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Abstract 
This study analyzes two distinct approaches for predicting path loss at frequencies of 800 MHz, 1800 
MHz, and 2600 MHz in suburban areas. These frequencies are commonly utilized in broadcasting, 4G 
LTE, and 5G networks. Two models of Artificial Neural Networks (ANN) were implemented: an 
Error-Based Neural Network (EBNN), which incorporates error correction by combining empirical 
propagation models with an ANN, and a Terrain Parameters Based Neural Network (TBNN), which 
uses input parameters commonly applied in related studies, such as the distance from the transmitter to 
the receiver, receiver altitude, average terrain level, and azimuth angle between the transmitter and 
receiver. The performance of these models was evaluated using root mean square error (RMSE) and 
the Wilcoxon rank-sum test, comparing them with empirical propagation models such as SUI, ECC-
33, Ericsson, and TR 25.942. The results were then compared with data obtained from a measurement 
campaign conducted along three routes in the city of Natal, Brazil. The findings from both simulations 
and actual measurements showed good metric alignment, particularly highlighting the performance of 
the error-based model. The primary contribution of this study is demonstrating that these techniques 
enable more accurate prediction of signal information, thereby reducing errors in the planning and 
implementation of wireless networks. 
Keywords: 4G LTE; 5G networks; artificial neural networks; path loss. 
 

Análise de desempenho de redes neurais artificiais para prever perdas de propagação em 

ambientes suburbanos para redes LTE 4G e 5G 
 
Resumo 
Este estudo analisa duas abordagens distintas para prever a perda de propagação em frequências de 

800 MHz, 1800 MHz e 2600 MHz em áreas suburbanas. Essas frequências são comumente utilizadas 

em redes de transmissão de televisão, 4G LTE e 5G. Dois modelos de Redes Neurais Artificiais (RNA) 

foram implementados: uma Rede Neural Baseada em Erros (EBNN), que incorpora correção de erros 

combinando modelos de propagação empíricos com uma RNA, e uma Rede Neural Baseada em 

Parâmetros de Terreno (TBNN), que usa parâmetros de entrada comumente aplicados em estudos 

relacionados, como a distância do transmissor ao receptor, altitude do receptor, nível médio do 

terreno e ângulo de azimute entre o transmissor e o receptor. O desempenho desses modelos foi 

avaliado usando o erro quadrático médio (RMSE) e o teste de soma de postos de Wilcoxon, 

comparando-os com modelos de propagação empíricos como SUI, ECC-33, Ericsson e TR 25.942. Os 

resultados foram então comparados com dados obtidos de uma campanha de medição conduzida ao 

longo de três rotas na cidade de Natal, Brasil. Os achados de simulações e medições reais mostraram 

bom alinhamento métrico, destacando particularmente o desempenho do modelo baseado em erro. A 

principal contribuição deste estudo é demonstrar que essas técnicas permitem uma previsão mais 

precisa das informações do sinal, reduzindo assim os erros no planejamento e implementação de 

redes sem fio. 

Palavras-chave: perda de propagação; redes 4G LTE; Redes 5G; redes neurais artificiais.  

 

1 Introduction 



 

 

Path loss prediction is a crucial factor in the planning and implementation of wireless networks. 
As a frequency signal propagates through various environments to reach its destination, its power 
diminishes gradually over distance. Accounting for path loss is therefore vital in the design of wireless 
link transmissions. Multiple mechanisms such as reflection, diffraction, absorption, scattering, and 
atmospheric conditions can lead to significant attenuation of radio signals (Saeed et al., 2022). 

To enhance the accuracy of communication systems planning, considerable efforts have been 
devoted to developing simulation methods for coverage prediction that closely estimate measured data. 
Various techniques have been employed to improve the efficiency of these simulation methods, 
minimizing errors and yielding more reliable outcomes. These methods aim to bridge the gap between 
theoretical models and real-world data by accurately estimating the performance of wireless networks. 
Advanced simulation techniques not only enable more precise coverage predictions but also help 
identify and reduce errors, resulting in more reliable and efficient network design and operation 
(Moraitis; Tsipi; Vouyioukas, 2020; Sung et al., 2023). 

By integrating various techniques – such as mathematical models, machine learning algorithms, 
and empirical data – researchers can refine simulations to better reflect real-world conditions. These 
advancements lead to more efficient networks, reduced costs associated with coverage misestimation, 
and ultimately, improved quality of service for end users. As communication requirements and 
technologies continue to evolve, it becomes imperative to develop robust modeling methodologies that 
adapt to new frequencies, ensuring accuracy and efficiency in network design and deployment (Sun et 

al., 2016). 
Artificial Neural Networks (ANNs) have seen substantial development in recent years, finding 

applications across a wide range of fields, including image and video compression (Ma et al., 2019), 
big data analytics (Hernández et al., 2020), autonomous vehicles (Ji et al., 2018), meteorological 
forecasting (Rajendra et al., 2019), and data assimilation (Cintra; Velho, 2012), among others. ANNs 
function by executing nonlinear mappings from a set of input values to a set of output values, which 
are processed through multiple layers of neurons. These input values are combined with respective 
synaptic weights within each layer to produce an output that is consistent with the given inputs 
(Ashrafijoo et al., 2022).  

Predicting path loss between two points can be framed as a problem involving the 
transformation of an input vector, which includes information such as the locations of the transmitter 
and receiver, frequency, and topographical and morphological details (Popescu; Nafornita; 
Constantinou, 2005). Given that ANNs are effective in solving nonlinear function approximation 
problems, they are well-suited for addressing the path loss prediction challenge. 

Several related studies illustrate the potential of ANNs in this domain. For instance, Benmus, 
Abboud, and Shatter (2015) trained a neural network using measurement data from Tripoli, Libya, to 
predict signal strength across various frequencies. The authors compared their results with the Hata 
model, reporting Root Mean Squared Error (RMSE) values ranging from 4.32 dB to 6.73 dB in urban 
areas, 3.06 dB to 5.92 dB in suburban areas, and 4.07 dB to 4.88 dB in rural areas. 

Eichie et al. (2017) conducted a comparative analysis of basic and ANN-based models for path 
loss prediction. They used propagation parameters such as the distance between transmitter and 
receiver, transmitting power, and terrain elevation as inputs to the neural network, with data collected 
along selected rural and suburban routes in Nigeria. 

Jo et al. (2020) developed a path loss prediction approach based on machine learning 
techniques, including principal component analysis, artificial neural networks, and Gaussian 
processes. Their study collected data in a suburban environment in South Korea at various frequencies, 
achieving RMSE values of 7.87 dB, 8.96 dB, and 8.23 dB for different frequency bands using artificial 
neural networks. 

In research by Popoola et al. (2021), propagation path loss in the Very High Frequency (VHF) 
band was characterized using various ANN learning algorithms and activation functions based on 
measurement data collected at 203.25 MHz in the urban environment of Ilorin, Nigeria. Among the 
ANN models tested the one using the hyperbolic tangent activation function (HTAF), the Levenberg-
Marquardt training algorithm, and 80 neurons in the hidden layer yielded the best results, with an 
RMSE of 5.1 dB. 



 

 

Popescu et al. (2002) presented results from applying a General Regression Neural Network 
(GRNN) to model path loss in urban and suburban areas. Various neural network models were tested 
for both environments, differing only in input parameters. The main inputs included distances between 
the transmitter and receiver, street width, building separation, and building height. Training data were 
collected in the city of Kavala and on the island of Santorini, Greece. 

The GRNN-based model was compared with the Walfisch-Bertoni (WB) model and a modified 
version of the COST231-Walfisch-Ikegami (CWI) model. The neural network model demonstrated 
significant prediction improvement due to its generalization capabilities. RMSE values ranged from 
5.35 dB to 8.66 dB in urban scenarios and from 3.68 dB to 5.23 dB in suburban scenarios. The study 
also introduced a hybrid error correction model based on combining the deterministic COST-
Walfisch-Ikegami (CWI) model and a neural network, which was later expanded upon (Popescu; 
Nafornita; Constantinou, 2005). 

The GRNN-based model, along with a Multilayer Perceptron Neural Network (MLP-NN) and a 
Radial Basis Function Network (RBFN), was developed using two network types: a simple neural 
network model with five inputs (distances between transmitter and receiver, street width, building 
height, building separation, and street orientation) and a hybrid neural network model based on error 
correction using the COST-Walfisch-Ikegami model. 

The CWI model is considered a physical/statistical (or semi-empirical) model requiring terrain 
profile information, such as distances between transmitter and receiver, building heights, and spacing 
between buildings. 

Ultimately, there was no significant difference between predictions made by the simple and 
hybrid versions. For urban environments, the simple RBF and MLP models achieved RMSE values of 
5.35 dB and 6.55 dB, respectively, while the hybrid RBF and MLP models yielded RMSEs of 5.30 dB 
and 6.07 dB. In suburban areas, the hybrid RBF and MLP models achieved RMSEs of 3.71 dB and 
3.77 dB, while the simple RBF and MLP models had RMSE values of 3.68 dB and 3.74 dB, 
respectively. This study was limited to covering only the frequency of 1870 MHz. 

The work by Sanches and Cavalcante (2015) simplified this approach by developing a hybrid 
error-based model using empirical propagation models. This model only requires basic elements, such 
as the assigned frequency and distances between transmitter and receiver, to feed the network. 

This study focused on a frequency of 900 MHz and employed the Okumura-Hata, Walfisch-
Bertoni, Ibrahim-Parsons, Ericson, COST231-Hata, and Walfisch-Ikegami models, achieving RMSE 
values between 3.03 dB and 3.91 dB. The results, in terms of mean absolute error, standard deviation, 
and RMSE, confirmed the technique's good performance, yielding results closer to measurements. 

This study proposes the implementation and application of two types of ANNs with similar 
architecture but different input types. In the first case, the network is inspired by the error-based 
hybrid propagation model developed by Popescu, Nafornita, and Constantinou (2005), with empirical 
models applied by Sanches and Cavalcante (2015). The designed neural network uses similar inputs: 
distances between transmitter and receiver and the error between measured data and predicted values 
by empirical models. This approach is referred to as the Error-Based Neural Network (EBNN). 

The second approach is based on features of the terrain and the setup of measurements. The 
terrain/propagation characteristics used as inputs include the distance from the transmitter to the 
receiver, receiver altitude, average terrain level, and azimuth between transmitter and receiver. This 
approach is referred to as the Terrain Parameters Based Neural Network (TBNN). 

In this study, the prediction models employed include the Ericsson 9999, Stanford University 
Interim (SUI), Electronic Communication Committee (ECC-33), and Technical Report (TR) 25.942 
models, with their performance compared to models based on neural networks. These propagation 
models were selected due to their widespread use in telecommunications for predicting signal loss in 
various environments (3GPP, 2024a; Kumari et al., 2011; Mathew; George; Pereira, 2017). 

The Ericsson 9999 model is effective for both urban and suburban areas and is recognized for its 
accuracy, although it requires numerous input parameters, which may complicate its implementation. 
The SUI model, suitable for suburban environments and high frequencies, is relatively simple but less 
adaptable to specific conditions without additional adjustments. 

The ECC-33 model is based on empirical measurements and is best suited for urban 
environments, offering high accuracy in densely populated areas. It can also be applied to suburban 



 

 

areas, though it does not apply to rural settings. Finally, the TR 36.942 (2024c) model, part of the 3rd 
Generation Partnership Project (3GPP, 2024d) specifications for LTE and LTE-A networks, plans 
coverage and capacity across various environments, from rural to urban areas. 

The experiment was conducted in suburban areas, focusing on the 800 MHz, 1800 MHz, and 
2600 MHz frequencies. The SUI and ECC-33 models were applied to the 1800 MHz and 2600 MHz 
bands, while the Ericsson and TR 25.942 models covered all three frequency bands (GPP, 2024a). 
Table 1 summarizes the different frequency bands used for 4G LTE services, 5G, and broadcasting. 
Each frequency band is associated with multiple service categories, and the propagation models used 
in the study were applied to these frequency bands (3GPP, 2024b; 3GPP, 2024d). 

 
Table 1 – Frequency bands covered in the study 

Frequency 

band 
5G 4G LTE Broadcasting 

800 MHZ 

Bands: n20  (832 – 862 MHz/791 
– 821 MHz) and n82 (832 – 862 

MHz) 

Bands: 20 (832 – 862 MHz/791– 
821 MHz), 28 (758 – 823 MHz) 

and 44 (703 – 803 MHz) 

Present in digital 
dividend UHF band 

in Europe (UHF 
channels 61–69) 

1800 MHz Band n3 (1805 – 1880 MHz) 
Band: 3 (1805 – 1880MHz/1710 - 

1785 MHz) and 9 (1805– 
1880MHz/1710- 1785 MHz): 

– 

2600 MHz 

Bands n7 (2500 – 2570 
MHz/2620 – 2690 MHz) and n38 

(2570 – 2620 MHz) 

Bands: 7 (2620 – 2690 MHz), 38 
(2570 – 2620 MHz) and 69 (2570 

– 2620 MHz) 
– 

Source: 3GPP (2024b, 2024d) 

 
The methodology developed in this work is based on comparing these techniques to determine 

which provides simulation results that most closely align with the data obtained from measurements. 
A measurement campaign was conducted in three distinct routes within the district of Lagoa Nova, in 
Natal, Brazil. 

The combination of neural networks with empirical models is a relatively uncommon approach 
in the existing literature, as empirical propagation models are more frequently utilized in comparative 
analyses against implemented neural networks. 

MATLAB software version R2018a was employed to implement the computational methods. 
Data on distances, average terrain level, and altitude were obtained using SIGAnatel (Geographical 
Information System), a tool provided by Brazil’s National Telecommunications Agency (ANATEL) 
for TV and FM broadcast channel feasibility simulations (Silva; Passos, 2007). 

To evaluate the performance of each technique, two metrics were applied: the root mean square 
error (RMSE), which estimates the error difference in dB between the datasets, and the Wilcoxon 
rank-sum test, which provides an assessment of the similarity between the distribution of datasets. 

The remainder of this paper is structured as follows: Section 2 details the measurement 
campaign; Section 3 discusses the propagation and ANN models; a comparative analysis between 
simulations and experimental data is presented in Section 4; and finally, Section 5 concludes the study 
and provides recommendations for future research. 

 
2 Measurement campaign 

Field measurements provide real empirical data on path loss and signal propagation, which are 
essential for validating and refining prediction models. Analyses are limited to theoretical models or 
simulations without measurement data, which may not accurately reflect actual environmental 
conditions. Measurement data also ensure the model can generalize well to new situations and varying 
conditions. 

The measurement campaign was conducted in the Lagoa Nova district of Natal, Brazil. 
Measurements were taken along routes between the UFRN campus and nearby streets. During all 
campaigns, the weather was predominantly sunny, with clear skies and few clouds. The site featured 
regular vegetation density and medium-sized buildings, characterizing the environment as suburban. 



 

 

A Continuous Wave (CW) signal was transmitted using a Rhode & Schwarz broadband 
amplifier (model R&SBBA150, 9 KHz – 6 GHz) and an Anritsu radio transmitter (model MG3700A, 
50Hz – 6 GHz) with a power output of 15 watts. Two pairs of Pasternack directive antennas were 
employed for both transmission and reception (Pasternack, 2024): a panel antenna (2.5 GHz - 2.7 
GHz) with a nominal gain of 14 dBi for the 2600 MHz band, and a dual-panel antenna (806-960 MHz 
and 1710-2500 MHz) with a nominal gain of 7 dBi for the 1800 MHz and 800 MHz bands. 

For signal measurement, an Anritsu spectrum analyzer, model MS2721B, was utilized. This 
analyzer also featured an integrated Global Positioning System (GPS) device, which provided the 
precise location of the measured points. 

The Rhode & Schwarz R&SBBA150 broadband amplifier covers a wide frequency range, from 
9 KHz to 6 GHz, encompassing the entire frequency range of the transmitted signal. This broad 
coverage ensures that the amplifier can amplify signals across all relevant frequency bands without 
requiring changes in equipment. Combined with the transmitter's output power (15 watts) and the 
characteristics of the antennas used, the amplifier's power ensures that the transmitted signal is 
detectable during measurements. 

The Anritsu MG3700A radio transmitter, operating from 50 Hz to 6 GHz, covers the frequency 
range required for the experiment (800 MHz, 1800 MHz, and 2600 MHz bands). This guarantees that 
the transmitter can generate signals within the specific bands necessary for the experiment. 

The Pasternack antennas selected provide high directivity and gain, enhancing the efficiency of 
signal transmission. The directivity of these antennas ensures reliable data collection for the 
frequencies of interest. 

The Anritsu MS2721B spectrum analyzer is capable of measuring signals in the frequency 
range of 9 KHz to 7.1 GHz, covering all bands used in the experiment. Additionally, the integrated 
GPS feature provides precise geographical location data for each measured point. 

The transmitting antenna was installed at a height of 20 meters, while the receiving antenna was 
mounted on the roof of a vehicle, at a total height of 3.6 meters from the ground (Figure 1). The 
vehicle traveled along three different routes near the university (Figure 2), maintaining a constant 
speed of 20 km/h. 
 

Figure 1 –Vehicle used in the measurement campaign, with the receiving antenna installed on its roof 

 
Source: authors' files 

 
Figure 2 –Map showing the three routes covered in the measurement campaign. Route 1 includes Cel. João 

Medeiros Street and Passeio dos Girassóis Avenue, while Routes 2 and 3 correspond to Cap. Mor Gouveia and 
Miguel Alcides de Araújo Avenues, respectively 



 

 

 
Source: Google Maps, 2024 

 
After collecting the experimental data, it was necessary to convert the measured power into 

propagation loss. This conversion was performed using Equation (1): 
 

�� � �� � �� � �� � �	 � �
 (1) 
 

where �� represents the propagation loss, �� is the transmitter’s power output, ��  and �� are the gain 
of the transmitting and receiving antennas, respectively, and �	  is the loss in the cables. Finally, �
 
denotes the measured power. 

An important factor that indicating the rate at which path loss decreases over distance is the path 
loss exponent, γ. This value usually typically ranges between 2 and 4 (Weinstock, 2007). A value of γ 
= 2 would correspond to a free space environment (straight line of sight, no obstructions), while γ = 4 
represents an environment with high losses. Table 2 presents the losses values for each route and 
frequency.  

 
Table 2 –Path loss exponents by route and frequency band 

Route  Frequency band γ 

1 
800 MHZ 2.4 
1800 MHz 2.5 
2600 MHz 2.9 

2 
800 MHZ 2.4 
1800 MHz 3.4 
2600 MHz 3.1 

3 
800 MHZ 2.3 
1800 MHz 2.7 
2600 MHz 2.8 

Source: Weinstock, 2007. 

 
The measured path loss exponent values align with those reported in the literature, confirming the 

intermediate characteristics of the suburban environment, which lies between free space and high-loss 
environments. Suburban areas typically present a moderate level of obstructions, as reflected in the 
measured γ values. 

To ensure data accuracy and maintain the integrity of the dataset, each detected outlier was 
replaced with the previous non-outlier value. This approach provides a reasonable estimate of the 
expected signal strength at those points, preserving data continuity and trends while minimizing the 
introduction of erroneous values. 

 
3 Numerical methods 



 

 

Artificial Neural Networks (ANNs) are mathematical-computational models inspired by the 
neural structure of intelligent organisms and their capacity to acquire knowledge through experience. 
ANNs implement a nonlinear mapping of a set of inputs to a set of outputs, executed through layers of 
neurons. The input values are multiplied by specific synaptic weights of each layer, aiming to produce 
an appropriate output based on the inputs (Popescu; Nafornita; Constantinou, 2005). The approach 
using neural networks in this study utilizes two different methods: 

• The first model uses two distinct inputs: one representing the distances between the 
transmitter and receiver, and another representing the error difference between experimental 
data and values predicted by the empirical propagation model (the Ericsson model was 
selected after performance tests). The output consists of the values obtained from the 
measurements. These values correspond to data collected across all routes. 
This method was chosen for its hybrid nature, which combines empirical propagation models 
with the learning capability of ANNs. This approach is particularly valuable in scenarios 
where traditional empirical models may not adequately capture the complexities of the 
environment; 

• The second model employs four inputs, which are derived from terrain characteristics and 
the measurement setup: the distances between the transmitter and receiver, the azimuth angle 
between the transmitter and receiver, the altitude of the receiver, and the average terrain 
elevation. The output node represents the controlled measurement loss. 
This model was selected to explore the influence of terrain characteristics on signal 
propagation, similar to methodologies used in previous studies cited in the Introduction. By 
including these variables, the network can learn from relevant contextual data, improving the 
accuracy of predictions in environments where topography significantly impacts signal 
propagation. 

 
A. Error-Based Neural Network – EBNN 

The input to this model comprises two vectors: 1) the distance between the transmitter and 
receiver, and 2) the error between the measured values and those calculated by a selected propagation 
model: 

 
�� � ��
������� �  ����������� (2) 

 
where  ��
�������  represents the propagation loss obtained though field measurements, and 
 ����������� is the propagation loss calculated by Ericsson model. 

The output vector, also known as the neural network target, consists of the measured path loss. 
The training phase of the neural network structure is shown in Figure 3, while the network architecture 
is illustrated in Figure 4. 

 
Figure 3 – Error-Based Neural Network (EBNN) model training process 



 

 

 
Source: elaborated by the authors 

 
Figure 4 – Artificial Neural Network (ANN)  applied to the Error-Based Neural Network (EBNN) model 

 
Source: elaborated by the authors 

 
The designed ANN is a multilayer perceptron type, consisting of two inputs and one output, 

with a single hidden layer. The input set includes two vectors with values collected along three routes 
for each frequency: 560 elements for the 800 MHz scenario, 357 elements for the 1800 MHz, and 519 
elements for the 2600 MHz frequency. The transfer functions used for the hidden and output layers are 
tangent sigmoid and linear, respectively, with the Levenberg-Marquardt algorithm chosen for network 
training. 

In this network, each of the two inputs (the distance between the transmitter and receiver, and 
the error between measured and predicted values) is fed into the hidden layer, where neurons compute 
their weighted sum (w), add a bias (b), and apply a tangent sigmoid (tanh) activation function. 

Synaptic weights are values associated with inputs, adjusted during training to improve the 
model results and store the acquired knowledge. The bias increases or decreases the input of the 
activation function depending on whether this value is negative or positive (Haykin, 2009). The 
activation function introduces non-linearity, enabling the network to capture complex patterns in the 
data. 



 

 

The outputs from the hidden layer neurons are then passed to the output layer. This layer 
consists of a single neuron that calculates a weighted sum of the hidden layer outputs, adds another 
bias, and applies a linear activation function. The linear function ensures that the final output is a 
direct result of the weighted sum, suitable for regression tasks requiring precise numerical outputs. 

Alternatives such as the standard backpropagation algorithm and the Levenberg-Marquardt 
method were considered, with the latter proving more efficient in terms of convergence speed 
(Haykin, 2009). The stopping criterion was set based on the number of epochs, capped at 1000, as 
convergence significantly decreased beyond this value. 

To prevent overfitting and ensure the network's generalization capability, the data was divided 
into three sets: training (60%), validation (25%), and testing (15%). The training set was used to adjust 
network weights. The validation set assessed the network's generalization capacity, also serving as a 
stopping criterion using a cross-validation strategy. Finally, the testing set provided a realistic estimate 
of network performance on new data. 

Network parameters were optimized using a cross-validation approach, where the dataset was 
partitioned into multiple subsets. In each iteration, the model was trained on all but one of these 
subsets, with the remaining subset used for testing. This process was repeated multiple times, rotating 
the test subset at each round. The final accuracy was determined by averaging the results obtained 
from all iterations (Dai, 2013). 

To limit the number of models applied to the error-based neural network, a test methodology 
involving all propagation models was employed. Ultimately, the Ericsson model demonstrated the best 
average performance and was selected for use in the evaluation process. 

 
B. Terrain parameters Based Neural Network – TBNN 

This model shares the same architecture as depicted in Figure 4. The transfer functions for the 
hidden and output layers remain the tangent sigmoid and linear functions, respectively, and the 
Levenberg-Marquardt algorithm continues to be used for training. The primary difference lies in the 
inputs. The TBNN model incorporates four distinct inputs related to terrain and propagation setup 
(across the three routes): 

• Distances between transmitter (Tx) and receiver (Rx); 
• Receiver altitude; 
• Average terrain elevation (origin and destination); 
• Azimuth angle between Tx and Rx. 

 
C. Propagation models 

The path loss was calculated using the Ericsson and TR 36942 models, which covered all 
frequency bands, as well as the SUI and ECC-33 models, applied to the 1800 MHz and 2600 MHz 
bands. These propagation models were selected due to their relevance, applicability to the specific 
environment and frequency bands of interest, and their use in several propagation studies, such as 
those by Kumari et al. (2011), Mathew, George, and Pereira (2017), and Siddiqui, Fatima, and Ahmad 
(2019). 

Table 3 presents the main equations associated with these models (3GPP, 2024a; Mathew; 
George; Pereira, 2017; Kumari et al., 2011). 
 

Table 3 – Path loss models equations 
Model Equations  

3GPP TR 25.942  ���� � 40�1 � 0.004ℎ�� !�"#$%&' � 18!�"#$%ℎ��' � 21!�"#$%*' � 80 (3) 

Ericsson 

    ��+ � ,$ � ,#!�"#$%&' � ,-!�"#$ℎ�� � ,.!�"#$ℎ��!�"#$%&'
� 3.2%!�"#$11.75ℎ��'- � "%*' (4) 

"%*' � 44.9!�"#$%*' � 4.78�!�"#$%*'  (5) 

ECC-33 

��+		 � 34� � 35
 � �5 � ��  (6) 

                34� � 92.4 � 20!�"#$%&' � 20!�"#$%*' (7) 

35
 � 20.41 � 9.83!�"#$%&' � 7.894!�"#$%*' � 9.56�!�"#$%*' - (8) 



 

 

         �5 � !�"#$ 7ℎ��
2008 913.958 � 5.8�!�"#$%&' -: (9) 

           �� � �42.47 � 13.7!�"#$%*'!�"#$%*' �!�"#$%ℎ�;' � 0.585  (10) 
  �� � 0.759%ℎ��' � 1.862 (11) 

SUI 

 ��<=> � 3 � 10?!�"#$ 7 &
&$

8 � ∆�4 � ∆�A � B (12) 

3 � 20!�"#$%4C&$
D ' (13) 

? � , � Eℎ5 � F
ℎ��

 (14) 

∆�4 � 6!�"#$% *
2000' (15) 

∆�A �  �10,8!�"#$ 7ℎ��
2 8 (16) 

∆�A �  �20!�"#$%ℎ��
2 ' (17) 

B � 0,65�!�"#$%*' -  � 1,3 � !�"#$%*' � H (18) 
Source: 3GPP TR 25.942 (2024a); Mathew, George; Pereira (2017); Kumari et al. (2011) 

 
where d represents the distance between the transmitter and receiver, f is the frequency in MHz, ℎ��  is 
the height of the transmission antenna in meters, and ℎ�� denotes the height of the reception antenna 
in meters.  ����, ��+, ��+		 and  ��<=> represent the path loss for TR 25.942, Ericsson, ECC-33 and 
SUI models, respectively. 

Regarding the Ericsson model equations, "%*' is the frequency correction factor, and ,$, ,#, 
,- and ,. are constants that can be adjusted according to the scenario. The default values, which were 
used in the Ericsson model employed in this study, are 36.2, 30.2, 12.0, and 0.1, respectively. 

In the ECC equations, 34� represents the free space attenuation (in dB), while 35
 denotes the 
average path loss (in dB), which depends on the distance (in km) from the base station antenna to the 
user antenna and the operating frequency f (in GHz). Additionally, �5 is the gain (dB) of the base 
station antenna at a certain height (m), and �� refers to the gain of the receiver antenna Equation 10 
applies to small or medium cities, while Equation 11 applies to large cities. 

For the SUI equations, A represents the free space path loss, ∆�4 is the frequency correction 
factor, and ∆�A is the receiver antenna height correction factor. Equation 16 is valid for terrain types A 
(areas with the highest path loss, such as densely populated urban regions) and B (terrains with 
moderate path loss, typical of suburban environments), while Equation 17 is used for terrain type C 
(areas with the least path loss, such as rural or flat region). λ denotes the wavelength (m), and s 
represents the shadowing effect, where α equals  5.2 dB for urban and suburban environments (terrain 
types A and B) and 6.6 dB for rural environments (terrain C). Finally, γ is the propagation loss 
exponent for the different types of terrain. 
 
4 Results and discuss 

This section presents the performance analysis of the evaluated methods. RMSE serves as a 
metric that quantifies the discrepancy between the values predicted by the models and those measured. 
A lower RMSE is preferable, as it indicates that the model's predictions are closer to the real data, 
while higher values suggest that the model may not accurately capture the relationship between the 
data. 

Statistically, the parameter p determines the level of significance in the experiment, with higher 
p-values indicating greater similarity between the data distribution and the experimental data. Any 
result with a p-value below 10-6 is considered null. The "Significance" column, based on the p-value, 
indicates whether the model is deemed accurate and statistically equivalent to real data. If the p-value 
is less than 0.05, the method is categorized as Significantly Different (S.D.); otherwise, it is classified 
as Significantly Equivalent (S.E.) (Andrade, 2019). 

The p-value is used to assess the null hypothesis that the model's performance aligns with the 
expected performance based on measured data. A low p-value (less than 0.05) suggests that the 
differences between the model and real data are statistically significant and not due to random chance. 



 

 

Conversely, a high p-value indicates that the model can be considered statistically equivalent to the 
real data, within the margin of statistical error. 

 
A. 800 MHz scenario 

The performance results for the 800 MHz band are highlighted in Table 4. Both neural network 
models were able to reduce the Root Mean Square Error (RMSE) while increasing the p-value, thereby 
minimizing the discrepancy between simulated and measured path loss data. In the case of the Error-
Based Neural Network (EBNN), the RMSE approached zero. In terms of propagation models, both 
methods demonstrated regular performance, with TR 25.942 showing relatively better results. 
However, this regular performance was not confirmed in the similarity tests, where both conventional 
models exhibited low correlation between the measured and optimized values. 
 

Table 4 – Performance of methods at 800 MHz 

Route Model 
RMSE(dB) 

800 MHz 

Wilcoxon rank-sum 

p-test 800 MHz 

Significance @95% 

800 MHz 

1 

Ericsson 10.76 null S.D 
TR 25.942 8.67 0.001 S.D 

EBNN 0.003 0.984 S.E 
TBNN 5.082 0.675 S.E 

2 

Ericsson 11.18 null S.D 
TR 25.942 7.63 0.001 S.D 

EBNN 0.626 0.997 S.E 
TBNN 5.96 0.541 S.E 

3 

Ericsson 10.817 null S.D 
TR 25.942 9.44 null S.D 

EBNN 0.003 0.972 S.E 
TBNN 5.7 0.555 S.E 

Source: research data 

 
These results are further supported by the analysis of Figures 5 and 6. Figure 5 presents the 

graph of the propagation loss as a function of distance, and Figure 6 provides a box-and-whisker plot 
comparing the datasets obtained by each method against the data collected from the measurement 
campaign, specifically for route 1. 
 

Figure 5 –Metric comparison of path loss models and campaign measurements at 800 MHz for Route 1 



 

 

 
Source: research data 

 
Figure 6 – Box-and-whisker plot comparing different methods for Route 1 (800 MHz) 

 
Source: research data 

 
For the terrain-based network model in this scenario, while the distribution was slightly flatter, 

it closely aligned with the interquartile range, indicating high similarity with the measured data. 
However, this model demonstrated lower fidelity in data distribution, as its range occupied only part of 
the measured data sampling space (resulting in a p-value of 0.675). The EBNN model addressed these 
issues by achieving a data distribution closely matching the measured values, obtaining a p-value of 
0.984. 
 
B. 1800 MHz and 2600 MHz scenario 



 

 

For measurements at 1800 MHz, ANN techniques again yielded the best performance across all 
metrics, as shown in Table 5. The EBNN approach achieved an RMSE close to zero and a p-value 
near 1, reinforcing its similarity to the collected data. Among the conventional models, the ECC model 
demonstrated the best performance across all routes, with the Ericsson model performing well 
specifically for route 2 (as illustrated in Figures 7 and 8). 
 

Table 5 – Performance of analyzed methods at 1800 MHz 

Route Model 
RMSE(dB) 1800 

MHz 

Wilcoxon rank-sum p-

test 1800 MHz 

Significance @95% 

1800 MHz 

1 

Ericsson 11.3 null S.D 
TR 25.942 13.87 null S.D 

SUI 11.89 null S.D 
ECC 7.82 0.057 S.E 

EBNN 0.005 0.993 S.E 
TBNN 4.94 0.384 S.E 

2 

Ericsson 6.857 0.008 S.D 
TR 25.942 16.56 null S.D 

SUI 13.727 null S.D 
ECC 7.827 null S.D 

EBNN 0.001 0.998 S.E 
TBNN 4.97 0.634 S.E 

3 

Ericsson 12.515 null S.D 
TR 25.942 12.45 null S.D 

SUI 9.58 null S.D 
ECC 8.4 0.376 S.E 

EBNN 0.001 0.983 S.E 
TBNN 6.586 0.708 S.E 

Source: research data 
 

Figure 7 –Metric comparison of path loss models and campaign measurements at 1800 MHz for Route 2 

 
Source: research data 

 
Figure 8 – Box-and-whisker plot comparing different methods for Route 2 (1800 MHz) 



 

 

 
Source: research data 

 
Conversely, the SUI and TR 25.942 models produced below-average results, deviating 

significantly from the measured data points along the entire path and yielding low RMSE values. The 
box-and-whisker plot representation reveals a greater dispersion when compared to experimental data. 

In the 2600 MHz scenario for route 3, an increase in data dispersion is observed (Figures 9 and 
10). This further highlights the importance of employing approaches capable of performing nonlinear 
mapping of the samples, as is the case with neural networks. Path loss models demonstrated low 
similarity (Table 6), underscoring the challenge faced by linear models in accurately handling data 
samples with significant dispersion. Even predictions using curve optimization techniques, such as 
genetic algorithms or the least squares method, would likely not resolve these discrepancies. 

 
Table 6 – Performance of analyzed methods at 2600 MHz 

Route Model 
RMSE(dB) 

2600 MHz 

Wilcoxon rank-sum 

p-test 2600 MHz 

Significance @95% 

2600 MHz 

1 

Ericsson 14.85 null S.D 
TR 25.942 12.92 null S.D 

SUI 9.99 null S.D 
ECC 8.9 0.167 S.E 

EBNN 0.003 0.999 S.E 
TBNN 5.32 0.987 S.E 

2 

Ericsson 9.677 0.001 S.D 
TR 25.942 19.19 null S.D 

SUI 15.01 null S.D 
ECC 10.16 null S.D 

EBNN 0.012 0.995 S.E 
TBNN 5.46 0.605 S.E 

3 

Ericsson 14.83 null S.D 
TR 25.942 16.86 null S.D 

SUI 13.77 null S.D 
ECC 11.27 0.121 S.E 

EBNN 0.003 0.971 S.E 
TBNN 8.45 0.777 S.E 

Source: research data 



 

 

 
Figure 9 –Metric comparison of path loss models and campaign measurements at 2600 MHz for Route 3 

 
Source: research data 

 
Figure 10 – Box-and-whisker plot comparing different methods for Route 3 (2600 MHz) 

 
Source: research data 

 
5 Conclusions 

This study analyzed two types of artificial neural network (ANN) approaches for predicting 
propagation loss at 800 MHz, 1.8 GHz, and 2.6 GHz in suburban areas: an error-based hybrid model 
that utilizes the error calculated by the Ericsson model, and another neural network that incorporates 



 

 

terrain features as input parameters. The performance of these techniques was evaluated and compared 
using Root Mean Square Error (RMSE) and their similarity with well-established path loss models 
from the literature. The following conclusions can be drawn from the results: 

• Both ANN approaches successfully reduced RMSE values while increasing p-values, 
significantly decreasing the difference between simulated and measured values. In the case 
of the Error-Based Neural Network (EBNN), RMSE values approached zero. This 
demonstrates the neural networks' capacity to learn and incorporate non-deterministic 
values present in experimental data; 

• In most cases, traditional path loss modeling methods resulted in p-values less than 0.05. 
This is likely due to the greater dispersion of measured data, particularly on routes 2 and 3, 
even after the replacement of outliers; 

• Based on the results obtained from classical models, it is recommended to use the TR 
25.942 model for the 800 MHz band, the ECC model for the 1800 MHz band, and both the 
SUI and ECC models for the 2600 MHz band; 

• The most efficient technique, characterized by RMSE values close to zero and p-values near 
1, recommended for predicting propagation loss in the scenarios analyzed, was the error-
based ANN; 

• Compared to the studies by Popescu, Nafornita, and Constantinou (2005) and Sanches and 
Cavalcante (2015), this research covered a broader range of frequencies and achieved lower 
average RMSE values. The results are also notable when compared to more recent studies, 
such as those by Jo et al. (2020) and Popoola et al. (2021); 

• Both neural networks proved to be effective and accurate prediction methods, 
demonstrating simulation results closely aligned with actual field measurements. These 
methods are valuable tools for LTE and 5G network designers, providing reliable 
predictions of propagation loss; 

• The high accuracy of the predictions allows for a more precise design of network coverage, 
minimizing areas with poor signal reception and avoiding excessive cell overlap. This level 
of precision enables the optimal allocation of resources, including the strategic positioning 
of base stations and the adjustment of transmission power, resulting in significant cost 
savings and improved network performance. 

 
A noteworthy aspect of this study is the use of the Wilcoxon rank sum method, as opposed to 

the standard deviation, a tool frequently employed in propagation studies, such as those by Popescu, 
Nafornita, and Constantinou (2005), and Sanches and Cavalcante (2015). While the standard deviation 
measures the variability of prediction errors around the mean, providing a general assessment of the 
accuracy of the propagation loss model, the Wilcoxon test offers a more detailed and robust analysis of 
the similarity between the distributions of predicted and measured errors. The standard deviation can 
be influenced by outliers and non-normal distributions (Riedel et al., 2019), potentially skewing the 
evaluation of model accuracy. In contrast, the Wilcoxon test is less sensitive to these factors, as it is 
based on ranks rather than raw values. 

It is also important to note that the neural network models (EBNN and TBNN) were specifically 
trained for suburban environments and the frequency bands considered in this study. As a result, their 
performance may not be as effective in urban or rural settings. 

Future research directions are clear. The proposed method could be further evaluated using 
different datasets, including those from urban and rural areas, and for various frequency bands, 
including 5G systems. Additionally, it can be extended to future 6G networks, which are expected to 
integrate satellite systems, aerial networks, terrestrial communications, maritime communications, and 
underwater systems. In this context, Artificial Intelligence and Machine Learning techniques should be 
utilized to further enhance path loss prediction metrics. 
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