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Resumo 
A expansão da Micro e Minigeração Distribuída (MMGD) no Brasil impõe o desafio do 
mascaramento da carga, fenômeno no qual a geração junto ao consumo oculta o comportamento real 
dos consumidores, alterando o perfil de demanda medido pelas distribuidoras. Após refutar a hipótese 
inicial de que o fenômeno degradava as previsões de carga do Operador Nacional do Sistema (ONS), a 
pesquisa foi redirecionada para o objetivo de desenvolver e validar uma ferramenta computacional, 
denominada DesagregaGD, para estimar a curva de carga real e quantificar o mascaramento. A 
metodologia baseou-se na geração de dados controlados por meio de simulações de fluxo de potência 
no software OpenDSS, modelando sistemas-teste do IEEE com e sem geração fotovoltaica. A partir 
desses dados, a ferramenta foi desenvolvida em JavaScript, aplicando a operação matemática 
fundamental: Carga Real = Carga Mascarada + Geração Distribuída. A validação foi estruturada em 
duas etapas para testar a robustez do método. Primeiramente, em sistemas-teste ideais, a ferramenta 
alcançou um Coeficiente de Determinação (R²) de 0,9958 e um erro médio percentual de 1,5%. Em 
seguida, a validação foi estendida a um estudo de caso complexo, utilizando um modelo de 
alimentador real da Neoenergia com alta penetração de GD. Mesmo neste cenário, a aplicação 
manteve a alta precisão, atingindo um R² de 0,9929 e um erro médio percentual de 0,74%, 
confirmando sua eficácia em condições práticas. Como principal contribuição, o estudo entrega a 
aplicação web DesagregaGD, de código aberto, gratuita e com registro de software, oferecendo uma 
solução validada para o planejamento, a operação e o monitoramento de redes com alta presença de 
GD, contribuindo para uma gestão mais segura e eficiente do sistema elétrico. 
Palavras-chave: ferramenta para computador; fluxo de potência; geração distribuída; mascaramento 
da carga; OpenDSS. 
 
DesagregaGD: a computational tool for load curve disaggregation in grids with distributed 

generation 
 
Abstract 
The expansion of Micro and Minigeneration Distributed Generation (MMGD) in Brazil imposes the 
challenge of load masking, a phenomenon in which generation at the point of consumption hides the 
real behavior of consumers, altering the demand profile measured by utilities. After refuting the initial 
hypothesis that the phenomenon degraded the load forecasts of the National System Operator (ONS), 
the research was redirected towards the objective of developing and validating a computational tool, 
named DesagregaGD, to estimate the real load curve and quantify load masking. The methodology 
was based on the generation of controlled data through power flow simulations in the OpenDSS 
software, modeling IEEE test systems with and without photovoltaic generation. From this data, the 
tool was developed in JavaScript, applying the fundamental mathematical operation: Real Load = 
Masked Load + Distributed Generation. The validation was structured in two stages to test the 
method's robustness. First, on ideal test systems, the tool achieved a Coefficient of Determination (R²) 
of 0.9958 and a mean percentage error of 1.5%. Next, the validation was extended to a complex case 
study, using a model of a real Neoenergia feeder with high DG penetration. Even in this scenario, the 
application maintained high accuracy, reaching an R² of 0.9929 and a mean percentage error of 
0.74%, confirming its effectiveness in practical conditions. As the main contribution, the study delivers 
the DesagregaGD web application, which is open-source, free, and has registered software, offering a 
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validated solution for the planning, operation, and monitoring of grids with a high presence of DG, 
contributing to a safer and more efficient management of the electrical system. 
Keywords: computer tool; distributed generation; load masking; OpenDSS; power flow. 
 
1 Introdução 

A transição energética global tem redefinido as bases dos sistemas elétricos de potência, 
catalisando uma mudança de paradigma na qual consumidores, antes considerados elementos passivos, 
emergem como agentes ativos. Este movimento é particularmente acentuado no Brasil, onde a Micro e 
Minigeração Distribuída (MMGD), impulsionada majoritariamente pela fonte solar fotovoltaica, 
experimenta um crescimento exponencial. Fomentado inicialmente pela Resolução Normativa nº 
482/2012 (ANEEL, 2012), este avanço foi consolidado pela Lei nº 14.300/2022, o marco legal do 
setor (Brasil, 2022), e regulamentado em detalhe pela Resolução Normativa nº 1.000/2021 (ANEEL, 
2021). Como resultado, a capacidade instalada saltou de 2,2 GW em 2019 para mais de 26 GW ao 
final de 2023, conforme apresentado na Figura 1 (EPE, 2025). Este cenário não é uma particularidade 
brasileira, mas um fenômeno global que impõe novos e complexos desafios operacionais às redes de 
distribuição. 

 
Figura 1 – Evolução da capacidade instalada de MMGD acumulada no Brasil 

 

Fonte: EPE (2025) 

 
O desafio central que motiva este trabalho reside no fenômeno conhecido como “mascaramento 

da carga” (load masking effect). A geração de energia no mesmo ponto de consumo altera 
fundamentalmente o perfil de demanda líquida que é efetivamente medido pela concessionária, 
ocultando o comportamento real dos consumidores. Essa perda de visibilidade é uma consequência 
direta da crescente geração “atrás do medidor” (behind-the-meter – BTM) e compromete a gestão 
segura e eficiente da rede elétrica (Erdener et al., 2022). A literatura recente demonstra que a alta 
penetração de geração fotovoltaica causa impactos técnicos severos, como sobretensões, sobrecargas 
em alimentadores e fluxos de potência reversos, que comprometem diretamente a qualidade e a 
estabilidade do fornecimento de energia (Razavi et al., 2019; Torres; Negreiros; Tiba, 2019; Uzum et 
al., 2021). Adicionalmente, o mascaramento degrada a acurácia dos modelos tradicionais de previsão 
de carga em nível local, que são cruciais para o planejamento da expansão e para a operação otimizada 
do sistema. 

A crescente penetração da Geração Distribuída (GD) fotovoltaica tem gerado o fenômeno do 
“mascaramento da carga”, que, em cenários de alta injeção de energia, resulta em um fluxo de potência 
reverso (Majeed; Nwulu, 2022; Torres; Negreiros; Tiba, 2019). Essa condição, para a qual as redes de 
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distribuição não foram originalmente projetadas, é o gatilho para severos impactos técnicos que 
comprometem a estabilidade e a eficiência do sistema elétrico (Majeed; Nwulu, 2022; Santos, 2023). 
Estudos demonstram que o fluxo reverso causa violações nos níveis de tensão com sobretensões que 
ultrapassam os limites regulatórios (Castilhos; Donadel, 2022; Torres; Negreiros; Tiba, 2019), acelera 
a degradação de ativos como transformadores de distribuição (Majeed; Nwulu, 2022) e, 
paradoxalmente, pode aumentar significativamente as perdas elétricas na rede (Castilhos; Donadel, 
2022; Torres; Negreiros; Tiba, 2019). Tais problemas, somados a distúrbios como as distorções 
harmônicas, consolidam-se em uma queda geral na qualidade da energia, afetando todos os 
consumidores conectados (Santos, 2023). 

Diante deste cenário, para superar o desafio do mascaramento da carga, a comunidade científica 
tem se dedicado ao desenvolvimento de modelos avançados de desagregação, que buscam separar a 
geração fotovoltaica (PV) do consumo real a partir de dados de medição da carga líquida. Duas 
abordagens proeminentes ilustram bem esse esforço: uma baseada em um framework de aprendizado 
de máquina adaptativo, que transforma dados brutos em características estatísticas e temporais para 
treinar modelos de regressão (Saeedi et al., 2021), e outra que emprega uma inovadora abordagem 
data-driven baseada em teoria dos jogos, utilizando uma “biblioteca de exemplares” de perfis de carga 
e geração para otimizar a separação dos sinais (Bu et al., 2020). 

Identifica-se, portanto, uma lacuna relevante: a carência de ferramentas computacionais que 
sejam, ao mesmo tempo, acessíveis, de baixo custo, de código aberto e que demandem dados de 
entrada facilmente disponíveis para as equipes de planejamento e operação das distribuidoras. Essa 
lacuna motivou o objetivo principal deste trabalho: o desenvolvimento e a validação de uma 
ferramenta computacional, denominada DesagregaGD, que se diferencia por sua simplicidade e 
aplicabilidade. O propósito da ferramenta é permitir que os diversos agentes do setor elétrico possam 
estimar a curva de carga real de seus alimentadores a partir de dados de medição da carga líquida e 
perfis de geração, de modo a identificar, visualizar e quantificar os efeitos do mascaramento da carga. 

Para alcançar este objetivo, o artigo está estruturado da seguinte forma: a seção 2 detalha a 
fundamentação teórica; a seção 3 descreve a metodologia, incluindo o uso do software OpenDSS para 
geração de dados de validação, uma prática consolidada para estudos de impacto de GD (Costa, 2023); 
a seção 4 apresenta os resultados, desde a análise inicial até a validação da ferramenta em um estudo 
de caso real; e, por fim, a seção 5 expõe as conclusões, ressaltando as contribuições do trabalho para o 
setor elétrico. 

 
2 Referencial teórico 

Este capítulo reúne a fundamentação teórica necessária para compreender a problemática do 
mascaramento da carga e os métodos empregados em sua análise. Inicialmente, apresenta-se o 
conceito de MMGD e seus desdobramentos técnicos nas redes de distribuição. Em seguida, 
aprofunda-se a discussão sobre o fenômeno do mascaramento da carga, destacando seus impactos na 
operação, no planejamento e na confiabilidade do sistema elétrico. Por fim, aborda-se a importância 
das ferramentas de simulação computacional, com ênfase no fluxo de potência e no uso do software 
OpenDSS, amplamente consolidado na literatura como suporte para estudos de redes com alta 
penetração de GD. 

 
2.1 Micro e minigeração distribuída no cenário brasileiro 

A GD refere-se à produção de energia elétrica realizada junto ou próxima ao ponto de consumo, 
conectada diretamente à rede de distribuição da concessionária local. No Brasil, a modalidade ganhou 
forte impulso a partir da Resolução Normativa (REN) nº 482/2012 da Agência Nacional de Energia 
Elétrica (ANEEL), que estabeleceu as condições para o acesso de Microgeração (potência instalada 
menor ou igual a 75 kW) e Minigeração (potência superior a 75 kW e menor ou igual a 5 MW) à rede 
(ANEEL, 2012). 

O principal mecanismo de incentivo criado por essa regulação foi o Sistema de Compensação de 
Energia Elétrica, que permite ao consumidor-gerador injetar o excedente de energia na rede e receber 
créditos em energia (kWh) para abater do seu consumo futuro ou de outro estabelecimento de sua 
titularidade. A evolução desse marco regulatório culminou na Lei nº 14.300/2022, que trouxe maior 
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segurança jurídica e novas diretrizes para a remuneração dos ativos da rede de distribuição, mas 
manteve a estrutura fundamental que permitiu a expansão massiva da GD no país (Brasil, 2022). 
 
2.2 O mascaramento da carga e seus impactos técnicos na rede elétrica 

O fenômeno do mascaramento da carga (load masking ou load hiding) surge da crescente 
penetração da MMGD, sobretudo de fonte solar fotovoltaica. Em uma unidade consumidora com 
geração própria, parte ou toda a energia produzida é consumida localmente no instante da geração, 
configurando o autoconsumo. Esse processo, embora benéfico para o consumidor, oculta da 
distribuidora o perfil real de consumo, uma vez que apenas a energia injetada ou retirada da rede é 
registrada pelos medidores bidirecionais, no regime de medição líquida (net metering) (Chen; Haji; 
Ardakanian, 2021; Erdener et al., 2022). Assim, a parcela autoconsumida permanece “atrás do 
medidor” e torna-se invisível para os operadores do sistema, caracterizando o mascaramento da carga. 

Esse efeito implica uma mudança estrutural no fluxo de energia elétrica: redes tradicionalmente 
radiais e unidirecionais passam a operar de forma bidirecional, com consumidores atuando também 
como produtores, os chamados prosumidores (Marcon, 2021; Pereira, 2022). Como a geração 
distribuída é, em grande parte, não supervisionada pelas distribuidoras, há perda de visibilidade e 
controle sobre o comportamento dinâmico da demanda. 

Do ponto de vista da concessionária, o mascaramento da carga altera o perfil de demanda 
líquida medido no ponto de acoplamento comum (PCC), seja na unidade consumidora ou na saída da 
subestação. A demanda líquida ( ), que é a carga que a concessionária efetivamente “enxerga” e 𝐷

𝑙í𝑞𝑢𝑖𝑑𝑎
precisa suprir, é o resultado da diferença entre a demanda bruta real dos consumidores ( ) e a 𝐷

𝑟𝑒𝑎𝑙
geração distribuída local ( ), conforme a Equação 1 (Chen; Haji; Ardakanian, 2021; Erdener et al., 𝐺

𝐺𝐷
2022): 

 
                                                       (1) 𝐷

𝑙í𝑞𝑢𝑖𝑑𝑎
𝑡( ) = 𝐷

𝑟𝑒𝑎𝑙
𝑡( ) − 𝐺

𝐺𝐷
(𝑡)

 
Este fenômeno cria um novo perfil de demanda com maior variabilidade e rampas mais 

acentuadas. A representação clássica deste efeito é a “Curva Pato” (Duck Curve), apresentada na 
Figura 2, termo que foi popularizado pelo Operador do Sistema Independente da Califórnia (CAISO, 
2016). Embora o conceito original tenha mais de uma década, sua relevância apenas aumentou, com 
estudos recentes analisando sua intensificação e os desafios operacionais associados, como a 
necessidade de recursos de geração flexíveis para compensar a rápida queda da geração solar no final 
da tarde. Além do desafio operacional, o mascaramento da carga compromete a precisão dos modelos 
de previsão de demanda em nível local, que são fundamentais para o planejamento e a gestão de ativos 
da distribuição. A superação desse desafio de visibilidade tem motivado o desenvolvimento de 
diversas técnicas de desagregação de carga, muitas baseadas em modelos estatísticos e de aprendizado 
de máquina. 
 

Figura 2 – “Curva Pato” (Duck Curve) 

 
Fonte: CAISO (2016) 
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Como a Figura 2 evidencia, a “barriga do pato” representa a carga líquida drasticamente 
reduzida nos horários de pico solar, enquanto o “pescoço” representa a rampa extremamente acentuada 
no final da tarde, quando a geração solar decai rapidamente e a demanda noturna começa a aumentar. 
No caso da Califórnia, essa rampa chegou a exigir a retomada de 13 GW de carga em apenas três horas 
(Pereira, 2022). Este comportamento representa um grande desafio para a operação do sistema, 
exigindo recursos de geração flexíveis para acompanhar as rápidas variações de carga e podendo levar 
a um despacho de geração subótimo. 

Do ponto de vista técnico, os impactos mais relevantes do mascaramento incluem: 
 

●​ Previsão de carga comprometida: os modelos estatísticos tradicionais, baseados em séries 
históricas, deixam de refletir a carga real, pois a geração solar aparece como uma “carga 
negativa”. Isso degrada a precisão de projeções locais e prejudica o planejamento da expansão 
da rede (Chen; Haji; Ardakanian, 2021; Erdener et al., 2022). 

●​ Alteração do perfil de tensão: em situações de fluxo reverso de potência (Reverse Power 
Flow – RPF), quando a geração local excede a carga, a energia flui em direção à subestação, 
elevando os níveis de tensão e podendo ultrapassar os limites regulatórios, com consequências 
para equipamentos e inversores conectados (Razavi et al., 2019; Uzum et al., 2021). 

●​ Perdas elétricas: estudos apontam que a relação entre penetração da MMGD e perdas é não 
linear. Inicialmente, a geração próxima ao consumo reduz perdas por efeito Joule; contudo, 
acima de um nível ótimo, o aumento do RPF faz as perdas crescerem novamente, podendo 
superar as de um sistema sem GD (Salimon et al., 2023). 

●​ Qualidade da energia: a conexão em massa de inversores introduz harmônicos e 
supraharmônicos, além de flutuações rápidas e lentas de tensão, afetando cargas sensíveis e 
reduzindo a vida útil de equipamentos (Smith et al., 2017; Uzum et al., 2021). 

●​ Confiabilidade dos sistemas de proteção: a inserção da GD altera a seletividade e a 
coordenação das proteções. Entre os principais problemas estão: aumento do nível de 
curto-circuito, atuação indevida de dispositivos de proteção (operações simpáticas), cegueira 
da proteção (protection blinding), além do risco de ilhamento não intencional, que 
compromete a segurança de equipes e consumidores (Razavi et al., 2019). 

 
Esses efeitos demonstram que o mascaramento da carga não é apenas um problema de visibilidade 

de dados, mas um fenômeno que impacta diretamente o planejamento, a operação e a proteção das 
redes de distribuição. A mitigação de seus impactos exige soluções inovadoras, como controle de 
potência reativa por inversores inteligentes, sistemas de armazenamento de energia e algoritmos de 
desagregação que permitam recuperar o perfil real de demanda. 

 
2.3 Estudos e abordagens para a desagregação da geração fotovoltaica atrás do medidor 

A crescente necessidade de “enxergar” a geração fotovoltaica (FV) instalada “atrás do medidor” 
impulsionou uma vasta pesquisa focada no desenvolvimento de métodos de desagregação. Esses 
métodos buscam separar a geração FV da demanda nativa a partir de um único sinal de medição: a 
demanda líquida, que é o que os medidores inteligentes convencionais registram (Bu et al., 2020). A 
literatura sobre o tema pode ser categorizada em duas abordagens principais: métodos baseados em 
modelos físicos e métodos orientados a dados. 

Os métodos baseados em modelos físicos utilizam modelos paramétricos que descrevem o 
comportamento de um sistema FV para estimar sua geração. Essa abordagem requer um conjunto 
detalhado de informações, incluindo dados meteorológicos (como irradiância e temperatura), a 
localização geográfica precisa da instalação e as características físicas dos painéis, como eficiência, 
inclinação e orientação (azimute) (Bu et al., 2020).  

A principal desvantagem dessa abordagem reside na dificuldade de obter parâmetros precisos e 
confiáveis. Muitas vezes, as informações sobre as instalações de MMGD não estão disponíveis ou são 
incertas, um problema agravado pela existência de instalações não autorizadas, que não são 
formalmente registradas junto à distribuidora (Bu et al., 2020). Além disso, esses modelos são 
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vulneráveis a superestimar grosseiramente a geração em casos de falhas parciais ou totais do sistema 
FV, pois o modelo físico não tem como saber que o sistema está fora de operação (Bu et al., 2020). 

Com a ampla implantação da infraestrutura de medição avançada (AMI), as distribuidoras 
passaram a ter acesso a um grande volume de dados de medidores inteligentes, o que viabilizou o 
desenvolvimento de métodos de desagregação orientados a dados (Bu et al., 2020). Essas técnicas 
utilizam algoritmos de aprendizado de máquina e métodos estatísticos para identificar padrões e 
correlações nos dados e, a partir deles, estimar a geração FV. 

A literatura científica recente tem explorado intensamente o desafio da desagregação da carga, 
comumente recorrendo a abordagens de alta complexidade. Métodos baseados em aprendizado de 
máquina (machine learning) e Monitoramento de Carga Não Intrusivo (NILM), por exemplo, utilizam 
algoritmos sofisticados para estimar a geração fotovoltaica a partir de dados agregados (Chen; Haji; 
Ardakanian, 2021). 

Um exemplo notável é o framework de aprendizado de máquina adaptativo proposto por Saeedi 
et al. (2021), que transforma dados brutos de medição em características estatísticas e temporais para 
treinar modelos de regressão, alcançando alta precisão. Contudo, essa abordagem depende da 
disponibilidade de medições diretas da geração em alguns pontos da rede para servir como ground 
truth durante o treinamento dos modelos. De forma similar, a abordagem de Bu et al. (2020) emprega 
uma sofisticada metodologia baseada em teoria dos jogos, que utiliza uma “biblioteca de exemplares” 
com perfis típicos de carga e geração para otimizar a separação dos sinais. A eficácia desse método, no 
entanto, está condicionada à existência de dados de consumidores “totalmente observáveis” – aqueles 
com medição apartada de consumo e geração – para a construção dessa biblioteca. 

Outros pesquisadores, como Sossan et al. (2018), desenvolveram abordagens não 
supervisionadas que não requerem medições diretas da geração FV para treinamento. Esses métodos 
utilizam o conhecimento estrutural do sistema e medições ambientais, como a irradiância, para 
desagregar os sinais (Saeedi et al., 2021). 

Tais pré-requisitos, comuns a muitas técnicas avançadas, representam barreiras significativas 
para a aplicação em larga escala pelas concessionárias, que frequentemente não dispõem de medições 
tão granulares ou de um vasto histórico de dados para calibração de modelos complexos (Qu et al., 
2025) 

A combinação de dados de múltiplas fontes, como medidores inteligentes, SCADA, e sensores 
meteorológicos, dentro de um framework de aprendizado de máquina, tem se mostrado uma 
abordagem poderosa e flexível para aumentar a visibilidade da geração BTM e, consequentemente, a 
segurança e eficiência da operação da rede de distribuição (Saeedi et al., 2021). 

 
2.4 Simulação de fluxo de potência com OpenDSS 

A análise de fluxo de potência é uma das ferramentas mais importantes no estudo de sistemas 
elétricos, pois permite determinar a distribuição de tensões, correntes e fluxos de potência em 
condições normais de operação. Com o avanço da geração distribuída, especialmente a solar 
fotovoltaica, tornou-se fundamental utilizar simuladores capazes de representar redes de distribuição 
desbalanceadas, com múltiplos pontos de geração e perfis temporais de carga. 

Nesse contexto, destaca-se o Open Distribution System Simulator (OpenDSS), um software de 
código aberto desenvolvido pelo Electric Power Research Institute (EPRI), amplamente adotado em 
estudos de redes de distribuição devido à sua flexibilidade e capacidade de modelagem (Gao et al., 
2017; Guerra; Martínez-Velasco, 2018). O OpenDSS suporta a simulação em regime quase-estático no 
domínio do tempo, permitindo incorporar variações horárias de carga e geração, o que o torna 
adequado para avaliar impactos associados à penetração da GD, como rampas de potência e 
mascaramento da carga. 

Entre suas principais vantagens, destacam-se: 
 

●​ Versatilidade de aplicação, uma vez que pode ser utilizado para estudos de fluxo de 
potência, curto-circuito, confiabilidade, qualidade da energia e análises probabilísticas 
(Hariri; Newaz; Faruque, 2017; Guerra; Martínez-Velasco, 2018). 
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●​ Integração com outras plataformas como MATLAB e Python, facilitando a aplicação de 
metodologias avançadas, como simulações probabilísticas e métodos de Monte Carlo 
(Tello-Maita; Marulanda; Pavas, 2019). 

●​ Capacidade de operação em tempo real (RT-HIL), por meio de integração com hardware 
externo, permitindo validação experimental e desenvolvimento de estratégias de 
automação da distribuição (Montenegro; Hernandez; Ramos, 2012). 

 
Na literatura recente, o OpenDSS vem sendo consolidado como uma ferramenta de referência 

em pesquisas de GD e redes inteligentes. Tello-Maita, Marulanda e Pavas (2019) empregaram o 
software para realizar estudos probabilísticos de fluxo de potência em sistemas de distribuição com 
alta penetração fotovoltaica, enquanto Montenegro, Hernandez e Ramos (2012) destacaram seu uso 
integrado a plataformas de simulação em tempo real. Revisões sistemáticas reforçam sua relevância e 
ampla aceitação pela comunidade científica (Hariri; Newaz; Faruque 2017; Guerra; Martínez-Velasco, 
2018). 

Assim, a adoção do OpenDSS neste trabalho é justificada não apenas por sua robustez na 
modelagem de sistemas de distribuição com geração distribuída, mas também pelo reconhecimento 
consolidado de sua aplicabilidade em estudos de fluxo de potência e análise de impactos técnicos em 
redes elétricas modernas, permitindo a geração de dados controlados para o desenvolvimento e a 
validação da ferramenta DesagregaGD. 
 
3 Metodologia 

A presente pesquisa foi conduzida por meio de uma abordagem quantitativa e aplicada, 
desenvolvida em etapas sequenciais e interdependentes. A estrutura metodológica foi desenhada para, 
inicialmente, explorar uma hipótese sobre os impactos da GD em escala macro e, subsequentemente, 
direcionar o foco para o desenvolvimento e a validação de uma solução tecnológica para um problema 
prático em nível de rede de distribuição. O fluxo de trabalho, ilustrado na Figura 3, foi dividido em 
quatro fases principais, que são detalhadas a seguir. 
 

Figura 3 – Fluxograma da metodologia utilizada 

 

Fonte: elaborada pelos autores 

 
3.1 Fase 1: análise exploratória da previsão de carga do ONS 

A fase inicial do projeto consistiu em uma análise exploratória para verificar a hipótese de que a 
crescente inserção da MMGD no Sistema Interligado Nacional (SIN) estaria correlacionada a um 
aumento nos erros de previsão de carga do Operador Nacional do Sistema Elétrico. Para esta etapa, 
foram coletados dados públicos das notas técnicas do ONS, compreendendo o período de 2019 a 2024. 
Após o tratamento dos dados, foram calculadas métricas estatísticas de desempenho para avaliar a 
assertividade das previsões. As métricas selecionadas, como o Coeficiente de Determinação (R²), a 
Raiz do Erro Quadrático Médio (RMSE) e o Erro Percentual Absoluto Médio (MAPE), são 
amplamente utilizadas na literatura para quantificar a aderência de modelos de previsão e estimação no 
setor elétrico. Adicionalmente, utilizou-se o Coeficiente de Correlação de Spearman para avaliar a 
relação monotônica entre a capacidade instalada de MMGD e a evolução dos erros. 
 
3.2 Fase 2: simulação e geração de dados para o estudo do mascaramento  

A segunda etapa da metodologia consistiu na realização de simulações computacionais 
utilizando o software OpenDSS. Essa fase teve como finalidade gerar dados sintéticos para validação 
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da ferramenta proposta, permitindo a análise controlada dos efeitos da inserção da geração distribuída 
fotovoltaica no perfil de carga líquida. 

O uso de sistemas-teste padronizados, como o IEEE 13 barras, é prática consolidada na 
literatura, pois fornece um ambiente validado para avaliar o desempenho de metodologias em 
diferentes cenários de penetração de geração distribuída (Kersting, 2001). Esses sistemas possibilitam 
a reprodução de condições operacionais realistas, como desbalanceamento de fases, conexões 
monofásicas e variação de carregamento. 

O OpenDSS, desenvolvido pelo Electric Power Research Institute (EPRI), foi projetado 
especificamente para a análise de redes de distribuição. Sua flexibilidade em simular fluxos de 
potência trifásicos desbalanceados, estudos no domínio do tempo e integração com linguagens de 
programação externas (como Python e MATLAB) o consolidaram como ferramenta de referência para 
estudos de impacto de fontes renováveis em redes de baixa e média tensão (Dugan; McDermott; Ball, 
2001). 

No contexto brasileiro, diferentes trabalhos empregaram o OpenDSS para avaliar os impactos 
técnicos da penetração fotovoltaica em alimentadores reais, demonstrando sua eficácia em reproduzir 
cenários de sobrecarga de transformadores, fluxo reverso de potência e variações de tensão (Costa, 
2023; Oliveira; Oliveira; Silva, 2021). Tais estudos reforçam a adequação da ferramenta para analisar 
o fenômeno do mascaramento da carga e validar soluções computacionais voltadas às distribuidoras. 

 
3.3 Fase 3: desenvolvimento da ferramenta computacional DesagregaGD  

Esta fase concentrou-se no desenvolvimento do principal produto tecnológico do trabalho: a 
aplicação web DesagregaGD. A ferramenta foi concebida para ser uma solução de baixo custo, 
acessível e intuitiva. Para seu desenvolvimento, foram empregadas tecnologias web padrão: HTML 
para a estruturação da interface do usuário, CSS para a estilização visual e JavaScript para toda a 
lógica de programação. A biblioteca Chart.js foi integrada para a geração de gráficos interativos e 
customizáveis, essenciais para a visualização dos resultados. 

A literatura recente apresenta diversas abordagens para o problema da desagregação da carga. 
Técnicas de Non-Intrusive Load Monitoring (NILM) e algoritmos de aprendizado de máquina têm sido 
amplamente empregados, utilizando redes neurais artificiais, Hidden Markov Models e métodos 
híbridos físico-estatísticos para identificar padrões de consumo e estimar a geração fotovoltaica a 
partir de dados agregados (Bu et al., 2020; Chen; Haji; Ardakanian, 2021). Embora apresentem bons 
resultados, essas metodologias frequentemente requerem grandes volumes de dados históricos, 
medições em alta granularidade ou infraestrutura avançada de medição, o que representa barreiras para 
sua aplicação em larga escala por concessionárias (Qu et al., 2025). 

Diante dessas limitações, optou-se por uma abordagem mais simples e prática, fundamentada no 
uso de perfis típicos de geração fotovoltaica e dados de carga líquida já disponíveis pelas 
distribuidoras. Essa escolha se justifica pela busca de uma solução replicável e escalável, capaz de ser 
aplicada mesmo em contextos onde não há infraestrutura avançada de medição, garantindo maior 
aderência à realidade brasileira. Abordagens similares já têm sido exploradas em estudos que 
enfatizam a importância de ferramentas de código aberto e metodologias simplificadas para aumentar 
a aplicabilidade em diferentes sistemas (Gao et al., 2024; Martins; Castelo Branco; Hallack, 2022). 

A implementação da ferramenta também priorizou a transparência metodológica e a 
reprodutibilidade científica, alinhando-se ao movimento de utilização de softwares livres e 
metodologias abertas no setor elétrico. Com isso, a DesagregaGD se diferencia por oferecer uma 
solução prática e confiável, sem abrir mão da fundamentação teórica necessária para lidar com o 
mascaramento da carga. 

O núcleo da ferramenta é o seu algoritmo de desagregação, implementado em JavaScript. O 
algoritmo executa os seguintes passos: 

 
1.​ Entrada de dados: A interface permite que o usuário forneça os dados de entrada 

necessários: um arquivo .csv contendo a curva de carga mascarada (medida), um arquivo .csv 
com a curva de geração ou irradiância solar, a potência total instalada de GD (em kW), a 
eficiência média dos sistemas fotovoltaicos e o percentual de distribuição dessa potência entre 
as três fases da rede. 
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2.​ Processamento: O algoritmo primeiramente normaliza e interpola a curva de geração para um 
perfil diário detalhado. Em seguida, calcula a curva de geração de GD em kW, escalonando o 
perfil normalizado pela potência instalada e eficiência informadas. 

3.​ Cálculo da carga real: A curva de carga real é estimada por meio da aplicação da operação 
matemática fundamental, ponto a ponto para cada intervalo de tempo e para cada uma das 
fases, conforme a Equação 2. 
 

                          (2)                                                   𝐶𝑎𝑟𝑔𝑎
𝑟𝑒𝑎𝑙

𝑡( ) = 𝐶𝑎𝑟𝑔𝑎
𝑚𝑎𝑠𝑐𝑎𝑟𝑎𝑑𝑎

𝑡( ) + 𝐺𝑒𝑟𝑎çã𝑜
𝐺𝐷

(𝑡)
 

4.​ Saída de resultados: A ferramenta apresenta os resultados em múltiplos formatos, incluindo 
métricas de análise (como energia total gerada e mascarada), gráficos interativos que 
comparam as curvas de carga (real e mascarada) e botões que permitem ao usuário exportar 
todos os dados processados para novos arquivos .csv, garantindo a interoperabilidade com 
outros softwares. 

 
É importante ressaltar que a DesagregaGD opera a partir da curva de carga agregada do 

alimentador, geralmente medida na saída da subestação. A ferramenta não se propõe a construir curvas 
de carga por setor de consumo (ex: residencial, comercial), mas sim a desagregar o sinal total já 
medido pela concessionária. Embora a interface permita ao usuário uma distribuição percentual da GD 
pelas três fases, a abordagem principal trata a potência de forma agregada, sendo este um ponto de 
partida para análises mais complexas. 
 
3.4 Fase 4: validação, implementação e registro 

A última etapa da metodologia correspondeu à validação da ferramenta DesagregaGD, realizada 
por meio da comparação entre as curvas de carga estimadas e os valores de referência obtidos a partir 
das simulações computacionais e do estudo de caso real. O objetivo foi avaliar a capacidade da 
ferramenta em reproduzir adequadamente o perfil de demanda real, mitigando os efeitos do 
mascaramento da carga. 

Para essa validação, foram utilizadas métricas amplamente reconhecidas na literatura para 
avaliação de modelos de previsão e estimação em sistemas elétricos: 

 
●​ Coeficiente de Determinação (R²): quantifica a proporção da variabilidade dos dados 

observados explicada pelo modelo, sendo um dos indicadores mais utilizados em 
estudos de desempenho preditivo (Chai; Draxler, 2014). Valores mais próximos de 1 
indicam um ajuste perfeito do modelo aos dados observados.  

●​ Raiz do Erro Quadrático Médio (RMSE): mede o desvio médio quadrático entre 
valores previstos e observados, sendo sensível a erros de maior magnitude, 
característica relevante em estudos de previsão de carga (Hong; Fan, 2016). 

●​ Erro Percentual Absoluto Médio (MAPE): expressa o erro médio em termos 
percentuais, permitindo uma avaliação relativa da acurácia, bastante utilizada em 
aplicações energéticas e de séries temporais (Hyndman; Koehler, 2006). 

●​ Coeficiente de Correlação de Spearman: utilizado para avaliar a dependência 
monotônica entre duas variáveis, sendo adequado para verificar a relação entre a 
expansão da MMGD e os erros de previsão (Spearman, 1904). Este coeficiente varia de 
-1 (associação negativa perfeita) a +1 (associação positiva perfeita), onde 0 indica 
ausência de correlação monotônica. 

 
A combinação dessas métricas garante uma avaliação abrangente da ferramenta, contemplando 

tanto a aderência estatística quanto a robustez em diferentes cenários de análise. Essa abordagem 
segue práticas consolidadas em estudos de previsão de carga e validação de modelos em sistemas de 
energia (Weron, 2014; Stratman et al., 2022). 

O processo de validação foi estruturado em duas etapas complementares para testar tanto a 
precisão matemática quanto a aplicabilidade prática do algoritmo. 
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a.​ Validação em sistemas-teste: Primeiramente, o algoritmo foi verificado utilizando os 

dados controlados gerados na Fase 2 a partir do sistema-teste IEEE 13 barras. A curva 
de carga mascarada simulada foi inserida como entrada na DesagregaGD, e a curva 
real estimada pela ferramenta foi comparada com a curva real conhecida da 
simulação. Esta etapa serviu para verificar a correção matemática e a precisão do 
algoritmo em um ambiente idealizado. 

b.​ Validação em estudo de caso real: Para comprovar a robustez da ferramenta em um 
cenário complexo, uma segunda validação foi realizada utilizando o modelo de um 
alimentador real da Neoenergia Pernambuco, com alta penetração de GD. O modelo 
utilizado foi desenvolvido e previamente tratado a partir de dados da Base de Dados 
Geográfica da Distribuição (BDGD), conforme detalhado por Silva e Barros (2025). A 
aderência entre a curva estimada e a curva real simulada para este caso foi 
quantificada por meio do Coeficiente de Determinação (R²) e do Erro Percentual 
(MAPE), métricas padrões para validação de modelos. 
 

Com a validação concluída, a ferramenta computacional foi implementada e disponibilizada de 
forma pública e gratuita no repositório do Grupo de Estudos em Sistemas Elétricos (GSEL) do IFPE, 
Campus Garanhuns (IFPE, 2025). Por fim, para formalizar a autoria e assegurar os direitos de 
propriedade intelectual, foi realizado o registro do software junto ao Instituto Nacional da Propriedade 
Industrial (INPI), sob o Nº BR512025003011-8. 
 
4 Resultados e discussões 

Esta seção apresenta os resultados obtidos ao longo das quatro fases da pesquisa. A análise é 
apresentada de forma sequencial, iniciando com os achados da investigação exploratória sobre a 
previsão de carga, seguida pela caracterização do mascaramento via simulação, a apresentação da 
ferramenta desenvolvida e, por fim, a validação de sua acurácia. 
 
4.1 Análise da previsão de carga do sistema interligado nacional 

A investigação inicial buscou validar a hipótese de que o crescimento da MMGD estaria 
degradando a qualidade das previsões de carga do ONS. Foram analisados os dados de previsão e de 
carga verificada para o SIN entre os anos de 2019 e 2024. A Tabela 1 consolida as métricas de erro 
calculadas, enquanto a Tabela 2 apresenta os coeficientes de correlação de Spearman entre a 
capacidade instalada de MMGD e as referidas métricas. 

 
Tabela 1 – Erros entre previsão de carga e carga verificada 

ANO 
Capacidade 
instalada de 

MMGD (MW) 

Carga 
prevista 
(MWh) 

Carga 
verificada 

(MWh) 

Raiz do Erro 
Quadrático 

Médio (RMSE) 

Erro Percentual 
Absoluto Médio 

(MAPE) 

Coeficiente de 
Determinação 

(R²) 
2019 2.314 68.922 64.611 4.738,94 7,05 0,78 
2020 5.309 70.830 63.420 8.206,42 12,15 0,52 
2021 10.048 69.095 68.539 1.565,34 1,71 0,65 
2022 18.356 70.758 68.823 2.394,03 2,97 0,76 
2023 26.627 71.760 73.705 4.265,45 4,54 0,16 
2024 36.169 78.923 78.460 1.334,18 1,23 0,83 

Fonte: dados da pesquisa 
 

Tabela 2 – Coeficientes de Spearman 
Descrição da Correlação Valor 

Coeficiente de Spearman entre capacidade instalada de MMGD e RMSE -0,710 
Coeficiente de Spearman entre capacidade instalada de MMGD e MAPE -0,710 

Coeficiente de Spearman entre capacidade instalada de MMGD e R² 0,085 
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Fonte: dados da pesquisa 

 
As Tabelas 1 e 2 evidenciam que não há perda de qualidade na previsão de carga do SIN em 

função do aumento da MMGD. Os resultados demonstram que, mesmo com o expressivo crescimento 
da capacidade instalada de geração distribuída fotovoltaica ao longo do período analisado – atingindo 
36.169 MW em 2024 –, os indicadores de acurácia das previsões mantiveram-se consistentes e até 
aprimorados. O ano de 2024, que apresentou a maior capacidade de MMGD, registrou os melhores 
indicadores de todo o intervalo: o menor RMSE (1.334,18), o menor MAPE (1,23%) e o maior 
Coeficiente de Determinação (R² = 0,83). Esses resultados indicam que as metodologias de previsão 
utilizadas pelo ONS são robustas o suficiente para absorver as variações impostas pela penetração da 
GD, sem prejuízo significativo à acurácia em escala nacional. 

Contudo, sob a ótica do sistema de distribuição, o cenário se apresenta de maneira distinta. 
Embora a análise em nível sistêmico não aponte degradação das previsões globais de carga, o avanço 
da GD implica no mascaramento da demanda real nos alimentadores de média e baixa tensão, 
ocultando o comportamento efetivo das cargas conectadas à rede. Esse mascaramento pode levar à 
interpretação equivocada de retração no consumo ou de redução na taxa de crescimento da demanda, 
quando, na realidade, parte significativa da energia está sendo suprida localmente pela geração 
fotovoltaica. Assim, enquanto os modelos de previsão do ONS mantêm desempenho satisfatório em 
escala macro, as distorções provocadas pela GD emergem em escala granular, impactando diretamente 
as concessionárias de distribuição. 

Dessa forma, os resultados reforçam que, embora a expansão da MMGD não tenha degradado a 
qualidade das previsões de carga do SIN, os efeitos de mascaramento em nível local permanecem 
relevantes. O foco do presente trabalho, portanto, foi redirecionado para o desenvolvimento de uma 
metodologia voltada à desagregação e compreensão da carga em nível de alimentador, onde o 
fenômeno de mascaramento se manifesta de maneira concreta e influencia o planejamento, a operação 
e a confiabilidade do sistema de distribuição. 

 
4.2 Caracterização do mascaramento da carga via simulação  

Para caracterizar o impacto da Geração Distribuída em nível local, foram conduzidas 
simulações de fluxo de potência na plataforma OpenDSS. A Figura 4 exibe os resultados consolidados 
de uma simulação diária no sistema-teste IEEE 13 barras, apresentando três curvas de potência 
distintas. 

A curva “Carga Real” (azul) representa a demanda do sistema sem a presença de GD, obtida no 
cenário de base. A curva “Geração Fotovoltaica” (verde) demonstra o perfil de geração dos painéis 
solares ao longo do dia, com pico de produção ao meio-dia. Por fim, a curva “Carga Mascarada” 
(laranja) representa a potência líquida que seria medida na subestação, ou seja, a demanda real já 
abatida pela geração solar local. 

Para garantir a fidedignidade e a reprodutibilidade dos dados desta simulação, os sistemas 
fotovoltaicos no modelo IEEE 13 barras não foram modelados com uma eficiência média fixa. Em vez 
disso, foi utilizada uma abordagem dinâmica detalhada, baseada nos seguintes componentes:  

 
a.​ Uma curva de eficiência vs. irradiância, apresentada na Figura 5, que define a eficiência 

do sistema entre 86% e 97%, sendo mais alta em níveis de maior irradiância.  
b.​ Uma curva de potência vs. temperatura, exibida na Figura 6, que aplica um derating 

(redução) na potência de saída à medida que a temperatura da célula aumenta, partindo 
do ponto de referência de 100% de potência a 25 °C. 

c.​ Um perfil diário de temperatura da célula, detalhado na Figura 7, que representa a 
variação térmica esperada ao longo do dia e alimenta a curva de derating. 
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Figura 4 – Comparação das curvas de potência com e sem geração distribuída 

 

Fonte: elaborada pelos autores 

 
Figura 5 – Curva de eficiência vs. irradiância utilizada na simulação OpenDSS para o sistema de IEE 13 barras 

 
Fonte: elaborada pelos autores 
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Figura 6 – Curva de potência vs. temperatura utilizada na simulação OpenDSS para o sistema de IEE 13 barras 

 
Fonte: elaborada pelos autores 
 

Figura 7 – Curva diária de temperatura da célula utilizada na simulação OpenDSS para o sistema de IEE 13 
barras 

 
Fonte: elaborada pelos autores  

 
Para garantir a transparência metodológica e a contextualização dos resultados, é fundamental 

esclarecer a composição da curva “Carga Real” (azul). Esta curva não é um perfil de carga único e 
simplificado. Ela é o resultado agregado medido no início do alimentador, resultante da soma das 15 
cargas individuais definidas no sistema-teste.  

Para garantir um cenário heterogêneo e realista, 10 perfis de carga (loadshapes) distintos de 
média tensão para dia útil foram aplicados a essas cargas, conforme a Figura 8. Estes perfis foram 
modelados a partir dos dados da campanha de medições reais da Neoenergia Pernambuco, 
disponibilizados na Consulta Pública ANEEL 003/2021. Portanto, a curva “Carga Real (Sem GD)” 
representa a soma complexa desses 10 perfis de carga distintos, operando de forma desbalanceada. A 
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curva “Geração Fotovoltaica” (verde) é o resultado do modelo PV detalhado, e a curva “Carga 
Mascarada” (laranja) é o resultado líquido da interação entre essa demanda heterogênea e a GD. Na 
Tabela 3, são apresentadas as configurações das cargas utilizadas para o caso base. 

 
Tabela 3 – Cargas simuladas para o Sistema IEEE 13 barras 

Identificação da carga Barra Fases Conexão Modelo Perfil kV kW kVAr 
671 671.1.2.3 3φ Δ 1 MT1_DU 4,16 1155 660 
634a 634.1 1φ Y 1 MT2_DU 0,28 160 110 
634b 634.2 1φ Y 1 MT3_DU 0,28 120 90 
634c 634.3 1φ Y 1 MT4_DU 0,28 120 90 
645 645.2 1φ Y 1 MT5_DU 2,4 170 125 
646 646.2.3 2φ Δ 2 MT6_DU 4,16 230 132 
692 692.3.1 2φ Δ 5 MT7_DU 4,16 170 151 
675a 675.1 1φ Y 1 MT8_DU 2,4 485 190 
675b 675.2 1φ Y 1 MT9_DU 2,4 68 60 
675c 675.3 1φ Y 1 MT10_DU 2,4 290 212 
611 611.3 1φ Y 5 MT1_DU 2,4 170 80 
652 652.1 1φ Y 2 MT2_DU 2,4 128 86 
670a 670.1 1φ Y 1 MT3_DU 2,4 17 10 
670b 670.2 1φ Y 1 MT4_DU 2,4 66 38 
670c 670.3 1φ Y 1 MT5_DU 2,4 117 68 

Fonte: elaborada pelos autores  
 

Figura 8 – Perfis de carga de média tensão (dia útil) utilizados na simulação 

 
Fonte: elaborada pelos autores  

 
Assim, os resultados obtidos confirmam a pertinência do uso do OpenDSS como ambiente de 

validação da ferramenta proposta, uma vez que possibilita avaliar cenários operacionais diversos e 
quantificar de forma detalhada os impactos técnicos da MMGD. 

 
4.3 A ferramenta DesagregaGD como solução proposta 
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A partir do entendimento do fenômeno, o foco da pesquisa se concentrou no desenvolvimento 
do principal produto tecnológico deste trabalho: a ferramenta web DesagregaGD. Seu objetivo central 
é restaurar a visibilidade da curva de carga real, a partir de dados de carga líquida e perfis de geração 
fotovoltaica, possibilitando compreender de forma mais precisa o comportamento dos consumidores. 
A Figura 9 apresenta a tela inicial da aplicação, destacando a simplicidade da interface para a entrada 
de dados. 
 

Figura 9 – Interface principal da ferramenta DesagregaGD

 
Fonte: elaborada pelos autores 

 
Após o processamento dos dados de entrada, a ferramenta fornece um conjunto rico de saídas, 

incluindo métricas de análise e uma série de gráficos interativos. A Figura 10 exibe um dos principais 
resultados visuais da ferramenta: a comparação das curvas de carga real e mascarada por fase, 
juntamente com a geração horária estimada. 
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Figura 10 – Gráfico de saída da ferramenta com comparação por fase 

 

Fonte: elaborada pelos autores 

 
Portanto, a DesagregaGD se consolida como uma alternativa cientificamente fundamentada, 

replicável e escalável. Ao demonstrar que é possível atingir alta precisão com uma metodologia mais 
direta, a ferramenta oferece uma solução prática e de grande valor para as equipes de planejamento e 
operação das distribuidoras, permitindo-lhes recalibrar modelos de previsão, otimizar ajustes de tensão 
e realizar uma gestão de ativos mais assertiva, contribuindo para a manutenção da confiabilidade do 
sistema elétrico em um cenário de alta penetração de GD. 
 
4.4 Validação do algoritmo e implementação 

A etapa final do projeto concentrou-se na validação quantitativa da confiabilidade do algoritmo 
da DesagregaGD. Para isso, a curva de carga mascarada, gerada a partir da simulação do sistema-teste 
IEEE 13 barras no OpenDSS (Figura 4, curva laranja), foi utilizada como dado de entrada na 
ferramenta. A curva de carga real, estimada pela aplicação, foi então diretamente comparada com a 
curva de carga real original, conhecida da simulação (Figura 4, curva azul), que serviu como “verdade 
fundamental” (ground truth). 

A análise comparativa revelou uma excelente aderência entre os resultados. A ferramenta 
alcançou um Coeficiente de Determinação (R²) de 0,9958 e o maior erro médio percentual observado 
entre a curva real e a estimada foi de apenas 1,5%. Este desvio mínimo, atribuído a pequenas 
aproximações computacionais inerentes ao processo, confirma a alta precisão e confiabilidade do 
algoritmo de desagregação. 

Esses resultados são particularmente relevantes quando contextualizados com as abordagens 
mais complexas da literatura. O trabalho de Bu et al. (2020), por exemplo, que utiliza uma abordagem 
data-driven baseada em teoria dos jogos, reporta um Erro Percentual Absoluto Médio (MAPE) para a 
desagregação da geração fotovoltaica que varia, em sua maioria, entre 4% e 8% para diferentes 
alimentadores. De forma semelhante, o framework de aprendizado de máquina adaptativo de Saeedi et 
al. (2021) alcança um valor de R² de até 0,94 em cenários de validação cruzada com divisão de dados 
de 90% para treinamento e 10% para teste, com um RMSE de 4%. 

A discussão que emerge deste resultado (R² de 0,9958) foca na validação matemática da 
ferramenta. Ela comprova que o algoritmo executa a operação de desagregação da Equação 2, com 
altíssima precisão em um ambiente de simulação controlado, mesmo partindo de uma carga agregada 
complexa (composta por 10 perfis distintos). 

É importante contextualizar esta comparação com os métodos da literatura, como os de Bu et al. 
(2020) (MAPE de 4% a 8%) e Saeedi et al. (2021) (R² de 0,94). Esses trabalhos utilizam dados de 
medidores reais e algoritmos de machine learning para estimar a geração em um cenário com 
incertezas, o que representa um desafio fundamentalmente diferente. A principal vantagem da 
DesagregaGD não reside em ser superior a esses métodos de ponta, mas sim em sua simplicidade, 
baixo custo e aplicabilidade prática. A ferramenta demonstra que, para concessionárias que já possuem 
uma estimativa razoável do perfil de geração (como a curva da Figura 8), é possível reconstruir a carga 
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real com notável acurácia (como validado no estudo de caso da Seção 4.5), contornando a necessidade 
de algoritmos de machine learning complexos e dados de treinamento extensivos. 

Com a validação concluída e a eficácia comprovada, a ferramenta foi implementada em um 
repositório público e o software foi devidamente registrado no INPI, concluindo com êxito todos os 
objetivos propostos para esta pesquisa. 

 
4.5 Estudo de caso: validação da ferramenta em um sistema real 

É importante ressaltar que a abordagem da DesagregaGD possui limitações inerentes à sua 
metodologia agregada. A ferramenta não modela a topologia da rede (influência da distância) nem os 
perfis de carga individuais. 

Isso ocorre porque: 
 

●​ Os perfis das cargas já estão “embutidos” no resultado, uma vez que a metodologia se 
baseia na curva de carga total medida no início do alimentador (carga mascarada). 

●​ A influência da distância (que afeta o nível de perdas da rede) não é contemplada, pois 
o modelo não é topológico. Contudo, pode-se afirmar que esta influência na variação da 
desagregação é pequena, e as perdas totais já estão contidas na medição de entrada. 

 
Adicionalmente, a precisão da estimação está condicionada à qualidade dos dados de entrada. 

Conforme já observado, a ferramenta depende de um perfil de irradiância solar representativo, 
podendo apresentar desvios em dias de condições climáticas atípicas. Da mesma forma, o método 
assume uma eficiência média para o conjunto de sistemas fotovoltaicos, não capturando a 
variabilidade individual entre as instalações. Adicionalmente, a precisão da estimação está 
condicionada à qualidade dos dados de entrada. Conforme já observado, a ferramenta depende de um 
perfil de irradiância solar representativo, podendo apresentar desvios em dias de condições climáticas 
atípicas. Da mesma forma, o método assume uma eficiência média para o conjunto de sistemas 
fotovoltaicos, não capturando a variabilidade individual entre as instalações. 

Para comprovar a robustez e a aplicabilidade prática da DesagregaGD, foi realizado um estudo 
de caso validando a ferramenta com o modelo de um alimentador real da Neoenergia Pernambuco. O 
alimentador pertence a subestação Garanhuns, localizada no município de mesmo nome, e opera em 
nível de 13,8 kV na rede primária, 380 V na rede secundária, possui 15 consumidores de média tensão, 
12.628 consumidores de baixa tensão, e 156 unidades com MMGD. Conforme detalhado na 
metodologia, este sistema representa um cenário desafiador, com alta penetração de Geração 
Distribuída. A topologia da rede é apresentada na Figura 11. 

É fundamental destacar que o modelo utilizado foi desenvolvido a partir de dados da Base de 
Dados Geográfica da Distribuição (BDGD), que exigiram um tratamento prévio para corrigir múltiplas 
inconsistências que inviabilizavam simulações de fluxo de carga, conforme detalhado por Silva e 
Barros (2025). A utilização do modelo já corrigido por eles foi um passo crucial para garantir a 
confiabilidade desta validação. 

Para a execução do teste, a curva de geração agregada foi modelada com base em um perfil 
médio de irradiância solar diário típico obtido com dados da Base de Dados Geográfica da 
Distribuidora (BDGD), exibido na Figura 12. Este perfil foi escalonado na ferramenta utilizando uma 
potência de pico de 870 kWp, valor determinado a partir da soma da geração de todos os sistemas 
fotovoltaicos no próprio modelo da rede (considerando perdas por temperatura e eficiência), 
garantindo a representação fiel do sistema. 
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Figura 11 – Topologia do alimentador da Neoenergia Pernambuco utilizado no estudo de caso 

 
Fonte: Silva e Barros (2025) 

 
Figura 12 – Curva de irradiância diária utilizada para modelar a geração distribuída no estudo de caso 

 
Fonte: elaborada pelos autores 

 
Para a execução deste teste de validação, a ferramenta DesagregaGD foi alimentada com a 

curva de carga mascarada obtida na simulação do OpenDSS (considerando a presença das MMGDs). 
A curva de geração foi modelada a partir do perfil de irradiância de 24 pontos cedido pela BDGD, 
escalonado por uma potência instalada de 870 kW, distribuída igualmente entre as três fases. A 
eficiência foi configurada como 100%, pois o valor da potência de pico já representa a geração líquida, 
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com as perdas por temperatura e eficiência dos sistemas individuais já descontadas a partir do modelo 
base. Na Figura 13 é apresentado o resultado final da validação, sobrepondo a curva de carga real do 
alimentador (obtida via simulação no OpenDSS) e a curva estimada pela ferramenta DesagregaGD. 

 
Figura 13 – Validação com o alimentador real: carga real simulada (OpenDSS) vs. carga real estimada 

(DesagregaGD) 

 
Fonte: elaborada pelos autores 

 
Observa-se que o erro nas proximidades das 6 h e das 20 h está diretamente relacionado às 

perdas do sistema, já que há uma rampa de carga considerável durante esse período. A curva estimada 
pela ferramenta DesagregaGD não realiza a separação entre carga e perdas técnicas, tratando ambas 
como parte da demanda total, enquanto a curva obtida no OpenDSS considera exclusivamente a carga. 
Essa diferença conceitual explica as pequenas discrepâncias nos períodos de transição entre noite e 
dia, quando as condições de geração e carregamento variam rapidamente. Ressalta-se que tal 
comportamento está dentro das limitações conhecidas da ferramenta e não compromete a 
representatividade geral dos resultados, que demonstram forte aderência global entre as curvas 
simulada e estimada. 

 
5 Conclusões 

Este trabalho se propôs a investigar os impactos da Geração Distribuída no sistema elétrico, 
culminando no desenvolvimento e validação da DesagregaGD, uma solução prática para o desafio do 
mascaramento da carga. A pesquisa partiu de uma análise em escala macro, que não confirmou a 
hipótese de que a expansão da MMGD estaria degradando a acurácia das previsões de carga do 
Operador Nacional do Sistema Elétrico. Este resultado inicial direcionou o foco da investigação para o 
nível da rede de distribuição, onde o fenômeno se manifesta de forma mais crítica e com impactos 
operacionais diretos para as concessionárias. 

A principal contribuição científica do estudo é a entrega de uma ferramenta computacional que se 
posiciona de forma única frente às abordagens existentes na literatura, validada por uma performance 
de alta precisão, alcançando um Coeficiente de Determinação (R²) de 0,9929 e um erro médio 
percentual de 0,74%, em um estudo de caso com um alimentador real. A originalidade da 
DesagregaGD reside na combinação estratégica de três fatores: 
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●​ Simplicidade e acessibilidade: Em contraste com modelos complexos de machine 
learning ou Desagregação de Carga Não Intrusiva (NILM), frequentemente citados na 
literatura, a ferramenta utiliza uma abordagem matemática fundamental. Implementada em 
uma plataforma web de código aberto, ela elimina barreiras de custo, conhecimento técnico 
avançado e poder computacional, tornando a análise acessível a um público mais amplo de 
engenheiros, planejadores, estudantes e demais interessados no tema. 

●​ Alta acurácia com baixa exigência de dados: O estudo demonstra que é possível 
reconstruir a curva de carga real com um erro médio percentual de apenas 0,74%, 
utilizando dados agregados de carga e perfis de geração, que já são amplamente 
disponíveis para as distribuidoras. Este achado é particularmente relevante, pois contorna a 
necessidade de medições granulares em tempo real ou de um longo histórico de dados para 
o treinamento de modelos, que representam os maiores obstáculos para a implementação de 
outras soluções. 

●​ Validação em cenário prático brasileiro: A eficácia da ferramenta foi comprovada não 
apenas em um sistema-teste ideal do IEEE, mas na aplicação a um modelo detalhado de um 
alimentador real da Neoenergia Pernambuco. Essa validação em um cenário complexo, 
com dados do mundo real, garante a relevância e a aplicabilidade prática da solução para os 
desafios enfrentados pelo setor elétrico nacional. 

 
Ao oferecer uma metodologia acessível para quantificar o mascaramento da carga, a DesagregaGD 

se consolida como uma ferramenta valiosa de suporte à decisão para concessionárias de energia, 
agências reguladoras e pesquisadores. A capacidade de restaurar a visibilidade sobre o comportamento 
real dos consumidores contribui diretamente para um planejamento mais eficiente, uma operação mais 
segura e uma gestão de ativos mais assertiva. Na prática, um engenheiro de planejamento pode utilizar 
a DesagregaGD para recalibrar modelos de previsão de alimentadores com alta penetração de GD, 
otimizar ajustes em reguladores de tensão ou postergar investimentos em expansão da rede com base 
na demanda real, e não na mascarada. Para a continuidade da pesquisa, recomenda-se a expansão do 
método para incluir outras fontes de geração intermitentes, como a eólica, e a integração de módulos 
de previsão de carga em nível local, consolidando a ferramenta como uma solução ainda mais 
completa para os desafios da transição energética. 
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