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Performance analysis of artificial 
neural networks for predicting 
propagation losses in suburban 
environments for 4G LTE 
and 5G networks

ABSTRACT: This study analyzes two distinct approaches for predicting path loss 
at frequencies of 800 MHz, 1800 MHz, and 2600 MHz in suburban areas. These 
frequencies are commonly utilized in broadcasting, 4G LTE, and 5G networks. Two 
models of Artificial Neural Networks (ANN) were implemented: an Error-Based 
Neural Network (EBNN), which incorporates error correction by combining 
empirical propagation models with an ANN, and a Terrain Parameters Based 
Neural Network (TBNN), which uses input parameters commonly applied in 
related studies, such as the distance from the transmitter to the receiver, receiver 
altitude, average terrain level, and azimuth angle between the transmitter and 
receiver. The performance of these models was evaluated using root mean 
square error (RMSE) and the Wilcoxon rank-sum test, comparing them with 
empirical propagation models such as SUI, ECC-33, Ericsson, and TR 25.942. The 
results were then compared with data obtained from a measurement campaign 
conducted along three routes in the city of Natal, Brazil. The findings from 
both simulations and actual measurements showed good metric alignment, 
particularly highlighting the performance of the error-based model. The primary 
contribution of this study is demonstrating that these techniques enable more 
accurate prediction of signal information, thereby reducing errors in the planning 
and implementation of wireless networks.
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suburbanas. Essas frequências são comumente utilizadas em redes de transmissão 
de televisão, 4G LTE e 5G. Dois modelos de Redes Neurais Artificiais (RNA) foram 
implementados: uma Rede Neural Baseada em Erros (RNBE), que incorpora correção de 
erros combinando modelos de propagação empíricos com uma RNA, e uma Rede Neural 
Baseada em Parâmetros de Terreno (RNBPT), que usa parâmetros de entrada comumente 
aplicados em estudos relacionados, como a distância do transmissor ao receptor, 
altitude do receptor, nível médio do terreno e ângulo de azimute entre o transmissor e o 
receptor. O desempenho desses modelos foi avaliado usando a raiz do erro quadrático 
médio (REQM) e o teste de soma de postos de Wilcoxon, comparando-os com modelos 
de propagação empíricos como SUI, ECC-33, Ericsson e TR 25.942. Os resultados foram 
então comparados com dados obtidos de uma campanha de medição conduzida ao 
longo de três rotas na cidade de Natal, Brasil. Os achados de simulações e medições reais 
mostraram bom alinhamento métrico, destacando particularmente o desempenho do 
modelo baseado em erro. A principal contribuição deste estudo é demonstrar que essas 
técnicas permitem uma previsão mais precisa das informações do sinal, reduzindo assim 
os erros no planejamento e implementação de redes sem fio.

Palavras-chave: perda de propagação; redes 4G LTE; redes 5G; redes neurais artificiais.

1 Introduction 

Path loss prediction is a crucial factor in the planning and implementation of wireless 
networks. As a frequency signal propagates through various environments to reach its 
destination, its power diminishes gradually over distance. Accounting for path loss is 
therefore vital in the design of wireless link transmissions. Multiple mechanisms such 
as reflection, diffraction, absorption, scattering, and atmospheric conditions can lead to 
significant attenuation of radio signals (Saeed et al., 2022).

To enhance the accuracy of communication systems planning, considerable efforts 
have been devoted to developing simulation methods for coverage prediction that closely 
estimate measured data. Various techniques have been employed to improve the efficiency 
of these simulation methods, minimizing errors and yielding more reliable outcomes. 
These methods aim to bridge the gap between theoretical models and real-world data 
by accurately estimating the performance of wireless networks. Advanced simulation 
techniques not only enable more precise coverage predictions but also help identify 
and reduce errors, resulting in more reliable and efficient network design and operation 
(Moraitis; Tsipi; Vouyioukas, 2020; Sung et al., 2023).

By integrating various techniques – such as mathematical models, machine learning 
algorithms, and empirical data – researchers can refine simulations to better reflect 
real-world conditions. These advancements lead to more efficient networks, reduced 
costs associated with coverage misestimation, and ultimately, improved quality of 
service for end users. As communication requirements and technologies continue to 
evolve, it becomes imperative to develop robust modeling methodologies that adapt to 
new frequencies, ensuring accuracy and efficiency in network design and deployment 
(Sun et al., 2016).

Artificial Neural Networks (ANNs) have seen substantial development in recent 
years, finding applications across a wide range of fields, including image and video 
compression (Ma et al., 2019), big data analytics (Hernández et al., 2020), autonomous 
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vehicles (Ji et al., 2018), meteorological forecasting (Rajendra et al., 2019), and data 
assimilation (Cintra; Velho, 2012), among others. ANNs function by executing nonlinear 
mappings from a set of input values to a set of output values, which are processed through 
multiple layers of neurons. These input values are combined with respective synaptic 
weights within each layer to produce an output that is consistent with the given inputs 
(Ashrafijoo et al., 2022). 

Predicting path loss between two points can be framed as a problem involving the 
transformation of an input vector, which includes information such as the locations of 
the transmitter and receiver, frequency, and topographical and morphological details 
(Popescu; Nafornita; Constantinou, 2005). Given that ANNs are effective in solving 
nonlinear function approximation problems, they are well-suited for addressing the path 
loss prediction challenge.

Several related studies illustrate the potential of ANNs in this domain. For instance, 
Benmus, Abboud and Shatter (2015) trained a neural network using measurement data 
from Tripoli, Libya, to predict signal strength across various frequencies. The authors 
compared their results with the Hata model, reporting Root Mean Squared Error (RMSE) 
values ranging from 4.32 dB to 6.73 dB in urban areas, 3.06 dB to 5.92 dB in suburban 
areas, and 4.07 dB to 4.88 dB in rural areas.

Eichie et al. (2017) conducted a comparative analysis of basic and ANN-based 
models for path loss prediction. They used propagation parameters such as the distance 
between transmitter and receiver, transmitting power, and terrain elevation as inputs to the 
neural network, with data collected along selected rural and suburban routes in Nigeria.

Jo et al. (2020) developed a path loss prediction approach based on machine learning 
techniques, including principal component analysis, artificial neural networks, and 
Gaussian processes. Their study collected data in a suburban environment in South Korea 
at various frequencies, achieving RMSE values of 7.87 dB, 8.96 dB, and 8.23 dB for 
different frequency bands using artificial neural networks.

In research by Popoola et al. (2021), propagation path loss in the Very High 
Frequency (VHF) band was characterized using various ANN learning algorithms 
and activation functions based on measurement data collected at 203.25 MHz in 
the urban environment of Ilorin, Nigeria. Among the ANN models tested, the one 
using the hyperbolic tangent activation function (HTAF), the Levenberg-Marquardt 
training algorithm, and 80 neurons in the hidden layer yielded the best results, with 
an RMSE of 5.1 dB.

Popescu et al. (2002) presented results from applying a General Regression Neural 
Network (GRNN) to model path loss in urban and suburban areas. Various neural network 
models were tested for both environments, differing only in input parameters. The main 
inputs included distances between the transmitter and receiver, street width, building 
separation, and building height. Training data were collected in the city of Kavala and 
on the island of Santorini, Greece.

The GRNN-based model was compared with the Walfisch-Bertoni (WB) model 
and a modified version of the COST231-Walfisch-Ikegami (CWI) model. The neural 
network model demonstrated significant prediction improvement due to its generalization 
capabilities. RMSE values ranged from 5.35 dB to 8.66 dB in urban scenarios and 
from 3.68 dB to 5.23 dB in suburban scenarios. The study also introduced a hybrid 
error correction model based on combining the deterministic COST-Walfisch-Ikegami 
(CWI) model and a neural network, which was later expanded (Popescu; Nafornita; 
Constantinou, 2005).
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The GRNN-based model, along with a Multilayer Perceptron Neural Network 
(MLP-NN) and a Radial Basis Function Network (RBFN), was developed using two 
network types: a simple neural network model with five inputs (distances between 
transmitter and receiver, street width, building height, building separation, and street 
orientation) and a hybrid neural network model based on error correction using the 
COST-Walfisch-Ikegami model.

The CWI model is considered a physical/statistical (or semi-empirical) model 
requiring terrain profile information, such as distances between transmitter and receiver, 
building heights, and spacing between buildings.

Ultimately, there was no significant difference between predictions made by the 
simple and hybrid versions. For urban environments, the simple RBF and MLP models 
achieved RMSE values of 5.35 dB and 6.55 dB, respectively, while the hybrid RBF and 
MLP models yielded RMSEs of 5.30 dB and 6.07 dB. In suburban areas, the hybrid RBF 
and MLP models achieved RMSEs of 3.71 dB and 3.77 dB, while the simple RBF and 
MLP models had RMSE values of 3.68 dB and 3.74 dB, respectively. This study was 
limited to covering only the frequency of 1870 MHz.

The work by Sanches and Cavalcante (2001) simplified this approach by developing 
a hybrid error-based model using empirical propagation models. This model only requires 
basic elements, such as the assigned frequency and distances between transmitter and 
receiver, to feed the network.

This study focused on a frequency of 900 MHz and employed the Okumura-Hata, 
Walfisch-Bertoni, Ibrahim-Parsons, Ericson, COST231-Hata, and Walfisch-Ikegami 
models, achieving RMSE values between 3.03 dB and 3.91 dB. The results, in terms 
of mean absolute error, standard deviation, and RMSE, confirmed the technique's good 
performance, yielding results closer to measurements.

This study proposes the implementation and application of two types of ANNs with 
similar architecture but different input types. In the first case, the network is inspired 
by the error-based hybrid propagation model developed by Popescu, Nafornita, and 
Constantinou (2005), with empirical models applied by Sanches and Cavalcante (2001). 
The designed neural network uses similar inputs: distances between transmitter and 
receiver and the error between measured data and predicted values by empirical models. 
This approach is referred to as the Error-Based Neural Network (EBNN).

The second approach is based on features of the terrain and the setup of measurements. 
The terrain/propagation characteristics used as inputs include the distance from the 
transmitter to the receiver, receiver altitude, average terrain level, and azimuth between 
transmitter and receiver. This approach is referred to as the Terrain Parameters Based 
Neural Network (TBNN).

In this study, the prediction models employed include the Ericsson 9999, Stanford 
University Interim (SUI), Electronic Communication Committee (ECC-33), and 
Technical Report (TR) 25.942 models, with their performance compared to models based 
on neural networks. These propagation models were selected due to their widespread use 
in telecommunications for predicting signal loss in various environments (3GPP, 2024a; 
Kumari et al., 2011; Mathew; George; Pereira, 2017).

The Ericsson 9999 model is effective for both urban and suburban areas and is 
recognized for its accuracy, although it requires numerous input parameters, which may 
complicate its implementation. The SUI model, suitable for suburban environments and 
high frequencies, is relatively simple but less adaptable to specific conditions without 
additional adjustments.
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The ECC-33 model is based on empirical measurements and is best suited for urban 
environments, offering high accuracy in densely populated areas. It can also be applied 
to suburban areas, though it does not apply to rural settings. Finally, the TR 36.942 
(3GPP, 2024c) model, part of the 3rd Generation Partnership Project (3GPP, 2024d) 
specifications for LTE and LTE-A networks, plans coverage and capacity across various 
environments, from rural to urban areas.

The experiment was conducted in suburban areas, focusing on the 800 MHz, 
1800 MHz, and 2600 MHz frequencies. The SUI and ECC-33 models were applied to the 
1800 MHz and 2600 MHz bands, while the Ericsson and TR 25.942 models covered all 
three frequency bands (3GPP, 2024a). Table 1 summarizes the different frequency bands 
used for 4G LTE services, 5G, and broadcasting. Each frequency band is associated with 
multiple service categories, and the propagation models used in the study were applied 
to these frequency bands (3GPP, 2024b, 2024d).

Frequency band 5G 4G LTE Broadcasting

800 MHZ
Bands: n20 (832 – 862 

MHz / 791 – 821 MHz) and 
n82 (832 – 862 MHz)

Bands: 20 (832 – 862 MHz / 
791– 821 MHz), 28 (758 – 823 MHz) 

and 44 (703 – 803 MHz)

Present in digital dividend 
UHF band in Europe 

(UHF channels 61 – 69)

1800 MHz Band n3 (1805 – 1880 MHz)
Band: 3 (1805 – 1880 MHz / 

1710 – 1785 MHz) and 9 (1805 – 1880 MHz 
/ 1710 – 1785 MHz):

–

2600 MHz
Bands n7 (2500 – 2570 MHz 

/ 2620 – 2690 MHz) and 
n38 (2570 – 2620 MHz)

Bands: 7 (2620 – 2690 MHz), 
38 (2570 – 2620 MHz) and 

69 (2570 – 2620 MHz)
–

The methodology developed in this work is based on comparing these techniques 
to determine which provides simulation results that most closely align with the data 
obtained from measurements. A measurement campaign was conducted in three distinct 
routes within the district of Lagoa Nova, in Natal, Brazil.

The combination of neural networks with empirical models is a relatively uncommon 
approach in the existing literature, as empirical propagation models are more frequently 
utilized in comparative analyses against implemented neural networks.

MATLAB software version R2018a was employed to implement the computational 
methods. Data on distances, average terrain level, and altitude were obtained using 
SIGAnatel (Geographical Information System), a tool provided by Brazil’s National 
Telecommunications Agency (Anatel) for TV and FM broadcast channel feasibility 
simulations (Silva; Passos, 2007).

To evaluate the performance of each technique, two metrics were applied: the root 
mean square error (RMSE), which estimates the error difference in dB between the 
datasets, and the Wilcoxon rank-sum test, which provides an assessment of the similarity 
between the distribution of datasets.

The remainder of this paper is structured as follows: Section 2 details the 
measurement campaign; Section 3 discusses the propagation and ANN models; a 
comparative analysis between simulations and experimental data is presented in 
Section 4; and finally, Section 5 concludes the study and provides recommendations 
for future research.

Table 1 • 
Frequency bands covered in 

the study.  
Source: 3GPP (2024b, 2024d)
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2 Measurement campaign

Field measurements provide real empirical data on path loss and signal propagation, 
which are essential for validating and refining prediction models. Analyses are limited to 
theoretical models or simulations without measurement data, which may not accurately 
reflect actual environmental conditions. Measurement data also ensures the model can 
generalize well to new situations and varying conditions.

The measurement campaign was conducted in the Lagoa Nova district 
of Natal, Brazil. Measurements were taken along routes between the UFRN campus and 
nearby streets. During all campaigns, the weather was predominantly sunny, with clear 
skies and few clouds. The site featured regular vegetation density and medium-sized 
buildings, characterizing the environment as suburban.

A Continuous Wave (CW) signal was transmitted using a Rhode & Schwarz 
broadband amplifier (model R&SBBA150, 9 KHz – 6 GHz) and an Anritsu radio 
transmitter (model MG3700A, 50 Hz – 6 GHz) with a power output of 15 watts. 
Two pairs of Pasternack directive antennas were employed for both transmission and 
reception (Pasternack, 2024): a panel antenna (2.5 GHz – 2.7 GHz) with a nominal 
gain of 14 dBi for the 2600 MHz band, and a dual-panel antenna (806 MHz – 960 MHz 
and 1710 MHz – 2500 MHz) with a nominal gain of 7 dBi for the 1800 MHz 
and 800 MHz bands.

For signal measurement, an Anritsu spectrum analyzer, model MS2721B, was 
utilized. This analyzer also featured an integrated Global Positioning System (GPS) 
device, which provided the precise location of the measured points.

The Rhode & Schwarz R&SBBA150 broadband amplifier covers a wide frequency 
range, from 9 KHz to 6 GHz, encompassing the entire frequency range of the transmitted 
signal. This broad coverage ensures that the amplifier can amplify signals across all 
relevant frequency bands without requiring changes in equipment. Combined with the 
transmitter's output power (15 watts) and the characteristics of the antennas used, the 
amplifier's power ensures that the transmitted signal is detectable during measurements.

The Anritsu MG3700A radio transmitter, operating from 50 Hz to 6 GHz, covers 
the frequency range required for the experiment (800 MHz, 1800 MHz, and 2600 MHz 
bands). This guarantees that the transmitter can generate signals within the specific 
bands necessary for the experiment.

The Pasternack antennas selected provide high directivity and gain, enhancing the 
efficiency of signal transmission. The directivity of these antennas ensures reliable data 
collection for the frequencies of interest.

The Anritsu MS2721B spectrum analyzer is capable of measuring signals in the 
frequency range of 9 KHz to 7.1 GHz, covering all bands used in the experiment. 
Additionally, the integrated GPS feature provides precise geographical location data 
for each measured point.

The transmitting antenna was installed at a height of 20 meters, while the receiving 
antenna was mounted on the roof of a vehicle, at a total height of 3.6 meters from 
the ground (Figure 1). The vehicle traveled along three different routes near the 
university (Figure 2), maintaining a constant speed of 20 km/h.
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After collecting the experimental data, it was necessary to convert the measured 
power into propagation loss. This conversion was performed using Equation (1):

(1)

where PL represents the propagation loss, Pt is the transmitter’s power output, Gt and Gr 
are the gain of the transmitting and receiving antennas, respectively, and Lc is the loss in 
the cables. Finally, Pm denotes the measured power.

An important factor that indicates the rate at which path loss decreases over distance is 
the path loss exponent, γ. This value typically ranges between 2 and 4 (Weinstock, 2007). 
A value of γ = 2 would correspond to a free space environment (straight line of sight, no 
obstructions), while γ = 4 represents an environment with high losses. Table 2 presents 
the losses values for each route and frequency. 

Figure 1 • 
Vehicle used in the 

measurement campaign, 
with the receiving antenna 

installed on its roof.  
Source: authors’ archive

Figure 2 • 
Map showing the three routes 

covered in the measurement 
campaign. Route 1 includes 

Cel. João Medeiros Street 
and Passeio dos Girassóis 

Avenue, while Routes 2 and 
3 correspond to Cap. Mor 

Gouveia and Miguel Alcides de 
Araújo Avenues, respectively.  

Source: Elaborated by the 
author from a satellite image 

available at Google Maps 
(Google, 2024)
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Route Frequency band γ

1

800 MHZ 2.4

1800 MHz 2.5

2600 MHz 2.9

2

800 MHZ 2.4

1800 MHz 3.4

2600 MHz 3.1

3

800 MHZ 2.3

1800 MHz 2.7

2600 MHz 2.8

The measured path loss exponent values align with those reported in the literature, 
confirming the intermediate characteristics of the suburban environment, which lies 
between free space and high-loss environments. Suburban areas typically present a 
moderate level of obstructions, as reflected in the measured γ values.

To ensure data accuracy and maintain the integrity of the dataset, each detected 
outlier was replaced with the previous non-outlier value. This approach provides a 
reasonable estimate of the expected signal strength at those points, preserving data 
continuity and trends while minimizing the introduction of erroneous values.

3 Numerical methods

Artificial Neural Networks (ANNs) are mathematical-computational models 
inspired by the neural structure of intelligent organisms and their capacity to acquire 
knowledge through experience. ANNs implement a nonlinear mapping of a set of 
inputs to a set of outputs, executed through layers of neurons. The input values are 
multiplied by specific synaptic weights of each layer, aiming to produce an appropriate 
output based on the inputs (Popescu; Nafornita; Constantinou, 2005). The approach 
using neural networks in this study utilizes two different methods:

• The first model uses two distinct inputs: one representing the distances 
between the transmitter and receiver, and another representing the 
error difference between experimental data and values predicted by the 
empirical propagation model (the Ericsson model was selected after 
performance tests). The output consists of the values obtained from the 
measurements. These values correspond to data collected across all routes. 
This method was chosen for its hybrid nature, which combines empirical 
propagation models with the learning capability of ANNs. This approach is 
particularly valuable in scenarios where traditional empirical models may not 
adequately capture the complexities of the environment;

• The second model employs four inputs, which are derived from terrain 
characteristics and the measurement setup: the distances between the 
transmitter and receiver, the azimuth angle between the transmitter 
and receiver, the altitude of the receiver, and the average terrain 

Table 2 • 
Path loss exponents by route 

and frequency band.  
Source: Weinstock (2007)
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elevation. The output node represents the controlled measurement loss. 
This model was selected to explore the influence of terrain characteristics on 
signal propagation, similar to methodologies used in previous studies cited in the 
Introduction. By including these variables, the network can learn from relevant 
contextual data, improving the accuracy of predictions in environments where 
topography significantly impacts signal propagation.

A. Error-Based Neural Network – EBNN

The input to this model comprises two vectors: 1) the distance between the 
transmitter and receiver, and 2) the error between the measured values and those 
calculated by a selected propagation model:

(2)

where PLmeasured represents the propagation loss obtained through field measurements, 
and PLpredicted is the propagation loss calculated by the Ericsson model.

The output vector, also known as the neural network target, consists of the measured 
path loss. The training phase of the neural network structure is shown in Figure 3, while 
the network architecture is illustrated in Figure 4.

Figure 3 • 
Error-Based Neural 

Network (EBNN) model 
training process.  

Source: elaborated by 
the authors
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The designed ANN is a multilayer perceptron type, consisting of two inputs and 
one output, with a single hidden layer. The input set includes two vectors with values 
collected along three routes for each frequency: 560 elements for the 800 MHz scenario, 
357 elements for the 1800 MHz, and 519 elements for the 2600 MHz frequency. The 
transfer functions used for the hidden and output layers are tangent sigmoid and linear, 
respectively, with the Levenberg-Marquardt algorithm chosen for network training.

In this network, each of the two inputs (the distance between the transmitter and 
receiver, and the error between measured and predicted values) is fed into the hidden 
layer, where neurons compute their weighted sum (w), add a bias (b), and apply a tangent 
sigmoid (tanh) activation function.

Synaptic weights are values associated with inputs, adjusted during training to 
improve the model results and store the acquired knowledge. The bias increases or 
decreases the input of the activation function depending on whether this value is negative 
or positive (Haykin, 2009). The activation function introduces non-linearity, enabling 
the network to capture complex patterns in the data.

The outputs from the hidden layer neurons are then passed to the output layer. This 
layer consists of a single neuron that calculates a weighted sum of the hidden layer 
outputs, adds another bias, and applies a linear activation function. The linear function 
ensures that the final output is a direct result of the weighted sum, suitable for regression 
tasks requiring precise numerical outputs.

Alternatives such as the standard backpropagation algorithm and the 
Levenberg-Marquardt method were considered, with the latter proving more efficient 
in terms of convergence speed (Haykin, 2009). The stopping criterion was set based 
on the number of epochs, capped at 1000, as convergence significantly decreased 
beyond this value.

To prevent overfitting and ensure the network's generalization capability, the data 
was divided into three sets: training (60%), validation (25%), and testing (15%). The 
training set was used to adjust network weights. The validation set assessed the network's 
generalization capacity, also serving as a stopping criterion using a cross-validation 
strategy. Finally, the testing set provided a realistic estimate of network performance 
on new data.

Figure 4 • 
Artificial Neural 

Network (ANN) applied 
to the Error-Based Neural 

Network (EBNN) model.  
Source: elaborated by 

the authors
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Network parameters were optimized using a cross-validation approach, where the 
dataset was partitioned into multiple subsets. In each iteration, the model was trained on 
all but one of these subsets, with the remaining subset used for testing. This process was 
repeated multiple times, rotating the test subset at each round. The final accuracy was 
determined by averaging the results obtained from all iterations (Dai, 2013).

To limit the number of models applied to the error-based neural network, a test 
methodology involving all propagation models was employed. Ultimately, the Ericsson 
model demonstrated the best average performance and was selected for use in the 
evaluation process.

B. Terrain parameters Based Neural Network – TBNN

This model shares the same architecture as depicted in Figure 4. The transfer 
functions for the hidden and output layers remain the tangent sigmoid and linear functions, 
respectively, and the Levenberg-Marquardt algorithm continues to be used for training. 
The primary difference lies in the inputs. The TBNN model incorporates four distinct 
inputs related to terrain and propagation setup (across the three routes):

• Distances between transmitter (Tx) and receiver (Rx);

• Receiver altitude;

• Average terrain elevation (origin and destination);

• Azimuth angle between Tx and Rx.

C. Propagation models

The path loss was calculated using the Ericsson and TR 36.942 models, which covered 
all frequency bands, as well as the SUI and ECC-33 models, applied to the 1800 MHz 
and 2600 MHz bands. These propagation models were selected due to their relevance, 
applicability to the specific environment and frequency bands of interest, and their use 
in several propagation studies, such as those by Kumari et al. (2011), Mathew, George 
and Pereira (2017), and Siddiqui, Fatima and Ahmad (2019).

Table 3 presents the main equations associated with these models (3GPP, 2024a; 
Kumari et al., 2011; Mathew; George; Pereira, 2017).

Model Equations

3GPP TR 25.942 (3)

Ericsson

(4)

(5)

Table 3 • 
Path loss models equations.  

Source: TR 25.942 
(3GPP, 2024a); Mathew, 

George and Pereira (2017); 
Kumari et al. (2011)

 Cont. on next page
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ECC-33

(6)

(7)

(8)

(9)

(10)

(11)

SUI

(12)

(13)

(14)

(15)

(16)

(17)

(18)

where d represents the distance between the transmitter and receiver, f is the frequency in 
MHz, hTx is the height of the transmission antenna in meters, and hRx denotes the height 
of the reception antenna in meters. PLTR, PLE, PLECC and PLSUI represent the path loss 
for TR 25.942, Ericsson, ECC-33 and SUI models, respectively.

Regarding the Ericsson model equations, g(f) is the frequency correction factor, 
and a0, a1, a2 and a3 are constants that can be adjusted according to the scenario. The 
default values, which were used in the Ericsson model employed in this study, are 36.2, 
30.2, 12.0, and 0.1, respectively.

In the ECC equations, Afs represents the free space attenuation (in dB), while Abm 
denotes the average path loss (in dB), which depends on the distance (in km) from 

Table 3 continued
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the base station antenna to the user antenna and the operating frequency f (in GHz). 
Additionally, Gb is the gain (dB) of the base station antenna at a certain height (m), and  
Gr refers to the gain of the receiver antenna Equation 10 applies to small or medium 
cities, while Equation 11 applies to large cities.

For the SUI equations, A represents the free space path loss, ΔLf is the frequency 
correction factor, and ΔLh  is the receiver antenna height correction factor. Equation 16 is 
valid for terrain types A (areas with the highest path loss, such as densely populated urban 
regions) and B (terrains with moderate path loss, typical of suburban environments), 
while Equation 17 is used for terrain type C (areas with the least path loss, such as rural 
or flat region). λ denotes the wavelength (m), and s represents the shadowing effect, 
where α equals 5.2 dB for urban and suburban environments (terrain types A and B) and 
6.6 dB for rural environments (terrain C). Finally, γ is the propagation loss exponent for 
the different types of terrain.

4 Results and discussion

This section presents the performance analysis of the evaluated methods. RMSE 
serves as a metric that quantifies the discrepancy between the values predicted by the 
models and those measured. A lower RMSE is preferable, as it indicates that the model's 
predictions are closer to the real data, while higher values suggest that the model may 
not accurately capture the relationship between the data.

Statistically, the parameter p determines the level of significance in the experiment, 
with higher p-values indicating greater similarity between the data distribution and 
the experimental data. Any result with a p-value below 10-6 is considered null. The 
"Significance" column, based on the p-value, indicates whether the model is deemed 
accurate and statistically equivalent to real data. If the p-value is less than 0.05, the 
method is categorized as Significantly Different (S.D.); otherwise, it is classified as 
Significantly Equivalent (S.E.) (Andrade, 2019).

The p-value is used to assess the null hypothesis that the model's performance aligns 
with the expected performance based on measured data. A low p-value (less than 0.05) 
suggests that the differences between the model and real data are statistically significant 
and not due to random chance. Conversely, a high p-value indicates that the model can be 
considered statistically equivalent to the real data, within the margin of statistical error.

A. 800 MHz scenario

The performance results for the 800 MHz band are highlighted in Table 4. Both 
neural network models were able to reduce the Root Mean Square Error (RMSE) while 
increasing the p-value, thereby minimizing the discrepancy between simulated and 
measured path loss data. In the case of the Error-Based Neural Network (EBNN), the 
RMSE approached zero. In terms of propagation models, both methods demonstrated 
regular performance, with TR 25.942 showing relatively better results. However, this 
regular performance was not confirmed in the similarity tests, where both conventional 
models exhibited low correlation between the measured and optimized values.
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Route Model RMSE (dB) 
800 MHz

Wilcoxon 
rank-sum p-test 

800 MHz

Significance 
@95% 800 MHz

1

Ericsson 10.76 null S.D.

TR 25.942 8.67 0.001 S.D.

EBNN 0.003 0.984 S.E.

TBNN 5.082 0.675 S.E.

2

Ericsson 11.18 null S.D.

TR 25.942 7.63 0.001 S.D.

EBNN 0.626 0.997 S.E.

TBNN 5.96 0.541 S.E.

3

Ericsson 10.817 null S.D.

TR 25.942 9.44 null S.D.

EBNN 0.003 0.972 S.E.

TBNN 5.7 0.555 S.E.

These results are further supported by the analysis of Figures 5 and 6. Figure 5 
presents the graph of the propagation loss as a function of distance, and Figure 6 provides 
a box-and-whisker plot comparing the datasets obtained by each method against the data 
collected from the measurement campaign, specifically for route 1.

Table 4 • 
Performance of 

methods at 800 MHz.  
Source: research data

Figure 5 • 
Metric comparison of path 
loss models and campaign 

measurements at 800 MHz 
for Route 1.  

Source: research data
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For the terrain-based network model in this scenario, while the distribution was 
slightly flatter, it closely aligned with the interquartile range, indicating high similarity 
with the measured data. However, this model demonstrated lower fidelity in data 
distribution, as its range occupied only part of the measured data sampling space 
(resulting in a p-value of 0.675). The EBNN model addressed these issues by achieving 
a data distribution closely matching the measured values, obtaining a p-value of 0.984.

B. 1800 MHz and 2600 MHz scenario

For measurements at 1800 MHz, ANN techniques again yielded the best performance 
across all metrics, as shown in Table 5. The EBNN approach achieved an RMSE close 
to zero and a p-value near 1, reinforcing its similarity to the collected data. Among 
the conventional models, the ECC model demonstrated the best performance across all 
routes, with the Ericsson model performing well specifically for route 2 (as illustrated 
in Figures 7 and 8).

Figure 6 • 
Box-and-whisker plot 

comparing different methods 
for Route 1 (800 MHz).  

Source: research data
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Route Model RMSE (dB) 
1800 MHz

Wilcoxon rank-sum 
p-test 1800 MHz

Significance 
@95% 1800 MHz

1

Ericsson 11.3 null S.D.

TR 25.942 13.87 null S.D.

SUI 11.89 null S.D.

ECC 7.82 0.057 S.E.

EBNN 0.005 0.993 S.E.

TBNN 4.94 0.384 S.E.

2

Ericsson 6.857 0.008 S.D.

TR 25.942 16.56 null S.D.

SUI 13.727 null S.D.

ECC 7.827 null S.D.

EBNN 0.001 0.998 S.E.

TBNN 4.97 0.634 S.E.

3

Ericsson 12.515 null S.D.

TR 25.942 12.45 null S.D.

SUI 9.58 null S.D.

ECC 8.4 0.376 S.E.

EBNN 0.001 0.983 S.E.

TBNN 6.586 0.708 S.E.

Table 5 • 
Performance of 

analyzed methods at 
1800 MHz.  

Source: research data

Figure 7 • 
Metric comparison 

of path loss models 
and campaign 

measurements at 
1800 MHz for Route 2.  

Source: research data
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Conversely, the SUI and TR 25.942 models produced below-average results, 
deviating significantly from the measured data points along the entire path and yielding 
low RMSE values. The box-and-whisker plot representation reveals a greater dispersion 
when compared to experimental data.

In the 2600 MHz scenario for route 3, an increase in data dispersion is observed 
(Figures 9 and 10). This further highlights the importance of employing approaches 
capable of performing nonlinear mapping of the samples, as is the case with neural 
networks. Path loss models demonstrated low similarity (Table 6), underscoring the 
challenge faced by linear models in accurately handling data samples with significant 
dispersion. Even predictions using curve optimization techniques, such as genetic 
algorithms or the least squares method, would likely not resolve these discrepancies.

Route Model RMSE (dB) 2600 MHz Wilcoxon rank-sum p-test 2600 MHz Significance @95% 2600 MHz

1

Ericsson 14.85 null S.D.
TR 25.942 12.92 null S.D.

SUI 9.99 null S.D.
ECC 8.9 0.167 S.E.

EBNN 0.003 0.999 S.E.
TBNN 5.32 0.987 S.E.

2

Ericsson 9.677 0.001 S.D.
TR 25.942 19.19 null S.D.

SUI 15.01 null S.D.
ECC 10.16 null S.D.

EBNN 0.012 0.995 S.E.
TBNN 5.46 0.605 S.E.

3

Ericsson 14.83 null S.D.
TR 25.942 16.86 null S.D.

SUI 13.77 null S.D.
ECC 11.27 0.121 S.E.

EBNN 0.003 0.971 S.E.
TBNN 8.45 0.777 S.E.

Figure 8 • 
Box-and-whisker plot 

comparing different 
methods for Route 2 

(1800 MHz).  
Source: research data

Table 6 • 
Performance of 

analyzed methods at 
2600 MHz.  

Source: research data
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5 Conclusions

This study analyzed two types of artificial neural network (ANN) approaches for predicting 
propagation loss at 800 MHz, 1.8 GHz, and 2.6 GHz in suburban areas: an error-based hybrid 
model that utilizes the error calculated by the Ericsson model, and another neural network 
that incorporates terrain features as input parameters. The performance of these techniques 

Figure 9 • 
Metric comparison 

of path loss models 
and campaign 

measurements at 2600 
MHz for Route 3.  

Source: research data

Figure 10 • 
Box-and-whisker plot 

comparing different 
methods for Route 3 

(2600 MHz).  
Source: research data

2447-9187

https://creativecommons.org/licenses/by/4.0/deed.en
https://openaccessbutton.org/
https://periodicos.ifpb.edu.br/index.php/principia/index
https://portal.issn.org/resource/ISSN/2447-9187


R e v .  P r i n c i p i a ,  J o ã o  P e s s o a ,  v .  6 2 ,  e 8 5 3 2 ,  2 0 2 5 .        [   19  ]

was evaluated and compared using Root Mean Square Error (RMSE) and their similarity 
with well-established path loss models from the literature. The following conclusions can be 
drawn from the results:

• Both ANN approaches successfully reduced RMSE values while increasing p-values, 
significantly decreasing the difference between simulated and measured values. In 
the case of the Error-Based Neural Network (EBNN), RMSE values approached 
zero. This demonstrates the neural networks' capacity to learn and incorporate non-
deterministic values present in experimental data;

• In most cases, traditional path loss modeling methods resulted in p-values less 
than 0.05. This is likely due to the greater dispersion of measured data, particularly 
on routes 2 and 3, even after the replacement of outliers;

• Based on the results obtained from classical models, it is recommended to use the 
TR 25.942 model for the 800 MHz band, the ECC model for the 1800 MHz band, 
and both the SUI and ECC models for the 2600 MHz band;

• The most efficient technique, characterized by RMSE values close to zero and 
p-values near 1, recommended for predicting propagation loss in the scenarios 
analyzed, was the error-based ANN;

• Compared to the studies by Popescu, Nafornita and Constantinou (2005) and Sanches 
and Cavalcante (2001), this research covered a broader range of frequencies and 
achieved lower average RMSE values. The results are also notable when compared 
to more recent studies, such as those by Jo et al. (2020) and Popoola et al. (2021);

• Both neural networks proved to be effective and accurate prediction methods, 
demonstrating simulation results closely aligned with actual field measurements. 
These methods are valuable tools for LTE and 5G network designers, providing 
reliable predictions of propagation loss;

• The high accuracy of the predictions allows for a more precise design of network 
coverage, minimizing areas with poor signal reception and avoiding excessive cell 
overlap. This level of precision enables the optimal allocation of resources, including 
the strategic positioning of base stations and the adjustment of transmission power, 
resulting in significant cost savings and improved network performance.

A noteworthy aspect of this study is the use of the Wilcoxon rank sum method, as opposed 
to the standard deviation, a tool frequently employed in propagation studies, such as those by 
Popescu, Nafornita and Constantinou (2005), and Sanches and Cavalcante (2001). While the 
standard deviation measures the variability of prediction errors around the mean, providing 
a general assessment of the accuracy of the propagation loss model, the Wilcoxon test offers 
a more detailed and robust analysis of the similarity between the distributions of predicted 
and measured errors. The standard deviation can be influenced by outliers and non-normal 
distributions (Riedel et al., 2019), potentially skewing the evaluation of model accuracy. 
In contrast, the Wilcoxon test is less sensitive to these factors, as it is based on ranks rather 
than raw values.

It is also important to note that the neural network models (EBNN and TBNN) were 
specifically trained for suburban environments and the frequency bands considered in this 
study. As a result, their performance may not be as effective in urban or rural settings.

Future research directions are clear. The proposed method could be further evaluated using 
different datasets, including those from urban and rural areas, and for various frequency bands, 
including 5G systems. Additionally, it can be extended to future 6G networks, which are 
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expected to integrate satellite systems, aerial networks, terrestrial communications, maritime 
communications, and underwater systems. In this context, Artificial Intelligence and Machine 
Learning techniques should be utilized to further enhance path loss prediction metrics.
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