F. J. Shear strengthening of RC beams using innovative manually made NSM FRP bars. Construction and Building Materials, v. 36, p. 990-1000, Nov. 2012. DOI: https://doi.org/10.1016/j.conbuildmat.2012.06.068.

JUVANDES, L. F. P. Reforço e Reabilitação de Estruturas de Betão Usando Materiais Compósitos de "CFRP". 1999. 396 f. Tese (Doutorado em Engenharia Civil) – Faculdade de Engenharia, Universidade do Porto, Porto, Portugal, 1999. Disponível em: https://docplayer.com.br/61317960-Reforco-e-reabilitacao-de-estruturas-de-betao-usando-materiais-compositos-de-cfrp.html. Acesso em: 11 nov. 2020.

KARZAD, A. S.; AL TOUBAT, S.; MAALEJ, M.; ESTEPHANE, P. Repair of reinforced concrete beams using carbon fiber reinforced polymer. MATEC Web of Conferences, v. 120, p. 1-10, Sept. 2017. DOI: https://doi.org/10.1051/matecconf/201712001008.

KARZAD, A. S.; LEBLOUBA, M.; AL TOUBAT, S.; MAALEJ, M. Repair and strengthening of shear-deficient reinforced concrete beams using Carbon Fiber Reinforced Polymer. Composite Structures, v. 223, p. 1-10, Sept, 2019. DOI: https://doi.org/10.1016/j.compstruct.2019.110963.

KHALIFA, A.; ALKHRDAJI, T.; NANNI, A.; LANSBURG, S. Anchorage of surface mounted FRP reinforcement. Concrete International: Design and Construction, v. 21, n. 10, p. 49-54, 1999. Disponível em: https://pdfs.semanticscholar.org/c720/76e8e8047f6bfb541e1dd3aa65be9915c5eb.pdf. Acesso em: 12 jan. 2021.

KHALIFA, A.; BELARBI, A.; NANNI, A. Shear performance of RC members strengthened with externally bonded FRP wraps. In: WORLD CONFERENCE ON EARTHQUAKE, 12., 2000, Auckland, New Zealand, Proceedings (…). Upper Hutt, NZ: New Zealand Society for Earthquake Engineering, 2000. Dispoível em: https://www.iitk.ac.in/nicee/wcee/article/0350.pdf. Acesso em: 12 dez. 2020.

KHALIFA, A.; NANNI, A. Improving shear capacity of existing RC T-section beams using CFRP composites. Cement and Concrete Composites, v. 22, n. 3, p. 165-174, 2000. DOI: https://doi.org/10.1016/S0958-9465(99)00051-7.

KHALIFA, A.; NANNI, A. Rehabilitation of rectangular simply supported RC beams with shear deficiencies using FRP composites. Construction and Building Materials, v. 16, n. 3, p. 135-146, Abr. 2002. DOI: https://doi.org/10.1016/S0950-0618(02)00002-8.

KIM, I. S. Use of CFRP to provide continuity in existing reinforced concrete members subjected to extreme loads. 2008. 478 p. Thesis (Doctorate) – Faculty of the Graduate School, University of Texas at Austin, Austin, 2008. Disponível em: https://repositories.lib.utexas.edu/handle/2152/17915. Accesso em: 5 nov. 2020.

KIM, Y.; QUINN, K.; SATROM, N.; GARCIA, J.; SUN, W.; GHANNOUM, W. W.; JIRSA, J. O. Shear strengthening of reinforced and prestressed concrete beams using Carbon Fiber Reinforced Polymer (CFRP) sheets and anchors. Technical Report n° FHWA/TX-1 2/0-6306-1. Texas: Texas Department of Transportation and the Federal Highway Administration, 2011. Disponível em: https://ctr.utexas.edu/wp-content/uploads/pubs/0_6306_1.pdf. Acesso em: 25 nov. 2020.

KOUTAS, L.; TRIANTAFILLOU, T. Use of anchors in shear strengthening of reinforced concrete T-beams with FRP. Journal of Composites for Construction, v. 17, n. 1, p. 101-107, June 2013. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000316.

LEE, H. K.; CHEONG, S. H.; HA, S. K.; LEE, C. G. Behavior and performance of RC T-section deep beams externally strengthened in shear with CFRP sheets. Composite Structures, v. 93, n. 2, p. 911-922, June 2011. DOI: https://doi.org/10.1016/j.compstruct.2010.07.002.

LI, W.; HUANG, Z.; HUANG, Z.; YANG, X. Shear behavior of RC beams with corroded stirrups strengthened using FRP laminates: effect of the shear span-to-depth ratio. Journal of Composites for Construction, v. 24, n. 4, Aug. 2020. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0001042.

LI, W.; LEUNG, C. K. Y. Shear span-depth ratio effect on behavior of RC beam shear strengthened with full-wrapping FRP strip. Journal of Composites for Construction, v. 20, n. 3, p. 1-14, June 2016. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000627.

MACHADO, A. P.; MACHADO, B. A. Reforço de estruturas de concreto armado com sistemas compostos FRP: Teoria e Prática. 1. ed. São Paulo: PINI, 2015. 517 p.

MANO, E. B. Polímeros como Materiais de Engenharia. 2. ed. São Paulo: Edgard Blücher, 2000. 197 p.

MANOS, G. C.; KATAKALOS, K.; KOURTIDES, V. Construction structure with strengthening device and method. European Patent Office. WO2011073696 (A1). 23 June. 2011. Disponível em: https://patents.google.com/patent/US20120255251A1/en. Acesso em: 5 jan. 2021.

MANOS, G. C.; THEOFANOUS, M.; KATAKALOS, K. Numerical simulation of the shear behaviour of reinforced concrete rectangular beam specimens with or without FRP-strip shear reinforcement. Advances in Engineering Software, v. 67, p. 47-56, Jan. 2014. DOI: https://doi.org/10.1016/j.advengsoft.2013.08.001.

MATTHYS, S. Structural behaviour and design of concrete members strengthened with externally bonded FRP reinforcement. 2000. 367 p. Thesis (Doctorade in Applied Sciences) – Faculty of Engineering, Ghent University, Ghent, Belgium, 2000. Disponível em: https://biblio.ugent.be/publication/471000/file/1873748. Acesso em: 28 jan. 2021.

MEHTA, K. P.; MONTEIRO, P. Concreto: Estrutura, Propriedades e Materiais. São Paulo: PINI, 1994. 573 p.

MEIER, U. Repair using advanced composites. IABSE reports. v. 999, p. 113-124, Sept. 1997. DOI: http://doi.org/10.5169/seals-955.

MENON, V. A. Estudo experimental de sistemas de reforço ao cisalhamento em vigas de concreto armado utilizando-se polímero reforçado com fibras de carbono (PRFC). 2008. 327 f. Tese (Doutorado em Engenharia de Estruturas) – Departamento de Engenharia Civil, Universidade Federal de Santa Catarina, Florianópolis, 2008. Disponível em: https://repositorio.ufsc.br/xmlui/handle/123456789/91783. Acesso em: 2 nov. 2020.

MICELLI, F.; ANNAIAH, R. H.; NANNI, A. Strengthening of short shear span reinforced concrete T joists with Fiber-Reinforced Plasic Composites. Journal of Composites for Construction, v. 6, n. 4, p. 264-271, Nov. 2002. DOI: https://doi.org/10.1061/(ASCE)1090-0268(2002)6:4(264).

MOFIDI, A.; CHAALLAL, O.; CHENG, L.; SHAO, Y. Investigation of Near Surface-Mounted Method for shear rehabilitation of reinforced concrete beams using Fiber Reinforced-Polymer Composites. Journal of Composites for Construction, v. 20, n. 2, p. 1-14, Apr. 2016. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000612.

MOHAMED ALI, M. S.; OEHLERS, D. J.; SERACINO, R. Vertical shear interaction model between external FRP transverse plates and internal steel stirrups. Engineering Structures, v. 28, n. 3, p. 381-389, Feb. 2006. DOI: https://doi.org/10.1016/j.engstruct.2005.08.010.

NORRIS, T.; SAADATMANESH, H.; EHSANI, M. R. Shear and flexural strengthening of R/C beams with Carbon Fiber sheets. Journal of Structural Engineering, v. 123, n. 7, p. 903-911, July 1997. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(903).

PELLEGRINO, C.; MODENA, C. Fiber Reinforced Polymer shear strengthening of reinforced concrete beams with transverse steel reinforcement. Journal of Composites for Construction, v. 6, n. 2, p. 104-111, May 2002. DOI: https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(104).

PELLEGRINO, C.; MODENA, C. Fiber-Reinforced Polymer shear strengthening of reinforced concrete beams: experimental study and analytical modeling. ACI Structural Journal, v. 103, n. 5, p. 720-728, Sept. 2006. DOI: https://doi.org/10.14359/16924.

PELLEGRINO, C.; MODENA, C. An experimentally based analytical model for the shear capacity of FRP-strengthened reinforced concrete beams. Mechanics of Composite Materials, v. 44, n. 3, p. 231-245, May 2008. DOI: https://doi.org/10.1007/s11029-008-9016-y.

PLEVRIS, N.; TRIANTAFILLOU, T. C. Time-dependent behavior of RC members strengthened with FRP laminates. Journal of Structural Engineering, v. 120, n. 3, p. 1016-1042, Mar. 1994. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1994)120:3(1016).

QUINN, K. T. Shear strengthening of reinforced concrete beams with carbon fiber reinforced polymer (CFRP) and improved anchor details. 2009. 298 p. Thesis (Master of Science in Engineering) – Faculty of the Graduate School, The University of Texas at Austin, Austin, 2009. Disponível em: https://repositories.lib.utexas.edu/handle/2152/ETD-UT-2009-12-508. Acesso em: 1 fev. 2021.

ROUSAKIS, T. Retrofitting and strengthening of contemporary structures: materials used. Encyclopedia of Earthquake Engineering, p. 1-15, July 2014. DOI: https://doi.org/10.1007/978-3-642-36197-5_303-1.

SARIBIYIK, A.; ABODAN, B.; BALCI, M. T. Experimental study on shear strengthening of RC beams with basalt FRP strips using different wrapping methods. Engineering Science and Technology, an International Journal, v. 24, n. 3, p. 192-204, 2020. DOI: https://doi.org/10.1016/j.jestch.2020.06.003.

TANARSLAN, H. M.; ERTUTAR, Y.; ALTIN, S. The effects of CFRP strips for improving shear capacity of RC beams. Journal of Reinforced Plastics and Composites, v. 27, n. 12, p. 1287-1308, 2008. DOI: https://doi.org/10.1177/0731684407087370.

TENG, J. G.; CHEN, J. F.; SMITH, S. T.; LAM, L. FRP strengthened RC structures. 1. ed. York, PA, USA: John Wiley & Sons, 2002. 266 p.

TRIANTAFILLOU, T. C. Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites. ACI Structural Journal, v. 95, n. 2, p. 107-115, Mar. 1998. Disponível em: https://www.researchgate.net/publication/247509718_Shear_Strengthening_Of_Reinforced_Concrete_Beams_Using_Epoxy-Bonded_FRP_Composites. Acesso em: 20 nov. 2021.

YU, F.; GUO, S.; WANG, S.; FANG, Y. Experimental study on high pre-cracked RC beams shear-strengthened with CFRP strips. Composite Structures, v. 225, 111163, 2019. DOI: https://doi.org/10.1016/j.compstruct.2019.111163.

Downloads

Publicado

2022-09-30

Edição

Seção

Engenharias I - Engenharia Civil - Construção Civil