UTILIZAÇÃO DE UM ÚNICO CORPO DE PROVA PARA DETERMINAÇÃO DA CURVA J-R DE DOIS AÇOS ARBL-ALTA RESISTÊNCIA E BAIXA LIGA

Neilor Cesar dos Santos
Coordenação de Mecânica, Escola Técnica Federal da Paraíba - COMEC/DDE/ETFPB
Av. Primeiro de Maio, 720 - Jaguaribe - CEP 58059 900, João Pessoa - PB - Brasil
E-mail: neilor@jpa.etfpb.br.

Marco Antonio dos Santos
Departamento de Engenharia Mecânica, DEM/CCT/UFPB-Campus II
Caixa Postal 10023 - Campina Grande - PB - Brasil.

Abstract

Herrera and Landes normalization method (Key Curve) to determine the J-R curve was studied. Its applicability was analysed for two HSLA steels: a controlled rolled API 5L-X70 pipelines steel plate, produced with inclusions morphology control, and an ASTM A516-GR65 pressure vessels steel plate. The tests were made at room temperature and three point bend specimens were used. The normalization curve (Key Curve) was analytically determined and the points fit was executed by a power law. The Ramberg-Osgood’s functional form relationship was used. The results were confronted with other obtained by the multiple specimens test method. Such procedure brought in to evidence that Herrera and Landes normalization method is suitable to determine J-R curve for the studied steels.

Key-words: J Integral / J-R Curve/ Normalization Method/ Single Specimen Method/ Key Curve.

1. Introdução

A Integral J tem sido aceita como um dos principais parâmetros para caracterizar o comportamento à fratura de materiais que se comportam no regime elasto-plástico Rice (1968). Originalmente o método dos múltiplos corpos de prova sugerido por Begley e Landes (1972) foi usado para avaliar a Integral J. Entretanto este método tem algumas desvantagens, tais como: necessidade de vários corpos de prova que consomem muito tempo e material, dispersão nos resultados e a não correção dos valores da Integral J com o crescimento de trinca, Steenkamp (1986).

lei de potência, utilizando a forma funcional da equação de Ramberg-Osgood. Neste caso, há a necessidade de determinar duas constantes, avaliadas em dois pontos de calibração, nos quais a carga, o deslocamento aplicado e o comprimento resultante de trinca têm que ser simultaneamente conhecidos.

2. Materiais e Métodos

2.1. Materiais

Os materiais utilizados foram dois aços do tipo ARBL (Alta Resistência e Baixa Liga) um que atende as especificações da classe API 5L-X70 e o outro que atende as especificações da classe ASTM A516-GR65. A composição química dos dois aços pode ser observada na Tabela 1.

Tabela 1 - Composição química dos aços (porcentagem em peso).

<table>
<thead>
<tr>
<th>AÇO</th>
<th>%C</th>
<th>%Mn</th>
<th>%Si</th>
<th>%P</th>
<th>%S</th>
<th>%Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>0.110</td>
<td>1.510</td>
<td>0.329</td>
<td>0.016</td>
<td>0.002</td>
<td>0.037</td>
</tr>
<tr>
<td>ASTM</td>
<td>0.250</td>
<td>0.920</td>
<td>0.200</td>
<td>0.002</td>
<td>0.006</td>
<td>-</td>
</tr>
<tr>
<td>AÇO</td>
<td>%Cu</td>
<td>%Ni</td>
<td>%Cr</td>
<td>%Nb</td>
<td>%V</td>
<td>%Mo</td>
</tr>
<tr>
<td>API</td>
<td><0.01</td>
<td>0.016</td>
<td>0.155</td>
<td>0.044</td>
<td>0.064</td>
<td><0.01</td>
</tr>
<tr>
<td>ASTM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Na Figuras 1a e 1b pode-se observar a distribuição de inclusões nos materiais estudados.

A microestrutura dos dois aços estudados é constituída de bandas de ferrita e perlitita, Figura 2a e 2b.

Figura 1 - Distribuição de inclusões: (a) - Morfologia das inclusões no aço da classe API 5L-X70; (b) - Morfologia das inclusões no aço da classe ASTM A516-GR65. Sem ataque. Aumento: 100x.

Figura 2 - Microestrutura dos aços estudados. (a) - Aço de laminação controlada usado na fabricação de tubulações (Classe API 5L-X70); (b) - Aço usado na fabricação de vasos de pressão (Classe ASTM A516-GR65). Ataque: Nital 2%. Aumento: 100x.

As propriedades mecânicas convencionais estão listadas na Tabela 2. Os corpos de prova de tração foram dimensionados segundo a norma ASTM E8-81 (1981) com diâmetro nominal igual a 6,25 mm e comprimento útil de 37,0 mm. Os ensaios de tração e de Integral J foram realizados em uma máquina servo-hidráulica (MTS 810), sob controle de deslocamento, com velocidade de deslocamento da mesa da máquina de ensaio igual a 3,33x10⁻³ mm/s.

Tabela 2 - Propriedades mecânicas dos aços

<table>
<thead>
<tr>
<th>TIPO</th>
<th>σy (MPa)</th>
<th>σt (MPa)</th>
<th>ε (%)</th>
<th>Ψ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>API 5L-X70</td>
<td>522,93</td>
<td>616,21</td>
<td>28,15</td>
<td>72,80</td>
</tr>
<tr>
<td>ASTM A516-GR65</td>
<td>335,73</td>
<td>507,47</td>
<td>25,19</td>
<td>35,57</td>
</tr>
</tbody>
</table>

* - ε em 37,0 mm.
Todos os ensaios foram realizados sob flexão a três pontos e a velocidade de deslocamento do travessão da máquina de ensaios foi de \(3,33 \times 10^3 \) mm/s (0,2 mm/min), isto equivale no ensaio de Integral J, durante a fase inicial de deformação elástica, a uma taxa de acréscimo no Fator de Intensidade de Tensão (\(K_i \)) de 0,32 MPa m\(^{1/2}\)s\(^{-1}\).

2.2 Métodos

2.2.1 - Ensaio de Integral J - corpos de prova, tipo e dimensões.

Os corpos de prova para o ensaio de Integral J foram posicionados segundo a direcção T-L, ASTM E616-81 (1981), em relação a direção de laminação. O corpo de prova usado foi o de seção retangular, dimensionado segundo a norma ASTM E813-81 (1981), com espessura nominal de B=15,0 mm e altura W=30,0 mm, Figura 3.

![Figura 3 - Corpo de prova utilizado nos ensaios realizados.](image)

O \(K_{\text{lim}} \) aplicado durante a abertura da pré-trinca de fadiga nos corpos de prova foi de 18 MPa m\(^{1/2}\).

Os corpos de prova após os ensaios foram mantidos durante 1500 s (25 min) num forno de resistência elétrica à temperatura de 693 K (420 °C) e, logo após, quebrados à temperatura de nitrogênio líquido. Isto permitiu que tanto a pré-trinca de fadiga como o \(\Delta_0 \) propagado durante o ensaio de Integral J fosse facilmente diferenciado da fratura sob nitrogênio líquido. A pré-trinca de fadiga e a propagação de trinca foram medidas com o auxílio de um projetor de perfil Schunk com aumento de 20x e precisão na casa centesimal.

2.2.2 Curva de resistência J-R pelo método de múltiplos corpos de prova de Landes e Begley (1974)

\[
J = \frac{2A}{Bb}
\] \hspace{1cm} (1)

onde:
\(A \) é a área sob o gráfico da curva \(P \times \Delta \) em unidades de energia;
\(B \) é a espessura do corpo de prova (mm) e
\(b = (W-a) \) é o ligamento na ponta da trinca do corpo de prova (mm).

Para cada ensaio, após o registro da curva carga \(P \) versus deslocamento do ponto de aplicação de carga \(\Delta \), a área \(A \) sob a curva \(P \times \Delta \) foi determinada com auxílio de um planímetro e convertida em unidades de energia. Logo após as correções em função da rigidez do sistema e das indentações do corpo de prova nos pontos de apoio e de carregamento, Buzzard e Fisher (1978), o valor encontrado em unidades de energia foi substituído na Equação 1 para a determinação da Integral J.

Os pares de pontos \(J \times \Delta \) assim determinados, foram usados para levantar a curva de resistência J-R.

2.2.3 Curva de resistência J-R pelo método de um único corpo de prova-método de Herrera e Landes (1988)

A idéia de usar as propriedades de fluxo para determinar o comprimento de trinca foi primeiramente sugerida por Ernst et al. (1979). Este método forma a base para o método utilizado por Herrera e Landes (1988), o qual necessita da determinação da curva de calibragem do corpo de prova. A curva de calibragem dá a relação entre a carga \(P \), deslocamento plástico \(\Delta_{pl} \) e comprimento de trinca a.
A forma funcional da curva de calibração é dada pela Equação 2.

\[
\frac{\Delta_{pl}}{W} = \beta P_N^n
\]

(2)

onde n e \(\beta \) são constantes do material.

A curva de calibração é obtida a partir do registro gráfico \(P_x \Delta \) do ensaio de integral \(J \).

Os valores de n e \(\beta \) são determinados a partir da curva de calibração na forma log-log (log \(P_N \) x log \(\Delta p/W \)). O valor de n é determinado a partir da inclinação desta curva e \(\beta \) é o valor da ordenada (log \(P_N \)) quando a abscissa é igual a zero (log \(\Delta p/W \) =0).

Escolhidos n e \(\beta \) determina-se o comprimento de trinca (a), através da Equação 3:

\[
\Delta_i = P_i C\left(\frac{a_i}{W}\right) + W \beta \frac{P_i W}{b_i^2 B_g(b_i/W)} J_i^n
\]

(3)

com

\[
C(a_i/W) = \frac{1}{E} \left(\frac{S}{W-a_i}\right)^2
\]

\[
[1.193 - 1.980(a_i/W) + 4.478(a_i/W)^2 - 4.443(a_i/W)^3 + 1.739(a_i/W)^4]
\]

(4)

Os valores de \(a_i \) podem ser obtidos a partir da Equação 3, de forma iterativa, tomando-se como ponto inicial para o valor de \(a_0 \), o valor de \(a_0 \) e incrementando-se ao valor de \(a_i \) um "contador" até o valor de \(\Delta_i \) ser obtido. Neste momento o correspondente valor de \(a_i \) é o valor do comprimento de trinca para o par de pontos (\(P_i, \Delta_i \)).

Após obtido o valor de \(a_i \), o valor da Integral \(J \) pode ser determinado por:

\[
J_i = J_{eli} + J_{pli}
\]

(5)

Com

\[
J_{pli} = \left(\frac{\eta_i}{b_i}\right) A_{i-1} J_i \left[1 - \left(\frac{\gamma_i}{b_i}(a_i - a_{i-1})\right)\right]
\]

(6)

\[
A_{i,j-1} = \frac{(P_i + P_{i-1})(\Delta_{pl,i} - \Delta_{pl,i-1})}{2}
\]

(7)

onde:

\[
\gamma = 1 \quad \text{e} \quad \eta = 2, \text{para corpos de prova sob flexão a três pontos.}
\]

Com

\[
J_{eli} = \frac{K_i^2(1 - \nu^2)}{E}
\]

(8)

\[
K_i = \frac{P_i f(a_i/W)}{BW^{1/2}}
\]

(9)

3. Resultados e Discussões

Nas Figuras 4 e 5, J-R(MCP) é a curva de resistência J-R obtida pelo método de múltiplos corpos de prova a partir da regressão linear dos pares de pontos de J x \(\Delta_i \), e B_S e B_i são as bandas de variação superior e inferior, obtidas pelo método de Druce (1981), da curva de resistência J-R (método de múltiplos corpos de prova).

As bandas de variação, B_S e B_i, foram colocadas nos gráficos das Figuras 4 e 5 com o objetivo de verificar-se o enquadramento das curvas de resistência J-R, obtidas pelo método de Herrera e Landes (1988) (método de um único corpo de prova), com relação a curva de resistência J-R obtida pelo método de Landes e Begley (1974) (método de múltiplos corpos de prova).
individuals apresentadas por cada um dos corpos de prova ensaiados.

Os corpos de prova CP 56, CP 123 e CP 171 não foram usados para levantar a curva de resistência J-R, método de múltiplos corpos de prova, por não se enquadrarem dentro das exigências da norma ASTM E813-81 (1981). Este fato explica o comportamento apresentado por estes corpos de prova com relação às bandas de variação Bₖ e Bᵢ, Figura 4.

Pelo método de Landes e Begley (1974) (método de múltiplos corpos de prova).

4. Conclusões

O método de Herrera e Landes (1988) apresentou uma determinada limitação quanto a aplicação, pois o mesmo necessita de dois pontos onde se conheça simultaneamente (P, Δ, a). Um deles pode ser facilmente identificado, como por exemplo, o ponto final de carregamento (Pₖ, Δᵢ, aᵢ), entretanto, a escolha do outro é muito subjetiva.

O formato da curva J-R está ligado principalmente ao formato da curva P x Δ dos corpos de prova. Na verdade, é a resposta de cada um deles ao carregamento aplicado (função das propriedades do material, geometria do corpo de prova e das demais condições de ensaio).
5. Bibliografia

BEGLEY, J. A. and LANDES, J. D. “The \(J \) Integral as a Fracture Criterion”,