Revisão Literária sobre Previsão de Trajetórias

Francisco Dantas Nobre Neto

ORCID iD Instituto Federal de Educação, Ciência e Tecnologia da Paraíba (IFPB) Brasil

Cláudio de Souza Baptista

ORCID iD Universidade Federal de Campina Grande (UFCG) Brasil

Claudio Elizio Calazans Campelo

ORCID iD Universidade Federal de Campina Grande (UFCG) Brasil

Niara Fernandes Barbosa Formiga Dantas

ORCID iD Instituto Federal de Educação, Ciência e Tecnologia da Paraíba (IFPB) Brasil

Resumo

Em virtude da difusão de smartphones equipados com recursos GPS, a possibilidade real de rastrear objetos tem impulsionado estudos em diferentes ramos de pesquisa, incluindo os da área de previsão de trajetórias. Entre várias definições de previsão de trajetória, uma definição coerente é a de prever um destino e, em alguns casos, a rota até o destino, dada a ciência de um conjunto de informações, como o local da partida e o trecho já percorrido. Com relação à utilidade, um sistema de previsão de trajetórias pode predizer o restante de trajetória em curso e alertar o usuário a respeito de um congestionamento, sugerindo um desvio. Este artigo realiza uma revisão literária da temática de previsão de trajetórias, apresentando os conceitos básicos e os desafios importantes que precisam ser considerados.

Palavras-chave


Trajetória; Previsão de trajetória; Reconhecimento de padrões; Revisão literária


Texto completo:

Referências


BREIMAN, L. Random Forests. Machine Learning, v. 45, n. 1, p. 5-32, 2001.

BRUSH, A.; KRUMM, J.; SCOTT, J. Exploring End User Preferences for Location Obfuscation, Location-Based Services, and the Value of Location. UbiComp'10, p. 95-104, 2010.

BURBEY, I.; MARTIN, T. L. Predicting Future Locations Using Prediction-by-Partial-Match. In: Proceedings of the first ACM international Workshop on Mobile Entity Localization and Tracking in GPS-less Environments, 2008. p. 1-6.

CORTES, C.; VAPNIK, V. Support-Vector Networks. Machine Learning, p. 273-297, 1995.

FIGUEIREDO, F. et al. TribeFlow: Mining & Predicting User Trajectories. In: Proceedings of the 25th International Conference on World Wide Web, Montreal, abr. 2016. p. 695-706.

FROEHLICH, J.; KRUMM, J. Route Prediction from Trip Observations. Society of Automotive Engineers (SAE), abr. 2008.

HERDER, E.; SIEHNDEL, P.; KAWASE, R. Predicting User Locations and Trajectories. In: 22nd International Conference, UMAP 2014. Aalborg, Denmark: Springer. 2014. p. 86-97.

HUANG, C. M.; YING, J. J. C.; TSENG, V. S. Mining Users' Behaviors and Environments for Semantic Place Prediction. Mobile Data Challenge by Nokia Workshop. Newcastle, 2012. p. 6.

HUTTENLOCHER, D. P.; RUCKLIDGE, W. J. A Multi-Resolution Technique for Comparing Images using the Hausdorff Distance. Cornell University. Ithaca, p. 23, 1992.

KRUMM, J. A Markov Model for Driver Turn Prediction. Society of Automotive Engineers (SAE), abr. 2008.

LAURILA, J. K. et al. The Mobile Data Challenge: Big Data for Mobile Computing Research. Proc. Mobile Data Challenge Workshop (MDC) In: conjunction with Pervasive. Newcastle, 2012.

LEE, S. et al. Next Place Prediction Based on Spatiotemporal Pattern Mining of Mobile Device Logs. Sensors, p.1-19, jan. 2016.

LEI, P.; LI, S.; PENG, W. QS-STT: QuadSection clustering and spatial-temporal trajectory model for location prediction. Distributed and Parallel Databases, p. 231-258, 2013.

LIU, X.; LIU, Y.; LI, X. Exploring the context of locations for personalized location recommendations. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, p. 1188-1194, jul. 2016.

LUNG, H. Y.; CHUNG, C. H.; DAI, B. R. Predicting Locations of Mobile Users Based on Behavior Semantic Mining. Trends and Applications in Knowledge Discovery and Data Mining, v. 8643, p. 168-180, 2014.

MONREALE, A. et al. WhereNext: a Location Predictor on Trajectory Pattern Mining. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD). Paris: ACM. p. 637-646. 2009.

MORZY, M. Prediction of moving object location based on frequent trajectories. ISCIS, p. 583-592, 2006.

NADEMBEGA, A.; TALEB, T.; HAFID, A. A Destination Prediction Model based on historical data, contextual knowledge and spatial conceptual maps. In: Communications (ICC), 2012 IEEE International Conference on IEEE, p. 1416-1420, jun. 2012.

NATEKIN, A.; KNOLL, A. Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 2013. Disponivel em: . Acesso em: fev. 2016.

NOBRE NETO, F. D.; BAPTISTA, C. S.; CAMPELO, C. E. C. A user-personalized model for real time destination and route prediction. In: Proceedings of the 19th IEEE International Conference on Intelligent Transportation System (ITSC). Rio de Janeiro, p. 401-407. 2016.

PENG, C.Y. J.; LEE, K. L.; INGERSOLL, G. M. An Introduction to Logistic Regression Analysis and Reporting. The Journal of Education Research, v. 96, n.1, p. 3-14, 2002.

PLATT, J. C. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. MIT Press. , p. 21. 1998. (MSR-TR-98-14).

QUDDUS, M. A.; NOLAND, R. B. A high accuracy fuzzy logic based map matching algorithm for road transport. Journal of Intelligent Transportation Systems, v. 10, n. 3, p. 103-115, 2006.

QUILAN, J. R. C4.5: Programs for Machine Learning. San Francisco: Morgan Kaufmann, 1993.

ROCHA, C. L. et al. TPRED: a Spatio-Temporal Location Predictor Framework. In: Proceedings of the 20th International Database Engineering & Applications (IDEAS). Montreal: ACM. p. 34-42, 2016.

RON, D.; SINGER, Y.; TISHBY, N. The power of amnesia: Learning probabilistic automata with variable memory length. Machine Learning, p. 117-149, 1996.

SPACCAPIETRA, S. et al. A conceptual view on trajectories. Data & Knowledge Engineering, v. 65, n. 1, p. 126-146, 2008.

SIMMONS, R. et al. Learning to Predict Driver Route and Destination Intent. In: Intelligent Transportation Systems Conference, p.127-132, 2006.

TANAKA, K. et al. A Destination Prediction Method Using Driving Contexts and Trajectory for Car Navigation Systems. In: Proceedings of the 2009 ACM symposium on Applied Computing - SAC '09. p.190-195, 2009.

TIWIRI, V. S.; ARYA, A.; CHATUVERDI, S. Route prediction using trip observations and map matching. In: IEEE 3rd International Advance Computing Conference (IACC), p. 583-587, feb. 2013.

TRASARTI, R. et al. MyWay: Location prediction via mobility profilin. Information Systems, v. 64, p. 1-18, nov. 2015.

XUE, A. Y. et al. Destination Prediction by Sub-Trajectory Synthesis and Privacy Protection Against Such Prediction. In: Data Engineering (ICDE), 2013 IEEE 29th International Conference on. IEEE, 2013, p. 254-265.

YING, J. J. C.; LEE, W. C.; WENG, T. C. Semantic Trajectory Mining for Location Prediction. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2011. p. 34-43.

YING, J. C. et al. Semantic trajectory-based high utility item recommendation system. Expert Systems with Applications, v. 41, n. 10, p. 4762-4775, 2014.

ZHENG, Y. et al. Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of International conference on World Wild Web (WWW 2009), 2009. p. 791-800.

ZHU, Y. et al. Feature engineering for semantic place prediction. Pervasive and Mobile Computing, Amsterdam, p. 772-783, dec. 2013.


DOI: http://dx.doi.org/10.18265/1517-03062015v1n37p116-127

O arquivo PDF selecionado deve ser carregado no navegador caso tenha instalado um plugin de leitura de arquivos PDF (por exemplo, uma versão atual do Adobe Acrobat Reader).

Como alternativa, pode-se baixar o arquivo PDF para o computador, de onde poderá abrí-lo com o leitor PDF de sua preferência. Para baixar o PDF, clique no link abaixo.

Caso deseje mais informações sobre como imprimir, salvar e trabalhar com PDFs, a Highwire Press oferece uma página de Perguntas Frequentes sobre PDFs bastante útil.

Visitas a este artigo: 2467

Total de downloads do artigo: 1871