- Submissão
- Submissão online
- Diretrizes para Autores
- Declaração de Direito Autoral
- Política de Privacidade
- Sobre este sistema de publicação
- Sobre
- Foco e Escopo
- Equipe Editorial
- História da Revista Principia
- Normas de homogeneidade
- Comitê de ética
- Política de ética para autores, Conselho Editorial e avaliadores
- Política de retirada de artigos
- Perguntas e respostas frequentes
- Equipe de apoio da Revista Principia
- Conflito de interesses
- Plano de Desenvolvimento Editorial da Revista Principia
- Princípios DEIA (Diversidade, Equidade, Inclusão e Acessibilidade)
- Normas para números especiais na Revista Principia
- Princípios FAIR
- Curso de Escrita Científica - ACS - Prof. Osvaldo
- Sites e manuais sobre boas práticas científicas
Cônicas não degeneradas: dedução das equações geral e polar
Resumo
O estudo das cônicas tem início basicamente no ensino médio como geometria analítica e segue no ensino superior com o estudo das cônicas. Em geral esse assunto é encontrado dentro de capítulos de livros; poucos são os livros que abordam as cônicas com devida profundidade. As equações polares parecem ser as mais negligenciadas, pois alguns textos não abordam tais equações, outros apenas trazem a equação por excentricidade sem apresentar suas deduções. Observada esta lacuna, questionamos a necessidade de produzir um único material que contenha as equações polares das cônicas não degeneradas. Para isto, foi feita uma ampla pesquisa bibliográfica nas bases acadêmicas de dados e reunidas todas as equações das cônicas encontradas, em particular das cônicas não degeneradas. Aqui temos como objetivo apresentar a definição geral de cônica que nos conduz à equação geral das cônicas e às equações polares das cônicas não degeneradas (Parábola, Elipse e Hipérbole) de duas formas: via excentricidade e por substituição direta das coordenadas cartesianas por polares (não encontrada na literatura pesquisada). Ao longo deste trabalho mostramos que é possível desenvolver detalhadamente todas as equações polares das cônicas não degeneradas em relação à excentricidade, mas também por substituição direta.
Palavras-chave
Cônicas; Equações Polares; Parábola; Hipérbole; Elipse; Circunferência
Texto completo:
Referências
CONTADOR, P. R. M. Matemática, uma breve história. 5. ed. São Paulo: Livraria da Física, v. I, 2012.
EVES, Howard. Introdução à história da matemática. São Paulo: Editora da UNICAMP, 2004.
GERHARDT, Tatiana Engel; SILVEIRA, Denise Tolfo (org.). Métodos de Pesquisa. 1. ed. Porto Alegre: Editora da UFRGS, 2009.
IEZZI, Gelson. Fundamentos de Matemática elementar: Geometria Analítica. 6. ed. São Paulo: Editora Saraiva, v. 7, 2019.
LAGO, Danielle Michaelsen. Um estudo das cônicas [manuscrito]. 2017. Dissertação (Mestrado em Matemática) – Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, 2017.
LOPES, Juracélio Ferreira. Cônicas e Aplicações. 2011. Dissertação (Mestrado em Matemática) – Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, 2011.
MONTEIRO, Rubens Marinho. Resgate do teorema de Dandelin no estudo de cônicas com o Geogebra. 2014. Dissertação (Mestrado em Matemática) – Centro de Ciências Exatas, Universidade Federal do Espírito Santo. Vitória, 2014.
MUNEM, Mustafa A.; FOULIS, David J. Cálculo. Tradução André Lima Cordeiro et al. Rio de Janeiro: LTC, v. 1, 2015. ISBN: 9788521610540.
NETO, Antônio Gomes Barbosa. Um estudo sobre as cônicas e algumas aplicações [manuscrito]. 2017. Trabalho de Conclusão de Curso (Graduação em Matemática) - Centro de Ciências e Tecnologias, Universidade Estadual da Paraíba. Campina Grande, 2017.
PEREIRA, Robson Edvaldo da Silva. Álgebra Linear: secções cônicas e aplicações. 2017. Dissertação (Mestrado em Matemática) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo..São Carlos, 2017.
PERES, Eduardo dos Santos. Classificação de Cônicas e Quádricas em Função da Equação Algébrica. 2014. Dissertação (Mestrado em Matemática) – Universidade Federal do Estado do Rio de Janeiro. Rio de Janeiro, 2014.
REIS, Genésio Limados; SILVA, Valdir Vilmar da. Geometria Analítica. 2. ed. Rio de Janeiro: LTC, 2013.
ROSI, Paolino Roberto. Espelhos e seções cônicas 2017. Dissertação (Mestrado em Matemática) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. São Carlos, 2017.
SOUSA, Bárbara Kaline de. Cônicas não degeneradas: dedução de equações. Cajazeiras, 2020. 86 f.: il.
SOUZA, Núbia dos Santos de. Curvas Cônicas: do espaço ao plano da abstração ao registro visual numa perspectiva dinâmica. constituiu a Comissão de estudo e elaboração de proposta de programa de pesquisa e autoavaliação da pós-graduação lato sensu do IFPB 2016. Dissertação (Mestrado em Educação Matemática e Tecnológica) – Centro de Educação, Universidade Federal de Pernambuco. Recife, 2016.
STEINBRUCH, Alfredo; WINTERLE, Paulo. Geometria Analítica. 2. ed. São Paulo: Pearson Makron Books, 1987.
VENTURI, Jacir J. Cônicas e Quádricas. 5. ed. Curitiba, 2003.
WINTERLE, Paulo. Vetores e Geometria Analítica. São Paulo: Pearson Makron Books, 2000.
Visitas a este artigo: 1581
Total de downloads do artigo: 2388