SISTEMA DE AQUISIÇÃO DE DADOS PARA UM TRANSDUTOR DE FORÇA ISOMÉTRICO

Aléssio T. Barros, Sabiniano A. Rodrigues,
Márcio José P. de Farias, Lailson Carlos da Silva.
Grupo de Tecnologias Aplicadas à Medicina e à Saúde - GTAM
Leônidas Francisco de Lima Júnior
Núcleo de Produção de Software - NUPROSOFT
Escola Técnica Federal da Paraíba.
e-mail: aléssio@jpa.etfpb.br

RESUMO

Neste trabalho é apresentado o projeto de um sistema de aquisição de dados a partir de tecidos animais submetidos às condições isométricas. Através de transdutores específicos, juntamente com CI’s de precisão, é possível medir variações de tensões muito baixas, na faixa de miligramas, proporcionando maior exatidão na medida da quantidade de elementos químicos presentes nas soluções desenvolvidas.

Inicialmente o tecido animal é devidamente colocado junto com a substância, em um transdutor sensível à força externa, que irá variar sua resistência interna de acordo com a reação do músculo. Essa variação é transmitida até o circuito responsável pela amplificação e conversão analógico/digital, para que então, um software especificamente desenvolvido para decodificação do sinal recebido em pulsos elétricos, mostre o sinal digitalizado num plano ortogonal, de eixos peso em função do tempo, em um microcomputador compatível com o padrão IBM-PC.

1. Introdução

O sistema de aquisição e monitoração de dados obtidos a partir de um transdutor de força isométrico, subdivide-se em software e hardware, mostrado em FIG.1.

1.1. Hardware:
- Transdutor de Força Isométrico (Ugo Basile 7003/7004/7005);
- Módulo Amplificador (INA114 e CA324);
- Conversor A/D (analógico/digital);

1.2. Software
- Programa Aquisix

A obtenção de dados será feita pelo transdutor que identifica as variações da força externa e as converterá para variações elétricas, que serão transmitidas a um circuito integrado dedicado, o INA114, que serve de pré-amplificação para o sinal de entrada. Este CI necessita de uma tensão na faixa de ±0,5V, para ajuste de offset, que é conseguida através de um divisor de tensão e por dois CI’s reguladores; o REF02, utilizado para a alimentação de +5V e na regulação de offset do circuito, e o LM10CN, utilizado para obter a tensão de -5V usada para o ajuste de offset. Estes são alimentados por uma fonte simétrica de tensão ±12V, a
Após a pré-amplificação, feita pelo INA114, o sinal é amplificado por um CI apropriado, o CA324 (LM324) constituído de 04 amplificadores operacionais, e inserido em um conversor A/D, que utiliza um cartão de conversão de 16 canais e 12 bits, indo em seguida para o microcomputador onde será analisado pelo programa “Aquisix”. O circuito do estágio amplificador é mostrado em FIG.3.

2. O Transdutor de Força Isométrico

Este transdutor foi projetado para medições precisas de força, constituindo-se de, uma haste de fibra de carbono, ligada internamente à uma ponte de Wheatstone, composta de resistores e de dois elementos strain-gauges. É alimentado com uma tensão de +5V cedida pelo REF02.

A força exercida na haste do transdutor, é convertida para sinais elétricos proporcionais, através dos “strain-gauges”, devidamente conectados ao circuito da ponte de Wheatstone, FIG.4., acarretando as variações necessárias para a medição no circuito.
3. O Aquisix

O Aquisix é um software especialmente desenvolvido em linguagem Object Pascal (Delphi) para este projeto, sendo compatível com Windows 3.xx e posteriores. Nele o usuário encontrará um ambiente já conhecido, FIG.5, e poderá configurá-lo de acordo com suas necessidades. Este software converte o sinal digitalizado recebido em gráficos dinâmicos em função do tempo, exemplificado em FIG.6, além de informar as características do sinal, tem-se ainda a opção de gravar as informações em memória auxiliar ou registrar na saída da impressora.

4. Informes Técnicos

- STRAIN-GAUGES: são elementos que têm a capacidade de comprimir suas estruturas físicas, segundo a intensidade da força aplicada a eles, causando variações nos valores de seus valores ôhmicos.

CIFS DEDICADOS:
- REF02: CI de precisão cuja tensão de saída é de +5V.
 ⇒ Tensões típicas de entrada: 8V a 33V;

⇒ Tensão de saída: +5V ±0,1% max;
⇒ Ruído produzido: 10μVp-p max (de 0,1Hz para 10Hz);
⇒ Corrente fornecida: 1,4mA max;
⇒ Faixa de temperatura para funcionamento normal: de -40 °C a +85 °C;
⇒ Tensão de alimentação: 8V a 40V;
⇒ Proteção interna contra curto-circuito.

- INA114: amplificador operacional de instrumentação
 ⇒ Corrente quiescente: 3mA max;
 ⇒ Tensão de offset: 50μV max;
 ⇒ Corrente de entrada: 2nA max;
 ⇒ Proteção contra sobrevoltagem: ±40V;
 ⇒ Ganho de tensão: 34dB
 ⇒ Tensões típicas de entrada: ±2,25V a ±18V.

- LM10CN: CI de precisão cuja tensão de saída é de -10V.
 ⇒ Tensões típicas de entrada: 6,5V a 40V;
 ⇒ Tensão de saída: -10V ±0,1% max;
 ⇒ Corrente fornecida: 500 μA;
 ⇒ Faixa de temperatura para funcionamento: -55 °C a +150 °C;
 ⇒ Dissipação de potência internamente limitada;
 ⇒ Proteção interna contra curto-circuito.
FIG.5. Ambiente mostrado pelo Aquisix

FIG.6. Exemplo de Gráfico mostrado pelo Aquisix

- **CA324:** amplificador de baixa potência.
 - Tensões típicas: ±1.5V a ±16V;
 - Tensão mínima de offset: 2mV;
 - Corrente mínima de offset: 5nA;
 - Corrente de entrada: 50mA;
 - Potência máxima dissipada: 1130mW;
 - Faixa de temperatura para funcionamento normal: 0°C a +70°C;

- Ganho de tensão: 100dB;
- Banda passante: 1MHz

5. **Resultado e Conclusão**

Após a execução de vários testes utilizando o sistema de aquisição de dados, obteve-se resultados satisfatórios, com um
rendimento de 90% do esperado. No entanto, os níveis de ruído presentes no equipamento, levaram à medidas imprecisas, contudo em uma faixa tolerável, podendo ser atenuada.

Constatase-se que o sistema será de grande utilidade na área de pesquisas em tecnologias farmacêuticas, agilizando o desenvolvimento de novos medicamentos, os quais serão testados para posterior utilização em seres humanos.

6. Referências Bibliográficas
