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Abstract 
In the context of education and research in Computational Fluid Dynamics (CFD), the high costs 
associated with software licenses, dedicated hardware, and cloud-based simulation services create 
significant barriers for smaller universities and emerging research groups. At the same time, general-
purpose computer laboratories, often used for undergraduate teaching, tend to be underutilized, leading 
to inefficient use of institutional resources. This study assesses the viability and performance of a 
Beowulf-type cluster built with OpenFOAM to simulate a real-world engineering problem: steady-
state, external, incompressible airflow over a motorcyclist in a wind tunnel. The cluster was assembled 
from sixty general-purpose desktop computers located in an undergraduate teaching laboratory. A 
speedup factor of 55 was achieved by combining the sixty machines, allowing simulations with a mesh 
of 64 million cells. RAM usage stayed below 1 GB per machine, making it feasible to share the 

infrastructure between research and regular classroom activities. The findings indicate that setting up a 
Beowulf cluster in such an environment can significantly increase computational capacity while 
reducing idle time and maximizing the return on institutional investment in computing resources. 
Keywords: Beowulf cluster; CFD; computational infrastructure; OpenFOAM; resource optimization. 

 
Aprimorando o poder computacional de um laboratório de computação de uso geral por 

meio de um cluster Beowulf utilizando OpenFOAM 
 

Resumo 
No contexto de educação e pesquisa em Dinâmica de Fluidos Computacional (CFD), os altos custos 

associados a licenças de software, hardware dedicado e serviços de simulação baseados em nuvem 

criam barreiras significativas para universidades menores e grupos de pesquisa emergentes. Ao 

mesmo tempo, laboratórios de informática de uso geral, frequentemente usados para ensino de 

graduação, tendem a ser subutilizados, levando ao uso ineficiente de recursos institucionais. Este 

estudo avalia a viabilidade e o desempenho de um cluster do tipo Beowulf construído com 

OpenFOAM para simular um problema de engenharia do mundo real: escoamento de ar externo, 

incompressível e em estado estacionário sobre um motociclista em um túnel de vento. O cluster foi 

montado a partir de sessenta computadores desktop de uso geral localizados em um laboratório de 

ensino de graduação. Um fator de aceleração de 55 foi alcançado pela combinação das sessenta 

máquinas, permitindo simulações com uma malha de 64 milhões de células. O uso de RAM 

permaneceu abaixo de 1 GB por máquina, tornando viável o compartilhamento da infraestrutura 

entre a pesquisa e as atividades regulares em sala de aula. As descobertas indicam que a criação de 

um cluster Beowulf em tal ambiente pode aumentar significativamente a capacidade computacional, 

reduzindo o tempo ocioso e maximizando o retorno do investimento institucional em recursos de 

computação. 

Palavras-chave: cluster Beowulf; CFD; infraestrutura computacional; OpenFOAM; otimização de 

recursos. 

 
1 Introduction 
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As research in Computational Fluid Dynamics (CFD) advances, new numerical models have 
been developed to more accurately represent the physical phenomena involved in various industrial 
processes. Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), and radiation transfer 
models are examples of computationally intensive tools available in many general-purpose CFD 
codes. These tools play a critical role in industries such as oil and gas, aerospace, and power 
generation, as well as in simulations involving wind loads on buildings, wind distribution in urban 
agglomerations, and the validation of turbulence models. 

Despite their availability, effectively running these models requires significant computational 
resources, which are not always available. Costs related to software licences, high-performance 
hardware, or cloud simulation hours create substantial barriers, especially for smaller research groups. 
Limited access to computational power can trap these groups in a cycle of underperformance, 
hampering their ability to conduct impactful research and thus lowering their chances of securing 
funding to upgrade their infrastructure. Even when cloud computing is accessible, the costs remain 
prohibitive for many small institutions. 

In complex simulations or product development stages, a significant amount of time is allocated 
to initial runs before establishing a final setup suitable for reporting. These early simulations also 
demand considerable computational power and should be included in the planning of a research 
project’s budget. In this context, combining open-source software with personal computer (PC) 
clustering presents a cost-effective alternative for accessing high-performance computing resources. 

In undergraduate engineering and other STEM programmes, general-purpose computer 
laboratories are common. These facilities are often underutilized during evenings, weekends, and 
academic breaks. Even during regular class timetables, underuse is frequently observed (Cornforth; 

Atkinson; Spennemann, 2006). As consumer electronics have become more affordable, students 

increasingly rely on their own devices for internet access and coursework, further decreasing demand 
for on-campus computing resources. Moreover, the widespread adoption of online teaching during the 
recent pandemic is expected to continue, potentially leading to even lower usage of campus computing 
laboratories. 

Repurposing these laboratories to serve both student needs and research computing can boost 
their utility and maximize the university’s return on investment in infrastructure. 

The pioneering work on clustering PCs was carried out by Sterling et al. (1995), who introduced 
the concept under the project name Beowulf. Since then, these configurations have been known as 
Beowulf clusters. Dongarra et al. (2005) later defined Beowulf-class clusters as those built using 
mass-market hardware and software components to achieve optimal performance. Following Sterling’s 
work, broader investigations explored the implementation and parallel processing capabilities of such 
clusters (Savarese et al., 1999). Studies assessing the feasibility of using Beowulf clusters for solving 
engineering problems with in-house codes were also conducted (Cònsul et al., 2004; McMillan et al., 
1999; Noack; Jolly, 2000; Sonzogni et al., 2002). The problem sizes in these early studies were 
aligned with the hardware limitations of their time. Today, the same problems can be run on an 
ordinary laptop. 

More recently, educational institutions have adopted Beowulf clusters to repurpose underused or 
obsolete computers. David et al. (2019) assembled a cluster using computers scheduled for disposal 
and used it to teach parallel computing. Fonseca (2022) constructed a cluster with twelve underused 
lab computers but faced difficulties operating it with more than four nodes. Gomes et al. (2023) 
created a cluster using mini-computers seized by Brazilian customs and repurposed them for use in 
high-performance computing (HPC) education. Souza Filho, Nascimento, and Barros (2024) 
developed AutoBeo, a script that reduces cluster setup time by 86%, facilitating broader adoption 
without requiring dedicated IT staff. 

While these studies demonstrate the feasibility of Beowulf clusters, none evaluate their 
performance when used with CFD software. 

Currently, parallel processing capabilities are readily accessible in general-purpose CFD codes, 
even to inexperienced users. OpenFOAM, an open-source CFD software, is widely adopted in both 
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academic and commercial settings. Its parallel processing functionality is easily explored and can scale 
to several thousand cores (Bnà et al., 2020). Customized versions of OpenFOAM have been used to 
perform large-scale simulations on meshes containing up to 100 billion cells using supercomputers 
(Phuc; Chiba; Minami, 2016). In 2019, a Technical Committee was established to address the 
challenges of massively parallel high-performance computing (HPC) architectures, with a review 
provided by Bnà et al. (2020). 

Recent studies evaluating OpenFOAM's performance on Beowulf clusters remain limited, 
particularly with respect to the number of computers (nodes) used. Wei and Sha (2013) employed a 
seven-node Beowulf cluster but reported only the performance evaluation results, omitting crucial 
details such as mesh size. In a more comprehensive study, Keough (2014) evaluated a cluster with 
eight nodes and observed that performance (speedup) increased with the number of nodes, although 
efficiency declined. The simulations involved meshes with up to 64 million cells. 

Govorukhin et al. (2020) utilized a three-node cluster to simulate mine ventilation and reported 
reduced simulation times, but did not provide a detailed performance assessment. Paytan and Martínez 
(2022) observed low performance when increasing the number of nodes for a hydraulic jump 
simulation, likely due to a disproportionate node count relative to the mesh size (only 18,000 cells). 
Manica (2023) employed two out of 23 available nodes in a Beowulf cluster for battery cooling 
simulations, without evaluating the cluster's performance. 

Except for Keough (2014), few studies assess the performance or optimal configurations of 
OpenFOAM on Beowulf clusters, particularly with larger numbers of nodes. While Keough (2014) 
utilized only eight nodes, the present study extends the analysis to a Beowulf-type cluster comprising 
up to sixty nodes. As the number of nodes increases, inter-node communication becomes a critical 
factor, potentially introducing significant performance bottlenecks. 

In addition to evaluating scalability and cluster viability, this study also examines solver 
configurations for pressure and velocity using OpenFOAM to simulate steady-state external 
incompressible airflow over a motorcyclist in a wind tunnel, a computationally demanding scenario 
that underscores the importance of optimizing cluster performance. 

The subsequent sections of this paper are structured as follows: Section 2 presents the 
methodology for evaluating the cluster; Section 3 discusses the performance results; and Section 4 

offers recommended parameters for configuring simulations on Beowulf clusters using OpenFOAM. 
 

2 Methods 
This section describes the hardware configuration of the cluster, the performance metrics 

adopted, and the test case used for performance assessment. The cluster is named Bacurau 
(Nyctidromus albicollis), a small nocturnal bird commonly found in rural areas of Brazil. 

 
2.1 The Bacurau cluster 

The Bacurau cluster was assembled using 60 desktop computers from a general-purpose 
undergraduate computer laboratory at the Universidade Federal dos Vales do Jequitinhonha e Mucuri 
(UFVJM), Brazil. This laboratory is primarily used in classes from various engineering programs 
(Figure 1). Consequently, each computer hosts a broad range of software to meet both teaching and 
learning needs, including office suites and CAD, CAE, and CFD applications. These machines are 
configured with dual operating systems: Windows 10 and Linux. 

 
Figure 1 – Computers in the general purpose laboratory used to build the cluster 
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Source: authors' archive 

 
Each computer, hereafter called a cluster node, was equipped with an Intel Core i7-4770 

processor featuring four processing units (PUs) running at 3.40 GHz, 8 GB of DDR3 RAM, 1 TB of 

HDD storage, and a 1 Gb/s Ethernet connection. The operating system for the cluster simulations was 

Ubuntu 18.04 Minimal. Although OpenFOAM can be installed on both Windows and Linux platforms, 

the minimal Linux distribution was selected to maximize available RAM for simulations. This choice 

posed no difficulties during the cluster setup. 
The Beowulf cluster in this study was configured using a master-slave architecture, in which a 

central computer (master node) manages distributed processing among the other nodes (Pedras; Horta; 

Fonseca, 2019). A virtual machine was initially created with the Ubuntu 18.04 Minimal OS, selected 

for its low resource footprint and compatibility with the necessary cloning tools. On this machine, 

essential packages were installed, including the SSH server, the OpenMPI library, OpenFOAM, and, 

most notably, DRBL (Diskless Remote Boot in Linux). DRBL enabled the slave nodes to boot over the 

network (PXE boot), loading the operating system directly from the master node without requiring 

local storage. It was also configured to function as a DHCP server and to provide base system images 

to the client nodes. 
The parallelization process was managed through the automated generation of a host file 

containing the IP addresses of the active nodes and the number of available PUs per node, as required 

by OpenFOAM. Bash scripts were employed to automate the copying of simulation files, the 

proportional distribution of OpenFOAM subdomains across nodes, and the execution of parallel 

processes using the mpirun command. Although the use of such scripts is not essential for basic cluster 

operation, their role becomes increasingly valuable as the number of nodes increases, helping to 

ensure consistency, reduce manual workload, and minimize the likelihood of configuration errors
1
. 

Domain decomposition and parallel execution were performed following OpenFOAM’s recommended 

practices, with necessary adjustments made to the decomposeParDict file to ensure compatibility 

across the distributed system. 
 

2.2 Test case configuration 

                                                 
1 The scripts are available upon request from the corresponding author. 
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The cluster's performance was evaluated using the motorBike tutorial case
2
 included with 

OpenFOAM. This case simulates airflow over a motorcyclist (Figure 2) and solves the Reynolds-
averaged Navier-Stokes (RANS) equations for a three-dimensional, turbulent, and incompressible 

flow with constant physical properties in steady-state conditions. The simulation computes velocity 

and pressure fields, along with force coefficients. In OpenFOAM version 7, this type of flow is 

modeled using the simpleFOAM solver. The motorBike tutorial is widely recognized within the 

OpenFOAM community and serves as a standard, high-complexity engineering simulation. It is 

particularly suitable for parallel execution and benchmarking cluster performance. In this study, 

version 7 of OpenFOAM (distributed by the OpenFOAM Foundation) was used. All configuration 

parameters were kept consistent with the original tutorial, except for those specifically modified for 

this investigation. 
 

Figure 2 – Geometry of the motorBike tutorial case 

 
Source: authors' archive 

 
To assess performance, three mesh sizes were employed: 1, 8, and 64 million cells. These were 

created by modifying the background mesh, which is generated using OpenFOAM's blockMesh utility. 

The background mesh dimensions were set to 31×13×13, 70×28×28, and 150×60×60 cells, 

respectively. After generating the background mesh, the final mesh was constructed using the 

snappyHexMesh (sHM) utility. All other mesh parameters were kept constant across tests. 
Additionally, the study evaluated the three available domain decomposition methods in 

OpenFOAM: simple, hierarchical, and scotch. Different solver-preconditioner combinations were also 

assessed for solving the velocity and pressure systems. Table 1 lists all configurations tested. During 

pressure solver testing, the velocity solver configuration remained unchanged, and vice versa. 
 

Table 1 – Combinations of preconditioner/solver and solver/smoother assessed 

                                                 
2 Available at: https://github.com/OpenFOAM/OpenFOAM-7/tree/master/tutorials/incompressible/simpleFoam/motorBike. 
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Pressure (preconditioner/solver) Velocity (solver/smoother) 

diagonal/GAMG smoothSolver/GaussSeidel 

diagonal/PBiCGStab smoothSolver/DILU 

diagonal/PCG smoothSolver/DILUGaussSeidel 

DIC/GAMG DILU/PBiCG 

DIC/PBiCGStab DILU/PBiCGStab 

DIC/PCG GAMG 

FDIC/GAMG smoothSolver/nonBlockingGaussSeidel 

FDIC/PBiCGStab smoothSolver/symGaussSeidel 

GAMG – 
Source: elaborated by the authors 

 
Once the case was configured, the sequence of OpenFOAM applications listed in Table 2 was 

executed. The table also indicates whether each application was run in serial or parallel mode. 
 

Table 2 – Sequence of applications executed in each test 

Application Execution 

surfaceFeatures Serial 

blockMesh Serial 

decomposePar -copyZero Serial 

snappyHexMesh -overwrite -parallel Parallel 

patchSummary -parallel Parallel 

potentialFoam -parallel Parallel 

simpleFoam -parallel Parallel 
Source: elaborated by the authors 

 
2.2.1 Performance measures 

The performance of the cluster was evaluated based on RAM usage, RAM-to-cell ratio and 
three primary metrics: speedup, efficiency, and total computational time. The total available RAM 
corresponds to the sum of the RAM from all individual nodes. Likewise, RAM usage refers to the 
aggregate of peak memory consumed by each node during a simulation run. The RAM-to-cell ratio, 
calculated as the amount of available or used RAM divided by the number of cells in the mesh, serves 
as a normalized metric for comparing simulations of different mesh sizes. 

The speedup (S) is defined by Equation 1: 
 

���� =
��1�

����
 (1) 

 
where ��1� is the total simulation time using one processing unit (PU), and ���� is the simulation 
time using � PUs in parallel. Speedup quantifies the reduction in computational time due to 
parallelization. Ideally, speedup should scale linearly with the number of PUs, doubling the number of 
PUs would, in an ideal scenario, halve the computational time. 

The efficiency � is defined in Equation 2: 
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����

�
 (2) 

 
Efficiency indicates how closely the actual speedup approaches the ideal linear behavior. High 

speedup achieved with a small number of PUs implies high parallelization efficiency, whereas low 
speedup with a large number of PUs indicates poor scalability. 

The third performance metric is total computational time, defined as the time required for the 
simpleFoam application to complete 500 iterations. This iteration count was maintained to ensure 
consistency with the original tutorial configuration. The time required for mesh generation and pre-
processing steps was excluded, as OpenFOAM users often rely on external software for meshing, even 
when using open-source CFD solutions. 

To compute the performance metrics, total computational times for single-core (serial) 
simulations were needed for the meshes with 1, 8, and 64 million cells. However, due to memory 
limitations, serial simulations for the 8- and 64-million-cell meshes could not be executed on a 
standard cluster node. These simulations were thus performed on a high-performance workstation 
equipped with an Intel Xeon Gold 6140 processor featuring 72 PUs at 2.30 GHz and 190 GB of RAM. 

Since the clock speed of the workstation (2.30 GHz) differs from that of the cluster nodes (3.40 
GHz), the measured times from the workstation were adjusted using a calibration equation. To derive 
this correlation, simulations with meshes of 350,000 and 1 million cells were executed on both 
machines. The resulting linear regression yields Equation 3: 

 

	
.��� = 0.844	�.
�� − 43.138 (3) 

 
where 	
.���z and 	�.
�� are the simulation times (in seconds) on processors with 3.4 GHz and 2.3 
GHz clock speeds, respectively. 

This equation was then used to calculate the total computational times for serial runs on a 3.4 
GHz processor, based on measurements taken from the 2.3 GHz machine. The measured and estimated 
total times are presented in Table 3. The results of Equation 3 should be regarded only as an estimate 
of the total computational time for serial runs on the 3.4 GHz processor, since other factors - such as 
differences in cache size, bus width, and RAM type between the two computers - may also affect 
execution time. The estimated times (third column) were subsequently used in the calculation of 
speedup values. 

 
Table 3 – Measured and estimated total computational times for serial simulations 

Mesh size (million cells) 
Execution time (s) 

2.3 GHz processor 3.4 GHz processor 

0.350 842 668 

1 2897 2402 

8 28198 23756 (by Equation 3) 

64 266670 225026 (by Equation 3) 
Source: research data 

 
3 Results and discussion 

This section presents and discusses the results of the cluster assessment and the optimal 
configuration for the test case. Cluster performance is evaluated in terms of RAM usage, speedup, 
efficiency, and total computational time. Different decomposition methods and preconditioner/solver 
combinations were tested with the goal of reducing computational time. 
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3.1 RAM usage and RAM-to-cell ratio 
Simulations involving a large number of cells, particularly in external flow problems, typically 

impose two primary hardware demands: processing capacity and RAM availability. While limited 

processing power can lead to long and sometimes impractical execution times, insufficient RAM may 

cause simulations to fail when memory usage reaches the system limit. The main objective of a 

Beowulf cluster is to expand both resources via parallel computing. 
To assess this capability, a script was developed to monitor RAM usage throughout the 

execution of OpenFOAM applications. 
Figure 3 illustrates RAM usage on a single cluster node during the complete execution of the 

test case, including mesh generation and solver execution, for a mesh containing 1 million cells. The 

solid lines represent memory usage by snappyHexMesh (sHM), while dashed lines indicate memory 

consumption by simpleFoam. 
 

Figure 3 – RAM usage on a single cluster node during full execution of the test case, including mesh generation 

and solver run: solid lines represent memory usage by sHM and dashed lines indicate memory consumption by 

simpleFoam 

Source: research data 
 
As the number of nodes increases, peak memory usage per node decreases. This behavior 

enables the cluster to handle simulations with high memory demands. Notably, peak usage occurs 

during mesh generation with sHM, reaching levels approximately 15% higher than those during the 

execution of simpleFoam. It is reasonable to expect that memory consumption increases with the 

number of mesh cells. This must be considered when configuring the cluster for simulations that 

include both meshing and solving stages. 
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Figure 4 presents the reduction in RAM usage per node as the number of processing units (PUs) 

increases, for meshes containing 1, 8, and 64 million cells. This analysis considers only the 

simpleFoam application. 
 

Figure 4 – Peak RAM usage per cluster node during simpleFoam execution for meshes with 1, 8 and 64 million 

cells 

 
Source: research data 

 
As the number of PUs increases, the decreased RAM usage enables the execution of larger 

meshes. For instance, simulations involving meshes with 8 and 64 million cells were only feasible 

when 12 and 80 PUs were employed, respectively. These results underscore how the availability of 

computational resources can limit research capabilities. Typical meshes for wind tunnel simulations 

involving vehicle aerodynamics using RANS turbulence models range between 50 and 150 million 

cells (Amiri et al., 2020; Jacuzzi; Granlund, 2019). In the case of turbomachinery simulations using 

DES models, mesh sizes may reach several hundred million cells (Tyacke et al., 2019). Without 

appropriate computational infrastructure, such studies remain out of reach for many research groups. 
Moreover, Figure 4 shows that RAM usage by each node can be reduced to under 1 GB. This 

low demand potentially enables the simultaneous use of the lab for both cluster operation and regular 

teaching activities without mutual interference. Utilizing the cluster during office hours also facilitates 

maintenance and supervision, eliminating the need for overtime work by students, technicians, or 

researchers. 
Table 4 summarizes RAM usage and the RAM-to-cell ratio during full execution for mesh sizes 

of 1, 8, and 64 million cells. In the most demanding scenario (64 million cells), RAM usage reached 

up to 82% of the total available memory. Simulations exceeding this threshold failed during mesh 

generation due to insufficient memory. 
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Table 4 – RAM availability and usage in full test case execution 

Parameters 
Mesh size (cells) 

1 million 8 million 64 million 

Available RAM per node (Gb) 8 8 8 

Maximum RAM usage per node (Gb) 2.23 5.71 6.56 

Number of PUs 1 12 80 

Number of nodes 1 3 20 

RAMavailable (Gb/million cells) 8.0 3.0 2.5 

RAMused (Gb/million cells) 2.23 2.14 2.05 
Source: research data 

 
The values in Table 4 represent the highest RAM usage per node that still allowed successful 

execution. Assuming that simulations require at least 82% of total RAM available per node to proceed, 
a RAM-to-cell ratio of approximately 2.61 GB per million cells per node can be used to estimate the 
minimum RAM-to-cell ratio available necessary to a successful execution. This estimate supports the 
planning and sizing of Beowulf clusters for specific simulation workloads similar to steady-state 
incompressible turbulent flows. Additional studies are required to determine whether this reference 
value is case-sensitive. 

 
3.2 Cluster performance 

In a parallel execution using OpenFOAM, the computational mesh is partitioned and distributed 
across processing units (PUs) through a process known as domain decomposition. OpenFOAM offers 
three decomposition methods: simple, hierarchical, and scotch. While the simple and hierarchical 
methods require the user to manually define the number of partitions along the Cartesian axes, the 
scotch method automatically distributes the mesh to minimize the number of processor boundaries. 

Figure 5 presents the total computational time, speedup, and efficiency for the 1-million-cell 
mesh using each decomposition method. Figures 6 and 7 show corresponding results for the 8-million 
and 64-million cell meshes, respectively. Among all tested configurations, the scotch algorithm yielded 
consistently the best performance. Keough (2014) found differing performance results for 
decomposition methods when simulating the motorBike case with meshes of 350,000 and 1.8 million 
cells on a Beowulf cluster with 8 nodes and 128 processing units. The results from Keough (2014) 
suggest that the performance of decomposition methods is sensitive to mesh topology, which was not 
observed in the present study. 

 
Figure 5 – Performance of the cluster for the 1-million-cell mesh using different domain decomposition methods 
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Source: research data 
 

Figure 6 – Performance of the cluster for the 8-million-cell mesh using different domain decomposition methods 
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Source: research data 

 
Figure 7 – Performance of the cluster for the 64-million-cell mesh using different domain decomposition 

methods 
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Source: research data 
 
As the number of PUs increases, the total computational time flattens suggesting that the 

increase in nodes, and consequently in network communication between them, begins to play a 

significant role in the parallelization process decreasing its performance. A maximum speedup of 55 

was achieved by interconnecting 60 computers comprising a total of 240 processing units (PUs) when 

using the 64-million-cell mesh. Keough (2014) achieved a speedup of 28 on a Beowulf cluster with 8 

nodes and 128 PUs when simulating the motorBike case with a 1.8-million-cell mesh. This value is 

higher than that obtained in the present study for the 1-million-cell mesh using a similar number of 

PUs. This result is expected, as Keough (2014) reached that number of PUs using only 8 nodes, 

whereas the configuration in the present study required 32 nodes, thereby increasing the number of 

network connections between nodes. For the 1, 8, and 64 million-cell meshes, no significant 

improvement in performance were observed beyond 40, 120, and 160 PUs, respectively. Still, 

increasing PU count may be desirable to lower RAM usage per node, thus facilitating shared use of the 

laboratory space for both teaching and computational research. 
The greatest speedup and efficiency gains were observed for the 64-million-cell mesh (Figure 

7). However, all experiments showed a decline in efficiency with increasing PU count. This finding 

highlights the importance of considering energy consumption and cost when configuring high-
performance simulations. 

 
3.3 Evaluation of pressure and velocity solvers 

The assessment of pressure and velocity preconditioner/solver configurations was carried out 

with the goal of reducing total computational time. Initially, the portion of time spent solving the 

pressure and velocity equation systems was monitored during the execution of simpleFoam. The 
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pressure equations were solved using GAMG, while the velocity equations and turbulence quantities 

were handled by smoothSolver. Mesh decomposition was performed using the scotch algorithm. 
Figure 8 shows the proportion of computational time spent by the pressure and velocity solvers, 

as well as other tasks, for the three mesh sizes, while maintaining approximately the same cells-to-PU 

ratio. The time distribution among solvers remains relatively consistent across all mesh sizes, with the 

velocity and turbulence solvers accounting for the largest share of the computational time. 
 
Figure 8 – Distribution of solver execution time across mesh sizes with constant cells-to-PU ratio 

 
Source: research data 

 
In Figure 9, solver execution times were monitored while keeping the number of processing 

units (PUs) constant, which led to an increasing cells-to-PU ratio. The results indicate that the pressure 

solver dominates the total computational time when the cells-to-PU ratio is low. Similarly, Bnà et al. 

(2020) reported that the pressure solver accounted for 67% of the computational time when running 

the OpenFOAM lid-driven cavity flow tutorial on a mesh with 1 million cells in a supercomputing 

environment. In both cases, a low cells-to-PU ratio reflects the use of high computational capacity to 

solve a relatively small problem, where the pressure solver becomes the main bottleneck to reducing 

execution time. However, as shown in Figure 9, this pattern changes with a higher cells-to-PU ratio, 

where the velocity solver becomes the primary contributor to the total computational time. This 

scenario corresponds to cases where limited computational resources are used to solve larger 

problems, an often-encountered situation in academic research groups. In such contexts, special 

attention should be given to optimizing the configuration of the velocity solver to improve 

performance. 
 

Figure 9 – Solver time distribution with increasing cells-to-PU ratio 
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Source: research data 

 
In Figure 10 the assessment of the preconditioner/solver combinations for pressure was 

performed with the aim of reducing the computational time of the simulation. The assessment was 

carried out in a 1 million cell mesh with a 100, 50 and 25 thousand cells to PU ratio. The total 

computational time in Figure 10 is normalized by the highest time reached during the tests. The results 

show different behaviors depending on the cells-to-PU ratio. For a 100 thousand cells-to-PU ratio, the 

best performance was achieved using the GAMG solver. The different preconditioners used along with 

the GAMG solver showed only a marginal variation in the total computational time, the best 

combination being the FDIC/GAMG. A reduction of 22% in the total computational time was 

achieved when comparing the FDIC/GAMG combination with the diagonal/PbiCGStab which 

presented the worst performance. 
 

Figure 10 – Normalized total simulation time for various pressure solver and preconditioner combinations 
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Source: research data 
 
As the cells-to-PU ratio decreases in Figure 10, the solvers PCG and PBiCGStab, when used 

with FDIC or DIC preconditioners, tend to outperform GAMG. At a ratio of 5,000 cells per PU, the 

DIC/PCG combination achieved the best result, reducing total computational time by 4% compared to 

GAMG, and by 11% when compared to diagonal/PCG. Based on these findings, it is recommended to 

use FDIC/GAMG for simulations with a cells-to-PU ratio greater than 25,000. For lower ratios, 

DIC/PCG or FDIC/PCG configurations are more suitable. 
As previously shown in Figure 9, the influence of the velocity solvers becomes increasingly 

relevant as the cells-to-PU ratio increases. Therefore, a similar analysis was conducted to assess their 

performance. Figure 11 presents the normalized total simulation times for different velocity solvers 

and preconditioner combinations across three cells-to-PU ratios. 
 

Figure 11 – Normalized total simulation time for various velocity solver and preconditioner combinations 
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Source: research data 
 
Unlike the pressure solvers, the velocity solver performance showed little variation across the 

different ratios. The best result was achieved by the smoothSolver/DILUGaussSeidel combination, 

which consistently outperformed the others regardless of the ratio. This configuration is therefore 

recommended for solving the velocity equations under any cells-to-PU condition. Selecting this 

optimal combination led to an 18% reduction in total computational time. 
In absolute terms, the best pressure solver configuration saved 2.8 minutes out of a total of 12.8 

minutes, while the optimal velocity solver combination saved 1.9 minutes from a 10.4-minute 

simulation. It is important to note that all test cases were limited to the first 500 iterations, although 

proportional time savings are expected in larger simulations of problems with similar physical 

modeling. 
 

4 Conclusions 
The Beowulf cluster, implemented using general-purpose computer laboratory resources, 

demonstrated a significant increase in computational performance. This configuration represents a 

viable alternative for research groups with limited financial resources or restricted access to high-
performance computing centers. Additionally, it presents an opportunity to reduce the underutilization 

of such laboratories during idle periods. 
RAM usage per node was observed to decrease as the number of processing units (PUs) 

increased. In some configurations, memory consumption was as low as 1 GB per node, making it 

potentially feasible to operate the cluster concurrently with regular classroom activities during office 

hours. 
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In the simulations conducted, a speedup of 55 was achieved by interconnecting 60 computers 
comprising a total of 240 PUs. This enabled the execution of simulations involving meshes of up to 64 
million cells. Due to the fact that all machines are connected to the same local network, the cluster 
setup and operation proved to be straightforward and did not require the continuous presence of IT 
professionals. 

The cell to PU ratio must be considered when choosing the best preconditioner/solver to reduce 
the total computational time. For pressure equations, the FDIC/GAMG configuration is recommended 
when the cell-to-PU ratio exceeds 25,000. For lower ratios, DIC/PCG or FDIC/PCG combinations are 
more efficient. Regarding velocity equations, the smoothSolver/DILUGaussSeidel consistently 
delivered the best performance across all tested ratios. 
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