

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 1

Enhancing the computational power of a general-purpose computer laboratory through
a Beowulf cluster using OpenFOAM

Wilson Ramalho Caldeira Filho[1], Alexandre Ramos Fonseca[2], Thiago Parente Lima[3]*

[1]wilson.filho@ufvjm.edu.br, [2] arfonseca@ufvjm.edu.br, [3]thiago.parente@ufvjm.edu.br. Instituto
de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha Mucuri (UFVJM),
Diamantina, Minas Gerais, Brasil
* corresponding author

Abstract
In the context of education and research in Computational Fluid Dynamics (CFD), the high costs
associated with software licenses, dedicated hardware, and cloud-based simulation services create
significant barriers for smaller universities and emerging research groups. At the same time, general-
purpose computer laboratories, often used for undergraduate teaching, tend to be underutilized, leading
to inefficient use of institutional resources. This study assesses the viability and performance of a
Beowulf-type cluster built with OpenFOAM to simulate a real-world engineering problem: steady-
state, external, incompressible airflow over a motorcyclist in a wind tunnel. The cluster was assembled
from sixty general-purpose desktop computers located in an undergraduate teaching laboratory. A
speedup factor of 55 was achieved by combining the sixty machines, allowing simulations with a mesh
of 64 million cells. RAM usage stayed below 1 GB per machine, making it feasible to share the

infrastructure between research and regular classroom activities. The findings indicate that setting up a
Beowulf cluster in such an environment can significantly increase computational capacity while
reducing idle time and maximizing the return on institutional investment in computing resources.
Keywords: Beowulf cluster; CFD; computational infrastructure; OpenFOAM; resource optimization.

Aprimorando o poder computacional de um laboratório de computação de uso geral por

meio de um cluster Beowulf utilizando OpenFOAM

Resumo
No contexto de educação e pesquisa em Dinâmica de Fluidos Computacional (CFD), os altos custos

associados a licenças de software, hardware dedicado e serviços de simulação baseados em nuvem

criam barreiras significativas para universidades menores e grupos de pesquisa emergentes. Ao

mesmo tempo, laboratórios de informática de uso geral, frequentemente usados para ensino de

graduação, tendem a ser subutilizados, levando ao uso ineficiente de recursos institucionais. Este

estudo avalia a viabilidade e o desempenho de um cluster do tipo Beowulf construído com

OpenFOAM para simular um problema de engenharia do mundo real: escoamento de ar externo,

incompressível e em estado estacionário sobre um motociclista em um túnel de vento. O cluster foi

montado a partir de sessenta computadores desktop de uso geral localizados em um laboratório de

ensino de graduação. Um fator de aceleração de 55 foi alcançado pela combinação das sessenta

máquinas, permitindo simulações com uma malha de 64 milhões de células. O uso de RAM

permaneceu abaixo de 1 GB por máquina, tornando viável o compartilhamento da infraestrutura

entre a pesquisa e as atividades regulares em sala de aula. As descobertas indicam que a criação de

um cluster Beowulf em tal ambiente pode aumentar significativamente a capacidade computacional,

reduzindo o tempo ocioso e maximizando o retorno do investimento institucional em recursos de

computação.

Palavras-chave: cluster Beowulf; CFD; infraestrutura computacional; OpenFOAM; otimização de

recursos.

1 Introduction

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 2

As research in Computational Fluid Dynamics (CFD) advances, new numerical models have
been developed to more accurately represent the physical phenomena involved in various industrial
processes. Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), and radiation transfer
models are examples of computationally intensive tools available in many general-purpose CFD
codes. These tools play a critical role in industries such as oil and gas, aerospace, and power
generation, as well as in simulations involving wind loads on buildings, wind distribution in urban
agglomerations, and the validation of turbulence models.

Despite their availability, effectively running these models requires significant computational
resources, which are not always available. Costs related to software licences, high-performance
hardware, or cloud simulation hours create substantial barriers, especially for smaller research groups.
Limited access to computational power can trap these groups in a cycle of underperformance,
hampering their ability to conduct impactful research and thus lowering their chances of securing
funding to upgrade their infrastructure. Even when cloud computing is accessible, the costs remain
prohibitive for many small institutions.

In complex simulations or product development stages, a significant amount of time is allocated
to initial runs before establishing a final setup suitable for reporting. These early simulations also
demand considerable computational power and should be included in the planning of a research
project’s budget. In this context, combining open-source software with personal computer (PC)
clustering presents a cost-effective alternative for accessing high-performance computing resources.

In undergraduate engineering and other STEM programmes, general-purpose computer
laboratories are common. These facilities are often underutilized during evenings, weekends, and
academic breaks. Even during regular class timetables, underuse is frequently observed (Cornforth;

Atkinson; Spennemann, 2006). As consumer electronics have become more affordable, students

increasingly rely on their own devices for internet access and coursework, further decreasing demand
for on-campus computing resources. Moreover, the widespread adoption of online teaching during the
recent pandemic is expected to continue, potentially leading to even lower usage of campus computing
laboratories.

Repurposing these laboratories to serve both student needs and research computing can boost
their utility and maximize the university’s return on investment in infrastructure.

The pioneering work on clustering PCs was carried out by Sterling et al. (1995), who introduced
the concept under the project name Beowulf. Since then, these configurations have been known as
Beowulf clusters. Dongarra et al. (2005) later defined Beowulf-class clusters as those built using
mass-market hardware and software components to achieve optimal performance. Following Sterling’s
work, broader investigations explored the implementation and parallel processing capabilities of such
clusters (Savarese et al., 1999). Studies assessing the feasibility of using Beowulf clusters for solving
engineering problems with in-house codes were also conducted (Cònsul et al., 2004; McMillan et al.,
1999; Noack; Jolly, 2000; Sonzogni et al., 2002). The problem sizes in these early studies were
aligned with the hardware limitations of their time. Today, the same problems can be run on an
ordinary laptop.

More recently, educational institutions have adopted Beowulf clusters to repurpose underused or
obsolete computers. David et al. (2019) assembled a cluster using computers scheduled for disposal
and used it to teach parallel computing. Fonseca (2022) constructed a cluster with twelve underused
lab computers but faced difficulties operating it with more than four nodes. Gomes et al. (2023)
created a cluster using mini-computers seized by Brazilian customs and repurposed them for use in
high-performance computing (HPC) education. Souza Filho, Nascimento, and Barros (2024)
developed AutoBeo, a script that reduces cluster setup time by 86%, facilitating broader adoption
without requiring dedicated IT staff.

While these studies demonstrate the feasibility of Beowulf clusters, none evaluate their
performance when used with CFD software.

Currently, parallel processing capabilities are readily accessible in general-purpose CFD codes,
even to inexperienced users. OpenFOAM, an open-source CFD software, is widely adopted in both

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 3

academic and commercial settings. Its parallel processing functionality is easily explored and can scale
to several thousand cores (Bnà et al., 2020). Customized versions of OpenFOAM have been used to
perform large-scale simulations on meshes containing up to 100 billion cells using supercomputers
(Phuc; Chiba; Minami, 2016). In 2019, a Technical Committee was established to address the
challenges of massively parallel high-performance computing (HPC) architectures, with a review
provided by Bnà et al. (2020).

Recent studies evaluating OpenFOAM's performance on Beowulf clusters remain limited,
particularly with respect to the number of computers (nodes) used. Wei and Sha (2013) employed a
seven-node Beowulf cluster but reported only the performance evaluation results, omitting crucial
details such as mesh size. In a more comprehensive study, Keough (2014) evaluated a cluster with
eight nodes and observed that performance (speedup) increased with the number of nodes, although
efficiency declined. The simulations involved meshes with up to 64 million cells.

Govorukhin et al. (2020) utilized a three-node cluster to simulate mine ventilation and reported
reduced simulation times, but did not provide a detailed performance assessment. Paytan and Martínez
(2022) observed low performance when increasing the number of nodes for a hydraulic jump
simulation, likely due to a disproportionate node count relative to the mesh size (only 18,000 cells).
Manica (2023) employed two out of 23 available nodes in a Beowulf cluster for battery cooling
simulations, without evaluating the cluster's performance.

Except for Keough (2014), few studies assess the performance or optimal configurations of
OpenFOAM on Beowulf clusters, particularly with larger numbers of nodes. While Keough (2014)
utilized only eight nodes, the present study extends the analysis to a Beowulf-type cluster comprising
up to sixty nodes. As the number of nodes increases, inter-node communication becomes a critical
factor, potentially introducing significant performance bottlenecks.

In addition to evaluating scalability and cluster viability, this study also examines solver
configurations for pressure and velocity using OpenFOAM to simulate steady-state external
incompressible airflow over a motorcyclist in a wind tunnel, a computationally demanding scenario
that underscores the importance of optimizing cluster performance.

The subsequent sections of this paper are structured as follows: Section 2 presents the
methodology for evaluating the cluster; Section 3 discusses the performance results; and Section 4

offers recommended parameters for configuring simulations on Beowulf clusters using OpenFOAM.

2 Methods
This section describes the hardware configuration of the cluster, the performance metrics

adopted, and the test case used for performance assessment. The cluster is named Bacurau
(Nyctidromus albicollis), a small nocturnal bird commonly found in rural areas of Brazil.

2.1 The Bacurau cluster

The Bacurau cluster was assembled using 60 desktop computers from a general-purpose
undergraduate computer laboratory at the Universidade Federal dos Vales do Jequitinhonha e Mucuri
(UFVJM), Brazil. This laboratory is primarily used in classes from various engineering programs
(Figure 1). Consequently, each computer hosts a broad range of software to meet both teaching and
learning needs, including office suites and CAD, CAE, and CFD applications. These machines are
configured with dual operating systems: Windows 10 and Linux.

Figure 1 – Computers in the general purpose laboratory used to build the cluster

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 4

Source: authors' archive

Each computer, hereafter called a cluster node, was equipped with an Intel Core i7-4770

processor featuring four processing units (PUs) running at 3.40 GHz, 8 GB of DDR3 RAM, 1 TB of

HDD storage, and a 1 Gb/s Ethernet connection. The operating system for the cluster simulations was

Ubuntu 18.04 Minimal. Although OpenFOAM can be installed on both Windows and Linux platforms,

the minimal Linux distribution was selected to maximize available RAM for simulations. This choice

posed no difficulties during the cluster setup.
The Beowulf cluster in this study was configured using a master-slave architecture, in which a

central computer (master node) manages distributed processing among the other nodes (Pedras; Horta;

Fonseca, 2019). A virtual machine was initially created with the Ubuntu 18.04 Minimal OS, selected

for its low resource footprint and compatibility with the necessary cloning tools. On this machine,

essential packages were installed, including the SSH server, the OpenMPI library, OpenFOAM, and,

most notably, DRBL (Diskless Remote Boot in Linux). DRBL enabled the slave nodes to boot over the

network (PXE boot), loading the operating system directly from the master node without requiring

local storage. It was also configured to function as a DHCP server and to provide base system images

to the client nodes.
The parallelization process was managed through the automated generation of a host file

containing the IP addresses of the active nodes and the number of available PUs per node, as required

by OpenFOAM. Bash scripts were employed to automate the copying of simulation files, the

proportional distribution of OpenFOAM subdomains across nodes, and the execution of parallel

processes using the mpirun command. Although the use of such scripts is not essential for basic cluster

operation, their role becomes increasingly valuable as the number of nodes increases, helping to

ensure consistency, reduce manual workload, and minimize the likelihood of configuration errors
1
.

Domain decomposition and parallel execution were performed following OpenFOAM’s recommended

practices, with necessary adjustments made to the decomposeParDict file to ensure compatibility

across the distributed system.

2.2 Test case configuration

1 The scripts are available upon request from the corresponding author.

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 5

The cluster's performance was evaluated using the motorBike tutorial case
2
 included with

OpenFOAM. This case simulates airflow over a motorcyclist (Figure 2) and solves the Reynolds-
averaged Navier-Stokes (RANS) equations for a three-dimensional, turbulent, and incompressible

flow with constant physical properties in steady-state conditions. The simulation computes velocity

and pressure fields, along with force coefficients. In OpenFOAM version 7, this type of flow is

modeled using the simpleFOAM solver. The motorBike tutorial is widely recognized within the

OpenFOAM community and serves as a standard, high-complexity engineering simulation. It is

particularly suitable for parallel execution and benchmarking cluster performance. In this study,

version 7 of OpenFOAM (distributed by the OpenFOAM Foundation) was used. All configuration

parameters were kept consistent with the original tutorial, except for those specifically modified for

this investigation.

Figure 2 – Geometry of the motorBike tutorial case

Source: authors' archive

To assess performance, three mesh sizes were employed: 1, 8, and 64 million cells. These were

created by modifying the background mesh, which is generated using OpenFOAM's blockMesh utility.

The background mesh dimensions were set to 31×13×13, 70×28×28, and 150×60×60 cells,

respectively. After generating the background mesh, the final mesh was constructed using the

snappyHexMesh (sHM) utility. All other mesh parameters were kept constant across tests.
Additionally, the study evaluated the three available domain decomposition methods in

OpenFOAM: simple, hierarchical, and scotch. Different solver-preconditioner combinations were also

assessed for solving the velocity and pressure systems. Table 1 lists all configurations tested. During

pressure solver testing, the velocity solver configuration remained unchanged, and vice versa.

Table 1 – Combinations of preconditioner/solver and solver/smoother assessed

2 Available at: https://github.com/OpenFOAM/OpenFOAM-7/tree/master/tutorials/incompressible/simpleFoam/motorBike.

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 6

Pressure (preconditioner/solver) Velocity (solver/smoother)

diagonal/GAMG smoothSolver/GaussSeidel

diagonal/PBiCGStab smoothSolver/DILU

diagonal/PCG smoothSolver/DILUGaussSeidel

DIC/GAMG DILU/PBiCG

DIC/PBiCGStab DILU/PBiCGStab

DIC/PCG GAMG

FDIC/GAMG smoothSolver/nonBlockingGaussSeidel

FDIC/PBiCGStab smoothSolver/symGaussSeidel

GAMG –
Source: elaborated by the authors

Once the case was configured, the sequence of OpenFOAM applications listed in Table 2 was

executed. The table also indicates whether each application was run in serial or parallel mode.

Table 2 – Sequence of applications executed in each test

Application Execution

surfaceFeatures Serial

blockMesh Serial

decomposePar -copyZero Serial

snappyHexMesh -overwrite -parallel Parallel

patchSummary -parallel Parallel

potentialFoam -parallel Parallel

simpleFoam -parallel Parallel
Source: elaborated by the authors

2.2.1 Performance measures

The performance of the cluster was evaluated based on RAM usage, RAM-to-cell ratio and
three primary metrics: speedup, efficiency, and total computational time. The total available RAM
corresponds to the sum of the RAM from all individual nodes. Likewise, RAM usage refers to the
aggregate of peak memory consumed by each node during a simulation run. The RAM-to-cell ratio,
calculated as the amount of available or used RAM divided by the number of cells in the mesh, serves
as a normalized metric for comparing simulations of different mesh sizes.

The speedup (S) is defined by Equation 1:

���� =
��1�

����
 (1)

where ��1� is the total simulation time using one processing unit (PU), and ���� is the simulation
time using � PUs in parallel. Speedup quantifies the reduction in computational time due to
parallelization. Ideally, speedup should scale linearly with the number of PUs, doubling the number of
PUs would, in an ideal scenario, halve the computational time.

The efficiency � is defined in Equation 2:

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 7

� =
����

�
 (2)

Efficiency indicates how closely the actual speedup approaches the ideal linear behavior. High

speedup achieved with a small number of PUs implies high parallelization efficiency, whereas low
speedup with a large number of PUs indicates poor scalability.

The third performance metric is total computational time, defined as the time required for the
simpleFoam application to complete 500 iterations. This iteration count was maintained to ensure
consistency with the original tutorial configuration. The time required for mesh generation and pre-
processing steps was excluded, as OpenFOAM users often rely on external software for meshing, even
when using open-source CFD solutions.

To compute the performance metrics, total computational times for single-core (serial)
simulations were needed for the meshes with 1, 8, and 64 million cells. However, due to memory
limitations, serial simulations for the 8- and 64-million-cell meshes could not be executed on a
standard cluster node. These simulations were thus performed on a high-performance workstation
equipped with an Intel Xeon Gold 6140 processor featuring 72 PUs at 2.30 GHz and 190 GB of RAM.

Since the clock speed of the workstation (2.30 GHz) differs from that of the cluster nodes (3.40
GHz), the measured times from the workstation were adjusted using a calibration equation. To derive
this correlation, simulations with meshes of 350,000 and 1 million cells were executed on both
machines. The resulting linear regression yields Equation 3:

	
.��� = 0.844	�.
�� − 43.138 (3)

where 	
.���z and 	�.
�� are the simulation times (in seconds) on processors with 3.4 GHz and 2.3
GHz clock speeds, respectively.

This equation was then used to calculate the total computational times for serial runs on a 3.4
GHz processor, based on measurements taken from the 2.3 GHz machine. The measured and estimated
total times are presented in Table 3. The results of Equation 3 should be regarded only as an estimate
of the total computational time for serial runs on the 3.4 GHz processor, since other factors - such as
differences in cache size, bus width, and RAM type between the two computers - may also affect
execution time. The estimated times (third column) were subsequently used in the calculation of
speedup values.

Table 3 – Measured and estimated total computational times for serial simulations

Mesh size (million cells)
Execution time (s)

2.3 GHz processor 3.4 GHz processor

0.350 842 668

1 2897 2402

8 28198 23756 (by Equation 3)

64 266670 225026 (by Equation 3)
Source: research data

3 Results and discussion

This section presents and discusses the results of the cluster assessment and the optimal
configuration for the test case. Cluster performance is evaluated in terms of RAM usage, speedup,
efficiency, and total computational time. Different decomposition methods and preconditioner/solver
combinations were tested with the goal of reducing computational time.

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 8

3.1 RAM usage and RAM-to-cell ratio
Simulations involving a large number of cells, particularly in external flow problems, typically

impose two primary hardware demands: processing capacity and RAM availability. While limited

processing power can lead to long and sometimes impractical execution times, insufficient RAM may

cause simulations to fail when memory usage reaches the system limit. The main objective of a

Beowulf cluster is to expand both resources via parallel computing.
To assess this capability, a script was developed to monitor RAM usage throughout the

execution of OpenFOAM applications.
Figure 3 illustrates RAM usage on a single cluster node during the complete execution of the

test case, including mesh generation and solver execution, for a mesh containing 1 million cells. The

solid lines represent memory usage by snappyHexMesh (sHM), while dashed lines indicate memory

consumption by simpleFoam.

Figure 3 – RAM usage on a single cluster node during full execution of the test case, including mesh generation

and solver run: solid lines represent memory usage by sHM and dashed lines indicate memory consumption by

simpleFoam

Source: research data

As the number of nodes increases, peak memory usage per node decreases. This behavior

enables the cluster to handle simulations with high memory demands. Notably, peak usage occurs

during mesh generation with sHM, reaching levels approximately 15% higher than those during the

execution of simpleFoam. It is reasonable to expect that memory consumption increases with the

number of mesh cells. This must be considered when configuring the cluster for simulations that

include both meshing and solving stages.

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 9

Figure 4 presents the reduction in RAM usage per node as the number of processing units (PUs)

increases, for meshes containing 1, 8, and 64 million cells. This analysis considers only the

simpleFoam application.

Figure 4 – Peak RAM usage per cluster node during simpleFoam execution for meshes with 1, 8 and 64 million

cells

Source: research data

As the number of PUs increases, the decreased RAM usage enables the execution of larger

meshes. For instance, simulations involving meshes with 8 and 64 million cells were only feasible

when 12 and 80 PUs were employed, respectively. These results underscore how the availability of

computational resources can limit research capabilities. Typical meshes for wind tunnel simulations

involving vehicle aerodynamics using RANS turbulence models range between 50 and 150 million

cells (Amiri et al., 2020; Jacuzzi; Granlund, 2019). In the case of turbomachinery simulations using

DES models, mesh sizes may reach several hundred million cells (Tyacke et al., 2019). Without

appropriate computational infrastructure, such studies remain out of reach for many research groups.
Moreover, Figure 4 shows that RAM usage by each node can be reduced to under 1 GB. This

low demand potentially enables the simultaneous use of the lab for both cluster operation and regular

teaching activities without mutual interference. Utilizing the cluster during office hours also facilitates

maintenance and supervision, eliminating the need for overtime work by students, technicians, or

researchers.
Table 4 summarizes RAM usage and the RAM-to-cell ratio during full execution for mesh sizes

of 1, 8, and 64 million cells. In the most demanding scenario (64 million cells), RAM usage reached

up to 82% of the total available memory. Simulations exceeding this threshold failed during mesh

generation due to insufficient memory.

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 10

Table 4 – RAM availability and usage in full test case execution

Parameters
Mesh size (cells)

1 million 8 million 64 million

Available RAM per node (Gb) 8 8 8

Maximum RAM usage per node (Gb) 2.23 5.71 6.56

Number of PUs 1 12 80

Number of nodes 1 3 20

RAMavailable (Gb/million cells) 8.0 3.0 2.5

RAMused (Gb/million cells) 2.23 2.14 2.05
Source: research data

The values in Table 4 represent the highest RAM usage per node that still allowed successful

execution. Assuming that simulations require at least 82% of total RAM available per node to proceed,
a RAM-to-cell ratio of approximately 2.61 GB per million cells per node can be used to estimate the
minimum RAM-to-cell ratio available necessary to a successful execution. This estimate supports the
planning and sizing of Beowulf clusters for specific simulation workloads similar to steady-state
incompressible turbulent flows. Additional studies are required to determine whether this reference
value is case-sensitive.

3.2 Cluster performance

In a parallel execution using OpenFOAM, the computational mesh is partitioned and distributed
across processing units (PUs) through a process known as domain decomposition. OpenFOAM offers
three decomposition methods: simple, hierarchical, and scotch. While the simple and hierarchical
methods require the user to manually define the number of partitions along the Cartesian axes, the
scotch method automatically distributes the mesh to minimize the number of processor boundaries.

Figure 5 presents the total computational time, speedup, and efficiency for the 1-million-cell
mesh using each decomposition method. Figures 6 and 7 show corresponding results for the 8-million
and 64-million cell meshes, respectively. Among all tested configurations, the scotch algorithm yielded
consistently the best performance. Keough (2014) found differing performance results for
decomposition methods when simulating the motorBike case with meshes of 350,000 and 1.8 million
cells on a Beowulf cluster with 8 nodes and 128 processing units. The results from Keough (2014)
suggest that the performance of decomposition methods is sensitive to mesh topology, which was not
observed in the present study.

Figure 5 – Performance of the cluster for the 1-million-cell mesh using different domain decomposition methods

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 11

Source: research data

Figure 6 – Performance of the cluster for the 8-million-cell mesh using different domain decomposition methods

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 12

Source: research data

Figure 7 – Performance of the cluster for the 64-million-cell mesh using different domain decomposition

methods

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 13

Source: research data

As the number of PUs increases, the total computational time flattens suggesting that the

increase in nodes, and consequently in network communication between them, begins to play a

significant role in the parallelization process decreasing its performance. A maximum speedup of 55

was achieved by interconnecting 60 computers comprising a total of 240 processing units (PUs) when

using the 64-million-cell mesh. Keough (2014) achieved a speedup of 28 on a Beowulf cluster with 8

nodes and 128 PUs when simulating the motorBike case with a 1.8-million-cell mesh. This value is

higher than that obtained in the present study for the 1-million-cell mesh using a similar number of

PUs. This result is expected, as Keough (2014) reached that number of PUs using only 8 nodes,

whereas the configuration in the present study required 32 nodes, thereby increasing the number of

network connections between nodes. For the 1, 8, and 64 million-cell meshes, no significant

improvement in performance were observed beyond 40, 120, and 160 PUs, respectively. Still,

increasing PU count may be desirable to lower RAM usage per node, thus facilitating shared use of the

laboratory space for both teaching and computational research.
The greatest speedup and efficiency gains were observed for the 64-million-cell mesh (Figure

7). However, all experiments showed a decline in efficiency with increasing PU count. This finding

highlights the importance of considering energy consumption and cost when configuring high-
performance simulations.

3.3 Evaluation of pressure and velocity solvers

The assessment of pressure and velocity preconditioner/solver configurations was carried out

with the goal of reducing total computational time. Initially, the portion of time spent solving the

pressure and velocity equation systems was monitored during the execution of simpleFoam. The

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 14

pressure equations were solved using GAMG, while the velocity equations and turbulence quantities

were handled by smoothSolver. Mesh decomposition was performed using the scotch algorithm.
Figure 8 shows the proportion of computational time spent by the pressure and velocity solvers,

as well as other tasks, for the three mesh sizes, while maintaining approximately the same cells-to-PU

ratio. The time distribution among solvers remains relatively consistent across all mesh sizes, with the

velocity and turbulence solvers accounting for the largest share of the computational time.

Figure 8 – Distribution of solver execution time across mesh sizes with constant cells-to-PU ratio

Source: research data

In Figure 9, solver execution times were monitored while keeping the number of processing

units (PUs) constant, which led to an increasing cells-to-PU ratio. The results indicate that the pressure

solver dominates the total computational time when the cells-to-PU ratio is low. Similarly, Bnà et al.

(2020) reported that the pressure solver accounted for 67% of the computational time when running

the OpenFOAM lid-driven cavity flow tutorial on a mesh with 1 million cells in a supercomputing

environment. In both cases, a low cells-to-PU ratio reflects the use of high computational capacity to

solve a relatively small problem, where the pressure solver becomes the main bottleneck to reducing

execution time. However, as shown in Figure 9, this pattern changes with a higher cells-to-PU ratio,

where the velocity solver becomes the primary contributor to the total computational time. This

scenario corresponds to cases where limited computational resources are used to solve larger

problems, an often-encountered situation in academic research groups. In such contexts, special

attention should be given to optimizing the configuration of the velocity solver to improve

performance.

Figure 9 – Solver time distribution with increasing cells-to-PU ratio

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 15

Source: research data

In Figure 10 the assessment of the preconditioner/solver combinations for pressure was

performed with the aim of reducing the computational time of the simulation. The assessment was

carried out in a 1 million cell mesh with a 100, 50 and 25 thousand cells to PU ratio. The total

computational time in Figure 10 is normalized by the highest time reached during the tests. The results

show different behaviors depending on the cells-to-PU ratio. For a 100 thousand cells-to-PU ratio, the

best performance was achieved using the GAMG solver. The different preconditioners used along with

the GAMG solver showed only a marginal variation in the total computational time, the best

combination being the FDIC/GAMG. A reduction of 22% in the total computational time was

achieved when comparing the FDIC/GAMG combination with the diagonal/PbiCGStab which

presented the worst performance.

Figure 10 – Normalized total simulation time for various pressure solver and preconditioner combinations

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 16

Source: research data

As the cells-to-PU ratio decreases in Figure 10, the solvers PCG and PBiCGStab, when used

with FDIC or DIC preconditioners, tend to outperform GAMG. At a ratio of 5,000 cells per PU, the

DIC/PCG combination achieved the best result, reducing total computational time by 4% compared to

GAMG, and by 11% when compared to diagonal/PCG. Based on these findings, it is recommended to

use FDIC/GAMG for simulations with a cells-to-PU ratio greater than 25,000. For lower ratios,

DIC/PCG or FDIC/PCG configurations are more suitable.
As previously shown in Figure 9, the influence of the velocity solvers becomes increasingly

relevant as the cells-to-PU ratio increases. Therefore, a similar analysis was conducted to assess their

performance. Figure 11 presents the normalized total simulation times for different velocity solvers

and preconditioner combinations across three cells-to-PU ratios.

Figure 11 – Normalized total simulation time for various velocity solver and preconditioner combinations

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 17

Source: research data

Unlike the pressure solvers, the velocity solver performance showed little variation across the

different ratios. The best result was achieved by the smoothSolver/DILUGaussSeidel combination,

which consistently outperformed the others regardless of the ratio. This configuration is therefore

recommended for solving the velocity equations under any cells-to-PU condition. Selecting this

optimal combination led to an 18% reduction in total computational time.
In absolute terms, the best pressure solver configuration saved 2.8 minutes out of a total of 12.8

minutes, while the optimal velocity solver combination saved 1.9 minutes from a 10.4-minute

simulation. It is important to note that all test cases were limited to the first 500 iterations, although

proportional time savings are expected in larger simulations of problems with similar physical

modeling.

4 Conclusions
The Beowulf cluster, implemented using general-purpose computer laboratory resources,

demonstrated a significant increase in computational performance. This configuration represents a

viable alternative for research groups with limited financial resources or restricted access to high-
performance computing centers. Additionally, it presents an opportunity to reduce the underutilization

of such laboratories during idle periods.
RAM usage per node was observed to decrease as the number of processing units (PUs)

increased. In some configurations, memory consumption was as low as 1 GB per node, making it

potentially feasible to operate the cluster concurrently with regular classroom activities during office

hours.

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 18

In the simulations conducted, a speedup of 55 was achieved by interconnecting 60 computers
comprising a total of 240 PUs. This enabled the execution of simulations involving meshes of up to 64
million cells. Due to the fact that all machines are connected to the same local network, the cluster
setup and operation proved to be straightforward and did not require the continuous presence of IT
professionals.

The cell to PU ratio must be considered when choosing the best preconditioner/solver to reduce
the total computational time. For pressure equations, the FDIC/GAMG configuration is recommended
when the cell-to-PU ratio exceeds 25,000. For lower ratios, DIC/PCG or FDIC/PCG combinations are
more efficient. Regarding velocity equations, the smoothSolver/DILUGaussSeidel consistently
delivered the best performance across all tested ratios.

Financial support

This research received no external funding.

Conflict of interest
The authors declare no conflict of interest.

Note
This article is based on an undergraduate thesis in Mechanical Engineering titled “Avaliação de

um cluster Beowulf utilizando OpenFOAM”, authored by Wilson Ramalho Caldeira Filho and
conducted at the Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), originally
written in Portuguese.

Contributions to the article

CALDEIRA FILHO, W. R.: conception or design of the study/research; data analysis and/or

interpretation. FONSECA, A. R.: conception or design of the study/research; final revision with

critical and intellectual contribution to the manuscript. LIMA, T. P.: conception or design of the
study/research; final revision with critical and intellectual contribution to the manuscript. All authors

contributed to the writing, discussion, reading, and approval of the final version of the manuscript.

References

AMIRI, H. A.; SHAFAGHT, R.; ALAMIAN, R.; TAHERI, S. M.; SHADLOO, M. S. Study of hori-
zontal axis tidal turbine performance and investigation on the optimum fixed pitch angle using CFD: a
case study of Iran. International Journal of Numerical Methods for Heat & Fluid Flow, v. 30, n. 1,
p. 206-227, 2020. DOI: https://doi.org/10.1108/HFF-05-2019-0447.

BNÀ, S.; SPISSO, I.; OLESEN, M.; ROSSI, G. PETSc4FOAM: a library to plug-in PETSc into the
OpenFOAM framework. PRACE white paper, 2020. Available at: https://prace-ri.eu/wp-
content/uploads/WP294-PETSc4FOAM-A-Library-to-plug-in-PETSc-into-the-OpenFOAM-
Framework.pdf. Accessed on: 27 Feb. 2025.

CÒNSUL, R.; RODRÍGUEZ, I.; PÉREZ-SEGARRA, C. D.; SORIA, M. Virtual prototyping of stor-
age tanks by means of three-dimensional CFD and heat transfer numerical simulations. Solar Energy,
v. 77, n. 2, p. 179-191, 2004. DOI: https://doi.org/10.1016/j.solener.2004.04.009.

CORNFORTH, D.; ATKINSON, J.; SPENNEMANN, D. H. R. Configuration and management of a
cluster computing facility in undergraduate student computer laboratories. Campus-Wide Infor-
mation Systems, v. 23, n. 1, p. 15-23, 2006. DOI: https://doi.org/10.1108/10650740610639705.

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 19

DAVID, N.; ALMEIDA, Y.; NETO, S. J.; ALMEIDA, D. D. Cluster Beowulf de baixo custo para o
estudo de sistemas distribuídos. In: ESCOLA REGIONAL DE INFORMÁTICA DE MATO GROS-
SO, 10., Cuiabá. Anais [...]. Cuiabá: SBC, 2019. DOI: https://doi.org/10.5753/eri-mt.2019.8612 . In
Portuguese.

DONGARRA, J.; STERLING, T.; SIMON, H.; STROHMAIER, E. High-performance computing:
clusters, constellations, MPPs, and future directions. Computing in Science & Engineering, v. 7, n.
2, p. 51-59, 2005. DOI: https://doi.org/10.1109/MCSE.2005.34.

FONSECA, G. E. A. S. Implementação de um cluster com computadores subutilizados dos laborató-
rios do Instituto Federal de Goiás – Câmpus Uruaçu. Undergraduate thesis (Bachelor of Technology in
Systems Analysis and Development) – Insitituto Federal de Goiás, Uruaçu, 2022. Available at:
http://repositorio.ifg.edu.br:8080/handle/prefix/1710. Accessed on: 18 Jun. 2025. In Portuguese.

GOMES, J. P. T.; SILVA, P. H. B.; INNOCENTINI, M. D. M.; FORMIGONI, C. E. Análise de de-
sempenho de um cluster Beowulf com utilização de TV Box. Jornada Científica e Tecnológica, v.
15, n. 3, 2023. Available at: https://josif.ifsuldeminas.edu.br/ojs/index.php/anais/article/view/761.
Accessed on: 27 Feb. 2025. In Portuguese.

GOVORUKHIN, Y.; KRIVOLAPOV, V.; PALEEV, D.; PORTOLA, V. Numerical studies of the
aerodynamic features of dead-end entries with side junction. E3S Web of Conferences, v. 174,
01057, 2020. DOI: https://doi.org/10.1051/e3sconf/202017401057.

JACUZZI, E.; GRANLUND, K. Passive flow control for drag reduction in vehicle platoons. Journal
of Wind Engineering and Industrial Aerodynamics, v. 189, p. 104-117, 2019. DOI:
https://doi.org/10.1016/j.jweia.2019.03.001.

KEOUGH, S. Optimising the parallelisation of OpenFOAM simulations. Victoria: Defence Science
and Technology Organisation, 2014. Available at: https://apps.dtic.mil/sti/tr/pdf/ADA612337.pdf.
Accessed on: 27 Feb. 2025.

MANICA, L. A. Análise numérica de sistemas de gerenciamento térmico de baterias para veículos
elétricos. 2023. Undergraduate thesis (Bachelor of Automotive Engineering) – Universidade Federal
de Santa Catarina, Joinville, 2023. Available at: https://repositorio.ufsc.br/handle/123456789/248347.
Accessed on: 18 Jun. 2025. In Portuguese.

MCMILLAN, W.; WOODGATE, M.; RICHARDS, B. E.; GRIBBEN, B. J.; BADCOCK, K. J.;
MASSON, C. A.; CANTARITI, F. Demonstration of cluster computing for three-dimensional CFD
simulations. The Aeronautical Journal, v. 103, n. 1027, p. 443-447, 1999. DOI:
https://doi.org/10.1017/S0001924000028037.

NOACK, R.; JOLLY, B. Fully time accurate CFD simulations of JDAM separation from an F-18C
aircraft. In: AEROSPACE SCIENCES MEETING AND EXHIBIT, 38., ,2000, Reno. Proceedings
[…]. . Reno: AIAA, 2000. DOI: https://doi.org/10.2514/6.2000-794.

PAYTAN, J. R.; MARTÍNEZ, J. P. V. Desempeño del sistema cluster para la solución numérica tri-
dimensional del resalto hidráulico. Undergraduate thesis (Bachelor in Civil Engineering) – Univer-
sidad Nacional de Huancavelica, Huancavelica, 2022. Available at:
https://hdl.handle.net/20.500.14597/5036. Accessed on: 27 Feb. 2025. In Spanish.

Rev. Principia, João Pessoa, Early View (será revisado e diagramado) 20

PEDRAS, M. B.; HORTA, E. G.; FONSECA, A. R. RedBlue: um cluster para simulações computaci-
onais. Revista de Sistemas e Computação, v. 9, n. 1, p. 75-95, 2019. Available at:
https://revistas.unifacs.br/index.php/rsc/article/view/5850. Accessed on: 18 Jun. 2025. In Portuguese.

PHUC, P. V.; CHIBA, S.; MINAMI, K. Large scale transient CFD simulations for buildings using
OpenFOAM on a World’s top-class supercomputer. In: OPENFOAM USER CONFERENCE, 4.,
2016, Cologne. Proceedings [...]. Cologne: 2016.

SAVARESE, D. F.; BECKER, D. J.; SALMON, J.; STERLING, T. How to build a Beowulf: a guide
to the implementation and application of PC clusters. Cambridge, Mass: MIT Press, 1999.

SONZOGNI, V. E.; YOMMI, A. M.; NIGRO, N. M.; STORTI, M. A. A parallel finite element pro-
gram on a Beowulf cluster. Advances in Engineering Software, v. 33, n. 7-10, p. 427-443, 2002.
DOI: https://doi.org/10.1016/S0965-9978(02)00059-5.

SOUZA FILHO, E. L.; NASCIMENTO, V. H.; BARROS, R. C. AUTOBEO: uma solução para cons-
trução de um cluster Beowulf. Revista Contemporânea, v. 4, n. 11, e6520, 2024. DOI:
https://doi.org/10.56083/RCV4N11-056. In Portuguese.

STERLING, T.; BECKER, D. J.; SAVARESE, D.; DORBARND, J. E.; RANAWAKE, U. A.;
PACKER, C. V. BEOWULF: a parallel workstation for scientific computation. In: INTERNATION-
AL CONFERENCE ON PARALLEL PROCESSING, 1995. Proceedings […]. 1995. Available at:
https://egscbeowulf.er.usgs.gov/geninfo/Beowulf-ICPP95.pdf. Accessed on: 27 Feb. 2025.

TYACKE, J.; VADLAMANI , N. R.; TROJAK, W; WATSON, R.; MA, Y.; TUCKER, P. G. Tur-
bomachinery simulation challenges and the future. Progress in Aerospace Sciences, v. 110, 100554,
2019. DOI: https://doi.org/10.1016/j.paerosci.2019.100554.

WEI, Y.; SHA, F. The performance of OpenFOAM in Beowulf clusters. In: INTERNATIONAL
CONFERENCE ON COMPUTER SCIENCE AND ELECTRONICS ENGINEERING. In: INTER-
NATIONAL CONFERENCE ON COMPUTER SCIENCE AND ELECTRONICS ENGINEERING
(ICCSEE 2013), 2., 2013. Proceedings […]. Hangzhou, 2013. Available at: https://www.atlantis-
press.com/article/4852.pdf. Accessed on: 27 Feb. 2025.

