
Strings pesquisadas

1 Especificação formal OR
Formal specification

AND

6 Linguagens formais OR
Formal languages

AND

8 Ferramentas de
especificação OR
Specification tool

2 Verificação formal OR
Formal verification 7

Linguagens de
especificação OR
Specification languages

9
Ferramentas de
verificação OR
Verification tools

3 Modelagem formal OR
Formal modeling

4 Análise formal OR Formal
analysis

5 Prova formal OR Formal
proof

Bases de periódicos

1 IEEE https://ieeexplore.ieee.org/Xplore/home.jsp
2 ACM https://dl.acm.org/
3 Scopus https://www.scopus.com/
4 Web of Science https://pubmed.ncbi.nlm.nih.gov//

Período de busca de 2018 a 2023

Critérios de inclusão

1 Estudos com foco na pesquisa (CI1)
2 Estudos publicados entre os anos de 2018 e 2023 (CI2)
3 Estudos publicados no idioma Inglês e português (CI3)
4 Estudos que apresentam linguagem ou ferramenta de especificação (CI4)

Critérios de exclusão

1 Estudos que não tenham foco na pesquisa (CE1)

2 Estudos que não apresentam informações suficientes para responder a nenhuma das questões de
pesquisa (CE2)

3 Estudos repetidos em mais de uma fonte de busca (CE3)
4 Estudos que não sejam de Revistas, conferências ou jornais (CE4)
5 Estudos que não possibilitem download do arquivo completo de forma gratuita (CE5)

Estratégia usada para
avaliação dos artigos

1 busca nas bases
2 ler título, palavras-chave e resumo
3 ler introdução, metodologia e conclusão
4 ler o artigo por completo e inserí-lo na base de artigos selecionados

Questões de Pesquisa

QPE Quais são as principais linguagens e
ferramentas utilizadas na especificação formal
de software disponíveis na literatura?

QE1 Quais são as principais linguagens e
ferramentas utilizadas?

QE2 Como essas linguagem e ferramentas são
utilizadas na especificação formal de software?

QE3 Quais as limitações identificadas?

https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://www.scopus.com/
https://pubmed.ncbi.nlm.nih.gov/

TÍTULO AUTORES ANO RESUMO DOI PDF LINK PALAVRAS-CHAVE FONTE DE BUSCA IDIOMA
A tool for proving Michelson Smart Contracts in WHY3Arrojado Da Horta, Luis Pedro (57219764980); Santos Reis, Joao (57221474614); De Sousa, Simao Melo (15135137100); Pereira, Mario (57190032035)2020 This paper introduces a deductive verification tool for smart contracts written in Michelson, which is the low-level language of the Tezos blockchain. Our tool accepts a formally specified Michelson contract and automatically translates it to an equivalent program written in WhyML, the programming and specification language of the Why3 framework. Smart contract instructions are mapped into a corresponding WhyML shallow-embedding of the their axiomatic semantics, which we also developed in the context of this work. One major advantage of this approach is that it allows an out-of-the-box integration with the Why3 framework, namely its VCGen and the backend support for several automated theorem provers. We also discuss the use of our tool to automatically prove the correctness of diverse annotated smart contracts. © 2020 IEEE.10.1109/Blockchain50366.2020.00059 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63Formal Verification; Michelson; Smart Contracts; Tezos; Why3 Scopus Inglês
Fvil: Intermediate language based on formal verification virtual machineZeng, Weiru (57192409388); Liao, Yong (55213715800); Qian, Weizhong (55710445300); Yan, Zehui (57219163124); Yang, Zheng (57198347264); Li, Ang (57219158755)2020 As the software scale continues to increase, the software development cycle becomes more and more compact, which takes more time to the software test. How to test the software and ensure its safety efficiently and accurately is an urgent problem to be solved. The formal verification virtual machine (FSPVM) [1] developed by Coq [2] assistant verification tool can effectively verify programs with formal method. However, its widespread application is heavily restricted by the compliant syntax of the formal specification language Lolisa [3] and the mechanism of generalized algebraic types GADTs [4]. This paper proposes a more user-friendly intermediate language (FVIL) based on FSPVM, which changes the hierarchical structure of Lolisa and expands the type of Lolisa, makes the formal verification of software easier to be applied in practice. The experiments show that the intermediate language can make the formal method easier to understand, apply and expand. © Springer Nature Singapore Pte Ltd 2020.10.1007/978-981-15-8101-4_59 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414aCoq; Formal verification; Intermediate language; Software securityScopus Inglês
Teaching practical realistic verification of distributed algorithms in Erlang with TLA+Zeller, Peter (56208935400); Bieniusa, Annette (26321313600); Ferreira, Carla (22733423900)2020 Distributed systems are inherently complex as they need to address the interplay between features like communication, concurrency, and failure. Due to the inherent complexity of these interacting features, it is typically not possible to systematically test these kind of systems; yet, unexpected and unlikely combinations of events might cause corner cases that are hard to find. But since these systems are running typically for long durations, these events are likely to materialize eventually and must be handled correctly. Caught in such a dilemma, students are able to experience the benefits of applying verification tools to check their own algorithms and implementations. Having executable models with automatically generated executions allows them to experiment with different solutions by iteratively adapting and refining their algorithms. In this experience report, we report on our experience of teaching verification in a (hands-on) distributed systems course. We argue that broadcast algorithms provide a sweet spot in design and verification complexity. To this end, we give an implementation of these algorithms in Erlang and derive a TLA+ specification. TLA+ is a formal language for describing and reasoning about distributed and concurrent systems and provides a model checker, TLC, among other things. Our study reveals interesting parallels between the Erlang and TLA+ code, while exposing the challenges of formally modeling communication and parallelism in distributed systems. Presenting selected aspects of our course design, we aim to motivate the feasibility and need for introducing verification in close correspondence to programming tasks. © 2020 ACM.10.1145/3406085.3409009 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096125213&doi=10.1145%2f3406085.3409009&partnerID=40&md5=5e30039eef53859603a9350cfcc2694bBroadcast algorithms; Distributed algorithms; Formal verification; TLA+Scopus Inglês
Multiple Analyses, Requirements Once:: Simplifying Testing and Verification in Automotive Model-Based DevelopmentBerger, Philipp (57203038692); Nellen, Johanna (54956533900); Katoen, Joost-Pieter (7003679176); Ábrahám, Erika (8730197200); Waez, Md Tawhid Bin (55775485700); Rambow, Thomas (6504314037)2019 In industrial model-based development (MBD) frameworks, requirements are typically specified informally using textual descriptions. To enable the application of formal methods, these specifications need to be formalized in the input languages of all formal tools that should be applied to analyse the models at different development levels. In this paper we propose a unified approach for the computer-assisted formal specification of requirements and their fully automated translation into the specification languages of different verification tools. We consider a two-stage MBD scenario where first Simulink models are developed from which executable code is generated automatically. We (i) propose a specification language and a prototypical tool for the formal but still textual specification of requirements, (ii) show how these requirements can be translated automatically into the input languages of Simulink Design Verifier for verification of Simulink models and BTC EmbeddedValidator for source code verification, and (iii) show how our unified framework enables besides automated formal verification also the automated generation of test cases. © Springer Nature Switzerland AG 2019.10.1007/978-3-030-27008-7_4 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072873577&doi=10.1007%2f978-3-030-27008-7_4&partnerID=40&md5=19d935eecb53f5ef5147f49db9699a0a- Scopus Inglês
Open and Branching Behavioral Synthesis with Scenario ClausesAsteasuain, Fernando (15076943400); Calonge, Federico (57216952638); Dubinsky, Manuel (57222081187); Gamboa, Pablo Daniel (57216948794)2021 The Software Engineering community has identified behavioral specification as one of the main challenges to be addressed for the transference of formal verification techniques such as model checking. In particular, expressivity of the specification language is a key factor, especially when dealing with Open Systems and controllability of events and branching time behavior reasoning. In this work, we propose the Feather Weight Visual Scenarios (FVS) language as an appealing declarative and formal verification tool to specify and synthesize the expected behavior of systems. FVS can express linear and branching properties in closed and Open systems. The validity of our approach is proved by employing FVS in complex, complete, and industrial relevant case studies, showing the flexibility and expressive power of FVS, which constitute the crucial features that distinguish our approach. © 2021 Latin American Center for Informatics Studies. All Rights Reserved.10.19153/CLEIEJ.24.3.1 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07bBehavioral specifications; Branching reasoning; Open systems; SynthesisScopus Inglês
Dunuen: A user-friendly formal verification toolCapobianco, Giovanni (16644730200); Giacomo, Umberto Di (57207581495); Mercaldo, Francesco (55842609700); Santone, Antonella (6603700255)2019 Formal verification allows checking the design and the behaviour of a system. One of the main limitations to the adoption of formal verification techniques is the process of model creation using specification languages. For this reason a tool supporting this activity is necessary. Actually, there are several tools allowing analysts to verify models expressed into specification languages. These tools provide support for automatically checking whether a system satisfies a property. However, to use such tools it is important to deeply know a precise notation for defining a system, i.e., the Calculus of Communicating Systems. Since systems are often expressed as time-series, to overcome this problem, we provide an user-friendly tool able to automatically generate a system model starting from the CSV - Comma-Separated Values format (the most widespread format considered to release dataset). In this way we hide the details about the model construction form the analyst, which can only focus immediately on the properties to verify. We introduce Dunuen, a tool allowing the user to firstly perform a kind of pre-processing operation starting from a CSV file, as discretization or removing attributes; subsequently it automatically creates a formal model from the pre-processed CSV file and, by invoking the model checker we embedded in Dunuen, it finally verifies whether the generated model satisfies a property expressed in temporal logic through a graphic interface, proposing formal methods as an alternative to machine learning for classification tasks. © 2019 The Author(s). Published by Elsevier B.V.10.1016/j.procs.2019.09.313 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076261943&doi=10.1016%2fj.procs.2019.09.313&partnerID=40&md5=31f6967e72f52a0172d631b2aaad90f9Automatic Tool; Formal verification; Model Checking Scopus Inglês
Cryptographic protocols implementation security verification of the electronic voting system based on blind intermediariesBabenko, Liudmila (55834381100); Pisarev, Ilya (57200647806); Popova, Elena (57212462728)2019 The development of electronic voting systems is a complex and urgent task in today's time. At the heart of the security of any system using network interaction are cryptographic protocols. Their quality is verified by means of formal verification. However, formal verification tools work with protocols in an abstract form of Alice-Bob format, which does not allow to completely check the protocol for all sorts of attacks. In addition, when implementing the protocol in practice using any programming language, it is possible to change this protocol relative to its original form. As a result, the abstract initial form of the protocol, which was verified by means of formal verification, is considered safe, but a modified implemented protocol that has a different type can no longer be recognized as safe. Thus, verification of the cryptographic protocol of the electronic voting system using source codes is relevant. The paper described an electronic voting system based on blind intermediaries. A parser is described to extract the structure of the cryptographic protocol with which the structure of the voting protocol was obtained. The cryptographic e-voting protocol was translated into the CAS+ specification language for the Avispa automated verifier for protocol security verification. © 2019 Association for Computing Machinery.10.1145/3357613.3357641 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076741385&doi=10.1145%2f3357613.3357641&partnerID=40&md5=732b60bc6d743284a770f331bb6c035bAnalysis; Avispa; Cryptographic protocols; E-voting; Parser; VerificationScopus Inglês
Formalizing Spark Applications with MSVL Wang, Meng (56287466000); Li, Shushan (57226314342)2021 Distributed computing framework Spark is widely used to deal with big data sets efficiently. However, it is more demanding implementing in Spark than coming up with sequential implementations. Thus, formal verification is needed to guarantee the correctness of Spark applications. In order to verify Spark applications using verification tool UMC4M, this paper presents an approach to formalizing Spark applications with Modeling Simulation and Verification Language (MSVL). We first implement Spark operations with MSVL functions, then formalize a Spark application with MSVL based on its directed acyclic graphs (DAGs). As a case study, the word count application is used to show the process. © 2021, Springer Nature Switzerland AG.10.1007/978-3-030-77474-5_13 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111157717&doi=10.1007%2f978-3-030-77474-5_13&partnerID=40&md5=12905b79ee7a395ee4abe62cb914ec8eBig data; DAG; Formal verification; Spark Scopus Inglês
Verification of the ROS NavFn planner using executable specification languagesMartin-Martin, Enrique (35956389400); Montenegro, Manuel (7102666158); Riesco, Adrián (23089591800); Rodríguez-Hortalá, Juan (23991527000); Rubio, Rubén (57209537089)2023 The Robot Operating System (ROS) is a framework for building robust software for complex robot systems in several domains. The Navigation Stack stands out among the different libraries available in ROS, providing a set of components that can be reused to build robots with autonomous navigation capabilities. This library is a critical component, as navigation failures could have catastrophic consequences for applications like self-driving cars where safety is crucial. Here we devise a general methodology for verifying this kind of complex systems by specifying them in different executable specification languages with verification support and validating the equivalence between the specifications and the original system using differential testing techniques. The complex system can then be indirectly analyzed using the verification tools of the specification languages like model checking, semi-automated functional verification based on Hoare logic, and other formal techniques. In this paper we apply this verification methodology to the NavFn planner, which is the main planner component of the Navigation Stack of ROS, using Maude and Dafny as specification languages. We have formally proved several desirable properties of this planner algorithm like the absence of obstacles in the planned path. Moreover, we have found counterexamples for other concerns like the optimality of the path cost. © 2023 The Author(s)10.1016/j.jlamp.2023.100860 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148539053&doi=10.1016%2fj.jlamp.2023.100860&partnerID=40&md5=eb79652612662c9dec708415baec5265Dafny; Formal verification; Maude; Model checking; Navigation; ROSScopus Inglês
A GRAPH TRANSFORMATION APPROACH FOR MODELING AND VERIFICATION OF UML 2.0 SEQUENCE DIAGRAMSHamrouche, Houda (58111246300); Chaoui, Allaoua (35101659400); Mazouzi, Smaine (23393267500)2022 Unified Modeling Language (UML) 2.0 Sequence Diagrams (UML 2.0 SD) are used to describe interactions in software systems. These diagrams must be verified in the early stages of software development process to guarantee the production of a reliable system. However, UML 2.0 SD lack formal semantics as all UML specifications, which makes their verification difficult, especially if we are modeling a critical system where the automation of verification is necessary. Communicating Sequential Processes (CSP) is a formal specification language that is suited for analysis and has many automatic verification tools. Thus, UML and CSP have complementary aspects, which are modeling and analysis. Recently, a formalization of UML 2.0 SD using CSP has been proposed in the literature; however, no automation of that formalization exists. In this paper, we propose an approach on the basis of the above formalization and a visual modeling tool to model and automatically transform UML 2.0 SD to CSP ones; thus, the existing CSP model checker can verify them. This approach aims to use UML 2.0 SD for modeling and CSP and its tools for verification. This approach is based on graph transformation, which uses AToM3 tool and proposes a metamodel of UML 2.0 SD and a graph grammar to perform the mapping of the latter into CSP. Failures-Divergence Refinement (FDR) is the model checking tool used to verify the behavioral properties of the source model transformation such as deadlock, livelock and determinism. The proposed approach and tool are illustrated through a case study. © 2022 Slovak Academy of Sciences. All rights reserved.10.31577/cai_2022_5_1284 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148546611&doi=10.31577%2fcai_2022_5_1284&partnerID=40&md5=77083a544d1e2b5b99ace36ec7baafbcAToM³ tool; graph grammar; Hoare's communicating sequential processes; meta-modeling; model checker; Unified Modeling Language 2.0Scopus Inglês
Formal Verification for VRM Requirement ModelsZhang, Yang (55506039300); Hu, Jun (57198193833); Wang, Lisong (36968141200); Gu, Qingfan (56204861600); Rong, Hao (56603776800)2022 At the requirements level, formal verification and analysis are the focus of task’s attention which is developing complex systems by formal methods. Model checking is a technique for analysis and automated verification of complex safety-critical software systems. In this paper, a requirement model verification method based on formal technology is proposed to practice the model checking activity into the development process. Firstly, this essay analyzes syntax and semantics of models, which are defined by tabular expressions in VRM (variables relationship model). Then we preprocess the VRM model to classify into events tables, conditions tables and model class tables, and transform the VRM model into the automaton state transfer diagram with the help of semantic complementary work. Finally, we design an automatic model transformation framework from the VRM model to the model verification tool (nuXmv) and implement a translator between the formal specification language VRM and the symbolic model checker nuXmv. In this paper, we discuss our translation and abstraction approach in some depth and illustrate its feasibility with some preliminary examples. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.10.1007/978-981-19-0390-8_121 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1Model checking; Model translation; nuXmv; Safety verification; VRM modelScopus Inglês
11th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, ISoLA 2022- 2022 The proceedings contain 111 papers. The special focus in this conference is on Leveraging Applications of Formal Methods, Verification and Validation. The topics include: A Consolidated View on Specification Languages for Data Analysis Workflows; a Systematic Approach for Interfacing Component-Based Software with an Active Automata Learning Tool; Verified Software Units for Simple DFA Modules and Objects in C; a Notion of Equivalence for Refactorings with Abstract Execution; towards a Usable and Sustainable Deductive Verification Tool; on Technical Debt in Software Testing - Observations from Industry; refactoring Solidity Smart Contracts to Protect Against Reentrancy Exploits; a Refactoring for Data Minimisation Using Formal Verification; software System Documentation: Coherent Description of Software System Properties; DIME Days (ISoLA 2022 Track Introduction); Evaluation of Graphical Modeling of CI/CD Workflows with Rig; towards Continuous Quality Control in the Context of Language-Driven Engineering; cinco Cloud: A Holistic Approach for Web-Based Language-Driven Engineering; models as Documents, Documents as Models; using Supplementary Properties to Reduce the Need for Documentation; pragmatics Twelve Years Later: A Report on Lingua Franca; assurance Provenance: The Next Challenge in Software Documentation; Formalization of the AADL Run-Time Services; executable Documentation: Test-First in Action; runtime Verification as Documentation; introduction.- https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142732686&partnerID=40&md5=9d0b4728918fdd8bc7e195b0ca5ea16b- Scopus Inglês
Simple Framework for Efficient Development of the Functional Requirement Verification-Specific LanguagePopic, Srdjan (57190747962); Teslic, Nikola (8370658100); Bjelica, Milan Z. (56605577600)2021 This paper presents the framework for the creation of various domain-specific languages for verification of the functional requirements. When it comes to Requirement Engineering and the process of Validation and Verification of the requirements, there are plenty of tools for modeling, analyzing, and validating the requirements. It comes as a fullblown set of applications for validation of the requirements. But the set of the verification tools is either too complex or usable in a narrow domain. From the customers’ point of view, there is a need for another independent requirement verification. This tool enables the creation of the custom verification in a way that allows users (either clients or developers) to verify requirements. It follows the IEEE guides, standards, and best practices to check all aspects of the software requirements that are neither implemented nor checked by the validation process: correctness, completeness, traceability, dependency, importance, and uniqueness. Tool implements design patterns specific to the verification process, thus enabling the faster implementation of the language. The concept can be used for development of the verification-specific language with any type of requirement representation, which will be shown by a few examples. © 202110.4316/AECE.2021.03002 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115213462&doi=10.4316%2fAECE.2021.03002&partnerID=40&md5=f714f11044abbc8ab000d22d0387a021computer languages; formal languages; formal verification; programming environments; requirement engineeringScopus Inglês
11th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, ISoLA 20222022 The proceedings contain 111 papers. The special focus in this conference is on Leveraging Applications of Formal Methods, Verification and Validation. The topics include: A Consolidated View on Specification Languages for Data Analysis Workflows; a Systematic Approach for Interfacing Component-Based Software with an Active Automata Learning Tool; Verified Software Units for Simple DFA Modules and Objects in C; a Notion of Equivalence for Refactorings with Abstract Execution; towards a Usable and Sustainable Deductive Verification Tool; on Technical Debt in Software Testing - Observations from Industry; refactoring Solidity Smart Contracts to Protect Against Reentrancy Exploits; a Refactoring for Data Minimisation Using Formal Verification; software System Documentation: Coherent Description of Software System Properties; DIME Days (ISoLA 2022 Track Introduction); Evaluation of Graphical Modeling of CI/CD Workflows with Rig; towards Continuous Quality Control in the Context of Language-Driven Engineering; cinco Cloud: A Holistic Approach for Web-Based Language-Driven Engineering; models as Documents, Documents as Models; using Supplementary Properties to Reduce the Need for Documentation; pragmatics Twelve Years Later: A Report on Lingua Franca; assurance Provenance: The Next Challenge in Software Documentation; Formalization of the AADL Run-Time Services; executable Documentation: Test-First in Action; runtime Verification as Documentation; introduction.- https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142759479&partnerID=40&md5=4e0eaffccb7fc98f89db3bc9bc480b55- Scopus Inglês
Continuous Verification of Network Security ComplianceLorenz, Claas (57189054134); Clemens, Vera (57221191959); Schrotter, Max (57211227069); Schnor, Bettina (9040625200)2022 Continuous verification of network security compliance is an accepted need. Especially, the analysis of stateful packet filters plays a central role for network security in practice. But the few existing tools which support the analysis of stateful packet filters are based on general applicable formal methods like Satifiability Modulo Theories (SMT) or theorem prover and show runtimes in the order of minutes to hours making them unsuitable for continuous compliance verification. In this work, we address these challenges and present the concept of state shell interweaving to transform a stateful firewall rule set into a stateless rule set. This allows us to reuse any fast domain specific engine from the field of data plane verification tools leveraging smart, very fast, and domain specialized data structures and algorithms including Header Space Analysis (HSA). First, we introduce the formal language FPL that enables a high-level human-understandable specification of the desired state of network security. Second, we demonstrate the instantiation of a compliance process using a verification framework that analyzes the configuration of complex networks and devices-including stateful firewalls-for compliance with FPL policies. Our evaluation results show the scalability of the presented approach for the well known Internet2 and Stanford benchmarks as well as for large firewall rule sets where it outscales state-of-the-art tools by a factor of over 41. © 2004-2012 IEEE.10.1109/TNSM.2021.3130290 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120091286&doi=10.1109%2fTNSM.2021.3130290&partnerID=40&md5=511407ae381b7055ef1cddc2f4cfffc0Compliance; Formal verification; Network; Security Scopus Inglês
9th International Workshop on Structured Object-Oriented Formal Language and Method, SOFL+MSVL 2019- 2020 The proceedings contain 23 papers. The special focus in this conference is on Structured Object-Oriented Formal Language and Method. The topics include: Solving constraint optimization problems based on mathematica and abstraction; a forward chaining heuristic search with spatio-temporal control knowledge; Formal development and verification of reusable component in PAR platform; a new mutant generation algorithm based on basic path coverage for mutant reduction; formal specification and model checking of a ride-sharing system in maude; Model checking python programs with MSVL; prediction of function removal propagation in linux evolution; regression models for performance ranking of configurable systems: a comparative study; combining model learning and model checking to analyze java libraries; data provenance based system for classification and linear regression in distributed machine learning; A formal technique for concurrent generation of software’s functional and security requirements in SOFL specifications; metamorphic testing in fault localization of model transformations; a fault localization method based on dynamic failed execution blocks; adaptive random testing by bisection and comprehensive distance; CMM: A combination-based mutation method for SQL injection; distortion and faults in machine learning software; A divide & conquer approach to testing concurrent java programs with JPF and maude; An approach to modeling and verifying multi-level interrupt systems with TMSVL; towards formal verification of neural networks: a temporal logic based framework; UMC4M: A verification tool via program execution; parallel runtime verification approach for alternate execution of multiple threads.- https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081580292&partnerID=40&md5=7d77d6bb6064b90f676f0eacbdbd4a0d- Scopus Inglês
11th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, ISoLA 2022- 2022 The proceedings contain 111 papers. The special focus in this conference is on Leveraging Applications of Formal Methods, Verification and Validation. The topics include: A Consolidated View on Specification Languages for Data Analysis Workflows; a Systematic Approach for Interfacing Component-Based Software with an Active Automata Learning Tool; Verified Software Units for Simple DFA Modules and Objects in C; a Notion of Equivalence for Refactorings with Abstract Execution; towards a Usable and Sustainable Deductive Verification Tool; on Technical Debt in Software Testing - Observations from Industry; refactoring Solidity Smart Contracts to Protect Against Reentrancy Exploits; a Refactoring for Data Minimisation Using Formal Verification; software System Documentation: Coherent Description of Software System Properties; DIME Days (ISoLA 2022 Track Introduction); Evaluation of Graphical Modeling of CI/CD Workflows with Rig; towards Continuous Quality Control in the Context of Language-Driven Engineering; cinco Cloud: A Holistic Approach for Web-Based Language-Driven Engineering; models as Documents, Documents as Models; using Supplementary Properties to Reduce the Need for Documentation; pragmatics Twelve Years Later: A Report on Lingua Franca; assurance Provenance: The Next Challenge in Software Documentation; Formalization of the AADL Run-Time Services; executable Documentation: Test-First in Action; runtime Verification as Documentation; introduction.- https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142681894&partnerID=40&md5=54a22568b9d9bb1275754196a807ce1c- Scopus Inglês
A VNF modeling approach for verification purposesMarchetto, Guido (17346106000); Sisto, Riccardo (56262800500); Virgilio, Matteo (55850134900); Yusupov, Jalolliddin (57196119190)2019 Network Function Virtualization (NFV) architectures are emerging to increase networks flexibility. However, this renewed scenario poses new challenges, because virtualized networks, need to be carefully verified before being actually deployed in production environments in order to preserve network coherency (e.g., absence of forwarding loops, preservation of security on network traffic, etc.). Nowadays, model checking tools, SAT solvers, and Theorem Provers are available for formal verification of such properties in virtualized networks. Unfortunately, most of those verification tools accept input descriptions written in specification languages that are difficult to use for people not experienced in formal methods. Also, in order to enable the use of formal verification tools in real scenarios, vendors of Virtual Network Functions (VNFs) should provide abstract mathematical models of their functions, coded in the specific input languages of the verification tools. This process is error-prone, time-consuming, and often outside the VNF developers' expertise. This paper presents a framework that we designed for automatically extracting verification models starting from a Java-based representation of a given VNF. It comprises a Java library of classes to define VNFs in a more developer-friendly way, and a tool to translate VNF definitions into formal verification models of different verification tools. © 2019 Institute of Advanced Engineering and Science.10.11591/ijece.v9i4.pp2627-2636 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066271238&doi=10.11591%2fijece.v9i4.pp2627-2636&partnerID=40&md5=9789127c70b70c8c363f2b4e0384617aFormal verification; Model extraction; Modeling; Network functions; ParserScopus Inglês
FASTEN: An Open Extensible Framework to Experiment with Formal Specification ApproachesRatiu, Daniel (22235269100); Gario, Marco (55521618800); Schoenhaar, Hannes (57210957804)2019 Formal specification approaches have been successfully used to specify and verify complex systems. Verification engineers so far either directly use formal specification languages which can be consumed by verification tools (e.g. SMV, Promela) or main stream modeling languages which are then translated into formal languages and verified (e.g. SysML, AADL). The first approach is expressive and effective but difficult to use by non-experts. The second approach lowers the entry barrier for novices but users are limited to the constructs of the chosen modeling languages and thereby end up abusing the language to encode behaviors of interest. In this paper, we introduce a third approach that we call FASTEN, in which modular and extensible Domain Specific Languages (DSLs) are used to raise the abstraction level of specification languages towards the domain of interest. The approach aims to help novice users to use formal specification, enable experts to use multi-paradigm modeling, and provide tools for the developers of verification technologies to easily experiment with various types of specification approaches. To show the feasibility of the approach, we release an open-source tool based on Jetbrains' MPS language workbench that provides an extensible stack of more than ten DSLs, situated at different levels of abstraction, built on top of the SMV language. We use the NuSMV model checker to perform verification, to simulate the models and lift the traces at the abstraction level of the DSLs. We detail on the experience with designing and developing the DSLs stack and briefly report on using the DSLs in practice for the study of a communication protocol of a safety critical system. © 2019 IEEE.10.1109/FormaliSE.2019.00013 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072012346&doi=10.1109%2fFormaliSE.2019.00013&partnerID=40&md5=fe889fa7b75d1e70732a3cdbcccc18dfformal methods; language engineering; specification environmentsScopus Inglês
An Algebraic Approach to Modeling and Verifying Policy-Driven Smart Devices in IoT SystemsChi, Xiaotong (57214082983); Zhang, Min (57131645400); Xu, Xiao (57214088972)2019 Internet of Things (IoT) is being widely adopted to facilitate living environments such as cities and homes to become smart. Devices in IoT systems are capable of automatically adjusting their behaviors according to the change of environments. The capability is usually driven by the policies which are predefined inside devices. Policies can be customized by end users. Inconsistencies or conflicts among policies may cause malfunction of systems and therefore must be eliminated before deployment. In this paper, we propose a novel algebraic approach to modeling and verifying policy-driven smart devices in IoT systems on the basis of a domain-specific modeling language called PobSAM (Policy-based Self-Adaptive Model) and an efficient rewriting system called Maude. We formalize the operational semantics of PobSAM using Maude, which is an executable specification as well as a formal verification tool. The Maude formalization can be used to verify smart devices that are specified in PobSAM. We conduct a case study on a smart home setting to evaluate the effectiveness and efficiency of our approach. © 2019 IEEE.10.1109/APSEC48747.2019.00034 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078209325&doi=10.1109%2fAPSEC48747.2019.00034&partnerID=40&md5=8ac7361e3c6f121653edb7706de490a8IoT system; Maude; PobSAM; Smart home; Verification Scopus Inglês
A Flight Rule Checker for the LADEE Lunar SpacecraftKurklu, Elif (6507367449); Havelund, Klaus (6603400981)2020 As part of the design of a space mission, an important part is the design of so-called flight rules. Flight rules express constraints on various parts and processes of the mission, that if followed, will reduce the risk of failure. One such set of flight rules constrain the format of command sequences regularly (e.g. daily) sent to the spacecraft to control its next near term behavior. We present a high-level view of the automated flight rule checker Frc for checking command sequences sent to NASA’s LADEE Lunar mission spacecraft, used throughout its entire mission. A command sequence is in this case essentially a program (a sequence of commands) with no loops or conditionals, and it can therefore be verified with a trace analysis tool. Frc is implemented using the TraceContract runtime verification tool, an internal Scala DSL for checking event sequences against “formal specifications”. The paper illustrates this untraditional use of runtime verification in a real context, with strong demands on the expressiveness and flexibility of the specification language, illustrating the advantages of an internal DSL. © 2020, Springer Nature Switzerland AG.10.1007/978-3-030-64276-1_1 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097572555&doi=10.1007%2f978-3-030-64276-1_1&partnerID=40&md5=5a9272586222f85dcb64f3be6434a14e- Scopus Inglês
FASTEN: An Open Extensible Framework to Experiment with Formal Specification ApproachesRatiu, Daniel; Gario, Marco; Schoenhaar, Hannes2019 Formal specification approaches have been successfully used to specify and verify complex systems. Verification engineers so far either directly use formal specification languages which can be consumed by verification tools (e.g. SMV, Promela) or main stream modeling languages which are then translated into formal languages and verified (e.g. SysML, AADL). The first approach is expressive and effective but difficult to use by non-experts. The second approach lowers the entry barrier for novices but users are limited to the constructs of the chosen modeling languages and thereby end up abusing the language to encode behaviors of interest.In this paper, we introduce a third approach that we call FASTEN, in which modular and extensible Domain Specific Languages (DSLs) are used to raise the abstraction level of specification languages towards the domain of interest. The approach aims to help novice users to use formal specification, enable experts to use multi-paradigm modeling, and provide tools for the developers of verification technologies to easily experiment with various types of specification approaches. To show the feasibility of the approach, we release an open-source tool based on Jetbrains' MPS language workbench that provides an extensible stack of more than ten DSLs, situated at different levels of abstraction, built on top of the SMV language. We use the NuSMV model checker to perform verification, to simulate the models and lift the traces at the abstraction level of the DSLs. We detail on the experience with designing and developing the DSLs stack and briefly report on using the DSLs in practice for the study of a communication protocol of a safety critical system.10.1109/FormaliSE.2019.00013 - - Web of science Inglês
A Formally Verified Monitor for Metric First-Order Temporal LogicSchneider, Joshua; Basin, David; Krstic, Srdan; Traytel, Dmitriy2019 Runtime verification tools must correctly establish a specification's validity or detect violations. This task is difficult, especially when the specification is given in an expressive declarative language that demands a non-trivial monitoring algorithm. We use a proof assistant to not only solve this task, but also to gain confidence in our solution. We formally verify the correctness of a monitor for metric first-order temporal logic specifications using the Isabelle/HOL proof assistant. From our formalization, we extract an executable algorithm with correctness guarantees and use differential testing to find discrepancies in the outputs of two unverified monitors for first-order specification languages.10.1007/978-3-030-32079-9_18 - - Web of science Inglês
Work-In-Progress: a DSL for the safe deployment of Runtime Monitors in Cyber-Physical SystemsNandi, Giann Spilere; Pereira, David; Proenca, Jose; Tovar, Eduardo2020 Guaranteeing that safety-critical Cyber-Physical Systems (CPS) do not fail upon deployment is becoming an even more complicated task with the increased use of complex software solutions. To aid in this matter, formal methods (rigorous mathematical and logical techniques) can be used to obtain proofs about the correctness of CPS. In such a context, Runtime Verification has emerged as a promising solution that combines the formal specification of properties to be validated and monitors that perform these validations during runtime. Although helpful, runtime verification solutions introduce an inevitable overhead in the system, which can disrupt its correct functioning if not safely employed. We propose the creation of a Domain Specific Language (DSL) that, given a generic CPS, 1) verifies if its real-time scheduling is guaranteed, even in the presence of coupled monitors, and 2) implements several verification conditions for the correct-by-construction generation of monitoring architectures. To achieve it, we plan to perform statical verifications, derived from the available literature on schedulability analysis, and powered by a set of semi-automatic formal verification tools.10.1109/RTSS49844.2020.00047 - - Web of science Inglês
Multiple Analyses, Requirements Once: Simplifying Testing and Verification in Automotive Model-Based DevelopmentBerger, Philipp; Nellen, Johanna; Katoen, Joost-Pieter; Abraham, Erika Prime; Bin Waez, Tawhid; Rambow, Thomas2019 In industrial model-based development (MBD) frameworks, requirements are typically specified informally using textual descriptions. To enable the application of formal methods, these specifications need to be formalized in the input languages of all formal tools that should be applied to analyse the models at different development levels. In this paper we propose a unified approach for the computer-assisted formal specification of requirements and their fully automated translation into the specification languages of different verification tools. We consider a two-stage MBD scenario where first Simulink models are developed from which executable code is generated automatically. We (i) propose a specification language and a prototypical tool for the formal but still textual specification of requirements, (ii) show how these requirements can be translated automatically into the input languages of Simulink Design Verifier for verification of Simulink models and BTC Embedded-Validator for source code verification, and (iii) show how our unified framework enables besides automated formal verification also the automated generation of test cases.10.1007/978-3-030-27008-7_4 - - Web of science Inglês
Simple Framework for Efficient Development of the Functional Requirement Verification- Specific LanguagePopic, Srdjan; Teslic, Nikola; Bjelica, Milan Z. 2021 This paper presents the framework for the creation of various domain-specific languages for verification of the functional requirements. When it comes to Requirement Engineering and the process of Validation and Verification of the requirements, there are plenty of tools for modeling, analyzing, and validating the requirements. It comes as a full-blown set of applications for validation of the requirements. But the set of the verification tools is either too complex or usable in a narrow domain. From the customers' point of view, there is a need for another independent requirement verification. This tool enables the creation of the custom verification in a way that allows users (either clients or developers) to verify requirements. It follows the IEEE guides, standards, and best practices to check all aspects of the software requirements that arc neither implemented nor checked by the validation process: correctness, completeness, traceability, dependency, importance, and uniqueness. Tool implements design patterns specific to the verification process, thus enabling the faster implementation of the language. The concept can be used for development of the verification-specific language with any type of requirement representation, which will be shown by a few examples.- - - Web of science Inglês
Chaining Model Transformations to Develop a System Model Verification Tool : Application to Capella State Machines and Data Flows ModelsDuhil, Christophe; Babau, Jean-Philippe; Lepicier, Eric; Voirin, Jean-Luc; Navas, Juan2020 In the context of model-based system engineering (MBSE), the need emerges for model verification tools aiming at detecting inconsistencies in the dynamic behavioral aspect of the design. In this paper, a model-based approach is proposed to develop model verification tools. The approach allows targeting different semantics and facilitates the reuse of legacy semantics. The idea is to enforce separation of concerns, by progressively defining a behavioral semantic through a chain of five model transformation steps. The approach ensures traceability between source models and target models, facilitating the interpretation of the verification results. We apply the approach to develop a tool to verify Capella models, allowing simulation of the data flow and state machines diagrams in order to verify their coherency. An experimentation on a clock-radio case study demonstrates the ability of the generated tool to catch design inconsistencies.10.1145/3341105.3374093 - - Web of science Inglês
Pointer Life Cycle Types for Lock-Free Data Structures with Memory ReclamationMeyer, Roland; Wolff, Sebastian 2020 We consider the verification of lock-free data structures that manually manage their memory with the help of a safe memory reclamation (SMR) algorithm. Our first contribution is a type system that checks whether a program properly manages its memory. If the type check succeeds, it is safe to ignore the SMR algorithm and consider the program under garbage collection. Intuitively, our types track the protection of pointers as guaranteed by the SMR algorithm. There are two design decisions. The type system does not track any shape information, which makes it extremely lightweight. Instead, we rely on invariant annotations that postulate a protection by the SMR. To this end, we introduce angels, ghost variables with an angelic semantics. Moreover, the SMR algorithm is not hard-coded but a parameter of the type system definition. To achieve this, we rely on a recent specification language for SMR algorithms. Our second contribution is to automate the type inference and the invariant check. For the type inference, we show a quadratic-time algorithm. For the invariant check, we give a source-to-source translation that links our programs to off-the-shelf verification tools. It compiles away the angelic semantics. This allows us to infer appropriate annotations automatically in a guess-and-check manner. To demonstrate the effectiveness of our type-based verification approach, we check linearizability for various list and set implementations from the literature with both hazard pointers and epoch-based memory reclamation. For many of the examples, this is the first time they are verified automatically. For the ones where there is a competitor, we obtain a speed-up of up to two orders of magnitude.10.1145/3371136 - - Web of science Inglês
Performing Security Proofs of Stateful ProtocolsHess, Andreas, V; Modersheim, Sebastian; Brucker, Achim D.; Schlichtkrull, Anders2021 In protocol verification we observe a wide spectrum from fully automated methods to interactive theorem proving with proof assistants like Isabelle/HOL. The latter provide overwhelmingly high assurance of the correctness, which automated methods often cannot: due to their complexity, bugs in such automated verification tools are likely and thus the risk of erroneously verifying a flawed protocol is non-negligible. There are a few works that try to combine advantages from both ends of the spectrum: a high degree of automation and assurance. We present here a first step towards achieving this for a more challenging class of protocols, namely those that work with a mutable long-term state. To our knowledge this is the first approach that achieves fully automated verification of stateful protocols in an LCF-style theorem prover. The approach also includes a simple user-friendly transaction-based protocol specification language embedded into Isabelle, and can also leverage a number of existing results such as soundness of a typed model.10.1109/CSF51468.2021.00006 - - Web of science Inglês
LTL Under Reductions with Weaker Conditions Than Stutter InvariancePaviot-Adet, Emmanuel; Poitrenaud, Denis; Renault, Etienne; Thierry-Mieg, Yann2022 Verification of properties expressed as co-regular languages such as LTL can benefit hugely from stutter insensitivity, using a diverse set of reduction strategies. However properties that are not stutter invariant, for instance due to the use of the neXt operator of LTL or to some form of counting in the logic, are not covered by these techniques in general.We propose in this paper to study a weaker property than stutter insensitivity. In a stutter insensitive language both adding and removing stutter to a word does not change its acceptance, any stuttering can be abstracted away; by decomposing this equivalence relation into two implications we obtain weaker conditions. We define a shortening insensitive language where any word that stutters less than a word in the language must also belong to the language. A lengthening insensitive language has the dual property. A semi-decision procedure is then introduced to reliably prove shortening insensitive properties or deny lengthening insensitive properties while working with a reduction of a system. A reduction has the property that it can only shorten runs. Lipton's transaction reductions or Petri net agglomerations are examples of eligible structural reduction strategies.An implementation and experimental evidence is provided showing most non-random properties sensitive to stutter are actually shortening or lengthening insensitive. Performance of experiments on a large (random) benchmark from the model-checking competition indicate that despite being a semi-decision procedure, the approach can still improve state of the art verification tools.10.1007/978-3-031-08679-3_11 - - Web of science Inglês
Contingent Payments on a Public Ledger: Models and Reductions for Automated VerificationBursuc, Sergiu; Kremer, Steve 2019 We study protocols that rely on a public ledger infrastructure, concentrating on protocols for zero-knowledge contingent payment, whose security properties combine diverse notions of fairness and privacy. We argue that rigorous models are required for capturing the ledger semantics, the protocol-ledger interaction, the cryptographic primitives and, ultimately, the security properties one would like to achieve.Our focus is on a particular level of abstraction, where network messages are represented by a term algebra, protocol execution by state transition systems (e.g. multiset rewrite rules) and where the properties of interest can be analyzed with automated verification tools.We propose models for: (1) the rules guiding the ledger execution, taking the coin functionality of public ledgers such as Bitcoin as an example; (2) the security properties expected from ledger-based zero-knowledge contingent payment protocols; (3) two different security protocols that aim at achieving these properties relying on different ledger infrastructures; (4) reductions that allow simpler term algebras for homomorphic cryptographic schemes.Altogether, these models allow us to derive a first automated verification for ledger-based zero-knowledge contingent payment using the Tamarin prover. Furthermore, our models help in clarifying certain underlying assumptions, security and efficiency tradeoffs that should be taken into account when deploying protocols on the blockchain.10.1007/978-3-030-29959-0_18 - - Web of science Inglês
A DSL for Integer Range Reasoning: Partition, Interval and Mapping DiagramsEriksson, Johannes; Parsa, Masoumeh 2020 Expressing linear integer constraints and assertions over integer ranges-as becomes necessary when reasoning about arrays-in a legible and succinct form poses a challenge for deductive program verification. Even simple assertions, such as integer predicates quantified over finite ranges, become quite verbose when given in basic first-order logic syntax. In this paper, we propose a domain-specific language (DSL) for assertions over integer ranges based on Reynolds's interval and partition diagrams, two diagrammatic notations designed to integrate well into linear textual content such as specifications, program annotations, and proofs. We extend intervalf diagrams to the more general concept of mapping diagrams, representing partial functions from disjoint integer intervals. A subset of mapping diagrams, colorings, provide a compact notation for selecting integer intervals that we intend to constrain, and an intuitive new construct, the legend, allows connecting colorings to first-order integer predicates. Reynolds's diagrams have not been supported widely by verification tools. We implement the syntax and semantics of partition and mapping diagrams as a DSL and theory extension to the Why3 program verifier. We illustrate the approach with examples of verified programs specified with colorings and legends. This work aims to extend the verification toolbox with a lightweight, intuitive DSL for array and integer range specifications.10.1007/978-3-030-39197-3_13 - - Web of science Inglês
Milestones from the Pure Lisp theorem prover to ACL2Moore, J. Strother 2019 We discuss the evolutionary path from the Edinburgh Pure Lisp Theorem Prover of the early 1970s to its modern counterpart, AComputational Logic for Applicative Common Lisp, aka ACL2, which is in regular industrial use. Among the milestones in this evolution are the adoption of a first-order subset of a programming language as a logic; the analysis of recursive definitions to guess appropriate mathematical induction schemes; the use of simplification in inductive proofs; the incorporation of rewrite rules derived from user-suggested lemmas; the generalization of that idea to allow the user to affect other proof techniques soundly; the recognition that evaluation efficiency is paramount so that formal models can serve as prototypes and the logic can be used to reprogram the system; use of the system to prove extensions correct; the incorporation of decision procedures; the provision of hierarchically structured libraries of previously certified results to configure the prover; the provision of system programming features to allow verification tools to be built and verified within the system; the release of many verified collections of lemmas supporting floating point, programming languages, and hardware platforms; a verified bit-bashing tool exploiting verified BDD and checked external SAT procedures; and the provision of certain higher-order features within the first-order setting. As will become apparent, some of these milestones were suggested or even prototyped by users. Some additional non-technical aspects of the project are also critical. Among these are a devotion to soundness, good documentation, freely available source code, production of a system usable by industry, responsiveness to user needs, and a dedicated, passionate, and brilliant user community.10.1007/s00165-019-00490-3 - - Web of science Inglês
A Survey of Smart Contract Formal Specification and VerificationTolmach P,Li Y,Lin SW,Liu Y,Li Z 2021 A smart contract is a computer program that allows users to automate their actions on the blockchain platform. Given the significance of smart contracts in supporting important activities across industry sectors including supply chain, finance, legal, and medical services, there is a strong demand for verification and validation techniques. Yet, the vast majority of smart contracts lack any kind of formal specification, which is essential for establishing their correctness. In this survey, we investigate formal models and specifications of smart contracts presented in the literature and present a systematic overview to understand the common trends. We also discuss the current approaches used in verifying such property specifications and identify gaps with the hope to recognize promising directions for future work.10.1145/3464421 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3464421;http://dx.doi.org/10.1145/3464421formal specification, Smart contract, formal verification, properties ACM Inglês
Formal Specification and Verification of Autonomous Robotic Systems: A SurveyLuckcuck M,Farrell M,Dennis LA,Dixon C,Fisher M2019 Autonomous robotic systems are complex, hybrid, and often safety critical; this makes their formal specification and verification uniquely challenging. Though commonly used, testing and simulation alone are insufficient to ensure the correctness of, or provide sufficient evidence for the certification of, autonomous robotics. Formal methods for autonomous robotics have received some attention in the literature, but no resource provides a current overview. This article systematically surveys the state of the art in formal specification and verification for autonomous robotics. Specially, it identifies and categorizes the challenges posed by, the formalisms aimed at, and the formal approaches for the specification and verification of autonomous robotics.10.1145/3342355 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3342355;http://dx.doi.org/10.1145/3342355autonomous robotics, Formal verification, formal specification, formal methodsACM Inglês
A Deep Reinforcement Learning Framework with Formal VerificationBoudi Z,Wakrime AA,Toub M,Haloua M 2023 Artificial Intelligence (AI) and data are reshaping organizations and businesses. Human Resources (HR) management and talent development make no exception, as they tend to involve more automation and growing quantities of data. Because this brings implications on workforce, career transparency, and equal opportunities, overseeing what fuels AI and analytical models, their quality standards, integrity, and correctness becomes an imperative for those aspiring to such systems. Based on an ontology transformation to B-machines, this article presents an approach to constructing a valid and error-free career agent with Deep Reinforcement Learning (DRL). In short, the agent's policy is built on a framework we called Multi State-Actor (MuStAc) using a decentralized training approach. Its purpose is to predict both relevant and valid career steps to employees, based on their profiles and company pathways (observations). Observations can comprise various data elements such as the current occupation, past experiences, performance, skills, qualifications, and so on. The policy takes in all these observations and outputs the next recommended career step, in an environment set as the combination of an HR ontology and an Event-B model, which generates action spaces with respect to formal properties. The Event-B model and formal properties are derived using OWL to B transformation.10.1145/3577204 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204Formal Verification, Safe RL, Model Transformation, AI Control, Safe AI, Atelier B, Event-BACM Inglês
FASTEN: An Open Extensible Framework to Experiment with Formal Specification Approaches: Using Language Engineering to Develop a Multi-Paradigm Specification Environment for NuSMVRatiu D,Gario M,Schoenhaar H 2019 Formal specification approaches have been successfully used to specify and verify complex systems. Verification engineers so far either directly use formal specification languages which can be consumed by verification tools (e.g. SMV, Promela) or main stream modeling languages which are then translated into formal languages and verified (e.g. SysML, AADL). The first approach is expressive and effective but difficult to use by non-experts. The second approach lowers the entry barrier for novices but users are limited to the constructs of the chosen modeling languages and thereby end up abusing the language to encode behaviors of interest.In this paper, we introduce a third approach that we call FASTEN, in which modular and extensible Domain Specific Languages (DSLs) are used to raise the abstraction level of specification languages towards the domain of interest. The approach aims to help novice users to use formal specification, enable experts to use multi-paradigm modeling, and provide tools for the developers of verification technologies to easily experiment with various types of specification approaches. To show the feasibility of the approach, we release an open-source tool based on Jetbrains' MPS language workbench that provides an extensible stack of more than ten DSLs, situated at different levels of abstraction, built on top of the SMV language. We use the NuSMV model checker to perform verification, to simulate the models and lift the traces at the abstraction level of the DSLs. We detail on the experience with designing and developing the DSLs stack and briefly report on using the DSLs in practice for the study of a communication protocol of a safety critical system.10.1109/FormaliSE.2019.00013 https://doi-org.ez13.periodicos.capes.gov.br/10.1109/FormaliSE.2019.00013;http://dx.doi.org/10.1109/FormaliSE.2019.00013domain specific languages, formal methods ACM Inglês
Integration of Formal Proof into Unified Assurance Cases with Isabelle/SACMFoster S,Nemouchi Y,Gleirscher M,Wei R,Kelly T2021 Assurance cases are often required to certify critical systems. The use of formal methods in assurance can improve automation, increase confidence, and overcome errant reasoning. However, assurance cases can never be fully formalised, as the use of formal methods is contingent on models that are validated by informal processes. Consequently, assurance techniques should support both formal and informal artifacts, with explicated inferential links between them. In this paper, we contribute a formal machine-checked interactive language, called Isabelle/SACM, supporting the computer-assisted construction of assurance cases compliant with the OMG Structured Assurance Case Meta-Model. The use of Isabelle/SACM guarantees well-formedness, consistency, and traceability of assurance cases, and allows a tight integration of formal and informal evidence of various provenance. In particular, Isabelle brings a diverse range of automated verification techniques that can provide evidence. To validate our approach, we present a substantial case study based on the Tokeneer secure entry system benchmark. We embed its functional specification into Isabelle, verify its security requirements, and form a modular security case in Isabelle/SACM that combines the heterogeneous artifacts. We thus show that Isabelle is a suitable platform for critical systems assurance.10.1007/s00165-021-00537-4 https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4Assurance cases, Safety cases, Integrated formal methods, Common criteria, Proof assistantsACM Inglês
SPARK by Example: An Introduction to Formal Verification through the Standard C++ LibraryCreuse L,Huguet J,Garion C,Hugues J 2019 This paper presents SPARK by Example [10], a guide for people wanting to get involved in formal verification of SPARK programs. SPARK by Example is inspired by ACSL by Example, a similar effort for C/ACSL programs, and provides detailed specification, implementation and proof of classic algorithms (array manipulation, sorting, heap etc). A comparison between ACSL and SPARK is done in the light of proof performance and ease of use.10.1145/3375408.3375415 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415- ACM Inglês
Model-Checking Legal Contracts with SymboleoPCParvizimosaed A,Roveri M,Rasti A,Amyot D,Logrippo L,Mylopoulos J2022 Legal contracts specify requirements for business transactions. As any other requirements specification, contracts may contain errors and violate properties expected by contracting parties. Symboleo was recently proposed as a formal specification language for legal contracts. This paper presents SymboleoPC, a tool for analyzing Symboleo contracts using model checking. It highlights the architecture, implementation and testing of the tool, as well as a scalability evaluation with respect to the size of contracts and properties to be checked through a series of experiments. The results suggest that SymboleoPC can be usefully applied to the analysis of formal specifications of contracts with real-life sizes and structures.10.1145/3550355.3552449 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449legal contracts, model checking, nuXmv, performance analysis, smart contracts, software requirements specifications, formal specification languagesACM Inglês
Bigraphical Modelling and Design of Multi-Agent SystemsDib AT,Maamri R 2021 Multi-agent systems are recognized as a major area of distributed artificial intelligence. In fact, MAS have found multiple applications, including the design and development of complex, hierarchical and critical systems. However, ensuring the accuracy of complex interactions and the correct execution of activities of a MAS is becoming a tedious task. In this work, we focus on the formal specification of interaction, holonic and sociotechnical concepts to the BRS-MAS model. The proposed approach, is based on Bigraphical reactive systems. Bigraphs, provide means to specify at same time locality and connectivity of different type of system ranging from soft systems to cyber physical systems. In addition, to its intuitive graphical representation, it provides algebraic definition. This, makes the resulted specifications more precise. Further, it enables the verification of the specified system at the design time (before the implementation) using verification tools.10.1145/3467707.3467762 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762Computing methodologies, Holonic, Algebraic language theory, Multi-agent system, Formal specification, Theory of computationACM Inglês
Research on Security Evaluation of Space Used Very Large Scale Integration (VLSI)Qu R,Zhang W,Lv Q,Zhang M 2021 The hardware security of space VLSI is an important issue of the reliable operation of spacecraft system in orbit. This paper focuses on the security evaluation method of VLSI design front-end based on formal verification theory. This method is adopted in the security check of a space Application Specific Integrated Circuit (ASIC). Using assertions of key registers, the potential design vulnerability of ASIC is found, which can lead to tampering of configuration data tampering under lock-in mode, and resulting in abnormal reset and even downtime of the whole chip. Finally, the security design improvement suggestions are given against the tampering.10.1145/3448734.3450457 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3448734.3450457;http://dx.doi.org/10.1145/3448734.3450457front-end security evaluation, formal verification, Space VLSI ACM Inglês
Structural Embeddings Revisited (Invited Talk)Muñoz C 2022 A semantic embedding is a logical encoding of a formal language, namely the object language, into the specification language of a logical framework. In their seminal paper “Experience with embedding hardware description languages in HOL”, Boulton et al. coined the terms deep and shallow embeddings depending on whether or not the syntax of terms of the target language is represented by a data type in the specification language. Thus, a deep embedding enables reasoning about classes of terms, while a shallow embedding limits reasoning to concrete terms. Embeddings of programming languages are well-known applications of interactive theorem provers, specially of those based on higher-order logic. These embeddings are often intended to support the study of a programming language semantics or to enhance a programming language with the deductive capabilities of the logical framework. A different type of embeddings, here referred to as structural embeddings, are intended to augment specification languages with structural elements of the object language. In a structural embedding, the outermost elements of the object language, i.e., the structural parts, are encoded, either deeply or shallowly, but the internal elements, i.e., the basic expressions, are those of the specification language. Advances in automated reasoning and user interfaces have enabled structural embeddings to enhance usability of interactive theorem provers and to reduce the gap between verification tools and modeling tools used by practitioners. This talk presents an overview of several years of research on theorem proving in safety-critical aerospace systems through the lens of embeddings and, more particularly, structural embeddings. The talk focuses on lessons learned and provides examples of successful applications to automated reasoning, termination analysis, floating-point analysis, and verification of cyber-physical systems. Our main point, which is hardly original, is that interactive theorem provers will serve as intermediate systems that connect a cluster of components. Structural embeddings could then provide the frontend capabilities to access this cluster of components.10.1145/3497775.3503949 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3497775.3503949;http://dx.doi.org/10.1145/3497775.3503949Formal Verification, Embeddings, Prototype Verification System (PVS), Interactive Theorem ProvingACM Inglês
Unifying Separation Logic and Region Logic to Allow InteroperabilityBao Y,Leavens GT,Ernst G 2018 Framing is important for specification and verification, especially in programs that mutate data structures with shared data, such as DAGs. Both separation logic and region logic are successful approaches to framing, with separation logic providing a concise way to reason about data structures that are disjoint, and region logic providing the ability to reason about framing for shared mutable data. In order to obtain the benefits of both logics for programs with shared mutable data, this paper unifies them into a single logic, which can encode both of them and allows them to interoperate. The new logic thus provides a way to reason about program modules specified in a mix of styles.10.1007/s00165-018-0455-5 https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5Formal verification, Separation logic, Unified fine-grained region logic (UFRL), Framing, Fine-grained region logic, Formal specification, Shared mutable data, Hoare logicACM Inglês
Reasoning about Functional Programming in Java and C++Cok DR 2018 Verification projects on industrial code have required reasoning about functional programming constructs in Java 8. General functional programming requires reasoning about how the specifications of function objects that are inputs to a method combine to produce the specifications of output function objects. This short paper describes our in-progress experience in adapting prior work (Kassios & Müller) to Java 8, JML, OpenJML, and to ACSL++, a specification language for C++ built on ACSL.10.1145/3236454.3236483 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483JML, ACSL++, ACSL, specification, functional programming, formal verification, OpenJMLACM Inglês
Using UML Activity Diagram for Adapting Experiments under a Virtual Laboratory EnvironmentSypsas A,Kalles D 2021 The development of a system model can be an extremely complex process. A common approach to modeling system behavior uses activity diagrams (AD) in Unified Modeling Language (UML), which, however, do not support the formal analysis that is possible when using formal languages such as Petri Nets (PN). In this paper, we show how a model describing an experiment in a Virtual Laboratory and represented by an AD can be transformed into an equivalent PN. Then, the model represented as a PN can be readily compared to a model of a similar experiment used in another educational setting, in order to decide the extent to which it can be reused.10.1145/3437120.3437267 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267Petri nets, Activity Diagram, Virtual laboratory ACM Inglês
A Survey of Practical Formal Methods for SecurityKulik T,Dongol B,Larsen PG,Macedo HD,Schneider S,Tran-Jørgensen PW,Woodcock J2022 In today’s world, critical infrastructure is often controlled by computing systems. This introduces new risks for cyber attacks, which can compromise the security and disrupt the functionality of these systems. It is therefore necessary to build such systems with strong guarantees of resiliency against cyber attacks. One way to achieve this level of assurance is using formal verification, which provides proofs of system compliance with desired cyber security properties. The use of Formal Methods (FM) in aspects of cyber security and safety-critical systems are reviewed in this article. We split FM into the three main classes: theorem proving, model checking, and lightweight FM. To allow the different uses of FM to be compared, we define a common set of terms. We further develop categories based on the type of computing system FM are applied in. Solutions in each class and category are presented, discussed, compared, and summarised. We describe historical highlights and developments and present a state-of-the-art review in the area of FM in cyber security. This review is presented from the point of view of FM practitioners and researchers, commenting on the trends in each of the classes and categories. This is achieved by considering all types of FM, several types of security and safety-critical systems, and by structuring the taxonomy accordingly. The article hence provides a comprehensive overview of FM and techniques available to system designers of security-critical systems, simplifying the process of choosing the right tool for the task. The article concludes by summarising the discussion of the review, focusing on best practices, challenges, general future trends, and directions of research within this field.10.1145/3522582 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3522582;http://dx.doi.org/10.1145/3522582Formal Methods, model checking, theorem proving, cyber security ACM Inglês
From Real-Time Logic to Timed Automata Ferrère T,Maler O,Ničković D,Pnueli A 2019 We show how to construct temporal testers for the logic MITL, a prominent linear-time logic for real-time systems. A temporal tester is a transducer that inputs a signal holding the Boolean value of atomic propositions and outputs the truth value of a formula along time. Here we consider testers over continuous-time Boolean signals that use clock variables to enforce duration constraints, as in timed automata. We first rewrite the MITL formula into a “simple” formula using a limited set of temporal modalities. We then build testers for these specific modalities and show how to compose testers for simple formulae into complex ones. Temporal testers can be turned into acceptors, yielding a compositional translation from MITL to timed automata. This construction is much simpler than previously known and remains asymptotically optimal. It supports both past and future operators and can easily be extended.10.1145/3286976 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976formal verification, timed automata, real-time, Temporal logic, model checkingACM Inglês
Dargent: A Silver Bullet for Verified Data Layout RefinementChen Z,Lafont A,O'Connor L,Keller G,McLaughlin C,Jackson V,Rizkallah C2023 Systems programmers need fine-grained control over the memory layout of data structures, both to produce performant code and to comply with well-defined interfaces imposed by existing code, standardised protocols or hardware. Code that manipulates these low-level representations in memory is hard to get right. Traditionally, this problem is addressed by the implementation of tedious marshalling code to convert between compiler-selected data representations and the desired compact data formats. Such marshalling code is error-prone and can lead to a significant runtime overhead due to excessive copying. While there are many languages and systems that address the correctness issue, by automating the generation and, in some cases, the verification of the marshalling code, the performance overhead introduced by the marshalling code remains. In particular for systems code, this overhead can be prohibitive. In this work, we address both the correctness and the performance problems. We present a data layout description language and data refinement framework, called Dargent, which allows programmers to declaratively specify how algebraic data types are laid out in memory. Our solution is applied to the Cogent language, but the general ideas behind our solution are applicable to other settings. The Dargent framework generates C code that manipulates data directly with the desired memory layout, while retaining the formal proof that this generated C code is correct with respect to the functional semantics. This added expressivity removes the need for implementing and verifying marshalling code, which eliminates copying, smoothens interoperability with surrounding systems, and increases the trustworthiness of the overall system.10.1145/3571240 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240certifying compiler, data refinement, systems programming ACM Inglês
A Solicitous Approach to Smart Contract VerificationOtoni R,Marescotti M,Alt L,Eugster P,Hyvärinen A,Sharygina N2023 Smart contracts are tempting targets of attacks, as they often hold and manipulate significant financial assets, are immutable after deployment, and have publicly available source code, with assets estimated in the order of millions of dollars being lost in the past due to vulnerabilities. Formal verification is thus a necessity, but smart contracts challenge the existing highly efficient techniques routinely applied in the symbolic verification of software, due to specificities not present in general programming languages. A common feature of existing works in this area is the attempt to reuse off-the-shelf verification tools designed for general programming languages. This reuse can lead to inefficiency and potentially unsound results, as domain translation is required. In this article, we describe a carefully crafted approach that directly models the central aspects of smart contracts natively, going from the contract to its logical representation without intermediary steps. We use the expressive and highly automatable logic of constrained Horn clauses for modeling and instantiate our approach to the Solidity language. A tool implementing our approach, called Solicitous, was developed and integrated into the SMTChecker module of the Solidity compiler solc. We evaluated our approach on an extensive benchmark set containing 22,446 real-world smart contracts deployed on the Ethereum blockchain over a 27-month period. The results show that our approach is able to establish safety of significantly more contracts than comparable, publicly available verification tools, with an order of magnitude increase in the percentage of formally verified contracts.10.1145/3564699 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699Smart contracts, direct modeling, vulnerability detection ACM Inglês
A Model Checkable UML Soccer Player Besnard V,Teodorov C,Jouault F,Brun M,Dhaussy P2021 This paper presents a UML implementation of the MDETools'19 challenge problem with EMI (our Embedded/Experimental Model Interpreter). EMI is a model interpreter that can be used to execute, simulate, and formally verify UML models on host or embedded targets. The tool's main specificity relies on a single implementation of the language semantics such that consistency is ensured between all development phases: from design to verification and execution activities. Using this approach, we have succeeded in (i) designing a UML model for the challenge problem, (ii) applying formal verification using model-checking on the design model, and (iii) executing this model in order to participate in the challenge.10.1109/MODELS-C.2019.00035 https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035UML, model-driven engineering, tool ACM Inglês
Morbig: A Static Parser for POSIX Shell Régis-Gianas Y,Jeannerod N,Treinen R 2018 The POSIX shell language defies conventional wisdom of compiler construction on several levels: The shell language was not designed for static parsing, but with an intertwining of syntactic analysis and execution by expansion in mind. Token recognition cannot be specified by regular expressions, lexical analysis depends on the parsing context and the evaluation context, and the shell grammar given in the specification is ambiguous. Besides, the unorthodox design choices of the shell language fit badly in the usual specification languages used to describe other programming languages. This makes the standard usage of LEX and YACC as a pipeline inadequate for the implementation of a parser for POSIX shell. The existing implementations of shell parsers are complex and use low-level character-level parsing code which is difficult to relate to the POSIX specification. We find it hard to trust such parsers, especially when using them for writing automatic verification tools for shell scripts. This paper offers an overview of the technical difficulties related to the syntactic analysis of the POSIX shell language. It also describes how we have resolved these difficulties using advanced parsing techniques (namely speculative parsing, parser state introspection, context-dependent lexical analysis and longest-prefix parsing) while keeping the implementation at a sufficiently high level of abstraction so that experts can check that the POSIX standard is respected. The resulting tool, called MORBIG, is an open-source static parser for a well-defined and realistic subset of the POSIX shell language. Its implementation crucially relies on the purity and incrementality of LR(1) parsers generated by MENHIR, a parser generator for OCaml.10.1145/3276604.3276615 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3276604.3276615;http://dx.doi.org/10.1145/3276604.3276615functional programming, Parsing, POSIX shell ACM Inglês
StaBL: Statecharts with Local Variables Chakrabarti SK,Venkatesan K 2020 Complexity of specification models of the present day have started becoming non-trivial. Hence, there is a need to evolve existing specification languages to support writing specifications following good coding practices such as incremental development and modularisation. Statechart is a modelling notation that has wide acceptance in the industry. To the best of our knowledge all current implementations of Statecharts have one common shortcoming: all Statechart variables are global. Global variables in a specification can lead to monolithic and fragile models which are hard to maintain and reuse.In this paper, we introduce local variables in Statecharts, motivate their use through illustrative examples, formalise their semantics, and analyse their interaction with basic Statechart features like hierarchical states, transitions and history. We have implemented this Statechart variant with local variables in a specification language called StaBL. Our case studies demonstrate significant improvement in modularity in models with local variable w.r.t those without local variables.10.1145/3385032.3385040 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040- ACM Inglês
Social Machines for All Papapanagiotou P,Davoust A,Murray-Rust D,Manataki A,Van Kleek M,Shadbolt N,Robertson D2018 In today's interconnected world, people interact to a unprecedented degree through the use of digital platforms and services, forming complex 'social machines'. These are now homes to autonomous agents as well as people, providing an open space where human and computational intelligence can mingle---a new frontier for distributed agent systems. However, participants typically have limited autonomy to define and shape the machines they are part of. In this paper, we envision a future where individuals are able to develop their own Social Machines, enabling them to interact in a trustworthy, decentralized way. To make this possible, development methods and tools must see their barriers-to-entry dramatically lowered. People should be able to specify the agent roles and interaction patterns in an intuitive, visual way, analyse and test their designs and deploy them as easy to use systems. We argue that this is a challenging but realistic goal, which should be tackled by navigating the trade-off between the accessibility of the design methods --primarily the modelling formalisms-- and their expressive power. We support our arguments by drawing ideas from different research areas including electronic institutions, agent-based simulation, process modelling, formal verification, and model-driven engineering.- model-driven development, social machines, design, analysis, modellingACM Inglês
Verification of Distributed Systems via Sequential EmulationDi Stefano L,De Nicola R,Inverso O 2022 Sequential emulation is a semantics-based technique to automatically reduce property checking of distributed systems to the analysis of sequential programs. An automated procedure takes as input a formal specification of a distributed system, a property of interest, and the structural operational semantics of the specification language and generates a sequential program whose execution traces emulate the possible evolutions of the considered system. The problem as to whether the property of interest holds for the system can then be expressed either as a reachability or as a termination query on the program. This allows to immediately adapt mature verification techniques developed for general-purpose languages to domain-specific languages, and to effortlessly integrate new techniques as soon as they become available. We test our approach on a selection of concurrent systems originated from different contexts from population protocols to models of flocking behaviour. By combining a comprehensive range of program verification techniques, from traditional symbolic execution to modern inductive-based methods such as property-directed reachability, we are able to draw consistent and correct verification verdicts for the considered systems.10.1145/3490387 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387Concurrency, semantics-based verification, termination, distribution, sequentialization, process algebra, domain-specific languages, program verification, reachability, structural operational semanticsACM Inglês
SIGLOG Monthly 233: January 2023 Purser D 2023 An annual award, called the Alonzo Church Award for Outstanding Contributions to Logic and Computation, was established in 2015 by the ACM Special Interest Group for Logic and Computation (SIGLOG), the European Association for Theoretical Computer Science (EATCS), the European Association for Computer Science Logic (EACSL), and the Kurt Goedel Society (KGS). The award is for an outstanding contribution represented by a paper or by a small group of papers published within the past 25 years. This time span allows the lasting impact and depth of the contribution to have been established. The award can be given to an individual, or to a group of individuals who have collaborated on the research. For the rules governing this award, see https://siglog.org/alonzo-church-award/, https://www.eatcs.org/index.php/church-award/, and https://www.eacsl.org/alonzo-church-award/.10.1145/3584676.3584683 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3584676.3584683;http://dx.doi.org/10.1145/3584676.3584683- ACM Inglês
Verification of Railway Network Models with EVERESTMartins J,Fonseca JM,Costa R,Campos JC,Cunha A,Macedo N,Oliveira JN2022 Models - at different levels of abstraction and pertaining to different engineering views - are central in the design of railway networks, in particular signalling systems. The design of such systems must follow numerous strict rules, which may vary from project to project and require information from different views. This renders manual verification of railway networks costly and error-prone.This paper presents EVEREST, a tool for automating the verification of railway network models that preserves the loosely coupled nature of the design process. To achieve this goal, EVEREST first combines two different views of a railway network model - the topology provided in signalling diagrams containing the functional infrastructure, and the precise coordinates of the elements provided in technical drawings (CAD) - in a unified model stored in the railML standard format. This railML model is then verified against a set of user-defined infrastructure rules, written in a custom modal logic that simplifies the specification of spatial constraints in the network. The violated rules can be visualized both in the signalling diagrams and technical drawings, where the element(s) responsible for the violation are highlighted.EVEREST is integrated in a long-term effort of EFACEC to implement industry-strong tools to automate and formally verify the design of railway solutions.10.1145/3550355.3552439 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439formal infrastructure rule specification, railway engineering, railway network model verification, railMLACM Inglês
Toward Verified Artificial Intelligence Seshia SA,Sadigh D,Sastry SS 2022 Making AI more trustworthy with a formal methods-based approach to AI system verification and validation.10.1145/3503914 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914- ACM Inglês
JGuard: Programming Misuse-Resilient APIsBinder S,Narasimhan K,Kernig S,Mezini M 2022 APIs provide access to valuable features, but studies have shown that they are hard to use correctly. Misuses of these APIs can be quite costly. Even though documentations and usage manuals exist, developers find it hard to integrate these in practice. Several static and dynamic analysis tools exist to detect and mitigate API misuses. But it is natural to wonder if APIs can be made more difficult to misuse by capturing the knowledge of domain experts (, API designers). Approaches like CogniCrypt have made inroads into this direction by offering API specification languages like CrySL which are then consumed by static analysis tools. But studies have shown that developers do not enjoy installing new tools into their pipeline. In this paper, we present jGuard, an extension to Java that allows API designers to directly encode their specifications while implementing their APIs. Code written in jGuard is then compiled to regular Java with the checks encoded as exceptions, thereby making sure the API user does not need to install any new tooling. Our evaluation shows that jGuard can be used to express the most commonly occuring misuses in practice, matches the accuracy of state of the art in API misuse detection tools, and introduces negligible performance overhead.10.1145/3567512.3567526 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526DSL, API, Java ACM Inglês

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096125213&doi=10.1145%2f3406085.3409009&partnerID=40&md5=5e30039eef53859603a9350cfcc2694b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072873577&doi=10.1007%2f978-3-030-27008-7_4&partnerID=40&md5=19d935eecb53f5ef5147f49db9699a0a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076261943&doi=10.1016%2fj.procs.2019.09.313&partnerID=40&md5=31f6967e72f52a0172d631b2aaad90f9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076741385&doi=10.1145%2f3357613.3357641&partnerID=40&md5=732b60bc6d743284a770f331bb6c035b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111157717&doi=10.1007%2f978-3-030-77474-5_13&partnerID=40&md5=12905b79ee7a395ee4abe62cb914ec8e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148539053&doi=10.1016%2fj.jlamp.2023.100860&partnerID=40&md5=eb79652612662c9dec708415baec5265
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148546611&doi=10.31577%2fcai_2022_5_1284&partnerID=40&md5=77083a544d1e2b5b99ace36ec7baafbc
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142732686&partnerID=40&md5=9d0b4728918fdd8bc7e195b0ca5ea16b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115213462&doi=10.4316%2fAECE.2021.03002&partnerID=40&md5=f714f11044abbc8ab000d22d0387a021
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142759479&partnerID=40&md5=4e0eaffccb7fc98f89db3bc9bc480b55
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120091286&doi=10.1109%2fTNSM.2021.3130290&partnerID=40&md5=511407ae381b7055ef1cddc2f4cfffc0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081580292&partnerID=40&md5=7d77d6bb6064b90f676f0eacbdbd4a0d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142681894&partnerID=40&md5=54a22568b9d9bb1275754196a807ce1c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066271238&doi=10.11591%2fijece.v9i4.pp2627-2636&partnerID=40&md5=9789127c70b70c8c363f2b4e0384617a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072012346&doi=10.1109%2fFormaliSE.2019.00013&partnerID=40&md5=fe889fa7b75d1e70732a3cdbcccc18df
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078209325&doi=10.1109%2fAPSEC48747.2019.00034&partnerID=40&md5=8ac7361e3c6f121653edb7706de490a8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097572555&doi=10.1007%2f978-3-030-64276-1_1&partnerID=40&md5=5a9272586222f85dcb64f3be6434a14e
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3464421;http://dx.doi.org/10.1145/3464421
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3342355;http://dx.doi.org/10.1145/3342355
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/FormaliSE.2019.00013;http://dx.doi.org/10.1109/FormaliSE.2019.00013
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3448734.3450457;http://dx.doi.org/10.1145/3448734.3450457
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3497775.3503949;http://dx.doi.org/10.1145/3497775.3503949
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3522582;http://dx.doi.org/10.1145/3522582
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3276604.3276615;http://dx.doi.org/10.1145/3276604.3276615
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3584676.3584683;http://dx.doi.org/10.1145/3584676.3584683
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526

CPP 2023: Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs2023 Welcome to the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2023)! CPP covers the practical and theoretical topics in all areas that consider formal verification and certification as essential paradigms for their work. CPP spans topics in computer science, mathematics, logic, and education. CPP 2023 will be held on 16-17 January 2023 in Boston, Massachusetts, United States. The conference is co-located with POPL 2023, and is sponsored by ACM SIGPLAN in cooperation with ACM SIGLOG- ACM Inglês
How Testing Helps to Diagnose Proof FailuresPetiot G,Kosmatov N,Botella B,Giorgetti A,Julliand J2018 Applying deductive verification to formally prove that a program respects its formal specification is a very complex and time-consuming task due in particular to the lack of feedback in case of proof failures. Along with a non-compliance between the code and its specification (due to an error in at least one of them), possible reasons of a proof failure include a missing or too weak specification for a called function or a loop, and lack of time or simply incapacity of the prover to finish a particular proof. This work proposes a methodology where test generation helps to identify the reason of a proof failure and to exhibit a counterexample clearly illustrating the issue. We define the categories of proof failures, introduce two subcategories of contract weaknesses (single and global ones), and examine their properties. We describe how to transform a C program formally specified in an executable specification language into C code suitable for testing, and illustrate the benefits of the method on comprehensive examples. The method has been implemented in StaDy, a plugin of the software analysis platform Frama-C. Initial experiments show that detecting non-compliances and contract weaknesses allows to precisely diagnose most proof failures.10.1007/s00165-018-0456-4 https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0456-4;http://dx.doi.org/10.1007/s00165-018-0456-4Test generation, Deductive verification, Proof debugging, Specification, Frama-CACM Inglês
Generating Counterexamples in the Form of Unit Tests from Hoare-Style Verification AttemptsNilizadeh A,Calvo M,Leavens GT,Cok DR 2022 Unit tests that demonstrate why a program is incorrect have many potential uses, including localizing bugs (i.e., showing where code is wrong), improving test suites, and better code synthesis. However, counterexamples produced by failed attempts at Hoare-style verification (e.g., by SMT solvers) are difficult to translate into unit tests. We explain how to generate unit tests from counterexamples generated by an SMT solver and how this process could be embodied in a prototype tool. This process combines static verification techniques and runtime assertion checking.10.1145/3524482.3527656 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3524482.3527656;http://dx.doi.org/10.1145/3524482.3527656- ACM Inglês
Soundness of a Dataflow Analysis for Memory MonitoringLy D,Kosmatov N,Signoles J,Loulergue F 2019 An important concern addressed by runtime verification tools for C code is related to detecting memory errors. It requires to monitor some properties of memory locations (e.g., their validity and initialization) along the whole program execution. Static analysis based optimizations have been shown to significantly improve the performances of such tools by reducing the monitoring of irrelevant locations. However, soundness of the verdict of the whole tool strongly depends on the soundness of the underlying static analysis technique. This paper tackles this issue for the dataflow analysis used to optimize the E-ACSL runtime assertion checking tool.We formally define the core dataflow analysis used by E-ACSL and prove its soundness.10.1145/3375408.3375416 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375416;http://dx.doi.org/10.1145/3375408.3375416- ACM Inglês
Bisimulation Finiteness of Pushdown Systems Is ElementaryGöller S,Parys P 2020 We show that in case a pushdown system is bisimulation equivalent to a finite system, there is already a bisimulation equivalent finite system whose size is elementarily bounded in the description size of the pushdown system. As a consequence we obtain that it is elementarily decidable if a given pushdown system is bisimulation equivalent to some finite system. This improves a previously best-known ACKERMANN upper bound for this problem.10.1145/3373718.3394827 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3373718.3394827;http://dx.doi.org/10.1145/3373718.3394827Bisimulation equivalence K@pushdown automata, bisimulation finiteness, elementaryACM Inglês
Reachability Analysis of Cost-Reward Timed Automata for Energy Efficiency SchedulingWang W,Dong G,Deng Z,Zeng G,Liu W,Xiong H2018 As the ongoing scaling of semiconductor technology causing severe increase of on-chip power density in microprocessors, this leads for urgent requirement for power management during each level of computer system design. In this paper, we describe an approach for solving the general class of energy optimal task graph scheduling problems using cost-reward timed automata. We propose a formal technique based on model checking using extended timed automata to solve the processor frequency assignment problem in an energy-constrained multitasking system. To handle the problem of state space explosion in symbolic model checking, we also provide an efficient zone-based algorithm for minimum-cost reachability. Our approach is capable of finding efficient solutions under various constraints and applicable to other problem variants as well. Experimental results demonstrate the usefulness and effectiveness of our approach.10.1145/2560683.2560695 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695Model Checking, Real-time scheduling, DVS, Timed automata, Energy efficiencyACM Inglês
Composable Finite State Machine-Based Modeling for Quality-of-Information-Aware Cyber-Physical SystemsRosales R,Paulitsch M 2021 Time plays a major role in the specification of Cyber-physical Systems (CPS) behavior with concurrency, timeliness, asynchrony, and resource limits as their main characteristics. In addition to timeliness, the specification of CPS needs to assess and unambiguously define its behavior with respect to the other Quality-of-Information (QoI) properties: (1) Correctness, (2) Completeness, (3) Consistency, and (4) Accuracy. Very often, CPS need to handle these QoI properties, and any combination thereof, multiple times when performing computation and communication processes. However, a model-driven and systematic approach to specify CPS behavior that jointly considers combined QoI aspects is possible but missing in existing methodologies.As the first contribution of this work, we provide an extension to an established model of computation (MoC) based on “Functions driven by Finite State Machine” (FunState) to enable a model-driven composition mechanism to create CPS behavior specifications from reusable components.Second, we present a novel set of design patterns to illustrate the modeling of QoI-aware CPS specifications that can be applied in several state-of-the-art Electronic System Level (ESL) methodologies. The time semantics of the MoC are formalized using the tagged-signal-model, and the presented model-driven approach enables the composition of multiple design patterns. The main benefits of the presented model-driven approach and design patterns to create CPS specifications are as follows: (a) reduce modeling effort, errors, and time through the reuse of known recipes to re-incurring tasks and allow to automatically generate repetitive control flows based on extended Finite State Machines; (b) increase system robustness and facilitate the creation of holistic QoI management allowing to unambiguously define system behavior for scenarios with single/multiple QoI requirement violations in different models of computation; (c) dynamically validate timing behavior of system implementations to enable a multi-objective optimization of nonfunctional properties that influence CPS timing. We demonstrate the aforementioned benefits through the modeling and evaluation of an infrastructure-assisted automated driving case study using Infrastructure-to-Vehicle (I2V) communications to distribute QoI critical road environment information.10.1145/3386244 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244moc, model-driven design, timeliness, design patterns, quality-of-information, cyber-physical systems, model of computation, performance, TimeACM Inglês
New Opportunities for Integrated Formal MethodsGleirscher M,Foster S,Woodcock J 2019 Formal methods have provided approaches for investigating software engineering fundamentals and also have high potential to improve current practices in dependability assurance. In this article, we summarise known strengths and weaknesses of formal methods. From the perspective of the assurance of robots and autonomous systems (RAS), we highlight new opportunities for integrated formal methods and identify threats to the adoption of such methods. Based on these opportunities and threats, we develop an agenda for fundamental and empirical research on integrated formal methods and for successful transfer of validated research to RAS assurance. Furthermore, we outline our expectations on useful outcomes of such an agenda.10.1145/3357231 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231threats, robots and autonomous systems, SWOT, opportunities, weaknesses, integration, strengths, research agenda, unification, challenges, Formal methodsACM Inglês
SIGLOG Monthly 203 Petrişan D 2019 10.1145/3373394.3373399 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3373394.3373399;http://dx.doi.org/10.1145/3373394.3373399- ACM Inglês
Automatic Verification of Database-Centric SystemsDeutsch A,Hull R,Li Y,Vianu V 2018 We present an overview of results on verification of temporal properties of infinite-state transition systems arising from processes that carry and manipulate unbounded data. The techniques bring into play tools from logic, database theory, and model checking. The theoretical results establish the boundaries of decidability and the complexity of verification for various models. We also describe verifier implementations with surprisingly good performance, suggesting that this line of research has real potential for practical impact.10.1145/3212019.3212025 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3212019.3212025;http://dx.doi.org/10.1145/3212019.3212025- ACM Inglês
Leapfrog: Certified Equivalence for Protocol ParsersDoenges R,Kappé T,Sarracino J,Foster N,Morrisett G2022 We present Leapfrog, a Coq-based framework for verifying equivalence of network protocol parsers. Our approach is based on an automata model of P4 parsers, and an algorithm for symbolically computing a compact representation of a bisimulation, using leaps. Proofs are powered by a certified compilation chain from first-order entailments to low-level bitvector verification conditions, which are discharged using off-the-shelf SMT solvers. As a result, parser equivalence proofs in Leapfrog are fully automatic and push-button. We mechanically prove the core metatheory that underpins our approach, including the key transformations and several optimizations. We evaluate Leapfrog on a range of practical case studies, all of which require minimal configuration and no manual proof. Our largest case study uses Leapfrog to perform translation validation for a third-party compiler from automata to hardware pipelines. Overall, Leapfrog represents a step towards a world where all parsers for critical network infrastructure are verified. It also suggests directions for follow-on efforts, such as verifying relational properties involving security.10.1145/3519939.3523715 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3519939.3523715;http://dx.doi.org/10.1145/3519939.3523715automata, network protocol parsers, P4, foundational verification, Coq, certified parsers, equivalenceACM Inglês
Towards Verified Self-Driving InfrastructureLiu B,Kheradmand A,Caesar M,Godfrey PB 2020 Modern self-driving'' service infrastructures consist of a diverse collection of distributed control components providing a broad spectrum of application- and network-centric functions. The complex and non-deterministic nature of these interactions leads to failures, ranging from subtle gray failures to catastrophic service outages, that are difficult to anticipate and repair.Our goal is to call attention to the need for formal understanding of dynamic service infrastructure control. We provide an overview of several incidents reported by large service providers as well as issues in a popular orchestration system, identifying key characteristics of the systems and their failures. We then propose a verification approach in which we treat abstract models of control components and the environment as parametric transition systems and leverage symbolic model checking to verify safety and liveness properties, or propose safe configuration parameters. Our preliminary experiments show that our approach is effective in analyzing complex failure scenarios with acceptable performance overhead.10.1145/3422604.3425949 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949verification, parameter synthesis, service infrastructure control, self-driving infrastructure, symbolic model checkingACM Inglês
High-Level Cryptographic Abstractions Kane C,Lin B,Chand S,Stoller SD,Liu YA 2019 The interfaces exposed by commonly used cryptographic libraries are clumsy, complicated, and assume an understanding of cryptographic algorithms. The challenge is to design high-level abstractions that require minimum knowledge and effort to use while also allowing maximum control when needed.This paper proposes such high-level abstractions consisting of simple cryptographic primitives and full declarative configuration. These abstractions can be implemented on top of any cryptographic library in any language. We have implemented these abstractions in Python, and used them to write a wide variety of well-known security protocols, including Signal, Kerberos, and TLS.We show that programs using our abstractions are much smaller and easier to write than using low-level libraries, where size of security protocols implemented is reduced by about a third on average. We show our implementation incurs a small overhead, less than 5 microseconds for shared key operations and less than 341 microseconds (< 1%) for public key operations. We also show our abstractions are safe against main types of cryptographic misuse reported in the literature.10.1145/3338504.3357343 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3338504.3357343;http://dx.doi.org/10.1145/3338504.3357343declarative configuration, cryptographic api, high-level abstraction ACM Inglês
Reasoning about Human-Friendly Strategies in Repeated Keyword AuctionsBelardinelli F,Jamroga W,Malvone V,Mittelmann M,Murano A,Perrussel L2022 In online advertising, search engines sell ad placements for keywords continuously through auctions. This problem can be seen as an infinitely repeated game since the auction is executed whenever a user performs a query with the keyword. As advertisers may frequently change their bids, the game will have a large set of equilibria with potentially complex strategies. In this paper, we propose the use of natural strategies for reasoning in such setting as they are processable by artificial agents with limited memory and/or computational power as well as understandable by human users. To reach this goal, we introduce a quantitative version of Strategy Logic with natural strategies in the setting of imperfect information. In a first step, we show how to model strategies for repeated keyword auctions and take advantage of the model for proving properties evaluating this game. In a second step, we study the logic in relation to the distinguishing power, expressivity, and model-checking complexity for strategies with and without recall.- strategic reasoning, mechanism design, auctions ACM Inglês
Sound Regular Expression Semantics for Dynamic Symbolic Execution of JavaScriptLoring B,Mitchell D,Kinder J 2019 Support for regular expressions in symbolic execution-based tools for test generation and bug finding is insufficient. Common aspects of mainstream regular expression engines, such as backreferences or greedy matching, are ignored or imprecisely approximated, leading to poor test coverage or missed bugs. In this paper, we present a model for the complete regular expression language of ECMAScript 2015 (ES6), which is sound for dynamic symbolic execution of the test and exec functions. We model regular expression operations using string constraints and classical regular expressions and use a refinement scheme to address the problem of matching precedence and greediness. We implemented our model in ExpoSE, a dynamic symbolic execution engine for JavaScript, and evaluated it on over 1,000 Node.js packages containing regular expressions, demonstrating that the strategy is effective and can significantly increase the number of successful regular expression queries and therefore boost coverage.10.1145/3314221.3314645 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3314221.3314645;http://dx.doi.org/10.1145/3314221.3314645SMT, regular expressions, Dynamic symbolic execution, JavaScriptACM Inglês
The Dogged Pursuit of Bug-Free C Programs: The Frama-C Software Analysis PlatformBaudin P,Bobot F,Bühler D,Correnson L,Kirchner F,Kosmatov N,Maroneze A,Perrelle V,Prevosto V,Signoles J,Williams N2021 A panoramic view of a popular platform for C program analysis and verification.10.1145/3470569 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3470569;http://dx.doi.org/10.1145/3470569- ACM Inglês
The Verified Software Initiative: A ManifestoHoare T,Misra J,Leavens GT,Shankar N 2021 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3477355.3477361- ACM Inglês
Tools for Disambiguating RFCs Yen J,Govindan R,Raghavan B 2021 For decades, drafting Internet protocols has taken significant amounts of human supervision due to the fundamental ambiguity of natural language. Given such ambiguity, it is also not surprising that protocol implementations have long exhibited bugs. This pain and overhead can be significantly reduced with the help of natural language processing (NLP).We recently applied NLP to identify ambiguous or under-specified sentences in RFCs, and to generate protocol implementations automatically when the ambiguity is clarified. However this system is far from general or deployable. To further reduce the overhead and errors due to ambiguous sentences, and to improve the generality of this system, much work remains to be done. In this paper, we consider what it would take to produce a fully-general and useful system for easing the natural-language challenges in the RFC process.10.1145/3472305.3472314 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314natural language, protocol specifications ACM Inglês
A Proof-Producing Translator for Verilog Development in HOLLööw A,Myreen MO 2019 We present an automatic proof-producing translator targeting the hardware description language Verilog. The tool takes a circuit represented as a HOL function as input, translates the input function to a Verilog program and automatically proves a correspondence theorem between the input function and the output Verilog program ensuring that the translation is correct. As illustrated in the paper, the generated correspondence theorems furthermore enable transporting circuit reasoning from the HOL level to the Verilog level. We also present a formal semantics for the subset of Verilog targeted by the translator, which we have developed in parallel with the translator. The semantics is based on the official Verilog standard and is, unlike previous formalization efforts, designed to be usable for automated and interactive reasoning without sacrificing a clear correspondence to the standard. To illustrate the translator's applicability, we describe case studies of a simple verified processor and verified regexp matchers and synthesize them for two FPGA boards. The development has been carried out in the HOL4 theorem prover.10.1109/FormaliSE.2019.00020 https://doi-org.ez13.periodicos.capes.gov.br/10.1109/FormaliSE.2019.00020;http://dx.doi.org/10.1109/FormaliSE.2019.00020- ACM Inglês
Bayesian Statistical Parametric Verification and Synthesis by Machine LearningBortolussi L,Sanguinetti G,Silvetti S 2018 We consider the problem of parametric verification, presenting a recent statistical method to perform parametric verification of linear time properties of stochastic models, estimating the satisfaction probability as a function of model or property parameters. The approach leverages Bayesian Machine Learning based on Gaussian Processes. Under mild conditions on continuity of parameters of the satisfaction probability, it can be shown that property satisfaction is a smooth function of such parameters. Gaussian Processes can effectively capture this smoothness and obtain more-accurate estimates of satisfaction probabilities by transferring information across the parameter space. We leveraged this approach to efficiently solve several tasks, like parameter synthesis, system design, counterexample generation, and requirement synthesis. In this tutorial, we will introduce the basic ideas of the approach and give an overview of the different applications.- ACM Inglês
Bounded Verification of State Machine ModelsKahani N,Cordy JR 2020 In this work, we propose a bounded verification approach for state machine (SM) models that is independent of any model checking tools. This independence is achieved by encoding the execution semantics of SM models as Satisfiability Modulo Theories (SMT) formulas that reduce the verification of a SM to the satisfiability problem for its corresponding formula. More specifically, our approach takes as input a SM model, a depth bound, and the system properties (as invariants), and then automatically verifies models of systems in a three-phase process: (1) First it generates all possible execution paths of the model to the specified bound, and encodes each of the execution paths as SMT formulas; (2) It then augments the SMT formulas with the negation of the given invariants; and (3) Finally, it uses an SMT solver to check the satisfiability of the instrumented formula. We have applied our approach in the context of UML-RT (the UML profile for modeling real-time embedded systems) and assessed the applicability, performance, and scalability of our approach using several case studies.10.1145/3419804.3420263 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263State Machine, Bounded Verification, MDE, MDD ACM Inglês
Cerberus: Query-Driven Scalable Vulnerability Detection in OAuth Service Provider ImplementationsRahat TA,Feng Y,Tian Y 2022 OAuth protocols have been widely adopted to simplify user authentication and service authorization for third-party applications. However, little effort has been devoted to automatically checking the security of the libraries that service providers widely use. In this paper, we formalize the OAuth specifications and security best practices, and design Cerberus, an automated static analyzer, to find logical flaws and identify vulnerabilities in the implementation of OAuth service provider libraries. To efficiently detect security violations in a large codebase of service provider implementation, Cerberus employs a query-driven algorithm for answering queries about OAuth specifications. We demonstrate the effectiveness of Cerberus by evaluating it on datasets of popular OAuth libraries with millions of downloads. Among these high-profile libraries, Cerberus has identified 47 vulnerabilities from ten classes of logical flaws, 24 of which were previously unknown. We got acknowledged by the developers of eight libraries and had three accepted CVEs.10.1145/3548606.3559381 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381vulnerability detection, authorization attacks, oauth security, static analysis, automata theory, automated analysisACM Inglês
Test-Based Security Certification of Composite ServicesAnisetti M,Ardagna C,Damiani E,Polegri G 2018 The diffusion of service-based and cloud-based systems has created a scenario where software is often made available as services, offered as commodities over corporate networks or the global net. This scenario supports the definition of business processes as composite services, which are implemented via either static or runtime composition of offerings provided by different suppliers. Fast and accurate evaluation of services’ security properties becomes then a fundamental requirement and is nowadays part of the software development process. In this article, we show how the verification of security properties of composite services can be handled by test-based security certification and built to be effective and efficient in dynamic composition scenarios. Our approach builds on existing security certification schemes for monolithic services and extends them towards service compositions. It virtually certifies composite services, starting from certificates awarded to the component services. We describe three heuristic algorithms for generating runtime test-based evidence of the composite service holding the properties. These algorithms are compared with the corresponding exhaustive algorithm to evaluate their quality and performance. We also evaluate the proposed approach in a real-world industrial scenario, which considers ENGpay online payment system of Engineering Ingegneria Informatica S.p.A. The proposed industrial evaluation presents the utility and generality of the proposed approach by showing how certification results can be used as a basis to establish compliance to Payment Card Industry Data Security Standard.10.1145/3267468 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3267468;http://dx.doi.org/10.1145/3267468service composition, Cloud, model-based testing, security certification, service-oriented architecture, software-as-a-service, web servicesACM Inglês
A Lightweight Formalism for Reference Lifetimes and Borrowing in RustPearce DJ 2022 Rust is a relatively new programming language that has gained significant traction since its v1.0 release in 2015. Rust aims to be a systems language that competes with C/C++. A claimed advantage of Rust is a strong focus on memory safety without garbage collection. This is primarily achieved through two concepts, namely, reference lifetimes and borrowing. Both of these are well-known ideas stemming from the literature on region-based memory management and linearity/uniqueness. Rust brings both of these ideas together to form a coherent programming model. Furthermore, Rust has a strong focus on stack-allocated data and, like C/C++ but unlike Java, permits references to local variables.Type checking in Rust can be viewed as a two-phase process: First, a traditional type checker operates in a flow-insensitive fashion; second, a borrow checker enforces an ownership invariant using a flow-sensitive analysis. In this article, we present a lightweight formalism that captures these two phases using a flow-sensitive type system that enforces “type and borrow safety.” In particular, programs that are type and borrow safe will not attempt to dereference dangling pointers. Our calculus core captures many aspects of Rust, including copy- and move-semantics, mutable borrowing, reborrowing, partial moves, and lifetimes. In particular, it remains sufficiently lightweight to be easily digested and understood and, we argue, still captures the salient aspects of reference lifetimes and borrowing. Furthermore, extensions to the core can easily add more complex features (e.g., control-flow, tuples, method invocation). We provide a soundness proof to verify our key claims of the calculus. We also provide a reference implementation in Java with which we have model checked our calculus using over 500B input programs. We have also fuzz tested the Rust compiler using our calculus against 2B programs and, to date, found one confirmed compiler bug and several other possible issues.10.1145/3443420 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3443420;http://dx.doi.org/10.1145/3443420ownership, model checking, type theory, Rust ACM Inglês
Verifying the Conformance of a Driver Implementation to the VirtIO SpecificationM. Vara Larsen 2021 VirtIO is a specification that enables developers to base on a common interface to implement devices and drivers for virtual environments. This paper proposes the verification and analysis of the VirtIO specification by using the Clock Constraint Specification Language (CCSL) [1]. In our proof-of-concept approach, a verification engineer translates requirements into a CCSL specification. Then, the tool TimeSquare [2] is used to detect inconsistencies with a implementation but also to understand what the specification enables. This paper aims to present the approach and to have face-to-face discussions and debate about the benefits, drawbacks and trade-offs.10.23919/DATE51398.2021.9474210 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474210kernel;virtio;conformance;verification;formal IEEE Inglês
Low-Cost Optical Tracking Controller System for Fine Motor Rehabilitation in Children with Brain Damage: Formal Specification and ValidationE. E. Saavedra Parisaca; E. Enriqueta Vidal Duarte2021 Acquired brain damage in children is increasingly frequent, and as main deficit produces motor alterations that manifest as the child grows, affecting muscle tone, coordination and motor control, in order to influence these aspects, fine motor skills are intervened, since these involve a coordinated effort of the brain and muscles, having a direct impact on the learning capacity of children and can improve their independence and autonomy. Although traditional therapies have been proven with great effectiveness, there are also different rehabilitation systems that make use of tracking devices, however not all of them are accessible due to their high cost or the lack of specialists who master them. That is the reason a low-cost optical tracking Controller System is proposed to complement fine motor-oriented rehabilitation, allowing movements to be captured with precision and to obtain feedback on the accuracy of the exercises. In this paper we focus on the first stage referring to the formal specification of the requirements and their validation. The proposal is based on the Leap Motion optical tracking device and limited to exercises with a fine motor and wrist. The controller system aims to provide a better environment for users to run their rehabilitation process, in addition to considering the rehabilitation progress. The proposal uses formal specifications to reduce possible ambiguities in the face of a system that may cause future damage to its users if the rehabilitation is not carried out correctly, in the same way they are used to validate the main properties of the functional requirements. The formal specification language VDM ++ is used to describe the system properties for later modeling and validation through the VDMToolBox tool. As a result, a formal specification of 4 requirements and a 100% coverage analysis were achieved.10.23919/CISTI52073.2021.9476615 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615Virtual Rehabilitation;Formal Specification;Validation and VerificationIEEE Inglês
Formal verification of Fischer’s real-time mutual exclusion protocol by the OTS/CafeOBJ methodM. Nakamura; S. Higashi; K. Sakakibara; a. Ogata2020 Fischer's protocol is a well-known real-time mutual exclusion protocol for multiple processes. The mutual exclusiveness is guaranteed by treating time aspects of transitions. In such a multitask real-time system, since processes run concurrently, the size of the state space grows exponentially. It is not easy to verify time constraints of a give system. Formal descriptions of multitask real-time systems may help us to verify time constraints formally with computer supports. In this paper, as a case study of the OTS/CafeOBJ method, we model Fischer's protocol as an observational transition system, describe it in CafeOBJ algebraic specification language, and verify that different processes do not enter the critical section at the same time by the proof score method based on equational reasoning implemented in CafeOBJ interpreter.10.23919/SICE48898.2020.9240272 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272Multitask real-time system;Fischer’s real-time mutual exclusion protocol;Algebraic specification;Observational transition system;Proof score methodIEEE Inglês
A Survey on Formal Specification of Security RequirementsA. D. Mishra; K. Mustafa 2021 Formalization of security requirements ensures the correctness of any safety-critical system, software system, and web applications through specification and verification. Although there is a gap between security requirements expressed in natural language and formal language. Formal language is a more powerful tool based on higher-order mathematics to express unambiguous and concise security requirements.it remains an active research challenge to express precise, concrete, and correct security requirements. Identification of security requirements is also a challenging task because requirement inherent in the software changes frequently. Specification through formal methods is possible only after fixing the security requirements. In this study, we propose a formal specification software process model (FSSPM). The proposed model indicates the use of formal specification at the early phase of software development is cost-effective, time saving, and reduces the possibility of error at the later phase of software development.10.1109/ICAC3N53548.2021.9725779 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779Security Requirements;Formal Specification;Formal Verification;Security PropertyIEEE Inglês
Modeling and Verification of Web Services Composition Using CWB-NC ToolN. Pal; M. P. Yadav; D. K. Yadav 2021 Modeling and verification of web services composition determines the execution flow of various web services used in conjunction. Existing techniques, such as, UML and testing are used successfully to describe the behavior of the web service system and find the bugs during the communication of the components. However, it is not always possible to identify bugs at all the stages. Formal specification and verification is an emerging technique for specifying the structural and functional property of the web service composition. Calculus of Communicating Systems (CCS) is a process-algebra used as a language for formal specification. In this article, we have utilized CCS for describing the behavioral specification of the web service system. The requirement of the system is captured through formulas or properties utilizing mu-calculus, and formally verified through Concurrency Work Bench of the New Century (CWB-NC) model checker tool.10.1109/INCET51464.2021.9456275 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9456275Web Services;Formal Methods;Formal verification;Model Checking;CWB-NC ToolIEEE Inglês
Engineering with Full-scale Formal Architecture: Morello, CHERI, Armv8-A, and RISC-VP. Sewell 2021 Architecture specifications define the fundamental interface between hardware and software. Historically, mainstream architecture specifications have been informal prose-and-pseudocode documents. This talk will describe our work to establish and use mechanised semantics for full-scale instruction-set architectures (ISAs): the mainstream Armv8-A architecture, the emerging RISC-V architecture, the CHERI-MIPS and CHERI-RISC-V research architectures that use hardware capabilities for improved security, and Arm’s prototype Morello architecture – an industrial demonstrator incorporating the CHERI ideas.We use a variety of tools, especially our Sail ISA definition language and Isla symbolic evaluation engine, to build semantic definitions that are readable, executable as test oracles, support reasoning within the Coq, HOL4, and Isabelle proof assistants, support SMT-based symbolic evaluation, support model-based test generation, and can be integrated with operational and axiomatic concurrency models. These models are all complete enough to boot operating systems and hypervisors, covering the full sequential ISA (though not other SoC components, such as the Arm Generic Interrupt Controller). They range from 5000 to 60000 lines of specification.For CHERI-MIPS and CHERI-RISC-V, we have used Sail models (and previously L3 models) as the golden reference during design, working with our systems and computer architecture colleagues in the CHERI team to use lightweight formal specification routinely in documentation, testing, and test generation. We have stated and proved (in Isabelle) some of the fundamental intended security properties of the full CHERI-MIPS ISA.For Armv8-A, building on Arm’s internal shift to an executable model in their ASL language, we have the complete sequential ISA semantics automatically translated from the Arm ASL to Sail, and for RISC-V, we have hand-written what is now the offically adopted model. For their concurrent semantics, the “user” semantics, partly as a result of our collaborations with Arm and within the RISC-V concurrency task group, have become simplified and well-defined, with multiple models proved equivalent, and we are currently working on the “system” semantics. Our symbolic execution tool for Sail specifications, Isla, supports axiomatic concurrency models over the full ISA.Morello, supported by the UKRI Digital Security by Design programme, offers a path to hardware enforcement of fine-grained memory safety and/or secure encapsulation in the production Armv8-A architecture, potentially excluding or mitigating a large fraction of today’s security vulnerabilities for existing C/C++ code with little modification. During the ISA design process, we have proved (in Isabelle) fundamental security properties for the complete Morello ISA definition, and generated tests from the definition which were used during hardware development and for QEMU bring-up.All these tools and models are (or will soon be) available under open-source licences, providing well-validated models for others to use and build on.This is joint work by many people, including especially, for Sail and Isla: Alasdair Armstrong, Brian Campbell, Kathryn E. Gray, Mark Wassell, Jon French, Neel Krishnaswami; for Morello verification and ASL-to-Sail translation: Thomas Bauereiss, Thomas Sewell, Brian Campbell, Alasdair Armstrong, Alastair Reid; for Morello and CHERI-MIPS test generation: Brian Campbell; for CHERI-MIPS verification: Kyndylan Nienhuis; for RISC-V and CHERI-RISC-V specifications: Robert M. Norton, Prashanth Mundkur, Jessica Clark; for MIPS and CHERI-MIPS specifications: Alexandre Joannou, Anthony Fox, Michael Roe, Matthew Naylor; and for Concurrency semantics: Christopher Pulte, Shaked Flur, Will Deacon, Ben Simner, Luc Maranget, Susmit Sarkar, Jean Pichon-Pharabod, Ohad Kammar, Jeehoon Kang, Sung-Hwan Lee, Chung-Kil Hur. All this is in collaboration with the rest of the CHERI team and others in Arm (especially Richard Grisenthwaite, Graeme Barnes, and the Morello team) and in the RISC-V community, with the CHERI team jointly led by Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann, and Ian Stark.10.34727/2021/isbn.978-3-85448-046-4_7 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617665- IEEE Inglês
Formal Specification and Verification of 5G Authentication and Key Agreement Protocol using mCRL2H. E. Hafidi; Z. Hmidi; L. Kahloul; S. Benharzallah2021 The fifth-generation (5G) standard is the last telecommunication technology, widely considered to have the most important characteristics in the future network industry. The 5G system infrastructure contains three principle interfaces, each one follows a set of protocols defined by the 3rd Generation Partnership Project group (3GPP). For the next generation network, 3GPP specified two authentication methods systematized in two protocols namely 5G Authentication and Key Agreement (5G-AKA) and Extensible Authentication Protocol (EAP). Such protocols are provided to ensure the authentication between system entities. These two protocols are critical systems, thus their reliability and correctness must be guaranteed. In this paper, we aim to formally re-examine 5G-AKA protocol using micro Common Representation Language 2 (mCRL2) language to verify such a security protocol. The mCRL2 language and its associated toolset are formal tools used for modeling, validation, and verification of concurrent systems and protocols. In this context, the authentication protocol 5G-AKA model is built using Algebra of Communication Processes (ACP), its properties are specified using Modal mu-Calculus and the properties analysis exploits Model-Checker provided with mCRL2. Indeed, we propose a new mCRL2 model of 3GPP specification considering 5G-AKA protocol and we specify some properties that describe necessary requirements to evaluate the correctness of the protocol where the parsed properties of Deadlock Freedom, Reachability, Liveness and Safety are positively assessed.10.1109/ICNAS53565.2021.9628917 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=96289175G networks;Security;5G-AKA Protocol;Formal methods;Formal verification;mCRL2 language;Process Algebra.IEEE Inglês
FASTEN: An Open Extensible Framework to Experiment with Formal Specification ApproachesD. Ratiu; M. Gario; H. Schoenhaar 2019 Formal specification approaches have been successfully used to specify and verify complex systems. Verification engineers so far either directly use formal specification languages which can be consumed by verification tools (e.g. SMV, Promela) or main stream modeling languages which are then translated into formal languages and verified (e.g. SysML, AADL). The first approach is expressive and effective but difficult to use by non-experts. The second approach lowers the entry barrier for novices but users are limited to the constructs of the chosen modeling languages and thereby end up abusing the language to encode behaviors of interest. In this paper, we introduce a third approach that we call FASTEN, in which modular and extensible Domain Specific Languages (DSLs) are used to raise the abstraction level of specification languages towards the domain of interest. The approach aims to help novice users to use formal specification, enable experts to use multi-paradigm modeling, and provide tools for the developers of verification technologies to easily experiment with various types of specification approaches. To show the feasibility of the approach, we release an open-source tool based on Jetbrains' MPS language workbench that provides an extensible stack of more than ten DSLs, situated at different levels of abstraction, built on top of the SMV language. We use the NuSMV model checker to perform verification, to simulate the models and lift the traces at the abstraction level of the DSLs. We detail on the experience with designing and developing the DSLs stack and briefly report on using the DSLs in practice for the study of a communication protocol of a safety critical system.10.1109/FormaliSE.2019.00013 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8807686formal methods;language engineering;specification environments IEEE Inglês
Formal Methods for the Security Analysis of Smart ContractsM. Maffei 2021 Smart contracts consist of distributed programs built over a blockchain and they are emerging as a disruptive paradigm to perform distributed computations in a secure and efficient way. Given their nature, however, program flaws may lead to dramatic financial losses and can be hard to fix. This motivates the need for formal methods that can provide smart contract developers with correctness and security guarantees, ideally automating the verification task. This tutorial introduces the semantic foundations of smart contracts and reviews the state-of-the-art in the field, focusing in particular on the automated, sound, static analysis of Ethereum smart contracts. We will highlight the strengths and drawbacks of different methods, suggesting open challenges that can stimulate new research strands. Finally, we will overview eThor, an automated static analysis tool that we recently developed based on rigorous semantic foundations.10.34727/2021/isbn.978-3-85448-046-4_3 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687- IEEE Inglês
Tooled approach for formal verification of components interactions modeled in SysMLM. S. GHITRI; M. MESSABIHI; A. BENAMAR 2019 Software systems are becoming more complex and their implementation requires more rigorous modeling approaches, for this reason the OMG (Object Management Group) has implemented the SysML standard to model complex systems. Sequence diagram is one of the fundamental diagrams of SysML because it allows behavioral specification of systems. However, SysML still has a lack of formal semantics following his semi-formal definition, which makes it impossible to directly apply the simulation and verification methods to these diagrams. The model transformation community offers several solutions to transform the SysML specification into formal methods in order to bridge the gap between them, this community is divided into two principal's axes, the first ones working on the formalization of structural diagrams, and the others have worked on behavioral diagrams. Our work contributes to behavioral modeling and aims to combine all the highlights of the other approaches in a single framework for formal verification of SDs, using TAN and Uppaal model checker. The proposed approach has been tested through a case study of an interaction between ATM and Bank to prove their reliability.10.1109/ICTAACS48474.2019.8988134 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134SysML;ATL;Formal Verification;Timed Automata Network;Model Checking;Acceleo;UppaalIEEE Inglês
Formally Verifying Sequence Diagrams for Safety Critical SystemsX. Chen; F. Mallet; X. Liu 2020 UML interactions, aka sequence diagrams, are frequently used by engineers to describe expected scenarios of good or bad behaviors of systems under design, as they provide allegedly a simple enough syntax to express a quite large variety of behaviors. This paper uses them to express formal safety requirements for safety critical systems in an incremental way, where the scenarios are progressively refined after checking the consistency of the requirements. As before, the semantics of these scenarios are expressed by transforming them into an intermediate semantic model amenable to formal verification. We rely on the Clock Constraint Specification Language (CCSL) as the intermediate semantic language. An SMT-based analysis tool called MyCCSL is used to check consistency of the sequence diagrams. We compare these requirements against actual execution traces to prove the validity of our transformation. In some sense, sequence diagrams and CCSL constraints both express a family of acceptable infinite traces that must include the behaviors given by the finite set of finite execution traces against which we validate. Finally, the whole process is illustrated on partial requirements for a railway transit system.10.1109/TASE49443.2020.00037 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319Safety Critical Systems;Sequence Diagram;Clock Constraint Specification Language;Formal Verification;Safety RequirementsIEEE Inglês
Automatic Formal Model Generation from UML Diagrams – An Implementation ExperienceK. KH; S. Mansoor; S. G 2022 This paper discusses the implementation of a formal method integrated Unified Modeling Language (UML) modelling methodology for the verification of embedded software specifications. The methodology generates mathematically verifiable models, synergising UML visual models with formal methods. The implementation is carried out using Umbrello UML Modeller and Qt. It provides a Graphical User Interface-based tool and a model checking engine, integrated into Umbrello UML Modeller, which can interpret UML diagrams and generate a formal model automatically. The tool architecture has three distinct layers: the UML, Interface, and Formal layers; the Interface layer is the innovative one. GUI is developed for this layer, and all the actions associated with the Interface layer are made available through interactive menus and toolbars.10.1109/DELCON54057.2022.9753518 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518Computational Tree Logic;Formal Verification;Linear Temporal Logic;Property Specification;State Chart Diagram;State Transition Matrix;UML ModellingIEEE Inglês
Automating Cryptographic Protocol Language Generation from Structured SpecificationsR. Metere; L. Arnaboldi 2022 Security of cryptographic protocols can be analysed by creating a model in a formal language and verifying the model in a tool. All such tools focus on the last part of the analysis, verification, and the interpretation of the specification is only explained in papers. Rather, we focus on the interpretation and modelling part by presenting a tool to aid the cryptographer throughout the process and automatically generating code in a target language. We adopt a data-centric approach where the protocol design is stored in a structured way rather than as textual specifications. Previous work shows how this approach facilitates the interpretation to a single language (for Tamarin) which required aftermath modifications. By improving the expressiveness of the specification data structure we extend the tool to export to an additional formal language, ProVerif, as well as a C++ fully running implementation. Furthermore, we extend the plugins to verify correctness in ProVerif and executability lemmas in Tamarin. In this paper we model the Diffie-Hellman key exchange, which is traditionally used as a case study; a demo is also provided for other commonly studied protocols, Needham-Schroeder and Needham-Schroeder-Lowe.10.1145/3524482.3527654 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796432• Software and its engineering→Application specific development environments;;• Security and privacy → Formal security models;;• Networks→Network protocol designIEEE Inglês
Formal Analysis of Language-Based Android Security Using Theorem Proving ApproachW. Khan; M. Kamran; A. Ahmad; F. A. Khan; A. Derhab2019 Mobile devices are an indispensable part of modern-day lives to support portable computations and context-aware communication. Android applications within a mobile device share data to support application operations and better user experience, which also increases security risks to device's data integrity and confidentiality. To analyze the security provided by the Android permissions, modern security techniques, based on the programming languages, have been used to enforce best practices for developing the secure Android applications. Android security assessment, based on the language-based techniques in an informal setting without formal tool support, is tedious and error-prone. Furthermore, the lack of proof of the soundness of the language-based techniques raises questions about the validity of the analysis. To enable computer-aided formal verification in Android security domain, we have developed a mathematical model of language-based Android security using computer-based proof assistant Coq. One of the main challenges for mechanizing the language-based security in theorem prover relates to the complexity of variable bindings in language-based security techniques. As the main contributions of the paper: 1) the language-based security, including variable binding, is formalized in theorem prover Coq; 2) a formal type checker is built to type check (capture safe data flows within) Android applications using computer; and 3) the soundness of the language-based security technique (type system) is mechanically verified. The formal model of the Android type system and their proof of soundness are machine-readable, and their correctness can be checked in the computer using Coq proof and type checkers.10.1109/ACCESS.2019.2895261 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096Android security;formal verification;language-based security;locally nameless representation;machine-readable proofs;theorem provingIEEE Inglês
NFA Based Formal Modeling of Smart Parking System Using TLA +S. Latif; A. Rehman; N. A. Zafar 2019 The smart objects are used to sense, communicate, send and to share information within a network. Everything which is connected directly or indirectly within a network for the sake of getting, analyze or interpreting data known as IoT. There are many proposed applications of IoT infrastructure in smart city. We have proposed model of smart parking system in this paper which is based on UML, automata-based model and formal methods. The depiction of real-world parking system is done in UML based models to indicate the flow and working of the system. Automata models are used to convert UML diagram into automated system which provides smart mechanism of parking system. Automated model of automata is represented in terms of states and transitions. Every state has unique identity and defined functionality. There are many operations of parking system which are modeled in this paper including find free spaces, search shortest path towards empty slot, car entrance and exit with in a region. A region is an area of parking system which is automated and use to sense a vehicle, car entrance, exit or to find a location. The formal method techniques are used to formally verify system properties using available facilities available in formal method tools. We have used Temporal Logic of Actions (TLA+) formal language to validate and verify system properties using formal techniques. TLA+ is mathematical based notation to describe a system using discrete mathematics concepts. We have integrated these three approaches to model parking system from depiction side, automation side and from the angle of verification and validation of the model.10.1109/CISCT.2019.8777445 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445Parking;UML;Formal methods;Verification and validation;TLC IEEE Inglês
Towards Facilitating the Exploration of Informal Concepts in Formal Modeling ToolsM. Gogolla; R. Clarisó; B. Selic; J. Cabot 2021 This contribution proposes to apply informal ideas for model development within a formal tool. The basic idea is to relax the requirements expressed with particular modeling language elements and allow developers to dynamically customize the level of formality in a visual and intuitive way. For UML and OCL class models, the requirements for usual object typing, role typing, role multiplicity, attribute typing and constraint satisfaction are relaxed in order to achieve flexible object models. The long-term aim is to support flexible, iterative model development with qualified tool feedback.10.1109/MODELS-C53483.2021.00044 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627UML class model;UML object model;OCL constraint;flexible development processIEEE Inglês
Demystifying Attestation in Intel Trust Domain Extensions via Formal VerificationM. U. Sardar; S. Musaev; C. Fetzer 2021 In August 2020, Intel asked the research community for feedback on the newly offered architecture extensions, called Intel Trust Domain Extensions (TDX), which give more control to Trust Domains (TDs) over processor resources. One of the key features of these extensions is the remote attestation mechanism, which provides a unified report verification mechanism for TDX and its predecessor Software Guard Extensions (SGX). Based on our experience and intuition, we respond to the request for feedback by formally specifying the attestation mechanism in the TDX using ProVerif's specification language. Although the TDX technology seems very promising, the process of formal specification reveals a number of subtle discrepancies in Intel's specifications that could potentially lead to design and implementation flaws. After resolving these discrepancies, we also present fully automated proofs that our specification of TD attestation preserves the confidentiality of the secret and authentication of the report by considering the state-of-the-art Dolev-Yao adversary in the symbolic model using ProVerif. We have submitted the draft to Intel, and Intel is in the process of making the changes.10.1109/ACCESS.2021.3087421 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9448036Formal verification;symbolic security analysis;ProVerif;trusted execution environment;trust domains;Intel TDX;remote attestationIEEE Inglês
Formal Requirements in an Informal World D. Dietsch; V. Langenfeld; B. Westphal 2020 With today's increasing complexity of systems and requirements there is a need for formal analysis of requirements. Although there exist several formal requirements description languages and corresponding analysis tools that target an industrial audience, there is a large gap between the form of requirements and the training in formal methods available in industry today, and the form of requirements and the knowledge that is necessary to successfully operate the analysis tools. We propose a process to bridge the gap between customer requirements and formal analysis. The process is designed to support in-house formalisation and analysis as well as formalisation and analysis as a service provided by a third party. The basic idea is that we obtain dependability and comprehensibility by assuming a senior formal requirements engineer who prepares the requirements and later interprets the analysis results in tandem with the client. We obtain scalability as most of the formalisation and analysis is supposed to be conducted by junior formal requirements engineers. In this paper, we define and analyse the process and report on experience from different instantiations, where the process was well received by customers.10.1109/FORMREQ51202.2020.00010 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533requirements;formal-requirements;requirements-formalisation;requirements-analysis;process-modelIEEE Inglês
Formal Specification and Validation of a Gas Detection System in the Industrial SectorA. Choquehuanca; D. Rondon; K. Quiñones; R. León2020 In gas concentrations greater than the allowable amounts, these become an imminent danger. It is true that there are devices that already read information, but are intended exclusively for the mining sector and are very expensive. That is why we propose to model and validate a new system for other industrial sectors. Our proposal, The Gas Detection System is based on The Explosive Discussion Triangle method developed by Coward and Jones. We use this method to develop a control system that will allow gas concentrations to be detected in a given environment and send an alarm if a risk situation arises. Formal Specifications allows the use of mathematical notations that help in the process of implementing critical systems and helps to reduce the potential ambiguities that occur in the interpretation of traditional graphic models. This work uses the VDM ++ formal specification language to describe system properties for its subsequent modeling and validation through the VDMToolBox tool. The System architecture is based on sensors, a control module and a set of alarms. Our proposal makes use of formal specifications in order to validate the main properties of the functional requirements.10.23919/CISTI49556.2020.9141056 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056Formal specification;validation;VDM++;gas detection;triangle CowardIEEE Inglês
PyFoReL: A Domain-Specific Language for Formal Requirements in Temporal LogicJ. Anderson; M. Hekmatnejad; G. Fainekos 2022 Temporal Logic (TL) bridges the gap between natural language and formal reasoning in the field of complex systems verification. However, in order to leverage the expressivity entailed by TL, the syntax and semantics must first be understood—a large task in itself. This significant knowledge gap leads to several issues: (1) the likelihood of adopting a TL-based verification method is decreased, and (2) the chance of poorly written and inaccurate requirements is increased. In this ongoing work, we present the Pythonic Formal Requirements Language (PyFoReL) tool: a Domain-Specific Language inspired by the programming language Python to simplify the elicitation of TL-based requirements for engineers and non-experts.10.1109/RE54965.2022.00037 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080domain-specific language;temporal logic;formal requirements;requirements-based testingIEEE Inglês
e-Voting Protocol Modelling To Improve Verifiability RequirementsT. N. Suharsono; Gunawan; R. N. Sukmana 2021 The ability of the voting system to protect voter votes until the end of the process can increase public confidence in the voting system. The verifiability aspect allows several parties to ensure that there is no change in the vote of the voters, thereby increasing trust in voting technology. To get to the concept of the proposed system of e-voting, an analysis e-voting needs has been carried out and the stage of the protocol model design analysis for verifiability needs. Some parties involved in meeting the needs of verifiability are Voters, Officers, Witnesses or KPU (Commission of General Election), where some parties can verify the votes of voters before, during, after, and after the vote count in election. In fulfilling the verifiability needs of this e-voting system, traditional simulation modeling and voting testing have been carried out as a comparison with modeling simulations and testing of e-voting protocols. Before modeling simulation and protocol testing, formal notation writing was carried out in the form of Communicating Sequential Processes (CSP) notation. Protocol testing will be carried out with formal verification, which proves that protocol specifications are in accordance with the integrity properties that have been defined previously. The verification tool used is based on reference modeling, which can analyze the specifications logical consistency, and verified properties reports, namely SPIN (Simple Promela Interpreter). The verified system used PROMELA language (MEta LAnguage process) which is translated from CSP formal notation.10.1109/TSSA52866.2021.9768253 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9768253e-voting protocol;verifiability requirements;formal notation;formal methodIEEE Inglês
The Formal Mechanism of the UML Model Based on SBOPNY. Xiaoling 2019 This paper introduces the State-Based Object Petri net, gives the definition, firing rule and analysis methods of the net. Based on aforementioned, state-based object petri net is chosen to formalize the UML and give the mechanism and corresponding algorithms that can be used to map state chart diagrams and the collaboration diagram of UML specification into state-based object petri net model in the early phase of UML modeling. The state-based object petri net model gotten by these algorithms not only is object-oriented but also can be analyzed and validated to find out deadlock with powerful Petri tools, thus the verification of the model in the early phase is can be realized.10.1109/ICSAI48974.2019.9010446 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446component;Object-Oriented;Petri Net;UML;State- Based Object Petri Net;formal mechanismIEEE Inglês
Verification of a Model of the Isolated Program Environment of Subjects Using the Lamport's Temporal Logic of ActionsA. M. Kanner; T. M. Kanner 2020 The article considers a modern approach to the creation of formal computer system security models, which consists in describing a model in some formal language suitable for its verification for compliance with the expected properties. The article provides an example of such a description in the form of a specification of a formal model of the isolated program environment in the language of the Lamport's temporal logic of actions. The specification is formed as an initial state of the system, a list of possible further actions and a set of invariants and temporal properties to which the system's states must correspond. The initial state is described by some entities that must exist in each system implementation. The system's actions are given in the form of predicates of pre- and postconditions, with some model's variables changing in the latter. Invariants and temporal properties are described in the form of predicates, whose truth must be checked in each possible state of the system or depending on the conditions occurring in previous or future states. The article considers the features of forming a security model specification in TLA+ notation and verifying it using special tools. In its conclusion, the article describes the results of verifying the specification of the formal model of the isolated program environment of subjects, the existing problems and directions for further research on this topic.10.1109/EnT50437.2020.9431263 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9431263isolated program environment of subjects;security model;verification;temporal logicIEEE Inglês
A tool for proving Michelson Smart Contracts in WHY3L. P. Arrojado da Horta; J. Santos Reis; S. M. de Sousa; M. Pereira2020 This paper introduces a deductive verification tool for smart contracts written in Michelson, which is the low-level language of the Tezos blockchain. Our tool accepts a formally specified Michelson contract and automatically translates it to an equivalent program written in WhyML, the programming and specification language of the Why3 framework. Smart contract instructions are mapped into a corresponding WhyML shallow-embedding of the their axiomatic semantics, which we also developed in the context of this work. One major advantage of this approach is that it allows an out-of-the-box integration with the Why3 framework, namely its VCGen and the backend support for several automated theorem provers. We also discuss the use of our tool to automatically prove the correctness of diverse annotated smart contracts.10.1109/Blockchain50366.2020.00059 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284726Formal Verification;Michelson;Smart Contracts;Why3;Tezos IEEE Inglês
A Specification-Based Semi-Formal Functional Verification Method by a Stage Transition Graph ModelZ. Lv; S. Chen; T. Zhang; Y. Wang 2019 The semi-formal verification method, in which the functionality is formally specified and the checking is undertaken through the formal model-based simulation, has been a promising choice for the functional verification of hardware designs. The existing methods derive the formal model from design implementation. This causes poor scalability and practicality. A more feasible solution is to derive the formal model directly from the specification. In this paper, we propose a specification-based semi-formal method for functional verification. The proposed semi-formal method uses a stage transition graph (STG) model to formally describe the function points in the specification. Meanwhile, we propose an automatic test pattern generation (ATPG) method to generate the test vectors based on the STG model. The proposed STG-based ATPG method can reach possible corner cases and ensure exhaustive exploration of functionality for both control-dominated designs and data-dominated designs. Moreover, we develop an STG-based tool for automatic verification. Our experiments show that our method can automatically verify the functional correctness from the specification while achieving similar code coverage as implementation-based semi-formal approaches.10.1109/ACCESS.2019.2892649 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8611078Functional verification;simulation;formal;semi-formal;ATPG IEEE Inglês
From BPMN2 to Event B: A Specification and Verification Approach of Workflow ApplicationsA. Ben Younes; Y. Ben Daly Hlaoui; L. Ben Ayed; M. Bessifi2019 The BPMN2 language suffers from the absence of a precise formal semantics of the various notations used, which often leads to ambiguities. In addition, this language does not have a proof system that validates a BPMN2 specification. Consequently, the use of a formal method, such as Event B, is a solution for dealing with the shortcomings found in the BPMN2 language. We propose in this paper a model-driven approach based on meta-model and meta-model transformation implemented in KerMeta to specify and formally verify workflows.10.1109/COMPSAC.2019.10266 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325Workflow Meta-model Transformation BPMN EventB KerMeta IEEE Inglês
Formal Synthesis of Filter Components for Use in Security-Enhancing Architectural TransformationsD. S. Hardin; K. L. Slind 2021 Safety- and security-critical developers have long recognized the importance of applying a high degree of scrutiny to a system’s (or subsystem’s) I/O messages. However, lack of care in the development of message-handling components can lead to an increase, rather than a decrease, in the attack surface. On the DARPA Cyber-Assured Systems Engineering (CASE) program, we have focused our research effort on identifying cyber vulnerabilities early in system development, in particular at the Architecture development phase, and then automatically synthesizing components that mitigate against the identified vulnerabilities from high-level specifications. This approach is highly compatible with the goals of the LangSec community. Advances in formal methods have allowed us to produce hardware/software implementations that are both performant and guaranteed correct. With these tools, we can synthesize high-assurance “building blocks” that can be composed automatically with high confidence to create trustworthy systems, using a method we call Security-Enhancing Architectural Transformations. Our synthesis-focused approach provides a higherleverage insertion point for formal methods than is possible with post facto analytic methods, as the formal methods tools directly contribute to the implementation of the system, without requiring developers to become formal methods experts. Our techniques encompass Systems, Hardware, and Software Development, as well as Hardware/Software Co-Design/CoAssurance. We illustrate our method and tools with an example that implements security-improving transformations on system architectures expressed using the Architecture Analysis and Design Language (AADL). We show how message-handling components can be synthesized from high-level regular or context-free language specifications, as well as a novel specification language for self-describing messages called Contiguity Types, and verified to meet arithmetic constraints extracted from the AADL model. Finally, we guarantee that the intent of the message processing logic is accurately reflected in the application binary code through the use of the verified CakeML compiler, in the case of software, or the Restricted Algorithmic C toolchain with ACL2-based formal verification, in the case of hardware/software co-design.10.1109/SPW53761.2021.00024 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474316Language theoretic security;Formal verification;Formal synthesis;Architecture modelingIEEE Inglês
Compositional-Nominative Approach to the Client-Server Systems Properties Proofs within Different Formal Execution ModelsT. Panchenko; O. Shyshatska; L. Omelchuk; N. Rusina; S. Fabunmi2019 Software correctness is an actual topic throughout the years. Client-server systems are the substantial subclass of all software with some specific characteristics. The research is mainly concentrated on this class of program systems, showing the efficient ways for the reasoning over server side of client-server software. The compositional-nominative models and Interleaving Parallel Composition Languages (IPCL) constructs for different process spawning models, including the dynamic creation, are discussed here. The approach to automatization of reasoning over the programs is also proposed in this work. The applications are mentioned here. Conclusions and the next steps to add more formality to the whole process of functional correctness verification are discussed.10.1109/UKRCON.2019.8880029 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8880029software correctness;compositional methods;formal methods;software properties proof;shared memory concurrency;client-server systems;program functional verificationIEEE Inglês
ARF: Automatic Requirements Formalisation ToolA. Zaki-Ismail; M. Osama; M. Abdelrazek; J. Grundy; A. Ibrahim2021 Formal verification techniques enable the detection of complex quality issues within system specifications. However, the majority of system requirements are usually specified in natural language (NL). Manual formalisation of NL requirements is an error-prone and labour-intensive process requiring strong mathematical expertise, and can be infeasible for large numbers of requirements. Existing automatic formalisation techniques usually support heavily constrained natural language relying on requirement boilerplates or templates. In this paper, we introduce ARF: Automatic Requirements Formalisation Tool. ARF can automatically transform free-format natural language requirements into temporal logic based formal notations. This is achieved through two steps: 1) extraction of key requirement attributes into an intermediate representation (RCM: Requirement Capturing Model), and 2) transformation rules that convert requirements from the RCM format to formal notations.10.1109/RE51729.2021.00060 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679Requirements engineering;Requirements Formalisation;Requirements ExtractionIEEE Inglês
A Systematic Identification of Formal and Semi-Formal Languages and Techniques for Software-Intensive Systems-of-Systems Requirements ModelingC. A. Lana; M. Guessi; P. O. Antonino; D. Rombach; E. Y. Nakagawa2019 Software-intensive systems-of-systems (SoS) refer to an arrangement of managerially and operationally independent systems (i.e., constituent systems), which work collaboratively toward the achievement of global missions. Because some SoS are being developed for critical domains, such as healthcare and transportation, there is an increasing need to attain higher quality levels, which often justifies the additional costs that can be incurred by adopting formal and semi-formal approaches (i.e., languages and techniques) for modeling requirements. Various approaches have been employed, but a detailed landscape is still missing, and it is not well known whether these approaches are appropriate for addressing the inherent characteristics of SoS. The main contribution of this paper is to present this landscape by reporting on the state of the art in SoS requirements modeling. This landscape was built by means of a systematic mapping and shows formal and semi-formal approaches grouped from model-based to property-oriented ones. Most of them have been tested in safety-critical domains, where formal approaches such as finite-state machines are aimed at critical system parts, whereas semi-formal approaches (e.g., unified modeling language and i*) address non-critical parts. Although formal and semi-formal modeling is an essential activity, the quality of SoS requirements does not rely solely on the formalism that is used, but also on the availability of supporting tools/mechanisms that enable, for instance, requirements verification along the SoS life cycle.10.1109/JSYST.2018.2874061 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059Formal languages;requirements modeling;semi-formal languages;systematic mapping;systems-of-systems (SoS)IEEE Inglês
Automated Generation of LTL Specifications For Smart Home IoT Using Natural LanguageS. Zhang; J. Zhai; L. Bu; M. Chen; L. Wang; X. Li2020 Ordinary users can build their smart home automation system easily nowadays, but such user-customized systems could be error-prone. Using formal verification to prove the correctness of such systems is necessary. However, to conduct formal proof, formal specifications such as Linear Temporal Logic (LTL) formulas have to be provided, but ordinary users cannot author LTL formulas but only natural language.To address this problem, this paper presents a novel approach that can automatically generate formal LTL specifications from natural language requirements based on domain knowledge and our proposed ambiguity refining techniques. Experimental results show that our approach can achieve a high correctness rate of 95.4% in converting natural language sentences into LTL formulas from 481 requirements of real examples.10.23919/DATE48585.2020.9116374 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374- IEEE Inglês
Formalization and Verification of Cyclic GroupY. Tang; Y. Xu; P. Liu; G. Zeng 2021 At present, the formal method is an important system design verification method, which effectively compensates the “incomplete” problem of the traditional methods such as simulation and testing in the system design verification. Since the logical method as a typical formal method is our research direction, we naturally choose the first-order logic language in the logical method to formalize Group theory in the field of mathematics. Based on some formalized conclusions of Group theory in TPTP, this paper completes the formal description of missing definitions about the Group in TPTP, namely the order of element in group, nth-order cyclic group and Klein four-group. Some propositions and theorems related to these definitions are further formal described, and the correctness of these descriptions is verified by the theorem tool Prover9.10.1109/ISKE54062.2021.9755331 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331cyclic group;first-order logic;formalization;Prover9;verification IEEE Inglês
Stainless Verification System Tutorial V. Kuncak; J. Hamza 2021 Stainless (https://stainless.epfl.ch) is an open-source tool for verifying and finding errors in programs written in the Scala programming language. This tutorial will not assume any knowledge of Scala. It aims to get first-time users started with verification tasks by introducing the language, providing modelling and verification tips, and giving a glimpse of the tool’s inner workings (encoding into functional programs, function unfolding, and using theories of satisfiability modulo theory solvers Z3 and CVC4).Stainless (and its predecessor, Leon) has been developed primarily in the EPFL’s Laboratory for Automated Reasoning and Analysis in the period from 2011-2021. Its core specification and implementation language are typed recursive higher-order functional programs (imperative programs are also supported by automated translation to their functional semantics). Stainless can verify that functions are correct for all inputs with respect to provided preconditions and postconditions, it can prove that functions terminate (with optionally provided termination measure functions), and it can provide counter-examples to safety properties. Stainless enables users to write code that is both executed and verified using the same source files. Users can compile programs using the Scala compiler and run them on the JVM. For programs that adhere to certain discipline, users can generate source code in a small fragment of C and then use standard C compilers.10.34727/2021/isbn.978-3-85448-046-4_2 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617582verification;formal methods;proof;counterexample;model checking;Scala;functional programming;satisfiability modulo theoriesIEEE Inglês
Transforming Natural Language Specifications to Logical Forms for Hardware VerificationR. Krishnamurthy; M. S. Hsiao 2020 We propose a framework for extracting natural language assertions from hardware design specification documents. The entire parse tree of each input sentence in a design spec is viewed as a network of words connected to facilitate the creation of semantic frames. We employ a lexicalized grammar that associates words with both semantic and syntactic relations that assist in filling the slots in the semantic frames. At the same time, the accuracy of the extracted semantics is ensured by the incremental understanding algorithm that is guided by both syntactic and semantic rules of the hardware verification domain. We evaluated the framework by writing assertions taken from specification documents of the Memory controller, UART, and the AMBA ACE protocol. System Verilog Assertions (SVA) were automatically generated from logical expressions. Since accuracy is of paramount importance, whenever a complex sentence cannot be understood. we identify and report to the user.10.1109/ICCD50377.2020.00072 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283590Hardware verification;Natural Language specifications;Natural language ProcessingIEEE Inglês
An iStar 2.0 Syntax Validation Formal Rules and Its Implementation on a New TranslatorF. K. Cahyono; B. Hendradjaya; H. Purnama 2019 i * framework is a socio-technical goal-based modeling framework and models the actors in the project/system environment. In 2016 iStar 2.0 was proposed to further evolve i* basic concepts to be more acceptable for wider users. Therefore, it motivates us to propose a formal rule for validating iStar 2.0 in XML-based modelling standard similar to iStarML, called iStarML 2.0. In addition to validation process, this paper proposes formal methods for translating i* to iStar 2.0 model and iStar 2.0 to class diagram. iStarService is a tool developed for iStar 2.0 modelling based on iStarML 2.0 with functionalities such as iStar 2.0 model validation, i* to iStar 2.0 model translation, and iStar 2.0 model to class diagram translation. It is implemented in form of web API using Java and had been tested with various models from multiple iStar proceedings.10.1109/ICoDSE48700.2019.9092607 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9092607i*;iStar 2.0;class diagram;iStarML;validation;translation;tool IEEE Inglês
Formal Software Requirement Elicitation based on Semantic Algebra and Cognitive ComputingJ. Y. Xu; Y. Wang 2020 Autonomous software requirement analysis and generation are a persistent challenge to theories and technologies of software engineering. A cognitive system is demanded to automatically elicit and rigorously refine informal software requirements in natural language descriptions into formal specifications. This paper presents a novel software requirements elicitation methodology based on latest advances in software science and denotational mathematics such as semantic algebra and concept algebra. It is found that user requirements for a software system in natural language may be either expressed in to-be sentences for software structures or to-do sentences for software behaviors. Thus, formal software requirements may be elicited by two sets of structural and functional models. This approach is implemented by a tool for Formal Requirement Elicitation and Analysis (FREA). Experimental results demonstrate that the FREA tool may rigorously elicit and generate formal requirements for arbitrary software systems specified in real-time process algebra (RTPA) or equivalent notations. This technology paves a way towards autonomous code generation in software engineering.10.1109/ICCICC50026.2020.9450275 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9450275Software science;software engineering;formal requirement analysis;rigorous requirement generation;RTPA;concept algebra;semantic algebra;cognitive algorithmsIEEE Inglês

https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0456-4;http://dx.doi.org/10.1007/s00165-018-0456-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3524482.3527656;http://dx.doi.org/10.1145/3524482.3527656
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375416;http://dx.doi.org/10.1145/3375408.3375416
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3373718.3394827;http://dx.doi.org/10.1145/3373718.3394827
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3373394.3373399;http://dx.doi.org/10.1145/3373394.3373399
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3212019.3212025;http://dx.doi.org/10.1145/3212019.3212025
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3519939.3523715;http://dx.doi.org/10.1145/3519939.3523715
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3338504.3357343;http://dx.doi.org/10.1145/3338504.3357343
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3314221.3314645;http://dx.doi.org/10.1145/3314221.3314645
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3470569;http://dx.doi.org/10.1145/3470569
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3477355.3477361
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/FormaliSE.2019.00020;http://dx.doi.org/10.1109/FormaliSE.2019.00020
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3267468;http://dx.doi.org/10.1145/3267468
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3443420;http://dx.doi.org/10.1145/3443420
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9456275
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617665
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9628917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8807686
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796432
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9448036
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9768253
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9431263
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284726
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8611078
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474316
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8880029
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617582
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283590
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9092607
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9450275

Formal Simulation and Verification of Solidity contracts in Event-BJ. Zhu; K. Hu; M. Filali; J. -P. Bodeveix; J. -P. Talpin; H. Cao2021 Smart contracts are the artifact of the blockchain that provides immutable and verifiable specifications of physical transactions. Solidity is a domain-specific programming language with the purpose of defining smart contracts. It aims at reducing the transaction costs occasioned by the execution of contracts on the distributed ledgers such as Ethereum. However, Solidity contracts need to adhere to safety and security requirements that require formal verification and certification. This paper proposes a method to meet such requirements by translating Solidity contracts to Event-B models, supporting certification. To that purpose, we define a restrained Solidity subset and a transfer function that translates Solidity contracts to Event-B models. Besides, we have implemented a translator to improve the conversion efficiency. As a case study, we take advantage of Event-B method capabilities to simulate models at different levels of abstraction and to express the properties of a typical smart contract: Honeypot contract. Lastly, we verify the generated proof obligations of the Event-B model with the help of the Rodin platform.10.1109/COMPSAC51774.2021.00183 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594Blockchain;Smart contract;Solidity;Event-B model;formal verification for securityIEEE Inglês
DeepSTL - From English Requirements to Signal Temporal LogicJ. He; E. Bartocci; D. Ničković; H. Isakovic; R. Grosu2022 Formal methods provide very powerful tools and techniques for the design and analysis of complex systems. Their practical application remains however limited, due to the widely accepted belief that formal methods require extensive expertise and a steep learning curve. Writing correct formal specifications in form of logical formulas is still considered to be a difficult and error prone task. In this paper we propose DeepSTL, a tool and technique for the translation of informal requirements, given as free English sentences, into Signal Temporal Logic (STL), a formal specification language for cyber-physical systems, used both by academia and advanced research labs in industry. A major challenge to devise such a translator is the lack of publicly available informal requirements and formal specifications. We propose a two-step workflow to address this challenge. We first design a grammar-based generation technique of synthetic data, where each output is a random STL formula and its associated set of possible English translations. In the second step, we use a state-of-the-art transformer-based neural translation technique, to train an accurate attentional translator of English to STL. The experimental results show high translation quality for patterns of English requirements that have been well trained, making this workflow promising to be extended for processing more complex translation tasks.10.1145/3510003.3510171 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051Requirements Engineering;Formal Specification;Signal Temporal Logic (STL);Machine TranslationIEEE Inglês
Requirements-based Code Model CheckingU. Schöpp; A. Schweiger; M. Reich; T. Chuprina; L. Lúcio; H. Brüning2020 Building the system right is the objective of quality assurance methods. Though testing is the most prominent and widely-adopted means, it cannot prove the absence of software's defects. Therefore, static measures such as formal proofs can complement dynamic methods. However, these techniques require the formal statement of requirements, which is still a challenge in industry development. This paper suggests a way of formalizing requirements in controlled natural language in a way that applies directly to C program code. By mapping natural language terms to conditional breakpoints, requirements can be translated to formal language expressed in observer automata. The creation of a mapping between natural language terms and code is supported by natural language processing methods. Finally, the observer automata are model checked against the code. In our approach we demonstrate the described steps using a set of realistically shaped requirements, which are common in the avionics domain. We implemented a simple tool hiding the abstract and mathematical details, which performs the proofs automatically. The paper is presented as an approach towards the seamless verification of code against requirements typically found in the avionics domain.10.1109/FORMREQ51202.2020.00011 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224538- IEEE Inglês
Conception of a formal model-based methodology to support railway engineers in the specification and verification of interlocking systemsG. Lukács; T. Bartha 2022 The use of formal modeling is gaining popularity in the development of safety-critical transport applications, in particular railway interlocking systems, due to its ability to specify the functionality of systems using mathematically precise logical rules. The goal of the research described here is to con-ceptualize a methodology that provides a specification/verification environment supporting the developers (domain engineers) in the construction and verification of formal specifications. The aim of the methodology is to decrease the need for mathematical-computer science background/knowledge at the system engineering level. The proposed approach includes a set of well-known and widely used methods, techniques, and tools to specify and verify the functionality related to the development of railway interlocking systems, such as structured and object-oriented formalisms (e.g., the Unified Modeling Language), model-driven development, model checking, etc. The application of the methodology facilitates the construction of correct, complete, consistent, and verifiable functional specifications of a given component. This in turn brings a significant improvement of quality, and distributes the development costs more evenly among the related life-cycle phases.10.1109/SACI55618.2022.9919532 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532railway applications;functionality;specification;model checking;computation tree logicIEEE Inglês
Formal Verification of Dynamic and Stochastic Behaviors for Automotive SystemsL. Huang; T. Liang; E. -Y. Kang 2019 Formal analysis of functional and non-functional requirements is crucial in automotive systems. The behaviors of those systems often rely on complex dynamics as well as on stochastic behaviors. We have proposed a probabilistic extension of Clock Constraint Specification Language, called PrCCSL, for specification of (non)-functional requirements and proved the correctness of requirements by mapping the semantics of the specifications into UPPAAL models. Previous work is extended in this paper by including an extension of PrCCSL, called PrCCSL*, for specification of stochastic and dynamic system behaviors, as well as complex requirements related to multiple events. To formally analyze the system behaviors/requirements specified in PrCCSL*, the PrCCSL* specifications are translated into stochastic UPPAAL models for formal verification. We implement an automatic translation tool, namely ProTL, which can also perform formal analysis on PrCCSL* specifications using UPPAAL-SMC as an analysis backend. Our approach is demonstrated on two automotive systems case studies.10.1109/ICECCS.2019.00009 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750Automotive Systems;PrCCSL*;UPPAAL-SMC;ProTL IEEE Inglês
A Proposal of Features to Support Analysis and Debugging of Declarative Model Transformations with Graphical Syntax by Embedded VisualizationsF. Ege; M. Tichy 2019 In model-driven software engineering (MDSE), chains of model transformations are used to turn a source model via a series of intermediate models into a target artifact. At times such a transformation chain does not deliver the expected result, either because a particular transformation step fails due to unmet preconditions, or the produced target artifact is not the desired one. To better understand the transformation process, and to locate and correct defects in the models or transformations involved, developers need appropriate tool support for analysis and debugging. MDSE tools provide a spectrum of techniques for analysis. These range from model checking approaches for proving logical properties of transformations to low-level stepwise de-bugging functionality that exposes how particular algorithms, e.g., graph matching, are implemented. However, these existing analysis features often do not present concrete suggestions directed at locating and fixing defects, or require developers to reason about their models and transformations in a procedural way. We focus on declarative model-to-model transformations with graphical syntax and consider defects located in source models or transformation specifications. For each of those defects, we sketch how a specific approach based on visualizing information integrated in the graphical syntax could support identifying and fixing that defect. These techniques aim towards enabling developers to analyze models and transformations on the same level of abstraction and with representations in the same syntax they normally work with.10.1109/MODELS-C.2019.00051 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904583declarative model transformations, graphical syntax, analysis, debuggingIEEE Inglês
Using OWL Ontologies as a Domain-Specific Language for Capturing Requirements for Formal Analysis and Test Case GenerationA. W. Crapo; A. Moitra 2019 Our experience at GE Research suggests that the use of a controlled-English grammar and a rich authoring environment can greatly facilitate subject matter experts' ability to understand, create, and collaboratively employ models. A domain ontology is an ideal foundation for many advanced capabilities. An example is extending our controlled-English grammar and authoring environment for OWL model generation to allow the capture of high-level requirements, assumptions, and assertions, enabling requirement engineers to create models of system capability and behavior amenable to formal methods analysis to detect incompleteness, conflict, and a variety of other issues. The same domain models and formal requirements can be used to automatically generate test cases and test procedures. Automated test generation represents a huge reduction in the time and effort required to create and validate critical software. In this paper we illustrate how ontologies enable the ASSERT™ tool suite to support the above capabilities through a small grounding use case.10.1109/ICOSC.2019.8665630 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8665630ontology;requirements;formal methods;automated test generation IEEE Inglês
Verifying Cross-Layer Interactions Through Formal Model-Based Assertion GenerationA. Salehi Fathabadi; M. Dalvandi; M. Butler; B. M. Al-Hashimi2020 Cross-layer runtime management (RTM) frameworks for embedded systems provide a set of standard application programming interfaces (APIs) for communication between different system layers (i.e., RTM, applications, and device) and simplify the development process by abstracting these layers. Integration of independently developed components of the system is an error-prone process that requires careful verification. In this letter, we propose a formal approach to integration testing through automatic generation of runtime assertions in order to test the implementation of the APIs. Our approach involves a formal model of the APIs developed using the Event-B formal method, which is automatically translated to a set of assertions and embedded in the existing implementation of APIs. The embedded assertions are used at runtime to check the correctness of the integration.10.1109/LES.2019.2955316 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436Embedded systems;Event-B;formal methods;formal verification;runtime managementIEEE Inglês
Special Features of TLA + Temporal Logic of Actions for Verifying Access Control PoliciesA. M. Kanner; T. M. Kanner 2021 The paper considers special features of applying Lamport's temporal logic of actions when verifying access control policies for arbitrary data protection tools. It justifies the necessity of implementing verification in the process of development and certification of various software tools and algorithms, in particular, policies for controlling subjects' access to objects. It contains a general structure of notation or specification of the system being studied in a formal language suitable for verification, and its particular version in the TLA + language. The paper considers special features of using Lamport's temporal logic of actions, and gives recommendations regarding dos and don'ts when initializing the modeled system, when forming and using invariants or temporal properties, history and auxiliary variables, safety and liveness properties, as well as when accounting for the termination of the verification process. Such features and recommendations are formulated in a quite universal way and do not depend on the applied verification approach and on the system being studied. The paper lists typical errors that may be done during verification, which make its results useless, while artificially creating a feeling of confidence in the system's “rightness”, “correctness” or “security / safety”. The conclusion presents key features that can have a significant impact on verification results, as well as on feasibility of its implementation. It proposes one of the possible directions for further research on the development of a general approach to substantiating conformity of the verified system specification in some formal language with its practical implementation.10.1109/USBEREIT51232.2021.9455090 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9455090verification;temporal logic of actions;auxiliary variables;history variables;invariants;temporal properties;safety properties;liveness propertiesIEEE Inglês
A Methodology for Developing a Verifiable Aircraft Engine Controller from Formal RequirementsM. Luckcuck; M. Farrell; O. Sheridan; R. Monahan2022 Verification of complex, safety-critical systems is a significant challenge. Manual testing and simulations are often used, but are only capable of exploring a subset of the system's reachable states. Formal methods are mathematically-based techniques for the specification and development of software, which can provide proofs of properties and exhaustive checks over a system's state space. In this paper, we present a formal requirements-driven methodology, applied to a model of an aircraft engine controller that has been provided by our industrial partner. Our methodology begins by formalising the controller's natural-language requirements using the (pre-existing) Formal Requirements Elicitation Tool (FRET), iteratively, in consultation with our industry partner. Once formalised, FRET can automatically translate the requirements to enable their verification alongside a Simulink model of the aircraft engine controller; the requirements can also guide formal verification using other approaches. These two parallel streams in our methodology seek to combine the results from formal requirements elicitation, classical verification approaches, and runtime verification; to support the verification of aerospace systems modelled in Simulink, from the requirements phase through to execution. Our methodology harnesses the power of formal methods in a way that complements existing verification techniques, and supports the traceability of requirements throughout the verification process. This methodology streamlines the process of developing verifiable aircraft engine controllers, by ensuring that the requirements are formalised up-front and useable during development. In this paper we give an overview of FRET, describe our methodology and work to-date on the formalisation and verification of the requirements, and outline future work using our methodology.10.1109/AERO53065.2022.9843589 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589- IEEE Inglês
Towards Formal Verification of Program ObfuscationW. Lu; B. Sistany; A. Felty; P. Scott 2020 Code obfuscation involves transforming a program to a new version that performs the same computation but hides the functionality of the original code. An important property of such a transformation is that it preserves the behavior of the original program. In this paper, we lay the foundation for studying and reasoning about code obfuscating transformations, and show how the preservation of certain behaviours may be formally verified. To this end, we apply techniques of formal specification and verification using the Coq Proof Assistant. We use and extend an existing encoding of a simple imperative language in Coq along with an encoding of Hoare logic for reasoning about this language. We formulate what it means for a program's semantics to be preserved by an obfuscating transformation, and give formal machine-checked proofs that these behaviours or properties hold. We also define a lower-level block-structured language which is "wrapped around" our imperative language, allowing us to model certain flattening transformations and treat blocks of codes as objects in their own right.10.1109/EuroSPW51379.2020.00091 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802obfuscation;verification;security;correctness;Coq;proof IEEE Inglês
Verifying Deadlock and Nondeterminism in Activity DiagramsL. Lima; A. Tavares 2019 UML Activity diagrams are flowcharts that can be used to model behaviors, even concurrent ones, which makes them adequate for describing complex dynamics. Although the UML community noticeably adopts them, there is no standard approach to verify properties like the absence of deadlock and nondeterminism. The latter is usually neglected by tools even though it may be considered relevant in complex architectures like cloud computing and real-time systems. In this paper, we present a tool-chain that is supported by formal reasoning tools and formal semantics for activity diagrams to verify deadlock freedom and nondeterminism. This tool is part of a UML modeling environment, and it provides complete traceability to the UML models. Therefore, the user does not need to understand or manipulate formal notations in any part of the process. During the modeling of an activity diagram, the user can perform the analysis and have a result in the diagrammatic level. We discuss some case studies and future applications due to the potential of our approach. Therefore, our major contribution is a framework for reasoning about deadlock and nondeterminism in activity diagrams, requiring no knowledge of the underlying formal semantics.10.1109/MODELS-C.2019.00119 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904590activity diagram;verification;nondeterminism;deadlock IEEE Inglês
Proposal of an Approach to Generate VDM++ Specifications from Natural Language Specification by Machine LearningY. Shigyo; T. Katayama 2020 A natural language contains ambiguous expressions. The VDM++ is one of the methodotogies on the formal methods to write the specification without ambiguity. It is difficult to write a VDM++ specification, because VDM++ is written by strict grammar. This research proposes an approach to automatically generate the VDM++ specification by machine learning. This approach defines four data structures and has four processes. In this paper, variables and only real type in the VDM++ specification are generated automatically by this approach. In order to generate the variables and real type, it is necessary to extract the noun corresponding to the variable from the natural language specification. Consequently, our proposed approach can generate a VDM++ specification and we have confirmed that the generated VDM++ specification is grammatically correct.10.1109/GCCE50665.2020.9292047 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047natural language specification;machine learning;automatic generation;formal method;VDM++ specificationIEEE Inglês
A Meta-Model for Representing Consistency as Extension to the Formal Process DescriptionL. Kathrein; K. Meixner; D. Winkler; A. Lüder; S. Biffl2019 In discrete manufacturing, basic and detail engineering workgroups need to collaborate to design highly automated cyber-physical production systems. Product/ion-awareness describes views and requirements coming from product and production process design, which are relevant to engineer production resources. These requirements imply strong dependencies between the product, the production process, and production resources (PPR). The Formal Process Description (FPD) provides basic concepts for modeling PPR knowledge, which support discrete manufacturing to some extent. In this paper, we introduce a meta-model that describes the structure of the FPD including a set of proposed extensions, focusing on expressing consistency dependencies on PPR relations, as a foundation for making design decisions traceable in the engineering process. In addition, the meta-model provides a clear description of how to model parallel or alternative process flows, a common use case in discrete manufacturing. The meta-model provides stakeholders with a clear description of the PPR modeling language (PPR-ML) and a rule set to check the validity of a model.10.1109/ETFA.2019.8869071 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8869071Formal Process Description (VDI/VDE 3682);Product-Process-Resource Modeling;Meta-ModelIEEE Inglês
ThEodorE: a Trace Checker for CPS PropertiesC. Menghi; E. Viganò; D. Bianculli; L. C. Briand2021 ThEodorE is a trace checker for Cyber-Physical systems (CPS). It provides users with (i) a GUI editor for writing CPS requirements; (ii) an automatic procedure to check whether the requirements hold on execution traces of a CPS. ThEodorE enables writing requirements using the Hybrid Logic of Signals (HLS), a novel, logic-based specification language to express CPS requirements. The trace checking procedure of ThEodorE reduces the problem of checking if a requirement holds on an execution trace to a satisfiability problem, which can be solved using off-the-shelf Satisfiability Modulo Theories (SMT) solvers. This artifact paper presents the tool support provided by ThEodorE.10.1109/ICSE-Companion52605.2021.00079 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402530Monitors, Languages, Specification, Validation, Formal methods, SemanticsIEEE Inglês
Towards a Formal Specification of Multi-paradigm ModellingM. Amrani; D. Blouin; R. Heinrich; A. Rensink; H. Vangheluwe; A. Wortmann2019 The notion of a programming paradigm is used to classify programming languages and their accompanying workflows based on their salient features. Similarly, the notion of a modelling paradigm can be used to characterise the plethora of modelling approaches used to engineer complex Cyber-Physical Systems (CPS). Modelling paradigms encompass formalisms, abstractions, workflows and supporting tool(chain) s. A precise definition of this modelling paradigm notion is lacking however. Such a definition will increase insight, will allow for formal reasoning about the consistency of modelling frameworks and may serve as the basis for the construction of new modelling, simulation, verification, synthesis, ...environments to support design of CPS . We present a formal framework aimed at capturing the notion of modelling paradigm, as a first step towards a comprehensive formalisation of multi-paradigm modelling. Our formalisation is illustrated by CookieCAD, a simple Computer-Aided Design paradigm used in the development of cookie stencils.10.1109/MODELS-C.2019.00067 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740Model Driven Engineering;Multi Paradigm;Cyber Physical Systems;FormalisationIEEE Inglês
Design and Formal Verification of a Copland-Based Attestation ProtocolA. Petz; G. Jurgensen; P. Alexander 2021 We present the design and formal analysis of a remote attestation protocol and accompanying security architecture that generate evidence of trustworthy execution for legacy software. For formal guarantees of measurement ordering and cryptographic evidence strength, we leverage the Copland language and Copland Virtual Machine execution semantics. For isolation of attestation mechanisms we design a layered attestation architecture that leverages the seL4 microkernel. The formal properties of the protocol and architecture together serve to discharge assumptions made by an existing higher-level model-finding tool to characterize all ways an active adversary can corrupt a target and go undetected. As a proof of concept, we instantiate this analysis framework with a specific Copland protocol and security architecture to measure a legacy flight planning application. By leveraging components that are amenable to formal analysis, we demonstrate a principled way to design an attestation protocol and argue for its end-to-end correctness.10.1145/3487212.3487340 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814959remote attestation;formal methods;verification IEEE Inglês
A Formal Methods Approach to Security Requirements Specification and VerificationQ. Rouland; B. Hamid; J. -P. Bodeveix; M. Filali2019 The specification and the verification of security requirements is one of the major computer-based systems challenges. Security requirements need to be precisely specified before a tool can manipulate them, and though several approaches to security requirements specification have been proposed, they do not provide the scalability and flexibility required in practice. We take this problem towards an integrated approach for security requirement specification and treatment during the software architecture design time. The general idea of the approach is to: (1) specify security requirements as properties of a modeled system in a technology-independent specification language; (2) implement the developed model in a suitable language with tool support for requirement satisfaction through model verification; and (3) suggest a set of security policies to constrain the operation of the system and to guarantee the security properties. In the scope of this paper, we use first-order logic as a formalism that is abstract and technology-independent and Alloy as a tooled language used in modeling and software development. To validate our work, we explore a set of representative security properties from categories based on CIA classification in the context of secure component-based software architecture development.10.1109/ICECCS.2019.00033 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749Engineering secure systems;Security properties;Formal methods;MetamodelIEEE Inglês
VrFy: Verification of Formal Requirements using Generic TracesJ. J. Olthuis; R. Jordão; F. Robino; S. Borrami2021 In order to fulfil standards governing the development of safety-critical systems, requirements are often shown to be satisfied by means of traditional techniques such as system analysis and testing activities. While these techniques have been used for many years, issues can still arise due to weak tests, not fully covering all requirement scenarios; and due to misinterpretation of requirements, leading to futile test activities. Having simpler techniques to show that requirements are properly fulfilled and that depend less on thoroughness of the tester is beneficial. To tackle these issues, we present an analysis method together with an accompanying toolset, VrFy, implementing a novel technique to automate the detection of violations of require-ments. Monitors are generated automatically, and the risk due to misinterpretation of requirements is reduced by using a formal notation (LTL3). Compared to related work, the proposed technique is programming language agnostic and can identify the exact time when requirements are violated, supporting the end user to quickly spot the root cause. By means of a real-world use case in the railway domain, we show how the tool can be used to augment traditional verification techniques.10.1109/QRS-C55045.2021.00034 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213Trace Validation;LTL3;NBA;Programming Language Agnostic;Railway Domain;Trace CompassIEEE Inglês
A Formal Modeling and Verification Framework for Service Oriented Intelligent Production Line DesignH. Yuan; F. Li; X. Huang 2019 The intelligent production line is a complex application with a large number of independent equipment network integration. In view of the characteristics of CPS, the existing modeling methods cannot well meet the application requirements of large scale high-performance system. a formal simulation verification framework and verification method are designed for the performance constraints such as the real-time and security of the intelligent production line based on soft bus. A model-based service-oriented integration approach is employed, which adopts a model-centric way to automate the development course of the entire software life cycle. Developing experience indicate that the proposed approach based on the formal modeling and verification framework in this paper can improve the performance of the system, which is also helpful to achieve the balance of the production line and maintain the reasonable use rate of the processing equipment.10.1109/ICIS46139.2019.8940189 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8940189Intelligent production line;model and verification;service oriented IEEE Inglês
MCoq: Mutation Analysis for Coq Verification ProjectsK. Jain; K. Palmskog; A. Celik; E. J. G. Arias; M. Gligoric2020 Software developed and verified using proof assistants, such as Coq, can provide trustworthiness beyond that of software developed using traditional programming languages and testing practices. However, guarantees from formal verification are only as good as the underlying definitions and specification properties. If properties are incomplete, flaws in definitions may not be captured during verification, which can lead to unexpected system behavior and failures. Mutation analysis is a general technique for evaluating specifications for adequacy and completeness, based on making small-scale changes to systems and observing the results. We demonstrate MCoq, the first mutation analysis tool for Coq projects. MCoq changes Coq definitions, with each change producing a modified project version, called a mutant, whose proofs are exhaustively checked. If checking succeeds, i.e., the mutant is live, this may indicate specification incompleteness. Since proof checking can take a long time, we optimized MCoq to perform incremental and parallel processing of mutants. By applying MCoq to popular Coq libraries, we found several instances of incomplete and missing specifications manifested as live mutants. We believe MCoq can be useful to proof engineers and researchers for analyzing software verification projects. The demo video for MCoq can be viewed at: https://youtu.be/QhigpfQ7dNo.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270399Mutation analysis;Coq;proof assistants;deductive verification IEEE Inglês
Counting Bugs in Behavioural Models using Counterexample AnalysisI. Faqrizal; G. Salaün 2022 Designing and developing distributed software has always been a tedious and error-prone task, and the ever increasing software complexity is making matters even worse. Model checking automatically verifies that a model, e.g., a Labelled Transition System (LTS), obtained from higher-level specification languages satisfies a given temporal property. When the model violates the property, the model checker returns a counterexample, but this counterexample does not precisely identify the source of the bug. In this work, we propose some techniques for simplifying the debugging of these models. These techniques first extract from the whole behavioural model the part which does not satisfy the given property. In that model, we then detect specific states (called faulty states) where a choice is possible between executing a correct behaviour or falling into an erroneous part of the model. By using this model, we propose in this paper some techniques to count the number of bugs in the original specification. The core idea of the approach is to change the specification for some specific actions that may cause the property violation, and compare the model before and after modification to detect whether this potential bug is one real bug or not. Beyond introducing in details the solution, this paper also presents tool support and experiments.10.1145/3524482.3527647 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796450Behavioural Models;Model Checking;Debugging;Counterexample;Bug CountingIEEE Inglês
Prema: A Tool for Precise Requirements Editing, Modeling and AnalysisY. Huang; J. Feng; H. Zheng; J. Zhu; S. Wang; S. Jiang; W. Miao; G. Pu2019 We present Prema, a tool for Precise Requirement Editing, Modeling and Analysis. It can be used in various fields for describing precise requirements using formal notations and performing rigorous analysis. By parsing the requirements written in formal modeling language, Prema is able to get a model which aptly depicts the requirements. It also provides different rigorous verification and validation techniques to check whether the requirements meet users' expectation and find potential errors. We show that our tool can provide a unified environment for writing and verifying requirements without using tools that are not well inter-related. For experimental demonstration, we use the requirements of the automatic train protection (ATP) system of CASCO signal co. LTD., the largest railway signal control system manufacturer of China. The code of the tool cannot be released here because the project is commercially confidential. However, a demonstration video of the tool is available at https://youtu.be/BX0yv8pRMWs.10.1109/ASE.2019.00128 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250formal methods;requirements modeling;requirements verification;formal engineering methodsIEEE Inglês
SPrune: A Code Pruning Tool for Ethereum Solidity Contract Static AnalysisZ. Zhou; Y. Xiong; W. Huang; L. Ma 2020 Ethereum is a cryptographic currency system built on top of blockchain. It allows anyone to write smart contracts in high-level programming languages, solidity is the most popular and mature one. In the last few years, the use of smart contracts across domains has increased a lot, security analysis to detect the potential issues in contracts thus becomes crucial. Theorem proving is a formal method technique which mathematically prove the correctness of a design with respect to a mathematical formal specification, that can be applied to smart contracts’ secure analysis. The successful implementation of a deduction calculs of theorem proving in an automated reasoning program requires the integration of search strategies that reduce the search space by pruning unnecessary deduction paths.This paper desribes SPrune, a code pruning tool designed to simplify static analysis for solidity contracts. It works by unfolding derived contracts based on the inheritance between contracts in one smart contract, and execute code pruning on the unfolded contract. Our tool allows for the application of static code pruning and provides facility for solidity contract developers and testers to trace and localize bugs in contracts.10.1109/BigCom51056.2020.00015 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9160448Ethereum;Solidity;smart contracts;static analysis IEEE Inglês
Proving Reflex Program Verification Conditions in Coq Proof AssistantI. Chernenko; I. Anureev; N. Garanina 2021 The process-oriented paradigm is a promising approach to the development of control software based on the natural concept of the process. Many safety-critical systems use control software. This is a reason for the formal verification of such systems. Deductive verification is the formal method of proving the program's correctness (the satisfiability program requirements). Requirements are formalized as annotations added to programs. The resulting annotated programs are reduced to verification conditions - formulas in some logical language. The original program is considered to be correct if all the verification conditions are true. This paper presents the results of experiments on proving verification conditions in Coq proof assistant within the framework of the two-step method of deductive verification of process-oriented programs in Reflex language.10.1109/EDM52169.2021.9507628 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507628process-oriented programming;Reflex language;deductive verification;requirements;annotations;verification conditions;temporal properties;control softwareIEEE Inglês
Toward Dependable Model-Driven Design of Low-Level Industrial Automation Control SystemsN. Zhou; D. Li; V. Vyatkin; V. Dubinin; C. Liu 2022 Recent technological advances and manufacturing paradigm evolutions in industrial settings will dramatically increase the complexity of automation control systems. Traditional solutions to the software development of low-level control kernels (e.g., numerical control kernel, motion control kernel, and real-time communication tasks) are unable to cope effectively with such complexity due to an inadequate level of abstraction and challenges for dependability. This article presents a formal semantics integrated model-driven design approach as a holistic solution. A domain-specific modeling language (DSML) is specified based on the adaption of IEC 61 499 architecture, along with the extensions of task model, task-to-resource allocation, and nonfunctional specification. Both formal structural and behavioral semantics of the proposed DSML are then explicitly defined. Design-time formal verification is also achieved by automated model transformations. A metaprogrammable environment is adopted to facilitate flexible modeling, verification, and code generation. A case study is demonstrated on implementing a prototype computer numerical control (CNC) system using the proposed solution. Note to Practitioners—The low-level automation control system in the modern manufacturing scenarios require more agility while respecting strict timing constraints. Handling such complexity with manual coding is getting harder and less efficient. The DSML and the supporting development environment presented in this article aim to enhance the level of automation, flexibility, and dependability of the whole design process. For the proposed DSML, its syntax is formalized and defined as metamodels, while the semantics is integrated through model annotation and transformation. These definitions are implemented as external rules for a metaprogrammable environment to establish our proposed development tool. The finding and insight from this article can enhance efficiency and dependability during the development of common control kernels, such as CNC kernel and motion controller.10.1109/TASE.2020.3038034 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272668Domain-specific modeling language (DSML);formal verification;IEC 61499;industrial automation control system;model-driven engineering (MDE)IEEE Inglês
Tool-Supported Analysis of Dynamic and Stochastic Behaviors in Cyber-Physical SystemsL. Huang; T. Liang; E. -Y. Kang 2019 Formal analysis of functional and non-functional requirements is crucial in cyber-physical systems (CPS), in which controllers interact with physical environments. The continuous time behaviors of CPS often rely on complex dynamics as well as on stochastic behaviors. We have previously proposed a probabilistic extension of Clock Constraint Specification Language, called PrCCSL, for specification of (non)-functional requirements of CPS and proved the correctness of requirements by mapping the semantics of the specifications into verifiable UPPAAL models. Previous work is extended in this paper by including an extension of PrCCSL, i.e., PrCCSL*, which incorporates annotations of continuous behaviors and stochastic characteristics of CPS. The CPS behaviors are specified in PrCCSL* and translated into stochastic UPPAAL models for formal verification. The translation algorithm from PrCCSL* into UPPAAL models is provided and implemented in an automatic translation tool, namely ProTL. Formal verification of CPS against (non)-functional requirements is performed by ProTL using UPPAAL-SMC as an analysis backend. Our approach is demonstrated on a series of CPS case studies.10.1109/QRS.2019.00039 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706CPS;PrCCSL*;UPPAAL-SMC;ProTL IEEE Inglês
Formal UML-based Modeling and Analysis for Securing Location-based IoT ApplicationsH. Cardenas; R. Zimmerman; A. R. Viesca; M. Al Lail; A. J. Perez2022 We present a process and a tool to apply formal methods in Internet of Things (IoT) applications using the Unified Modeling Language (UML). As there are no best practices to develop secured IoT systems, we have developed a plug-in tool that integrates a framework to validate UML software models and we present the design of a location-based IoT application as a use case for the validation tool.10.1109/MASS56207.2022.00109 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521UML;Formal methods;Security;Internet of Things IEEE Inglês
Specification Patterns for Robotic MissionsC. Menghi; C. Tsigkanos; P. Pelliccione; C. Ghezzi; T. Berger2021 Mobile and general-purpose robots increasingly support everyday life, requiring dependable robotics control software. Creating such software mainly amounts to implementing complex behaviors known as missions. Recognizing this need, a large number of domain-specific specification languages has been proposed. These, in addition to traditional logical languages, allow the use of formally specified missions for synthesis, verification, simulation or guiding implementation. For instance, the logical language LTL is commonly used by experts to specify missions as an input for planners, which synthesize a robot's required behavior. Unfortunately, domain-specific languages are usually tied to specific robot models, while logical languages such as LTL are difficult to use by non-experts. We present a catalog of 22 mission specification patterns for mobile robots, together with tooling for instantiating, composing, and compiling the patterns to create mission specifications. The patterns provide solutions for recurrent specification problems; each pattern details the usage intent, known uses, relationships to other patterns, and—most importantly—a template mission specification in temporal logic. Our tooling produces specifications expressed in the temporal logics LTL and CTL to be used by planners, simulators or model checkers. The patterns originate from 245 mission requirements extracted from the robotics literature, and they are evaluated upon a total of 441 real-world mission requirements and 1251 mission specifications. Five of these reflect scenarios defined with two well-known industrial partners developing human-size robots. We further validate our patterns’ correctness with simulators and two different types of real robots.10.1109/TSE.2019.2945329 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226Mission specification;pattern catalog;robotic mission;model driven engineeringIEEE Inglês
An Approach to Validation of Combined Natural Language and Formal Requirements for Control SystemsM. Trakhtenbrot 2019 The paper presents a novel approach to validation of behavioral requirements for control systems. A requirement is specified by a natural language pattern and its expression in Linear Temporal Logic (LTL). This way flexibility and understandability of natural language is combined with advantages of formalization that is a basis for various stages of system development, testing and verification. Still, validity of the requirements remains a major challenge. The paper considers application of mutation analysis for capturing of correct behavioral requirements. Generation and exploration of mutants supports a better understanding of requirements, The novelty of the approach is that the suggested mutations are semantic-based, as opposed to the more common syntax-based mutation analysis. A significant advantage of the approach is that it allows to focus only on plausible potential faults in understanding of the required system behavior, and to avoid generation of a vast amount of mutants that are irrelevant to the intended meaning of the requirements. Moreover, in many cases the effect of semantic-based mutations just can not be achieved by usual syntax-based mutations of LTL formulas associated with requirements. The approach is illustrated using a rail cross control example.10.1109/REW.2019.00025 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687control systems, behavior requirements validation, mutation analysisIEEE Inglês
Coverage of Meta-Stability Using Formal Verification in Asynchronous Gray Code FIFOShivali; M. Khosla 2022 In Formal Verification Environment, setup time and hold time are not honored by formal verification tool. To analyze the impact of metastability on functionality of the design in formal verification environment, buffer has been designed. Buffer induces the delay of either ‘0’, ‘1’ or ‘2’ clock cycles leading to metastability in the pointers of Asynchronous Gray Code FIFO in formal verification environment. Reference code has been written which describe the functionality of Asynchronous Gray Code FIFO in ideal case. Using formal equivalence checking, output of FIFO obtained from design provided by the designer, is compared with the output obtained from the reference code of FIFO. Formal verification properties are written to do the verification of the design and check if the design is working as predicted specifications. Coverage written ensures no corner case is skipped which may lead to escapism of potential design bugs. The command language script containing the verification program has been run to invoke the JasperGold Tool. Comparative analysis has been done between the waveforms obtained from the design including a buffer and the design without including a buffer. If both the waveforms are not same which means metastability has influenced the functionality of the design. So, to overcome the effect of metastability on functionality of the design, there is need to add more synchronizers in the design. While if the waveforms obtained from the design with and without buffer are same, it means synchronizers / Meta flops already present in the design are enough to deal with the metastability which may arise during functioning of the design.10.1109/CONIT55038.2022.9848195 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195Meta-stability;Formal Verification;Formal Environment;Asynchronous Gray Code FIFOIEEE Inglês
A Research Landscape on Formal Verification of Software Architecture DescriptionsC. Araújo; E. Cavalcante; T. Batista; M. Oliveira; F. Oquendo2019 One of the many different purposes of software architecture descriptions is contributing to an early analysis of the architecture with respect to quality attributes. The critical nature of many software systems calls for formal approaches aiming at precisely verifying if their designed architectures can meet important properties such as consistency, completeness, and correctness. In this context, it is worthwhile investigating the role of architecture descriptions to support the formal verification of software architectures to ensure their quality, as well as how such a process happens and is supported by existing languages and verification tools. To evaluate the research landscape on this subject, we have carried out a systematic mapping study in which we collected and analyzed studies available at the literature on formal verification of architecture descriptions. This work contributes with (i) a structured overview and taxonomy of the current state of the art on this topic and (ii) the elicitation of important issues to be addressed in future research.10.1109/ACCESS.2019.2953858 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988Architecture description;formal verification;property specification;software architectures;systematic mappingIEEE Inglês
Design Ontology in a Case Study for Cosimulation in a Model-Based Systems Engineering Tool-ChainJ. Lu; G. Wang; M. Törngren 2020 Cosimulation is an important system-level verification approach aimed at integrating multidomain and multi-physics models during complex system development. Currently, the lack of integrating system development process with cosimulations leads to gaps between them, decreasing the effectiveness and efficiency of system development. Model-based systems engineering (MBSE) tool-chains have been proposed to facilitate the integration of complex system development and automated verification using a model-based approach. However, due to the lack of formal and structured specifications, development information sharing is difficult for supporting MBSE facilitating automated cosimulations. In order to formalize cosimulation in an MBSE tool-chain, a scenario-based ontology is developed in this paper, using formal web ontology language (OWL). Ontology refers to a specification expressing the cosimulation implementations as well as the development information represented in the models supporting the MBSE. It is illustrated by a case study of a cosimulation based on Simulink. Protocol and resource description framework (RDF) query language (SPARQL) and semantic query-enhanced web rule language queries are proposed for evaluating the ontology's completeness and logic for supporting cosimulations. The result demonstrates that the scenario-based ontology formalizes the information related to automated cosimulation development and configurations while using the proposed MBSE tool-chain.10.1109/JSYST.2019.2911418 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748Cosimulation;model-based systems engineering (MBSE);ontology design;simulation automation;tool-chainIEEE Inglês
Scalable Translation Validation of Unverified Legacy OS CodeA. Tahat; S. Joshi; P. Goswami; B. Ravindran 2019 Formally verifying functional and security properties of a large-scale production operating system is highly desirable. However, it is challenging as such OSes are often written in multiple source languages that have no formal semantics - a prerequisite for formal reasoning. To avoid expensive formalization of the semantics of multiple high-level source languages, we present a lightweight and rigorous verification toolchain that verifies OS code at the binary level, targeting ARM machines. To reason about ARM instructions, we first translate the ARM Specification Language that describes the semantics of the ARMv8 ISA into the PVS7 theorem prover and verify the translation. We leverage the radare2 reverse engineering tool to decode ARM binaries into PVS7 and verify the translation. Our translation verification methodology is a lightweight formal validation technique that generates large-scale instruction emulation test lemmas whose proof obligations are automatically discharged. To demonstrate our verification methodology, we apply the technique on two OSes: Google's Zircon and a subset of Linux. We extract a set of 370 functions from these OSes, translate them into PVS7, and verify the correctness of the translation by automatically discharging hundreds of thousands of proof obligations and tests. This took 27.5 person-months to develop.10.23919/FMCAD.2019.8894252 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252Formal Verification;Linux OS;Google Zircon IEEE Inglês
Refinement-based Construction of Correct Distributed AlgorithmsD. Méry 2021 The verification of distributed algorithms is a challenge for formal techniques supported by tools, as model checkers and proof assistants. The difficulties, even for powerful tools, lie in the derivation of proofs of required properties, such as safety and eventuality, for distributed algorithms. Verification by construction can be achieved by using a formal framework in which models are constructed at different levels of abstraction; each level of abstraction is refined by the one below, and this refinement relationships is documented by an abstraction relation namely a gluing invariant. The highest levels of abstraction are used to express the required behavior in terms of the problem domain and the lowest level of abstraction corresponds to an implementation from which an efficient implementation can be derived automatically. We describe a methodology based on the general concept of refinement and used for developing distributed algorithms satisfying a given list of safety and liveness properties. We will show also how formal models can be used for producing distributed programs of a real programming language. The modelling methodology is defined in the Event-B modelling language using the Rodin Formal IDE.10.1109/ICI2ST51859.2021.00015 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447336formal method;distributed algorithm;correct by cinstruction;refinement;verificationIEEE Inglês
Towards a Spreadsheet-Based Language WorkbenchM. Barash 2021 Spreadsheets are widely used across industries for various purposes, including for storing and manipulating data in a structured form. Such structured forms—expressed using tabular notation—have found their way in language workbenches, which are tools to define (domain-specific modeling) languages and Integrated Development Environments (IDE) for them. There, a tabular notation is oftentimes used as a secondary way to represent concrete syntax of certain language constructs; however, it is not a primary means for (meta)model definition. We present early results on implementing a language workbench where metamodels, models, and editor services are defined only using a tabular notation. We give an overview of the desired functionality of spreadsheet-based language workbenches.10.1109/MODELS-C53483.2021.00102 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643797Spreadsheets;Microsoft Excel;language workbench;tool support;domain-specific modelingIEEE Inglês
RM2Doc: A Tool for Automatic Generation of Requirements Documents from Requirements ModelsT. Bao; J. Yang; Y. Yang; Y. Yin 2022 Automatic generation of requirements documents is an essential feature of the model-driven CASE tools such as UML and SysML designers. However, the quality of the generated documents from the current tools highly depends on the attached descriptions of models but not the quality of the model itself. Besides, if the stockholders ask to generate ISO/IEC/IEEE 29148-2018 conformed documents, extra templates are required. In this paper, we propose a CASE tool named RM2Doc, which can automatically generate ISO/IEC/IEEE 29148-2018 conformed requirements documents from UML models without any templates. In addition, the flow description can be generated from a use case without additional information. Moreover, it can automatically generate the semantic description of system operations only based on the formal expression of OCL. We have conducted four case studies with over 50 use cases. Overall, the result is satisfactory. The 95% requirements documents can be generated from the requirements model without any human interactions in 1 second. The proposed tools can be further developed for the industry of software engineering.The tool can be downloaded at http://rm2pt.com/rm2doc, and a demo video casting its features is at https://youtu.be/4z0Z5mrLfBc10.1145/3510454.3516850 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793770Automatic Documentation;Requirements;Requirements Model;Requirements DocumentsIEEE Inglês
Enumeration and Deduction Driven Co-Synthesis of CCSL Specifications using Reinforcement LearningM. Hu; J. Ding; M. Zhang; F. Mallet; M. Chen 2021 The Clock Constraint Specification Language (CCSL) has become popular for modeling and analyzing timing behaviors of real-time embedded systems. However, it is difficult for requirement engineers to accurately figure out CCSL specifications from natural language-based requirement descriptions. This is mainly because: i) most requirement engineers lack expertise in formal modeling; and ii) few existing tools can be used to facilitate the generation of CCSL specifications. To address these issues, this paper presents a novel approach that combines the merits of both Reinforcement Learning (RL) and deductive techniques in logical reasoning for efficient co-synthesis of CCSL specifications. Specifically, our method leverages RL to enumerate all the feasible solutions to fill the holes of incomplete specifications and deductive techniques to judge the quality of each trial. Our proposed deductive mechanisms are useful for not only pruning enumeration space, but also guiding the enumeration process to reach an optimal solution quickly. Comprehensive experimental results on both well-known benchmarks and complex industrial examples demonstrate the performance and scalability of our method. Compared with the state-of-the-art, our approach can drastically reduce the synthesis time by several orders of magnitude while the accuracy of synthesis can be guaranteed.10.1109/RTSS52674.2021.00030 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334Specification synthesis;reinforcement learning;logical clocks;deduction;enumerationIEEE Inglês
Modeling of Natural Language Requirements based on States and ModesY. Liu; J. -M. Bruel 2022 The relationship between states (status of a system) and modes (capabilities of a system) used to describe system requirements is often poorly defined. The unclear relationship could make systems of interest out of control because of the out of boundaries of the systems caused by the newly added modes. Formally modeling requirements can clarify the relationship between states and modes, making the system safe.To this end, the MoSt language (a Domain Specific Language implemented on the Xtext framework) is proposed to modeling requirements based on states and modes. In this article, the relationship between states and modes is firstly provided. The metamodel and grammar of the language are then proposed. Finally, a validator is implemented to realise static checks of the MoSt model. The grammar and the validator are integrated into a publicly available Eclipse-based tool. A case study on requirements for designing cars has been conducted to illustrate the feasibility of the MoSt language. In this case study, we injected 9 errors. The results show that all the errors were detected in the static analysis.10.1109/REW56159.2022.00043 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159States and Modes;Requirements Modeling;Domain Specific LanguageIEEE Inglês
Modeling and Formal Verification of Interlocking System Based on UML and HCPNM. Maofei; Z. Yong 2020 Aiming at the difficulties of modeling and verification of interlocking system and the easy explosion problem of interlocking system state space, a modeling method of interlocking system is proposed based on UML and Hierarchical Colored Petri Nets (HCPN). Firstly, UML is used to realize the semi-formal modeling of the interlocking system, which can reduce the difficulties of modeling interlocking system. Secondly, the UML-CPN transformational rules are used to establish the HCPN layered model of the interlocking system to alleviate the explosion problem of the system state space. Finally, the formal verification of the HCPN model is realized by using CPN Tools. The interlocking modeling method based on UML and HCPN can provide a new idea for the formal modeling and verification of computer interlocking system.10.1109/WCCCT49810.2020.9170006 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9170006interlocking system;UML;HCPN;formal model verification IEEE Inglês
SAT-Based Arithmetic Support for Alloy C. Cornejo 2020 Formal specifications in Alloy are organized around user-defined data domains, associated with signatures, with almost no support for built-in datatypes. This minimality in the built-in datatypes provided by the language is one of its main features, as it contributes to the automated analyzability of models. One of the few built-in datatypes available in Alloy specifications are integers, whose SAT-based treatment allows only for small bit-widths. In many contexts, where relational datatypes dominate, the use of integers may be auxiliary, e.g., in the use of cardinality constraints and other features. However, as the applications of Alloy are increased, e.g., with the use of the language and its tool support as backend engine for different analysis tasks, the provision of efficient support for numerical datatypes becomes a need. In this work, we present our current preliminary approach to providing an efficient, scalable and user-friendly extension to Alloy, with arithmetic support for numerical datatypes. Our implementation allows for arithmetic with varying precisions, and is implemented via standard Alloy constructions, thus resorting to SAT solving for resolving arithmetic constraints in models.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654alloy;sat solving IEEE Inglês
A Framework for Quantitative Modeling and Analysis of Highly (Re)configurable SystemsM. H. Ter Beek; A. Legay; A. L. Lafuente; A. Vandin2020 This paper presents our approach to the quantitative modeling and analysis of highly (re)configurable systems, such as software product lines. Different combinations of the optional features of such a system give rise to combinatorially many individual system variants. We use a formal modeling language that allows us to model systems with probabilistic behavior, possibly subject to quantitative feature constraints, and able to dynamically install, remove or replace features. More precisely, our models are defined in the probabilistic feature-oriented language QFLan, a rich domain specific language (DSL) for systems with variability defined in terms of features. QFLan specifications are automatically encoded in terms of a process algebra whose operational behavior interacts with a store of constraints, and hence allows to separate system configuration from system behavior. The resulting probabilistic configurations and behavior converge seamlessly in a semantics based on discrete-time Markov chains, thus enabling quantitative analysis. Our analysis is based on statistical model checking techniques, which allow us to scale to larger models with respect to precise probabilistic analysis techniques. The analyses we can conduct range from the likelihood of specific behavior to the expected average cost, in terms of feature attributes, of specific system variants. Our approach is supported by a novel Eclipse-based tool which includes state-of-the-art DSL utilities for QFLan based on the Xtext framework as well as analysis plug-ins to seamlessly run statistical model checking analyses. We provide a number of case studies that have driven and validated the development of our framework.10.1109/TSE.2018.2853726 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8405597Software product lines;probabilistic modeling;quantitative constraints;statistical model checking;formal methodsIEEE Inglês
Certified Embedding of B Models in an Integrated Verification FrameworkA. Halchin; Y. Ait-Ameur; N. K. Singh; A. Feliachi; J. Ordioni2019 To check the correctness of heterogeneous models of a complex critical system is challenging to meet the certification standard. Such guarantee can be provided by embedding the heterogeneous models into an integrated modelling framework. This work is proposed in the B-PERFect project of RATP (Parisian Public Transport Operator and Maintainer), it aims to apply formal verification using the PERF approach on the integrated safety-critical software related to railway domain expressed in a single modelling language: HLL. This paper presents a certified translation from B formal language to HLL. The proposed approach uses HOL as a unified logical framework to describe the formal semantics and to formalize the translation relation of both languages. The developed Isabelle/HOL models are proved in order to guarantee the correctness of our translation process. Moreover, we have also used weak-bisimulation relation to check the correctness of translation steps. The overall approach is illustrated through a case study issued from a railway software system: onboard localization function. Furthermore, it discusses the integrated verification at system level.10.1109/TASE.2019.000-4 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050Formal Semantics, B to HLL Translation Validation, Theorem Proving, Model AnimationIEEE Inglês
Poster: Automatic Consistency Checking of Requirements with ReqVS. Vuotto; M. Narizzano; L. Pulina; A. Tacchella2019 In the context of Requirements Engineering, checking the consistency of functional requirements is an important and still mostly open problem. In case of requirements written in natural language, the corresponding manual review is time consuming and error prone. On the other hand, automated consistency checking most often requires overburdening formalizations. In this paper we introduce ReqV, a tool for formal consistency checking of requirements. The main goal of the tool is to provide an easy-to-use environment for the verification of requirements in Cyber-Physical Systems (CPS). ReqV takes as input a set of requirements expressed in a structured natural language, translates them in a formal language and it checks their inner consistency. In case of failure, ReqV can also extracts a minimal set of conflicting requirements to help designers in correcting the specification.10.1109/ICST.2019.00043 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195Requirements Engineering;Verification;Consistency;CPS IEEE Inglês
Towards Formalism of Link Failure Detection Algorithm for Wireless Sensor and Actor NetworksU. Draz; T. Ali; S. Yasin; U. Waqas; U. Rafiq 2019 The merger of actors and sensors in a wireless network has evolved those opportunities that we can't think before some years. This merger has captured the interest of researchers from around the globe. In the last decade, wireless networks have become much stronger, reliable and secure but as the technology evolves, it carries their own problems. Researchers are targeting different problem according to their own interest like power consumption, network security, link failure etc., so we are also working on link failure detection that can be caused by power breakage, network delay or traffic overload. This model detects the link failure in the network through Link Failure Detection Algorithm (LFDA) and provide recovery mechanism against failure using cluster-based approach. Our purposed model detects network link failure accuratly and precisely solve the problem by creating alternative virtual route for data packets. Our technique can detect current failures also it can detect weaker links, those might be the cause for future failures. Most of the literature have their proof of correctness as simulation but no technique is there which is formally verified, therefore we have presented our idea including its formal verification and validation with the help of formal methods tool box and its formal specification language like (VDM-SL).10.1109/CEET1.2019.8711857 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8711857WSAN;Link Failure;Link Recovery;Gateways Node;Cluster head;Virtual Links;Verification & ValidationIEEE Inglês
MIST: monitor generation from informal specifications for firmware verificationS. Germiniani; M. Bragaglio; G. Pravadelli 2020 This paper presents MIST, an all-in-one tool capable of generating a complete environment to verify C/C++ firmwares starting from informal specifications. Given a set of specifications written in natural language, the tool guides the user in translating each specification into an XML formal description, capturing a temporal behavior that must hold in the design. Our XML format guarantees the same expressiveness of linear temporal logic, but it is designed to be used by designers that are not familiar with formal methods. Once each behavior is formalized, MIST automatically generates the corresponding test-bench and checker to stimulate and verify the design. In order to guide the verification process, MIST employs a clustering procedure that classifies the internal states of the firmware. Such classification aims at finding an effective ordering to check the expected behaviors and to advise for possible specification holes. MIST has been fully integrated into the IAR System Embedded Workbench. Its effectiveness and efficiency have been evaluated to formalize and check a complex test-plan for an industrial firmware.10.1109/VLSI-SOC46417.2020.9344072 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9344072assertion;verification;testing;simulation;checker;PSL;LTL;specificationIEEE Inglês
Another Tool for Structural Operational Semantics Visualization of Simple Imperative LanguageJ. Perháč; Z. Bilanová 2020 Teaching formal methods, especially semantics of programming languages is an important aspect of theoretical informatics. The learning process often includes a lot of mathematics and learning different notations, which appears to be very difficult for students. In this paper, we present a new interactive tool for visualization of the structural operational semantics of a simple imperative program. We demonstrate our approach on the example of a simple program, where we visualize the inference process of small steps semantic method.10.1109/ICETA51985.2020.9379205 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9379205Structural operational semantics;Semantics of programming languages;Visualization tool;Teaching formal methodsIEEE Inglês
Work-In-Progress: a DSL for the safe deployment of Runtime Monitors in Cyber-Physical SystemsG. S. Nandi; D. Pereira; J. Proença; E. Tovar 2020 Guaranteeing that safety-critical Cyber-Physical Systems (CPS) do not fail upon deployment is becoming an even more complicated task with the increased use of complex software solutions. To aid in this matter, formal methods (rigorous mathematical and logical techniques) can be used to obtain proofs about the correctness of CPS. In such a context, Runtime Verification has emerged as a promising solution that combines the formal specification of properties to be validated and monitors that perform these validations during runtime. Although helpful, runtime verification solutions introduce an inevitable overhead in the system, which can disrupt its correct functioning if not safely employed. We propose the creation of a Domain Specific Language (DSL) that, given a generic CPS, 1) verifies if its real- time scheduling is guaranteed, even in the presence of coupled monitors, and 2) implements several verification conditions for the correct-by-construction generation of monitoring architectures. To achieve it, we plan to perform statical verifications, derived from the available literature on schedulability analysis, and powered by a set of semi-automatic formal verification tools.10.1109/RTSS49844.2020.00047 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9355502runtime verification;cyber-physical systems;DSL;safety;mode changeIEEE Inglês
Formal Verification of a Database Management SystemD. Medina-Martínez; E. Bárcenas; G. Molero-Castillo; A. Velázquez-Mena; R. Aldeco-Pérez2020 Assertion based program verification is a well-known formal approach to (dis)prove correctness of algorithms associated to software systems. Assertions are input and output properties a correct program must satisfy. These properties are traditionally written in a specification language based on classical logic. Associated classical reasoning (inference) systems are then used to (dis)prove program correctness. However, when programs manipulate mutable data structures such as pointers, classical logical operators have been unable to successfully model syntactically unrelated expressions. In this article, we study separation logics, which are equipped with specially-purposed operators to model mutable data structures. We describe the use of this logic as a specification language in the verification of a database management system (DMS). In particular, we detect several bugs in two DMS libraries regarding heap manipulation. We describe these bugs in detail and propose solutions.10.1109/CONISOFT50191.2020.00024 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9307818Program Verification;Separation logic;Database Management SystemsIEEE Inglês
EvoSpex: An Evolutionary Algorithm for Learning Postconditions (artifact)F. Molina; P. Ponzio; N. Aguirre; M. Frias 2021 Having the expected behavior of software specified in a formal language can greatly improve the automation of software verification activities, since these need to contrast the intended behavior with the actual software implementation. Unfortunately, software many times lacks such specifications, and thus providing tools and techniques that can assist developers in the construction of software specifications are relevant in software engineering. As an aid in this context, we present EvoSpex, a tool that given a Java method, automatically produces a specification of the method's current behavior, in the form of postcondition assertions. EvoSpex is based on generating software runs from the implementation (valid runs), making modifications to the runs to build divergent behaviors (invalid runs), and executing a genetic algorithm that tries to evolve a specification to satisfy the valid runs, and leave out the invalid ones. Our tool supports a rich JML-like assertion language, that can capture complex specifications, including sophisticated object structural properties.10.1109/ICSE-Companion52605.2021.00080 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402303- IEEE Inglês
Trace-Checking CPS Properties: Bridging the Cyber-Physical GapC. Menghi; E. Viganò; D. Bianculli; L. C. Briand2021 Cyber-physical systems combine software and physical components. Specification-driven trace-checking tools for CPS usually provide users with a specification language to express the requirements of interest, and an automatic procedure to check whether these requirements hold on the execution traces of a CPS. Although there exist several specification languages for CPS, they are often not sufficiently expressive to allow the specification of complex CPS properties related to the software and the physical components and their interactions. In this paper, we propose (i) the Hybrid Logic of Signals (HLS), a logic-based language that allows the specification of complex CPS requirements, and (ii) ThEodorE, an efficient SMT-based trace-checking procedure. This procedure reduces the problem of checking a CPS requirement over an execution trace, to checking the satisfiability of an SMT formula. We evaluated our contributions by using a representative industrial case study in the satellite domain. We assessed the expressiveness of HLS by considering 212 requirements of our case study. HLS could express all the 212 requirements. We also assessed the applicability of ThEodorE by running the trace-checking procedure for 747 trace-requirement combinations. ThEodorE was able to produce a verdict in 74.5% of the cases. Finally, we compared HLS and ThEodorE with other specification languages and trace-checking tools from the literature. Our results show that, from a practical standpoint, our approach offers a better trade-off between expressiveness and performance.10.1109/ICSE43902.2021.00082 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030Monitors;Languages;Specification;Validation;Formal methods;SemanticsIEEE Inglês
A Noval Method of Security Verification for JTAG Protection FunctionD. Li; W. Shen; Z. Wang 2019 This paper proposed a formal verification method for JTAG security based on information flow tracking. The security property script is used to describe the security requirements. Compared with the traditional writing method of assertions, our method does not need to consider much about the design features, which not only greatly reduces the assertion writing time but also can effectively detect the security violations in the design. Based on the generated information-flow tracking model, the proposed method can generate formal constraints and System Verilog Assertions supported by formal verification tools. Experiment of JTAG security verification proves that the proposed method can effectively verify the security functions related to information flow such as access control.10.1109/QRS-C.2019.00093 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859411JTAG security;security verification;formal verification;information flowIEEE Inglês
How much Specification is Enough? Mutation Analysis for Software ContractsA. Knüppel; L. Schaer; I. Schaefer 2021 Design-by-contract is a light-weight formal development paradigm, in which object-oriented software is specified with so-called software contracts. Contracts are annotations in the source code that explicitly document intended functional behavior and can be used for verifying correctness of a particular implementation or as test oracles during automatic test case generation. As writing strong specifications is an expensive and error-prone activity due to lack of expertise and tool support, developers are often only willing to write simpler specifications, covering only a fraction of all functional properties. As a consequence, software quality is lowered, or even worse, potential bugs remain undetected during software verification. To give developers a sense of specification coverage, we propose a methodology that considers the degree of incomplete specifications by means of mutation analysis. We consider Java programs annotated with JML and employ the deductive program verifier KEY-2.6.3 to show that this approach is applicable to numerous open-source JML projects from the literature.10.1109/FormaliSE52586.2021.00011 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9460939Mutation Analysis;Design by Contract;Software Quality Metrics IEEE Inglês
Transformation of non-standard nuclear I&C logic drawings to formal verification modelsA. Pakonen; P. Biswas; N. Papakonstantinou 2020 Model checking methods have been proven to be a valuable asset for identifying undesired behaviour of safety-critical Instrumentation and Control (I&C) logics. Their application in the nuclear domain has been very successful and has triggered significant interest from the safety community. Creating formal models from the diagrams found on paper or from digital formats without the needed semantics is one bottleneck that hinders the adoption of model checking due to costs in time and may introduce errors. This paper proposes a methodology for the creation of formal models from I&C diagrams drawn in generic modelling tools (lacking specific I&C semantics). The generic I&C logic diagram is transformed into an intermediate UML model that in turn can be transformed to other target formats like IEC 61131 PLCopen XML I&C software or NuSMV formal model code. This methodology is demonstrated with a typical example of a trip signal generator application logic. This application logic is drawn in MS Visio, it is transformed to an I&C model in UML with the needed properties for model checking, then to IEC 61131 PLCopen XML and to an input file for the NuSMV model checker.10.1109/IECON43393.2020.9255176 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176I&C;function block diagram;nuclear energy;IEC61131;PLCOpen XML;Model-Based System EngineeringIEEE Inglês
Towards Concrete Syntax Based Find for Graphical Domain Specific LanguagesE. Kalnina; A. Sostaks 2019 One of the main reasons why Model-Driven Engineering (MDE) technologies including Domain-specific modelling languages (DSML) have not reached the expected acceptance in the industry is a poor tool support. One of the features with a limited support even in commercial modelling tools is search (find). Typically, MDE tools support only a simple keyword-based textual search functionality. The same is true for the tools built using Domain-specific language (DSL) tool definition frameworks. It is proposed to provide the concrete syntax-based find functionality as a service of a DSL tool definition framework. The find diagrams are defined in a concrete syntax of a DSL. A definition of a DSL is used to provide a language-specific find functionality in the DSL tool.10.1109/MODELS-C.2019.00038 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904770graphical domain-specific languages;DSL tool definition frameworks;findIEEE Inglês
Continuous Verification of Network Security ComplianceC. Lorenz; V. Clemens; M. Schrötter; B. Schnor2022 Continuous verification of network security compliance is an accepted need. Especially, the analysis of stateful packet filters plays a central role for network security in practice. But the few existing tools which support the analysis of stateful packet filters are based on general applicable formal methods like Satifiability Modulo Theories (SMT) or theorem prover and show runtimes in the order of minutes to hours making them unsuitable for continuous compliance verification. In this work, we address these challenges and present the concept of state shell interweaving to transform a stateful firewall rule set into a stateless rule set. This allows us to reuse any fast domain specific engine from the field of data plane verification tools leveraging smart, very fast, and domain specialized data structures and algorithms including Header Space Analysis (HSA). First, we introduce the formal language FPL that enables a high-level human-understandable specification of the desired state of network security. Second, we demonstrate the instantiation of a compliance process using a verification framework that analyzes the configuration of complex networks and devices - including stateful firewalls - for compliance with FPL policies. Our evaluation results show the scalability of the presented approach for the well known Internet2 and Stanford benchmarks as well as for large firewall rule sets where it outscales state-of-the-art tools by a factor of over 41.10.1109/TNSM.2021.3130290 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9626142Network;security;compliance;formal verification IEEE Inglês
From non-autonomous Petri net models to executable state machinesJ. P. Barros; L. Gomes 2019 Petri nets have long been known as a readable and powerful graphical modelling language. In particular, Petri nets also allow the creation of high-level models of embedded controllers. These models can be translated to executable code. This possibility is already available in some tools including the IOPT Tools. Another possibility is to translate the Petri net model into a state machine, which can then be easily executed by an even larger number of platforms for cyber-physical systems. In that sense, this paper presents a tool that is able to generate a state machine from a non-autonomous class of Petri supported by the IOPT Tools framework (which is publicly available). These state machines would be too large to be manually generated, but can now be automatically created, simulated, and verified using an higher-level modelling language. The state machines can then be used for execution or even as input for additional verification tools. This paper presents the translation algorithm and an illustrative example.10.1109/ISIE.2019.8781246 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8781246model-driven development;cyber-physical systems;Petri nets;design tools;embedded systemsIEEE Inglês
Automated Prototype Generation From Formal Requirements ModelY. Yang; X. Li; W. Ke; Z. Liu 2020 Prototyping is an effective and efficient way of requirements validation to avoid introducing errors in the early stage of software development. However, manually developing a prototype of a software system requires additional efforts, which would increase the overall cost of software development. In this article, we present an approach with a developed tool RM2PT to automated prototype generation from formal requirements models for requirements validation. A requirements model consists of a use case diagram, a conceptual class diagram, use case definitions specified by system sequence diagrams, and the contracts of their system operations. A system operation contract is formally specified by a pair of pre and postconditions in object constraint language. We propose a method with a set of transformation rules to decompose a contract into executable parts and nonexecutable parts. An executable part can be automatically transformed into a sequence of primitive operations by applying their corresponding rules, and a nonexecutable part is not transformable with the rules. The tool RM2PT provides a mechanism for developers to develop a piece of program for each nonexecutable part manually, which can be plugged into the generated prototype source code automatically. We have conducted four case studies with over 50 use cases. The experimental result shows that the 93.65% system operations are executable, and only 6.35% are nonexecutable, which can be implemented by developers manually or invoking the third-party application programming interface (APIs). Overall, the result is satisfactory. Each 1 s generated prototype of four case studies requires approximate one day's manual implementation by a skilled programmer. The proposed approach with the developed computer-aided software engineering tool can be applied to the software industry for requirements engineering.10.1109/TR.2019.2934348 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8822502Formal requirements model;object constraint language (OCL);prototype;requirements;requirements model;requirements validation;unified modeling language (UML)IEEE Inglês
From Prose to Prototype: Synthesising Executable UML Models from Natural LanguageG. J. Ramackers; P. P. Griffioen; M. B. J. Schouten; M. R. V. Chaudron2021 This paper presents a vision for a development tool that provides automated support for synthesising UML models from requirements text expressed in natural language. This approach aims to simplify the process of analysis - i.e. moving from written (and spoken) descriptions of the functionality of a system and a domain to an executable specification of that system. The contribution focuses on the AI techniques used to transform natural language into structural and dynamic UML models. Moreover, we envision a ‘human-in-the-loop’ approach where an interactive conversational component is used based on machine learning of the system under construction and corpora of external natural language texts and UML models. To illustrate the approach, we present a tool prototype. As a scoping, this approach targets data-intensive systems rather than control-intensive (embedded) systems.10.1109/MODELS-C53483.2021.00061 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623UML;MDA;requirement text;natural language processing;model driven engineering;executable specification;transformer architectureIEEE Inglês
Formalization of Requirements for Correct SystemsI. Sayar; J. Souquieres 2020 Improving the quality of a system begins by their requirements elicitation: the challenge is to bridge the gap between the requirements of the client and their formal specification defined by the scientist. A first step consists on understanding and rewriting the existing requirements. Along the development process, we introduce formal terms in the requirements coming the formal specification and make explicit the interactions between them by a glossary. The trace of the requirements and their corresponding specification is managed and serves to simplify the activities of validation and verification. The validation is studied since the understanding of the first requirements and all along the development of their formal specification. The verification may detect imperfections like incoherences and ambiguities in both the formal specification and their corresponding requirements.10.1109/FORMREQ51202.2020.00012 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522- IEEE Inglês

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224538
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904583
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8665630
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9455090
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904590
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8869071
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402530
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814959
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8940189
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270399
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796450
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9160448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507628
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272668
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447336
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643797
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793770
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9170006
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8405597
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8711857
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9344072
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9379205
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9355502
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9307818
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402303
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859411
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9460939
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904770
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9626142
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8781246
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8822502
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522

Formal Verification of Blockchain Smart Contract Based on Colored Petri Net ModelsZ. Liu; J. Liu 2019 A smart contract is a computer protocol intended to digitally facilitate and enforce the negotiation of a contract in undependable environment. However, the number of attacks using the vulnerabilities of the smart contracts is also growing in recent years. Many solutions have been proposed in order to deal with them, such as documenting vulnerabilities or setting the security strategies. Among them, the most influential progress is made by the formal verification method. In this paper, we propose a formal verification method based on Colored Petri Nets (CPN) to verify smart contracts in blockchain system. First, we develop the smart contract models with possible attacker models based on hierarchical CPN modeling, then the smart contract models are executed by step-by-step simulation to validate their functional correctness, and finally we utilize the branch timing logic ASK-CTL based model checking technology in the CPN tools to detect latent vulnerabilities in smart contracts. We demonstrate that our CPN modeling based verification method can not only detect the logical vulnerabilities of the smart contract, but also consider the impacts of users behavior to find out potential non-logical vulnerabilities in the contracts, such as the vulnerabilities caused by the limitations of the Solidity language.10.1109/COMPSAC.2019.10265 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908blockchain, smart contract, formal verification, CPN IEEE Inglês
EADSA: Energy-Aware Distributed Sink Algorithm for Hotspot Problem in Wireless Sensor and Actor NetworksU. Draz; T. Ali; S. Yasin; U. Waqas; U. Rafiq 2019 The issue of hotspot occurs when the sink neighboring nodes drain more energy and become dead early. For a time being the whole network is isolated due to dying nodes and the overall lifetime of the network is decreased. Thus, the big challenge in WSANs systems is to prolong the lifetime of the network by solving the Hotspot problem. The lifetime of the network is directly based on the energy consumption of the network. Several challenges are associated with this problem like delays in the network, data packets losses, decrement of lifetime and throughput of the network. Therefore, its need to investigate the issue of Hotspot problem with the help of some energy aware technique. In this paper, the Energy-Aware Distributed Sink Algorithm is introduced to rescue the Hotspot issue in Wireless Sensors and Actors Network (WSANs). The proposed algorithm is formally analyzed with the help of Formal Methods based specification language. For the verification and validation of the proposed algorithm, the Vienna development Method Specification-Language Tool Box (VDM-SL) is used. Both the dynamic and static models are developed to ensure the correctness of the algorithm with some pre/post conditions, invariants, and attributes.10.1109/CEET1.2019.8711858 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8711858WSAN;Distributed Sink;Hotspot;Secondary Nodes;Dying Nodes;Verification & ValidationIEEE Inglês
Artifact of Bounded Exhaustive Search of Alloy Specification RepairsS. Gutiérrez Brida; G. Regis; G. Zheng; H. Bagheri; T. Nguyen; N. Aguirre; M. Frias2021 BeAFix is a tool and technique for automated repair of faulty models written in Alloy, a declarative formal specification language based on first-order relational logic. BeAFix takes a faulty Alloy model, i.e., an Alloy model with at least one analysis command whose result is contrary to the developer's expectation, and a set of suspicious specification locations, and explores the space of fix candidates consisting of all alternative expressions for the indicated locations, that can be constructed by bounded application of a family of mutation operations. BeAFix can work with any kind of specification oracle, from Alloy test cases to standard predicates and assertions typically found in Alloy specifications, and is backed with a number of sound pruning strategies, for efficient exploration of fix candidate search spaces.10.1109/ICSE-Companion52605.2021.00093 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585- IEEE Inglês
Automated Assertion Generation from Natural Language SpecificationsS. J. Frederiksen; J. Aromando; M. S. Hsiao 2020 We explore contemporary natural language processing (NLP) techniques for converting NL specifications found in design documents directly to an temporal logic-like intermediate representation (IR). Generally, attempts to use NLP for assertion generation have relied on restrictive sentence formats and grammars as well as being difficult to handle new sentence formats. We tackle these issues by first implementing a system that uses commonsense mappings to process input sentences into a normalized form. Then we use frame semantics to convert the normalized sentences into an IR based on the information and context contained in the Frames. Through this we are able to handle a large number of sentences from real datasheets allowing for complex formats using temporal conditions, property statements, and compound statements; all order agnostic. Our system can also be easy extended by modifying an external, rather than internal, commonsense knowledge-base to handle new sentence formats without requiring code changes or intimate knowledge of the algorithms used.10.1109/ITC44778.2020.9325264 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264NLP;Verification;Specification IEEE Inglês
Integration of a formal specification approach into CPPS engineering workflow for machinery validationB. Vogel-Heuser; C. Huber; S. Cha; B. Beckert2021 Cyber Physical Production Systems (CPPS) operate for a long time and face continuous and incremental changes to follow up varying requirements. Interdisciplinary engineering of CPPS is often subject to delay and cost overrun; and quality control may even fail due to the lack of efficient information exchange between multiple involved actors. We propose to integrate a formal requirement specification approach, namely Generalized Test Tables including tool support, into industrial workflows and present the approach through extended notations of Business Process Model and Notation (BPMN), namely BPMN++*, with the tool-coupling aspect. The suggested tooling enables automation engineers to follow the defined workflow systematically and communicate easier through the formally represented change requirement. The approach is demonstrated by two typical use cases of changing a CPPS’ control software and showing the result by means of an extended BPMN++ model exemplarily.10.1109/INDIN45523.2021.9557505 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505Engineering workflow;CSCW (Computer Supported Cooperative Work);Software development management;PLC programming;Control code;Formal specification;Information management;Test tablesIEEE Inglês
Test Case Generation Algorithms and Tools for Specifications in Natural LanguageY. Aoyama; T. Kuroiwa; N. Kushiro 2020 Nowadays, most consumer products are equipped with methods of network communications, and nondeterministic tests, which are originated from random message exchanges via the network, should be carried out. Therefore, the tests of the consumer products with network have obliged us to consume much time to design and conduct. For reducing the labor of designing test cases, algorithms and tools, which help test engineers to convert specifications written in a natural language into semiformal descriptions, and to generate test cases including deterministic and nondeterministic test cases as decision tables, are proposed in the paper. The algorithms and tools were applied to a tiny example for evaluation and confirmed that they have succeeded in generating test cases from documents in a natural language.10.1109/ICCE46568.2020.9043022 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9043022Consumer products with software product line engineering;Automatic test case generation for specification in natural languageIEEE Inglês
SMT-Based Consistency Checking of Configuration-Based Components SpecificationsL. Pandolfo; L. Pulina; S. Vuotto 2021 Cyber-Physical Systems (CPSs) are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. CPSs are widely used in many safety-critical domains, making it crucial to ensure that they operate safely without causing harm to people and the environment. Therefore, their design should be robust enough to deal with unexpected conditions and flexible to answer to the high scalability and complexity of systems. Nowadays, it is well-established that formal verification has a great potential in reinforcing safety of critical systems, but nevertheless its application in the development of industrial products may still be a challenging activity. In this paper, we describe an approach based on Satisfiability Modulo Theories (SMT) to formally verify, at the design stage, the consistency of the system design - expressed in a given domain-specific language, called QRML, which is specifically designed for CPSs - with respect to some given property constraints, with the purpose to reduce inconsistencies during the system development process. To this end, we propose an SMT-based approach for checking the consistency of configuration based-components specifications and we report the results of the experimental analysis using three different state-of-the-art SMT solvers. The main goal of the experimental analysis is to test the scalability of the selected SMT solvers and thus to determine which SMT solver is the best in checking the satisfiability of the properties.10.1109/ACCESS.2021.3085911 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129Design verification;application of formal methods;satisfiability modulo theoriesIEEE Inglês
Sim: A Contract-Based Programming Language for Safety-Critical SoftwareT. Benoit 2019 An important benefit of formal methods is the ability to unambiguously describe the requirements of a program and to provide evidence of the compliance of the software code with these requirements. However, formal analysis on programs written in languages that are used today in avionics can be challenging since these languages have features, such as pointers, that complicate program verification. So, to enable formal verification, one must limit the language to a subset and/or one must endure a considerable annotation overhead. This paper presents Sim, a new high-level programming language that is designed for the development and verification of safety-critical software. The Sim language has been designed so that only a small annotation overhead is needed and one can make extensive use of automatic verification tools. We show that in Sim 4 to 5 times fewer annotations are needed compared to programs written in VeriFast-C to prove equivalent properties. We additionally demonstrate that Sim is suitable as a language for avionics software development by implementing and verifying an elementary fly-by-wire application and deploying it on an STM32 microcontroller.10.1109/DASC43569.2019.9081681 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681contracts;semi-automatic verification;formal methods;programming language;safety-critical systemsIEEE Inglês
Verification of a Rule-Based Expert System by Using SAL Model CheckerM. U. Siregar; S. Abriani 2019 Verification of a rule-based expert system ensures that the knowledge base of the expert system is logically correct and consistent. Application of verification into a rule-based expert system is one approach to integrate software engineering methodology and knowledge base system. The expert system, which we has built, is a rule-based system developed by using forward chaining method and Dempster-Shafer theory of belief functions or evidence. We use Z language as the modelling language for this expert system and SAL model checker as the verification tool. To be able to use SAL model checker, Z2SAL will translate the Z specification, which models the system. In this paper, we present some parts of our Z specification that represent some parts of our rule-based expert system. We also present some parts of our SAL specification and theorems that we added to this SAL specification. At the last, we present the usage of SAL model checker over these theorems. Based on these model-checking processes, we argue that the results are expected. This means that each of theorems can be model checked and the outputs of those model checking are the same as the outputs that we obtain from manual investigation; either it is VALID or INVALID. Other interpretation of the model check's results is some parts of our rule-based expert system have been verified.10.1109/ICICoS48119.2019.8982426 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426verification;expert system;rule-based system;Z2SAL;SAL model checkerIEEE Inglês
DizSpec: Digitalization of Requirements Specification Documents to Automate Traceability and Impact AnalysisA. Rajbhoj; P. Nistala; V. Kulkarni; S. Soni; A. Pathan2022 Requirement engineering in many IT services industries continues to be a document-centric and heavily manual activity, relying on the expertise of business analysts. Requirement specification documents contain details of product features, process flows, activities, rules, parameters, etc. Intricate knowledge of dependencies between these specification elements is necessary for carrying out the effective evolution of the product over time. Today, Business Analysts (BA) are forced to recourse to keyword-based search across multiple requirement specification documents which is a time-, effort-and intellect-intensive endeavor, and vulnerable to the errors of omission and commission. To overcome these lacunae, we propose DizSpec, an automated approach for digitalizing the requirement specification documents into a model form through automatic extraction of specification model elements and the various dependencies between them. The proposed approach creates a digital thread providing machine-processable traceability from product features to its specification elements. It also provides an easy natural language querying mechanism to generate traceability and impact analysis reports of interest. In this paper, we describe the application of this approach to two real-world products thus bringing out its efficacy as well as lessons learned from this transformation journey of the document-centric process to a model-centric and automated process. Though the findings are shared in the specific context of two industry products, we believe, researchers, practitioners, and tool vendors will find the takeaways from this approach and experience applicable in other contexts too.10.1109/RE54965.2022.00030 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920016MDE;Meta-Modeling;Model Extraction;Dependency Extraction;AI in SDLC;NLP4RE;Traceability;Requirements Specification;Feature DependencyIEEE Inglês
KAIROS: Incremental Verification in High-Level Synthesis through Latency-Insensitive DesignL. Piccolboni; G. D. Guglielmo; L. P. Carloni 2019 High-level synthesis (HLS) improves design productivity by replacing cycle-accurate specifications with untimed or transaction-based specifications. Obtaining high-quality RTL implementations requires significant manual effort from designers, who must manipulate the code and evaluate different HLS-knob settings. These modifications can introduce bugs in the RTL implementations. We present KAIROS, a methodology for incremental formal verification in HLS. KAIROS verifies the equivalence of the RTL implementations the designer subsequently derives from the same specification by applying code manipulations and knobs.10.23919/FMCAD.2019.8894295 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295- IEEE Inglês
Work-in-Progress: Formal Analysis of Hybrid-Dynamic Timing Behaviors in Cyber-Physical SystemsL. Huang; E. Y. Kang 2019 Ensuring correctness of timed behaviors in cyber-physical systems (CPS) using closed-loop verification is challenging due to the hybrid dynamics in both systems and environments. Simulink and Stateflow are tools for model-based design that support a variety of mechanisms for modeling and analyzing hybrid dynamics of real-time embedded systems. In this paper, we present an SMT-based approach for formal analysis of the hybrid-dynamic timing behaviors of CPS modeled in Simulink blocks and Stateflow states (S/S). The hierarchically interconnected S/S are flattened and translated into the input language of SMT solver for formal verification. A translation algorithm is provided to facilitate the translation. Formal verification of timing constraints against the S/S models is reduced to the validity checking of the resulting SMT encodings. The applicability of our approach is demonstrated on an unmanned surface vessel case study.10.1109/RTSS46320.2019.00069 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141Cyber physical system;Simulink/Stateflow;dReal;Timing Constraints;Formal verificationIEEE Inglês
Teaching Design by Contract using Snap! M. Huisman; R. E. Monti 2021 With the progress in deductive program verification research, new tools and techniques have become available to support design-by-contract reasoning about non-trivial programs written in widely-used programming languages. However, deductive program verification remains an activity for experts, with ample experience in programming, specification and verification. We would like to change this situation, by developing program verification techniques that are available to a larger audience. In this paper, we present how we developed prototypal program verification support for Snap!. Snap! is a visual programming language, aiming in particular at high school students. We added specification language constructs in a similar visual style, designed to make the intended semantics clear from the look and feel of the specification constructs. We provide support both for static and dynamic verification of Snap! programs. Special attention is given to the error messaging, to make this as intuitive as possible.10.1109/SEENG53126.2021.00007 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640verification;software;education IEEE Inglês
Debugging and Verification Tools for Lingua Franca in Gemoc StudioJ. Deantoni; J. Cambeiro; S. Bateni; S. Lin; M. Lohstroh2021 LINGUA Franca (lf) is a polyglot coordination language designed for the composition of concurrent, time-sensitive, and potentially distributed reactive components called reactors. The LF coordination layer facilitates the use of target languages (e.g., C, C++, Python, TypeScript) to realize the program logic, where each target language requires a separate runtime implementation that must correctly implement the reactor semantics. Verifying the correctness of runtime implementations is not a trivial task, and is currently done on the basis of regression testing. To provide a more formal verification tool for existing and future target runtimes, as well as to help verify properties of LF programs, we recruit the use of GemocStudio-an Eclipse-based workbench for the development, integration, and use of heterogeneous executable modeling languages. We present an operational model for LF, realized in GEmocStudio, that is primed to interact with a rich set of analysis and verification tools. Our instrumentation provides the ability to navigate the execution of LF programs using an omniscient debugger with graphical model animation; to check assertions in particular execution runs, or exhaustively, using a model checker; and to validate or debug traces obtained from arbitrary LF runtime environments.10.1109/FDL53530.2021.9568383 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9568383- IEEE Inglês
Hierarchical Formal Modeling of Internet of Things System Oriented to User BehaviorL. Yu; Y. Lu; B. Zhang; L. Shi; F. Huang; Y. Li; Y. Shen2020 Ensuring the correctness and reliability of the Internet of Things system is the key to the advancement of the Internet of Things project. It is very necessary to fully inspect the Internet of Things system before it is actually deployed, so as to find the errors and defects in the system design as soon as possible and make improvements. Compared with conventional simulation and testing, the formal method has the advantages of low cost, short cycle and simple steps, which provides efficient support for the inspection and analysis of the Internet of Things system before deployment. Based on the stateful timed communication sequence process (STCSP), we consider the formal modeling framework for the Internet of things system from the perspective of external environment input and system architecture. We then propose a hierarchical formal modeling method for the Internet of things system oriented to user behavior. Taking the elderly home monitoring application scene as an example, as the input of the external environment, the user behavior and its implementation object are combined into a whole for modeling, so as to keep the two states in sync, restrict each other, and avoid unrealistic sequence of activities. From the perspectives of perception mode, communication mode, predefined rules and application services, we have completed the hierarchical modeling of the three-layer architecture of the Internet of Things system, that is, perception layer, middle layer and application layer. Finally, the model verification tool PAT analyzes and verifies the above model from the aspects of security, accessibility, and system consistency. This method provides scientific basis for the correctness inspection and reliability analysis of the Internet of Things system before deployment in the Internet of Things project.10.1109/SmartIoT49966.2020.00050 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003Internet of things system;Formal modeling;User behavior;STCSP;PAT;Home monitoring for the elderlyIEEE Inglês
A Model Query Language for Domain-Specific ModelsJ. Guo; J. Lu; J. Ding; G. Wang 2020 Model queries play a crucial role in the Model-driven development processes, particularly for Domain-Specific Modeling (DSM) and Model-based Systems Engineering (MBSE). The model queries are also regarded as the cornerstone for model-driven development activities, such as code generation, model transformation, and model constraints checking. The GOPPRR metamodeling approach is widely used to formalize the domain-specific models. Based on this approach, the KARMA language has been proposed to formalize models, metamodels, and code generation but lacks support for the model querying. This paper proposed one query language based on the GOPPRR metamodeling approach extended from the KARMA language to realize the unified query formalisms for multi-domain models. Finally, a case in a vehicle tracking system development is used to verify the availability of model query language, which is implemented in a domain modeling tool, MetaGraph. Keywords-Domain-Specific Language; model query language; model-driven development; Model-based Systems Engineering.10.1109/ICMCCE51767.2020.00266 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9421869Domain-Specific Language;model query language;model-driven development;Model-based Systems EngineeringIEEE Inglês
Automated Model-Based Test Case Generation for Web User Interfaces (WUI) From Interaction Flow Modeling Language (IFML) ModelsN. Yousaf; F. Azam; W. H. Butt; M. W. Anwar; M. Rashid2019 Since the emergence of web 2.0, the architecture of web applications has been transformed significantly and its complexity has grown enormously. In such web applications, the user interface (UI) is an important ingredient and with the increased complexity, its testing is getting increasingly complex and cost/time-consuming process. Recently introduced, interaction flow modeling language (IFML) is an object management group (OMG) standard. IFML is gaining popularity for developing web applications, primarily, because of its excellent features for modeling UI elements, their content, and their interaction capturing capabilities. However, despite its superior UI modeling features, its UI testing is accomplished through traditional time-consuming techniques, which are employed after implementing the UI code. Hence, to overcome these limitations, this paper introduces a novel model-based testing approach for IFML UI elements. The proposed approach provides complete navigation testing using formal models. Moreover, the approach transforms the IFML models to all necessary UI testing artifacts by generating state transition matrix plus detailed UI test case document. As a part of a research, model-based user interface test case (MBUITC) generator tool is implemented to automatically generate navigation model for formal verification, test case document, and transition matrices from IFML models. The applicability of the proposed approach is validated through two benchmark case studies. The results have shown that the proposed approach provides test cases at the early stages of development, i.e., specification and analysis, which eventually helps in building a right product at the right time at a comparatively lower cost.10.1109/ACCESS.2019.2917674 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593Formal verification;IFML;MBT;model-based testing;UI;web applications;WUIIEEE Inglês
Documentation-based functional constraint generation for library methodsR. Jiang; Z. Chen; Y. Pei; M. Pan; T. Zhang; X. Li2022 Although software libraries promote code reuse and facilitate software development, they increase the complexity of programme analysis tasks. To effectively analyse programmes built on top of software libraries, it is essential to have specifications for the library methods that can be easily processed by analysis tools. However, the availability of such specifications is seriously limited at the moment. Manually writing the specifications can be prohibitively expensive and error-prone, while existing automated approaches to inferring the specifications seldom produce results that are strong enough to be used in programme analysis. In this work, we propose the DOC2SMT approach to generating strong functional constraints in SMT for library methods based on their documentations. DOC2SMT first applies natural language processing (NLP) techniques and a set of rules to translate a method's natural language documentation into a large number of candidate constraint clauses in OCL. Then, it utilises a manually enhanced domain model to identify OCL candidate constraint clauses that comply with the problem domain in static validation, translates well-formed OCL constraints into the SMT-LIB format, and checks whether each 5MB-LIB constraint rightly abstracts the functionalities of the method under consideration via testing in dynamic validation. In the end, it reports the first functional constraint that survives both validations to the user as the result. We have implemented the approach into a supporting tool with the same name. In experiments conducted on 451 methods from the Java Collections Framework and the Java IO library, DOC2SMT generated correct constraints for 309 methods, with the average generation time for each correct constraint being merely 2.7 min. We have also applied the generated constraints to facilitate symbolic-execution-based test generation with the Symbolic Java PathFinder (SPF) tool. For 24 utility methods manipulating Java container and IO objects, SPF with access to the generated constraints produced 51.2 times more test cases than SPF without the access.10.1109/ICST53961.2022.00056 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888documentation analysis;domain model;OCL;SMT;specification generationIEEE Inglês
Executable Test Case Generation from Specifications Written in Natural Language and Test Execution EnvironmentY. Aoyama; T. Kuroiwa; N. Kushiro 2021 The Software Product Line Engineering (SPLE) realizes various products, reusing software parts, whereas issues remain in test case design and execution. Test cases are conventionally designed by a manual routine from specifications written in a natural language, and the routine and redesign of the test cases caused by the defects in the specification require much human time. Also, functions of recent consumer products are invoked in non-deterministic order by messages sent over a network, and combinations of software parts and execution orders require many regression tests, which are time-consuming and often infeasible to execute manually due to limited development time. Against the above issues, we introduce a test design process for specifications written in natural language, support tools for the process, and a test execution environment that automatically executes the non-deterministic tests to reduce the human time of both test case design and execution. Case studies confirmed that the proposing process automated the manual routine, removed defects in a specification, and generated test cases. The case studies also showed that the test execution environment automatically executed the non-deterministic tests for an HVAC system developed with the SPLE. Finally, we confirmed that the proposing methods shortened the human time of design and execution of tests.10.1109/CCNC49032.2021.9369549 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9369549test case generation;semi-formal description;test execution environmentIEEE Inglês
Behaviour-Driven Formal Model Development of the ETCS Hybrid Level 3M. Butler; D. Dghaym; T. S. Hoang; T. Omitola; C. Snook; A. Fellner; R. Schlick; T. Tarrach; T. Fischer; P. Tummeltshammer2019 Behaviour driven formal model development (BDFMD) enables domain engineers to influence and validate mathematically precise and verified specifications. In previous work we proposed a process where manually authored scenarios are used initially to support the requirements and help the modeller. The same scenarios are used to verify behavioural properties of the model. The model is then mutated to automatically generate scenarios that have a more complete coverage than the manual ones. These automatically generated scenarios are used to animate the model in a final acceptance stage. In this paper, we discuss lessons learned from applying this BDFMD process to a real-life specification: The European Train Control Systems (ETCS) Hybrid Level 3. During the case study, we have developed our understanding of the process, modifying the way we do some stages and developing improved tool support to make the process more efficient. We discuss (1) the need for abstract scenarios during incremental model development and verification, (2) tools and techniques developed to make the running of scenarios more efficient, and (3) improvements to tools that generate new test cases to improve coverage.10.1109/ICECCS.2019.00018 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882769Event-B, UML-B, MoMuT, BDFMD, Scenario, ETCS Hybrid Level 3IEEE Inglês
A Framework for Verification-Oriented User-Friendly Network Function ModelingG. Marchetto; R. Sisto; F. Valenza; J. Yusupov2019 Network virtualization and softwarization will serve as a new way to implement new services, increases network functionality and flexibility. However, the increasing complexity of the services and the management of very large scale environments drastically complicate detecting alerts and configuration errors of the network components. Nowadays, misconfigurations can be identified using formal analysis of network components for compliance with network requirements. Unfortunately, formal specification of network services requires familiarity with discrete mathematical modeling languages of verification tools, which requires extensive training for network engineers to have the essential knowledge. This paper addresses the above-mentioned problem by presenting a framework designed for automatically extracting verification models starting from an abstract representation of a given network function. Using guidelines provided in this paper, vendors can describe the forwarding behavior of their network function in developer-friendly, high-level languages, which can be then translated into formal verification models of different verification tools.10.1109/ACCESS.2019.2929325 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301Network function modeling;model extraction;NFV IEEE Inglês
Towards a Simplified Evaluation of Graphical DSL WorkbenchesA. Dembri; M. Redjimi 2022 The design and development of graphical tools for new domain-specific languages is still a challenge for designers; the Model-Driven Architecture (MDA) makes a qualitative difference in the creation of Domain Specific Language (DSL). We aim in this paper to analyze and evaluate the performance of some language workbenches that makes the development of domain-specific language simpler and more specialised. To evaluate these tools, a formal specification of a Petri net called Agent Petri Net is selected. We analyze criteria related to abstraction level, facilities to tailor DSL to specific domains, simplicity of development and the productivity guarantee with these tools. Practical experience highlights the real capabilities of each tool and considers as an evaluation support to select the adequate solution to design DSL that responds to user requirements.10.1109/ISIA55826.2022.9993580 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580MDA;DSL;Language workbenches;evaluation;graphical modelling framework;Cinco;SiriusIEEE Inglês
Verification of SDRAM controller using SystemVerilogV. Vutukuri; V. B. Adusumilli; P. K. Uppu; S. Varsa; R. K. Thummala2020 Synchronous DRAM (SDRAM) has become memory of choice for desktop computers, laptops and embedded systems due to its significant features like high speed, burst access..etc. As SDRAM has many phases of operation like write phase, burst phase, active phase, precharge phase there is need for a memory controller to manage the memory. The main purpose of the SDRAM controller is to refresh the SDRAM cells periodically and control the flow of data to/from SDRAM. Efficient design and verification of the SDRAM controller is required to minimize the memory access latency and ensure the correct operation of SDRAM. In this paper we have verified the SDRAM controller using SystemVerilog test bench architecture. Our model has verified the SDRAM controller against most of the test cases provided by the specification sheet and also achieved 100 percent code coverage. The design was verified using Modelsim SE-64 10.5.10.1109/CONECCT50063.2020.9198440 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9198440SDRAM controller;verification;SystemVerilog IEEE Inglês
Model Checking the Multi-Formalism Language FIGAROS. Khan; M. Volk; J. -P. Katoen; A. Braibant; M. Bouissou2021 This paper presents a probabilistic model-checking tool for FIGARO, a multi-formalism modelling language that includes e.g., generalised stochastic Petri nets, Boolean-logic driven Markov processes, telecommunication networks, dynamic reliability block diagrams, process diagrams, and electric circuits. FIGARO has been developed and maintained by EDF for the analysis of system dependability such as reliability, availability and maintainability. We present a probabilistic model-checking tool for FIGARO models. It combines efficient, fully automated verification algorithms with numerical analysis techniques. Whereas the existing FIGARO tools, the Monte Carlo simulator YAMS and the most-probable-sequence explorer FiGSEQ, provide respectively statistical guarantees and upper bounds for unreliability and unavailability, our tool provides hard guarantees: its results are correct up to a given numerical accuracy. The key ingredient is the tool-component FiGAROAPI that enables the state-space generation for FIGARO models thus facilitating model checking. This paper describes the details of FiGAROAPI and empirically evaluates the feasibility and merits of the proposed framework. FiGAROAPI leverages upon the state-of-the-art STORM model checker as back-end, and it can model check various types of formalism in their FIGARO representation.10.1109/DSN48987.2021.00056 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505095Model checking;Figaro;Dependability;Reliability;Formal Methods IEEE Inglês
A Model Checkable UML Soccer Player V. Besnard; C. Teodorov; F. Jouault; M. Brun; P. Dhaussy2019 This paper presents a UML implementation of the MDETools'19 challenge problem with EMI (our Embedded/Experimental Model Interpreter). EMI is a model interpreter that can be used to execute, simulate, and formally verify UML models on host or embedded targets. The tool's main specificity relies on a single implementation of the language semantics such that consistency is ensured between all development phases: from design to verification and execution activities. Using this approach, we have succeeded in (i) designing a UML model for the challenge problem, (ii) applying formal verification using model-checking on the design model, and (iii) executing this model in order to participate in the challenge.10.1109/MODELS-C.2019.00035 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904603UML;Model-Driven Engineering;Tool IEEE Inglês
A Model Based Safety Analysis Framework for SysML and A Case StudyJ. Hu; H. Tang; J. Kang; H. Wang 2019 Model Based Safety Analysis (MBSA) techniques can improve our modeling and analysis capabilities for today's complex safety-critical system designs. SysML is a kind of informal system functional modeling language widely used in industry and AltaRica is a formal modeling language for system safety analysis. This paper provides a MBSA framework and a prototype tool for SysML oriented system design and safety ananlysis, which including: we firstly extend SysML model elements to describe system fault events and behaviors by using profile definition mechanism, then some mapping rules between SysML design models and AltaRica analysis models are established based on the consideration of model semantics. Therefore, we can design a framework and algorithms to implement an automatic conversion of those two modeling languages Finally, a case study shows how to modeling and analyze a typical wheel brake system which included in the SAE-AIR6110 standard by using a prototype tool.10.1109/EITCE47263.2019.9094927 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9094927Model Based Safety Analysis;SysML;AltaRica;prototype tool;wheel brake systemIEEE Inglês
An Educational Case Study of Using SysML and TTool for Unmanned Aerial Vehicles DesignL. Apvrille; P. de Saqui-Sannes; R. Vingerhoeds2020 This article shares an experience in using the systems modeling language (SysML) for the design and formal verification of unmanned aerial vehicles (UAVs). In particular, this article shows how our approach helps detecting early design errors. A UAV in charge of taking pictures serves as an educational and running example throughout this article. The SysML model of the UAV is simulated and formally verified using the free and open-source tool named TTool. This educational case study gives the authors of this article an opportunity to draw lessons from teaching SysML.10.1109/JMASS.2020.3013325 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801Educational case study;model formal verification;model simulation;systems modeling language (SysML);unmanned aerial vehicle (UAV)IEEE Inglês
An Automatic Transformation Method from AADL Reliability Model to CTMCC. Yuan; K. Wu; G. Chen; Y. Mo 2021 AADL is a semi-formal architecture modeling language for the embedded field. Continuous Time Markov Chain (CTMC) is a formal model for reliability evaluation. In the process of quantitatively evaluating the reliability of embedded software, the AADL model needs to be transformed to the CTMC model, but the semantic gap between AADL and CTMC is too large to be directly transformed. This paper proposes a transformation method, which transforms AADL into PRISM- CTMC, a CTMC model described in PRISM language. This method uses PRISM as an intermediate language to reduce the difficulty of transformation between AADL and CTMC. This paper implements a transformation tool based on this method and evaluates the reliability of the flight control system (FCS) with the aid of the PRISM model checking tool, which verifies the effectiveness of the transformation method.10.1109/ICICSE52190.2021.9404135 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404135AADL;CTMC;PRISM;model transformation;reliability IEEE Inglês
Applying Model-Based Systems Engineering to the Development of a Test and Evaluation Tool for Unmanned Autonomous SystemsS. Gebreyohannes; A. Karimoddini; A. Homaifar2020 In this paper, we apply the Model-Based Systems Engineering (MBSE) concepts and approaches to the early phases of the development of a Test & Evaluation (T&E) tool for Unmanned Autonomous Systems (UASs). This helps meet the design requirements and maintain traceability (of design requirements and decisions for satisfying stakeholder's needs). UAS development is driving toward increasing levels of autonomy for unmanned systems. The dynamic, non-deterministic behavior of intelligent autonomous systems presents the testers with a significant challenge. The ability to predict the behavior and evaluate performance of increasingly intelligent systems, especially those that employ vision-based behaviors, is seen as a critical T&E shortfall. To address this challenge, we propose, in this paper, to use a high-fidelity simulation environment. This can significantly aid in the evaluation of UAS behaviors and their perception mechanisms. Such a high-fidelity simulator enables the testes to safely conduct a wide variety of mission scenarios to test an autonomous system by providing truth data to compare with the UAS's perceptions. A major challenge here is to manage the system modeling complexity and maintain traceability of design decisions made at each level of the development to meet stakeholder's needs. In this paper, we follow MBSE methodology and use Systems Modeling Language (SysML - a domain-specific modeling language for systems engineering used to specify, analyze, design, optimize, and verify systems) to establish a systematic framework for designing a T&E tool for UASs and to transform stakeholder's needs into design requirements to maintain traceability.10.1109/SysCon47679.2020.9275894 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275894Test & Evaluation;Model-Based Systems Engineering;Unmanned Autonomous SystemsIEEE Inglês
A Temporal Requirements Language for Deductive Verification of Process-Oriented ProgramsI. Chernenko; I. S. Anureev; N. O. Garanina; S. M. Staroletov2022 The requirements engineering process is primarily useful for complex software that controls industrial processes. Requirements for control software suppose a description of the change in input and output signals over time, which encourages the elaborations of temporal requirements. A verification method that allows one to obtain a certified proof of system operation correctness against given requirements is the theorem proving or deductive verification. At the same time, the process of deductive verification should take into account both the specifics of models of control programs and the requirements for them. While models of control programs can be obtained from domain-oriented languages, it is also expedient to develop a language for requirements. The present paper introduces a predicative domain-specific language for definition of temporal requirements intended to be used with deductive verification tools. It focuses on specification of requirements for control software written in process-oriented languages. Moreover, we propose to use special patterns to describe a wide range of such requirements. We discuss a benchmark of ten case studies and the requirements for them which are linked to these patterns. The results can be used for building automatic verification systems for industrial control software.10.1109/EDM55285.2022.9855145 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145deductive verification;temporal requirements;formal methods;control software;process-oriented programsIEEE Inglês
Towards Platform Specific Energy Estimation for Executable Domain-Specific Modeling LanguagesT. Beziers la Fosse; M. Tisi; E. Bousse; J. -M. Mottu; G. Sunye2019 Energy consumption is becoming a major subject when designing, developing and running programs. Most developers code and run their applications in an energy oblivious manner, mostly because of a lack of energy-related knowledge about their system. This problem also exists in the realm of executable domain-specific modeling languages, where end-users create models conforming to a given meta-model and execute them with little knowledge about their operational semantic and related energy consumption. In this work, we propose a domain-specific language for decorating meta-models of executable languages with platform-specific energy estimation formulas. We also extend the GEMOC execution engine to dynamically perform energy estimations on any executable model conforming to the decorated meta-model. The energy estimation model defined can then be easily adapted to other models and platforms, without requiring any measurement tooling or knowledge from the end-user.10.1109/MODELS-C.2019.00048 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904596Model-Driven Engineering;xDSMLs;Energy Estimation IEEE Inglês
Survey and Consistency Checking of Formal Requirements AnimationsC. Ponsard; J. -C. Deprez 2021 Formal requirements are written in mathematical language enabling powerful verification but are complex to validate by domain end-users or stakeholders. Requirements animations answer this problem by providing techniques to explore system traces and interact with them using domain specific graphical views and controls. Most formal tools include features to ease the development of such animations for different formal notations. However, to be sound, animations require to be carefully designed. This paper analyses major animation frameworks for system design in order to clearly identify their validation scope and purpose. Based on this, it identifies and discusses a number of checks to make sure an animation is well-designed. Different case studies are used as illustrative support.10.1109/REW53955.2021.00064 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582284Requirements engineering;validation;animation;formal requirements;Event-B;KAOS;LTS;VDMIEEE Inglês
Using tabular notation to support model based testing: A practical experience using STTSpec and Spec ExplorerR. Kherrazi 2020 Finite state machines are a widely used concept for specifying the behavior of reactive systems for development as well as for testing purpose. Numerous graphical notations based on finite state machines have been developed and are commonly used today, such as state transition diagrams, state charts, and Unified Modeling Language (UML) state machine diagrams. While not as widely used, tabular notations for state machine-based specifications offer complementary advantages to diagrammatic notations. In this article, we describe an approach using tabular notations for state machine-based specifications in Model Based Testing and we evaluate these approaches using Spec Explorer from Microsoft. We developed a tool, called STTSpec, to convert tabular notation from an Excel sheet to the C# input models of Spec Explorer, allowing us to do functional testing with the benefit of simplicity of tabular notation. We demonstrate this by applying our approach to an industrial-size case study.10.1109/ICSTW50294.2020.00021 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719State Machine Diagrams;Tabular Notation;State Transition Table (STT);Excel Sheet;Model Based Testing (MBT);Spec Explorer;STTSpecIEEE Inglês
Formal Verification of SDN-Based Firewalls by Using TLA+Y. -M. Kim; M. Kang 2020 Software-defined networking (SDN) has generated increased interest due to the rapid growth in the amount of data generated by the development of the Internet and communications, the commercialization of 5G, and increasingly complex networks. While SDN is more advantageous than traditional networks in terms of efficient network management, rapid deployment, and dynamic scalability, the correctness of a network configuration must be ensured in advance. In other words, SDN components such as network devices, SDN controllers, and applications need to be deployed correctly and must be free of rule conflicts, particularly between various application policies; otherwise, it may result in network paralysis in the worst case. This paper assumes that the SDN network is free of rule conflicts when the rules in the SDN switches correctly obey firewall application or policies. To solve this problem, this paper proposes a verification framework for SDN using TLA+. We show that the firewall rule behavior of switches can be formalized using TLA+, and this is verified with the TLC model checker that uses TLA+ as the model description language. We check two different types of topology models through our verification framework to ensure that the same firewall rules are maintained even if the topology changes. The findings show that the firewall rules may be inconsistent as the topology changes.10.1109/ACCESS.2020.2979894 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323Firewall;formal methods;software-defined networking;TLA+ IEEE Inglês
A Lightweight Framework for Regular Expression VerificationX. Liu; Y. Jiang; D. Wu 2019 Regular expressions and finite state automata have been widely used in programs for pattern searching and string matching. Unfortunately, despite the popularity, regular expressions are difficult to understand and verify even for experienced programmers. Conventional testing techniques remain a challenge as large regular expressions are constantly used for security purposes such as input validation and network intrusion detection. In this paper, we present a lightweight verification framework for regular expressions. In this framework, instead of a large number of test cases, it takes in requirements in natural language descriptions to automatically synthesize formal specifications. By checking the equivalence between the synthesized specifications and target regular expressions, errors will be detected and counterexamples will be reported. We have built a web application prototype and demonstrated its usability with two case studies.10.1109/HASE.2019.00011 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038regular expression;verification;natural language;formal specification;domain-specific languageIEEE Inglês
AWSCPM: A Framework For Automation Of Web Services Composition ProcessesN. Adadi; M. Berrada; D. Chenouni; M. Halim 2019 A growing number of companies are using web services to make their expertise and data available through the network. The current problem is the integration of these services in order to implement inter-company collaboration. Research organizations and industrialists are trying to find an adequate solution to achieve this task called services composition. The development of composite services using the Models Driven Approach (MDA) principles is as follows: The developer specifies the composition scenario using a modeling language. Once the specification is complete, it is usually formally validated before proceeding with the implementation of the new composite service. In this paper we present a summary of our developed approach of web services composition based on MDA, and using different languages and systems, like Multi-Agent Reactive Decisional system (MARDS) for the modeling task, LOTOS language for formal verification, and BPEL language for implementation. In order to automate these processes of web services composition approach, we have developed as part of this research the framework AWSCPM "Automatic Web Services Composition Process based on MARDS".10.1109/CMT.2019.8931389 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8931389Web services composition;framework AWSCPM;MARDS;BPEL languageIEEE Inglês
Speed up the validation process by formal veerification methodR. M. Sarikhada; P. K Shah 2020 Formal verification (FV) has been widely accepted as a verification approach for catching corner logic design issues, it also fastens the verification process of any subsystem. Usage of formal verification for any RTL verification is an easy task compared to the traditional simulation method. In this paper, we discuss the approaches of verifying a DUT by formal verification method, and how it will reduce the time of the overall verification cycle. In addition to that, I'll also discuss the flow of verification to test any DUT under the formal verification method. In this test case, I used an assertion-based verification methodology to test the DUT and compare it with traditional simulation-based verification methodology.10.1109/INOCON50539.2020.9298384 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384Formal Verification;Assertion based verification;system verilog assertionIEEE Inglês
Verification and Validation Approaches for Model-Based Software EngineeringJ. Schumann; K. Goseva-Popstojanova 2019 Model-based Software Engineering (MBSwE) and the use of automatic code generation has become popular for safety-critical aerospace applications. For these applications, verification and validation (V&V) is of utmost importance. With models as another layer of artifacts, however, V&V can become more complex in general, as V&V tasks can be carried out at the model level or at the code level. In this short paper, we present a V&V architecture specifically designed for MBSwE, which reflects the interrelationships between the different levels, tasks and tools, and which aims to provide a clear picture on the V&V approaches for MBSwE. We illustrate the architecture with a detailed analysis of two NASA missions and discuss their approaches to model use and understanding, automatic code generation, V&V, and model synchronization.10.1109/MODELS-C.2019.00080 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904785Model-based Software Engineering, V&V, automatic code generationIEEE Inglês
Semi-Automated Classification of Arabic User Requirements into Functional and Non-Functional Requirements using NLP ToolsK. Shehadeh; N. Arman; F. Khamayseh 2021 Functional and non-functional requirements are equally important in software engineering. Both of them are mixed together within the same software requirement document. Usually, they are expressed in natural languages. So, a lot of human effort is required to classify them. Software requirements classification is a challenging task. Requirements classification can help developers to deliver quality software that meets users' expectations completely. In this paper, we present a Semi-Automated classification approach of Arabic functional and non-functional requirements using a natural language processing (NLP) tool. We propose a set of heuristics based on basic constructs of Arabic sentences in order to extract information from Arabic software requirements to classify the requirements into functional and non-functional requirements. This research aims to help software engineers by reducing the cost and time required in performing manual classification of software requirements.10.1109/ICIT52682.2021.9491698 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9491698Requirements Classification;Automated Software Engineering;NLP Tools;Functional Requirements;Non-Functional RequirementsIEEE Inglês
Model-based Systems Engineering Supporting Cost Analysis of Aircraft Development ProcessH. Wang; S. Zhu; J. Tang; J. Lu; J. Wu; D. Kiritsis2021 In the fact of increasing complexity of aircraft development programs, development processes of aircraft and their subsystems are continuously becoming complicated which leads to the growing risks of development cost across the entire lifecycle. In this paper, we propose a model-based systems engineering approach to support process modeling of aircraft development using a multi-architecture modeling language KARMA. At the same time, property verification and hybrid automata simulation are used implement the static cost analysis of each work task and dynamic cost analysis of the entire development process. Finally through one case study, a system-level aircraft development process ”V model” is created which cost analysis is implemented by the KARMA language. From the result, we find the KARMA language enables to integrate process modeling with static analysis and dynamic analysis of development process in a multi-architecture modeling tool MetaGraph.10.1109/ISSE51541.2021.9582507 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582507Model-based Systems Engineering;Cost analysis;Development process;KARMA lanaguageIEEE Inglês
Assertion-Based Verification through Binary InstrumentationE. Brignon; L. Pierre 2019 Verifying the correctness and the reliability of C or C++ embedded software is a crucial issue. To alleviate this verification process, we advocate runtime assertion-based verification of formal properties. Such logic and temporal properties can be specified using the IEEE standard PSL (Property Specification Language) and automatically translated into software assertion checkers. A major issue is the instrumentation of the embedded program so that those assertion checkers will be triggered upon specific events during execution. This paper presents an automatic instrumentation solution for object files, which enables such an event-driven property evaluation. It also reports experimental results for different kinds of applications and properties.10.23919/DATE.2019.8715117 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715117- IEEE Inglês
Security Analysis of a System-on-Chip Using Assertion-Based VerificationP. Bhamidipati; S. M. Achyutha; R. Vemuri 2021 Current systems-on-chip designs contain multiple cores which perform a variety of processing, storage, and communication functions. Complexity of interactions among the cores and of the cores themselves introduce potential security vulnerabilities which can be exploited by malicious actors to mount a variety of attacks. Hence, it is essential to develop appropriate security policies to mitigate the vulnerabilities. In addition, these security policies should be formally specified and the design should be statically verified for security assurance prior to fabrication. In this paper, we show how a catalog of vulnerabilities can be used to develop mitigating security policies for a set of cores in a system-on-chip. We show how temporal logic assertions can be used to formally specify the security policies, parameterized using formal signal names. Given a specific target architecture, these parameterized assertions can be instantiated with actual signal names and verified using a formal verification tool. We demonstrate the application of this process to an OpenRISC-1200 based system-on-chip design written in Verilog. Security policies are specified as SystemVerilog Assertions and verified using Cadence JasperGold™. Three design errors ad-versely effecting the security policies are uncovered in the design.10.1109/MWSCAS47672.2021.9531916 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9531916System-on-Chip;SoC Vulnerabilities;Security analysis;Assertion-Based Verification;OpenRISC-1200 SoC;Sys-temVerilog AssertionsIEEE Inglês
CROME: Contract-Based Robotic Mission SpecificationP. Mallozzi; P. Nuzzo; P. Pelliccione; G. Schneider2020 We address the problem of automatically constructing a formal robotic mission specification in a logic language with precise semantics starting from an informal description of the mission requirements. We present CROME (Contract-based RObotic Mission spEcification), a framework that allows capturing mission requirements in terms of goals by using specification patterns, and automatically building linear temporal logic mission specifications conforming with the requirements. CROME leverages a new formal model, termed Contract-based Goal Graph (CGG), which enables organizing the requirements in a modular way with a rigorous compositional semantics. By relying on the CGG, it is then possible to automatically: i) check the feasibility of the overall mission, ii) further refine it from a library of pre-defined goals, and iii) synthesize multiple controllers that implement different parts of the mission at different abstraction levels, when the specification is realizable. If the overall mission is not realizable, CROME identifies mission scenarios, i.e., sub-missions that can be realizable. We illustrate the effectiveness of our methodology and supporting tool on a case study.10.1109/MEMOCODE51338.2020.9315065 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065- IEEE Inglês
Automatic Extraction of Analysis Class Diagrams from Use CasesM. -H. Chu; D. -H. Dang 2020 At the early phase of software development, functional requirements of the software often need to be represented in the developer's language, resulting in a so-called analysis model. Current works in literature aim to increase automation in software development by either generating automatically the analysis model from a use case specification or transforming the analysis model to a design model. However, up to now, to precisely specify use cases is still a challenge, preventing us from realizing this aim. This paper proposes a method to extract analysis classes from a use case specification. Within our method, use cases are represented using our domain-specific modeling language named USL. We then define algorithms with transformation rules as a representation of analysis patterns in order to extract analysis classes from the USL use case model. We develop a support tool for our method in which transformation rules are realized using the ATL model-to-model transformation technique.10.1109/KSE50997.2020.9287702 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9287702Use Case Specification;Model Transformation;Analysis Model;UML/OCLIEEE Inglês
Automated Requirements Formalisation for Agile MDEK. Lano; S. Yassipour-Tehrani; M. A. Umar 2021 Model-driven engineering (MDE) of software systems from precise specifications has become established as an important approach for rigorous software development. However, the use of MDE requires specialised skills and tools, which has limited its adoption.In this paper we describe techniques for automating the derivation of software specifications from requirements statements, in order to reduce the effort required in creating MDE specifications, and hence to improve the usability and agility of MDE. Natural language processing (NLP) and Machine learning (ML) are used to recognise the required data and behaviour elements of systems from textual and graphical documents, and formal specification models of the systems are created. These specifications can then be used as the basis of manual software development, or as the starting point for automated software production using MDE.10.1109/MODELS-C53483.2021.00030 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643614Requirements formalisation;Model-driven engineering;Agile developmentIEEE Inglês
SHML: Stochastic Hybrid Modeling Language for CPS BehaviorD. Du; T. Guo; Y. Wang 2019 Cyber-Physical Systems (CPS) connect the cyberworld with physical world with a network of interrelated el-ements, such as sensors and actuators. It is always runningin an open environment and the main characteristics of CPSis hybrid and stochastic. Domain-Specific Modeling Language(DSML) offers a tailor-made solution for modeling a specific field. However, there still lacks of DSML to model hybrid and stochasticbehavior in CPS. To address these issues, we propose a StochasticHybrid Modeling Language (SHML) based on domain modellanguage engineering, which supports modeling stochastic andhybrid behaviors in CPS. The abstract syntax, concrete syntax, and operational semantics of SHML are presented. The SHMLis implemented based on the GEMOC studio. With the help ofthe GEMOC execution engine and the Scilab plugin, the SHMLmodels can be executed to generate simulation traces of thesystem. These traces are fed into a statistical model checker whichsupports simulation-based verification to enable the qualitativeand quantitative analysis. The novelty of our work is that aDSML is proposed to model the behavior of CPS. Moreover, the tool prototype is implemented based on the model-drivenarchitecture. We illustrate the feasibility of our approach withan energy-aware building.10.1109/APSEC48747.2019.00038 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945607Cyber physical Systems, Model-driven engineering, Domain modeling language, GEMOC studio, Statisticalmodel checkingIIEEE Inglês
Automated Goal Model Extraction from User Stories Using NLPT. Güneş; F. B. Aydemir 2020 User stories are commonly used to capture user needs in agile methods due to their ease of learning and understanding. Yet, the simple structure of user stories prevents us from capturing relations among them. Such relations help the developers to better understand and structure the backlog items derived from the user stories. One solution to this problem is to build goal models that provide explicit relations among goals but require time and effort to build. This paper presents a pipeline to automatically generate a goal model from a set of user stories by applying natural language processing (NLP) techniques and our initial heuristics to build realistic goal models. We first parse and identify the dependencies in the user stories, and store the results in a graph database to maintain the relations among the roles, actions, and objects mentioned in the set of user stories. By applying NLP techniques and several heuristics, we generate goal models that resemble human-built models. Automatically generating models significantly decreases the time spent on this tedious task. Our research agenda includes calculating the similarity between the automatically generated models and the expert-built models. Our overarching research goals are to provide i. an NLP-powered framework that generates goal models from a set of user stories, ii. several heuristics to generate goal models that resemble human-built models, and iii. a repository that includes sets of user stories, with corresponding human-built and automatically generated goal models.10.1109/RE48521.2020.00052 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185natural language processing;requirements engineering;model driven development;user stories;agile development;goal modelsIEEE Inglês
Unified Rational Process: Document Manager Case StudyB. I. P. Cadena; F. J. Bazán; C. O. del Carmen; V. E. Mena; J. Pérez; C. Santiago; G. Rubín2021 RUP captures the best practices of modern software development, applies to a wide range of software projects and organizations, provides us with guidance on how to use UML effectively, and provides access to a knowledge base with guides, templates, and tools. for all critical development activities. Requirements management is done through use case diagrams and visual modeling, which allows for product quality verification. In accordance with the above, it is implemented in the case study of the document version management system to generate a robust architecture through UML modeling.10.1109/ENC53357.2021.9534792 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534792Software Engineering;RUP Methodology;Document Manager System;UML modeling;Projects;RequirementsIEEE Inglês
RBML: A Refined Behavior Modeling Language for Safety-Critical Hybrid SystemsZ. Chen; J. Liu; X. Ding; M. Zhang 2019 As a widely used modeling language, AADL (Architecture Analysis and Design Language) plays an important role in designing safety-critical systems. It provides abundant components for describing system architecture and supports the early prediction and repetitive analysis of performance-critical attributes. However, the approach used by AADL to describe the system behavior is based mainly on automata theory; thus, encountering the state space explosion problem when modeling and verifying large and complex systems is inevitable. Furthermore, due to the lack of means to describe the behavior details, it is also difficult for AADL to support the accurate analysis and verification of functional and non-functional requirements. In this paper, we propose a language called RBML that supports refined behavior modeling to compensate for the behavior modeling and verification deficiencies of AADL. This new language is based on AADL but extends the ability to detail various behaviors and allows SMT (Satisfiability Modulo Theories) solvers to verify the constructed refined behavior model, thus alleviating the state space explosion problem to some extent. Experiments on Baidu Apollo are presented to demonstrate the feasibility of our proposed approach.10.1109/APSEC48747.2019.00053 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945618AADL, Behavior Modeling, Verification, SMT solver, Safety critical Hybrid SystemIEEE Inglês
A Method to Ensure Compliance with Attribute and Role Based Access Control Policy for Executing BPMN ModelsD. -H. Nguyen; V. -V. Le; T. -H. Nguyen; D. -H. Dang2021 The stringent control of access rights during business processes execution is an important technique to ensure systems security. Business processes are often designed and operated based on models represented by domain-specific languages, such as BPMN. Moreover, access control policies are often studied and specified based on access control models, such as Role-based Access Control (RBAC) and Attribute-based Access Control (ABAC). These security techniques have several challenges that need to be addressed, such as (1) ensuring consistency of RBAC/ABAC policy specifications and (2) ensuring compliance with RBAC/ABAC policies when executing a business process. In this paper, we propose using a metamodeling technique to take advantage of UML and OCL’s expressive power in order to facilitate validation and verification of RBAC/ABAC policies. Within our approach, the RBAC metamodel is extended so that ABAC constraints for complex business rules could be captured and checked. We build a support tool by incorporating Activiti (the support tool for specifying and implementing BPMN models) with USE (UML-based Specification Environment). The proposed method is experimented and evaluated for the process of liquidating the individual teaching contracts of a training management system.10.1109/ICSSE52999.2021.9538430 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9538430Business Rules;RBAC – Role Based Access Control;ABAC – Attribute Based Access Control;BPMN - Business Process Model and Notation;UML/OCL - Unified Modeling Language/Object Constraint LanguageIEEE Inglês
Design and Implementation of SysML Activity Diagram Simulation Function Based on fUML SpecificationB. Huang; Y. Liu; X. Wu; J. Lv; Y. Liu 2022 With the rapid development of computer science and technology, Model-Based Systems Engineering (MBSE) has been widely used in the field of system design and simulation, gradually replacing traditional text-based systems engineering methods. As a standard modeling language in the field of systems engineering, SysML, together with modeling tools and modeling methods, is called the three pillars of MBSE. Activity diagram is a kind of behavior diagram of SysML, and its simulation plays an important role in MBSE practice. Aiming at the problem that the activity diagram simulation capability of domestic SysML modeling software is insufficient, this paper implements the simulation function of SysML activity diagram based on the fUML specification.10.1109/CRC55853.2022.10041232 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232MBSE;fUML;SysML;Activity Diagram;System Simulation IEEE Inglês
Proving the Correctness of Multicopter Rotor Fault Detection and Identification SoftwareA. Bhaumik; A. Dutta; F. Kopsaftopoulos; C. A. Varela2021 Applications for data-driven systems are expected to be correct implementations of the system specifications, but developers usually test against a few indicative scenarios to verify them. In the absence of exhaustive testing, errors may occur in real time scenarios, especially when dealing with large data streams from moving objects like multicopters, vehicles, etc. Model checking techniques also lack scalability and completeness. We present a novel approach based on some existing tools which enables a developer to write high level code directly as system specifications and simultaneously be able to prove the correctness of the generated code. We present a fault detection and identification (FDI) software development approach using declarative programming language: PILOTS. The grammar of PILOTS has been updated to enable easier syntax for threshold validation techniques. The failure detection model is described as high level specifications that the generated code has to adhere to. The complete FDI problem is formally specified using Hoare logic and proven correct using an automated proof assistant: Dafny. A case study of rotor failures in a hexacopter has been used to illustrate the approach and visualize the results.10.1109/DASC52595.2021.9594350 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9594350fault detection;formal verification;multicopter;declarative programming;DafnyIEEE Inglês
Semantic Mapping from SysML to FRP: to Enable Executable and Verifiable Systems DesignJ. Huang; W. Khallouli; H. Holly A. H.; W. Edmonson; T. Ahmed; N. Kibret2021 The emerging Digital Engineering demands digital representation of the system of interest and sharing models and data across the boundaries of organizations and the boundaries of the engineering lifecycle. Towards this direction, it is critical to develop systems modeling languages and tools that accommodate Digital Engineering. This paper presents our research on semantic mapping from System Modeling Language (SysML) to Functional Reactive Programming (FRP) with the goal of developing computing mechanisms with functional reactive programming to support executable and verifiable SysML model specification.10.1109/SysCon48628.2021.9447075 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447075Digital Engineering;Model-Based Systems Engineering;SysML;Functional Reactive Programming;Semantic mapping;Executable & verifiable systems design;Modeling language and toolsIEEE Inglês
Generating Test Cases from Requirements: A Case Study in Railway Control System DomainH. Zheng; J. Feng; W. Miao; G. Pu 2021 Requirements-based testing is one of the most commonly used ways to ensure the correctness of software, especially for embedded control software in safety-critical domains such as spacecraft and railway systems. Many industrial standards such as the DO-333 and EN50128 also request rigorous requirements-based software testing. To test embedded control software effectively and efficiently, generating high-quality test cases automatically is extremely important. However, existing methods for generating test cases from requirements require intensive manual efforts and expertise. To address this problem, we proposed an automatic requirements-based software testing method for embedded control software. To obtain automatic test case generation and precise test oracles derivation, requirements specification should be precise and readable for the industrial practitioners. Therefore, we use the light-weight domain-specific formal description language, CASDL (Casco Accurate Specification Description Language) for the industrial practitioners to define software requirements into formal specifications at the first step. Based on the formal specification, we propose an algorithm to automatically generate test inputs that satisfy the MC/DC criteria suggested by typical industrial standards and precise test oracles can be derived by “running” the specification with such test inputs. To this end, we proposed an algorithm for simulating the formal specification to generate the test oracles, i.e., the expected outputs corresponding to the test inputs. To facilitate the application of this method in the industry, we have built a tool that can automatically perform the overall testing process. To validate and evaluate its effectiveness in real industrial projects, we have applied it in testing a real Automatic Train Protection (ATP) system provided by our industrial partner, the Casco Signal Co., Ltd (one of the largest railway control system companies in China). In the case study on ATP requirements, our approach generated test cases for 129 requirement items following MC/DC criteria and caught 40 inconsistencies between Casco’s requirements and implementation.10.1109/TASE52547.2021.00029 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822Test cases;software testing;requirements validation and verification;requirements modelingIEEE Inglês
Performing Security Proofs of Stateful ProtocolsA. V. Hess; S. Mödersheim; A. D. Brucker; A. Schlichtkrull2021 In protocol verification we observe a wide spectrum from fully automated methods to interactive theorem proving with proof assistants like Isabelle/HOL. The latter provide overwhelmingly high assurance of the correctness, which automated methods often cannot: due to their complexity, bugs in such automated verification tools are likely and thus the risk of erroneously verifying a flawed protocol is non-negligible. There are a few works that try to combine advantages from both ends of the spectrum: a high degree of automation and assurance. We present here a first step towards achieving this for a more challenging class of protocols, namely those that work with a mutable long-term state. To our knowledge this is the first approach that achieves fully automated verification of stateful protocols in an LCF-style theorem prover. The approach also includes a simple user-friendly transaction-based protocol specification language embedded into Isabelle, and can also leverage a number of existing results such as soundness of a typed model10.1109/CSF51468.2021.00006 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505200stateful-security-protocols;interactive-theorem-proving;automated-verificationIEEE Inglês
Space-time Constraint Resources Modeling and Safety Verification Method for Automated VehiclesY. Zhu; X. Chen; Y. Zhao 2022 Automated vehicle combines physics and computation on the basis of environment perception. It can realize intelligent interaction with the environment. Automated vehicle is a typical CPS. However, the continuous changes of driving physical space bring certain challenges to the safety of CPS resources. Therefore, how to solve this kind of CPS resource safety problems caused by space and time changes becomes the key. We propose a space-time constraint resource modeling and safety verification method for automated vehicle to solve this problem. Firstly, the physical topology model is proposed to model the physical topology space of CPS, which is able to describe the topology space. Secondly, the Resource-Space Time Communicating Sequential Process (RS- TCSP) is proposed by extending the resource vector on the basis of Time Communicating Sequential Process(TCSP) to describe the resources in CPS topology. Thirdly, the physical topology model and RS- TCSP are mapped to bigraphs and bigraphs reactive system, respectively. The safety of CPS resources is verified by BigMC, the verification tool of bigraphs, and the counterexample path is modified. Finally, a driving scene is given to verify the effectiveness of the proposes method.10.1109/DSA56465.2022.00112 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482cyber physical system;formal verification;process algebra;space-time constraint;resource safetyIEEE Inglês
Pattern-Based Approach to Modelling and Verifying System SecurityX. Zheng; D. Liu; H. Zhu; I. Bayley 2020 Security is one of the most important problems in the engineering of online service-oriented systems. The current best practice in security design is a pattern-oriented approach. A large number of security design patterns have been identified, categorised and documented in the literature. The design of a security solution for a system starts with identification of security requirements and selection of appropriate security design patterns; these are then composed together. It is crucial to verify that the composition of security design patterns is valid in the sense that it preserves the features, semantics and soundness of the patterns and correct in the sense that the security requirements are met by the design. This paper proposes a methodology that employs the algebraic specification language SOFIA to specify security design patterns and their compositions. The specifications are then translated into the Alloy formalism and their validity and correctness are verified using the Alloy model checker. A tool that translates SOFIA into Alloy is presented. A case study with the method and the tool is also reported.10.1109/SOSE49046.2020.00018 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9183499Security;Design patterns;Algebraic specifications;Formal verification;Model checkingIEEE Inglês
Property Satisfiability Analysis for Product Lines of Modelling LanguagesE. Guerra; J. de Lara; M. Chechik; R. Salay 2022 Software engineering uses models throughout most phases of the development process. Models are defined using modelling languages. To make these languages applicable to a wider set of scenarios and customizable to specific needs, researchers have proposed using product lines to specify modelling language variants. However, there is currently a lack of efficient techniques for ensuring correctness with respect to properties of the models accepted by a set of language variants. This may prevent detecting problematic combinations of language variants that produce undesired effects at the model level. To attack this problem, we first present a classification of instantiability properties for language product lines. Then, we propose a novel approach to lifting the satisfiability checking of model properties of individual language variants, to the product line level. Finally, we report on an implementation of our proposal in the Merlin tool, and demonstrate the efficiency gains of our lifted analysis method compared to an enumerative analysis of each individual language variant.10.1109/TSE.2020.2989506 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9076306Model-driven engineering;software language engineering;product lines;meta-modelling;OCL;model findingIEEE Inglês
Translation Validation of Code Generation from the SIGNAL Data-Flow Language to VerilogH. M. Amjad; K. Hu; J. Niu; N. Khan; L. Besnard; J. -P. Talpin2019 The SIGNAL is a high-level synchronous data-flow language for the design and implementation of safety-critical embedded systems. It provides a unified framework for specification, modeling, formal analysis, and automatic code generation for different general-purpose languages like Java, C, and C++. However, fully implemented and verified open source tool for code generation from SIGNAL to Hardware Description Language (HDL) is not available. This paper describes the formal verification of the generated Verilog code from the SIGNAL language. Proving the correctness of generated code is very important when it is for safety-critical embedded systems. We use the translation validation technique for verifying the correctness of the generated code. In this approach, the Polychrony Toolset builds the models of source SIGNALprograms with its associated model checker SIGALI. The open source tool Yosys generates models for target Verilog programs in the SMT-LIB standard format. We transform the model generated by Yosys to the model accepted by the SIGALI model checker. Finally, we use the SIGALI model checker to validate the translation by symbolic simulation between both source and target program models. The target program may have fewer behaviors than the source program therefore if the model of the target program implies the model of the source program, it means the target program preserves the semantics of the source program, and the translation is correct.10.1109/SKG49510.2019.00034 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129translation validation, embedded systems, Verilog, SIGNAL, SIGALI, Yosys, semanticsIEEE Inglês
REAFFIRM: Model-Based Repair of Hybrid Systems for Improving ResiliencyL. Viet Nguyen; G. Mohan; J. Weimer; O. Sokolsky; I. Lee; R. Alur2020 Model-based design offers a promising approach for assisting developers to build reliable and secure cyber-physical systems in a systematic manner. In this methodology, a designer first constructs a model, with mathematically precise semantics, of the system under design, and performs extensive analysis with respect to correctness requirements before generating the implementation from the model. However, as new vulnerabilities are discovered, requirements evolve aimed at ensuring resiliency. There is currently a shortage of an inexpensive, automated software that can effectively repair the initial design, and a model-based system developer regularly needs to redesign and reimplement the system from scratch. In this paper, we propose a new methodology along with a MATLAB software called REAFFIRM to facilitate the model-based repair for improving the resiliency of cyber-physical systems. REAFFIRM takes as inputs 1) an original hybrid system modeled as a Simulink/Stateflow diagram, 2) a given resiliency pattern specified as a model transformation script, and 3) a safety requirement expressed as a Signal Temporal Logic formula, and outputs a repaired model which satisfies the requirement. The tool consists of two main modules, model transformation followed by model synthesis. While the latter component is built on top of the falsification tool Breach, to implement the former, we introduce a new model transformation language for hybrid systems, which we call HATL, to allow a designer to specify resiliency patterns. To evaluate the proposed approach, we use REAFFIRM to automatically synthesize the repaired models of four different case studies.10.1109/MEMOCODE51338.2020.9315153 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315153Model-based repair;resiliency;transformation language;hybrid systemsIEEE Inglês

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8711858
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9043022
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9568383
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9421869
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9369549
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882769
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9198440
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505095
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904603
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9094927
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404135
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904596
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582284
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8931389
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904785
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9491698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582507
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715117
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9531916
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9287702
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643614
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945607
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534792
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945618
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9538430
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9594350
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447075
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505200
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9183499
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9076306
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315153

Towards the Specification and Verification of Legal ContractsA. Parvizimosaed 2020 A contract is a legally binding agreement that expresses high-level requirements of parties in terms of obligations, powers and constraints. Parties' actions influence the status of a contract and shall comply with its clauses. Manual contract monitoring is very laborious in real markets, such as transactive energy, where plenty of complex contracts are running concurrently. Furthermore, liability, right and performance transition through run-time operations such as subcontracting, assignment and substitution complicate contract interpretation. Automation is needed to ensure that contracts respect desirable properties and to support monitoring of compliance and handling of violations. In this thesis research, I propose an innovative ontology that defines fundamental contractual notions (such as the ones mentioned above) and their relationships, on which is built a specification language, called Symboleo, that provides syntax and axiomatic semantics of contracts via first-order logic. Symboleo enables the development of advanced automation tools such as a compliance checker that monitors contracts at runtime, and a model checking verification method that analyzes liveness and safety properties of contracts. This paper reports on the problem domain, research method, current status, expected contributions, and main foreseen challenges.10.1109/RE48521.2020.00066 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173Legal Contract;Specification Language;Model Checking;Smart Contract;OntologyIEEE Inglês
DoMoBOT: An AI-Empowered Bot for Automated and Interactive Domain ModellingR. Saini; G. Mussbacher; J. L. C. Guo; J. Kienzle2021 Domain modelling transforms informal requirements written in natural language in the form of problem descriptions into concise and analyzable domain models. As the manual construction of these domain models is often time-consuming, error-prone, and labor-intensive, several approaches already exist to automate domain modelling. However, the current approaches suffer from lower accuracy of extracted domain models and the lack of support for system-modeller interactions. To better assist modellers, we introduce DoMoBOT, a web-based Domain Modelling BOT. Our proposed bot combines artificial intelligence techniques such as natural language processing and machine learning to extract domain models with higher accuracy. More importantly, our bot incorporates a set of features to bring synergy between automated model extraction and bot-modeller interactions. During these interactions, the bot presents multiple possible solutions to a modeller for modelling scenarios present in a given problem description. The bot further enables modellers to switch to a particular solution and updates the other parts of the domain model proactively. In this tool demo paper, we demonstrate how the implementation and architecture of DoMoBOT support the paradigm of automated and interactive domain modelling for assisting modellers.10.1109/MODELS-C53483.2021.00090 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643722Domain Models;Natural Language (NL);Machine Learning (ML);Bot;Model Extraction;Recommendation;Bot-Modeller Interactions;Traceablity Knowledge GraphIEEE Inglês
Verification Approach for Refactoring Transformation Rules of State-Based ModelsN. Almasri; B. Korel; L. Tahat 2022 With the increased adoption of Model-Driven Engineering (MDE), where models are being used as the primary artifact of software, it is apparent that greater attention to the quality of the models is necessary. Traditionally, refactoring is used to enhance the quality of software systems at the source-code level; however, applying refactoring at the model level will have a more significant improvement on the system. After refactoring a model, proving that it still preserves its original behavior is crucial. In this paper, we present a process for applying refactoring transformations to the Extended Finite State Machine (EFSM) models using verified transformation rules that have been proven to preserve the model's original behavior. We provide a simplified three-step verification approach that can be used to prove that a transformation rule will generate a transformed model that is semantically equivalent to the original model. To do this, we formally define semantical equivalence at three different levels of granularity: models, sub-models, and transitions. Additionally, we introduce five model transformation rules and we demonstrate how our verification approach is used to prove the correctness of these rules. Finally, we present two case studies where we apply the proposed transformation process which adopts the five verified transformation rules. Using model testing, we show that applying a sequence of transformations using the verified transformation rules will keep both the original and the transformed model semantically equivalent. Additionally, the case studies show that model transformation can be used to enhance certain pre-defined model characteristics.10.1109/TSE.2021.3106589 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9520285Extended finite state machine;model refactoring;refactoring transformation rules;verification of transformations;observable behavior;semantic equivalence of modelsIEEE Inglês
Bounded Exhaustive Search of Alloy Specification RepairsS. Gutiérrez Brida; G. Regis; G. Zheng; H. Bagheri; T. Nguyen; N. Aguirre; M. Frias2021 The rising popularity of declarative languages and the hard to debug nature thereof have motivated the need for applicable, automated repair techniques for such languages. However, despite significant advances in the program repair of imperative languages, there is a dearth of repair techniques for declarative languages. This paper presents BeAFix, an automated repair technique for faulty models written in Alloy, a declarative language based on first-order relational logic. BeAFix is backed with a novel strategy for bounded exhaustive, yet scalable, exploration of the spaces of fix candidates and a formally rigorous, sound pruning of such spaces. Moreover, different from the state-of-the-art in Alloy automated repair, that relies on the availability of unit tests, BeAFix does not require tests and can work with assertions that are naturally used in formal declarative languages. Our experience with using BeAFix to repair thousands of real-world faulty models, collected by other researchers, corroborates its ability to effectively generate correct repairs and outperform the state-of-the-art.10.1109/ICSE43902.2021.00105 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402059Alloy;Automated Repair;Formal Specification;Bounded exhaustive analysisIEEE Inglês
Multi-layered Model-based Design Approach towards System Safety and Security Co-engineeringM. Quamara; G. Pedroza; B. Hamid 2021 The integration of safety and security concerns in critical domains (e.g., Cyber-Physical Systems (CPSs)) is of utmost importance, and should be conducted in early design phases of system engineering process. Within a Model-Based System Engineering (MBSE) context, safety and security requirements cascade-down across models and views, thus contributing to the detailed missions, functions, and lastly, the architecture. Such enrichment process is often complex and lacks guidance to consistently breakdown high-level mission-centric system specifications into the detailed architecture. In particular, non-savvy safety and security engineers require support to facilitate integration and verification of stringent safety constraints and security exigencies. In this regard, we propose a multi-layered design approach that leverages existing techniques like Model-Driven Engineering (MDE) and formal methods, to facilitate integrated verification of high-level safety and security objectives that can be further specialized across different representations (i.e. mission, functional, and architectural) of the system. The overall approach is validated based upon a Connected Driving Vehicles (CDVs) case study, and using Eclipse Papyrus and Rodin as experimentation tools.10.1109/MODELS-C53483.2021.00048 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643661safety;security;co-engineering;design;model-driven engineering;formal methods;connected driving vehiclesIEEE Inglês
UCM4IoT: A Use Case Modelling Environment for IoT SystemsP. Boutot; M. R. Tabassum; S. Mustafiz 2021 The engineering of IoT systems brings about various challenges due to the inherent complexities associated with such adaptive systems. Addressing the adaptive nature of IoT systems in the early stages of the development life cycle is essential for developing a complete and precise system specification. In this paper, we propose a use case modelling environment, UCM4IoT, to support requirements elicitation and specification of IoT systems. Our UCM4IoT language takes into account the heterogeneity of IoT systems and provides domain-specific language constructs to model the different facets of IoT. The language also incorporates the notion of exceptional situations and adaptive system behaviour. Our language is supported with a textual modelling environment to assist modellers in writing use cases. The environment supports syntax-directed editing, validation of use case models, and requirements analysis. The proposed language and tool is demonstrated with a smart store case study.10.1109/MODELS-C53483.2021.00123 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643786use cases;internet of things;requirements engineering;model driven engineeringIEEE Inglês
What Can the Sentiment of a Software Requirements Specification Document Tell Us?C. Werner; Z. S. Li; N. Ernst 2019 Sentiment analysis tools are becoming increasingly more prevalent in the software engineering research community. In this data showcase paper, we present a set of twenty-two software requirements specification (SRS) documents that have been preprocessed and subsequently analyzed using the Senti4SD sentiment analysis tool. As part of our preliminary research, we compared the result of the sentiment analysis of the SRS documents and other non-related documents and found that the SRS documents were 6% more neutral than other non-related documents. Finally, we also present a number of research questions that we believe the research community might be able to answer using our published data.10.1109/REW.2019.00022 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933613sentiment analysis;requirements engineering;software requirements specifications;emotionIEEE Inglês
Automated Analysis of Inter-Parameter Dependencies in Web APIsA. Martin-Lopez 2020 Web services often impose constraints that restrict the way in which two or more input parameters can be combined to form valid calls to the service, i.e. inter-parameter dependencies. Current web API specification languages like the OpenAPI Specification (OAS) provide no support for the formal description of such dependencies, making it hardly possible to interact with the services without human intervention. We propose specifying and automatically analyzing inter-parameter dependencies in web APIs. To this end, we propose a domain-specific language to describe these dependencies, a constraint programming-aided tool supporting their automated analysis, and an OAS extension integrating our approach and easing its adoption. Together, these contributions open a new range of possibilities in areas such as source code generation and testing.https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345Web service;DSL;interdependency;CSP;automated analysis IEEE Inglês
Methods and Tools for Formal Verification of Cloud Sisal ProgramsV. N. Kasyanov; E. V. Kasyanova 2020 A cloud parallel programming system CPPS being under development at the Institute of Informatics Systems is aimed to be an interactive visual environment of functional and parallel programming for supporting of computer science teaching and learning. The system will support the development, verification and debugging of architecture-independent parallel Cloud Sisal programs and their correct conversion into efficient code of parallel computing systems for its execution in clouds. In the paper, methods and tools of the CPPS system intended for formal verification of Cloud Sisal programs are described.10.1109/MACISE49704.2020.00047 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627automated theorem proof;Cloud Sisal;deductive verification;functional programming;parallel programmingIEEE Inglês
Towards Testing the UML PSSM Test Suite M. Elekes; Z. Micskei 2021 In model-based engineering approaches, models are executable artefacts used for simulation, generation and verification. The Executable UML specifications enriched the well-known UML language with precisely defined semantics. The Precise Semantics of UML State Machines (PSSM) specification defined an operational semantics for state machines. Moreover, the specification contains a detailed test suite that illustrates the semantics and can be used to check the conformance of model execution tools. However, as the test suite itself is a complex engineering effort, it could contain errors. To the best of our knowledge, this is the first paper to test and verify the PSSM test suite. We report on typical errors and issues found by reviewing the specification and executing it in one of the supporting tools. Finally, we collect recommendations for such test suites that could enhance future modelling language specifications.10.1109/LADC53747.2021.9672570 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672570UML;model-based;state machine;testing IEEE Inglês
Quality Improvement for UML and OCL Models Through Bad Smell and Metrics DefinitionK. -H. Doan; M. Gogolla 2019 Detecting and fixing software quality issues early in the design phase is indispensable for a successful project applying model-based techniques. This paper presents an extension of the tool USE (UML-based Specification Environment) with features for (a) reflective model queries and model exploration, (b) metric measurement, (c) smell detection, and (d) quality assessment with metrics. The newly added functionalities can be fine-tuned by designers, are closely related and can be applied together interactively in order to help designers to achieve better models.10.1109/MODELS-C.2019.00121 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904872UML and OCL Model;Metrics;Metamodel;Smell detection;Model quality assessmentIEEE Inglês
iContractBot: A Chatbot for Smart Contracts’ Specification and Code GenerationI. Qasse; S. Mishra; M. Hamdaqa 2021 Recently, Blockchain technology adoption has expanded to many application areas due to the evolution of smart contracts. However, developing smart contracts is non-trivial and challenging due to the lack of tools and expertise in this field. A promising solution to overcome this issue is to use Model-Driven Engineering (MDE), however, using models still involves a learning curve and might not be suitable for non-technical users. To tackle this challenge, chatbot or conversational interfaces can be used to assess the non-technical users to specify a smart contract in gradual and interactive manner. In this paper, we propose iContractBot, a chatbot for modeling and developing smart contracts. Moreover, we investigate how to integrate iContractBot with iContractML, a domainspecific modeling language for developing smart contracts, and instantiate intention models from the chatbot. The iContractBot framework provides a domain-specific language (DSL) based on the user intention and performs model-to-text transformation to generate the smart contract code. A smart contract use case is presented to demonstrate how iContractBot can be utilized for creating models and generating the deployment artifacts for smart contracts based on a simple conversation.10.1109/BotSE52550.2021.00015 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474392Chatbot;Smart Contracts;Blockchain;Model-Driven Engineering;Domain Specific Language;Ethereum;Hyperledger ComposerIEEE Inglês
Hierarchical Activity-Based Models for Control Flows in Parallel Discrete Event System Specification Simulation ModelsA. Alshareef; H. S. Sarjoughian 2021 Behavior modeling grounded in the Discrete-Event System Specification (DEVS) and Unified Modeling Language (UML) activity specifications is crucial for simulating dynamical systems. The Model-Driven Architecture (MDA) design approach provides flexible yet rigorous layered metamodels for the UML activity diagrams. Our approach for behavior modeling is focused on the action and control concepts in the UML activity metamodels and realizing them as artifacts according to the DEVS formalism. The syntax and semantics for the artifacts conform to the parallel DEVS model specification and execution protocol. We use the system-theoretic state, component, and hierarchy concepts as the foundation for formulating the DEVS Activity models and supported with a prototype graphical tool developed in Sirius. This research also proposes the Parallel DEVS as a formal approach for examining the semantics of the UML Activities. We develop, simulate, and analyze a set of prototypical multi-processor architecture systems demonstrating different synchronization and selection schemes using the DEVS-Suite and MS4 Me simulators.10.1109/ACCESS.2021.3084940 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9444417Activity diagrams;behavior modeling;DEVS;parallelism;model-based design;modeling & simulation;software modelingIEEE Inglês
Formalizing Loop-Carried Dependencies in Coq for High-Level SynthesisF. Faissole; G. A. Constantinides; D. Thomas 2019 High-level synthesis (HLS) tools such as VivadoHLS interpret C/C++ code supplemented by proprietary optimization directives called pragmas. In order to perform loop pipelining, HLS compilers have to deal with non-trivial loop-carried data dependencies. In VivadoHLS, the dependence pragma could be used to enforce or to eliminate such dependencies, but, the behavior of this directive is only informally specified through examples. Most of the time programmers and the compiler seem to agree on what the directive means, but the accidental misuse of this pragma can lead to the silent generation of an erroneous register-transfer level (RTL) design, meaning code that previously worked may break with newer more aggressively optimised releases of the compiler. We use the Coq proof assistant to formally specify and verify the behavior of the VivadoHLS dependence pragma. We first embed the syntax and the semantics of a tiny imperative language Imp in Coq and specify a conformance relation between an Imp program and a dependence pragma based on data-flow transformations. We then implement semi-automated methods to formally verify such conformance relations for non-nested loop bodies.10.1109/FCCM.2019.00056 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537High level synthesis;Formal proofs;Loop dependencies IEEE Inglês
Diversity-Driven Automated Formal VerificationE. First; Y. Brun 2022 Formally verified correctness is one of the most desirable properties of software systems. But despite great progress made via interactive theorem provers, such as Coq, writing proof scripts for verification remains one of the most effort-intensive (and often prohibitively difficult) software development activities. Recent work has created tools that automatically synthesize proofs or proof scripts. For example, CoqHammer can prove 26.6% of theorems completely automatically by reasoning using precomputed facts, while TacTok and ASTactic, which use machine learning to model proof scripts and then perform biased search through the proof-script space, can prove 12.9% and 12.3% of the theorems, respectively. Further, these three tools are highly complementary; together, they can prove 30.4% of the theorems fully automatically. Our key insight is that control over the learning process can produce a diverse set of models, and that, due to the unique nature of proof synthesis (the existence of the theorem prover, an oracle that infallibly judges a proof's correctness), this diversity can significantly improve these tools' proving power. Accordingly, we develop Diva, which uses a diverse set of models with TacTok's and ASTactic's search mech-anism to prove 21.7% of the theorems. That is, Diva proves 68% more theorems than TacTok and 77% more than ASTactic. Complementary to CoqHammer, Diva proves 781 theorems (27% added value) that CoqHammer does not, and 364 theorems no existing tool has proved automatically. Together with CoqHammer, Diva proves 33.8% of the theorems, the largest fraction to date. We explore nine dimensions for learning diverse models, and identify which dimensions lead to the most useful diversity. Further, we develop an optimization to speed up Diva's execution by 40×. Our study introduces a completely new idea for using diversity in machine learning to improve the power of state-of-the-art proof-script synthesis techniques, and empirically demonstrates that the improvement is significant on a dataset of 68K theorems from 122 open-source software projects.10.1145/3510003.3510138 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984Automated formal verification;language models;Coq;interactive proof assistants;proof synthesisIEEE Inglês
A Unified Formal Model for Proving Security and Reliability PropertiesW. Hu; L. Wu; Y. Tai; J. Tan; J. Zhang 2020 Taint-propagation and X-propagation analyses are important tools for enforcing circuit design properties such as security and reliability. Fundamental to these tools are effective models for accurately measuring the propagation of information and calculating metadata. In this work, we formalize a unified model for reasoning about taint- and X-propagation behaviors and verifying design properties related to these behaviors. Our model are developed from the perspective of information flow and can be described using standard hardware description language (HDL), which allows formal verification of both taint-propagation (i.e., security) and X-propagation (i.e., reliability) related properties using standard electronic design automation (EDA) verification tools. Experimental results show that our formal model can be used to prove both security and reliability properties in order to uncover unintended design flaw, timing channel and intentional malicious undocumented functionality in circuit designs.10.1109/ATS49688.2020.9301533 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9301533Taint-propagation;X-propagation;formal model;formal verification;design propertyIEEE Inglês
Towards Continuous Consistency Checking of DevOps ArtefactsA. Colantoni; B. Horváth; Á. Horváth; L. Berardinelli; M. Wimmer2021 DevOps tools are often scattered over a multitude of technologies, and thus, their integration is a challenging endeavour. The existing DevOps integration platforms, e.g., Keptn, often employ a family of languages for this purpose. However, as we have learnt from UML, SysML, and many others, a family of languages requires inter-model constraints to be checked in order to guarantee a high consistency between the different artefacts.In this work-in-progress paper, we propose a Model-Driven Engineering (MDE) approach for the continuous consistency checking of DevOps artefacts. First, we explicitly represent each artefact as a model, second, we establish links across them to set a navigable network of model elements; and third, we enable MDE services on top of this network.We envision the possibility of using GitOps to pull the DevOps artefacts, executing services for checking consistency and performing model repairs, uploading the changes to the DevOps tools, and finally pushing the artefacts to Git, thus resulting in a continuous consistency checking process in practice.10.1109/MODELS-C53483.2021.00069 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643713DevOps;MDE;consistency management IEEE Inglês
Visualization of Promela with NS-Chart A. Chawanothai; W. Vatanawood 2019 In the paradigm of model checking, a formal model is considered as one of the crucial sources that tends to be verified with the desired properties. The definition of the formal model should be understandable and clear in order to express the structure and behaviors of the system visually using diagrammatic tools. In this paper, we focused on the formal model which is written in Promela language that supports the non-determinism of the concurrent system. From our study, we found that the Promela syntax could probably be drawn by using NS-chart visual symbols. The classic NS-chart symbols represents the control flow of the system that was written in Promela. As a main purpose of this paper, we aim to propose a set of mapping rules for generating the NS-chart drawing from Promela source codes. The result of the drawing with the proposed NS-Chart syntax showed that the Promela control flow structure could be represented succinctly and the chart could be practically used for tracing the counterexample of the verification.10.1109/ICTS.2019.8850971 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971Promela;NS-chart;Control Flow Graph;Validation;SPIN tool IEEE Inglês
Celestial: A Smart Contracts Verification FrameworkS. Dharanikota; S. Mukherjee; C. Bhardwaj; A. Rastogi; A. Lal2021 We present CELESTIAL, a framework for formally verifying smart contracts written in the Solidity language for the Ethereum blockchain. CELESTIAL allows programmers to write expressive functional specifications for their contracts. It translates the contracts and the specifications to F* to formally verify, against an F* model of the blockchain semantics, that the contracts meet their specifications. Once the verification succeeds, CELESTIAL performs an erasure of the specifications to generate Solidity code for execution on the Ethereum blockchain. We use CELESTIAL to verify several real-world smart contracts from different application domains. Our experience shows that CELESTIAL is a valuable tool for writing high-assurance smart contracts.10.34727/2021/isbn.978-3-85448-046-4_22 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700Smart contracts;Blockchain;Reliability;Testing IEEE Inglês
Reliability Modeling and Verification of Communication Algorithm Flow for Intelligent Control SystemW. Ran; W. Jiajia 2021 The intelligent system controls the subsystems of each aircraft in real time to ensure the normal development of the tasks of the aircraft system. In the process of system communication, the control system is required to strictly control the correctness of the control algorithm flow and the accuracy of the control sequence in order to ensure the safety of the aircraft system. This paper uses UPPAAL, a formal model detection tool based on time automata theory, to formally model and validate the algorithm flow of an intelligent system and a subsystem. First, the algorithm flow of the intelligent system is analyzed, and then it is formally modeled using the time automaton method. Second, the properties that need to be verified are extracted from the algorithm flow and described with the formal language BNF. Finally, the function and performance correctness are automatically verified using the UPPAAL model detection tool. The experimental results verify that the intelligent system meets the security, accessibility and activity requirements.10.1109/AEMCSE51986.2021.00189 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9512884intelligent systems;communication algorithm flow;formal modeling and validation;UPPAALIEEE Inglês
Model-Driven Development of UML-Based Domain-Specific Languages for System Architecture VariantsA. Wichmann; R. Maschotta; F. Bedini; A. Zimmermann2019 The rising overall complexity of modern complex systems leads to an increasing number of decisions made during system design. To achieve efficient, resource saving systems, modern engineering methods and techniques are necessary. Model-based approaches are widely applied in systems engineering, using several types of models in the development phases at different abstraction levels. Model-based design of complex systems benefits from the early validation of design decisions. Indirect optimization with simulation-based validation can be used to determine optimal system solutions. A method for model-driven optimization of system architectures based on the UML standard has been proposed in our earlier work and implemented in a software framework.This paper describes our approach to specify domain-specific languages and corresponding domain-specific tools. The specifications are based on UML extensions using profiles only, which is a lightweight approach compared to other proposals. This allows the reuse and extension of existing UML models. A domain-specific graphical editor for system architecture variants is presented based on the specified extensions. The resulting graphical editor is used to model system architecture variants as an example.10.1109/SYSCON.2019.8836895 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836895system architecture optimization;design space specification;model analysis;model queries;UML;model validation;model driven engineering;Eclipse SiriusIEEE Inglês
An empirical study on the impact of introducing a modeling tool in a Requirement Engineering courseL. Burgueño; J. L. C. Izquierdo; E. Planas 2021 In numerous Programming and Software Engineering courses, students are asked to program on paper. This has supporters and detractors. Among its advantages, supporters claim that programming on paper allows students to focus on functionality, avoiding the distractions caused by syntax and without limiting their thinking to a specific programming language or paradigm. Detractors claim that this method lacks advanced capabilities provided by IDEs such as syntax check and auto-completion. More importantly, it does not give the opportunity to execute and test the code, which prevents students from discovering bugs.The state of the art has studied the benefits and disadvantages of programming on paper versus computer for general-purpose languages like Java and C with students of initial courses. Nevertheless, to the best of our knowledge, no study has been done targeting formal languages like OCL, which are taught in advanced courses.In this paper, we present our experience after introducing a modeling tool for the specification of OCL constraints in a Requirements Engineering course. This course is optional and is offered in the third and fourth years of the Computer Engineering degree. Our study covers two academic years, 2019 and 2020, in which there were 136 and 161 students enrolled, respectively. We present the context and design of our experiment, the results obtained from the empirical study we have performed and our conclusions, which support the suitability of the use of tools.10.1109/MODELS-C53483.2021.00115 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643678Requirement engineering;modeling tools;OCL;teaching;empirical studyIEEE Inglês
An executable framework for modeling and validating cooperative capability requirements in emergency response systemC. Lei; W. Zhixue; H. Ming; H. Hongyue; Y. Minggang2021 As the scale of current systems become larger and larger and their complexity is increasing gradually, research on executable models in the design phase becomes significantly important as it is helpful to simulate the execution process and capture defects of a system in advance. Meanwhile, the capability of a system becomes so important that stakeholders tend to emphasize their capability requirements when developing a system. To deal with the lack of official specifications and the fundamental theory basis for capability requirement, we propose a cooperative capability requirements (CCR) meta-model as a theory basis for researchers to refer to in this research domain, in which we provide detailed definition of the CCR concepts, associations and rules. Moreover, we also propose an executable framework, which may enable modelers to simulate the execution process of a system in advance and do well in filling the inconsistency and semantic gaps between stakeholders' requirements and their models. The primary working mechanism of the framework is to transform the Alf activity meta-model into the communicating sequential process (CSP) process meta-model based on some mapping rules, after which the internal communication mechanism between process nodes is designed to smooth the execution of behaviors in a CSP system. Moreover, a validation method is utilized to check the correctness and consistency of the models, and a self-fixing mechanism is used to fix the errors and warnings captured during the validation process automatically. Finally, a validation report is generated and fed back to the modelers for system optimization.10.23919/JSEE.2021.000077 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9574649executable model;capability requirement;consistency validation;Alf;epsilonIEEE Inglês
Development and Verification of Smart-Contracts for the ScientificCoin PlatformE. Zhdarkin; I. Anureev 2021 We study the process of creating and testing models of programs in the Solidity language (smart-contracts) for the ScientificCoin crowdfunding platform. This platform is an Internet portal for investing in high-tech projects using blockchain technology. We examine the security of the blockchain-based method of conducting money transactions implemented on this platform and the approach to test and to verify used program code. We analyze the tools and algorithms which allow us to formalize the life cycle of the code in the blockchain system. An example of creating a smart-contract model and the way of checking the feasibility of its functional properties and the truth of invariants using the SMT solver are considered.10.1109/EDM52169.2021.9507717 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507717smart-contract;solidity;blockchain;formal verification IEEE Inglês
Formalization of Robot Skills with Descriptive and Operational ModelsC. Lesire; D. Doose; C. Grand 2020 In this paper, we propose a formal language to specify robot skills, i.e. the elementary behaviours or functions provided by the robot platform in order to perform an autonomous mission. The advantage of the language we propose is that it integrates a wide range of elements that allows to define and provide automatic translation both to operational models, used online to control the skill execution, and descriptive models, allowing to reason about the expected skill execution, and then apply automated planning or model-checking taking skill models into account.10.1109/IROS45743.2020.9340698 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698- IEEE Inglês
Applying B and ProB to a Real-world Data Validation ProjectC. Peng; W. Keming 2021 Data validation is a constraint satisfaction problem that can be modelled rigorously by formal methods like B. This paper presents our experiences on validating a real-world section topology of tram lines using the B language and ProB tool. Based on the section topology, validation rules are designed and implemented by using the ASSERTIONS Clause of B. The Epsilon Generation Language Script is used to build a data conversion schema under automatically deriving the topology data into the B model. Furthermore, the ProB is used to validate whether the data satisfy the rules. In this way, the validated topology improves the functional correctness of the tram control system.10.1109/ISKE54062.2021.9755408 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408B method;rule programming;section topology IEEE Inglês
Better Development of Safety Critical Systems: Chinese High Speed Railway System Development Experience ReportZ. Wu; J. Liu; X. Chen 2019 Ensure the correctness of safety critical systems play a key role in the worldwide software engineering. Over the past years we have been helping CASCO Signal Ltd which is the Chinese biggest high speed railway company to develop high speed railway safety critical software. We have also contributed specific methods for developing better safety critical software, including a search-based model-driven software development approach which uses SysML diagram refinement method to construct SysML model and SAT solver to check the model. This talk aims at sharing the challenge of developing high speed railway safety critical system, what we learn from develop a safety critical software with a Chinese high speed railway company, and we use ZC subsystem as a case study to show the systematic model-driven safety critical software development method.10.1109/ASE.2019.00143 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294SysML;Formal Method;Model-Driven;SAT IEEE Inglês
A Model Driven Tool for Requirements and Hardware EngineeringA. Charfi; S. Li; T. Payret; P. Tessier; C. Mraidha; S. Gérard2019 This paper presents a model driven tool for both requirements and hardware engineering. For the requirements engineering, the tool offers many functionalities such as classifying the requirements and linking them with the hardware system elements. For the Hardware engineering, the tool offers different levels of the EE architecture design: Three levels of modelling are used from the more abstract to the more detailed: Function level, Architecture level and Real Component (physical) level. The tool proposes libraries to enable the reuse of hardware components for the different design levels. The tool offers also a list of automatic generation modules such as the automatic generation of the documentation either for the Requirements or the Hardware model and the automatic generation of the BOM specification from the Hardware model. In this paper, we will present a specific use of the tool for the automotive domain. We will identify different requirements imposed by the automotive domain and show how the tool has contributed to satisfy these requirements.10.1109/MODELS-C.2019.00120 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904517Model-driven-engineering,-Hardware-engineering,-Requirements-engineeringIEEE Inglês
SoC Trust Validation Using Assertion-Based Security MonitorsK. Alatoun; B. Shankaranarayanan; S. M. Achyutha; R. Vemuri2021 Modern SoC applications include a variety of sensitive modules in which data must be protected against malicious access. Security vulnerabilities, when exercised during the SoC operation, lead to denial of service or disclosure of protected data. Hence, it is essential to undertake security validation before and after SoC fabrication and make provisions for continuous security assessment during operation. This paper presents a methodology for optimized post-deployment monitoring of SoC's security properties by migrating pre-fab design security assertions to post-fab run-time security monitors. We show that the method is scalable for large systems and complex properties by optimizing the hardware monitors and applying it to a large SoC design based on a OpenRISC-1200 SoC. About 40 security assertions were specified in System Verilog Assertions (SVA). Following formal verification, the assertions were synthesized into finite state machines and cross optimized. Following code generation in Verilog, commercial logic and layout synthesis tools were used to generate hardware monitors which were then integrated with the SoC design ready for fabrication.10.1109/ISQED51717.2021.9424363 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9424363System-on-Chip;Assertion Based Verification;System Verilog Assertions;Property Specification Language;Security and Hardware MonitorsIEEE Inglês
JSTAR: JavaScript Specification Type Analyzer using RefinementJ. Park; S. An; W. Shin; Y. Sim; S. Ryu 2021 JavaScript is one of the mainstream programming languages for client-side programming, server-side programming, and even embedded systems. Various JavaScript engines developed and maintained in diverse fields must conform to the syntax and semantics described in ECMAScript, the standard specification of JavaScript. Since an incorrect description in ECMAScript can lead to wrong JavaScript engine implementations, checking the correctness of ECMAScript is critical and essential. However, all the specification updates are currently manually reviewed by the Ecma Technical Committee 39 (TC39) without any automated tools. Moreover, in late 2014, the committee announced the yearly release cadence and open development process of ECMAScript to quickly adapt to evolving development environments. Because of such frequent updates, checking the correctness of ECMAScript becomes more labor-intensive and error-prone.To alleviate the problem, we propose JSTAR, a JavaScript Specification Type Analyzer using Refinement. It is the first tool that performs type analysis on JavaScript specifications and detects specification bugs using a bug detector. For a given specification, JSTAR first compiles each abstract algorithm written in a structured natural language to a corresponding function in IRES, an untyped intermediate representation for ECMAScript. Then, it performs type analysis for compiled functions with specification types defined in ECMAScript. Based on the result of type analysis, JSTAR detects specification bugs using a bug detector consisting of four checkers. To increase the precision of the type analysis, we present condition-based refinement for type analysis, which prunes out infeasible abstract states using conditions of assertions and branches. We evaluated JSTAR with all 864 versions in the official ECMAScript repository for the recent three years from 2018 to 2021. JSTAR took 137.3 seconds on average to perform type analysis for each version, and detected 157 type-related specification bugs with 59.2% precision; 93 out of 157 bugs are true bugs. Among them, 14 bugs are newly detected by JSTAR, and the committee confirmed them all.10.1109/ASE51524.2021.9678781 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9678781JavaScript;mechanized specification;type analysis;refinement;bug detectionIEEE Inglês
Verification of CTCS-3 using TMSVL Y. Wang; C. Li; X. Wang 2021 Chinese Train Control System 3 (CTCS-3) is a complex real-time and safety critical system. In order to check the real-time and safety property of CTCS-3 protocol, this paper presents an approach using Timed Modeling, Simulation and Verification Language (TMSVL) to model and verify the requirement specification. Firstly, the language TMSVL and its running tool, Timed Modeling, Simulation and Verification platform (TMSV), are briefly introduced. Then, TMSVL is used to model the simplified CTCS-3 system, and typical scenarios are selected for analysis. Some properties that the system needs to meet are extracted and expressed by Timed Propositional Projection Temporal Logic (TPPTL) formula. Finally, TMSV platform is used to verify whether the properties satisfy the real-time requirement.10.1109/DSA52907.2021.00105 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622990CTCS-3;TMSVL;model checking IEEE Inglês
Temporal Property-Based Testing of a Timed C Compiler using Time-Flow Graph SemanticsS. Natarajan; D. Broman 2020 The correctness of a real-time system depends both on it being logically sound and temporally correct. To guarantee temporal correctness, the development of such systems includes: (i) developing a model, (ii) formally verifying the model, and (iii) implementing the verified model using a programming language. The temporal correctness then depends on correctly implementing the model using a real-time programming language and compiling it to a hardware platform. Although the timing semantics of many real-time programming languages are well defined, there is no guarantee that the timing semantics of such programs are correctly translated by the compiler. In this paper, we propose a new method for temporal property-based testing. The general method is implemented and evaluated on the Timed C real-time programming language. We formalize the temporal core semantics of Timed C and then use this formalization to specify the properties that are tested by the new property-based testing tool. More specifically, the tool consist of two parts: (i) a generator that randomly generates Timed C programs, and (ii) a property checker that checks whether the language's timing semantics are correctly captured in its execution. We evaluate the method and tool on an embedded Raspberry Pi platform.10.1109/FDL50818.2020.9232935 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9232935- IEEE Inglês
A Formal Verification Method for Smart ContractX. Wang; X. Yang; C. Li 2020 Smart contract is a computer protocol running on the blockchain, which is widely used in various fields. However, its security problems continue to emerge. Therefore, it is necessary to audit the security of smart contract before it is deployed on the blockchain. Traditional testing methods cannot guarantee a high reliability and correctness required by the smart contract. This paper shows a method for using modeling, simulation and verification language (MSVL) and propositional projection temporal logic (PPTL) to model and verify the smart contract. First, a converter tool SOL2M which can convert Solidity program to MSVL program is developed. Then, the security properties of the smart contract are described by PPTL and a standardized process to verify the contract is designed through UMC4M (Unified Model Checker for MSVL). Finally, an example is given to illustrate the feasibility and practicability of this method in smart contract verification.10.1109/DSA51864.2020.00011 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049blockchains;Smart Contract;formal methods;MSVL IEEE Inglês
Web-based Editor for Signal Interpretation ModelsD. Gomes; R. Campos-Rebelo; F. Moutinho 2019 A web-based editor for Signal Interpretation Models (SIM) is presented in this paper. SIM is a modeling formalism specifically created to specify the occurrence of events based on signals variation. This formalism goal is not only to specify but also to support the validation and implementation of signals interpreters. These signals can be system input signals (environment signals) or system internal signals. The created web-based editor uses Asynchronous JavaScript and XML (AJAX) principles and runs at standard browsers. It supports the creation/edition of graphical SIM models, which are saved in XML files. The XML format and the well defined execution semantics of the SIM formalism, enable the integration of SIM with other tools. This means that the created models can be used as inputs in tools, such as automatic code generators, to create simulation or execution code (namely JavaScript, C, and VHDL). To illustrate the application of the developed editor, the model of a system that detects temperature sensor faults is presented. The created edition tool prototype is currently available at http://gres.uninova.pt/SIM-Tools/.10.1109/IECON.2019.8927437 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8927437Web-based Editor;Graphical Modeling Formalism;Signal Interpretation Model;Events;Model-Driven DevelopmentIEEE Inglês
An MDE-Based Tool for Early Analysis of UML2.0/PSM Atomic and Composite ComponentsT. S. Rouis; M. T. Bhiri; L. Sliman; M. Kmimech2020 System analysis is a crucial activity throughout component-based architecture design. It enables detecting and correcting errors in the early stage of the system development life cycle. In this article, we consider system analysis in UML2.0 component-based architectural design phase. This is done by proposing a model-driven engineering (MDE) tool called UML2Ada. It enables the systematic translation of a UML2.0 atomic and composite component into Ada concurrent language. This, in turn, supports the validation of the source description using an Ada dynamic analysis tools such as GNATprove and ObjectAda. In addition, by using an Ada static analysis tool such as FLAVERS or INCA, the proposed tool enables the detection of the potential behavioral concurrency properties of the Ada concurrent program.10.1109/JSYST.2019.2960501 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952652Ada concurrent program;analysis;model driven engineering (MDE);translation tool;UML2.0 componentIEEE Inglês
A Tool for the Automatic Generation of Test Cases and Oracles for Simulation Models Based on Functional RequirementsA. Arrieta; J. A. Agirre; G. Sagardui 2020 Simulation models are frequently used to model, simulate and test complex systems (e.g., Cyber-Physical Systems (CPSs)). To allow full test automation, test cases and test oracles are required. Safety standards (e.g., the ISO 26262) highly recommend that the test cases of systems like CPSs are associated to requirements. As a result, typically, test cases that need to cover specific requirements are manually generated in the context of simulation models. This is, of course, a time-consuming and non-systematic process. However, the current practice lacks tools that generate test cases by considering functional requirements for simulation-based testing. In this short paper we propose a Domain-Specific Language (DSL) for specifying requirements for simulation-based testing in an easy manner. These files are later parsed by an automatic test generation algorithm, which generates test cases that follow the ASAM-XiL standard. The tool was integrated with two professional tools: (1) SYNECT from dSPACE and (2) xMOD from FEV. An initial validation was also performed with an industrial simulation model from YASA motors.10.1109/ICSTW50294.2020.00018 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155827Simulation-based Testing;Functional Requirements;Test Case GenerationIEEE Inglês
A Pattern-Oriented Design Framework for Self-Adaptive Software SystemsP. Arcaini; R. Mirandola; E. Riccobene; P. Scandurra2019 Multiple interacting MAPE-K loops, structured according to specific interaction patterns, have been introduced to design the adaptation logic in case of decentralized self-adaptive software systems. Designing such complex systems requires the availability of tools where MAPE patterns can be easily instantiated to provide fast architectural solutions, and the encoding towards specific domains is facilitated by automatic mapping of such pattern instantiations in domain-specific languages; validation and verification must be also supported to assure correct development of reliable systems. In this paper, we present a pattern-oriented framework, based on the MSL (MAPE Specification Language) modeling language, for the design of self-adaptive systems. The framework supports: (i) explicit modeling of the adaptation logic in terms of patterns of interactive MAPE-K loops; (ii) ability to tailor MSL models for a specific application domain and synthesize from them other modeling artifacts/code according to a target implementation context and scope (e.g., OpenHAB); (iii) ability to perform validation and verification of MSL models by means of the ASMETA formal framework.10.1109/ICSA-C.2019.00037 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8712366Pattern-oriented design;self-adaptation;MAPE-K loops;MAPE patterns;ASMETA;OpenHABIEEE Inglês
Real-Time Collaborative Modeling across Language Workbenches – a Case on Jetbrains MPS and Eclipse SpoofaxS. N. Voogd; K. Aslam; L. Van Gool; B. Theelen; I. Malavolta2021 Software tools known as language workbenches are used to define and deploy custom (domain-specific) languages for the purpose of modeling (specific parts) of a system of interest. Because system modeling is a practice that stands to benefit from real-time collaboration, technologies offering real-time collaborative mechanisms for language workbenches are starting to make an appearance. However, these collaboration technologies are generally limited to providing collaboration among clients of a single designated workbench. If the collaborating engineers wish to use different workbenches to work on the model, cross-platform support for collaborative modeling becomes a necessity. In this paper we propose Parsafix, a tool-based approach for achieving real-time collaboration between different language workbenches for users collaborating on models conforming to the same domain-specific language. We propose the main components and mechanisms that make up Parsafix, as well as the implementation of a prototype tool supporting those mechanisms. The prototype tool allows for collaboration between users of JetBrains MPS and Spoofax (within the Eclipse IDE), by making use of the IDEs’ respective real-time collaboration technologies Modelix and Saros. A hands-on session is proposed to showcase the feasibility of having collaborative modeling across different language workbenches through Parsafix.10.1109/MODELS-C53483.2021.00011 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643799Model-driven development;Computer languages;Collaboration IEEE Inglês
Salty-A Domain Specific Language for GR(1) Specifications and DesignsT. Elliott; M. Alshiekh; L. R. Humphrey; L. Pike; U. Topcu2019 Designing robot controllers that correctly react to changes in the environment is a time-consuming and error-prone process. An alternative is to use “correct-by-construction” synthesis approaches to automatically generate controller designs from high-level specifications. In particular, Generalized Reactivity(l) or GR(1) specifications are well-suited to express specifications for robots that must act in dynamic environments, and approaches to generate controller designs from GR(1) specifications are highly computationally efficient. Toward that end, this paper presents Salty, a domain-specific language for GR(1) specifications. While tools exist to synthesize system designs from GR(1) specifications, Salty makes such specifications easier to write and debug by supporting features such as richer input and output types, user-defined macros, common specification patterns, and specification optimization and sanity checking. Salty interfaces with the separately developed synthesis tool Slugs to produce a system or controller design, and Salty translates this design to a software implementation in a variety of languages. We demonstrate Salty on an application involving coordination of multiple unmanned air vehicles (UAVs) and provide a workflow for connecting synthesized UAV controllers to freely available UAV planning and simulation software suites UxAS and AMASE.10.1109/ICRA.2019.8793722 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722- IEEE Inglês
Combining Model-Based Testing and Automated Analysis of Behavioural Models using GraphWalker and UPPAALS. Tiwari; K. Iyer; E. P. Enoiu 2022 Model-based Testing (MBT) has been proposed to create test cases more efficiently and effectively. In contrast, analysis techniques (e.g., model checking) have been used separately from testing and have shown great potential when applied early in the development process. Still, these are confronted by applicability and scalability issues and work on specific modeling languages. The combined use of MBT and analysis techniques can support engineers in using both dynamic and static techniques. This paper proposes a hybrid approach by combining MBT using GraphWalker (GW) with Model-Based Analysis using UPPAAL by transforming the GW model into UPPAAL timed automata and supporting a combined analysis and testing process. The approach enables the automatic verification of both reachability and deadlock freedom properties to exploit the results obtained from this analysis step to improve the test model before generating and executing test cases on the system under test. The proposed approach can improve the combination of analysis and testing using a promising open-source MBT tool and is currently being evaluated in the context of actual use cases.10.1109/APSEC57359.2022.00061 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283Model-Based Testing;analysis;behavioural models;model checking;GraphWalker;UPPAALIEEE Inglês
Integrated Automotive Requirements Engineering with a SysML-Based Domain-Specific LanguageR. Maschotta; A. Wichmann; A. Zimmermann; K. Gruber2019 The rising overall complexity of modern cars as a special case of mechatronic systems leads to an increasing number of functions implemented by electric and electronic (E/E-) systems. Well-known design problems of complex modular systems arise out of this. To achieve high-quality standards along the whole product life cycle, modern systems and software engineering methods and techniques are necessary. Model-based approaches are widely used in the automotive domain, based on different types of models used in development phases at different abstraction levels. The Unified Modeling Language and the Systems Modeling Language are general-propose modeling languages that are widely used in the automotive domain. However, there are several domain-specific languages that support the automotive domain more specifically. A domain-specific SysML profile for functional and nonfunctional requirements in automotive technical systems has been proposed in our previous work. This paper describes our model-driven approach to specify domain-specific languages and corresponding domain-specific tools. The specifications are based on UML extensions using profiles only, which is a lightweight approach compared to other proposals. This allows the reuse and extension of existing UML or SysML models. A domain-specific graphical editor is presented in this paper based on the specified extensions. The resulting graphical editor is used to model an automotive technical system as an example.10.1109/ICMECH.2019.8722951 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951Automotive system design;integrated mechatronic design;model analysis;model queries;UML;SysML;validation;model-driven engineering;Eclipse SiriusIEEE Inglês
Proof of Properties of a Syntax Analyzer of Robotic Mission PlansL. NANA; F. MONIN; S. GIRE 2019 In order to enhance the dependability of robotic missions designed with the help of the language PILOT, an incremental syntactic analyzer has been built. We have shown, with the help of the SWI-Prolog tool, that the analyzer allows to build all and only all the plans which are syntactically correct under some size. This proof has been done only for plans whose size is less than a threshold, because of a combinatory explosion problem inherent to the working of Prolog and to the used approach. In order to show the validity of the incremental syntactic analyzer for all plans, without any size constraint, we turned to the use of proof-based approaches, and particularly towards PVS tool. This paper deals with the modeling and verification of PILOT plans and their properties with the help of PVS, in order to prove the above properties of the incremental syntactic analyzer of PILOT.10.1109/ICRAIE47735.2019.9037782 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9037782Missions programming;robotics;modeling;verification;proof IEEE Inglês
SecML: A Proposed Modeling Language for CyberSecurityC. Easttom 2019 Cybersecurity is a comparatively new discipline, related to computer science, electrical engineering, and similar subjects. As a newer discipline it lacks some of the tools found in more established subject areas. As one example, many engineering disciplines have modeling languages specific for that engineering discipline. As two examples, software engineering utilizes Unified Modeling Language (UML) and systems engineering uses System Modeling Language (SysML). Cybersecurity engineering lacks such a generalized modeling language. Cybersecurity as a profession would be enhanced with a security specific modeling language. This paper describes such a modeling language. The model is described in sufficient detail to be actionable and applicable. However, suggestions for future work are also provided.10.1109/UEMCON47517.2019.8993105 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105Cybersecurity;Modeling languages;Engineering;Cybersecurity engineering;SysML;Systems EngineeringIEEE Inglês
Specification and Automated Analysis of Inter-Parameter Dependencies in Web APIsA. Martin-Lopez; S. Segura; C. Müller; A. Ruiz-Cortés2022 Web services often impose inter-parameter dependencies that restrict the way in which two or more input parameters can be combined to form valid calls to the service. Unfortunately, current specification languages for web services like the OpenAPI Specification (OAS) provide no support for the formal description of such dependencies, which makes it hardly possible to automatically discover and interact with services without human intervention. In this article, we present an approach for the specification and automated analysis of inter-parameter dependencies in web APIs. We first present a domain-specific language, called Inter-parameter Dependency Language (IDL), for the specification of dependencies among input parameters in web services. Then, we propose a mapping to translate an IDL document into a constraint satisfaction problem (CSP), enabling the automated analysis of IDL specifications using standard CSP-based reasoning operations. Specifically, we present a catalogue of seven analysis operations on IDL documents allowing to compute, for example, whether a given request satisfies all the dependencies of the service. Finally, we present a tool suite including an editor, a parser, an OAS extension, a constraint programming-aided library, and a test suite supporting IDL specifications and their analyses. Together, these contributions pave the way for a new range of specification-driven applications in areas such as code generation and testing.10.1109/TSC.2021.3050610 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562Web API;REST;inter-parameter dependency;DSL;automated analysisIEEE Inglês
Formalizing Cyber–Physical System Model Transformation Via Abstract InterpretationN. Jarus; S. S. Sarvestani; A. Hurson 2019 Model transformation tools assist system designers by reducing the labor-intensive task of creating and updating models of various aspects of systems, ensuring that modeling assumptions remain consistent across every model of a system, and identifying constraints on system design imposed by these modeling assumptions. We have proposed a model transformation approach based on abstract interpretation, a static program analysis technique. Abstract interpretation allows us to define transformations that are provably correct and specific. This work develops the foundations of this approach to model transformation. We define model transformation in terms of abstract interpretation and prove the soundness of our approach. Furthermore, we develop formalisms useful for encoding model properties. This work provides a methodology for relating models of different aspects of a system and for applying modeling techniques from one system domain, such as smart power grids, to other domains, such as water distribution networks.10.1109/HASE.2019.00025 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032Modeling, Model transformation, Formal methods, Abstract interpretationIEEE Inglês
Analyzing the Validation Flaws of Online Shopping Systems Based on Coloured Petri NetsW. Yu; L. Liu; Y. An; X. Zhai 2019 Online shopping systems integrating multiple participants have rapidly developed worldwide. The complex business interactions among the multiple participants introduce new security problems, and the validation flaw is one of the main issues. A legal user can utilize the validation flaws, by some special behaviours, to obtain illegal interests. To deal with above issue, we propose the process to analyze validation flaws by formal methods based on CPN (Coloured Petri nets). The modeling method is based on CPN Modeling Language, and the analyzing process utilizes the transaction properties of online shopping systems. CPN tools can provide the basic support to the analyzing process. A case study throughout this work is used to illustrate the proposed methodology.10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00304https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216formal model;Petri net;online shopping;validation;security IEEE Inglês
Formal Verification of 5G EAP-AKA protocolM. Ajit; S. Sankaran; K. Jain 2021 The advent of 5G, one of the most recent and promising technologies currently under deployment, fulfills the emerging needs of mobile subscribers by introducing several new technological advancements. However, this may lead to numerous attacks in the emerging 5G networks. Thus, to guarantee the secure transmission of user data, 5G Authentication protocols such as Extensible Authentication Protocol - Authenticated Key Agreement Protocol (EAP-AKA) were developed. These protocols play an important role in ensuring security to the users as well as their data. However, there exists no guarantees about the security of the protocols. Thus formal verification is necessary to ensure that the authentication protocols are devoid of vulnerabilities or security loopholes. Towards this goal, we formally verify the security of the 5G EAP-AKA protocol using an automated verification tool called ProVerif. ProVerif identifies traces of attacks and checks for security loopholes that can be accessed by the attackers. In addition, we model the complete architecture of the 5G EAP-AKA protocol using the language called typed pi-calculus and analyze the protocol architecture through symbolic model checking. Our analysis shows that some cryptographic parameters in the architecture can be accessed by the attackers which cause the corresponding security properties to be violated.10.1109/ITNAC53136.2021.9652163 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=96521635G network;Authentication protocol;ProVerif;5G EAP-AKA;formal verification;applied Pi-CalculusIEEE Inglês
Automatic Generation of Simulink Models to Find Bugs in a Cyber-Physical System Tool Chain using Deep LearningS. L. Shrestha 2020 Testing cyber-physical system (CPS) development tools such as MathWorks' Simulink is very important as they are widely used in design, simulation, and verification of CPS data-flow models. Existing randomized differential testing frameworks such as SLforge leverages semi-formal Simulink specifications to guide random model generation which requires significant research and engineering investment along with the need to manually update the tool, whenever MathWorks updates model validity rules. To address the limitations, we propose to learn validity rules automatically by learning a language model using our framework DeepFuzzSL from existing corpus of Simulink models. In our experiments, DeepFuz-zSL consistently generate over 90% valid Simulink models and also found 2 confirmed bugs by MathWorks Support.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270395model driven software engineering;deep learning;fuzzing;compiler testing;LSTM;language models;Simulink;CPSIEEE Inglês
Sampling of Shape Expressions with ShapExN. Basset; T. Dang; F. Gigler; C. Mateis; D. Ničković2021 In this paper we present SHAPEx, a tool that generates random behaviors from shape expressions, a formal specification language for describing sophisticated temporal behaviors of CPS. The tool samples a random behavior in two steps: (1) it first explores the space of qualitative parameterized shapes and then (2) instantiates parameters by sampling a possibly non-linear constraint. We implement several sampling strategies in the tool that we present in the paper and demonstrate its applicability on two use scenarios.10.1145/3487212.3487350 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952shape expressions;sampling;hit-and-run;testing IEEE Inglês
Synthesizing Verified Components for Cyber Assured Systems EngineeringE. Mercer; K. Slind; I. Amundson; D. Cofer; J. Babar; D. Hardin2021 Cyber-physical systems, such as avionics, must be tolerant to cyber-attacks in the same way they are tolerant to random faults: they either gracefully recover or safely shut down as requirements dictate. The DARPA Cyber Assured Systems Engineering program is developing tools for design, analysis, and verification that enable systems engineers to design-in cyber-resiliency in a Model-Based Systems Engineering environment. This paper describes automated model transformations that introduce high-assurance cyber-resiliency components into a system, in particular filters and monitors that prevent malicious input and detect supply chain attacks, respectively. A formal specification defines each high-assurance component, and is used to verify that the component addresses system level cyber requirements. Implementations for these high-assurance components are directly synthesized from their specifications, and are automatically proven to preserve the exact meaning of the specifications all the way down to the binary code level. The model transformations are integrated into the Open Source AADL Tool Environment (OSATE). The paper further reports on a case study applying security-enhancing model transformations to a UAV system that uses the Air Force Research Laboratory's OpenUxAS services for route planning. In the case study, the model transformations add filters to guard against malformed input, as well as monitors to guard against ground station spoofing and malicious flight plans from OpenUxAS.10.1109/MODELS50736.2021.00029 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592420cyber physical systems;cyber assured systems;cyber resiliency;automated code synthesis;code synthesis correctness;AADL;AGREE;SPLATIEEE Inglês
Implementation of the simple domain-specific language for system testing in V-Model development lifecycleS. Popic; V. Komadina; R. Arsenovic; M. Stepanovic2020 This paper presents easy to use domain-specific language for system testing in V-model development lifecycle. The systematic approach offered by the domain-specific language for system testing eliminates miscommunications between testers and requirement engineers making the testing closer to the requirement engineers. This concept enables automation in the generation of the tests based on given System Requirements in the future. As many would argue on V-Model's difficulty to align system requirements and system tests, this approach enables better mapping between those two parts of the V-diagram. This will make no functional requirement missing its counterpart in testing and vice-versa.10.1109/ZINC50678.2020.9161781 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9161781domain-specific language;V-model;system testing IEEE Inglês
Promela and Spin Formal Verification of an M-Health Medical Social Media SystemS. M. S. Al-Gayar; N. Goga; N. A. J. Al-Habeeb2019 The process of detecting and identifying errors early in the life-cycle of any software has many challenges. The tools used for model checking are however becoming more effective and usable because they are helping the identification of errors. This has empowered users to apply model checking to large-scale problems. The process of validating the model implementation is normally harder. We created a Promela model by using a model checker called Spin in order to verify the Medical Social Media System based on Social Oriented Networks by using M-Health technology and sensors in smartphones and bracelets for medical data acquisition, in order for it to be used in the healthcare sector in Iraq. For the Promela Model, we first described the behaviors of the Medical Social Media Systems via UML timelines. After that, we combined the UML timelines in state diagrams that were finally transformed into a Promela model and verified with the Spin model checker.10.1109/ICACTM.2019.8776807 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776807UML;Verification;Validation;Promela;Spin;M-Health;Social Oriented NetworksIEEE Inglês
Formal Verification and Performance Analysis of a New Data Exchange Protocol for Connected VehiclesS. Chouali; A. Boukerche; A. Mostefaoui; M. A. Merzoug2020 In this article, we focus on the usage of MQTT (Message Queuing Telemetry Transport) within Connected Vehicles (CVs). Indeed, in the original version of MQTT protocol, the broker is responsible “only” for sending received data to subscribers; abstracting then the underlying mechanism of data exchange. However, within CVs context, subscribers (i.e., the processing infrastructure) may be overloaded with irrelevant data, in particular when the requirement is real or near real-time processing. To overcome this issue, we propose MQTT-CV; a new variant of MQTT protocol, in which the broker is able to perform local processing in order to reduce the workload at the infrastructure; i.e., filtering data before sending them. In this article, we first validate formally the correctness of MQTT-CV protocol (i.e., the three components of the proposed protocol are correctly interacting), through the use of Promela language and its system verification tool; the model checker SPIN. Secondly, using real-world data provided by our car manufacturer partner, we have conducted real implementation and experiments. The obtained results show the effectiveness of our approach in term of data workload reduction at the processing infrastructure. The mean improvement, besides the fact that it is dependent of the target application, was in general about 10 times less in comparison to native MQTT protocol.10.1109/TVT.2020.3040817 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870Connected vehicles;data filtration;formal analysis;formal verification;MQTT;promela;SPINIEEE Inglês
Enhancing NL Requirements Formalisation Using a Quality Checking ModelM. Osama; A. Zaki-Ismail; M. Abdelrazek; J. Grundy; A. Ibrahim2021 The formalisation of natural language (NL) requirements is a challenging problem because NL is inherently vague and imprecise. Existing formalisation approaches only support requirements adhering to specific boilerplates or templates, and are affected by the requirements quality issues. Several quality models are developed to assess the quality of NL requirements. However, they do not focus on the quality issues affecting the formalisability of requirements. Such issues can greatly compromise the operation of complex systems and even lead to catastrophic consequences or loss of life (in case of critical systems). In this paper, we propose a requirements quality checking approach utilising natural language processing (NLP) analysis. The approach assesses the quality of the requirements against a quality model that we developed to enhance the formalisability of NL requirements. We evaluate the effectiveness of our approach by comparing the formalisation efficiency of a recent automatic formalisation technique before and after utilising our approach. The results show an increase of approximately 15% in the F-measure (from 83.8% to 98%).10.1109/RE51729.2021.00064 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604549Requirements specification;Requirements analysis;Quality analysisIEEE Inglês
Verification of Cloud Security Policies L. Miller; P. Mérindol; A. Gallais; C. Pelsser 2021 Companies like Netflix increasingly use the cloud to deploy their business processes. Those processes often involve partnerships with other companies, and can be modeled as workflows where the owner of the data at risk interacts with contractors to realize a sequence of tasks on the data to be secured.In practice, access control is an essential building block to deploy these secured workflows. This component is generally managed by administrators using high-level policies meant to represent the requirements and restrictions put on the workflow. Handling access control with a high-level scheme comes with the benefit of separating the problem of specification, i.e. defining the desired behavior of the system, from the problem of implementation, i.e. enforcing this desired behavior. However, translating such high-level policies into a deployed implementation can be error-prone.Even though semi-automatic and automatic tools have been proposed to assist this translation, policy verification remains highly challenging in practice. In this paper, our aim is to define and propose structures assisting the checking and correction of potential errors introduced on the ground due to a faulty translation or corrupted deployments. In particular, we investigate structures with formal foundations able to naturally model policies. Metagraphs, a generalized graph theoretic structure, fulfill those requirements: their usage enables to compare high-level policies to their implementation. In practice, we consider Rego, a language used by companies like Netflix and Plex for their release process, as a valuable representative of most common policy languages. We propose a suite of tools transforming and checking policies as metagraphs, and use them in a global framework to show how policy verification can be achieved with such structures. Finally, we evaluate the performance of our verification method.10.1109/HPSR52026.2021.9481870 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9481870policy verification;metagraphs;policy modeling;rego;access control;authorizationIEEE Inglês
Real-Time System Modeling and Verification Through Labeled Transition System AnalyzerY. Yang; Q. Zu; W. Ke; M. Zhang; X. Li 2019 Model checking as a computer-assisted verification method is widely used in many fields to verify whether a design model satisfies the requirements specifications of the target system. In practice, it is difficult to design a system without the sophisticated requirements analysis. Unlike other model checking tools, the labeled transition system analyzer (LTSA) not only can specify the property specifications of the target system but also provides a structure diagram to specify the system architecture of the requirements model, which can be further used to design the target system. In this paper, we demonstrate the abilities of LTSA shipped with the classic case study of the steam boiler system. In the requirements analysis, the LTSA can specify the cyber and physical components of the target system and interactions between the components and the safety properties of the target system. In system design, the LTSA can automatically generate a start-up design model as the finite state process from the requirements model, and then a design model can be further accomplished by system architects and developers. Finally, the LTSA can automatically verify whether the design model meets the requirements specifications. Our work demonstrates the potential power of model checking tools can be applied and useful in software engineering for requirements analysis, system design, and verification.10.1109/ACCESS.2019.2899761 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8642885LTSA;model checking;steam boiler;UML IEEE Inglês
Using a Model Based Systems Engineering Approach for Aerospace System Requirements ManagementS. Subarna; A. K. Jawale; A. S. Vidap; S. D. Sadachar; S. Fliginger; S. Myla2020 Since systems engineering encompasses the entire scope of a system, successful systems engineering should embody efficient requirements management through a collaborative and interdisciplinary approach. Model Based Systems Engineering (MBSE) is an emerging field, which applies a model-based framework to the elements of a system comprised of requirements, system functions, analysis results, validation and verification artifacts. The effective comprehension of a complex system is more easily visualized through a model-based approach than a document centric one. The representative models and the inherent traceability which one receives through visual associations provides more effective requirements traceability and analysis; and, thus leading to fewer technical risks, earlier detection and resolution of issues, and helps keep schedules and costs in check. This approach yields better, clearer, and more concise requirements and in turn aids in more effective verification and validation processes as well as more expedient impact analyses of unforeseen changes. This paper describes MBSE through SysML (System Modelling Language) by application on a complex aerospace system. The study qualitatively and quantitatively discusses the value addition of such an implementation using commercially available tools that equip SysML to achieve MBSE in systems. SysML is a domain-specific modeling language developed for systems engineering to specify, analyze, design, optimize, and verify systems. From a practitioner's standpoint, this MBSE approach can be used to engineer any complex system from satellite programs to transport networks.10.1109/DASC50938.2020.9256589 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256589MBSE;SysML;Traceability;Verification;Validation;Requirements Engineering;Requirements ManagementIEEE Inglês
CIM-CSS: A Formal Modeling Approach to Context Identification and Management for Intelligent Context-Sensitive SystemsA. M. Baddour; J. Sang; H. Hu; M. A. Akbar; H. Loulou; A. Ali; K. Gulzar2019 Context modeling is often used to relate the context in which a system will operate to the entities of interest in the problem domain. It remains the case that context models are inadequate in emerging computing paradigms (e.g., smart spaces and the Internet of Things), in which the relevance of context is shaped dynamically by the changing needs of users. Formal models are required to fuse and interpret contextual information obtained from the heterogeneous sources. In this paper, we propose an integrated and formal context modeling approach for intelligent systems operating in the context-sensitive environments. We introduce a goal-driven, entity-centered identification method for determining which context elements are influential in adapting the system behavior. We then describe a four-layered framework for metamodeling the identification and management of context. First, the framework presents a formal metamodel of context. A formalization of context using the first-order logic with relational operators is then presented to specify formally the context information at different abstraction levels. The metamodel, therefore, prepares the ground for building a formal modeling language and automated support tool (https://github.com/metamodeler/CIM-CSS/). The proposed model is then evaluated using an application scenario in the smart meeting rooms domain, and the results are analyzed qualitatively.10.1109/ACCESS.2019.2931001 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087Context modeling;context aware systems;unified modeling language;computational modeling;object recognition;data models;complexity theoryIEEE Inglês
Clustering for Traceability Managing in System SpecificationsM. Mezghani; J. Kang; E. -B. Kang; F. Sedes 2019 System specifications are generally organized according to several documents hierarchies levels linked in order to represent the traceability information. Requirements engineering experts verify manually the links between each specification which allows to generate a traceability matrix. The purpose of this paper is to automatize the generation of the traceability matrix since it is a time consuming and costly task. We propose an artificial intelligence based approach to deal with this problem through a clustering approach. This latter is an unsupervised algorithm that doesn't need any prior knowledge on the language neither the domain of the specifications. Our approach generates duplicates and clusters containing linked requirements. We experiment our approach in an aeronautic domain and a space domain. We obtain better results for high level specifications especially with a pre-processing.10.1109/RE.2019.00035 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920512Requirements engineering;Traceability;Clustering;System specifications documents;Documents hierarchiesIEEE Inglês
The Post Language: Process-Oriented Extension for IEC 61131-3 Structured TextV. Bashev; I. Anureev; V. Zyubin 2020 This paper introduces a new programming language for control software specification. The language called poST is a process-oriented extension of the IEC 61131-3 Structured Text language widely used in the PLC domain. The poST language enables control software specification as a set of interacting FSM-based processes that have event-driven behaviour and operate with time intervals. The language is intended to provide a possibility to use the process-oriented approach for IEC 61131-3 users and comparing to the other process-oriented languages poST is easy to learn for the IEC 61131-3 community. An IDE for poST was developed with Eclipse (Xtext) toolset. Paper illustrates the poST language using for a hand dryer control software: we provide the source poST code and the generated C code for Arduino (ATmega 168) platform.10.1109/RusAutoCon49822.2020.9208049 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049process-oriented programming;PLC languages;IEC 61131-3;Structured TextIEEE Inglês

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9520285
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643661
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643786
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933613
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672570
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904872
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474392
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9444417
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9301533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643713
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9512884
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836895
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643678
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9574649
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507717
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904517
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9424363
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9678781
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622990
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9232935
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8927437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952652
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155827
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8712366
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643799
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9037782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9652163
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270395
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592420
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9161781
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776807
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604549
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9481870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8642885
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920512
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049

An Ontology-Based Approach to the Domain Specific Languages DesignL. N. Lyadova; A. O. Sukhov; M. R. Nureev 2021 Developing software systems for various domains is a complex task. The quality of the system, corresponding to the domain requirements, can only be achieved via involving the model development of experts in the relevant fields. Traditional design methods based on the using professional tools and modeling languages are difficult for subject matter experts. Using Domain Specific Languages (DSL) have been increasingly gaining attention of developers because DSLs are created to cope with specific domain particularities. However, DSL development consists of several steps to be performed can be hard. Identifying the correct set of elements and constructions of DSL, defining their constraints can be very error-prone. Automation of the new DSLs development is relevant task. The designing of new DSLs should be based on the knowledge of experts, which can be represented using an ontology. An approach to DSM platform development based on using multifaceted ontology to DSL design is proposed. Examples of DSLs and models illustrating the applicability of the proposed methodology are described.10.1109/AICT52784.2021.9620493 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9620493domain specific modeling;DSM;domain specific language;DSL;visual language;metamodeling;DSM platform;language toolkits;metamodel generation;multifaceted ontologyIEEE Inglês
Finding Anomalies in Scratch Assignments N. Körber; K. Geldreich; A. Stahlbauer; G. Fraser2021 In programming education, teachers need to monitor and assess the progress of their students by investigating the code they write. Code quality of programs written in traditional programming languages can be automatically assessed with automated tests, verification tools, or linters. In many cases these approaches rely on some form of manually written formal specification to analyze the given programs. Writing such specifications, however, is hard for teachers, who are often not adequately trained for this task. Furthermore, similar support for popular block-based introductory programming languages like Scratch is lacking. Anomaly detection is an approach to automatically identify deviations of common behavior in datasets without any need for writing a specification. In this paper, we use anomaly detection to automatically find deviations of Scratch code in a classroom setting, where anomalies can represent erroneous code, alternative solutions, or distinguished work. Evaluation on solutions of different programming tasks demonstrates that anomaly detection can successfully be applied to tightly specified as well as open-ended programming tasks.10.1109/ICSE-SEET52601.2021.00027 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402175Anomaly Detection, Scratch, Block-Based Programming, Program Analysis, TeachingIEEE Inglês
A Rule-Based Language for Configurable N-way Model MatchingM. -S. Kasaei; M. Sharbaf; B. Zamani 2022 To build complex software-intensive systems, different stakeholders from diverse domains must collaborate to create and modify models. Model matching is a fundamental precondition of collaborative development, which is concerned with identifying common elements in input models. When stakeholders work on multiple models, they need to simultaneously compare all models to better understand differences and similarities. However, the literature shows no consensus on how to specify comparison criteria for matching multiple models, especially in a form that is independent of modeling language, which hampers their reuse and adoption. In this paper, we present a rule-based formalism that enables the user to specify their comparison criteria for multiple models at a high level of abstraction. We also introduce an N-way matching algorithm for comparing both homogeneous and heterogeneous models. As the tool support, we implemented a syntax-aware editor and a parser for specifying comparison rules for EMF-based models. The evaluation of our formalism shows that it is applicable in real modeling scenarios.10.1109/ICCKE57176.2022.9960014 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014Model Comparison;N-way Matching;Formal Specification Language;Model-Driven EngineeringIEEE Inglês
A Lean Approach to Building Valid Model-Based Safety ArgumentsT. Viger; L. Murphy; A. Di Sandro; R. Shahin; M. Chechik2021 In recent decades, cyber-physical systems developed using Model-Driven Engineering (MDE) techniques have become ubiquitous in safety-critical domains. Safety assurance cases (ACs) are structured arguments designed to comprehensively show that such systems are safe; however, the reasoning steps, or strategies, used in AC arguments are often informal and difficult to rigorously evaluate. Consequently, AC arguments are prone to fallacies, and unsafe systems have been deployed as a result of fallacious ACs. To mitigate this problem, prior work [32] created a set of provably valid AC strategy templates to guide developers in building rigorous ACs. Yet instantiations of these templates remain error-prone and still need to be reviewed manually. In this paper, we report on using the interactive theorem prover Lean to bridge the gap between safety arguments and rigorous model-based reasoning. We generate formal, modelbased machine-checked AC arguments, taking advantage of the traceability between model and safety artifacts, and mitigating errors that could arise from manual argument assessment. The approach is implemented in an extended version of the MMINT-A model management tool [10]. Implementation includes a conversion of informal claims into formal Lean properties, decomposition into formal sub-properties and generation of correctness proofs. We demonstrate the applicability of the approach on two safety case studies from the literature.10.1109/MODELS50736.2021.00028 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592441Assurance;safety cases;strategies;theorem proving;Lean IEEE Inglês
GDF: A Gamification Design Framework Powered by Model-Driven EngineeringA. Bucchiarone; A. Cicchetti; A. Marconi 2019 Gamification refers to the exploitation of gaming mechanisms for serious purposes, like promoting behavioural changes, soliciting participation and engagement in activities, and so forth. In this demo paper we present the Gamification Design Framework (GDF), a tool for designing gamified applications through model-driven engineering mechanisms. In particular, the framework is based on a set of well-defined modelling layers that start from the definition of the main gamification elements, followed by the specification on how those elements are composed to design games, and then progressively refined to reach concrete game implementation and execution. The layers are interconnected through specialization/generalization relationships such that to realize a multi-level modelling approach. The approach is implemented by means of JetBrains MPS, a language workbench based on projectional editing, and has been validated through two gameful systems in the Education and Mobility domains. A prototype implementation of GDF and related artefacts are available at the demo GitHub repository: https://github.com/antbucc/GDF.git, while an illustrative demo of the framework features and their exploitation for the case studies are shown in the following video: https://youtu.be/wxCe6CTeHXk.10.1109/MODELS-C.2019.00117 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904523Gamification Design Framework;Multi-Level Modelling;Model-Driven Engineering;JetBrains MPSIEEE Inglês
A Semantics Modeling Approach Supporting Property Verification based on Satisfiability Modulo TheoriesJ. Chen; J. Lu; G. Wang; L. Feng; D. Kiritsis 2022 Property verification in Model-based systems engineering (MBSE) supports the formalization of model properties and evaluates the constraints of model properties to select an optimal system architecture from alternatives for tradeoff optimization. However, there is a lack of an integrated method that property verification enables to be applied in multi domain specific modeling languages, which is not conductive to the reuse of property verification for different architecture and may increase the learning and use cost. To solve the problem, a semantic approach combining a unified modeling method GOPPRRE modeling method with Satisfiability Modulo Theories (SMT) is proposed to realize property verification. The syntax of the multi-architecture modeling language KARMA based on the GOPPRRE modeling method is extended to realize property verification based on Satisfiability Modulo Theories, which enables the KARMA language to verify the models by evaluating the constraints which are defined based on the model properties. The proposed approach supports the evaluation of property constraints defined by different modeling languages for trade-off optimization in a unified language. The approach is evaluated by a case of optimizing the matching between workers and processes in a multi-architecture modeling tool MetaGraph which is developed based on KARMA. From the result, such approach enables to evaluate constraints consisting of properties and select an optimal scheme from the alternatives.10.1109/SysCon53536.2022.9773841 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773841Property verification;KARMA;GOPPRRE;SMT;MBSE IEEE Inglês
Extending HLS with High-Level Descriptive Language for Configurable Algorithm-Level Spatial Structure DesignC. Wang; S. Huang; W. -M. Hwu; D. Chen 2021 High-level synthesis (HLS) tools have greatly improved the development efficiency of FPGA accelerators in many application areas. With the HLS tools, FPGA designers can focus more on algorithm specifications using software languages such as C/C++, OpenCL, and Python. However, due to the fact that CPU-oriented software languages are designed to describe sequential execution, the repurposing of these languages yields insufficient support for describing parallel data execution and flexible spatial structures on FPGA architecture. To strengthen HLS’s ability to describe configurable algorithmlevel spatial structures, we propose fusing hardware-friendly design patterns, namely high-level descriptive language, into imperative programming model on Python.10.1109/FCCM51124.2021.00048 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9443656FPGA;HLS IEEE Inglês
A multi-view and programming language agnostic framework for model-driven engineeringR. Jordão; F. Bahrami; R. Chen; I. Sander 2022 Model-driven engineering (MDE) addresses the complexity of modern-day embedded system design. Multiple MDE frameworks are often integrated into a design process to use each MDE framework’s state-of-the-art tools for increased productivity. However, this integration requires substantial development effort.In this paper, we propose an MDE framework based on a formalism of system graphs and trait hierarchies for programming-language-agnostic integration between tools within our frame-work and with tools of other MDE frameworks. Implementing our framework for each programming language is a one-time development effort.We evaluate our proposal in an MDE design process by developing a Java supporting library and an AMALTHEA connector. Then we perform an MDE industrial avionics case study with both. The evaluation shows that our framework facilitates the integration of different tools and the independent development of different system parts. Therefore, our framework is a reliable MDE framework that lowers the effort of integrating tools to benefit from their combined state-of-the-art.10.1109/FDL56239.2022.9925666 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666Model-driven Engineering;System Modelling;Collaborative Tools IEEE Inglês
CATE: CAusality Tree Extractor from Natural Language RequirementsN. Jadallah; J. Fischbach; J. Frattini; A. Vogelsang2021 Causal relations (If A, then B) are prevalent in requirements artifacts. Automatically extracting causal relations from requirements holds great potential for various RE activities (e.g., automatic derivation of suitable test cases). However, we lack an approach capable of extracting causal relations from natural language with reasonable performance. In this paper, we present our tool CATE (CAusality Tree Extractor), which is able to parse the composition of a causal relation as a tree structure. CATE does not only provide an overview of causes and effects in a sentence, but also reveals their semantic coherence by translating the causal relation into a binary tree. We encourage fellow researchers and practitioners to use CATE at https://causalitytreeextractor.com/10.1109/REW53955.2021.00018 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582405Tool;Natural Language Processing;Causality Extraction IEEE Inglês
On Complementing an Undergraduate Software Engineering Course with Formal MethodsB. Westphal 2020 Software systems continue to pervade day-to-day life and so it becomes increasingly important to ensure the dependability, safety, and security of software. One approach to this end can be summarised under the broad term of formal methods, i.e., the formal analysis of requirements, software models, or programs. Formal methods in this sense are today used in many branches of the software industry, such as the huge internet companies, aerospace, automotive, etc. and even made their way into small to medium sized enterprises. In this article, we argue the opinion that today's students (and tomorrow's engineers) need to be provided with a basic understanding of formal methods in the broad sense (what is it, how does it feel to use it, what are advantages and limitations) already in undergraduate introductions to software engineering. We propose a generic course design that complements (otherwise completely ordinary) undergraduate introductions to software engineering with formal semantics and analyses of (visual) software description languages. We report on five years of teaching an implementation of the course design that indicate the feasibility of teaching without sacrificing classical software engineering topics and without over-straining students wrt. level or workload.10.1109/CSEET49119.2020.9206234 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234Teaching;Formal Methods;Software Engineering IEEE Inglês
Prioritizing Scenarios based on STAMP/STPA Using Statistical Model CheckingM. Tsuji; T. Takai; K. Kakimoto; N. Ishihama; M. Katahira; H. Iida2020 Recently, a hazard analysis technique STAMP/STPA has been widely accepted since it is recognized as being suitable for software-intensive systems. Using STAMP/STPA, we can find hazardous scenarios of the target system that cannot be obtained by other traditional hazard analysis methods and those scenarios can be used for validation testing. However, generally the number of obtained scenarios can be huge and the validation testing involves a considerable cost. In this study, we propose a method to prioritize hazardous scenarios identified by STAMP/STPA with the help of a statistical model-checking technique. We give a procedure for systematically transforming the model defined by STAMP/STPA to a formal model for a statistical model-checking tool. We also show the usefulness of the proposed method using an example of train gate control system.10.1109/ICSTW50294.2020.00032 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811STAMP/STPA;statistical model checking;risk analysis IEEE Inglês
An Algebraic Approach to Modeling and Verifying Policy-Driven Smart Devices in IoT SystemsX. Chi; M. Zhang; X. Xu 2019 Internet of Things (IoT) is being widely adopted to facilitate living environments such as cities and homes to become smart. Devices in IoT systems are capable of automatically adjusting their behaviors according to the change of environments. The capability is usually driven by the policies which are predefined inside devices. Policies can be customized by end users. Inconsistencies or conflicts among policies may cause malfunction of systems and therefore must be eliminated before deployment. In this paper, we propose a novel algebraic approach to modeling and verifying policy-driven smart devices in IoT systems on the basis of a domain-specific modeling language called PobSAM (Policy-based Self-Adaptive Model) and an efficient rewriting system called Maude. We formalize the operational semantics of PobSAM using Maude, which is an executable specification as well as a formal verification tool. The Maude formalization can be used to verify smart devices that are specified in PobSAM. We conduct a case study on a smart home setting to evaluate the effectiveness and efficiency of our approach.10.1109/APSEC48747.2019.00034 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945619IoT system, Verification, PobSAM, Maude, Smart home IEEE Inglês
Automated analysis of e-learning web applicationsF. Škopljanac-Mačina; B. Blašković; i. I. Zakarija2019 In our paper we are exploring the use of formal methods for testing and verification of interactive e-learning web applications. These programs can be highly interactive and are often used for knowledge assessment and on-line tutoring purposes. They are written in web standard languages and executed in client browsers. Even simpler web applications can have various different interaction scenarios which makes them hard to test reliably. Therefore, we are using formal methods tools such as SPIN model checker and its Promela language to improve web application testing process. We create semi-automatically Promela process models from web application source code, and run their simulations, as well as verification using SPIN. Using these techniques, we want to identify flaws in web application design, and find and visualize all interaction scenarios using finite state automata. We will present use case example based on tutoring web application from our e-learning system used on our course Fundamentals of Electrical Engineering.10.23919/MIPRO.2019.8756749 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749e-learning web applications;testing;verification;SPIN;Promela IEEE Inglês
Formal verification of deadlock avoidance rules for AGV systemsS. Riazi; J. Falk; A. Greger; A. Pettersson; M. Fabian2022 Automated Guided Vehicles (AGVs) are increasingly popular and bring many industrial benefits. However, when a number of AGVs autonomously execute their itineraries, it is possible for two or more AGVs to prevent each other from completing their tasks and cause a deadlock from where the system cannot progress. One way that companies try to avoid this is to, based on simulations, generate deadlock avoidance rules (DA-rules) that determine for different scenarios how the AGVs should behave. This paper presents an application of translating such DA-rules to extended finite-state automata and then to formally verify if the rules actually do avoid deadlocks. This is done by using information of an existing system setup where there are two major types of DA-rules. Both of these can be modelled as automata with guards and actions that prevent a transition from occurring if associated conditions are not fulfilled. These guards are generated automatically for all the DA-rules corresponding to the current itineraries. For a chosen itinerary a complete automaton is generated, as well as automata representing the DA-rules. Using the supervisor synthesis tool SUPREMICA, it is shown that the existing DA-rules do not manage to remove all deadlocks in all cases. Even worse, the DA-rules can lead to a fully blocking system, even though a deadlock-free solution does exist, as can be shown by computing a supervisor for the system without the DA-rules.10.1109/MED54222.2022.9837154 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154- IEEE Inglês
Towards a System Monitoring Modeling Language (SyMoLa)A. García; P. Cedillo 2020 Best practices in software development suggest that systems include monitoring functionalities, allowing verification, auditing, traceability of operations, and quick response to incidents. On the other hand, domain-specific modeling languages (DSML) have shown great utility by allowing them to portray knowledge at a high level of abstraction. Even the application of DSML transformation tools towards specific implementations considerably reduces development time and effort, optimizing resources to take advantage of them in improving the design of systems, without worrying about low-level details.In this paper, a domain-specific modeling language oriented to systems monitoring specification is proposed, with a focus on the generation of cloud platforms for monitoring services. For this, the monitoring needs of different areas and applications were considered, the relevant concepts were synthesized, everyday needs were unified and consolidated, allowing to generalize and provide the modeling language with sufficient expression capabilities for monitoring the most domains. The syntax and semantics modeling language was provided, defining the graphical components that allow expressing each of the monitoring needs, and specifying restrictions, contexts, and notations, respectively. This study aims to contribute to Industry 4.0, with a design tool to facilitate the development processes of system monitoring solutions. This language is oriented to the integration of data in system of systems, extending the scope of the monitoring towards the perspective of a third party (regulatory entity, audit or monitoring services in the cloud).10.1109/Incodtrin51881.2020.00033 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9516661DSML;systems monitoring;Industry 4.0;modeling language;cloud services;system of systemsIEEE Inglês
Jigsaw: Large Language Models meet Program SynthesisN. Jain; S. Vaidyanath; A. Iyer; N. Natarajan; S. Parthasarathy; S. Rajamani; R. Sharma2022 Large pre-trained language models such as GPT-3 [10], Codex [11], and Coogle's language model [7] are now capable of generating code from natural language specifications of programmer intent. We view these developments with a mixture of optimism and caution. On the optimistic side, such large language models have the potential to improve productivity by providing an automated AI pair programmer for every programmer in the world. On the cautionary side, since these large language models do not understand program semantics, they offer no guarantees about quality of the suggested code. In this paper, we present an approach to augment these large language models with post-processing steps based on program analysis and synthesis techniques, that understand the syntax and semantics of programs. Further, we show that such techniques can make use of user feedback and improve with usage. We present our experiences from building and evaluating such a tool Jigsaw, targeted at synthesizing code for using Python Pandas API using multi-modal inputs. Our experience suggests that as these large language models evolve for synthesizing code from intent, Jigsaw has an important role to play in improving the accuracy of the systems.10.1145/3510003.3510203 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793546Program Synthesis;Machine Learning IEEE Inglês
TalkSQL: A Tool for the Synthesis of SQL Queries from Verbal SpecificationsG. Obaido; A. Ade-Ibijola; H. Vadapalli 2020 Recent advances in the field of Natural Language Processing (NLP) have led to many robust user interfaces (UIs) designed as intelligent tutoring systems (ITS) that help students learn, query and access data in relational databases. Such tools are generally referred to as Natural Language Interfaces to Databases (NLIDBs). Many of these UIs rely on voice or typewritten for further processing. Research has shown that typewritten remains the preferred input method used by database UIs designers for querying relational databases due to its flexibility. Still, there is a dearth of tools that require voice-based inputs for querying relational databases. Despite the scarcity of these tools, many of them fail to provide a comprehensive feedback to a user. In this paper, we introduce a voice-based query system named TalkSQL that takes voice inputs from a user, converts these words into SQL queries and returns a feedback to the user. Automatic feedback generation is of immense importance. To achieve this, we have used regular expressions, a representation of regular languages for the recognition of the Create, Read, Update, Delete (CRUD) operations in SQL and automatically generate a feedback using pre-defined templates. A survey on 53 participants showed that 91.2% agreed that they were able to understand the CRUD command using TalkSQL. The expected contributions are in two-fold: this work may assist a special (e.g. visually impaired) learner to understand SQL queries, and show that a voice-based interface can assist users in understanding SQL queries.10.1109/IMITEC50163.2020.9334088 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9334088Verbal Specification;Speech recognition;Relational database;SQL tutoringIEEE Inglês
Recurrence in Dense-Time AMS AssertionsS. Sanyal; A. A. B. da Costa; P. Dasgupta 2021 The notion of recurrence over continuous or dense time, as required for expressing analog and mixed-signal behaviors, is fundamentally different from what is offered by the recurrence operators of SystemVerilog assertions (SVAs). This article introduces the formal semantics of recurrence over dense time and provides a methodology for the runtime verification of such properties using interval arithmetic. Our property language extends SVA with dense real-time intervals and predicates containing real-valued signals. We provide a tool kit that interfaces with off-the-shelf EDA tools through the standard VPI.10.1109/TCAD.2020.3040259 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9268140Analog mixed-signal;assertions;recurrence;sequence expressions IEEE Inglês
Intelligent System for Communicating with Special Aircraft PassengersE. I. Chekmareva; I. S. Sineva; O. A. Slatina 2022 This work deals with the development of translating text into sign language for communication with passengers with impaired hearing perception onboard an aircraft or vessel. A review of existing research is presented, usually aimed at establishing correspondence between different speech formats in specific languages. The analysis of the existing systems of sign language translation is carried out, their advantages and disadvantages are determined. A mathematical model is presented that describes the process of translating text into sign language, invariant with respect to the language used. The technical requirements for the system of such a translation are formulated, the optimal implementation tools are described, and the corresponding semantic analysis is carried out based on the previously presented mathematical model.10.1109/IEEECONF53456.2022.9744373 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744373sign language;computer sign language interpretation;natural language processing;mathematical model of speech translation;semantic analysisIEEE Inglês
Generating Test Scenarios using SysML Activity DiagramX. Yang; J. Zhang; S. Zhou; B. Wang; R. Wang2021 Model-Based System Engineering (MBSE) applies the modeling method to system engineering and is gaining acceptance to software practitioners. SysML is an auxiliary language for MBSE, SysML activity diagram is treated as a useful design artifact to model the behavior of the system under development and identify all possible scenarios. However, it is a challenging task to identify all scenarios. In this paper, we propose an approach to generate test scenarios for systems modeled by the SysML activity diagram. The approach transforms an activity diagram into a testable composite structure, from which it then generates test scenarios. We further implemented a tool to automate the proposed approach and studied its feasibility using a case study. Experiments results show that the generated test scenarios can satisfy the given coverage criterion.10.1109/DSA52907.2021.00039 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9623050Model-Based System Engineering;Model-Based Testing;SysML activity diagram;test scenarios generationIEEE Inglês
Inferring Metamodel Relaxations Based on Structural Patterns to Support Model FamiliesS. Alwidian; D. Amyot 2019 A model family is a set of related models in a given language that results from the evolution of models over time and/or variations over the space (product) dimension. To enable a more efficient analysis of family members, all at once, we have already proposed union models to capture the union of all elements in all family members, in a compact and exact manner. However, despite having each model in a model family conforming to the same metamodel, there is still no guarantee that their union model will conform to the original metamodel of the family members. This paper aims to support the representation of union models (as valid instances of a metamodel) by inferring, from the structure of the original metamodel, a relaxed metamodel to which a union model conforms. In particular, instead of relaxing all metamodel constraints, the paper contributes a heuristic method that relaxes particular constraints (related only to multiplicities of attributes and association ends) by inferring where such relaxations are needed in the metamodel. To infer relaxation points, structural patterns are first identified in metamodels, then an evidence-based or an anticipation-based approach is applied to get the actual inference. The purpose behind inferring particular metamodel relaxation points is to be able to adapt the existing tools and analysis techniques once and minimally for all potential model families of a given modeling language.10.1109/MODELS-C.2019.00046 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904566Model family;model;Metamodel;Metamodel relaxation;Union model;Relaxation point;Structural patternIEEE Inglês
Generating UML Class Diagram using NLP Techniques and Heuristic RulesE. A. Abdelnabi; A. M. Maatuk; T. M. Abdelaziz; S. M. Elakeili2020 Several tools and approaches have been proposed to generate Unified Modeling Language (UML) diagrams. Researchers focus on automating the process of extracting valuable information from Natural Language (NL) text to generate UML models. The existing approaches show less accurateness because of the ambiguity of NL. In this paper, we present a method for generation class models from software specification requirements using NL practices and a set of heuristic rules to facilitate the transformation process. The NL requirements are converted into a formal and controlled representation to increase the accuracy of the generated class diagram. A set of pre-defined rules has been developed to extract OO concepts such as classes, attributes, methods, and relationships to generate a UML class diagram from the given requirements specifications. The approach has been applied and evaluated practically, where the results show that the approach is both feasible and acceptable.10.1109/STA50679.2020.9329301 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9329301Software Engineering;Natural Language Processing;Requirement Engineering;UML;Natural languageIEEE Inglês
Evolution from Modeling by Means of Function Block Diagrams to Domain-specific Modeling in AutomationV. Djukić 2020 Using domain-specific modeling tools for conceptual modeling in automation can significantly improve not only quality and productivity in the development and maintenance of software, but can also influence the expected functional features related to applied electronics and mechanics. When specifying control logic in contemporary automation, engineers predominantly use general-purpose languages, like PLC code function block diagrams. The levels of abstraction and representation of the real environment and operations performed by various devices are generally low. Therefore, it is difficult to satisfy requirements and expectations of users, domain experts and software engineers and present complete control logic using a single language understandable to every one of them. This paper describes one way of evolving from the use of general-purpose to the use of domain-specific languages, which offers some practical benefits. The evolutionary path is illustrated by examples from the automotive. Special attention is paid to automated refinement of modeling languages and full application of the “model execution” paradigm to model views. The automated language refinement is achieved by means of modifiers and action reports, as an extension to code generator languages.10.1109/INISTA49547.2020.9194670 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9194670Domain-specific Modeling;Meta-modeling;Programmable logic controller (PLC);IEC 61131-3;Automated language refinementIEEE Inglês
ATLaS: A Framework for Traceability Links Recovery Combining Information Retrieval and Semi-Supervised TechniquesE. Effa Bella; S. Creff; M. -P. Gervais; R. Bendraou2019 Current Model-Based Systems Engineering (MBSE) practices to design and implement complex systems require modeling and analysis based on many representations: structure, dynamics, safety, security, etc. This induces a large volume of overlapping heterogeneous artefacts which are subject to frequent changes during the project life cycle. In order to verify and validate systems requirements and ensure that models meet user's needs, MBSE techniques shall rely on consistent traceability management. In this paper, we investigate the benefits of Information Retrieval (IR) techniques and the latest advances in Natural Language Processing (NLP) approaches to suggest stakeholders with candidate semantic links generated from the processing of structured and unstructured contents. We illustrate our approach called ATLaS (Aggregation Trace Links Support) through an application on the design and analysis of a mobility service gathering several industrial partners. We provide an empirical evaluation regarding its limitations as part of an industrial MBSE process. Most importantly, we highlight how our method drastically reduces the false positive links generated compared to current IR techniques. The results obtained suggest a good synergy between the presented approach and MBSE techniques.10.1109/EDOC.2019.00028 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8944976Model-Based Systems Engineering, Requirements, Traceability, Information Retrieval, Natural Language Processing, Semi-supervised techniquesIEEE Inglês
MCP: A Security Testing Tool Driven by RequirementsP. X. Mai; F. Pastore; A. Goknil; L. C. Briand 2019 We present MCP, a tool for automatically generating executable security test cases from misuse case specifications in natural language (i.e., use case specifications capturing the behavior of malicious users). MCP relies on Natural Language Processing (NLP), a restricted form of misuse case specifications, and a test driver API implementing basic utility functions for security testing. NLP is used to identify the activities performed by the malicious user and the control flow of misuse case specifications. MCP matches the malicious user's activities to the methods of the provided test driver API in order to generate executable security test cases that perform the activities described in the misuse case specifications. MCP has been successfully evaluated on an industrial case study.10.1109/ICSE-Companion.2019.00037 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8802766Natural Language Requirements;System Security Testing;Natural Language ProcessingIEEE Inglês
Generating Heterogeneous Codes for IoT Systems Based on CAPSM. Sharaf; M. Abusair; H. Muccini; R. Eleiwi; Y. Shana’a; I. Saleh2019 Nowadays most systems are relying in their development and evolution on reusing and customizing opensource components, services and frameworks. In this poster, we present our architecture driven code generation methodology that benefits from CAPS and ThingML frameworks. CAPS is an architecture-driven modeling framework for the development of IoT Systems. ThingML includes a modeling language and tool designed for supporting code generation for heterogeneous platforms. The suggested methodology enables IoT designers and architects who are using CAPS environment to generate ThingML models and produce executable codes.10.1109/MODELS-C.2019.00113 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904524- IEEE Inglês
Formalization and analysis of quantitative attributes of distributed systemsA. E. M. Suñé 2020 While there is not much discussion on the importance of formally describing and analyzing quantitative requirements in the process of software construction; in the paradigm of API-based software systems, it could be vital. Quantitative attributes can be thought of as attributes determining the Quality of Service - QoS provided by a software component published as a service. In this sense, they play a determinant role in classifying software artifacts according to specific needs stated as requirements. In this work, we present a research program consisting of the development of formal languages and tools to characterize and analyze the Quality of Service attributes of software components in the context of distributed systems. More specifically, our main motivational scenario lays on the execution of a service-oriented architecture.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270314service oriented computing;distributed systems;quality of service;formal verification;non functional requirements;quantitative attributes;qos ranking;service level agreementIEEE Inglês
Safety Verification of IEC 61131-3 Structured Text ProgramsJ. Xiong; X. Bu; Y. Huang; J. Shi; W. He 2021 With the development of the industrial control system, programmable logic controllers (PLCs) are increasingly adopted in the process automation. Moreover, many PLCs play key roles in safety-critical systems, such as nuclear power plants, where robust and reliable control programs are required. To ensure the quality of programs, testing and verification methods are necessary. In this article, we present a novel methodology which applies model checking to verifying PLC programs. Specifically, we focus on the structured text (ST) language which is a widely used, high-level programming language defined in the electro-technical commission (IEC) 61131-3 standard. A formal model named behavior model (BM) is defined to specify the behavior of ST programs. An algorithm based on variable state analysis for automatically extracting the BM from an ST program is given. An algorithm based on the automata-theoretic approach is proposed to verify linear temporal logic properties on the BM. Finally, a real-life case study is presented.10.1109/TII.2020.2999716 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345Formal verification;electro-technical commission (IEC) 61131-3 standard;model checking;structured text (ST);weighted pushdown system (WPDS)IEEE Inglês
A Prediction Model for Software Requirements Change ImpactK. Zamani 2021 Software requirements Change Impact Analysis (CIA) is a pivotal process in requirements engineering (RE) since changes to requirements are inevitable. When a requirement change is requested, its impact on all software artefacts has to be investigated to accept or reject the request. Manually performed CIA in large-scale software development is time-consuming and error-prone so, automating this analysis can improve the process of requirements change management. The main goal of this research is to apply a combination of Machine Learning (ML) and Natural Language Processing (NLP) based approaches to develop a prediction model for forecasting the requirement change impact on other requirements in the specification document. The proposed prediction model will be evaluated using appropriate datasets for accuracy and performance. The resulting tool will support project managers to perform automated change impact analysis and make informed decisions on the acceptance or rejection of requirement change requests.10.1109/ASE51524.2021.9678582 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9678582Change impact analysis;Software requirements change;Machine learning;REIEEE Inglês
Conformance Testing in UPPAAL: A diabolic approachE. J. Njor; F. Lorber; N. I. Schmidt; S. R. Petersen2020 Model-based mutation testing is a fault-based method in the model-based testing area of research. It has been applied to several modeling formalisms, including timed automata. We propose a model transformation termed “diabolic completion” that allows for conformance testing directly in the UPPAAL tool. We have also developed a system to automate most of the process, which include taking a model, and performing diabolic completion, with the additions of allowing creation of mutants, conformance checking using the UPPAAL verification engine, and test case generation. We then set up a case study using a car alarm system model, which has been used several times in this area of research, and compare the efficiency with two existing tools, Ecdar 2.2 and MoMuT::TA, observing a significant speedup.10.1109/ICSTW50294.2020.00023 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9156025- IEEE Inglês
Trace-based Timing Analysis of Automotive Software Systems: an Experience ReportA. Bucaioni; E. Ferko; H. Lönn 2021 Trace-based timing analysis is a technique, which assesses the software timing requirements against the timing information contained in so-called traces, which are files collected from simulation tools or by running the actual systems. In this experience report, we describe our joint effort with Volvo Group Trucks Technology in designing and developing a round-trip, model-based framework for the trace-based timing analysis of automotive software. To validate the proposed framework, we use a mix of observational and descriptive methods. In particular, we validate the correctness and feasibility of the proposed approach using the Washer Wiper automotive functionality. Eventually, we discuss lessons learnt, the benefits and limitations of the proposed framework.10.1109/MODELS-C53483.2021.00046 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643829model-based software engineering;automotive software;model-based timing verification;trace analysisIEEE Inglês
Evaluation of Natural Language Processing for Requirements TraceabilityC. D. Laliberte; R. E. Giachetti; M. Kolsch 2022 Requirements traceability remains a challenge, especially in multi-level system of systems being developed by many different organizations. This paper develops and tests automated tracing methods based on Natural Language Processing (NLP) techniques to help ensure links between parent and child requirements are correct while preventing common requirements traceability issues. Using publicly available requirements documentation from the National Aeronautics and Space Administration (NASA), the developed software tool analyzed 215 requirements, generated a Term Frequency – Inverse Document Frequency (TF-IDF) matrix of the document collection, and classified parent-child requirement pairs using the histogram distance and cosine similarity measures under eighteen different similarity measure thresholds. Precision, recall, and F-scores were calculated, yielding maximum F-scores for each similarity measure with the objective of understanding the performance and utility of histogram distance for automated requirements tracing. The results indicate natural language processing is likely not a practical approach to requirements traceability.10.1109/SOSE55472.2022.9812649 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9812649Systems engineering;requirements management;requirements traceability;automated requirements tracing;information retrieval;natural language processingIEEE Inglês
Reactive Synthesis with Spectra: A Tutorial S. Maoz; J. O. Ringert 2021 Spectra is a formal specification language specifically tailored for use in the context of reactive synthesis, an automated procedure to obtain a correct-by-construction reactive system from its temporal logic specification. Spectra comes with the Spectra Tools, a set of analyses, including a synthesizer to obtain a correct-by-construction implementation, several means for executing the resulting controller, and additional analyses aimed at helping engineers write higher-quality specifications. This hands-on tutorial will introduce participants to the language and the tool set, using examples and exercises, covering an end-to-end process from specification writing to synthesis to execution. The tutorial may be of interest to software engineers and researchers who are interested in the potential applications of formal methods to software engineering.10.1109/ICSE-Companion52605.2021.00136 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598Reactive synthesis IEEE Inglês
Research on test case description languageX. Yu; H. Wang; F. Yang 2021 Software testing is crucial in the development of software interfaces or web pages. In this paper, a test case description language (TCDL) is proposed. TCDL can conveniently describe the process of web UI testing with a grammar that is close to natural language and conforms to manual operation logic. In this paper, the manual UI testing process is abstracted by TCDL, and the syntax specification of TCDL is designed, and the parsing of TCDL is realized with the help of ANTLR tool. Using TCDL, testers can quickly write test scripts with manual test logic. TCDL reduces the learning cost of users and improves the testing efficiency.10.1109/ICCECE51280.2021.9342169 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9342169software testing;domain specific language;TCDL;ANTLR IEEE Inglês
A Survey on Network Verification and Testing With Formal Methods: Approaches and ChallengesY. Li; X. Yin; Z. Wang; J. Yao; X. Shi; J. Wu; H. Zhang; Q. Wang2019 Networks have grown increasingly complicated. Violations of intended policies can compromise network availability and network reliability. Network operators need to ensure that their policies are correctly implemented. This has inspired a research field, network verification and testing, that enables users to automatically detect bugs and systematically reason their network. Furthermore, techniques ranging from formal modeling to verification and testing have been applied to help operators build reliable systems in electronic design automation and software. Inspired by its success, network verification has recently seen increased attention in the academic and industrial communities. As an area of current interest, it is an interdisciplinary subject (with fields including formal methods, mathematical logic, programming languages, and networks), making it daunting for a nonprofessional. We perform a comprehensive survey on well-developed methodologies and tools for data plane verification, control plane verification, data plane testing and control plane testing. This survey also provides lessons gained from existing solutions and a perspective of future research developments.10.1109/COMST.2018.2868050 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007Network verification;network testing;formal methods;network reliability;software-defined networkIEEE Inglês
Leveraging Model-Driven Technologies for JSON Artefacts: The Shipyard Case StudyA. Colantoni; A. Garmendia; L. Berardinelli; M. Wimmer; J. Bräuer2021 With JSON's increasing adoption, the need for structural constraints and validation capabilities led to JSON Schema, a dedicated meta-language to specify languages which are in turn used to validate JSON documents. Currently, the standardisation process of JSON Schema and the implementation of adequate tool support (e.g., validators and editors) are work in progress. However, the periodic issuing of newer JSON Schema drafts makes tool development challenging. Nevertheless, many JSON Schemas as language definitions exist, but JSON documents are still mostly edited in basic text-based editors. To tackle this challenge, we investigate in this paper how Model-Driven Engineering (MDE) methods for language engineering can help in this area. Instead of re-inventing the wheel of building up particular technologies directly for JSON, we study how the existing MDE infrastructures may be utilized for JSON. In particular, we present a bridge between the JSONware and Modelware technical spaces to exchange languages and documents. Based on this bridge, our approach supports language engineers, domain experts, and tool providers in editing, validating, and generating tool support with enhanced capabilities for JSON schemas and their documents. We evaluate our approach with Shipyard, a JSON Schema-based language for the workflow specification for Keptn, an open-source tool for DevOps automation of cloud-native applications. The results of the case study show that proper editors and language evolution support from MDE can be reused and, at the same time, the surface syntax of JSON is maintained.10.1109/MODELS50736.2021.00033 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592494JSON;JSON Schema;MDE;DevOps;Tool Interoperability IEEE Inglês
Feasibility Analysis of a Rule-Based Ontology Framework (ROF) for Auto-Generation of Requirements SpecificationA. P. Yanuarifiani; F. -F. Chua; G. -Y. Chan 2020 Writing requirements specification documents plays an important role in determining the success of information system development. To compile documents that are consistent, complete and in accordance with standards, both from a technical and business perspective require enough knowledge. Some previous approaches, such as GUI-F framework, propose automated requirements specification document creation with a variety of different methods. However, most of them do not provide detailed guidance on how stakeholders can identify their needs to support the company's business needs. In addition, some methods only focus on documenting high level requirements specification, such as use case diagram. As for the code development process, this only represents very basic information and lack of technical aspects. In our previous work, we proposed a Rule-Based Ontology Framework (ROF) for Auto-Generating Requirements Specification. ROF covers 2 processes in requirements engineering, namely: elicitation and documentation. The output of the elicitation process is a list of final requirements that are stored in an ontology structure, called Requirements Ontology (RO). Using RO, the documentation process automatically generates 2 outputs: process model in the Business Process Model and Notation (BPMN) standard and Software Requirements Specification (SRS) documents in the IEEE standard. The aim of this paper is to conduct a feasibility analysis to prove that ROF is feasible to be implemented in an Information System (IS) projects. ROF is implemented in a case study, an IS project that calculates lecturer workload activity at a university in Indonesia. The feasibility analysis is carried out in stages for each output using qualitative and quantitative methods. The results of the analysis show that that the framework is feasible to be implemented in the IS project to minimize effort in generating requirements specification.10.1109/IICAIET49801.2020.9257838 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9257838Auto-Generate BPMN;Auto-Generate SRS;Feasibility analysis;ROF Framework;Requirements OntologyIEEE Inglês
A Tool to Assist the Compiler Construction Instructor in Checking the Equivalence of Specifications Based on Regular ExpressionsR. Benito-Montoro; X. Chen; J. L. Sierra 2021 This paper presents CheRegES (CHEcking REGular Expression-based Specifications), a tool that assists the Compiler Construction instructor in checking the equivalence of computer language lexical specifications based on regular expressions. The tool allows the comparison of a reference specification, provided by the instructor, with the specification proposed by the student. As a result, the tool can report that: (i) both specifications are equivalent (and, therefore, the specification proposed by the student can be considered correct); (ii) there are discrepancies between the specification proposed by the student and the one provided by the instructor (and, therefore, the specification proposed by the student can be considered incorrect); or (iii) the result of the comparison is inconclusive. Also, in case discrepancies are discovered, the tool provides sentences that allow differentiation between the two specifications, and that help the instructor to diagnose the problems underlying the student’s specification. The paper motivates the need for the tool, describes its functionality, briefly summarizes its internals, and presents a preliminary evaluation of the tool that makes the usefulness of CheRegES as a tool to support assessment in Compiler Construction courses apparent.10.1109/SIIE53363.2021.9583625 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625Assessment Tool;Lexical Specifications;Compiler Construction;Regular Expressions;Computer Science EducationIEEE Inglês
Translating SysML Activity Diagrams for nuXmv Verification of an Autonomous PancreasO. Staskal; J. Simac; L. Swayne; K. Y. Rozier 2022 Model Based Systems Engineering (MBSE) provides a single platform capable of defining complex, multidisciplinary systems, but commonly-used tools such as Systems Modeling Language (SysML) lack the ability to formally validate and verify these systems. Symbolic model checking operates on system models of similar levels of abstraction to SysML, providing a push-button technique for ensuring the possible behavior set always obeys temporal requirements, e.g., for safe operation. We propose a translation method from SysML activity diagrams to the popular symbolic model checker nuXmv to enable their formal verification in four main steps: main module definition, submodule definition, activity diagram organization, and activity diagram translation. We apply this process to the Autonomous Artificial Pancreas System (AAPS) as a trade study. We then verify and validate the AAPS nuXmv model against a set of specifications derived from the AAPS safety requirements.10.1109/COMPSAC54236.2022.00260 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842664MBSE;SysML;nuXmv;Cameo;Activity Dia-gram;Model Checking IEEE Inglês
Model-checking infinite-state nuclear safety I&C systems with nuXmvA. Pakonen 2021 For over a decade, model checking has been successfully used to formally verify the instrumentation and control (I&C) logic design in Finnish nuclear power plant projects. One of the practical challenges is that the model checker NuSMV forces the user to abstract the way analog signals are processed in the model, which causes extra manual work, and could mask actual design issues. In this paper, we experiment with the newer tool nuXmv, which supports infinite-state modelling. Using actual models from practical industrial projects, we show that after changing the analog signal processing to be based on real number math, the analysis times are still manageable. The disadvantage is that certain useful types of formal properties are not supported by the infinite-state algorithms. We also discuss the nuclear industry specific features of I&C programming languages, which cause significant constraints on domain-specific formal verification method and tool development.10.1109/INDIN45523.2021.9557445 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445formal verification;model checking;control engineering;software safetyIEEE Inglês
Generating Sequence Diagram from Natural Language RequirementsM. Jahan; Z. S. H. Abad; B. Far 2021 Model-driven requirements engineering is gaining enormous popularity in recent years. Unified Modeling Language (UML) is widely used in the software industry for specifying, visualizing, constructing, and documenting the software systems artifacts. UML models are helpful tools for portraying the structure and behavior of a software system. However, generating UML models like Sequence Diagrams from requirements documents often expressed in unstructured natural language, is time consuming and tedious. In this paper, we present an automated approach towards generating behavioral models as UML sequence diagrams from textual use cases written in natural language. The approach uses different Natural Language Processing (NLP) techniques combined with some rule based decision approaches to identify problem level objects and interactions. Additionally, different quality metrics are defined to assess the validity of generated sequence diagrams in terms of expected behaviour from a given use case. The criteria we established to assess the quality of analysis sequence diagrams can be applied to similar experiments. We evaluate our approach using different case studies concerning correctness and completeness of the generated sequence diagrams using those metrics. In most situations, we attained an average accuracy factor of over 85% and average completeness of over 90%, which is encouraging.10.1109/REW53955.2021.00012 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582297Sequence Diagram;Use Case Scenario;Natural Language Processing;Requirement Engineering;UML model.IEEE Inglês
State Machines Consistency between Model Based System Engineering and Safety Assessment ModelsJ. Vidalie; M. -S. Kendel; F. Mhenni; M. Batteux; J. -Y. Choley2021 Nowadays with the development of industrial systems, engineers are having more difficulties to design complex systems, meaning that they have to conduct several simulations to design system models. In the case of safety assessment, this creates a need for the safety model to be consistent with the system engineering model, since both models are supposed to represent the same architecture. In this work we present a methodology for synchronisation of two kinds of state machines, Harel’s Statecharts and Guarded Transition Systems. These formalisms are used to model system behavior respectively in MBSE (Model Based System Engineering) and MBSA (Model Based Safety Assessment) tools. This methodology, based on the SmartSync framework [1] that aims at asserting structural consistency between MBSE and MBSA, is composed of 3 steps: abstraction to a pivot formalism, comparison and concretization. We compare two mappings of concepts used for translation from our state machines to the S2ML language.10.1109/ISSE51541.2021.9582470 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582470MBSA;MBSE;AltaRica;SysML;S2ML;Abstraction;Comparison;Concretization;State Machine;Harel StateChart;Guarded Transition SystemIEEE Inglês
Formal Verification of a State-of-the-Art Integer Square RootG. Melquiond; R. Rieu-Helft 2019 We present the automatic formal verification of a state-of-the-art algorithm from the GMP library that computes the square root of a 64-bit integer. Although it uses only integer operations, the best way to understand the program is to view it as a fixed-point arithmetic algorithm that implements Newton's method. The C code is short but intricate, involving magic constants and intentional arithmetic overflows. We have verified the algorithm using the Why3 tool and automated solvers such as Gappa.10.1109/ARITH.2019.00041 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877419Formal verification;Fixed-point arithmetic IEEE Inglês
Automating Performance Antipattern Detection and Software Refactoring in UML ModelsD. Arcelli; V. Cortellessa; D. D. Pompeo 2019 The satisfaction of ever more stringent performance requirements is one of the main reasons for software evolution. However, it is complex to determine the primary causes of performance degradation, because they may depend on the joint combination of multiple factors (e.g., workload, software deployment, hardware utilization). With the increasing complexity of software systems, classical bottleneck analysis shows limitations in capturing complex performance problems. Hence, in the last decade, the detection of performance antipatterns has gained momentum as an effective way to identify performance degradation causes. We introduce PADRE (Performance Antipattern Detection and REfactoring), that is a tool for: (i) detecting performance antipattern in UML models, and (ii) refactoring models with the aim of removing the detected antipatterns. PADRE has been implemented within Epsilon, an open-source platform for model-driven engineering. It is based on a methodology that allows performance antipattern detection and refactoring within the same implementation context.10.1109/SANER.2019.8667967 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8667967Software Performance;Model-Driven Development IEEE Inglês
A verification method for array-based vision chip using a fixed-point neural network simulation toolM. Zhao; X. Zheng; K. Ning; C. Yao; Q. Luo; S. Yu; L. Liu; N. Wu2020 In recent years, customized chips for accelerating deep learning algorithms have been continuously developed with some emerging challenges in the field of deep-learning-based vision chips. Considering the lack of algorithm-level verification tools, poor reusability of simulation code and low development efficiency in deep learning vision chip verification, a novel verification method, which is based on the fixed-point simulation tool, is proposed and utilized in the development of an array-based deep learning vision chip. This simulation tool, implemented by combination of Matlab and CUDA C, enables efficient and accurate verification of the vision chip by taking the classical MobileNet V1 as the benchmark. This method, integrated with the RTL and FPGA co-verification seamlessly, provides the golden reference and reliable verification during the entire development period of the vision chip.10.1109/LASCAS45839.2020.9069000 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9069000fixed-point simulation;algorithm level verification;vision chip IEEE Inglês
RM2PT: A Tool for Automated Prototype Generation from Requirements ModelY. Yang; X. Li; Z. Liu; W. Ke 2019 Prototyping is an effective and efficient way of requirement validation to avoid introducing errors in the early stage of software development. However, manually developing a prototype of a software system requires additional efforts, which would increase the overall cost of software development. Based on our proposed approach, we develop RM2PT: a tool for generating prototypes from requirements models automatically. A requirements model consists of a use case diagram, a conceptual class diagram, system sequence diagrams for use cases, and the formal contracts of their system operations in OCL (Object Constraint Language). RM2PT can generate executable MVC (Model View Controller) prototypes from requirements models automatically. We evaluate the tool with four case studies. 93.65% of requirement specifications can be generated to the executable Java source code successfully, and only 6.35% are non-executable for our current provided generation algorithm such as sorting and event-call, which can be implemented by developers manually or invoking the APIs of advanced algorithms in Java library. The tool is efficient that the one second generated prototype of a case study requires approximate nine hours manual implementation by skilled programmers.10.1109/ICSE-Companion.2019.00038 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8802733Prototype;Code Generation;Requirements Model;Requirements Validation;UML;OCLIEEE Inglês
Towards Formal Modeling and Analysis of SystemJ GALS Systems using Coloured Petri NetsW. Zhang; Z. Salcic; A. Malik 2019 SystemJ is a programming language developed for implementing safety critical cyber-physical systems, including industrial automation systems. However, the current tools do not support an efficient mechanism to verify SystemJ programs formally. This paper presents a semantics-preserving translation of the synchronous subset of SystemJ to Coloured Petri Net (CPN), which in turn enables leveraging the plethora of analysis and verification tools for CPN to verify SystemJ programs. The translation and verification approach is illustrated on a pedagogical industrial automation example of a SystemJ program.10.1109/INDIN41052.2019.8972025 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025Petri Nets;Coloured Petri Nets;GALS;formal modeling;formal analysisIEEE Inglês
An Ontology-based Approach for Automatic Specification, Verification, and Validation of Software Security Requirements: Preliminary ResultsD. Tsoukalas; M. Siavvas; M. Mathioudaki; D. Kehagias2021 Critical software vulnerabilities are often caused by incorrect, vague, or missing security requirements. Hence, there is a strong need in the software engineering community for tools that facilitate software engineers in eliciting and evaluating security requirements. Although several methods have been proposed for specifying, verifying, and validating security requirements, they require a lot of manual effort by requirement engineers, which hinders their practicality. To this end, we introduce a software security requirements specification mechanism, able to automatically identify the main concepts of a given set of security requirements expressed in natural language. Our mechanism applies syntactic and semantic analysis in order to transform requirements into appropriately structured ontology objects. We also propose a software security requirements verification and validation mechanism, which compares a given security requirement to a curated list of well-defined security requirements based on similarity checks, identifies inconsistencies, and proposes refinements. Both of the proposed mechanisms comprise standalone tools, implemented in the form of web services. The capabilities of the proposed mechanisms are demonstrated through a set of test cases.10.1109/QRS-C55045.2021.00022 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742019software security;software security requirements;requirements engineeringIEEE Inglês
Program translation using model-driven engineeringK. Lano 2022 The porting or translation of software applications from one programming language to another is a common requirement of organisations that utilise software, and the increasing number and diversity of programming languages makes this capability as relevant today as in previous decades.Several approaches have been used to address this challenge, including machine learning and the manual definition of explicit translation rules. We define a novel approach using model-driven engineering (MDE) techniques: reverse-engineering source programs into specifications in the UML and OCL formalisms, and then forward-engineering the specifications to the required target language. This approach has the additional advantage of extracting specifications of software from code. We provide an evaluation based on a comprehensive dataset of examples, including industrial cases, and compare our results to those of other approaches and tools.10.1145/3510454.3528639 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793785Program translation;Model driven engineering IEEE Inglês
The MULTI Process Challenge J. P. A. Almeida; A. Rutle; M. Wimmer; T. Kühne2019 This challenge is intended to allow submitters to demonstrate the use of multi-level modeling techniques and enable the comparison of submissions and hence framework/language capabilities. The multi-level modeling community is invited to respond to this challenge with papers describing solutions to the challenge. Authors should emphasize the merits of their solutions according to the aspects defined in this challenge description. The challenge follows up on the "MULTI Bicycle Challenge" which was used in MULTI 2017 and MULTI 2018, and reuses some criteria that were established in these previous editions. Despite the similar criteria, the subject domain has been changed entirely and new criteria have been added which are intended to increase opportunities for languages and tools to exercise their capabilities.10.1109/MODELS-C.2019.00027 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904775Multi-level modeling;challenge;process management;MULTI workshopIEEE Inglês
A Model-driven Approach to Continuous Practices for Modern Cloud-based Web ApplicationsT. Tegeler; F. Gossen; B. Steffen 2019 In this paper, we propose a model-driven approach to Continuous Software Integration and Deployment (CI/CD) for modern cloud-based applications. Key to our approach is a formal graphical modelling language for the specification of the processes and tasks involved. Based on these specifications the complete CI/CD configurations are generated fully and automatically guaranteeing their correctness with regard to the specification by construction. This way typical sources of critical errors can be avoided lowering the hurdle to introduce CI/CD especially in mature projects. We demonstrate the power of our model-driven approach with the help of an industrial web application - a prime example for cloud-based applications.10.1109/CONFLUENCE.2019.8776962 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776962Continuous Integration;Continuous Deployment;Model-driven;Cloud-based ApplicationsIEEE Inglês
Enhancing Software Testing with Ontology Engineering ApproachS. Charoenreh; A. Intana 2019 This paper presents a novel hybrid framework, Software Requirement Ontologies based Test Case Generation (ReqOntoTestGen) to increase the confidence in the reliability of existing verification and validation (V&V) techniques. This framework integrates the benefits of ontology modelling with the test case generation approaches based on use case-based requirement specifications. ROO (Rabbit to OWL Ontologies Authoring) tool is used in this work to eliminate the ambiguous requirement in natural language by using Controlled Natural Language (CNL). The ontology result from this tool, then, is translated into OWL before this OWL model is mapped into the XML file of data dictionary. Test cases are generated from this XML file by using Combination of Equivalence and Classification Tree Method (CCTM). This testing technique enables the redundant test cases to be eliminated and the coverage of testing to be increased. The contribution of this work has been explored by using the real case study. The result shows how the requirement ontology enhances the testing technique as we expected.10.1109/ICSEC47112.2019.8974672 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8974672test case;requirement ontology;software requirement specification;software testing;black-box testingIEEE Inglês
A Hybrid Formal Verification System in Coq for Ensuring the Reliability and Security of Ethereum-Based Service Smart ContractsZ. Yang; H. Lei; W. Qian 2020 This paper reports a formal symbolic process virtual machine (FSPVM) denoted as FSPVM-E for verifying the reliability and security of Ethereum-based services at the source code level of smart contracts. A Coq proof assistant is employed for programming the system and for proving its correctness. The current version of FSPVM-E adopts execution-verification isomorphism, which is an application extension of Curry-Howard isomorphism, as its fundamental theoretical framework to combine symbolic execution and higher-order logic theorem proving. The four primary components of FSPVM-E include a general, extensible, and reusable formal memory framework, an extensible and universal formal intermediate programming language denoted as Lolisa, which is a large subset of the Solidity programming language using generalized algebraic datatypes, the corresponding formally verified interpreter of Lolisa, denoted as FEther, and assistant tools and libraries. The self-correctness of all components is certified in Coq. FSPVM-E supports the ERC20 token standard, and can automatically and symbolically execute Ethereum-based smart contracts, scan their standard vulnerabilities, and verify their reliability and security properties with Hoare-style logic in Coq.10.1109/ACCESS.2020.2969437 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8970279Blockchain;theorem proving;distributed systems;security;verificationIEEE Inglês
On Applying Model Checking in Formal VerificationH. Hjort 2022 Use of Hardware model checking in the EDA industry is widespread and now considered an essential part of verification. While there are many papers, and books, about SAT, SMT and Symbolic model checking, often very little is written about how these methods can be applied. Choices made when modeling systems can have large impacts on applicability and scalability. There is generally no formal semantics defined for the hardware design languages, nor for the intermediate representations in common use. As unsatisfactory as it may be, industry conventions and behaviour exhibited by real hardware have instead been the guides. In this tutorial we will give an overview of some of the steps needed to apply hardware model checking in an EDA tool. We will touch on synthesis, hierarchy flattening, gate lowering, driver resolution, issues with discrete/synchronous time models, feedback loops and environment constraints, input rating and initialisation/reset. Design compilation, also known as elaboration and (quick) synthesis, is used to create a gate netlist from a hardware description language, commonly System Verilog. When done for implementation this often leverages any semantic freedom in order to create a more efficient implementation. In contrast, for verification we prefer to preserve all possible behaviour of any valid implementation choice. Assertions (properties) are normally handled similarly and translated to an automata representation that is then implemented by a gate netlist. The gate netlist is a hierarchical representation of gates and their connections (to wires). Removal of hierarchy can largely be done replicating the logic. Most gate types represent combinatorial functions, these can be kept as is, or lowered to smaller subset of gate functions (such as in And-Inverter graphs). The state holding gates, (Flip-)Flops (edge sensitive) and Latches (level sensitive) require some more care to model their (as)synchronous behaviour. Special care is also needed to model Tri-state gates (and weak drivers), which can either drive a value on their output or hold it isolated. Verilog wire uses a domain with 4-values 0,1,X,Z where Z is high-impedance / not-driving. Resolving the drivers means replacing the gates that drive a common wire with a model for the resolved logic value (and possibly checks for invalid/bad combinations). It is common to have configurations, modes of operation and/or parts that should not be validated. Forcing some inputs to a fixed value is referred to as environment constraints. Mode complex constraints are instead normally considered part of the verification setup and handled as SV assumptions. The fixed values can be propagated into the gates to remove parts that become constant or disconnected. For power and performance reasons it is common that designs are multi-clocked, or that clocks are gated (can be turned off and on). To have a global synchronous model for verification we need to reduce these multi-clock systems to a single global system (or tool) clock. This is often handled by mux-feedback added to the flops/latches along with logic generating the condition for the muxes. Inputs to the netlist may also have constraints at which rate/phase they can change. Rated inputs are free to take any value but only at certain points, clock generators follow a periodic pattern. The use of a zero-delay timing model, meaning combinatorial gate output the function of their inputs without any delay, can give rise to problems when there are feedback loops in the netlist. Causing contradictions when a net would have two (or more) values, had there some delay in propagating the values through gates. There are 5 kinds of loops we can occur, through flops (data and clock), through latches (data and enable) and those only going through combinatorial gates. The ones going through flop data are benign, as its effect is mediated by the clock. The others need to be ruled out, or handled by modeling. Introducing some (fractional-)delay/steps seems an attractive approach, but establishing a bound on the number steps needed is challenging (and for some, no bound exists). Initialisation, also referred to as reset, is commonly done by applying sequence of values to a subset of inputs. This aims to get the design from an arbitrary unknown state into a set of states from which it will have predictable behaviour. Part of the design flops might have asynchronous reset, others can receive values on the data input from other flops and inputs, yet others might be left uninitialised. Automating the computation of an (over-)approximation of the reset states will provide more information to the constructed model checking problem.10.34727/2022/isbn.978-3-85448-053-2_3 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026592- IEEE Inglês
Computer-Aided Analysis of Hybrid Dynamical Systems in the ISMA EnvironmentA. V. Garder; Y. V. Shornikov 2022 The numerical analysis of complex event-continuous processes represented by the class of Cauchy problems with constraints on an event function is considered. The processes are specified in the developed unique textual-graphical language LISMA using Harel statecharts. The program models are edited, numerically analyzed, and their results are processed in the computer-aided analysis environment ISMA. The numerical analysis is performed using a collection of traditional and developed original explicit numerical integration methods of variable order and step with extended stability domains and an original algorithm detecting unilateral events in hybrid systems. The efficiency of the original methods has been tested on typical examples of hybrid systems. The chosen visual specification of program models satisfies the representation semantics of discrete-continuous processes with complex operational mode switching logic. Moreover, such a specification is understandable to an end user, who is rather interested in analyzing complex dynamic processes using simple and comprehensible tools for composing and editing models and being able to change the model structure and parameters fast.10.1109/EDM55285.2022.9855163 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855163complex event-continuous processes;hybrid dynamical systems;textual-graphical languages;Harel statecharts;computer-aided analysis environmentsIEEE Inglês
Domain-specific language to design educational programs with the use of X-matrix approachA. Kuzmin; A. Dukhanov; S. Kraev 2022 This paper introduces a prototype of a domain-specific language for quick and efficient preparation of educational programs. Rapid changes in technology lead to constant modification process of the current program especially in scientific-intensive areas. As a result, teachers may need a tool representing a convenient, structural and formalized approach for learning program construction. The domain-specific language is devoted to serve as such an instrument and is based on concepts of X-matrix and problem areas map. In this paper functions of the language prototype and its syntax are represented. Key entities which comprise X-matrix and problem area matrix are explained. The implementation of operations on the entities in the markup language are described.10.1109/FIE56618.2022.9962384 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9962384problem areas map;X-matrix;domain-specific languages IEEE Inglês
Automatic Test Cases Generation for C Written Programs Using Model CheckingD. G. Lima; R. E. González Torres; P. M. Alvarez2021 The present work focuses on the development of a tool that automatically generates coverage criteria based test cases from a C written program. For accomplishing this, the tool translates the C code into PROMELA and generates specifications based on the wanted coverage criteria. Once the model (PROMELA code) and specifications are obtained, it uses SPIN model checker for executing the verification and generating counterexamples which can be used as test cases.10.1109/CSCI54926.2021.00361 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9799272model checking;compiler;PROMELA;SPIN;software testing IEEE Inglês
AutoSVA: Democratizing Formal Verification of RTL Module InteractionsM. Orenes-Vera; A. Manocha; D. Wentzlaff; M. Martonosi2021 Modern SoC design relies on the ability to separately verify IP blocks relative to their own specifications. Formal verification (FV) using SystemVerilog Assertions (SVA) is an effective method to exhaustively verify blocks at unit-level. Unfortunately, FV has a steep learning curve and requires engineering effort that discourages hardware designers from using it during RTL module development. We propose AutoSVA, a framework to automatically generate FV testbenches that verify liveness and safety of control logic involved in module interactions. We demonstrate AutoSVA’s effectiveness and efficiency on deadlock-critical modules of widely-used open-source hardware projects.10.1109/DAC18074.2021.9586118 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118automatic;modular;formal;verification;SVA IEEE Inglês
Petri Nets Based Verification of Epistemic Logic and Its Application on Protocols of Privacy and SecurityL. He; G. Liu 2020 Epistemic logic can specify many design requirements of privacy and security of multi-agent systems (MAS). The existing model checkers of epistemic logic use some programming languages to describe MAS, induce Kripke models as the behavioral representation of MAS, apply Ordered Binary Decision Diagrams (OBDD) to encode Kripke models to solve their state explosion problem and verify epistemic logic based on the encoded Kripke models. However, these programming languages are usually non-intuitive. More seriously, their OBDD-based model checking processes are often time-consuming due to their dynamic variable ordering for OBDD. Therefore, we define Knowledge-oriented Petri Nets (KPN) to intuitively describe MAS, induce similar reachability graphs as the behavioral representation of KPN, apply OBDD to encode all reachable states, and finally verify epistemic logic. Although we also use OBDD, we adopt a heuristic method for the computation of a static variable order instead of dynamic variable ordering. More importantly, while verifying an epistemic formula, we dynamically generate its needed similar relations, which makes our model checking process much more efficient. In this paper, we introduce our work.10.1109/SERVICES48979.2020.00019 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284162model checking;epistemic logic;CTLK;Petri nets;OBDD IEEE Inglês
Combining STPA with SysML Modeling F. G. R. de Souza; J. de Melo Bezerra; C. M. Hirata; P. de Saqui-Sannes; L. Apvrille2020 System-Theoretic Process Analysis (STPA) is a technique, based on System-Theoretic Accident Model and Process (STAMP), to identify hazardous control actions, loss scenarios, and safety requirements. STPA is considered a rather complex technique and lacks formalism, but there exists a growing interest in using STPA in certifications of safety-critical systems development. SysML is a modeling language for systems engineering. It enables representing models for analysis, design, verification, and validation of systems. In particular, the free software TTool and the model-checker UPPAAL enable formal verification of SysML models. This paper proposes a method that combines STPA and SysML modeling activities in order to allow simulation and formal verification of systems' models. An automatic door system serves as example to illustrate the effectiveness of the proposed approach.10.1109/SysCon47679.2020.9275867 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867STPA;SysML;method;safety analysis;formal verification IEEE Inglês

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9620493
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402175
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904523
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773841
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9443656
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582405
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945619
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9516661
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793546
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9334088
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9268140
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744373
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9623050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904566
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9329301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9194670
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8944976
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8802766
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904524
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270314
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9678582
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9156025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643829
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9812649
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9342169
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592494
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9257838
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842664
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582297
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877419
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8667967
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9069000
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8802733
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742019
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793785
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904775
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776962
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8974672
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8970279
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026592
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855163
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9962384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9799272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284162
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867

Capturing the iccMAX calculatorElement: A Case Study on Format DesignV. H. Kothari; P. Anantharaman; S. W. Smith; B. Hitaj; P. Mundkur; N. Shankar; L. W. Li; I. Diatchki; W. Harris2022 ICC profiles are widely used to provide faithful digital color reproduction across a variety of devices, such as monitors, printers, and cameras. In this paper, we document our efforts on reviewing and identifying security issues with the calculatorElement description from the recent iccMAX specification (ICC.2:2019), which expands upon the ICC v4 specification (ICC.1:2010). The iccMAX calculatorElement, which captures a calculator function through a stack-based computational approach, was designed with security in mind. We analyzed the iccMAX calculatorElement using a variety of approaches that utilized: the proof assistant PVS, the theorem-proving language ACL2, the data description language DaeDaLus, and tools tied to the data description language Parsley. Bringing the tools of formal data description, theorem proving, and static analysis to a non-trivial real-world specification has shed light on both the tools and the specification. This exercise has led us to discover numerous bugs within the specification, to identify specification improvements, to identify flaws with a demo implementation, and to recognize ways that we can improve our own tools. Additionally, this particular case study has broader implications for those who work with specification, data description languages, and parsers. In this paper, we document our work on this exercise and relay our key findings.10.1109/SPW54247.2022.9833859 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833859LangSec;data description languages;formal methods;static analysis;parser;specification;iccMAXIEEE Inglês
Model-Checking-Based Automated Test Case Generation for Z Formal Specification of an Urban Railway Interlocking SystemL. Kadakolmath; U. D. Ramu 2022 Testing safety-critical software systems like urban railway interlocking systems is crucial since a software crash may lead to a terrible loss of assets and human life. A key problem in testing safety-critical software systems is the generation of a test suite that can detect feasible faults. The reliability of safety-critical systems is based on the precise functional requirements specification. These functional requirements are made precise by formal specification languages like Z. Formal specifications have less probability of producing an implementation that does not meet the client's requirements. To confirm that the implementation that is to be deployed in the real world, meets the client's requirements, it is essential to test it. This research article exhibits a model-checking-based method to produce a test suite of \mathbf{Z} formal specifications using the ProZ model-checking tool. The model-checking-based method uses a breadth-first search method to produce test cases. Finally, as a case study, we applied this methodology to the formal model of an urban railway interlocking system to generate test cases.10.1109/ICERECT56837.2022.10060801 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10060801Formal specification;Formal testing;Model-Based testing;Model checking;Test template framework;Test case generation;Safety-critical software systems;Z notationIEEE Inglês
Development and Application of the CubeSat System Reference ModelD. Kaslow; P. T. Cahill; B. Ayres 2020 The International Council on Systems Engineering (INCOSE) Space System Working Group (SSWG) has created the CubeSat System Reference Model (CSRM), a representation of the logical architecture of a CubeSat system, intended to be used by system architects and engineers as a starting point as they develop the logical architecture of the Space and Ground components of the CubeSat mission of interest to them. The CSRM is based on Model-Based System Engineering (MBSE) principles, is System Modeling Language (SysML) compliant, is hosted in a graphical modeling tool, and is intended to introduce quality enhancements and economies associated with reusability. The CSRM has been vetted by System Engineering professionals and has been introduced to the CubeSat mission development team community with favorable results. It has been submitted to the Object Management Group (OMG) as a CubeSat specification, and is being evaluated for that role. The SSWG has created a notional outline describing how the CSRM can be applied to a specific mission development effort; and has also identified possible future efforts to expand the applicability, value, and use of the CSRM by the satellite development community.10.1109/AERO47225.2020.9172714 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172714- IEEE Inglês
Pattern Based Model Reuse Using Colored Petri NetsS. H. Askari; S. A. Khan; M. Haris; M. Shoaib 2019 Colored Petri Net (CPN) is a graphical modeling language for simulation and modeling and for verification of discrete event systems. CPN allows developers to define a model in the form of reusable components. A model component is an independent element, which is specified using a formalized description, can conform to a certain component standard, has a well-defined interface, and encapsulates certain behavior. Modern components can help the developer reuse existing models according to their requirement as it reduces the cost and time of development. Composability is the capability to select and integrate various components to fulfill user requirements. Composability provides the means to achieve reusability where "reuse" is the ability of a simulation component to be reclaimed for various applications. We propose a verification framework for developers to select and assemble CPN-based components and verify their composability. The goal of this paper is to provide a pattern which helps developer in making models of concurrent systems. We present a case study of a restaurant model as proof of concept. A verified composition affirms reuse of model components in a meaningful manner by satisfying given requirement specifications.10.1109/ICCSA.2019.000-7 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585Patterns, Pattern Reuse, Colored Petri nets, Composability VerificationIEEE Inglês
Decomposition of Process Control Algorithms for Parallel Computing Systems Using Automata ModelsD. V. Pashchenko; A. I. Martyshkin; D. A. Trokoz2020 The paper considers the decomposition of process control algorithms for parallel computing systems using automata models. When designing parallel processing systems, an important problem is the formal representation of process control algorithms since they allow integrated solving the tasks of development, implementation, and analysis of complex control systems, including the control over interacting processes and resources in parallel systems. One of the control algorithm formal description techniques is based on the use of nondeterministic automaton (NDA) logic; it allows representing the data processing control algorithms as canonical equation systems describing all private events implemented in the algorithm. This language's advantage is describing all the control system transitions in not the system state terms but private event ones, the simultaneous existence of which determines all the system states and transitions, which allows avoiding a `combinatorial explosion' in the state space at the currently available verification capabilities. The paper objective is studying the process control algorithms for parallel computing systems using the NDA tool. Herein, the development and research object is the parallel decomposition of control algorithms for parallel computing systems using automata models. An automata model has been obtained that describes the synchronization of parallel processes based on the finite NDA logic, the correctness of which has been proved by simulation in the VHDL language. The experimental hardware implementation of synchronization device using FPGAs and the resulting time-charts of its operation completely confirm its correct functioning. Conclusions have been drawn on the correctness of the basic results obtained in the study.10.1109/RusAutoCon49822.2020.9208165 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208165control algorithm;verification;finite automaton;simulation;parallel system;temporal logic;formalizationIEEE Inglês
Static Analysis of Resource Consumption in Programs Using Rewriting RulesT. Mamedov; A. Doroshenko; R. Shevchenko 2020 The paper presents a method of static analysis of resource consumption for C# programs. A software tool based on rewriting rules is proposed for that purpose for the case of opened and closed files. In order to work with C#-programs, the special plugin for TermWare, which helps to generate appropriate terms from source code, was developed. The plugin uses the Roslyn compiler to find different syntax errors and focus on the primary task of generating terms from source code. Also, an application based on TermWare system - a static analyzer that finds problems with open-close files, is described in the article.10.1109/ATIT50783.2020.9349290 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9349290analysis of resource consumption;terms;generator;analyzer;rewriting rules;TermWareIEEE Inglês
Modeling Class Diagram using NLP in Object-Oriented DesigningN. Bashir; M. Bilal; M. Liaqat; M. Marjani; N. Malik; M. Ali2021 Requirement's analysis and design is a multifaceted and time-consuming process. The success of software projects critically relies on careful & timely analysis and modeling of system requirements. Mostly, the requirements gathered from the stakeholders are written in some language (probably English). In this regard, significant manual efforts are required for the formation of good class model which unfortunately results in time delays in the software industry. The problems associated with the requirement analysis and class modeling can be overcome by the appropriate employment of machine learning. In this paper, we propose a system, requirement engineering analysis & design (READ) to generate unified modeling language (UML) class diagram using natural language processing (NLP) and domain ontology techniques. We have implemented the READ system in Python and it successfully generates the UML class diagram i.e., class name, attributes methods, and relationships from the textual requirements written in English. To assess the performance of the proposed system, we have evaluated it on publicly available standards and the experimental results show that it outperforms the existing techniques for object-oriented based software designing.10.1109/NCCC49330.2021.9428817 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9428817Machine learning;natural language processing;object-oriented designing;unified modeling language;software designingIEEE Inglês
A Study of Modeling Perception in a First-Time Modeling ClassH. Ergin; I. L. Walling; K. P. Rader; D. J. Dobbs2019 In this paper, we have studied the modeling perception change of first-time learners in a heavily undergraduate research institute. The new course has covered a lot of aspects that are a part of a regular modeling course, including domain-specific languages, modeling, metamodeling, code-generation, and model transformation. We have run the study by distributing three surveys to all students: one at the beginning of the course, one in the middle, and one at the end. The results are mixed. Even though there are changes in terms of what modeling is, the primary obstacle seems to be related to the tools and support available (or not) in the modeling community.10.1109/MODELS-C.2019.00104 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904829modeling class;perception;first time class IEEE Inglês
Generating and Employing Witness Automata for ACTLW FormulaeR. Vogrin; R. Meolic; T. Kapus 2022 When verifying the validity of a formula in a system model by a model checker, a common feature is the generation of a linear witness or counterexample, which is a computation path usually showing a single reason why the formula is valid or, respectively, not. For systems represented with Labeled Transition Systems (LTS) and a subset of ACTLW (Action-based Computation Tree Logic with Unless operator) formulae, a procedure exists for the generation of witness automata, which contain all the interesting finite linear witnesses, thus revealing all the reasons of the validity of a formula. Although this procedure uses a symbolic representation of LTSs, transitions of a given LTS are traversed one by one. In this paper, we propose a procedure which exploits the symbolic representation efficiently to traverse several transitions at once. We evaluate the procedure on models of a communication protocol from industry and a biological system. The results show it to be at least several times faster than the former one. Witness automata were first introduced to allow for compositional generation of test sequences. We propose two more possible uses. One is for the detection of multiple errors in a model by exploring the witness automaton for a formula, instead of only one, which is usually the case with a single witness. The other one is for the detection of previously unknown system properties. As witness automata can be rather large, we show how some existing tools could help in examining them through visualization and simulation.10.1109/ACCESS.2022.3143478 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9681848Automata;formal verification;logic;model checking IEEE Inglês
Systematic Evaluation and Usability Analysis of Formal Methods Tools for Railway Signaling System DesignA. Ferrari; F. Mazzanti; D. Basile; M. H. ter Beek2022 Formal methods and supporting tools have a long record of success in the development of safety-critical systems. However, no single tool has emerged as the dominant solution for system design. Each tool differs from the others in terms of the modeling language used, its verification capabilities and other complementary features, and each development context has peculiar needs that require different tools. This is particularly problematic for the railway industry, in which formal methods are highly recommended by the norms, but no actual guidance is provided for the selection of tools. To guide companies in the selection of the most appropriate formal methods tools to adopt in their contexts, a clear assessment of the features of the currently available tools is required. To address this goal, this paper considers a set of 13 formal methods tools that have been used for the early design of railway systems, and it presents a systematic evaluation of such tools and a preliminary usability analysis of a subset of 7 tools, involving railway practitioners. The results are discussed considering the most desired aspects by industry and earlier related studies. While the focus is on the railway signaling domain, the overall methodology can be applied to similar contexts. Our study thus contributes with a systematic evaluation of formal methods tools and it shows that despite the poor graphical interfaces, usability and maturity of the tools are not major problems, as claimed by contributions from the literature. Instead, support for process integration is the most relevant obstacle for the adoption of most of the tools. Our contribution can be useful to R&D engineers from railway signaling companies and infrastructure managers, but also to tool developers and academic researchers alike.10.1109/TSE.2021.3124677 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463- IEEE Inglês
Generating UML Class Diagram from Natural Language Requirements: A Survey of Approaches and TechniquesE. A. Abdelnabi; A. M. Maatuk; M. Hagal 2021 In the last years, many methods and tools for generating Unified Modeling Language (UML) class diagrams from natural language (NL) software requirements. These methods and tools deal with the transformation of NL textual requirements to UML diagrams. The transformation process involves analyzing NL requirements and extracting relevant information from the text to generate UML class models. This paper aims to survey the existing works of transforming textual requirements into UML class models to indicate their strengths and limitations. The paper provides a comprehensive explanation and evaluation of the existing approaches and tools. The automation degree, efficiency, and completeness, as well as the used techniques, are studied and analyzed. The study demonstrated the necessity of automating the process, in addition to combining artificial intelligence with engineering requirements and using Natural Language Processing (NLP) techniques to extract class diagrams from NL requirements.10.1109/MI-STA52233.2021.9464433 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9464433System Development;Requirement Engineering;NLP;UML class diagramsIEEE Inglês
Distinguishing Similar Design Pattern Instances through Temporal Behavior AnalysisR. Xiong; D. Lo; B. Li 2020 Design patterns (DPs) encapsulate valuable design knowledge of object-oriented systems. Detecting DP instances helps to reveal the underlying rationale, thus facilitates the maintenance of legacy code. Resulting from the internal similarity of DPs, implementation variants, and missing roles, approaches based on static analysis are unable to well identify structurally similar instances. Existing approaches further employ dynamic techniques to test the runtime behaviors of candidate instances. Automatically verifying the runtime behaviors of DP instances is a challenging task in multiple aspects. This paper presents an approach to improve the verification process of existing approaches. To exercise the runtime behaviors of DP instances in cases that test cases of legacy systems are often unavailable, we propose a markup language, TSML (Test Script Markup Language), to direct the generation of test cases by putting a DP instance into use. The execution of test cases is monitored based on a trace method that enables us to specify runtime events of interest using regular expressions. To characterize runtime behaviors, we introduce a modeling and specification method employing Allen's interval-based temporal relations, which supports variant behaviors in a flexible way without hard-coded algorithms. A prototype tool has been implemented and evaluated on six open source systems to verify 466 instances reported by five existing approaches with respect to five DPs. The results show that the dynamic analysis increases the F1-score by 53.6% in distinguishing similar DP instances.10.1109/SANER48275.2020.9054804 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054804Design Pattern Detection;Temporal Analysis;Reverse Engineering;Software Comprehension;Knowledge RepresentationIEEE Inglês
PMExec: An Execution Engine of Partial UML-RT ModelsM. Bagherzadeh; K. Jahed; N. Kahani; J. Dingel2019 This paper presents PMExec, a tool that supports the execution of partial UML-RT models. To this end, the tool implements the following steps: static analysis, automatic refinement, and input-driven execution. The static analysis that respects the execution semantics of UML-RT models is used to detect problematic model elements, i.e., elements that cause problems during execution due to the partiality. Then, the models are refined automatically using model transformation techniques, which mostly add decision points where missing information can be supplied. Third, the refined models are executed, and when the execution reaches the decision points, input required to continue the execution is obtained either interactively or from a script that captures how to deal with partial elements. We have evaluated PMExec using several use-cases that show that the static analysis, refinement, and application of user input can be carried out with reasonable performance, and that the overhead of approach is manageable. https://youtu.be/BRKsselcMnc Note: Interested readers can refer to [1] for a thorough discussion and evaluation of this work.10.1109/ASE.2019.00131 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952369MDD;Partial Models;Execution;Debugging;Model level debugging;Model executionIEEE Inglês
Systems Engineering Modelling Diagrams as Prerequisites to Failure Mode and Effect AnalysisS. Jayatilleka 2020 Summary & Conclusions: Failure mode and effect analysis (FMEA) process starts with several key inputs. A few such traditional inputs are the older generation FMEAs, field failure reports, corrective actions and lessons learned. During the past two decades there had been several diagrams used as important FMEA inputs. The most popular diagrams of all diagrams had been the boundary diagram and the parameter diagram that were used to discover hidden functional requirements and failure modes for Design FMEAs. Similarly, the Process Flow Diagram had been used to discover process steps as input to Process FMEAs. This paper discusses several other diagrams depending on the stage of the product development process. FMEAs begin with Functional Requirements. The two main issues affecting the effectiveness of DFMEA are the (i) poorly written functional requirements and (ii) the missing functional requirements. The main connection and the contribution of this paper to DFMEA is the discovery process of functional requirements, otherwise missed. Once the functional requirements are discovered, the rest of the elements of FMEAs are derived from those functional requirements. For example, failure modes are derived as over-function, under-function, or no function, etc. Therefore, missed and poorly written requirements are going to affect the effectiveness of the all elements of FMEA, thereby the product designed level for reliability. The requirements come from different sources. They could be performance, regulatory, safety, or environmental, to mention a few. As mentioned before, if requirements are missed in a FMEA, verification and validation of that requirement is going to be missed. In addition, poorly written requirements lead to inadequate verification and validation test plans. The traditional Boundary and Parameter Diagrams have been influential as a multidimensional tool in discovering the initial requirements. To strengthen the multidimensional requirement discovery process, systems engineering modeling language (SysML) offers several other diagrams. Few examples are the activity diagrams, sequence diagrams, state machines diagrams and use case diagrams. This paper discusses such popular and useful SysML diagrams used across new product development processes to discover functional requirements that may be missed otherwise and feed the DFMEA to have a good start to an effective FMEAs. Examples are provided from automobile, wind turbine, and heating & air-conditioning industries.10.1109/RAMS48030.2020.9153649 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153649SysML;FMEA;Product Development IEEE Inglês
Qualification of Hardware Description Language Designs for Safety Critical Applications in Nuclear Power PlantsA. K. John; A. K. Bhattacharjee 2020 Field-programmable gate-array (FPGA)-based intelligent hardware modules are increasingly being used in safety systems of nuclear power plants. Qualification of these modules as per safety standards such as IEC 62566/60880 and IEEE-7.4.3.2-2010 needs considerable effort. Many of the safety standards demand high rigor in verifying that the designs of these modules meet the design intent. Use of hardware description languages such as VHDL or Verilog makes the process of code review and verification difficult due to the complex nonsequential semantics of these languages. It is now recognized that formal verification offers a complementary approach to conventional verification. Formal verification tools perform analysis of designs based on language semantics to prove/refute their functional correctness. In this article, we present the architecture of a formal verification tool for VHDL designs and our experience of using this tool on VHDL designs in nuclear applications.10.1109/TNS.2020.2972903 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153Bounded model checking;formal verification;field-programmable gate-array (FPGA) qualification;VHDLIEEE Inglês
EC.LANG – A Language for Specifying Response Time Analyses of Event ChainsM. J. Friese; J. Traub; D. Nowotka 2020 Modern cyber-physical systems pose great challenges for system engineers to keep track of the system's behavior when it comes to functions distributed all over the system. To check whether response time constraints are met, measurement data from different development stages is analyzed to track down the worst-case behavior observed.Several complex, signal dependencies have to be examined over long time periods. Therefore, computer aided approaches to support this task are strongly demanded. In this paper, we present EC.LANG, a formal language designed to specify evaluations over measurement data. It is particularly fitted to model event chains representing the data flow of system functions. To validate event chains against timing requirements, we implemented a compiler and an evaluation engine based on EC.LANG.10.1109/ICST46399.2020.00042 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159108- IEEE Inglês
Functional Verification closure using Optimal Test scenarios for Digital designsA. Thalaimalai Vanaraj; M. Raj; L. Gopalakrishnan2020 The ever-increasing design complexity of Integrated Circuits (ICs) resulted in challenging aspects of functional/logic verification, in terms of verification platform complexity, achieving verification goals like code/functional coverage and unbounded verification time/efforts for any given digital design. Currently, Functional Verification closure depends on CAD/EDA tool Random Seed capability combined with constrained random verification methodology like Universal Verification methodology (UVM) to generate exhaustive test scenarios, thereby achieving coverage goals for test regressions. In this paper, a framework is proposed for generating optimal test scenarios by interleaving design under test (DUT), input stimuli solution space, constrained random solution space and required levels of test stimuli combinations.10.1109/ICSSIT48917.2020.9214097 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9214097Functional/Logic verification;constrained random verification;Code Coverage;Functional Coverage;Verification Closure;Verification Complexity;Test Scenario;Input StimuliIEEE Inglês
Interactive Behavior-driven Development: a Low-code PerspectiveN. Patkar; A. Chiş; N. Stulova; O. Nierstrasz 2021 Within behavior-driven development (BDD), different types of stakeholders collaborate in creating scenarios that specify application behavior. The current workflow for BDD expects non-technical stakeholders to use an integrated development environment (IDE) to write textual scenarios in the Gherkin language and verify application behavior using test passed/failed reports. Research to date shows that this approach leads non-technical stakeholders to perceive BDD as an overhead in addition to the testing. In this vision paper, we propose an alternative approach to specify and verify application behavior visually, interactively, and collaboratively within an IDE. Instead of writing textual scenarios, non-technical stakeholders compose, edit, and save scenarios by using tailored graphical interfaces that allow them to manipulate involved domain objects. Upon executing such interactively composed scenarios, all stakeholders verify the application behavior by inspecting domain-specific representations of run-time domain objects instead of a test run report. Such a low code approach to BDD has the potential to enable nontechnical stakeholders to engage more harmoniously in behavior specification and validation together with technical stakeholders within an IDE. There are two main contributions of this work: (i) we present an analysis of the features of 13 BDD tools, (ii) we describe a prototype implementation of our approach, and (iii) we outline our plan to conduct a large-scale developer survey to evaluate our approach to highlight the perceived benefits over the existing approach.10.1109/MODELS-C53483.2021.00024 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783bdd;behavior-driven development;collaborative development;acceptance testing;visual programming;end-user programmingIEEE Inglês
A New Modeling Framework For Cyber-Physical And Human SystemsM. Poursoltan; N. Pinède; B. Vallespir; M. K. Traore2022 Health, manufacturing, and transport systems are in the midst of the rapid emergence of intelligent systems. In this regard, Cyber-Physical and Human Systems open a new window on intelligent systems in which the role of humans is prominent. Modeling and simulation (M&S) are recognized as practical tools playing a role in promoting the design, analysis, and development of CPHS. However, from a conceptual and technical point of view, CPHS modeling is challenging for modelers since they face some concepts and processes regarding human beings and intelligent artifacts which were not pervasive in M&S before. Thus, the aim of this study is twofold. The first is to shine new lights on the CPHS understanding regardless of application domains by providing an ontological model. The next is to propose an agent-based modeling framework according to the High-Level Language for Systems Specification (HiLLS) to convert conceptual models into executable ones.10.23919/ANNSIM55834.2022.9859402 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9859402Cyber-Physical and Human Systems;High-Level Language for Systems Specification;Ontology;Meta-model;Agent-Based ModellingIEEE Inglês
Model-Driven Engineering for Delta-Oriented Software Product LinesM. R. A. Setyautami; R. R. Rubiantoro; A. Azurat2019 Software product line engineering (SPLE) is an approach in software development that produces various products based on commonality and variability. SPLE maintains the product variations within two main phases: domain engineering and application engineering. Lack of adequate technology and tools support is one of the problems in adopting SPLE. In this research, a model-driven approach based on delta-oriented programming is proposed for SPLE. The process starts with the domain analysis phase by defining a feature diagram and Unified Modeling Language (UML) based on existing systems. While those models represent the problem domain, delta-oriented programming with abstract behavioral specification? (ABS) language is used in the solution domain. This approach is supported by automated model transformations, which transform the feature diagram and UML to ABS models. A code generator mechanism is also used to produce a running application based on ABS models. When the user selects features in this application, our tools generate the running application based on those selections. We provide a running example, a charity organization system, as a case study. Therefore, this research proposes an entire SPLE process based on a model-driven approach that covers the problem and solution domains and produces a running application.10.1109/APSEC48747.2019.00057 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945701abstract behavioral specification;delta-oriented programming;model transformation;software product line engineering;UML diagramIEEE Inglês
Evaluation of visual syntax specification techniques: a study of OWLA. Thomas 2021 Diagrams are an integral part of our communication and thus automated processing of diagrams becomes increasingly relevant. One way to realise automated processing is by using declarative specifications of diagrams. These declarative specifications have similarities to domain knowledge modelled in ontologies. The Web Ontology Language (OWL), an open standard of W3C, is a prominent ontology language to model domain knowledge. In this paper, OWL is evaluated for its suitability to specify visual syntax of diagrams. Specifically, reviews of literature are conducted to establish relevant evaluation criteria and to obtain evidence about OWL for the established criteria. The evaluation indicates that OWL is used widely, which could be attributed to its standardisation and expressiveness, and consequently, it has extensive tool support, including reasoners and editors, with noticeable presence of open source tools. The evaluation also indicates that although OWL has been used successfully for diagram specifications, further research is required to understand entirely its strengths and limitations as a visual syntax specification technique.10.1109/icABCD51485.2021.9519313 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9519313Criteria-Based Evaluation;Diagrams;Visual Syntax Specification;OWLIEEE Inglês
Formal Notations of Linguistic Analysis for Monetary PolicyA. S. Sohail; M. Sameen; Q. Ahmed 2019 This study proposes mathematical tools derived from topology and category theory along with computational linguistics which can be used to analyze the linguistics of the monetary policy statements and quantify its tone.10.1109/ICGHIT.2019.00035 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8866964Topology, Category theory, Computational linguistics IEEE Inglês
Automatic Generation Method of Airborne Display and Control System Requirement Domain Model Based on NLPY. Mengyuan; W. Lisong; K. Jiexiang; G. Zhongjie; H. Wang; W. Yin; C. Buzhan2021 Domain modeling is a crucial step from natural language requirements to precise specifications, and an essential support for the development of automation system design tools. The existing domain model extraction methods are not accurate enough to be applied into specific fields. In this paper, we present a method for extracting the requirement domain model of airborne display and control system based on Natural Language Processing (NLP). Firstly, the domain model template is defined on the basis of the detailed study of the existing rules. Then in the requirement statement, the parse tree generated from Stanford Parser is utilized to preprocess the requirements for special symbols and conjunctions. Finally, we conduct the comparative experiment and the results indicate that the precision of domain model extraction is 20.01% higher than the existing approaches without preprocessing.10.1109/ICCCS52626.2021.9449277 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9449277NLP;airborne display and control system;requirement;domain model;parse treeIEEE Inglês
Online Signal Monitoring With Bounded LagK. Mamouras; Z. Wang 2020 An essential approach for guaranteeing the safety of a cyber-physical system is to monitor its execution in real time. The execution trace of such a system typically consists of one or more signals, and a key computational task for safety monitoring is the online processing of these signals in order to identify events that need to be acted upon in a timely manner. There are several existing proposals for the specification of signal monitors: temporal logics, reactive languages, and dataflow formalisms. A shared feature of most of these proposals is that they describe online signal transformations that are causal. The causality requirement enables a real-time implementation, where the input and output signals are perfectly synchronized. We propose a new specification formalism for signal monitors that relaxes the causality restriction and allows the output to depend on a bounded amount of future input. It follows that an online implementation of such a monitor must have a certain amount of lag in the computation. We introduce a formal framework for signal transformations that allow bounded lag (the output has fallen behind the input) and bounded lead (the output is running ahead of the input), and we propose a type discipline for classifying these transformations according to their lead/lag. We show that this typed framework provides a modular approach for succinctly specifying: 1) monitors for temporal properties that involve both past and bounded-future connectives and 2) complex signal processing computations, such as those arising in the monitoring of physiological signals in medical devices. We have implemented the proposed specification formalism and we have compared it against state-of-the-art tools for the online monitoring of temporal properties: MonPoly, StreamLAB, Aerial, and Reelay.10.1109/TCAD.2020.3013053 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9211570Automata;cyber-physical systems;data streams;metric temporal logic (MTL);online monitoring;quantitative properties;runtime verification;signal temporal logic (STL);transducersIEEE Inglês
Multifaceted Consistency Checking of Collaborative Engineering ArtifactsM. A. Tröls; A. Mashkoor; A. Egyed 2019 In modern day engineering projects, different engineers collaborate on creating a vast multitude of different artifacts such as requirements, design specifications and code. While these artifacts are strongly interdependent, they are often treated in isolation and with little regard to their semantical overlappings. Automatic consistency checking approaches between these artifacts are rare and often not feasible. Therefore, artifacts become inconsistent and the consequences are costly errors. This work proposes a multifaceted consistency checking approach for different kinds of engineering artifacts, with the help of a collaborative engineering platform. The proposed approach enables engineers to automatically check the consistency of their individual artifacts against the work results of other engineers, without using different tools than the established ones of their fields and without merging their artifacts with those of others.10.1109/MODELS-C.2019.00044 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904636collaborative engineering;engineering artifacts;consistency checkingIEEE Inglês
On Analyzing Rule-Dependencies to Generate Test Cases for Model TransformationsT. -H. Nguyen; D. -H. Dang; Q. -T. Nguyen 2019 Quality model transformations play a key role in the successful realization of Model Driven Engineering in practice. In the relational model transformations, rule dependency relations directly impact quality properties such as correctness, completeness, and information preservation. The analysis of rule dependencies from the declarative specification is expected to bring advantages for testing transformation properties.In this paper, we proposed a black-box approach for testing relational model transformations based on the analysis of the declarative specification using Triple Graph Grammar (TGG) rules. We exploit declarative TGG rules to capture the rule dependencies. Then, rule dependencies are combined together using the t-way testing technique to create test case descriptions. We transform patterns representing the input test condition and the oracle function of a test case description into OCL (Object Constraint Language) constraints to facilitate automatically generating input test models by solving constraints and querying interesting properties on the output models.10.1109/KSE.2019.8919486 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8919486Model Transformation;Triple Graph Grammar IEEE Inglês
Using UML and OCL Models to Realize High-Level Digital TwinsP. Muñoz; J. Troya; A. Vallecillo 2021 Digital twins constitute virtual representations of physically existing systems. However, their inherent complexity makes them difficult to develop and prove correct. In this paper we explore the use of UML and OCL, complemented with an executable language, SOIL, to build and test digital twins at a high level of abstraction. We also show how to realize the bidirectional connection between the UML models of the digital twin in the USE tool with the physical twin, using an architectural framework centered on a data lake. We have built a prototype of the framework to demonstrate our ideas, and validated it by developing a digital twin of a Lego Mindstorms car. The results allow us to show some interesting advantages of using high-level UML models to specify virtual twins, such as simulation, property checking and some other types of tests.10.1109/MODELS-C53483.2021.00037 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643725Model-based Software Engineering;Model-based Testing;Digital Twins;UML;OCL;USEIEEE Inglês
On Designing Applied DSLs for Non-Programming Experts in Evolving DomainsH. S. Borum; H. Niss; P. Sestoft 2021 Domain-specific languages (DSLs) have emerged as a plausible way for non-programming experts to efficiently express their domain knowledge. Recent DSL research has taken a technical perspective on how and why to create DSLs, resulting in a wealth of innovative tools, frameworks and technical approaches. Less attention has been paid to the design process. Namely, how can it ensure that the created DSL realises the expected benefits? This paper seeks to answer this question when designing DSLs for highly specialised domains subject to resource constraints, an evolving application domain, and scarce user participation. We propose an iteration of alternating activities in a human-centred design method that seeks to minimise the need for expensive implementation and user involvement. The method moves from a low-validity exploration of highly diverse language designs towards a higher-validity exploration of more homogeneous designs. We give an in-depth case study of designing an actuarial DSL called MAL, or Management Action Language, which allows actuaries to model so-called future management actions in asset/liability projections in life insurance and pension companies. The proposed human-centred design method was synthesised from this case study, where we found it useful for iteratively identifying and removing usability problems during the design.10.1109/MODELS50736.2021.00031 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592498Model-driven engineering;Domain-specific language;Human-centred designIEEE Inglês
Generic Navigation of Model-Based Development ArtefactsH. Ali; G. Mussbacher; J. Kienzle 2019 To describe the characteristics of complex software systems, model-driven engineering (MDE) advocates the use of different modeling languages and multiple views. These models are typically organized in a nested structure or grouped according to some criteria. A modeller needs to navigate this structure to understand and modify the system under development. This paper introduces a navigation bar that visually indicates to the modeller the place of a model in that structure. Furthermore, a generic navigation mechanism facilitates navigation within a model and from one model to other linked models potentially expressed in a different language. We present a navigation metamodel that a language designer can use to enhance a modelling language at the metamodel level with our generic navigation capabilities.10.1109/MiSE.2019.00013 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877031navigation bar;metamodel;multi-view modelling;model-driven engineeringIEEE Inglês
Enriching UML Statecharts through a Metamodel: A Model Driven Approach for the Graphical Definition of DEVS Atomic ModelsF. Dalmasso; M. J. Blas; S. Gonnet 2023 The Discrete Event System Specification (DEVS) formalism provides a set of mathematical elements for modeling time-varying systems. However, when DEVS models are implemented in an executable representation (i.e., using a general-purpose programming language), some deviation from the formalism is unavoidable. One way to bridge the gap between modeling and simulation theory and practice is to define new artifacts that support both views during the specification. When the specification is supported with a graphical representation, the formalization task is less complex and can be performed by non-expert modelers. For DEVS atomic models, most common graphical representation is through UML statecharts. In this paper, we present a theoretical and practical metamodel for the definition of atomic models structured following the Classic DEVS with Ports formalization. Such a metamodel is the core of a model-driven approach used to develop a modeling software tool that employs enriched UML statecharts for the graphical representation of the DEVS behavior. In here, the traditional UML statechart representation is enriched with a set of new components with the aim to provide a broad definition of DEVS atomic models. The final software tool is deployed as a plugin for Eclipse Platform.10.1109/TLA.2023.10015142 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10015142Discrete Event System Specification;Modeling and Simulation;Theory and Practice;State DiagramIEEE Inglês
Parallel Specification-Based Testing for Concurrent ProgramsC. Minh Do; K. Ogata 2022 The paper proposes a new testing technique for concurrent programs. The technique is a specification-based testing. For a formal specification S and a concurrent program P, state sequences are generated from P and checked to be accepted by S. We suppose that S is specified in Maude and P is implemented in Java. Java Pathfinder (JPF) and Maude are then used to generate state sequences from P and to check if such state sequences are accepted by S, respectively. Even without checking any property violations with JPF, JPF often encounters the notorious state space explosion while only generating state sequences. Thus, we propose a technique to generate state sequences from P and check if such state sequences are accepted by S in a stratified way. A tool is developed to support the proposed technique that can be processed naturally in parallel. Some experiments demonstrate that the proposed technique mitigates the state space explosion, which cannot be achieved with the straightforward use of JPF.10.1109/ACCESS.2022.3155629 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9723036Simulation;divide & conquer approach;parallel algorithms;concurrent programs;specification-based testingIEEE Inglês
Keywords-based test categorization for Extra-Functional PropertiesM. Abbas; A. Rauf; M. Saadatmand; E. P. Enoiu; D. Sundmark2020 Categorizing existing test specifications can provide insights on coverage of the test suite to extra-functional properties. Manual approaches for test categorization can be time-consuming and prone to error. In this short paper, we propose a semi-automated approach for semantic keywords-based textual test categorization for extra-functional properties. The approach is the first step towards coverage-based test case selection based on extra-functional properties. We report a preliminary evaluation of industrial data for test categorization for safety aspects. Results show that keyword-based approaches can be used to categorize tests for extra-functional properties and can be improved by considering contextual information of keywords.10.1109/ICSTW50294.2020.00035 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9156019test categorization;topic model;keyword extraction IEEE Inglês
Mining Specifications from Documentation using a CrowdP. Sun; C. Brown; I. Beschastnikh; K. T. Stolee2019 Temporal API specifications are useful for many software engineering tasks, such as test case generation. In practice, however, APIs are rarely formally specified, inspiring researchers to develop tools that infer or mine specifications automatically.Traditional specification miners infer likely temporal properties by statically analyzing the source code or by analyzing program runtime traces. These approaches are frequently confounded by the complexity of modern software and by the unavailability of representative and correct traces. Formally specifying software is traditionally an expert task. We hypothesize that human crowd intelligence provides a scalable and high-quality alternative to experts, without compromising on quality. In this work we present CrowdSpec, an approach to use collective intelligence of crowds to generate or improve automatically mined specifications. CrowdSpec uses the observation that APIs are often accompanied by natural language documentation, which is a more appropriate resource for humans to interpret and is a complementary source of information to what is used by most automated specification miners.10.1109/SANER.2019.8668025 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025Specification mining;crowdsourcing;Java APIs IEEE Inglês
Context-Aware IoT Device Functionality Extraction from Specifications for Ensuring Consumer SecurityU. Paudel; A. Dolan; S. Majumdar; I. Ray 2021 Internet of Thing (IoT) devices are being widely used in smart homes and organizations. An IoT device has some intended purposes, but may also have hidden functionalities. Typically, the device is installed in a home or an organization and the network traffic associated with the device is captured and analyzed to infer high-level functionality to the extent possible. However, such analysis is dynamic in nature, and requires the installation of the device and access to network data which is often hard to get for privacy and confidentiality reasons. We propose an alternative static approach which can infer the functionality of a device from vendor materials using Natural Language Processing (NLP) techniques. Information about IoT device functionality can be used in various applications, one of which is ensuring security in a smart home. We demonstrate how security policies associated with device functionality in a smart home can be formally represented using the NIST Next Generation Access Control (NGAC) model and automatically analyzed using Alloy, which is a formal verification tool. This will provide assurance to the consumer that these devices will be compliant to the home or organizational policy even before they have been purchased.10.1109/CNS53000.2021.9705050 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050IoT;Smart Home;Device Functionality;NLP IEEE Inglês
Tooling for automated testing of cyber-physical system modelsT. Broenink; B. Jansen; J. Broenink 2020 This work presents a tool for automatic testing of cyber-physical systems via simulation. Cyber-physical system design can benefit from this automated testing as it allows for system-level requirements and prevents regression of the design. The tool is based on three parts: A testing language, a simulator controller, and a post processor. The testing language is a domain-specific language based on a Gherkin style syntax and can define test for multiple models and simulators. The domain specific language also defines algebraic, logical, and linear temporal logic transformations for outputs to define testing conditions. The tool can perform different sub-sets of tests based on a graphical or command line interface. The tool is demonstrated using an example where a motor is selected for a winch system. Here it is shown that the tool can verify component- and system-level requirements, and can detect regression. The tool is basis for a method supporting the design of cyber-physical systems.10.1109/ICPS48405.2020.9274794 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9274794 IEEE Inglês
NLP for Requirements Engineering: Tasks, Techniques, Tools, and TechnologiesA. Ferrari; L. Zhao; W. Alhoshan 2021 Requirements engineering (RE) is one of the most natural language-intensive fields within the software engineering area. Therefore, several works have been developed across the years to automate the analysis of natural language artifacts that are relevant for RE, including requirements documents, but also app reviews, privacy policies, and social media content related to software products. Furthermore, the recent diffusion of game-changing natural language processing (NLP) techniques and plat-forms has also boosted the interest of RE researchers. However, a reference framework to provide a holistic understanding of the field of NLP for RE is currently missing. Based on the results of a recent systematic mapping study, and stemming from a previous ICSE tutorial by one of the authors, this technical briefing gives an overview of NLP for RE tasks, available techniques, supporting tools and NLP technologies. It is oriented to both researchers and practitioners, and will gently guide the audience towards a clearer view of how NLP can empower RE, providing pointers to representative works and specialised tools.10.1109/ICSE-Companion52605.2021.00137 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402628NLP;Requirements Engineering;Software Engineering;Transfer Learning;Survey;Mapping Study;Empirical Studies;TutorialIEEE Inglês
An Integrated Model-Based Tool Chain for Managing Variability in Complex System DesignD. Bilic; E. Brosse; A. Sadovykh; D. Truscan; H. Bruneliere; U. Ryssel2019 Software-intensive systems in the automotive domain are often built in different variants, notably in order to support different market segments and legislation regions. Model-based concepts are frequently applied to manage complexity in such variable systems. However, the considered approaches are often focused on single-product development. In order to support variable products in a model-based systems engineering environment, we describe a tool-supported approach that allows us to annotate SysML models with variability data. Such variability information is exchanged between the system modeling tool and variability management tools through the Variability Exchange Language. The contribution of the paper includes the introduction of the model-based product line engineering tool chain and its application on a practical case study at Volvo Construction Equipment. Initial results suggest an improved efficiency in developing such a variable system.10.1109/MODELS-C.2019.00045 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904766Product Line Engineering, Model-based Systems Engineering, Integrated Tool ChainIEEE Inglês
Domain Specific Language of Traffic Flow Factor FrameworkF. X. Habinshuti 2020 the challenge is to provide a convenient tool for modeling traffic problems. Many factors affect traffic related to the driver or human factor, weather factor, road conditions, vehicle performance and characteristics factor, etc. It is necessary to propose a model where the influence of these factors can be described uniformly. Furthermore, the factors described are loaded into the general mechanism of motion modeling. To overcome this problem we started to build a DSL language of Traffic Flow Factor Framework (TFFF). This paper introduces an Xtext grammar of weather condition model, which is part of factors. It also touches on Longitudinal Model (LM) a mathematical model used more often to capture the weather factors involved in driving vehicles and traffic flow modeling.10.1109/EnT50437.2020.9431298 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9431298TFFF;DSL;Xtext grammar;LM IEEE Inglês
Integrated modeling tool for indexing and analyzing state machine traceS. Delisle; N. Ezzati-Jivan; M. R. Dagenais 2021 It is important to model and understand an application or system runtime behavior to identify potential performance problems. Execution tracing, the basis of various dynamic analysis methods includes the collection of events, metrics, and statistics about the runtime behaviors of systems and applications. However, comprehensive execution tracing can result in very large trace files, most of which are irrelevant to the problem at hand. This is compounded by the inflexibility and complexity of common tools in how the user specifies what to capture, making the collection of relevant statistics difficult. While existing solutions allow for an adaptive collection of metrics and statistics, they often require users to write large and complex scripts in a domain-specific language. In this paper, we propose a state machine based modeling tool that simplifies the creation of user-defined and data-driven trace-based analyses. The proposed method combines advanced kernel-space and user-space execution trace events with powerful and adaptable modeling in order to automatically generating event-based analysis based on users’ specific requirements and problems. The difficulty and complexity of user-defined event tracing is drastically reduced. We demonstrate the efficiency, effectiveness, and simplicity of our proposed tool through real use cases of multi-level dynamic execution tracing in the Linux kernel.10.1109/ISNCC52172.2021.9615814 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9615814Performance Analysis;Big Data Analysis;Data-driven Model;Software modeling;Model-driven.IEEE Inglês
Preserving Multi-level Semantics in Conventional Two-Level Modeling TechniquesJ. P. A. Almeida; F. A. Musso; V. A. Carvalho; C. M. Fonseca; G. Guizzardi2019 Conceptual models are often built with techniques that propose a strict stratification of entities into two classification levels: a level of types (or classes) and a level of instances. Multi-level conceptual modeling extends the conventional two-level scheme by admitting that types can be instances of other types, giving rise to multiple levels of classification (individuals, classes, metaclasses, metametaclasses, and so on). As a result, multi-level models capture not only invariants about individuals, but also invariants about types themselves, which become regular elements of the domain of inquiry (first-class citizens). Despite the benefits of the multi-level approach, the vast majority of tools for conceptual modeling are still confined to the two-level scheme, and hence cannot accommodate multi-level entities. This paper proposes a transformation of multi-level to two-level models that preserves the semantics of the original multi-level model. We employ the systematic reification of the instance facet of a class and its linking to the type facet. The feasibility of the approach is demonstrated by a transformation of ML2 (multi-level) models to Alloy (two-level) specifications.10.1109/MODELS-C.2019.00025 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904769multi-level modeling, model transformation, multi-level theory, multi-level modeling languageIEEE Inglês
Bounded Verification of Sparse Matrix ComputationsT. Dyer; A. Altuntas; J. Baugh 2019 We show how to model and reason about the structure and behavior of sparse matrices, which are central to many applications in scientific computation. Our approach is state-based, relying on a formalism called Alloy to show that one model is a refinement of another. We present examples of sparse matrix-vector multiplication, transpose, and translation between formats using ELLPACK and compressed sparse row formats to demonstrate the approach. To model matrix computations in a declarative language like Alloy, a new idiom is presented for bounded iteration with incremental updates. Mechanical verification is performed using SAT solvers built into the tool.10.1109/Correctness49594.2019.00010 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8951032sparse matrix formats;state-based formal methods;mechanical verificationIEEE Inglês
Detection of Variable Misuse Using Static Analysis Combined with Machine LearningG. Morgachev; V. Ignatyev; A. Belevantsev 2019 Industrial static analyzers are able to detect only several narrow classes of algorithmic errors, for example actual arguments order swapped with formal parameters, forgotten renaming of variable after copy-paste. However, even for these categories essential part of errors is lost because of heuristical design of a checker. We propose the generalization of specified errors in the form of variable misuse problem and deal with it using machine learning. The proposed method uses message propagation through the program model represented as a graph, combining data from multiple analysis levels, including AST, dataflow. We introduce several error criteria, which were evaluated on the set of open source projects with millions of LoC. Testing in close to industrial conditions shows good false positive and missed errors ratio comparable with remaining detectors and allows to include developed checker (after a minor rework) into a general purpose production static analyzer for error detection.10.1109/ISPRAS47671.2019.00009 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991157static analysis;algorithmic error detection;graph neural networks IEEE Inglês
Model Based JUnit Testing M. L. Gromov; S. A. Prokopenko; N. V. Shabaldina; A. V. Laputenko2019 In this paper, tools that automate tests conversion are presented. Tests for Java implementations are derived based on formal models. To apply these tests to Java implementations tests should be converted into an appropriate form for the Java programs. In this paper, JUnit is used. The experiments confirm the feasibility of developed tools.10.1109/EDM.2019.8823472 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8823472Finite State Machine;Timed Finite State Machine;JUnut;test;UML IEEE Inglês
Anomaly Detection in Scratch AssignmentsN. Körber 2021 For teachers, automated tool support for debugging and assessing their students' programming assignments is a great help in their everyday business. For block-based programming languages which are commonly used to introduce younger learners to programming, testing frameworks and other software analysis tools exist, but require manual work such as writing test suites or formal specifications. However, most of the teachers using languages like Scratch are not trained for or experienced in this kind of task. Linters do not require manual work but are limited to generic bugs and therefore miss potential task-specific bugs in student solutions. In prior work, we proposed the use of anomaly detection to find project-specific bugs in sets of student programming assignments automatically, without any additional manual labour required from the teachers' side. Evaluation on student solutions for typical programming assignments showed that anomaly detection is a reliable way to locate bugs in a data set of student programs. In this paper, we enhance our initial approach by lowering the abstraction level. The results suggest that the lower abstraction level can focus anomaly detection on the relevant parts of the programs.10.1109/ICSE-Companion52605.2021.00050 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402627Anomaly Detection;Scratch;Program Analysis;Teaching;Block-Based-ProgrammingIEEE Inglês
A Categorical Framework for Collaborative Design of Safety Critical Mechatronic SystemsN. Abdeljabbar; F. Mhenni; J. -Y. Choley 2021 Systems engineering relies on a diversity of views of the same mechatronic system built by different design teams from several domains at different abstraction levels and using different modeling languages and tools. These views must be and remain consistent throughout the engineering process. To this end, a collaboration methodology based on a unique and formal collaborative framework is needed to connect these views while ensuring their consistency. The aim of this paper is to introduce such collaborative methodology. The category theory is chosen as formal basis to enhance collaboration between different design teams and help them maintain consistency between their corresponding models. The main objective of applying category theory in the current research is to model collaboration and consistency via interaction, transformation and synchronization, considering that all these model management scenarios can be implemented by the category theory. Moreover, our proposed methodology is mainly focused on the construction of a model that merges the different model elements according to three systems engineering aspects: requirements and constraints, behavior, and structure. To this purpose, a category based Meta-Model is established for the collaboration between systems engineering (SE) and safety assessment (SA). In this categorical framework, each model is represented by a category and, in order to link and maintain connection between these models, functors will be used. The proposed methodology was applied to a case study from the aeronautics domain, namely an Electro-Mechanical Actuator (EMA) modeled using SysML, Modelica and AltaRica languages. Therefore, the proposed collaborative methodology implemented in a categorical framework may be generalized and enhanced to take into account any other model involved in systems engineering, such as a 3D model for geometrical modeling.10.1109/ISSE51541.2021.9582486 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486 IEEE Inglês
CyberGSN: A Semi-formal Language for Specifying Safety CasesT. A. Beyene; C. Carlan 2021 The use of safety cases to explicitly present safety considerations and decisions is a common practice in the safety-critical domain. A safety case can be used to scrutinize the safety assessment approach used by practitioners internally, or as an input for the certification process for an external certifying authority. However, safety cases are still created manually to explicate the followed safety assessment and assurance measures. In addition, although safety cases may be created in a modular way by multiple entities, and it may be critical for each entity to digitally sign its part of the assurance for accountability, the common notations are not expressive enough to include the notion of entity. Especially in cyber-security applications, the notion of entity is very critical. In this paper, we propose a formal logic based language called CyberGSN, with an explicit notion of entity, that can be used for specifying safety cases and safety case patterns, enabling the automated creation and maintenance of safety cases.10.1109/DSN-W52860.2021.00021 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448Safety Case;Pattern;Entity;Decentralization IEEE Inglês
Automatic Detection of Ambiguous Software Requirements: An InsightM. Q. Riaz; W. H. Butt; S. Rehman 2019 Requirements Engineering is one of the most important phases of the software development lifecycle. The success of the whole software project depends upon the quality of the requirements. But as we know that mostly the software requirements are stated and documented in the natural language. The requirements written in natural language can be ambiguous and inconsistent. These ambiguities and inconsistencies can lead to misinterpretations and wrong implementations in design and development phase. To address these issues a number of approaches, tools and techniques have been proposed for the automatic detection of natural language ambiguities form software requirement documents. However, to the best of our knowledge, there is very little work done to compare and analyze the differences between these tools and techniques. In this paper, we presented a state of art survey of the currently available tools and techniques for the automatic detection of natural language ambiguities from software requirements. We also focused on figuring out the popularity of different tools and techniques on the basis of citations. This research \mathbf{will} help the practitioners and researchers to get the latest insights in the above-mentioned context.10.1109/INFOMAN.2019.8714682 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714682natural language requirement;requirement engineering;ambiguity;natural language ambiguity;ambiguous software requirements;natural language processingIEEE Inglês
An Evolutionary Tool For Requirements and Design Crosscutting ConcernsJ. Jasmis; A. A. Aziz; S. Jamel Elias; M. N. Hajar Hasrol Jono; R. Abd Razak; S. Mansor2019 To elevate a simple but important fashion to tolerate rapid changes in cross-cutting concerns in the requirements and design phases in multiple sizes of software development and maintenance tasks, Identification, Modularization, Design Composition Rule and Conflict Dissolution (IM-DeCRuD) approach was previously offered. This study delivered a tailored-design, prototype and constructed tool as a proof of concept of the proposed approach to IM-DeCRuD. The main attributes of the IMDeCRUD prototype are: requirements specification definition, requirements specification modification, requirements prioritization setting and graphics visualization of the representation generated using the Generic Modeling Environment (GME) tool. Java language was used as an interpreter to integrate the prototype functions. This research applied a library system as a simple case study to determine the importance of the IM-DeCRuD prototype. Ultimately, during the software development and evaluation activities, the prototype showed its ability for the tedious engineering process of requirements and design crosscutting concerns becoming more simpler.10.1109/ICRAIE47735.2019.9037754 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9037754Identification;Modularization;Design Composition Rule and Conflict Dissolution (IM-DeCRuD); software design; Generic Modelling Environment (GME)IEEE Inglês
Adversary Safety by Construction in a Language of Cryptographic ProtocolsT. M. Braje; A. R. Lee; A. Wagner; B. Kaiser; D. Park; M. Kalke; R. K. Cunningham; A. Chlipala2022 Compared to ordinary concurrent and distributed systems, cryptographic protocols are distinguished by the need to reason about interference by adversaries. We suggest a new layered approach to tame that complexity, via an executable protocol language whose semantics does not reveal an adversary directly, instead enforcing a set of intuitive hygiene rules. By virtue of those rules, protocols written in this language provably behave identically with or without interference by active Dolev-Yao-style adversaries. As a result, formal reasoning about protocols can be simplified enough that even naïve model checking can establish correctness of a multiparty protocol, through analysis of a state space with no adversary. We present the design and implementation of SPICY, short for Secure Protocols Implemented CorrectlY, including the semantics of its input languages; the essential safety proofs, formalized in the Coq theorem prover; and the automation techniques. We provide a preliminary evaluation of the tool's performance and capabilities via a handful of case studies.10.1109/CSF54842.2022.9919638 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638formal verification;coq;cryptography;protocol analysis IEEE Inglês
QualiBD: A Tool for Modelling Quality Requirements for Big Data ApplicationsD. Arruda; N. H. Madhavji 2019 The development of Big Data applications is not well-explored, to our knowledge. Embracing Big Data in system building, questions arise as to how to elicit, specify, analyse, model, and document Big Data quality requirements. In our ongoing research, we explore a requirements modelling language for Big Data software applications. In this paper, we introduce QualiBD, a modelling tool that implements the proposed goal-oriented requirements language that facilitates the modelling of Big Data quality requirements.10.1109/BigData47090.2019.9006294 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294Big Data Applications;Quality Requirements;Big Data Goal-oriented Requirements Language;Requirements Modelling ToolIEEE Inglês
Formal Modeling and Verification of Autonomous Driving ScenarioB. Chen; T. Li 2021 There are abundant spatio-temporal data and dynamic stochastic behaviors in the autonomous driving scenario, which makes it full of challenges for the modeling and verification of the scenario. In this paper, we propose a Scenario Modeling Language (SCML) for autonomous driving. SCML can not only express the stochastic dynamic behaviors of autonomous driving but also abstract the primary objects and state transitions to model the autonomous driving scenario. Firstly, we propose the syntax and semantics of SCML. Then, we construct a metamodel of SCML and propose mapping rules to transform the SCML model into the Network of Stochastic Hybrid Automata (NSHA) model. According to the NSHA model, we use UPPAAL-SMC to verify the autonomous driving scenario. Finally, we use the forward-collision warning system to illustrate that the proposed approach can effectively model and verify the driving scenario.10.1109/ICICSE52190.2021.9404128 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128autonomous driving scenario modeling;SCML;NSHA;UPPAAL-SMC;formal verificationIEEE Inglês
Improved Bounded Model Checking of Timed AutomataR. L. Smith; M. M. Bersani; M. Rossi; P. S. Pietro2021 Timed Automata (TA) are a very popular modeling formalism for systems with time-sensitive properties. A common task is to verify if a network of TA satisfies a given property, usually expressed in Linear Temporal Logic (LTL), or in a subset of Timed Computation Tree Logic (TCTL). In this paper, we build upon the TACK bounded model checker for TA, which supports a signal-based semantics of TA and the richer Metric Interval Temporal Logic (MITL). TACK encodes both the TA network and property into a variant of LTL, Constraint LTL over clocks (CLTLoc). The produced CLTLoc formula can then be solved by tools such as Zot, which transforms CLTLoc properties into the input logics of Satisfiability Modulo Theories (SMT) solvers. We present a novel method that preserves TACK's encoding of MITL properties while encoding the TA network directly into the SMT solver language, making use of both the BitVector logic and the logic of real arithmetics. We also introduce several optimizations that allow us to significantly outperform the CLTLoc encoding in many practical scenarios.10.1109/FormaliSE52586.2021.00016 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9460955Formal Verification;Timed Automata;Bounded Model Checking IEEE Inglês
Enabling Reactive Streams in HLA-based Simulations through a Model-Driven SolutionA. D’Ambrogio; A. Falcone; A. Garro; A. Giglio2019 Modern systems are exposing an ever increasing degree of complexity also due to the heterogeneity of the involved components. Distributed simulation is widely recognized as an effective tool to carry out verification and validation activities for heterogeneous and complex systems. Unfortunately, the use of distributed simulation frameworks and related implementation technologies require a proper modeling and simulation know-how, as well as a significant effort and software development skills. As a result, distributed simulation is not typically addressed by systems engineers who do not have the required expertise or background. The MONADS model-driven method has been introduced to overcome such limitations and provide systems engineers with the ability to properly carry out simulation-based verification and validation activities. The method specifically addresses the HLA (High Level Architecture) distributed simulation framework and introduces an automated approach to generate a significant portion of the HLA code from system models specified in SysML, the standard modeling language in the systems engineering field. The automatically obtained code is then to be finalized by a manual programming activity. This paper contributes to make easier and further reduce the effort of such a manual activity by integrating the reactive features of the RxHLA framework into the MONADS method. This integration enables the use of streams to effectively manage HLA-based asynchronous interactions. The paper describes the technical details of the various strategies that can be used to integrate RxHLA into the MONADS method, thus providing a significant degree of flexibility to MONADS users.10.1109/DS-RT47707.2019.8958697 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958697Distributed Simulation;High Level Architecture (HLA);Model-Driven Systems Engineering;Reactive ProgrammingIEEE Inglês
Integration of Constraint Programming and Model-Based Approach for System SynthesisY. Pierre-Alain; Z. Laurent 2021 Most of the work in the field of Model-Based System Engineering for the design of technical systems consists of implementing solution-oriented approaches. Several system modeling languages are available to represent fully defined systems from several points of view. It is also possible to link these descriptions with simulation or analysis tools to evaluate the solutions thus described. After having studied the limits of this way of designing system, we propose in this paper an approach oriented to the description of the design problem to be solved, through an adapted formalism called DEPS. This formalism allows a model-based approach for architecture and system synthesis. DEPS (Design Problem Specification) addresses problems of sizing, configuration, resource allocation and more generally of architecture generation or synthesis encountered in system design. The systems considered can be physical systems, software-intensive systems or mixed systems (embedded, mechatronical, cyber-physical). This language combines structural modeling features specific to object-oriented languages with problem specification features from constraint programming. We also present an integrated approach through the DEPS Studio environment, allowing DEPS modeling, model compilation and solving using an integrated constraint programming solver. This integration allows, among other things, the development and the debugging of models directly in DEPS rather than in the language of an external solver. The approach is illustrated on a simple case of electrical system synthesis.10.1109/SysCon48628.2021.9447096 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447096constraint programming;model based system synthesis;problem modeling;problem solvingIEEE Inglês
Towards Automating a Software-Centered Development Process that considers Timing PropertiesR. Weber; N. Adler; T. Wilhelm; A. Sailer; C. Reichmann2022 Software-centered development processes take a more and more prominent place in automotive system design. Accommodating the growing complexities resulting from the increasing heterogeneity in automotive hardware, software, and their collaborative integration requires new workflows. To address this challenge, we propose an approach for system decomposition based on a behavior description integrated with an architecture description language. Additionally, we consider timing validations as a crosscutting concern during different stages of the development and describe an automation concept to support a correct-by-construction development process. Initial user feedback indicates that our concepts together with a proper tool support will help engineers during system design and speed up the process.10.1109/SOCC56010.2022.9908127 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9908127model-based development;X-by-Construction;behavior modeling;timing validation;automationIEEE Inglês
A formal mapping between OPC UA and the Semantic WebR. Schiekofer; S. Grimm; M. M. Brandt; M. Weyrich2019 The communication protocol OPC UA is one of the most important IIoT enablers within the automation domain. OPC UA not only aims to provide interoperability on the transport layer, but also interoperability of the semantic layer shall be addressed based on so-called Companion Specifications. However, the lack of OPC UA formal semantics makes automatic validation of OPC UA data models impossible. Another drawback is the shortage of available tools for OPC UA, such as an implementation of the query engine for the specified OPC UA query language. In this paper we provide a formal translation of OPC UA models to the Semantic Web standard OWL, thus making OPC UA implicit semantics, that is described in the documentation, explicit, by means of OWL axioms. Moreover, we outline how this mapping can be used to offer validation and querying of OPC UA data models based on already existing Semantic Web technology.10.1109/INDIN41052.2019.8972102 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972102OPC UA;OWL;Mapping;Query;Validation IEEE Inglês
Smart Bound Selection for the Verification of UML/OCL Class DiagramsR. Clarisó; C. A. González; J. Cabot 2019 Correctness of UML class diagrams annotated with OCL constraints can be checked using bounded verification techniques, e.g., SAT or constraint programming (CP) solvers. Bounded verification detects faults efficiently but, on the other hand, the absence of faults does not guarantee a correct behavior outside the bounded domain. Hence, choosing suitable bounds is a non-trivial process as there is a trade-off between the verification time (faster for smaller domains) and the confidence in the result (better for larger domains). Unfortunately, bounded verification tools provide little support in the bound selection process. In this paper, we present a technique that can be used to (i) automatically infer verification bounds whenever possible, (ii) tighten a set of bounds proposed by the user and (iii) guide the user in the bound selection process. This approach may increase the usability of UML/OCL bounded verification tools and improve the efficiency of the verification process.10.1109/TSE.2017.2777830 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996Formal verification;UML;class diagram;OCL;constraint propagation;SATIEEE Inglês
DBRG: Description-Based Non-Quality Requirements GeneratorM. Osama; A. Zaki-Ismail; M. Abdelrazek; J. Grundy; A. Ibrahim2021 Requirements quality checking is a key process in requirements engineering. For complex and large scale systems, it is recommended to use automated requirements quality checking tools because of the size and complexity of requirements. However, such tools are typically evaluated on a small set of manually curated requirements. This limitation affects the comprehensiveness and reliability of the evaluation and leaves several possible quality issues undetected. In this paper, we de-scribe a novel quality-checking-oriented synthesised requirements generator. We provide an input description language so that several quality checking issues and scenarios can be defined. The generator utilises an input dictionary of nouns and verb frames, and generates requirements sentences complying to a user-defined description of a quality affected requirement.10.1109/RE51729.2021.00052 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604619Requirements Generation;Requirements Engineering IEEE Inglês
Concept-Level Model of Integrated Syntax and Semantic Validation for Internet of Medical Things DataA. Koren; M. Jurčević 2021 Integrating personal health data into a central medical information system is met with various challenges. Medical data is a critical and highly sensitive resource. Data quality problems can occur at various phases, such as collection of sensor data or its processing. Thus, in order to remedy threats to persons' health and security due to faulty data, syntax verification and semantic validation of medical data is a vital step. Furthermore, the communication must be in line with international standards and regulations and data structure definition (DSD) must be ensured. In order to operate with vastly diverse personal health data, semantic constraints specification is needed. To achieve this, a schematron-based validation tool will be integrated as a module into a larger data cleaning and processing system which ensures the quality of data and its compliance to the existing standards and regulations.10.1109/ICSC50631.2021.00044 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9364404Central Health Information System;Electronic Health Record;EHR;eHealth Services;Healthcare Standards;Medical Data;FHIR;HL7IEEE Inglês
Model-Based Systems Engineering to Design An Onboard Surround Vision System for Cooperative Automated VehiclesN. Kemsaram; A. Das; G. Dubbelman 2021 Cooperative automated vehicles have various electronic control units with multiple sensors running complex software algorithms to perceive and navigate their environment. Hence, there is a need to use advanced software engineering design methodology to reduce the software complexity and increase modularity. In this paper, we applied the SysCARS model-based systems engineering methodology to design an onboard surround vision system with a SysML modeling language using the IBM Rational Rhapsody modeling tool. The modeling methodology is described through various phases and steps with a modeling language to overcome the challenges. The modeling tool takes the information from the design model of the system and generates a skeletal code. The algorithm is written for each generated skeletal code, compiled with a C++ compiler on the host Desktop PC (Ubuntu 16.04 LTS), and deployed on the target Nvidia Drive PX2 embedded hardware platform. The designed solution fulfills the requirements of the onboard surround vision system.10.1109/IISEC54230.2021.9672396 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396Cooperative automated vehicle;deep neural networks;model-based systems engineering;surround vision system;system modeling language;unified modeling languageIEEE Inglês

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833859
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10060801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172714
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208165
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9349290
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9428817
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904829
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9681848
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9464433
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054804
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952369
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153649
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159108
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9214097
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9859402
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945701
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9519313
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8866964
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9449277
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9211570
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904636
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8919486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643725
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592498
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877031
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10015142
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9723036
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9156019
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9274794
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402628
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904766
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9431298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9615814
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904769
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8951032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991157
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8823472
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714682
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9037754
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9460955
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958697
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9908127
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972102
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604619
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9364404
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396

Mission Engineering and the CubeSat System Reference ModelD. Kaslow; A. Levi; P. T. Cahill; B. Ayres; D. Hurst; C. Croney2021 The International Council on Systems Engineering (INCOSE) Space System Working Group (SSWG) has created the CubeSat System Reference Model (CSRM), a representation of the logical architecture of a CubeSat system, intended to be used by system architects and engineers as a starting point as they develop the physical architecture of the Space and Ground segments of the CubeSat mission of interest to them. The CSRM is based on Model-Based System Engineering (MBSE) principles, is System Modeling Language (SysML) compliant, is hosted in a graphical modeling tool, and is intended to foster completeness and economies of scale associated with reusability. The CSRM has been vetted by System Engineering professionals and has been introduced to the CubeSat mission development team community with favorable results. The CSRM has been submitted to the Object Management Group (OMG) as a CubeSat specification, and is being evaluated for that role. Mission Engineering, a concept where the mission itself is looked at as a system is being explored as a means to maintain balance between the spacecraft system, operations (including ground systems), and the mission (the integration of needed capabilities). Now opportunities exist to extend the already-developed CSRM to enable the application of Mission Engineering to modeling a complete CubeSat mission. This paper presents the challenges and approach that the INCOSE SSWG will address, including a path for extension of the CRSM for use in exploring its applicability to the Mission Engineering concept, and capturing the Mission as a Model to create a unifying environment for universities to build on each other's successes as they learn to design for Space.10.1109/AERO50100.2021.9438168 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9438168 IEEE Inglês
RTL Assertion Mining with Automated RTL-to-TLM AbstractionT. Ghasempouri; A. Danese; G. Pravadelli; N. Bombieri; J. Raik2019 We present a three-step flow to improve Assertion-based Verification methodology with integrated RTL-to-TLM abstraction: First, an automatic assertion miner generates a large set of possible assertions from an RTL design. Second, automatic assertion qualification identifies the most interesting assertions from this set. Third, the assertions are abstracted to the transaction level, such that they can be re-used in TLM verification. We show that the proposed flow automatically chooses the best assertions among the ones generated to verify the design components when abstracted from RTL to TLM. Our experimental results indicate that the proposed methodology allows us to re-use the most interesting set at TLM without relying on any time consuming or error-prone manual transformations with a considerable amount of speed up and considerable reduction in the execution time.10.1109/FDL.2019.8876941 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8876941 IEEE Inglês
WOAL: A Tool to Orchestrate Workflow Using An Abstraction LayerF. H. M. Salleh; I. A. Bin; A. B. Sayuti; R. B. Omar2019 The development of systems with complex business processes needs developers who can orchestrate the system workflow accurately. Orchestrating workflow normally requires someone who has the knowledge in programming. This is because they are the ones who are able to directly link the workflow to the programming framework. Contrary to the normal practise, the business people is actually the best person to design the workflow as they are experts in their domain and therefore, can design complex workflow more accurately. However, business people have difficulty in orchestrating workflows using programming languages without having to go through a long learning process. Hence, the objective of Workflow Orchestration Abstraction Layer (WOAL) is to allow business people to design workflow on their own using an easy-to-understand language. They will be able to produce workflow diagrams for verification and workflow's automator for system development. This paper presents the architecture of WOAL, including the design of domain-specific language (DSL), lexer and parser.10.1109/IC3e47558.2019.8971783 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8971783workflow;domain-specific language;abstraction layer IEEE Inglês
Optimizing for Recall in Automatic Requirements Classification: An Empirical StudyJ. P. Winkler; J. Grönberg; A. Vogelsang 2019 Using Machine Learning to solve requirements engineering problems can be a tricky task. Even though certain algorithms have exceptional performance, their recall is usually below 100%. One key aspect in the implementation of machine learning tools is the balance between recall and precision. Tools that do not find all correct answers may be considered useless. However, some tasks are very complicated and even requirements engineers struggle to solve them perfectly. If a tool achieves performance comparable to a trained engineer while reducing her workload considerably, it is considered to be useful. One such task is the classification of specification content elements into requirements and non-requirements. In this paper, we analyze this specific requirements classification problem and assess the importance of recall by performing an empirical study. We compared two groups of students who performed this task with and without tool support, respectively. We use the results to compute an estimate of β for the Fβ score, allowing us to choose the optimal balance between precision and recall. Furthermore, we use the results to assess the practical time savings realized by the approach. By using the tool, users may not be able to find all defects in a document, however, they will be able to find close to all of them in a fraction of the time necessary. This demonstrates the practical usefulness of our approach and machine learning tools in general.10.1109/RE.2019.00016 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920507Empirical-research;controlled-experiment;machine-learning;automationIEEE Inglês
SysMD: Towards “Inclusive” Systems EngineeringŠ. Dalecke; K. A. Rafique; A. Ratzke; C. Grimm; J. Koch2022 This paper gives an overview of SysMD. SysMD is a tool and a SysML v2 inspired language. It is a modeling tool specifically aimed at domain experts with little to no high level systems modeling expertise. The language is designed to use intuitive, near natural-language statements and is able to propagate constraints throughout the model by continuously solving a constraint net. Furthermore, the SysMD tool aims to use a recommender system to incentivize the users to document their work in markdown as the tool gives recommendations of existing elements and relationships applicable to the current statements. This structures the knowledge in an easy to use, highly connected, way. This paper describes the syntax and semantics of the language, as well as the reasoning why it was designed in this specific way.10.1109/ICPS51978.2022.9816856 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9816856SysMD;system modeling;knowledge representation;modeling tool IEEE Inglês
UCAnDoModels: A Context-Based Model Editor for Editing and Debugging UML Class and State-Machine DiagramsP. Pourali; J. M. Atlee 2019 Practitioners face cognitive challenges when using model editors to edit and debug UML models, which make them reluctant to adopt modelling. To assist practitioners in their modelling tasks, we have developed effective and easy-to-use tooling techniques and interfaces that address some of these challenges. The principle philosophy behind our tool is to employ cognitive-based techniques such as Focus+Context interfaces and increased automation of modelling tasks, in order to provide the users with valid, relevant and meaningful contextual information that are essential to fulfil a focus task (e.g., writing a transition expression). This paper presents our approach, which we call User-Centric and Artefact-centric Development of Models (UCAnDoModels), and discusses two use-case scenarios to demonstrate how our tooling techniques can enhance the user experience with modelling tools.10.1109/MODELS-C.2019.00122 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904513User-Centric Software Development, UML Modelling Tools, Modelling Challenges, Focus+Context User InterfacesIEEE Inglês
Feature Extraction from Japanese Natural Language Requirements Documents for Software Product Line EngineeringK. Hisazumi; Y. Xiao; A. Fukuda 2019 Analyzing and extracting features from requirement specifications is an indispensable activity to support Software Product Line Engineering. However, performing features extraction is a time-consuming and inefficient task, since massive textual requirements need to be analyzed and classified. Most of the current approaches exhibited limitations: hindered applicability with requirements in Japanese; the support tools proposed were not made available publicly and thus making it hard for practitioners' adoption. This paper proposes a feature extraction approach from requirement specifications in Japanese using natural language processing techniques. Also, we propose a ranking method for extracted features to reduce efforts reviewing feature candidates. A case study was conducted to evaluate the performance of the proposed approach. Initial results show that 90.7% features were extracted correctly, and the top 40% features extracted contained 79.1% true features.10.1109/QRS-C.2019.00067 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859423Software Product Line, Feature Extraction, Natural Language ProcessingIEEE Inglês
Analysis of System Requirements by Aspects-J MethodologyS. Mohite; A. Sarda; S. D. Joshi 2021 Methodology of aspects is a combination of multiple concerns. Multiple types of concerns are facts, logic, area of interest, security, properties of systems. In the Development phase of the aspect model Aspect considers different systems concerns, aspects divide these system concerns into software modules, Different aspects modules use as a way for analysis of systems requirements. In some aspects, methodology use UML design modeling for understanding system requirements, in aspects Methodology UML class is for knowing the system necessities in modeling phases. a UML class structure is used in the Aspects process model for requirement analysis of the system. Class design in UML design consists of various types of attributes, classes, objects, methods, Join of points & Point of cut, various approaches to defining various concerns of the system. Few tools for crafting graph grammar rules for analysis system concerns, crafting G-graph grammar rules start from pre-condition G-grammar rules after that crafting post condition G-graph grammar rules, after crafting G-graph pre and post condition grammar rules G-graph transformation process done on rules in tools, next step is a method of creating a matrix, a matrix is basically cross applying rules to each other and find output, Two types of the matrix created first is a matrix of dependency and matrix of conflicts, this matrix for analysis conflict and dependency in crafted G-graph grammar rules, these G-rules apply as input to aspect methodology Tool. Next step transformation G-graph grammar, G-graph rules shows pre and post transformations of G-graph grammar rules when applying matrix of dependencies with a matrix of conflict, the conflict shows clash in G-graph rules, dependencies show requirement among the G-graph rules.10.1109/CCGE50943.2021.9776384 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9776384Requirement;J-Aspect;join-point;cut-point;matrix;view-point;Dependencies;concern;Transformation;Conflicts;G-Graph;Rule;Methodology;Aspects;around;graph;before;aroundIEEE Inglês
Modeling Routing Protocols in ASMETAL P. Campanella 2021 The proliferation of mobile computing and devices communication (e.g., cell phones, laptops, handheld digital devices, personal digital assistants or wearable computers) is driving a revolutionary change in our information society. The increasing application of formal method ASM in academic and industrial projects has caused a rapid development of tools around ASM of various complexity and goals. Today, there exist various routing protocols for this environment. The Abstract State Machines (ASM) are nowadays acknowledged as a formal method successfully employed as system engineering method that guides development of systems complex seamlessly from requirements capture to their implementation. Several tools supporting ASM have been developed in the past. ASMETA modelling toolset, which is a set of tools for ASM based on the metamodelling approach of the Model-driven Engineering (MDE). In this paper it is discuss the ASMETA framework, and how the language and the simulator have been developed exploiting the advantages offered by the metamodelling approach, is explained the AsmetaS architecture, its kernel engine, and how the simulator works within ASMETA tool set, the features currently supported by the simulator and the language AsmetaL used to write ASM specifications, and we provide the AsmetaL encoding of ASM specifications of increasing complexity.10.1109/ICETA54173.2021.9726565 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9726565asmeta;manet;modeling;protocol;rule IEEE Inglês
Cinnamon: A Domain-Specific Language for Binary Profiling and MonitoringM. Arif; R. Zhou; H. -M. Ho; T. M. Jones 2021 Binary instrumentation and rewriting frameworks provide a powerful way of implementing custom analysis and transformation techniques for applications ranging from performance profiling to security monitoring. However, using these frameworks to write even simple analyses and transformations is non-trivial. Developers often need to write framework-specific boilerplate code and work with low-level and complex programming details. This not only results in hundreds (or thousands) of lines of code, but also leaves significant room for error. To address this, we introduce Cinnamon, a domain-specific language designed to write programs for binary profiling and monitoring. Cinnamon's abstractions allow the programmer to focus on implementing their technique in a platform-independent way, without worrying about complex lower-level details. Programmers can use these abstractions to perform analysis and instrumentation at different locations and granularity levels in the binary. The flexibility of Cinnamon also enables its programs to be mapped to static, dynamic or hybrid analysis and instrumentation approaches. As a proof of concept, we target Cinnamon to three different binary frameworks by implementing a custom Cinnamon to C/C++ compiler and integrating the generated code within these frameworks. We further demonstrate the ability of Cinnamon to express a range of profiling and monitoring tools through different use-cases.10.1109/CGO51591.2021.9370313 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9370313Domain-Specific language;Profiling;Binary analysis and instrumentationIEEE Inglês
A Concept for a Qualifiable (Meta)-Modeling Framework Deployable in Systems and Tools of Safety-Critical and Cyber-Physical EnvironmentsV. Tietz; J. Schoepf; A. Waldvogel; B. Annighoefer2021 The development of cyber-physical systems can significantly benefit from domain-specific modeling and requires adequate (meta)-modeling frameworks. If such systems are designed for the safety-critical area, the systems must undergo qualification processes defined and monitored by a certification authority. To use the resulting artifacts of modeling tools without further qualification activities, the modeling tool must be additionally qualified. Tool qualification has to be conducted by the tool user and can be assisted by the tool developer by providing qualification artifacts. However, state-of-the-art domain-specific modeling frameworks barely support the user in the qualification process, which results in an extensive manual effort. To reduce this effort and to avoid modeling constructs that can hardly be implemented in a qualifiable way, we propose the development of an open source (meta)-modeling framework that inherently considers qualification issues. Based on the functionality of existing frameworks, we have identified components that necessarily need to be rethought or changed. This leads to the consideration of the following six cornerstones for our framework: (1) an essential meta-language, (2) a minimal runtime, (3) deterministic transformations, (4) a qualification artifact generation, (5) a sophisticated visualization, and (6) a decoupled interaction of framework components. All these cornerstones consider the aspect of a safety-critical (meta)-modeling framework in their own manner. This combination leads to a holistic framework usable in the safety-critical system development domain.10.1109/MODELS50736.2021.00025 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592513Ada SPARK;domain specific modeling;(meta) modeling framework;model based systems engineering;model transformation language;qualifiable runtime environment;safety critical;(tool) qualification;visualizationIEEE Inglês
Using the SCADE Toolchain to Generate Requirements-Based Test Cases for an Adaptive Cruise Control SystemA. Aniculaesei; A. Vorwald; A. Rausch 2019 In the last years, model-driven engineering has gained a lot of traction, especially in industrial domains, such as automotive or avionics. Various tools which support model-driven engineering, e.g. SCADE or MATLAB/Simulink, have developed over the years in fully fledged integrated development environments, with strong capabilities for the modeling of complex software systems. Model-driven engineering tools are mature enough so that the model created with them are amenable to formal analysis for the purpose of verification and validation. Acceptance testing is a validation method by which a system is tested extensively against legal and customer requirements, before it is allowed in series production. Due to the inherent complexity of automotive systems, large requirements catalogues have become usual in this domain. Checking that a complex automotive software system conforms to an extensive requirements catalogue is a task which cannot be managed manually anymore. In this paper, we design a workflow for test engineers to construct test cases from formalized requirements and examine the quality of tests via mutant testing within the SCADE toolchain. We construct an academic case study based on a prototypical adaptive cruise control system and evaluate our workflow on it. We report on results and lessons learned.10.1109/MODELS-C.2019.00079 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521requirements-based testing; model-driven engineering; automated test case generation; model checking; adaptive cruise control; SCADE toolchainIEEE Inglês
PrivacyStory: Tool Support for Extracting Privacy Requirements from User StoriesG. B. Herwanto; G. Quirchmayr; A. M. Tjoa 2022 Privacy by design requires that developers address privacy concerns from the early stage of software development life cycle. It encourages them to take a proactive approach to privacy engineering by identifying personal data, creating conceptual data flow diagrams, and identifying privacy threats. We argue that by providing a tool that automates some of the steps can reduce the burden on development teams. We develop a tool called PrivacyStory, including an end-to-end privacy requirement generation from a set of user stories. The tool provides some automation, utilizing a current state-of-the art natural language processing model. The core aim of our tool is to assist development teams in becoming more agile in their approach to privacy requirements engineering.10.1109/RE54965.2022.00036 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920066privacy requirements engineering;user story;natural language processingIEEE Inglês
Test Case Generation using Unified Modeling LanguageS. A. A. Shah; S. S. A. Bukhari; M. Humayun; N. Jhanjhi; S. F. Abbas2019 Software testing is the major phase of the software development life cycle as it ensures that the software performs according to the requirements. In order to perform testing, a lot of techniques are there that can test the software after the completion of the coding phase. Model-based testing has the capability to test the software before the coding phase. It helps in saving time, cost and budget overrun as it is conducted in the initial stages. In design models, UML diagrams are most widely used in academia and industries. UML class (structural) and sequence (behavioral) diagrams are the most common diagrams being used extensively by designers as they can cover the structural and behavioral aspects of the system respectively. A survey has been conducted in this paper to evaluate our proposed framework in which we have taken both diagrams to generate test cases and it can show the test case generation process in a sequence of steps. Some major issues spotted in test case generation process include usage of intermediate form, coverage criteria, storage of results and provision of the tool. Our study aimed to address all the above issues in the proposed framework. Expert's opinion has been taken and results have been shown in a graphical and a tabular way.10.1109/ICCISci.2019.8716480 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8716480unified modeling language;object constraint language;model-based testing;software development life cycle;object oriented programmingIEEE Inglês
More Than Two Decades of Research on Verification of UML Class Models: A Systematic Literature ReviewA. Shaikh; A. Hafeez; A. A. Wagan; M. Alrizq; A. Alghamdi; M. S. A. Reshan2021 Error checking is easy and inexpensive in the initial stages as compared to later stages due to when the development cycle precedes the development cost and efforts also increase. UML class model is a key element of modern software methodologies and creates in the initial stage of software development. Therefore, error detection and rectification of the UML class model may save software development costs and time. This paper presents an overview of UML Class model verification approaches and identifies open issues, current research trends, and other improvement areas. This study uses a systematic literature review as an investigation method with six research questions and assesses 65 papers dated January 1997 to December 2020. From 2124 published research papers, 65 papers are selected and distributed into 7 studies. This work provides an analysis of verification approaches and the automation level of proposed approaches. As a result, it is found that the existing UML class model verification methods provide great efforts to check correctness. However, in some situations (when dealing with large and complex models), they consume a significant amount of time and do not support many important features of the UML class model.10.1109/ACCESS.2021.3121222 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9579419Class model;UML;model formalisation;model verification;UML-OCL modelsIEEE Inglês
Modelling, Simulation and Code Generation for Electronic Railway Interlocking SystemsR. A. Ghignone; C. F. Falco; F. S. Larosa; H. P. Mendes Gouveia; L. A. Chang; M. N. Menéndez; A. Lutenberg2021 Electronic railway interlockings are critical embedded systems which control the safe operation of train signals. Due to the broad variety of railway network topologies and the high functional safety level required, a flexible solution is needed, capable of taking formal requirements and implementing them accordingly to the required application. The scope of this work is to present an approach in which an automatic code generator transforms the control tables which describe the interlocking logic into functional units written in different programming languages like C or VHDL. The generated code allows its implementation in an embedded system based in a FPGA or a microcontroller. In addition, the project contains a graphical user interface to draw and simulate the behavior of the generated model for verification purposes. The developed tool comprises the entire design flow for interlocking systems and presentes several advantages when compared to previous works.10.1109/TLA.2021.9423859 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9423859Automatic Code Generation;Critical Systems;FPGA;Functional Safety;Object Oriented Programming;Railway InterlockingIEEE Inglês
Unified FFL model based reliability, safety and testability integrated analysis methodW. Peng; J. Li 2021 With the widely and deeply application of intelligent Integrated Logistics Support, PHM and other technologies in the field of aviation equipment, the importance of reliability, safety and testability (RST) has become increasingly prominent. This paper proposed the RST integrated analysis method based on the functional fault logic(FFL) model in MBSE. This paper first analyzes the main work content and general idea of RST. The RST work focus on “functional architecture fault logic “of the products, and the common functional fault logic model for RST is established, it realizes model reuse in RST analysis process. Then the modeling language, tools steps in the modeling process are discussed. Based on the functional model, the fault logic relationship could be reflected, and it is more closer to the real situation of the fault, more effectively solves the “two skin” problem in reliability engineering. Based on the common model, by collecting and analyzing the information of the special part of the Reliability, Safety and Testability, RST model could be supplemented and improved, the RST metrics could be evaluated respectively. Finally, a case study of the fuel system with frequent failures is carried out, and the advantages are analyzed.10.1109/PHM-Nanjing52125.2021.9612806 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9612806component;functional fault logic;Reliability;Safety;Testability;Modeling evaluation;MBSEIEEE Inglês
Verified Development and Deployment of Multiple Interacting Smart Contracts with VeriSolidK. Nelaturu; A. Mavridoul; A. Veneris; A. Laszka2020 Smart contracts enable the creation of decentralized applications which often handle assets of large value. These decentralized applications are frequently built on multiple interacting contracts. While the underlying platform ensures the correctness of smart contract execution, today developers continue struggling to create functionally correct contracts, as evidenced by a number of security incidents in the recent past. Even though these incidents often exploit contract interaction, prior work on smart contract verification, vulnerability discovery, and secure development typically considers only individual contracts. This paper proposes an approach for the correct-by-design development and deployment of multiple interacting smart contracts by introducing a graphical notation (called deployment diagrams) for specifying possible interactions between contract types. Based on this notation, it later presents a framework for the automated verification, generation, and deployment of interacting contracts that conform to a deployment diagram. As an added benefit, the proposed framework provides a clear separation of concerns between the internal contract behavior and contract interaction, which allows one to compositionally model and analyze systems of interacting smart contracts efficiently.10.1109/ICBC48266.2020.9169428 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9169428Smart Contract;Verification;CAD;Solidity;Ethereum IEEE Inglês
A Domain-Specific Language for Modeling IoT System Architectures That Support MonitoringL. Erazo-Garzón; P. Cedillo; G. Rossi; J. Moyano2022 The Internet of Things (IoT) is a technological paradigm involved in a diversity of domains with favorable impacts on people’s daily lives and the development of industry and cities. Nowadays, one of the most critical challenges is developing software for IoT systems since the traditional Software Engineering methodologies and tools are unproductive in the face of the complex requirements resulting from the highly distributed, heterogeneous, and dynamic scenarios in which these systems operate. Model-Driven Engineering (MDE) emerges as an appropriate approach to abstract the complexity of IoT systems. However, there are no domain-specific languages (DSLs) aligned to standardized reference architectures for IoT. Furthermore, existing DSLs have an incomplete language to represent the IoT entities that may be needed at the edge, fog, and cloud layers to monitor IoT environments. Therefore, this paper proposes a domain-specific language named Monitor-IoT, which supports developers in designing multi-layer monitoring architectures for IoT systems with high abstraction, expressiveness, and flexibility. Monitor-IoT consists of a high-level visual modeling language and a metamodel aligned with the ISO/IEC 30141:2018 reference architecture. In addition, it provides a language capable of modeling architectures with a wide variety of digital entities and dataflows (synchronous and asynchronous) between them across the edge, fog, and cloud layers to support the monitoring of a diversity of IoT scenarios. The empirical evaluation of Monitor-IoT through the application of an experiment, which contemplates the use of the Technology Acceptance Model (TAM), demonstrates the intention of the participants to use this tool in the future since they consider it easy to use and useful.10.1109/ACCESS.2022.3181166 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9791260Architecture;domain-specific language (DSL);Internet of Things (IoT);metamodel;model-driven engineering (MDE);monitoringIEEE Inglês
Towards Simulation of CubeSat Operational Scenarios under a Cyber-Physical Systems ViewD. P. de Almeida; B. Graics; R. A. J. Chagas; F. L. de Sousa; F. Mattiello-Francisco2021 In the development of academic CubeSat-based space missions, it is common to skip or rush many practices of the Systems Engineering Process due to time and cost constraints, which may lead to issues later on in the mission and failures. Mission concept analyses are often in these practices, including the analysis of the in-orbit behavior of the satellite with respects to power consumption and data generation. With the purpose of supporting these analyses, this article introduces a workflow based on a Cyber-Physical abstraction of CubeSat mission operation scenarios, which uses architectural models based on SysML Class Diagrams and automatic model transformation to support the simulation of these operational scenarios in an open source Model-Based System Engineering (MBSE) tool. These simulations can be used in mission concept analyses in Phase-0 studies to verify initial operations requirements and drive further design implementations.10.1109/LADC53747.2021.9672594 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672594CubeSat-based space mission;MBSE;code generation;simulation IEEE Inglês
Using Metamodeling for Requirements Engineering: A Best-Practice with ADOxxD. Karagiannis; M. Lee; R. A. Buchmann 2019 Modeling tools, as an instrument in support of the Requirements Engineering (RE) process, usually focus on a particular aspect, in a domain-agnostic manner. The tutorial discusses meta-modeling as an approach to over-come such shortcomings, enabling more holistic and specific semantic coverage of requirements models. The meta-modeling platform ADOxx is introduced as an experimentation environment for researchers and practitioners to realize their individual modeling languages and functionality in support of RE. Specific emphasis is given to the practical nature of the tutorial: participants are encouraged to build their individual modeling tool in a hands-on setting and experiment with the capabilities of ADOxx to implement meta-models and model processing mechanisms, to specialize them or to integrate available assets provided by the ADOxx.org community.10.1109/RE.2019.00073 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920408Requirements modeling, Metamodeling, Agile Modeling Method Engineering, Modeling method requirementsIEEE Inglês
Score-Based Automatic Detection and Resolution of Syntactic Ambiguity in Natural Language RequirementsM. Osama; A. Zaki-Ismail; M. Abdelrazek; J. Grundy; A. Ibrahim2020 The quality of a delivered product relies heavily upon the quality of its requirements. Across many disciplines and domains, system and software requirements are mostly specified in natural language (NL). However, natural language is inherently ambiguous and inconsistent. Such intrinsic challenges can lead to misinterpretations and errors that propagate to the subsequent phases of the system development. Pattern-based natural language processing (NLP) techniques have been proposed to detect the ambiguity in requirements specifications. However, such approaches typically address specific cases or patterns and lack the versatility essential to detecting different cases and forms of ambiguity. In this paper, we propose an efficient and versatile automatic syntactic ambiguity detection technique for NL requirements. The proposed technique relies on filtering the possible scored interpretations of a given sentence obtained via Stanford CoreNLP library. In addition, it provides feedback to the user with the possible correct interpretations to resolve the ambiguity. Our approach incorporates four filtering pipelines on the input NL-requirements working in conjunction with the CoreNLP library to provide the most likely possible correct interpretations of a requirement. We evaluated our approach on a suite of datasets of 126 requirements and achieved 65% precision and 99% recall on average.10.1109/ICSME46990.2020.00067 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680Requirements specification;Requirements analysis;Quality checking;AmbiguityIEEE Inglês
Security Analysis for Distributed IoT-Based Industrial AutomationV. Lesi; Z. Jakovljevic; M. Pajic 2022 Internet of Things (IoT) technologies enable development of reconfigurable manufacturing systems—a new generation of modularized industrial equipment suitable for highly customized manufacturing. Sequential control in these systems is largely based on discrete events, whereas their formal execution semantics is specified as control interpreted Petri nets (CIPN). Despite industry-wide use of programming languages based on the CIPN formalism, formal verification of such control applications in the presence of adversarial activity is not supported. Consequently, in this article, we introduce security-aware modeling and verification techniques for CIPN-based sequential control applications. Specifically, we show how CIPN models of networked industrial IoT controllers can be transformed into time Petri net (TPN)-based models and composed with plant and security-aware channel models in order to enable system-level verification of safety properties in the presence of network-based attacks. Additionally, we introduce realistic channel-specific attack models that capture adversarial behavior using nondeterminism. Moreover, we show how verification results can be utilized to introduce security patches and facilitate design of attack detectors that improve system resiliency and enable satisfaction of critical safety properties. Finally, we evaluate our framework on an industrial case study. Note to Practitioners—Our main goal is to provide formal security guarantees for distributed sequential controllers. Specifically, we target smart automation controllers geared toward Industrial IoT applications that are typically programed in C/C++ and are running applications originally designed in, for example, GRAFCET (IEC 60848)/SFC (IEC 61131-3) automation programming languages. Since existing tools for the design of distributed automation do not support system-level verification of relevant safety properties, we show how security-aware transceiver and communication models can be developed and composed with distributed controller models. Then, we show how existing tools for verification of time Petri nets can be used to verify relevant properties including safety and liveness of the distributed automation system in the presence of network-based attacks. To provide an end-to-end analysis as well as security patching, results of our analysis can be used to deploy suitable firmware updates during the stage when executable code for target controllers (e.g., in C/C++) is generated based on GRAFCET/SFC control models. We also show that security guarantees can be improved as the relevant safety/liveness properties can be verified after corresponding security patches are deployed. Finally, we show applicability of our framework on a realistic distributed pneumatic manipulator.10.1109/TASE.2021.3106335 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9528498Industrial Internet of Things (IIoT);nondeterministic analysis;Petri nets (PNs);secure distributed automation;sequential control systemsIEEE Inglês
A Survey on Systems Engineering Methodologies for Large Multi-Energy Cyber-Physical SystemsE. Azzouzi; A. Jardin; D. Bouskela; F. Mhenni; J. -Y. Choley2019 Today's large distributed energy cyber-physical systems such as power networks with multiple production units are becoming more and more complex due to the increasing share of renewables. They are characterized by long-lived lifecycles that can even be eternal such as electric grids where design and operational phases can overlap. These systems exhibit dynamic configurations and involve several interacting disciplines and manifold stakeholders that can, at any time, take part in the system or leave it. A pressing need has emerged for means to test a large number of scenarios all along the system design, operation and maintenance phases. Doing so requires the ability to model the system behavior and perform simulation on each of its facets using accurate tools for the purpose of automated testing, verification and validation. Existing industrial engineering design practices are becoming obsolete and do not have the means to follow the growing complexity of such multi-disciplinary and multi-stakeholder systems. For this matter, we have explored systems engineering (SE) practices among research communities and tool editors. Design methodologies found in literature are generally based on the functional breakdown of requirements and use general modeling languages for representing the system behavior. They are limited to finite state machines representation with a wide gap regarding the physical aspects that are neglected or at best developed in a separate corner. A survey on existing engineering methodologies is presented in this work. The main common missing aspects of these practices are identified and emphasized. A focus on formal approaches for system design and especially for automatic verification and validation processes is also introduced. Finally, an outlook of the main concepts that we chose to focus on in future works concerning the engineering of multi-energy systems is presented in this paper.10.1109/SYSCON.2019.8836741 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836741 IEEE Inglês
checsdm: A Method for Ensuring Consistency in Heterogeneous Safety-Critical System DesignA. Paz; G. E. Boussaidi; H. Mili 2021 Safety-critical systems are highly heterogeneous, combining different characteristics. Effectively designing such systems requires a complex modelling approach that deals with diverse components (e.g., mechanical, electronic, software)—each having its own underlying domain theories and vocabularies—as well as with various aspects of the same component (e.g., function, structure, behaviour). Furthermore, the regulated nature of such systems prescribes the objectives for their design verification and validation. This paper proposes checsdm, a systematic approach, based on Model-Driven Engineering (MDE), for assisting engineering teams in ensuring consistency of heterogeneous design of safety-critical systems. The approach is developed as a generic methodology and a tool framework, that can be applied to various design scenarios involving different modelling languages and different design guidelines. The methodology comprises an iterative three-phased process. The first phase, elicitation, aims at specifying requirements of the heterogeneous design scenario. Using the proposed tool framework, the second phase, codification, consists in building a particular tool set that supports the heterogeneous design scenario and helps engineers in flagging consistency errors for review and eventual correction. The third phase, operation, applies the tool set to actual system designs. Empirical evaluation of the work is presented through two executions of the checsdm approach for the specific cases of a design scenario involving a mix of UML, Simulink and Stateflow, and a design scenario involving a mix of AADL, Simulink and Stateflow. The operation phase of the first case was performed over three avionics systems and the identified inconsistencies in the design models of these systems were compared to the results of a fully manual verification carried out by professional engineers. The evaluation also includes an assessment workshop with industrial practitioners to examine their perceptions about the approach. The empirical validation indicates the feasibility and “cost-effectiveness” of the approach. Inconsistencies were identified in the three avionics systems with a greater recall rate over the manual verification. The assessment workshop shows the practitioners found the approach easy to understand and gave an overall likelihood of adoption within the context of their work.10.1109/TSE.2020.2966994 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8960313Model-driven engineering;safety-critical systems;heterogeneous design;consistency;design guidelines;DO-178CIEEE Inglês
OpenErrorPro: A New Tool for Stochastic Model-Based Reliability and Resilience AnalysisA. Morozov; K. Ding; M. Steurer; K. Janschek2019 Increasing complexity and heterogeneity of modern safety-critical systems require advanced tools for quantitative reliability analysis. Most of the available analytical software exploits classical methods such as event trees, static and dynamic fault trees, reliability block diagrams, simple Bayesian networks, and Markov chains. First, these methods fail to adequately model complex interaction of software, hardware, physical components, dynamic feedback loops, propagation of data errors, nontrivial failure scenarios, sophisticated fault tolerance, and resilience mechanisms. Second, these methods are limited to the evaluation of the fixed set of traditional reliability metrics such as the probability of generic system failure, failure rate, MTTF, MTBF, and MTTR. More flexible models, such as the Dual-graph Error Propagation Model (DEPM) can overcome these limitations but have no available tools. This paper introduces the first open-source DEPM-based analytical software tool OpenErrorPro. The DEPM is a formal stochastic model that captures control and data flow structures and reliability-related properties of executable system components. The numerical analysis in OpenErrorPro is based on the automatic generation of Markov chain models and the utilization of modern Probabilistic Model Checking (PMC) techniques. The PMC enables the analysis of highly-customizable resilience metrics, e.g. "the probability of system recovery after a specified system failure during the defined time interval", in addition to the traditional reliability metrics. DEPMs can be automatically generated from Simulink/Stateflow, UML/SysML, and AADL models, as well as source code of software components using LLVM. This allows not only the automated model-based evaluation but also the analysis of systems developed using the combination of several modeling paradigms. The key purpose of the tool is to close the gap between the conventional system design models and advanced analytical methods in order to give system reliability engineers easy and automated access to the full potential of PMC techniques. Finally, OpenErrorPro enables the application of several effective optimizations against the state space explosion of underlying Markov models already in the DEPM level where the system semantics such as control and data flow structures are accessible.10.1109/ISSRE.2019.00038 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8987451Reliability;Resilience;Markov chain model;Probabilistic model checking;Model-based analysisIEEE Inglês
Dealing with Requirement Inconsistencies Based on ReqDL LanguageH. Bencharqui; S. Haidrar; A. Anwar 2019 Managing requirement for complex systems requires a rigorous methodology practice in all requirement engineering process. Poorly written requirements result in wasted effort and rework [1]. Requirements inconsistencies could occur at all levels of abstraction. Therefore, detecting inconsistencies between requirements is important; particularly in requirements statements. Finding precisely this inconsistency in the textual description requirement is a difficult task. In this paper, we introduce DSL-base approach for managing inconsistent requirements which aims to improve the requirement text description with very fine granularity. Then we use those pieces of grains to detect possible inconsistencies among them.10.1109/WITS.2019.8723726 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8723726requirement engineering;Sysml;MBSE;DSL;ReqDL;Complex SystemIEEE Inglês
Data flow analysis from UML/MARTE models based on binary tracesH. Posadas; J. Merino; E. Villar 2020 The design of increasingly complex embedded systems requires powerful solutions from the very beginning of the design process. Model Based Design (MBD) and early simulation have proven to be capable technologies to perform initial design space analysis to optimize system design. Traditional MBD methods and tools typically rely on fixed elements, which makes difficult the evaluation of different platform configurations, communication alternatives or models of computation. Addressing these challenges require flexible design technologies able to support, from a high-level abstract model, full design space exploration, including system specification, binary generation and performance evaluation. In this context, this paper proposes a UML/MARTE based approach able to address the challenges mentioned above by improving design flexibility and evaluation capabilities, including automatic code generation, trace execution collection and trace analysis from the initial UML models. The approach focuses on the definition and analysis of the paths data follow through the different application components, as a way to understand the behavior or the different design solutions.10.1109/DCIS51330.2020.9268671 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9268671UML;MoCs;code generation;trace analysis IEEE Inglês
Static Profiling of Alloy Models E. Eid; N. A. Day 2023 Modeling of software-intensive systems using formal declarative modeling languages offers a means of managing software complexity through the use of abstraction and early identification of correctness issues by formal analysis. Alloy is one such language used for modeling systems early in the development process. Little work has been done to study the styles and techniques commonly used in Alloy models. We present the first static analysis study of Alloy models. We investigate research questions that examine a large corpus of 1,652 Alloy models. To evaluate these research questions, we create a methodology that leverages the power of ANTLR pattern matching and the query language XPath. Our research questions are split into two categories depending on their purpose. The Model Characteristics category aims to identify what language constructs are used commonly. Modeling Practices questions are considerably more complex and identify how modelers are using Alloy's constructs. We also evaluate our research questions on a subset of models from our corpus written by expert modelers. We compare the results of the expert corpus to the results obtained from the general corpus to gain insight into how expert modelers use the Alloy language. We draw conclusions from the findings of our research questions and present actionable items for educators, language and environment designers, and tool developers. Actionable items for educators are intended to highlight underutilized language constructs and features, and help student modelers avoid discouraged practices. Actionable items aimed at language designers present ways to improve the Alloy language by adding constructs or removing unused ones based on trends identified in our corpus of models. The actionable items aimed at environment designers address features to facilitate model creation. Actionable items for tool developers provide suggestions for back-end optimizations.10.1109/TSE.2022.3162985 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446Declarative modeling;Alloy;static analysis IEEE Inglês
XML-Based Video Game Description LanguageJ. R. Quiñones; A. J. Fernández-Leiva 2020 This paper presents the XML-based Video Game Description Language (XVGDL), a new language for specifying Video games which is based on the Extensible Markup Language (XML). The proposal is portable and extensible, and allows games to not only be defined at engine level but also includes specific features that can lead the game design process whilst simultaneously reducing the gap between game specification and its corresponding game implementation. XVGDL is as generic as possible, making it possible to describe different genres of games. This paper focuses on presenting the basis of the language. The paper describes the syntax as well as the components of XVGDL, and provides examples of their use. Defining games via XML structures provides all the advantages of the management of XML files and opens up interesting lines of research. Our proposal provides a number of novel features. So, XVGDL game definitions can be managed as any other XML file, which means that it can be automatically handled by any XML file management software. Another interesting feature is that XVGDL can specify game components (e.g., game Artificial), in-game processes (e.g., the procedural generation of maps) or in-game events (e.g., the checking of the conditions to end a game match) via the association with external (possibly non-XML) files. Moreover, XVGDL files can be easily validated as any XML file what means that validations against a particular Document Type Definition (DTD) or XML Schema Definition (XSD) are possible. In addition, the paper presents a first prototype implementation of a (text-based) interpreter that allows XVGDL game specifications as a playable game to be executed. This tool not only validates our proposal but also represents a first step towards smoothing the path to obtaining an executable version of a game from its game specification.10.1109/ACCESS.2019.2962969 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249Video game description language;extensible markup language;XML;game design;game toolsIEEE Inglês
Verification of Mixed Signal IPs S. Naik; U. Raddy 2019 Verification is the most critical step in manufacture of any design. Most of the time and resources are wasted during this. In spite of spending maximum amount of time in verifying sometimes, bugs escape during pre-silicon stage. These bugs need to be removed in post-silicon stage which is very expensive and time consuming. Lack of observability is also an issue in post-silicon because of restricted access to the internal signals. This paper proposes a method in which an extra debug tool is added which facilitates observation of signal behavior on the silicon as well and fix the errors. VCS and DVE are the software tools by Synopsys used to implement the design. Overview of verification of Mixed signal IP' s using System Verilog and Open Verification Methodology (OVM) is also described. This method helps in detecting bugs at early stages of silicon thereby reducing cost and resources and also in reducing simulation run time.10.1109/RTEICT46194.2019.9016387 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9016387Verification;Pre-silicon verification;Mixed signal IP’ s;System Verilog;OVMIEEE Inglês
Zoom4PF: A Tool for Refining Static and Dynamic Domain Descriptions in Problem FramesS. Wei; Z. Li; Y. Yang; H. Xiao 2021 Problem analysis has long been considered the key to requirements engineering, and the Problem Frames (PF) approach provides a structured method by deploying a common model for analyzing various types of problems. Problem decomposition is an important technique in structuring the software solution and also the key to reducing problem size and complexity. However, there has not been a suite of flexible and effective tools to describe details of problem domains in PF models. In this paper, we combine model-driven engineering and PF to provide a tool that can refine domain descriptions. In order to support modeling between domain stakeholders and software designers, we provide a technique and tool to allow the modeller to zoom in the details of a problem diagram, by adding UML State Machine Diagrams and SysML Block Definition Diagrams to domain descriptions.A demo video of this tool is available at https://youtu.be/BcQPlDYiOa8. More details of this tool and the appendix to this article are available at https://github.com/Wsfff-lf/ZOOM4PF/tree/main.10.1109/RE51729.2021.00047 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604545Problem Frames approach;Meta-model;Model-driven engineering;State machine;Block diagramIEEE Inglês
Personalized and Automatic Model Repairing using Reinforcement LearningA. Barriga; A. Rutle; R. Heldal 2019 When performing modeling activities, the chances of breaking a model increase together with the size of development teams and number of changes in software specifications. Model repair research mostly proposes two different solutions to this issue: fully automatic, non-interactive model repairing tools or support systems where the repairing choice is left to the developer's criteria. In this paper, we propose the use of reinforcement learning algorithms to achieve the repair of broken models allowing both automation and personalization. We validate our proposal by repairing a large set of broken models randomly generated with a mutation tool.10.1109/MODELS-C.2019.00030 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904758Model repair;Reinforcement learning;Personalization IEEE Inglês
CCSpec: A Correctness Condition Specification ToolC. Peterson; P. LaBorde; D. Dechev 2019 Concurrent libraries provide data structures whose operations appear to execute atomically when invoked individually. Although these libraries guarantee safety for the data structure operations, the composition of operations may be vulnerable to undefined behavior. The difficulty of reasoning about safety properties in a concurrent environment has led to the development of tools to verify that a concurrent data structure meets a correctness condition. The disadvantage of these tools is that they cannot verify that the composition of concurrent data structure operations respects the intended semantics of the algorithm. Formal logic has been proposed to enable the verification of correctness specifications for a concurrent algorithm. However, a large amount of manual labor is required to fully mechanize the correctness proofs of the concurrent algorithm and each concurrent data structure invoked in the algorithm. In this research, we propose Correctness Condition Specification (CCSpec), the first tool that automatically checks the correctness of a composition of concurrent multi-container operations performed in a non-atomic manner. In addition to checking the correctness of a composition of data structure operations in a concurrent algorithm, CCSpec also checks the correctness of each concurrent data structure utilized in the algorithm. A reference to a container is associated with each method called in a concurrent history to enable the evaluation of correctness for a composition of multiple containers. We develop a lightweight custom specification language that allows the user to define a correctness condition associated with the concurrent algorithm and a correctness condition associated with the concurrent data structures. We demonstrate the practical application of CCSpec by checking the correctness of a concurrent depth-first search utilizing a non-blocking stack, a concurrent breadth-first search utilizing a non-blocking queue, a concurrent shortest path algorithm utilizing a non-blocking priority queue, and a concurrent adjacency list utilizing non-blocking sets.10.1109/ICPC.2019.00041 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298concurrency;verification;correctness condition IEEE Inglês
DoMoBOT: A Modelling Bot for Automated and Traceable Domain ModellingR. Saini; G. Mussbacher; J. L. C. Guo; J. Kienzle2021 In the initial phases of the software development cycle, domain modelling is typically performed to transform informal requirements expressed in natural language into concise and analyzable domain models. These models capture the key concepts of an application domain and their relationships in the form of class diagrams. Building domain models manually is often a time-consuming and labor-intensive task. The current approaches which aim to extract domain models automatically, are inadequate in providing insights into the modelling decisions taken by extractor systems. This inhibits modellers to quickly confirm the completeness and conciseness of extracted domain models. To address these challenges, we present DoMoBOT, a domain modelling bot that uses a traceability knowledge graph to enable traceability of modelling decisions from extracted domain model elements to requirements and vice-versa. In this tool demo paper, we showcase how the implementation and architecture of DoMoBOT facilitate modellers to extract domain models and gain insights into the modelling decisions taken by our bot.10.1109/RE51729.2021.00054 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604742Domain Models;Traceability;Natural Language (NL);Machine Learning (ML);Traceability Knowledge GraphIEEE Inglês
A Secure and Resilient Scheme for Telecare Medical Information Systems With Threat Modeling and Formal VerificationS. S. Ahamad; M. Al-Shehri; I. Keshta 2022 Telecare Medical Information Systems (TMIS) is a highly focused and unique domain providing healthcare services remotely, the development and advancement in the realm of information and communication technologies boosted the development of TMIS. Smartphones, IoT devices, Mobile Healthcare Applications (MHA) and hospital servers are the building blocks of TMIS. Emergen Research predicts that IoT based healthcare security market will reach USD 5.52 Billion in 2028. Existing IoT based healthcare solutions are facing many security problems which includes information leakage, false authentication, key loss and are not in compliance with Health Insurance Portability and Accountability Act (HIPAA) regulations as IoT devices and sensors used are prone to Blue Borne, DoS (Denial of Service), DDoS (Distributed Denial of Service) and Reverse-engineering attacks. In addition to these healthcare applications in the IoT devices/sensors and mobile healthcare applications in the smart phone of the patient are vulnerable to repackaging attacks and lacked transport layer protection. This paper proposes a SRSTMIS (Secure and Resilient Scheme for Telecare Medical Information Systems) containing its architecture, a procedure to verify the safety and security of patients credentials and Mobile Healthcare Applications (MHA) and finally proposed a secure protocol. White-Box Cryptography (WBC) ensures the safety and security of the keys in the healthcare applications and in the SE, UICC and TPM. We have threat modeled our proposed healthcare framework using STRIDE approach and successfully verified using Microsoft Threat Modeling tool 2016. Our proposed secure and lightweight authentication scheme has been successfully verified with BAN (Burrows, Abadi, and Needham) logic and Scyther tool, and our proposed protocol overcome DoS (Denial of Service), multi-protocol attack, Blue Borne attack, DDoS (Distributed Denial of Service) attack, reverse engineering, insider, outsider and Phlashing attacks. SRSTMIS overcomes information leakage from sensors during rest and during transit, key loss from healthcare applications of the sensors and smart phone and false authentication and ensures HIPAA regulations. Proposed protocol was successfully implemented in Android Studio. We have compared our proposed work with the existing works and found to better in terms of security, resisting attacks, and in consumption of resources.10.1109/ACCESS.2022.3217230 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9950052Telecare medical information systems (TMIS);SRSTMIS (secure and resilient scheme for telecare medical information systems);mobile healthcare applications (MHA);white-box cryptography (WBC);health insurance portability and accountability act (HIPAA);BAN logic;and blue borne attack;phlashing attacks;STRIDE approach;scyther tool;microsoft threat modeling tool 2016;reverse-engineering attacks;kotlin languageIEEE Inglês
Consistency Control for Model Versions in Evolving Model-Driven Software Product LinesJ. Schröpfer; F. Schwägerl; B. Westfechtel 2019 Model-driven software product lines evolve in both time and space. Consistency control for model versions constitutes a key challenge. We propose a novel approach to consistency control called well-formedness analysis and repair: Instead of attempting to guarantee consistency of each configurable version a priori (which is hard and restrictive), consistency is controlled only when a product version is actually configured. Conflicts, i.e., violation of well-formedness constraints, are detected and repaired, driven by configurable strategies. This approach is generic; it is instantiated for feature models (for the variability model) and EMF models (as domain artifacts).10.1109/MODELS-C.2019.00043 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904527model;software product line;version;evolution;consistency control IEEE Inglês
A Tool for Modeling JsonLogic based Business Process RulesK. Soleymanzadeh; Y. Bul; S. Bağcı; G. Kardas2019 JsonLogic structures, based on JavaScript Object Notation (JSON), are used in software applications in order to create business process rules. However, JsonLogic's textual syntax is different from the general purpose programming languages and it causes difficulties on the formalization of complex business rules. This unfamiliar way of rule creation may also lead to a time-consuming and error-prone development process. In this paper, we introduce a web based visual modeling tool which facilitates the construction of such business rules by following a model-driven engineering methodology. Inside this tool, the developers can visually design business rules with the block programming approach and corresponding JsonLogic codes are automatically generated. Moreover, changes made in these auto-generated codes can be reflected automatically to the related models inside the tool without any human intervention. Hence the synchronization between JsonLogic models and codes is provided. It has also been found that JsonLogic business rules can be created with significantly fewer visual components and hence with simpler models in comparison with the unique editor currently available for the similar purpose. The modeling tool is now used by Hermes Iletisim company during the development of various commercial software products.10.1109/UBMYK48245.2019.8965462 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8965462JsonLogic;Business Process Rule;Model-driven Software Development;Domain-specific Modeling LanguageIEEE Inglês
Demo Abstract: AutoPCT: An Agile Protocol Conformance Automatic Test Platform Based on Editable EFSMZ. Tang; S. Li; P. Xun; C. Wang; W. Deng; B. Wang2020 Currently, the biggest barrier to adopt the model-based test (MBT) is modeling itself. To simplify the protocol modeling process, an agile protocol conformance automatic test platform (AutoPCT) is proposed in this paper. With our platform, the protocol test state machine can be easily designed and modified in graphical mode, and the conformance test scripts can be automatically generated and executed through integrating enhanced formal modeling tool EFM and TTCN-3 test tool Titan. Meanwhile, editable EFSM (Enhanced Finite State Machine) user interface and flexible input/output packet structure design tool are introduced in our platform to improve the development efficiency of protocol conformance test. Finally, the effectiveness of our proposed platform is analyzed through practical protocol test cases.10.1109/INFOCOMWKSHPS50562.2020.9162718https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9162718Network protocols;Protocol conformance test;Testcase generation;Automatic testIEEE Inglês
PCIe Transaction and Data link Layers Verification IP Development using UVMS. P. Jagtap; V. Ingale; A. Gokhale 2022 In this publication, PCI Express Transaction Layer and Data Link Layer verification is carried out. The author provided detailed information regarding the Transaction Layer and Data Link Layer of PCI Express. The study developed the verification IP for Transaction Layer and Data Link Layer, wrote the testbench environment using UVM (Universal Verification Methodology) to validate the design module's accuracy for function simulation. Using Mentor Graphics Questasim 10.7c tool, the code was simulated. Achieved results demonstrates that the designed verification IP meets the required of the protocol of PCI Express. The testbench in UVM validate its correctness and supports the function of PCI Express Transaction Layer and Data Link Layer.10.1109/GCAT55367.2022.9971829 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9971829Data Link Layer;DLLP;PCIe;TLP;Transaction layer;UVM;Verification IPIEEE Inglês
Domain Specific Program Synthesis P. Archana; P. B. Harish; N. Rajan; S. P; N. S. Kumar2021 Program Synthesis refers to the task of constructing a program in a specific programming language, given its intent in a particular format. This emerging field can be applied in diverse domains and is currently being investigated with different techniques. A program synthesizer would simplify the efforts of programmers and help them focus on the program's core logic, without worrying about language syntax and other domain specifics. We applied the concepts of program synthesis in the context of solving a propositional logic word problem. We have developed a tool that is capable of understanding, parsing and evaluating a propositional logic word problem. With the user's natural language input, this tool processes the query and evaluates truth values of the question expressions. The working of the tool can be explained in three major phases: natural language processing, machine learning to obtain postfix notations of the Boolean expressions involved, and further evaluation of the postfix notations to determine the answers. Our goal was to explore the domain agnostic capabilities of our program-synthesis-based techniques of learning used in the implementation of this tool.10.1109/ASIANCON51346.2021.9544738 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738propositional logic;program synthesis;boolean;natural language processing;sequence-to-sequence modelIEEE Inglês
MBRP: Model-Based Requirements Prioritization Using PageRank AlgorithmM. Abbas; I. Inayat; N. Jan; M. Saadatmand; E. Paul Enoiu; D. Sundmark2019 Requirements prioritization plays an important role in driving project success during software development. Literature reveals that existing requirements prioritization approaches ignore vital factors such as interdependency between requirements. Existing requirements prioritization approaches are also generally time-consuming and involve substantial manual effort. Besides, these approaches show substantial limitations in terms of the number of requirements under consideration. There is some evidence suggesting that models could have a useful role in the analysis of requirements interdependency and their visualization, contributing towards the improvement of the overall requirements prioritization process. However, to date, just a handful of studies are focused on model-based strategies for requirements prioritization, considering only conflict-free functional requirements. This paper uses a meta-model-based approach to help the requirements analyst to model the requirements, stakeholders, and inter-dependencies between requirements. The model instance is then processed by our modified PageRank algorithm to prioritize the given requirements. An experiment was conducted, comparing our modified PageRank algorithm's efficiency and accuracy with five existing requirements prioritization methods. Besides, we also compared our results with a baseline prioritized list of 104 requirements prepared by 28 graduate students. Our results show that our modified PageRank algorithm was able to prioritize the requirements more effectively and efficiently than the other prioritization methods.10.1109/APSEC48747.2019.00014 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945656requirement prioritization;requirements interdependencies;meta model;page-rankIEEE Inglês
A Framework for Model-Based Dependability Analysis of Cyber-Physical SystemsM. Adedjouma; N. Yakymets 2019 The rise of complex Cyber-Physical Systems has led to many initiatives to promote automation of the assurance of their dependability. There exists mature practices and tools to perform necessary activities to provide evidence that a system satisfies dependability requirements. However, there is few harmonized an integrated framework that can support both the definition of the evidence and their collection and management from the specification to the V&V activities to testify of the assurance of those systems in compliance with standards. This paper presents Sophia, a framework that supports assurance of critical cyber physical systems using compositional model-based approaches. Sophia features a wide range of dependability analysis tools targeting all phases of system lifecycle for development of cyber physical systems. Sophia further helps trace the developed analysis outcomes to the requirements in standards for compliance support. We have validated the framework components through different case studies that indicate its usefulness and efficiency in helping prepare for certification of the systems.10.1109/HASE.2019.00022 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673028assurance evidence, dependability assessment, model-driven engineering, FMEA, FTA, hazard analysis, requirements, property verification, standard complianceIEEE Inglês
Evaluating the Ability of Developers to Use Metamodels in Model-Oriented DevelopmentT. Gottardi; R. T. Vaccare Braga 2019 The applicability of models has evolved throughout the history of software engineering, from documentation, development and beyond. In this context, we study how to employ models for a common language shared by humans and computers. After studying a model-oriented development method for models at run-time systems, we have identified that this method would heavily rely on metamodels. Therefore, it is important to evaluate if developers are able to use metamodels in software development. In this paper we present a controlled experiment to evaluate the ability and efforts of professional and novice developers to effectively use metamodels. Participants of the experiment had access to newly created metamodeling definition tools, as well as standard Java code and UML diagrams in order to complete their tasks. Results indicate that the definition language was easy to be learned by experienced Java developers, who were able to comprehend metamodeling development artifacts without struggling with modeling concepts. We conclude developers would be able to adapt to new modeling concepts and tools as required by different systems that handle models at run-time.10.1109/MiSE.2019.00012 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877083metamodeling;model-oriented software;experimental study;development tools;model comprehensionIEEE Inglês
Better Late Than Never : Verification of Embedded Systems After DeploymentM. Ring; F. Bornebusch; C. Lüth; R. Wille; R. Drechsler2019 This paper investigates the benefits of verifying embedded systems after deployment. We argue that one reason for the huge state spaces of contemporary embedded and cyber-physical systems is the large variety of operating contexts, which are unknown during design. Once the system is deployed, these contexts become observable, confining several variables. By this, the search space is dramatically reduced, making verification possible even on the limited resources of a deployed system. In this paper, we propose a design and verification flow which exploits this observation. We show how specifications are transferred to the deployed system and verified there. Evaluations on a number of case studies demonstrate the reduction of the search space, and we sketch how the proposed approach can be employed in practice.10.23919/DATE.2019.8714967 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714967 IEEE Inglês
A Proof-Producing Translator for Verilog Development in HOLA. Lööw; M. O. Myreen 2019 We present an automatic proof-producing translator targeting the hardware description language Verilog. The tool takes a circuit represented as a HOL function as input, translates the input function to a Verilog program and automatically proves a correspondence theorem between the input function and the output Verilog program ensuring that the translation is correct. As illustrated in the paper, the generated correspondence theorems furthermore enable transporting circuit reasoning from the HOL level to the Verilog level. We also present a formal semantics for the subset of Verilog targeted by the translator, which we have developed in parallel with the translator. The semantics is based on the official Verilog standard and is, unlike previous formalization efforts, designed to be usable for automated and interactive reasoning without sacrificing a clear correspondence to the standard. To illustrate the translator's applicability, we describe case studies of a simple verified processor and verified regexp matchers and synthesize them for two FPGA boards. The development has been carried out in the HOL4 theorem prover.10.1109/FormaliSE.2019.00020 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8807452interactive theorem proving;hardware verification;verilog IEEE Inglês
SSpinJa: Facilitating Schedulers in Model CheckingT. Nhat-Hoa; T. Aoki 2021 The execution of a software system that runs on top of an Operating System (OS) is usually controlled by the scheduler. Therefore, to accurately verify the system, the scheduling policy needs to be taken into account in the verification. In model checking techniques, the scheduling policy affects the search algorithm to explore the state space to check the behaviors of the system. Existing works try to specify/implement the scheduler(s) along with the set of processes in the specification language(s) used by the model checking tool(s). In reality, many kinds of scheduling policies are used by the OS(s), e.g. round-robin, priority, and first-in-first-out. There are also many variations of these policies, which are usually different from the 'textbook’ ones. That means dealing with the variations of the scheduling policies in model checking is necessary and important. However, because the implementation of the scheduler always starts from scratch, it is error-prone and time-consuming. Therefore, the existing works are difficult to deal with the different scheduling policies. To address this problem, we propose a method that introduces a domain-specific language (DSL) to facilitate the variation of the policies. All necessary information to perform the scheduling tasks is generated automatically from the description of the scheduler. We also introduce a search algorithm using this information to explore the states of the system to verify the behaviors of the system. In this paper, we introduce SSpinJa, a tool in which we implemented this approach. Our tool supports an environment for editing the scheduling policy (in the DSL) and the model checker for verifying the system. The results of our experiments show that a) we can handle different scheduling policies easily, b) we can accurately verify the behaviors of the systems, and c) our approach is also practical.10.1109/QRS54544.2021.00073 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957scheduling policy;model checking;domain-specific language IEEE Inglês
Metamodeling NATO Operation Orders: a proof-of-concept to deal with digitalization of the battlefieldN. Belloir; J. Buisson; O. Bartheye 2019 Digitalization of the whole society changes the way Systems-of-Systems have to be considered. Remaining independently operated and managed, SoS increase their collaboration skills using shared or cooperated information systems. People can be seen as particular digital sub-systems due to smart equipments they can use. Military operations, which are considered as typical SoS, are no exception to this fact. New operational doctrines have to be created to take advantage of those new capabilities. In this paper, we propose to develop methods and tools inspired by software engineering to create new automated capabilities in battlefield engineering. More precisely, we explain the direction which should be considered in the area of battlefield engineering in order to deal with those new capabilities. Inspired from Model-Based Engineering, we realized a proof-of-concept showing how to change textual operation orders with graphical ones. The latter can be exported in a common standardized format, that enables digital interpretation. We present the OPORD-ML language which is based on a metamodel inspired from a NATO operation order standard. It is supported by an automatically generated tool.10.1109/SYSOSE.2019.8753885 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753885Military SoS;Battlefield Engineering;Model-Based Engineering;Operation OrdersIEEE Inglês
Requirements for a dynamic interface model of IEC 61499 Function BlocksB. Wiesmayr; A. Zoitl 2020 Component-based software engineering has emerged as a principle of software design to facilitate reuse and improve the software quality. This principle is supported by the domain-specific language IEC 61499, where Function Blocks are fully encapsulated software components. For a Function Block definition, a static interface description and an internal implementation are required. Service sequences describe the event flow at a component interface and are an optional dynamic interface model in IEC 61499. In general, dynamic interface models are a powerful tool for various use cases, yet service sequences are rarely used in practice due to their low expressiveness. Therefore, we identify the domain-specific requirements for a comprehensive dynamic interface model and use them for our analysis of service sequences, where several issues are identified.10.1109/ETFA46521.2020.9212107 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9212107IEC 61499;behavior modeling;service sequence IEEE Inglês
Model Checking Software in Cyberphysical SystemsM. Sirjani; E. A. Lee; E. Khamespanah 2020 Model checking a software system is about verifying that the state trajectory of every execution of the software satisfies formally specified properties. The set of possible executions is modeled as a transition system. Each "state" in the transition system represents an assignment of values to variables, and a state trajectory (a path through the transition system) is a sequence of such assignments. For cyberphysical systems (CPSs), however, we are more interested in the state of the physical system than the values of the software variables. The value of model checking the software therefore depends on the relationship between the state of the software and the state of the physical system. This relationship can be complex because of the real-time nature of the physical plant, the sensors and actuators, and the software that is almost always concurrent and distributed. In this paper, we study different ways to construct a transition system model for the distributed and concurrent software components of a CPS. We describe a logical-time based transition system model, which is commonly used for verifying programs written in synchronous languages, and derive the conditions under which such a model faithfully reflects physical states. When these conditions are not met (a common situation), a finer-grained event-based transition system model may be required. Even this finer-grained model, however, may not be sufficiently faithful, and the transition system model needs to be refined further to express not only the properties of the software, but also the properties of the hardware on which it runs. We illustrate these tradeoffs using a coordination language called Lingua Franca that is well-suited to extracting transition system models at these various levels of granularity, and we extend the Timed Rebeca language and its tool Afra to perform this extraction and then to perform model checking.10.1109/COMPSAC48688.2020.0-138 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762Cyberphysical systems, Lingua Franca, Model checking, Rebeca, VerificationIEEE Inglês
A Sanitizer-centric Analysis to Detect Cross-Site Scripting in PHP ProgramsH. Su; L. Xu; H. Chao; F. Li; Z. Yuan; J. Zhou; W. Huo2022 A large number of PHP applications suffer from Cross-Site Scripting (XSS) attacks every year. Static taint analysis is a prevalent way to detect taint-style vulnerabilities like XSS. However, the precision of current tools suffers severely due to dynamic features of PHP programs and the incomplete recognition of user-defined sanitizers, which lead to false negatives and a large number of false positives. In this paper, we present PAT, a PHP static Analysis Tool for effective XSS vulnerability detection. A new concept of “inner” source and sink is introduced for the first time to shorten the taint paths needed to be traced statically, which therefore mitigates the broken path problem induced by dynamic language features to a certain extent. A sanitizer-centric approach is proposed to automatically identify them. Moreover, PAT leverages both data flow analysis and NLP technique to accurately identify user-defined sanitizers with a precision 82.8%. Lastly, PAT performs a classical taint analysis with the enhanced taint specifications (i.e., sources, sinks and sanitizers). Evaluations on 5 large, real-world PHP web applications and 5 popular WordPress plugins show that PAT performs better in XSS detection compared with 3 existing tools. Besides, 8 zero-day bugs are detected and confirmed by the developers.10.1109/ISSRE55969.2022.00042 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9978990XSS;static taint analysis;specification inference IEEE Inglês
Developing Reflex IDE Kernel with Xtext FrameworkA. Bastrykina; V. Zyubin; A. Rozov 2021 In this paper, we describe the technology of the process-oriented language Reflex IDE kernel development. The Reflex language, which is being maintained at the Institute of Automation and Electrometry, is a language for cyber-physical systems software specification. In the paper, we assume that the cyber-physical system is a computational core that interacts with the physical world. In the case of Reflex, the computation platform is an industrial PC. Reflex IDE (RIDE) includes a language-based editor, syntax and semantics analyzers as well as an abstract syntax tree (AST) generator, and a class library for working with the generated AST. In this work, we explain our motivation for the research, formulate the requirements for the development, and present the RIDE architecture. We describe the RIDE development process using Eclipse/Xtext tools and its user interface. We also provide an example of extending the Reflex IDE kernel with a code generator for the AVR platform. In the conclusion, we discuss the possibility of using the obtained result to create a web-version of RIDE.10.1109/EDM52169.2021.9507663 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507663process-oriented programming;Reflex;Xtext;parser;translator;DSL IEEE Inglês
Work-in-Progress: Automatically Generated Response-Time Proofs as Evidence of TimelinessM. Maida; S. Bozhko; B. Brandenburg 2021 In this paper, we report on the ongoing development of POET, the first foundational and automated response-time analysis tool. The certificates produced by POET are short, readable, and fully commented Coq files that can be machine-checked in (usually) minutes.10.1109/RTSS52674.2021.00053 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622378Prosa;aRTA;Coq;POET IEEE Inglês
VeriSmart 2.0: Swarm-Based Bug-Finding for Multi-threaded Programs with Lazy-CSeqB. Fischer; S. La Torre; G. Parlato 2019 Swarm-based verification methods split a verification problem into a large number of independent simpler tasks and so exploit the availability of large numbers of cores to speed up verification. Lazy-CSeq is a BMC-based bug-finding tool for C programs using POSIX threads that is based on sequentialization. Here we present the tool VeriSmart 2.0, which extends Lazy-CSeq with a swarm-based bug-finding method. The key idea of this approach is to constrain the interleaving such that context switches can only happen within selected tiles (more specifically, contiguous code segments within the individual threads). This under-approximates the program's behaviours, with the number and size of tiles as additional parameters, which allows us to vary the complexity of the tasks. Overall, this significantly improves peak memory consumption and (wall-clock) analysis time.10.1109/ASE.2019.00124 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952527program analysis;verification;concurrency;sequentialization;swarm verificationIEEE Inglês
BHDL: A Lucid, Expressive, and Embedded Programming Language and System for PCB DesignsH. Li; Y. He; Q. Xiao; J. Tian; F. S. Bao 2021 Graphical PCB design tools like KiCAD lack support for high-level abstraction such as functions and loops. To improve PCB design productivity, we hereby present BHDL, a programming framework for PCB designs. In its compact and declarative syntax, schematics and layouts can be modeled effectively and expressed concisely. Treating all circuits, even a resistor, as functions, BHDL naturally supports modularized development that builds a complex design up from smaller designs hierarchically. As an embedded Domain Specific Language (eDSL), BHDL allows users to leverage the full feature of the host language for customization and extension. Our Jupyter kernel supports web-based, REPL-style development and generates auto-placed PCBs.10.1109/DAC18074.2021.9586086 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586086Electronic Design Automation (EDA);Computer-Aided Design (CAD);Printed Circuit Board (PCB);Hardware Description Language (HDL);Programming Language (PL);Automatic PlacementIEEE Inglês
The Fundamentals of Domain-Specific Simulation Language EngineeringS. Van Mierlo; H. Vangheluwe; J. Denil 2019 Simulationists use a plethora of modelling languages. General-purpose languages such as C, extended with simulation constructs, give the user access to abstractions for general-purpose computation and modularization. The learning curve for experts in domains that are far from programming, however, is steep. Languages such as Modelica and DEVS allow for a more intuitive definition of models, often through visual notations and with libraries of reusable components for various domains. The semantics of these languages is fixed. While libraries can be created, the language's syntax and semantics cannot be adapted to suit the needs of a particular domain. This tutorial provides an introduction to modelling language engineering, which allows one to explicitly model all aspects -in particular, syntax and semantics- of a (domain-specific) modelling and simulation language and to subsequently synthesize appropriate tooling. We demonstrate the discussed techniques by means of a simple railway network language using AToMPM, a (meta)modelling tool.10.1109/WSC40007.2019.9004726 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004726 IEEE Inglês
Use Case Extraction through Knowledge AcquisitionD. G. Vasques; G. S. Santos; F. D. Gomes; J. F. Galindo; P. S. Martins2019 Most challenges in requirements analysis and use case extraction are related to the correct comprehension of clients' core processes and activities, as well as their needs. This information is usually available in documents, such as the business vision, written in natural language. This kind of language may lead to interpretation bias and information loss, thus causing project delays and escalation of costs. In order to overcome natural language interpretation challenges in Requirements Engineering, we propose the use of Verbka, a knowledge acquisition process based on verbal semantics, as a complement to traditional requirements analysis. This process extracts the causal relationships among the actors mentioned in the business vision document. We used this process as a use case pre-modeling tool, aiming to minimize subjectivity in the identification of actors and use cases. We tested Verbka using a business vision from a classical textbook. The results show that this process is able to obtain a list containing all requirements defined by the client, all actors involved in the business vision, and how they interact with each other. This process is systematic and provides a textual and visual representation of user requirements and use cases consistently. Its application reduced interpretation bias, thus allowing a more detailed and structured requirements analysis.10.1109/IEMCON.2019.8936279 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936279Business Modeling;Concept Maps;Natural Language Processing;Requirements Analysis;Semantics;UMLIEEE Inglês
A System Function Verification Flow For Mixed-signal SoCY. Fu; K. Huang; L. Zhang; F. Liu 2020 Taking a mixed-signal SoC project as an example, this article introduces an efficient system function verification flow applied to mixed-signal SoC. All the inherited analog IPs in this project are developed in virtuoso environment, and the digital modules are simulated in VCS environment. The system function verification platform of this project uses UVM(Universal Verification Methodology) to generate digital stimulus and Verilog-AMS to generate analog stimulus. The overall circuit is transformed into spectre-netlist and integrated into the verification platform. The project has high requirements on the development and simulation progress. The system function verification is realized by using simulation tools VCS and XA of Synopsys. The results of the project are correct, which shows the effectiveness of the flow.10.1109/IFEEA51475.2020.00157 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9356850mixed-signal SoC;system function verification;spectre-netlist;UVM;Verilog-AMSIEEE Inglês
MAANA: An Automated Tool for DoMAin-Specific HANdling of AmbiguityS. Ezzini; S. Abualhaija; C. Arora; M. Sabetzadeh; L. Briand2021 MAANA (in Arabic: "meaning") is a tool for performingdomain-specific handling of ambiguity in requirements. Given a requirements document as input, MAANA detectsthe requirements that are potentially ambiguous. The focus ofMAANA is on coordination ambiguity and prepositional-phraseattachment ambiguity; these are two common ambiguity typesthat have been studied in the requirements engineering literature. To detect ambiguity, MAANA utilizes structural patterns anda set of heuristics derived from a domain-specific corpus. Thegenerated analysis file after running the tool can be reviewed byrequirements analysts. Through combining different knowledgesources, MAANA highlights also the requirements that mightcontain unacknowledged ambiguity. That is when the analystsunderstand different interpretations for the same requirement, without explicitly discussing it with the other analysts due to timeconstraints. This artifact paper presents the details of MAANA. MAANA is associated with the ICSE 2021 technical papertitled "Using Domain-specific Corpora for Improved Handlingof Ambiguity in Requirements". The tool is publicly available onGitHub and Zenodo.10.1109/ICSE-Companion52605.2021.00082 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402505Requirements Engineering, Natural-language Requirements, Ambiguity, Natural Language Processing, Corpus Generation, WikipediaIEEE Inglês
Towards Sketching Interfaces for Multi-paradigm ModelingS. Van Mierlo; J. Deantoni; L. Burgueño; C. Verbrugge; H. Vangheluwe2019 Existing design processes typically begin with informal ideation by sketching out a basic approach that can be further developed into a more complete design. Although intuitively simple, and seemingly informal, the sketching process is actually a structured activity that strongly influences the design of the system; hence, it has an important role in the design success. In this work, we develop a well defined specification of the sketching activity. We consider sketching as a process of achieving agreement, based on stakeholders communicating ideas about a design and its properties, with the side-effect of incrementally developing a (set of) common language(s) specific to the idea domain. Our perspective on sketching further differs from more common notions of ideation by noting the roles of requirements and system properties, and offering a general perspective on sketching as a modular activity within design.We validate our approach by analyzing the sketches of a research group at the CAMPaM 2019 workshop. By recognizing sketching as a fundamental activity in design, we enhance the formalization of the design process, and suggest improvements to the tool support for sketching beyond the basic drawing features.10.1109/MODELS-C.2019.00070 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904846sketching, multi-paradigm, ideation, interface IEEE Inglês

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9438168
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8876941
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8971783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920507
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9816856
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904513
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859423
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9776384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9726565
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9370313
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592513
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920066
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8716480
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9579419
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9423859
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9612806
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9169428
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9791260
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9528498
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836741
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8960313
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8987451
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8723726
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9268671
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9016387
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604545
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904758
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604742
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9950052
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904527
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8965462
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9162718
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9971829
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945656
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877083
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714967
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8807452
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753885
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9212107
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9978990
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507663
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622378
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952527
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586086
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004726
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936279
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9356850
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904846

Research on Business-oriented Smart Grid Asset Information Modeling TechnologyZ. Zhao; D. Li; J. She; L. Zhao; K. Wang 2019 This paper proposes a smart grid asset information modeling language based on domain-specific modeling method, which is used to describe the data specification of smart grid asset account, and is easy for experts in the field of asset management to understand and use. In order to meet the requirements of asset life cycle management, asset objects are described from three dimensions: functional location, product and spatial location, which have the characteristics of flexibility and wide applicability. A meta-model of asset information modeling language is proposed and a modeling tool is implemented. It can be used to model and edit asset account specifications for business personnel. It can be divided into asset classification model, structural model and parameter model. The validity of the proposed modeling language is proved by the case study and large-scale application.10.1109/CIEEC47146.2019.CIEEC-2019473 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9077081smart grid;domain specific language;asset information modeling language;meta-modelIEEE Inglês
Differential coverage: : automating coverage analysisH. Cox 2021 While it is easy to automate coverage data collection, it is a time consuming/difficult/expensive manual process to analyze the data so that it can be acted upon. The goal of the approaches discussed in here is to reduce the cost and barrier to entry of using coverage data analysis in large-scale projects by categorizing and prioritizing coverage changes to avoid the need for manual review at every release or on every build.Differential coverage and date binning are methods of combining coverage data and project/file history to determine if goals have been met and to identify areas of unexercised code which should be reviewed. These methods can be applied to any coverage metric which can be associated with a location - statement, function, expression, toggle, etc. - and to any language, including both software (C++, Python, etc.) and hardware description languages (SystemVerilog, VHDL).The approach is realized in diffcov1, a recently released open-source tool.10.1109/ICST49551.2021.00054 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9438597code coverage;automation;software development;continuous integrationIEEE Inglês
Execution of Partial State Machine Models M. Bagherzadeh; N. Kahani; K. Jahed; J. Dingel2022 The iterative and incremental nature of software development using models typically makes a model of a system incomplete (i.e., partial) until a more advanced and complete stage of development is reached. Existing model execution approaches (interpretation of models or code generation) do not support the execution of partial models. Supporting the execution of partial models at early stages of software development allows early detection of defects, which can be fixed more easily and at lower cost. This paper proposes a conceptual framework for the execution of partial models, which consists of three steps: static analysis, automatic refinement, and input-driven execution. First, a static analysis that respects the execution semantics of models is applied to detect problematic elements of models that cause problems for the execution. Second, using model transformation techniques, the models are refined automatically, mainly by adding decision points where missing information can be supplied. Third, refined models are executed, and when the execution reaches the decision points, it uses inputs obtained either interactively or by a script that captures how to deal with partial elements. We created an execution engine called PMExec for the execution of partial models of UML-RT (i.e., a modeling language for the development of soft real-time systems) that embodies our proposed framework. We evaluated PMExec based on several use-cases that show that the static analysis, refinement, and application of user input can be carried out with reasonable performance, and that the overhead of approach, which is mostly due to the refinement and the increase in model complexity it causes, is manageable. We also discuss the properties of the refinement formally, and show how the refinement preserves the original behaviors of the model.10.1109/TSE.2020.3008850 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9139402MDD;model-level debugging;partial models;incomplete models;model executionIEEE Inglês
A Model Driven Framework for Standardizing Requirement Elicitation by Quantifying Software Quality FactorS. Khalid; U. Rasheed; M. Abbas 2021 The quality monitoring of a software is ensured in every activity of software development lifecycle. Software Quality Requirements are defined in terms of Software Quality Factors and they are gathered to ensure that the software produced meets the user defined quality standards; framework activities are also performed to ensure the incorporation of quality into the developed product. However, these quality factors are qualitative in nature and are thus hard to understand, elicit and record; it also makes the analysing process of the factors hard due to natural language constraints. In order to overcome this, standards and templates are proposed by researchers and devised by organization for eliciting quality factors and then models and procedures are defined to convert the qualitative quality factors into quantitative measures. However, no standardized procedure, tool or model exist that can be applied to this process of recording qualitative software quality factors in quantifiable form for every kind of software product. This paper presents a model driven framework to standardize the procedure of eliciting quality requirements in a quantifiable manner. It uses Obeo Designer to develop the Platform Independent Metamodel (PIM) for the proposed framework. Based on the PIM, it develops a drag-and-drop tool palette and an M1 level instance model using Sirius. The validation of the proposed framework is demonstrated with the help of a case study.10.1109/ICIC53490.2021.9693054 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9693054software quality factors;ISO 9126;quality metrics;metamodel;model driven architectureIEEE Inglês
Model-Based Systems Engineering Tool-Chain for Automated Parameter Value SelectionJ. Lu; D. Chen; G. Wang; D. Kiritsis; M. Törngren2022 Cyber-physical systems (CPSs) integrate heterogeneous systems and process sensor data using digital services. As the complexity of CPS increases, it becomes more challenging to efficiently formalize the integrated multidomain views with flexible automated verification across the entire lifecycle. This article illustrates a model-based systems engineering tool-chain to support CPS development with an emphasis on automated parameter value selection for co-simulation. First, a domain-specific modeling approach is introduced to support the formalizations of CPS artifacts, development processes, and simulation configurations. The domain-specific models are used as the basis to generate a Web-based process management system for automated parameter value selections, which coordinates Open Services for Lifecycle Collaboration services of development information and technical resources (models, data, and tools) in order to support automated co-simulation. The services are deployed by a service orchestrator based on a decision-making algorithm for parameter value selection. Finally, developers make use of the WPMS to implement simulations and to select system parameter values for co-simulation automatically. The approach is illustrated by a case study on auto-braking system development and we evaluate the efficiency of this tool-chain by both qualitative and quantitative methods. The results show that parameter values are selected more efficiently and effectively when implementing co-simulations using our tool-chain.10.1109/TSMC.2020.3048821 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9328223Automated parameter value selection;cyber-physical systems (CPSs);model-based systems engineering (MBSE)IEEE Inglês
Teaching and learning Modelling and Specification based on gamificationF. Moreira; M. J. Ferreira; D. F. Escudero; C. S. Pereira; N. Durão2020 Video games are understood by society, particularly young people, and young adults, as a form of entertainment. However, given the transformation of society towards the digital, in recent years the games have crossed the barriers of entertainment, and have been used in more ambitious environments and purposes, especially in business and education. In this context, this practice is called gamification, being used at education and aims to make the teaching and learning more attractive and motivating. Gamification, as noted, has the principles of video games, i.e., leverage the elements of the games, which underpin its enormous success, to make learning more engaging, customizable and relevant. Its use in the teaching- learning process has been carried out in parallel with active methodologies, and in the use of learning management systems that include various elements of the game to be integrated into teaching, learning and evaluation activities. In this paper, the gamified programmatic contents idea is presented, and it specifies a level-based programmatic contents structure as well as other gamification elements used, such as points and different types of rewards, the progress bar, the leaderboard, content locking and trading. The gamified programmatic contents will be implemented on the Moodle platform.10.23919/CISTI49556.2020.9140829 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9140829gamification;higher education;learning;students engagement;students motivation;educational innovation;Requirement Engineering;Modeling and SpecificationIEEE Inglês
Providing Designers with Automated Decision-Making within SysML Models to Promote Efficient Model-Based Systems DesignC. Kotronis; A. Tsadimas; M. Nikolaidou 2021 Systems of Systems (SoS) design is a complex process that involves, among other activities, the specification of system structure and requirements, the analysis of behavior and performance, and the exploration of the most appropriate system design solutions. Integration of these activities is advocated by Model-Based Systems Design (MBSD), where a core system model can be enriched with additional capabilities, such as performance analysis or decision-making. The Systems Modeling Language (SysML) is a standard language to utilize model-based design of SoS and create system models, specifying requirements and system constraints. In this work, we focus on integrating decision-making capabilities into SysML to enable system designers to explore alternative solutions that fit the requirements described in SysML. The system model is transformed to a decision model, whose results are automatically incorporated back into the system model. The proposed approach runs iteratively on any typical SysML model and facilitates the designer to explore alternative design solutions, minimizing the manual effort needed to achieve them. As a case study, the approach is applied in the design of a remote patient monitoring system, namely the Remote Elderly Monitoring System (REMS), where the designer decides on a system configuration that covers the needs of the patients.10.1109/SysCon48628.2021.9447083 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447083MBSD;SysML;system model;decision-making IEEE Inglês
From IEC 61131-3 Function Block Diagrams to Sequentially Constructive StatechartsM. C. Werner; K. Schneider 2022 Function Block Diagrams (FBDs) are widely used for implementing the software of IEC 61131-3 based systems. In general, there is a risk that FBDs used in industry will become more and more complex during their life cycle, while at the same time strict specifications have to be met. On the other hand, a trend towards model-based design with standardized modeling tools can be observed in software engineering. While previous research focuses on translating existing FBDs to formal models for verification purposes, this paper presents two translations from existing FBDs to sequentially constructive statecharts, thus enabling an intuitive functional reuse for a model-based design. Besides a basic translation in the first approach, it is shown in the second approach that it is possible to improve the readability through code refactoring within the synchronous paradigm.10.1109/FDL56239.2022.9925656 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925656model-driven development;programmable logic devices;software reusability;synchronous languages;system analysis and designIEEE Inglês
Usability evaluation of a domain-specific language for defining aggregated processing tasksC. Nandra; D. Gorgan 2019 The effective processing of Big Data sets often requires some programming knowledge from a prospective user's part. This could prove costly to achieve, in terms of user training time and effort, depending on the level of previous experience. The premise, when dealing with large data sets, is that it should be as easy as possible for a user to prototype and test processing algorithms, in order to deal with them in an effective manner. For this reason, we have developed a domain- specific language meant to allow users to define data processing tasks as aggregates, consisting of atomic operations. Its goal is to do away with some of the complexities of traditional programming languages, by simplifying the representation model and providing a more intuitive process description tool for its users. This paper aims to evaluate the efficiency and effectiveness with which a novice user could employ our domain-specific language to define processing tasks, and then compare the results to those obtained while using the Python programming language. The experiments will be focused on task duration, description correctness and code interpretation, highlighting possible advantages and disadvantages observed during the usage of the two languages.10.1109/ICCP48234.2019.8959796 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8959796usability evaluation;domain-specific language;process description;big dataIEEE Inglês
Breaking Type Safety in Go: An Empirical Study on the Usage of the unsafe PackageD. E. Costa; S. Mujahid; R. Abdalkareem; E. Shihab2022 A decade after its first release, the Go language has become a major programming language in the development landscape. While praised for its clean syntax and C-like performance, Go also contains a strong static type-system that prevents arbitrary type casting and memory access, making the language type-safe by design. However, to give developers the possibility of implementing low-level code, Go ships with a special package called unsafe that offers developers a way around the type safety of Go programs. The package gives greater flexibility to developers but comes at a higher risk of runtime errors, chances of non-portability, and the loss of compatibility guarantees for future versions of Go. In this paper, we present the first large-scale study on the usage of the unsafe package in 2,438 popular Go projects. Our investigation shows that unsafe is used in 24 percent of Go projects, motivated primarily by communicating with operating systems and C code, but is also commonly used as a means of performance optimization. Developers are willing to use unsafe to break language specifications (e.g., string immutability) for better performance and 6 percent of the analyzed projects that use unsafe perform risky pointer conversions that can lead to program crashes and unexpected behavior. Furthermore, we report a series of real issues faced by projects that use unsafe, from crashing errors and non-deterministic behavior to having their deployment restricted from certain popular environments. Our findings can be used to understand how and why developers break type safety in Go, and help motivate further tools and language development that could make the usage of unsafe in Go even safer.10.1109/TSE.2021.3057720 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9350178Go language;unsafe;type safety;software packages;Empirical StudyIEEE Inglês
Model Driven Software Engineering of Power Systems Applications: Literature Review and TrendsP. Neis; M. A. Wehrmeister; M. F. Mendes 2019 This paper presents a survey on Software Engineering techniques for the power systems area. Our goal is to identify tools and techniques that can improve the life cycle management of customized applications for Energy Management Systems (SCADA/EMS), by applying a Model Driven Engineering (MDE) approach. We conducted a systematic literature review of published works related to the design and development of such applications. Two main repositories of publications in the area were used as sources and four search strategies were applied. Several works found are not directed to SCADA/EMS, but are related to other power systems applications. We have collected evidence that such applications are more commonly modeled using concepts specific to the power systems' domain, like control theory, rather than traditional techniques and tools from the software industry, like UML. However, few details about the process of transforming those specifications into software artifacts could be gathered. On the other hand, a few published works mention the MDE approach for power systems related applications, although clear methodology or frameworks applicable to the production of fully functional software are still missing. We have also identified promising technologies that need to be evaluated in order to propose such a framework, like domain specific languages, transformation engines and integration interfaces. The appealing MDE concept of automatically transforming design and specification models into programs and other software artifacts has the potential to facilitate the porting and migration of EMS applications from one platform to others. Ultimately, such an approach may help improving software quality and cutting development costs.10.1109/ACCESS.2019.2958275 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8926459Model driven engineering;SCADA/EMS;software engineering;power systemsIEEE Inglês
Synergizing Reliability Modeling Languages: BDMPs without Repairs and DFTsS. Khan; J. -P. Katoen; M. Volk; M. Bouissou 2019 Static Fault Trees (SFTs) are a key model in reliability and safety analysis. Various extensions have been developed to model, e.g., functional dependencies, state-dependent failures, and SPARE elements. This paper studies the expressive power of two important extensions of SFTs: Dynamic Fault Trees (DFTs) and Boolean Logic Driven Markov Processes (BDMPs). We outline a set of BDMP-to-DFT translation rules and apply them to thirty-three BDMP test cases modeling various scenarios of security, software and system reliability. The main contribution is a DFT modeling an industrial BDMP benchmark study of a Nuclear Power Plant (NPP). Although this DFT does not consider repairs, it is one of the largest industrial cases reported so far and is challenging for DFT analysis. We compare the performance and capabilities of analysis tools for BDMPs-the Monte-Carlo simulation tool YAMS, the proprietary Markovian analysis tool FigSeq-and the DFT analysis capability of the probabilistic model checker Storm. We also address how to do a system sensitivity analysis of the NPP benchmark using probabilistic model checking.10.1109/PRDC47002.2019.00057 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952129Reliability, dependability, formal methods, probabilistic model checking, Monte Carlo simulationIEEE Inglês
Automatic Decomposition of a Sequential Algorithm for MapReduce FrameworksV. S. Simonov; M. S. Khairetdinov 2022 Effective programming of parallel architectures has always been a difficult t ask. T o d ate, programming languages and technologies have been developed that simplify the programmer’s work, but do not make parallelization automatic. MapReduce is a model of programming for the development of large-scale computations with intensive use of data. There are many frameworks where the implementation of this paradigm has been recently developed. There is a need to rewrite existing serial code to use the frameworks listed. The researcher must be familiar with the problems of parallelization, the API of the framework, and also have considerable experience. This prompted us to develop a new tool that automatically translates sequential programs into ready-made versions suitable for execution in the MapReduce paradigm. The code fragment from the serial version is converted in two stages. At the first stage, the synthesis of the program, the functional specification, was made. It was necessary to find information about the calculation structure for each block of code. The result was stored as a high-level intermediate language, reminiscent of the program format for MapReduce frameworks. Checking for semantic equivalence to the original has done using the proof of the theorem. At the second stage, executable code is created, which was the result of generation from a sequential program using the Hadoop or Spark instruction set. Creating a parallelizing compiler is one way to solve this problem. This will allow you to translate code written in a different paradigm (for example, imperative code) into a parallel version for the framework. Classical compilers, such as logical plan-to-physical compilers, use pattern matching rules. The compiler contains a set of rules that identify different patterns of code input (for example, list-sequential looping) and transform consistent code.10.1109/SIBIRCON56155.2022.10017034 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10017034mapreduce;formal languages;compiler;distributed computing;parallel programmingIEEE Inglês
Is Eve nearby? Analysing protocols under the distant-attacker assumptionR. Gil-Pons; R. Horne; S. Mauw; A. Tiu; R. Trujillo-Rasua2022 Various modern protocols tailored to emerging wire-less networks, such as body area networks, rely on the proximity and honesty of devices within the network to achieve their security goals. However, there does not exist a security framework that supports the formal analysis of such protocols, leaving the door open to unexpected flaws. In this article we introduce such a security framework, show how it can be implemented in the protocol verification tool Tamarin, and use it to find previously unknown vulnerabilities on two recent key exchange protocols.10.1109/CSF54842.2022.9919655 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919655security protocols;formal verification;key exchange;distance bounding;distant attackerIEEE Inglês
Design and Application of a Domain Specific Modeling Language for Distributed Co-SimulationM. Krammer; M. Benedikt 2019 Co-simulation is considered as a state-of-the-art methodology in many industrial domains. It enables virtual system development in distributed, multi-tiered environments, like the automotive industry. The Distributed Co-Simulation Protocol (DCP) is a novel specification of an application layer communication protocol. It is standardized next to the well-established Functional Mock-Up Interface (FMI). The DCP specification addresses design and behaviour of single DCP slaves, as main components of larger, possibly distributed, co-simulation scenarios. At this point in time, no tailor-made solution for convenient description of distributed co-simulation scenarios is available. This paper presents a first version of DCPML, a domain specific modeling language for distributed co-simulation scenarios. It is based on three layers of integration and contributes to development efficiency by following a front-loading approach. It is designed as a UML profile, extending existing visual notation languages like UML and SysML. The language can be used for design, communication, and preparation for execution, of distributed co-simulation scenarios. For demonstration purposes, it is implemented in an industry relevant systems engineering tool. DCPML models can be used to import and export XML data, representing DCP slave and scenario descriptions. A typical demonstrator from the automotive domain is shown. It highlights a tool implementation and the capabilities of DCPML.10.1109/INDIN41052.2019.8972116 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972116co-simulation;dcp;modeling;language IEEE Inglês
Classification Algorithms Framework (CAF) to Enable Intelligent Systems Using JetBrains MPS Domain-Specific Languages EnvironmentS. Meacham; V. Pech; D. Nauck 2020 This paper describes the design and development of a Classification Algorithms Framework (CAF) using the JetBrains MPS domain-specific languages (DSLs) development environment. It is increasingly recognized that the systems of the future will contain some form of adaptivity therefore making them intelligent systems as opposed to the static systems of the past. These intelligent systems can be extremely complex and difficult to maintain. Descriptions at higher-level of abstraction (system-level) have long been identified by industry and academia to reduce complexity. This research presents a Framework of Classification Algorithms at system-level that enables quick experimentation with several different algorithms from Naive Bayes to Logistic Regression. It has been developed as a tool to address the requirements of British Telecom's (BT's) data-science team. The tool has been presented at BT and JetBrains MPS and feedback has been collected and evaluated. Beyond the reduction in complexity through the system-level description, the most prominent advantage of this research is its potential applicability to many application contexts. It has been designed to be applicable for intelligent applications in several domains from business analytics, eLearning to eHealth, etc. Its wide applicability will contribute to enabling the larger vision of Artificial Intelligence (AI) adoption in context.10.1109/ACCESS.2020.2966630 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8959196Classification algorithms;domain-specific languages;framework;intelligent systemsIEEE Inglês
Mutation Analysis for Coq A. Celik; K. Palmskog; M. Parovic; E. Jesús Gallego Arias; M. Gligoric2019 Mutation analysis, which introduces artificial defects into software systems, is the basis of mutation testing, a technique widely applied to evaluate and enhance the quality of test suites. However, despite the deep analogy between tests and formal proofs, mutation analysis has seldom been considered in the context of deductive verification. We propose mutation proving, a technique for analyzing verification projects that use proof assistants. We implemented our technique for the Coq proof assistant in a tool dubbed mCoq. mCoq applies a set of mutation operators to Coq definitions of functions and datatypes, inspired by operators previously proposed for functional programming languages. mCoq then checks proofs of lemmas affected by operator application. To make our technique feasible in practice, we implemented several optimizations in mCoq such as parallel proof checking. We applied mCoq to several medium and large scale Coq projects, and recorded whether proofs passed or failed when applying different mutation operators. We then qualitatively analyzed the mutants, finding many instances of incomplete specifications. For our evaluation, we made several improvements to serialization of Coq files and even discovered a notable bug in Coq itself, all acknowledged by developers. We believe mCoq can be useful both to proof engineers for improving the quality of their verification projects and to researchers for evaluating proof engineering techniques.10.1109/ASE.2019.00057 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952421mutation proving;Coq;prof assistants;mutation testing IEEE Inglês
Boba: Authoring and Visualizing Multiverse AnalysesY. Liu; A. Kale; T. Althoff; J. Heer 2021 Multiverse analysis is an approach to data analysis in which all “reasonable” analytic decisions are evaluated in parallel and interpreted collectively, in order to foster robustness and transparency. However, specifying a multiverse is demanding because analysts must manage myriad variants from a cross-product of analytic decisions, and the results require nuanced interpretation. We contribute Baba: an integrated domain-specific language (DSL) and visual analysis system for authoring and reviewing multiverse analyses. With the Boba DSL, analysts write the shared portion of analysis code only once, alongside local variations defining alternative decisions, from which the compiler generates a multiplex of scripts representing all possible analysis paths. The Boba Visualizer provides linked views of model results and the multiverse decision space to enable rapid, systematic assessment of consequential decisions and robustness, including sampling uncertainty and model fit. We demonstrate Boba's utility through two data analysis case studies, and reflect on challenges and design opportunities for multiverse analysis software.10.1109/TVCG.2020.3028985 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9216579Multiverse Analysis;Statistical Analysis;Analytic Decisions;ReproducibilityIEEE Inglês
Towards Web Collaborative Modelling for the User Requirements Notation Using Eclipse Che and Theia IDER. Saini; S. Bali; G. Mussbacher 2019 Collaborative modelling has become a necessity when developing a complex system or in a team of modellers with a diverse set of expertise. Textual notations have a long history in software engineering because of their fast editing style, simple usage, and scalability. Therefore, we propose a novel collaborative modelling framework for the graphical User Requirements Notation (URN) which we call tColab. It uses the text-based TGRL (Textual Goal-oriented Requirement Language) to build URN goal models and then automatically generates corresponding graphical models. This framework is based on the architecture of Eclipse Che and Theia. On one side, Theia provides support for LSP (Language Server Protocol) so that textual models can be built and their corresponding graphical models can be generated in a browser IDE (Integrated Development Environment). On the other hand, Eclipse Che adds support for collaboration where multiple modellers can contribute to building the textual models in an online collaborative manner. This initiative aims to replace the jUCMNAV tool, which is the most comprehensive URN modelling tool to date but only supports a single user.10.1109/MiSE.2019.00010 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877072User Requirements Notation, URN, jUCMNav, Eclipse Che, Theia, Sprotty, LSP, ELK, TURN, TGRLIEEE Inglês
Scalable and Robust Algorithms for Task-Based Coordination From High-Level Specifications (ScRATCHeS)K. Leahy; Z. Serlin; C. -I. Vasile; A. Schoer; A. M. Jones; R. Tron; C. Belta2022 Many existing approaches for coordinating heterogeneous teams of robots either consider small numbers of agents, are application-specific, or do not adequately address common real-world requirements, e.g., strict deadlines or intertask dependencies. We introduce scalable and robust algorithms for task-based coordination from high-level specifications (ScRATCHeS) to coordinate such teams. We define a specification language, capability temporal logic, to describe rich, temporal properties involving tasks requiring the participation of multiple agents with multiple capabilities, e.g., sensors or end effectors. Arbitrary missions and team dynamics are jointly encoded as constraints in a mixed integer linear program, and solved efficiently using commercial off-the-shelf solvers. ScRATCHeS optionally allows optimization for maximal robustness to agent attrition at the penalty of increased computation time. We include an online replanning algorithm that adjusts the plan after an agent has dropped out. The flexible specification language, fast solution time, and optional robustness of ScRATCHeS provide a first step toward a multipurpose on-the-fly planning tool for tasking large teams of agents with multiple capabilities enacting missions with multiple tasks. We present randomized computational experiments to characterize scalability and hardware demonstrations to illustrate the applicability of our methods.10.1109/TRO.2021.3130794 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414Formal methods;multiagent systems;planning;robotics IEEE Inglês
LAMEME Use Case: The Example of Apache Tomcat Complex SystemE. H. B. Toure; I. Fall; A. Bah; M. S. Camara; M. Ba; A. Fall2019 In previous works, we have proposed the use of a megamodel which is a language-based system for the maintenance of complex systems through a modeling perspective. We have called such a language LAMEME (a LAnguage for the Management and Evolution of MEgamodels and its Semantics). It is about a Domain Specific Language (DSL) which exclusively makes use of Higher-Order Functions (HOF) called Global Operation Models (GOMs) to update the megamodel content by adding or removing Component Models (CMs). The LAMEME semantics is given by specifying requires/ensures predicates that are checked at runtime. The paper presents a case study aiming to highlight how LAMEME can be used to describe a simple evolution of a complex software system such as Apache Tomcat.10.1109/ICoCS.2019.8930710 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8930710Complex Systems;MDE;Megamodeling;DSML;DBC IEEE Inglês
Reusable Security Requirements Repository Implementation Based on Application/System ComponentsF. Özdemir Sönmez; B. G. Kiliç 2021 Forming high quality requirements has a direct impact on project success. Gathering security requirements could be challenging, since it demands a multidisciplinary approach and security expertise. Security requirements repository enables an effective alternative for addressing this challenge. The main objective of this paper is to present the design of a practical repository model for reusable security requirements, which is easy to use and understand for even non-security experts. The paper also portrays an approach and a software tool for using this model to determine subtle security requirements for improved coverage. Proposed repository consists of attributes determined by examining common security problems covered in state-of-the-art publications. A test repository was prepared using specification files and Common Criteria documents. The outcomes of applying the proposed model were compared with the sample requirement sets included in the state-of-the-art publications. The results reveal that in the absence of a security requirements repository, key security points can be missed. Repository improves the completeness of the security terms with reasonable effort.10.1109/ACCESS.2021.3133020 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9638498Computer security;information security;requirement’s engineering;software reusabilityIEEE Inglês
Automated Regression Tests: A No-Code Approach for BPMN-based Process-Driven ApplicationsK. Schneid; L. Stapper; S. Thöne; H. Kuchen 2021 BPMN-based Process-Driven Applications (PDA) require less coding since they are not only based on source code, but also on executable process models. Automated testing of such model-driven applications gains growing relevance, and it becomes a key enabler if we want to found their development on continuous integration (CI) techniques.While process analysts are typically responsible for test case specifications from a business perspective, technically skilled process engineers take the responsibility for implementing the required test code. This is time-consuming and, due to their often different skills and backgrounds, might result in communication problems such as information losses and misunderstandings. This paper presents a new approach which enables an analyst to generate executable tests for PDAs without the need for manual coding. It consists of a sophisticated model analysis, a wizard-based specification of test cases, and a subsequent code generation. The resulting tests can easily be integrated into CI pipelines.The concept is underpinned by a user-friendly tool which has been evaluated in case studies and in real-world implementation projects from different industry sectors. During the evaluation, the prototype proved a more efficient test creation process and a higher test quality.10.1109/EDOC52215.2021.00014 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9626192Model-Based Testing;BPMN;No-Code;Process-Driven Application IEEE Inglês
Blended Modelling - What, Why and How F. Ciccozzi; M. Tichy; H. Vangheluwe; D. Weyns2019 Empirical studies indicate that user experience can significantly be improved in model-driven engineering. Blended modelling aims at mitigating this by enabling users to interact with a single model through different notations. Blended modelling contributes to various modelling qualities, including comprehensibility, analysability, and acceptability. In this paper, we define the notion of blended modelling and propose a set of dimensions that characterise blended modelling. The dimensions are grouped in two classes: user-oriented dimensions and realisation-oriented dimensions. Each dimension describes a facet that is relevant to blended modelling together with its domain (i.e., the range of values for that dimension). The dimensions offer a basic vocabulary to support tool developers with making well-informed design decisions as well as users to select appropriate tools and configure them according to the needs at hand. We illustrate how the dimensions apply to different cases relying on our experience with blended modelling. We discuss the impact of blended modelling on usability and user experience and sketch metrics to measure it. Finally, we outline a number of core research directions in this increasingly important modelling area.10.1109/MODELS-C.2019.00068 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904858modelling, user experience, blended modelling, abstract syntax, concrete syntax, notations, toolsIEEE Inglês
A Semantic Framework for the Design of Distributed Reactive Real-Time Languages and ApplicationsM. Sanabria-Ardila; L. D. B. Navarro; D. Díaz-López; W. Garzón-Alfonso2020 The proliferation of on-demand internet services delivered over a network of a heterogeneous set of computing devices has created the need for high-performing dynamic systems in real-time. Services such as audio and video streaming, self-driving cars, the Internet of things (IoT), or instant communication on social networks have forced system designers to rethink the architectures and tools for implementing computer systems. Reactive programming has been advocated as a programming paradigm suitable for implementing dynamic applications with complex and heterogeneous architectural needs. However, there is no consensus on the core set of features that a reactive framework must-have. Furthermore, the current set of features proposed in reactive tools seems very restricted to cope with the actual needs for concurrency and distribution in modern systems. In this paper, several alternative semantics for distributed reactive languages are investigated, addressing complex open issues such as glitch avoidance, explicit distribution support, and constructs for explicit time management. First, we propose a reactive event-based programming language with explicit support for distribution, concurrency, and explicit time manipulation (ReactiveXD). Second, we present a reactive event-based semantic framework called Distributed Reactive Rewriting Framework (DRRF). The framework uses rewriting logic to model the components of a distributed base application, observables, and observers, and predicates supporting explicit time manipulation. Finally, to validate the proposal, the paper discusses the specification of the semantics of ReactiveXD and a scenario describing a case of intrusion detection on IoT networks.10.1109/ACCESS.2020.3010697 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9144537Distributed computing;the Internet of Things (IoT);logical clocks;Maude;real-time languages;reactive programming;rewriting logic;cybersecurity applicationsIEEE Inglês
Software and Methodological Toolkit for the Design and Development of Technical Devices in the Model-Based Systems Engineering ParadigmD. Shpotya; A. Romanov 2021 Model-based systems engineering (MBSE) and its' tool the Systems Modelling Language (SysML) are recognized to serve as the fundament for design and development (D&D) of system models and digital twins. But the existing MBSE software (SW) tools based on SysML are complex and expensive. The paper raises the question: “Is it possible to make usage of MBSE software and methodological tools during space instruments design and development (SIDD) available to a wide audience of potential users?” To answer this question, for SIDD lifecycle phases (LPs) were developed methodological tools (MTs) based on improvements of such MBSE tools as Quality Function Deployment (QFD), House of Quality (HoQ); SysML, and their synthesis with systems engineering (SE) tools. MTs were implemented in the widely available SW tools. Proposed MTs allow to reduce time required for SysML requirements diagram development and update from several days to minutes; for LPs realization from 5 to 10%.10.1109/EnT50460.2021.9681800 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9681800systems engineering;MBSE;paradigm;SysML;QFD;HoQ;design;development;methodological toolkitIEEE Inglês
ArTu: A Tool for Generating Goal Models from User StoriesT. Günes; C. A. Öz; F. B. Aydemir 2021 User stories are widely used to capture the desires of the users in agile development. A set of user stories is easy to read and write but incapable of representing the hierarchical relations and synergies among the user stories. By contrast, goal models are uncommon in industrial projects however they can express the structure and other relations among requirements captured as goals. This paper presents ArTu, a tool for generating goal models from user stories to effortlessly benefit from both. Given a set of user stories, our tool generates goal models with different structures depending on the heuristic selected by the user. Users can import, edit, and export model data in different formats.10.1109/RE51729.2021.00058 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615requirements engineering;model–driven development;user stories;agile development;goal models;natural language processingIEEE Inglês
The Heterogeneous Deployment Tool for Hardware and Software Co-designB. Zhao; Z. Li; T. Zhang 2020 In order to solve the shortcomings of manually writing code that cannot meet the requirements of rapid development and product verification, we designed a heterogeneous deployment tool based on Simulink model development. This heterogeneous deployment tool can deploy the algorithm designed by Simulink model to the CPU and FPGA platforms and can communicate between CPU and FPGA via PCI Express. Users do not need to concern the underlying hardware and drivers and but only need to build an algorithm, they can quickly deploy the algorithm on a heterogeneous hardware platform to verify the performance of the algorithm.10.1109/CITS49457.2020.9232649 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9232649heterogeneous deployment tool;FPGA;partial reconfiguration;CPU;PCI Express;Simulink modelIEEE Inglês
Tutorial: A Practical Introduction to Formal Development and Verification of High-Assurance Software with SPARKB. M. Brosgol; C. Dross; Y. Moy 2019 Summary form only given, as follows. The complete presentation was not made available for publication as part of the conference proceedings. This hands-on tutorial will show attendees how to use formal methods in developing and verifying high-assurance software. It will cover the benefits and costs of formal methods technology, describe its capabilities and limits, summarize how to adopt formal methods at varying levels depending on assurance requirements, show how to combine formal methods with traditional testing-based techniques, and highlight industrial experience. The SPARK language (a subset of Ada 2012) will be used as the vehicle for explaining formal methods. The techniques presented can be applied to other language technologies, and the tutorial will compare the SPARK and Frama-C approaches. Demonstrations will use the GNATprove toolset, and hands-on exercises will be drawn from the SPARK section of the learn.adacore.com site.10.1109/SecDev.2019.00012 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601formal methods, high-assurance software, safety critical software, high-security software, software verification, SPARK languageIEEE Inglês
Towards Continuous Delivery for Domain Experts: Using MDE to Integrate Non-Programmers into a Software Delivery PipelineH. Nehls; D. Ratiu 2019 Modern computed tomography (CT) scanners are complex, software-intensive systems whose correct functioning is governed by over 100 parameters which depend on the concrete hardware configurations and on the addressed clinical use-cases. To tame the intrinsic complexity of the parameters configurations, over the last four years, Siemens Healthineers (SHS) have been developing and deploying a set of domain specific languages and tooling based on Jetbrains' Meta-Programming System. In this paper, we report on the challenges and experiences we made while building two delivery pipelines. At meta-level, we built a continuous delivery pipeline such that new versions of our domain specific modeling tool can be deployed continuously based on the feedback of domain experts. At model-level we have integrated the developed domain-specific tool in the continuous delivery pipeline for the computed tomography software and thereby bring the Continuous Delivery mind-set with advantages and challenges to domain experts who are working traditionally "outside" of the software development.10.1109/MODELS-C.2019.00091 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904815model-driven engineering;continuous delivery;Jetbrains' MPS IEEE Inglês
Early Analysis of Cyber-Physical Systems using Co-simulation and Multi-level ModellingT. Nägele; T. Broenink; J. Hooman; J. Broenink2019 The multi-disciplinary nature of the design of cyber-physical systems makes it hard to gain insight in the system behaviour early in the design process. Our aim is to allow the designers to analyse the integration of system components as well as the behaviour of the complete system in an early stage. This is achieved by creating abstract component models and refining them throughout the design process. After every refinement cycle, the models can be co-simulated to analyse the behaviour of the system, supporting design decisions. The co-simulation is created based on existing standards such as HLA and FMI and uses a domain-specific language to construct a co-simulation automatically. This approach is illustrated using a case study which resembles a confidential industrial case.10.1109/ICPHYS.2019.8780355 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8780355Cyber-physical systems;System design;System analysis;Co-simulation;Multi-level modelling;Concurrent development;HLA;FMIIEEE Inglês
Modeling and Verifying Storm Using CSP H. Zhao; H. Zhu; Y. Fang; L. Xiao 2019 Due to the higher pursuit of information timeliness, a number of distributed stream processing computation frameworks have emerged, among which the most successful and widely used at present is Storm. Storm is a stream-only processing computation framework which can deal with continuous streaming data. This paper applies Communicating Sequential Processes (CSP), a formal language in process algebra, to analyze and model the communication behaviors in the workflow of Storm. Then, we transform the established model and use the refinement checking tool Failures-Divergences Refinement (FDR) to verify whether it satisfies deadlock-free and sequential consistency properties.10.1109/HASE.2019.00037 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039Storm, CSP, FDR, Formal modeling, Verification IEEE Inglês
Model-Driven Fault Injection in Java Source CodeE. Rodrigues; L. Montecchi; A. Ceccarelli 2020 The injection of software faults in source code requires accurate knowledge of the programming language, both to craft faults and to identify injection locations. As such, fault injection and code mutation tools are typically tailored for a specific language and have limited extensibility. In this paper we present a model-driven approach to craft and inject software faults in source code. While its concrete application is presented for Java, the workflow we propose does not depend on a specific programming language. Following Model-Driven Engineering principles, the faults and the criteria to select injection locations are described using structured, machine-readable specifications based on a domain-specific language. Then, automated transformations craft artifacts based on OCL and Java, which represent the faults to be injected and are able to select the candidate injection locations. Finally, artifacts are executed against the target source code, performing the injection in the desired locations. We devise a supporting tool and exercise the approach injecting 13 different kinds of software faults in the Java source code of six different projects.10.1109/ISSRE5003.2020.00046 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9251070Software faults;fault libraries;metamodel;OCL;code patterns;Java. IEEE Inglês
PUF-G: A CAD Framework for Automated Assessment of Provable Learnability from Formal PUF RepresentationsD. Chatterjee; D. Mukhopadhyay; A. Hazra 2020 Physically Unclonable Functions (PUFs) are widely adopted in various lightweight authenticating devices due to their unique fingerprints - providing uniform, unpredictable and reliable nature of responses. However, with the growth of machine learning (ML) attacks in recent times, it is imperative that the PUFs need to be resilient to such modeling attacks as well. Consequently, analyzing the learnability of PUFs has initiated a new branch of study leading to establishing provable guarantees (and PAC-learnability) of various PUF designs. However, these derivations are often carried out manually while implementing the design and thereby cannot automatically adjust the changes in PUF designs or its various compositions. In this paper, for the first time, we present an automated framework, called PUF-G, to reason about the PAC-learnability of PUF designs from an architectural level. To enable this, we propose a formal PUF representation language by which any architectural PUF design and its compositions can be specified upfront. This PUF specification can be automatically analyzed through a CAD framework by translating the same to an interim model and then deriving the PAC-learnability bounds from the model. Such a tool will help the designer to explore various compositional architectures of PUFs and its resilience to ML attacks automatically before converging on a strong PUF design for implementation. We also show the efficacy of our proposed framework over a wide range of PUF architectures while automatically deriving their learnability guarantees. As a matter of independent interest, the framework presents the first reported proofs to show that Interpose-PUF (newly proposed), MUX-PUF, FF-APUF, FF-XOR APUF and DA-PUF, are all PAC-learnable.https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782- IEEE Inglês
Assertion and Coverage Driven Test Generation Tool for RTL DesignsN. Muhammed; N. Hussein; K. Salah; A. Khan2020 RTL verification is still one the most challenging activities in digital system development as it is still the bottleneck in the time-to-market for an integrated circuit development cycle. Thus reducing verification time is one of the most important targets. In this paper, a tool is developed to generate automatic tests from SystemVerilog assertions or SystemVerilog Coverage. The proposed tool is tested using different memory modules starting from single port RAM through Multiple ports RAM, FIFO and the DDRx families. The performance, regarding the runtime, has been compared with the handcrafted test case generation process. Moreover, the performance has been compared with other automatic test generation tools. Results shows the effectiveness of the proposed design. The proposed tool excelled in terms of its run-time, complexity, and coverage percentage.10.1109/UEMCON51285.2020.9298118 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298118Coverage;Assertions;Tests;Generation;RTL;Verification IEEE Inglês
A New Modeling Interface for Simulators Implementing the Discrete Event System SpecificationJ. Nutaro 2019 The Discrete Event System Specification (DEVS) offers a unique modeling interface that is often perplexing to modelers more familiar with other simulation paradigms. Recent advances in the use of super dense time for discrete event simulation offer an opportunity to recast the traditional interface into a form less confounding for new users. The new interface proposed here allows a natural progression from a message oriented approach to modeling to the familiar DEVS approach. The proposed approach retains the expressive power of the DEVS formalism, and in this sense represents a simple repackaging of the DEVS approach into a more intuitively appealing form.10.23919/SpringSim.2019.8732882 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8732882agent based model;DEVS;discrete event simulation IEEE Inglês
Modeling with Thinging for Intelligent Monitoring SystemS. S. Al-Fedaghi; Y. Atiyah 2019 Global positioning technology combined with a satellite navigation system has many advantages and reduces the negative effects of many problems; nevertheless, the technology is still relatively new and raises many issues regarding its specification and design levels. More progress is needed to build the involved system's foundation. This paper focuses on conceptual modeling of tracking systems where object-oriented methods and languages are typically used to produce a description of the system. Such a description serves such purposes as documentation and management and as a guide for the subsequent system design phase. The paper applies a new model, Thinging Machine (TM), as a diagrammatic tool to describe notions and concepts of tracking systems. To substantiate TM's applicability in this area, the model is utilized to set up a tracking and management system for a public transportation fleet through the installation of a tracking device on each bus in the fleet. The results point to the viability of applying the TM model in this type of application.10.1109/VTCSpring.2019.8746526 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8746526- IEEE Inglês
Agile Requirements Engineering: From User Stories to Software ArchitecturesF. Dalpiaz; S. Brinkkemper 2021 Most agile practitioners employ user stories for capturing requirements, also thanks to the embedding of this notation within development and project management tools. Among user story users, circa 70% follow a simple template: As a role, I want to action, so that benefit. User stories’ popularity among practitioners and their template-based structure make them ideal candidates for the application of natural language processing techniques. In our research, we have found that circa 50% of real-world user stories contain easily preventable linguistic defects. To mitigate this problem, we have created tool-supported methods that facilitate the creation of better user stories. This tutorial combines previous work of the RE-Lab@UU into a pipeline for working with user stories: (1) The basics of creating user stories and their use in requirements engineering; (2) How to improve user story quality with the Quality User Story Framework and the AQUSA tool; (3) How to generate conceptual models from user stories using the Visual Narrator tool and analyze them for possible ambiguity and inconsistency; and (4) How to link requirements to architectures via the RE4SA model. Our approach is demonstrated with results obtained from 20+ software companies employing user stories.10.1109/RE51729.2021.00076 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604656Agile requirements engineering;user stories;NLP;AQUSA;Visual Narrator;REVV-Light;RE4SAIEEE Inglês
Continuous Process Model Refinement from Business Vision to Event Simulation and Software Automation : Bridging Gaps between Stakeholder Communities, Practices, Notations, and ToolsO. Zimmermann; K. Luban; M. Stocker; G. Bernard2022 Business consultants and software engineers produce and consume process models capturing analysis and design results on different levels of abstraction and at different stages of refinement. Model types commonly found in practice include vision models (current, future), simulation models, and automation models. In this paper, we propose to align and map the terminologies and concepts of these model types to improve stakeholder collaboration. We support this concept mapping with two model transformations to and from discrete event simulation models. We implemented these transformations prototypically (MDSL2JaamSim, JaamSim2MDSL). Our work originates from an industrial case in the FinTech domain. An experimental validation suggests benefits such as effort savings. CCS CONCEPTS • Software and its engineering $^{\rightarrow}$ System description languages; Integration frameworks; System modeling languages; Orchestration languages.10.1145/3524614.3528631 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9808807Business process modeling;discrete event simulation;domain-specific languages;model-driven software engineering;software architecture;API design;enterprise application integrationIEEE Inglês
Sonar: Writing Testbenches through PythonV. Sharma; N. Tarafdar; P. Chow 2019 Design verification is an important though time-consumingaspect of hardware design. A good testbench should supportperforming functional coverage of a design by making it easy to implement tests and determine which tests are being performed. However, for complex designs, creating and main-taining effective testbenches can take increasing amounts of time away from actual design. A further complication is there may be two development flows: conventional hardware written in a hardware description language (HDL) such as Verilog orVHDL and high-level synthesis (HLS). In the HLS approach, the hardware is specified in a higher-level language (HLL) and then converted to an HDL through HLS tools. In this flow, testbenches for the design are written in the same HLLand cosimulation is used to verify the generated HDL. Due totool restrictions, cosimulation may not always work. In VivadoHLS [1] for example, the design must contain control signals to define when to start and stop the module or the initiation interval for new data must be one cycle. Without cosimulation, the user must write an HDL testbench manually in addition to a testbench in the HLL for preliminary verification. To simplify writing testbenches, we present Sonar: an open-source Python library to write cross-language testbenches. From a common source script, Sonar can generate testbenches written in SystemVerilog (SV) and C++. These files can then be imported into standard simulation tools such as ModelSim[2] or Vivado HLS and run. The use of Python makes it easy to extend Sonar with higher layers of abstraction for testbenches and integrate it with other software platforms.Sonar is available at https://github.com/UofT-HPRC/sonar.10.1109/FCCM.2019.00052 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735555Testbenches;design verification;simulation IEEE Inglês
Definition Of A Transparent Constraint-Based Modeling And Simulation Layer For The Management Of Complex SystemsK. Henares; J. L. Risco-Martín; M. Zapater 2019 Modeling and Simulation (M&S) is one of the most multifaceted topics present today in both industry and academia. However, we are involved in a new M&S paradigm. Systems are becoming more complex and new simulation needs arise and have to be studied. As a consequence, the way in which we perform M&S must be adapted, providing new ideas and tools. In this paper, we propose a rule-based constraints evaluator, which facilitate the validation and verification of complex models in a transparent manner. For this, constraints are defined. The constraints definition process is completely independent of the model development process because (a) the set of constraints is defined once the model has been developed, and (b) constraints are validated at simulation time. The proposed Constraint M&S architecture has been built using the Discrete Event System Specification (DEVS) formalism and has been tested on a validated data center simulation model.10.23919/SpringSim.2019.8732847 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8732847model checking;constraint modeling and simulation;discrete events;verification;data centersIEEE Inglês
Repository Mining for Changes in Simulink ModelsM. Jaskolka; V. Pantelic; A. Wassyng; M. Lawford; R. Paige2021 Model-Based Development (MBD) is widely used for embedded controls development, with MATLAB/Simulink being one of the most used environments in the automotive industry. Simulink models are the primary design artifact and as with all software, must be constantly maintained and evolved over their lifetime. It is necessary to develop models that support likely changes in order to assist with evolution/maintenance processes. In order to do so, the types of frequently performed changes must be understood and appropriate language mechanisms must be available to support these changes. However, Simulink model changes are currently not well understood. We analyze a real industrial software repository of our industrial partner and its version control system to provide insights into the likely changes for Simulink. The intent with this analysis includes providing guidance on how Simulink is used in industrial practice and how particular model changes can impact system evolution.10.1109/MODELS50736.2021.00014 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592466Simulink;model-based development;model change;repository mining;software evolution;version control systemIEEE Inglês
Data2Vis: Automatic Generation of Data Visualizations Using Sequence-to-Sequence Recurrent Neural NetworksV. Dibia; Ç. Demiralp 2019 Rapidly creating effective visualizations using expressive grammars is challenging for users who have limited time and limited skills in statistics and data visualization. Even high-level, dedicated visualization tools often require users to manually select among data attributes, decide which transformations to apply, and specify mappings between visual encoding variables and raw or transformed attributes. In this paper we introduce Data2Vis, an end-to-end trainable neural translation model for automatically generating visualizations from given datasets. We formulate visualization generation as a language translation problem, where data specifications are mapped to visualization specifications in a declarative language (Vega-Lite). To this end, we train a multilayered attention-based encoder–decoder network with long short-term memory (LSTM) units on a corpus of visualization specifications. Qualitative results show that our model learns the vocabulary and syntax for a valid visualization specification, appropriate transformations (count, bins, mean), and how to use common data selection patterns that occur within data visualizations. We introduce two metrics for evaluating the task of automated visualization generation (language syntax validity, visualization grammar syntax validity) and demonstrate the efficacy of bidirectional models with attention mechanisms for this task. Data2Vis generates visualizations that are comparable to manually created visualizations in a fraction of the time, with potential to learn more complex visualization strategies at scale.10.1109/MCG.2019.2924636 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8744242Automated Visualization;Data Visualization;Deep Learning;Machine LearningIEEE Inglês
Global Analysis of C Concurrency in High-Level SynthesisN. Ramanathan; G. A. Constantinides; J. Wickerson2021 When mapping C programs to hardware, highlevel synthesis (HLS) tools reorder independent instructions, aiming to obtain a schedule that requires as few clock cycles as possible. However, when synthesizing multithreaded C programs, reordering opportunities are limited by the presence of atomic operations (“atomics”), the fundamental concurrency primitives in C. Existing HLS tools analyze and schedule each thread in isolation. In this article, we argue that thread-local analysis is conservative, especially since HLS compilers have access to the entire program. Hence, we propose a global analysis that exploits information about memory accesses by all threads when scheduling each thread. Implemented in the LegUp HLS tool, our analysis is sensitive to sequentially consistent (SC) and weak atomics and supports loop pipelining. Since the semantics of C atomics is complicated, we formally verify that our analysis correctly implements the C memory model using the Alloy model checker. Compared with thread-local analysis, our global analysis achieves a 2.3× average speedup on a set of lock-free data structures and data-flow patterns. We also apply our analysis to a larger application: a lock-free, streamed, and load-balanced implementation of Google's PageRank, where we see a 1.3× average speedup compared with the thread-local analysis.10.1109/TVLSI.2020.3026112 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9234113Field programmable gate arrays;formal verification;high level synthesis;memory architecture;multithreading;parallel programmingIEEE Inglês
An Introduction to Modular Modeling and Simulation with PythonPDEVS and the Building-Block Library PythonPDEVS-BBLY. Van Tendeloo; R. Paredis; H. Vangheluwe 2020 The Discrete Event System Specification (DEVS) is a popular formalism devised by Bernard Zeigler in the late 1970s for modeling complex dynamical systems using a discrete event abstraction. At this abstraction level, a timed sequence of pertinent "events" input to a system (or internal timeouts) causes instantaneous changes to the state of the system. Main advantages of DEVS are its precise, implementation independent specification, and its support for modular composition. This tutorial introduces the Classic DEVS formalism in a bottom-up fashion, using a simple traffic light example. The syntax and operational semantics of Atomic (i.e., non-hierarchical) models are introduced first. Coupled (i.e., hierarchical) models are introduced to structure and couple Atomic models. We continue to actual applications of DEVS, with an example in performance analysis of queueing systems. This uses generator, queue, etc. components from our PythonPDEVS Building Block Library. All examples in the paper are presented using the language PythonPDEVS and its simulator, though this introduction is equally applicable to other DEVS implementations. We conclude with further reading on DEVS theory, variants, and tools.10.1109/WSC48552.2020.9384012 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9384012- IEEE Inglês
Gaps Identification for User Experience for Model Driven EngineeringP. K. Aggarwal; S. Sharma; Riya; P. Jain; Anupam2021 Since ages, Model-Driven Engineering (MDE) has been a very important part of software engineering. It focuses mainly on technical models that simplify the pattern of study and understanding of a topic. The models used in MDE are based on languages and logic. The one unknown fact is the interconnection among UX (user experience), UI (user interaction), and MDE. Feedbacks from users and different industries indicate the necessity of this interconnection in the technical industry. UX and UI are not only responsible for the development of the software industry but are also the future of the technical world due to the increasing need for fulfilling the demands of customers. The designing as well as the functions of models in software engineering can be improved with the help of user experience. UI helps MDE models to be deployed on different user platforms. It involves taking one complete MDE model as input and producing an output that is suitable for both android and web environments. So in this paper, we will see how these three terms are inter-related to each other and how they complement each other very well.10.1109/Confluence51648.2021.9377178 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9377178Software Engineering;Model Driven Engineering (MDE);User Experience;User Interface;Model;Meta model;Modelling LanguageIEEE Inglês
Do Comments follow Commenting Conventions? A Case Study in Java and PythonP. Rani; S. Abukar; N. Stulova; A. Bergel; O. Nierstrasz2021 Assessing code comment quality is known to be a difficult problem. A number of coding style guidelines have been created with the aim to encourage writing of informative, readable, and consistent comments. However, it is not clear from the research to date which specific aspects of comments the guidelines cover (e.g., syntax, content, structure). Furthermore, the extent to which developers follow these guidelines while writing code comments is unknown.We analyze various style guidelines in Java and Python and uncover that the majority of them address more the content aspect of the comments rather than syntax or formatting. However, when considering the different types of information developers embed in comments and the concerns they raise on various online platforms about the commenting practices, existing comment conventions are not yet specified clearly enough, nor do they adequately cover important concerns. We find that developers of both languages follow the writing style and content-related comment conventions more often than syntax and structure types of conventions. Our results highlight the mismatch between developer commenting practices and style guidelines, and provide several focal points for the design and improvement of comment quality checking tools.10.1109/SCAM52516.2021.00028 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9610657Comment analysis;Software documentation;Coding Style Guidelines;Coding StandardsIEEE Inglês
Priority in Logical Time Partial Orders with Synchronous RelationsR. Gascon; J. Deantoni; J. -F. Le Tallec 2019 The Clock Constraint Specification Language (CCSL) offers constructs for expressing chronological and causal relations on events of an embedded system. CCSL simulator, TimeSquare allows one to visualize executions of the specified systems by determining step by step sets of synchronously occurring events. When several different sets of events are possible at a given step, the simulator uses a global simulation policy to choose one. However, this mechanism does not consider any priority between events. Inspired by priority in Petri nets, we show how to formally define a priority system supporting possibly synchronous partial orders of events. Both formal definitions and an efficient implementation are presented.10.1109/RIVF.2019.8713697 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8713697- IEEE Inglês
ATGP_RISC-V: Automation of Test Generator using Pluggy for RISC-V ArchitectureB. Madhavan; A. Kamerish; R. Manimegalai 2020 The reduced instruction set computing (RISC) architecture is a free and open Instruction Set Architecture (ISA), which enables a new era of processor innovation through open standard collaboration. It directly challenges several well-established processor families such as intel x-86, Motorola 68k processor. To thrive an RISC-V ecosystem, the core suppliers need an independent verification solution to ensure that their designs are compliant with the ISA specification. Verification of RISC-V designs become challenging due to their optional features, implementation flexibility, and provisions for customer extensions. Hence, a thorough verification is essential to compete successfully against the established processor families. Automation is the key for reducing the time taken for the processor verification. This paper provides a way to develop an automated tool ATGP_RISC-V, which uses the same arguments to run all instruction generators. This helps in verifying the processor in an efficient way by reducing the time taken to manually compare the test results.10.1109/ICSSIT48917.2020.9214255 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9214255RISC-V;instruction;exceptions;VCS;verification;testbed;functional verification;instruction set architectureIEEE Inglês
Efficient Parallel Wikipedia Internal Link Extraction for NLP-Assisted Requirements UnderstandingJ. Allen; S. Reddivari 2022 Requirements engineering (RE) is a critical set of activities in the software development life cycle (SDLC). Without effective requirements elicitation, organization, communication, and understanding software engineers cannot build quality soft-ware. Thus, it is necessary for software stakeholders to facilitate the SDLC by following best practices and utilizing software tools as needed to ensure requirements are well understood. One area where RE still faces issues, despite stakeholders' best efforts, is the communication of requirements amongst the various stakeholders. Software stakeholders consist of the customers, developers, managers, end users, and others with a vested interest in the software, and they typically all have different skillsets, backgrounds, vernaculars, and understanding of the requirements. These differences naturally lead to miscommunications which can lead to redundant, missing, or conflicting requirements, especially when customer and end user domains include complex vocabularies developers may not be accustomed to, and vice versa, e.g., biology, physics, and medicine. One approach in recent works to address this challenge has been to bridge the communication gap between stakeholders by constructing domain-specific ontologies using natural language processing (NLP) and Wikipedia [1]. With these ontologies, stakeholders have a convenient tool they can use to translate and understand specific requirements in the terminologies they're accustomed to. These techniques have shown promising potential, however there are computational challenges associated with efficiently handling a large dataset like Wikipedia. In particular, parsing internal links from Wikipedia article metadata can be a bottleneck in such ontology-construction systems. In this work we address this issue by implementing a program for memory-efficient parallel internal link extraction from Wikipedia articles. This builds on the work of Rodriguez et al. [2] by optimizing additional phases in the knowledge acquisition process.10.1109/COMPSAC54236.2022.00077 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842544wikipedia;regular expressions;NLP;parallel computing IEEE Inglês
Approach to Construction of Common Information Space of Manufacturing EnterpriseN. S. Mikhailov; A. S. Mikhailova; V. V. Kasatkin2020 The development of methodology and support tools of the design process and practical implementation of the manufacturing enterprise common information space (CIS) is considered. The proposed methodology allows top management, analysts, developers and IT specialists to respond quickly to changing organizational and technical conditions of production and impact of the external environment, to clarify and agree on requirements to elements of the enterprise control system, to continuously improve and modernize the CIS during the operation of the enterprise. It is shown that the application of existing methodologies and notations is not enough to ensure consistency at each level of CIS design with the corresponding program documents: business development strategy, functional strategies (including information technology development strategy, digital transformation strategy, etc.), project description and technical tasks for software and hardware development, etc. The proposed methodology involves using IDEF0 notation at the top level with decomposition and business process modeling in BPMN or eEPC notations at the middle level. For modeling and software development at the lower level it is proposed to use flexible development methodologies - the agile methods based on the use of corresponding models: user stories, abstract UML models, block diagrams. The advantages and peculiarities of practical application of the proposed methodology in the design of the CIS and elements of the production executive system of the manufacturing enterprise are considered.10.1109/ITQMIS51053.2020.9322972 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9322972common information space;business process;manufacturing enterprise;industry 4.0IEEE Inglês
Applying Model-Driven Engineering to Distributed Ledger DeploymentT. Górski; J. Bednarski 2020 Distributed Ledger Technology (DLT) enables data storage in a decentralized manner among collaborating parties. The software architecture of such solutions encompasses models placed in the relevant architectural views. A lot of research is devoted to smart contracts and consensus algorithms, which are realized by distributed applications and can be positioned within the Logical view. However, we see the need to provide modeling support for the Deployment view of distributed ledger solutions. Especially since the chosen DLT framework has a significant impact on implementation and deployment. Besides, consistency between models and configuration deployment scripts should be ensured. So, we have applied Model-Driven Engineering (MDE) that allows on the transformation of models into more detailed models, source code, or tests. We have proposed Unified Modeling Language (UML) stereotypes and tagged values for distributed ledger deployment modeling and placed them in the UML Profile for Distributed Ledger Deployment. We have also designed the UML2Deployment model-to-code transformation for the R3 Corda DLT framework. A UML Deployment model is the source whereas a Gradle Groovy deployment script is the target of the transformation. We have provided the complete solution by incorporating the transformation into the Visual Paradigm modeling tool. Furthermore, we have designed a dedicated plug-in to validate generated deployment scripts. In the paper, we have shown how to design transformation for generating deployment scripts for the R3 Corda DLT framework with the ability to switch to another one.10.1109/ACCESS.2020.3005519 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9127413Distributed ledger;model-driven engineering;architectural views model 1+5;deployment view;unified modeling language extensibility mechanismsIEEE Inglês
Translating Process Interaction World View Models to DEVS: GPSS to (Python(P))DEVSR. Paredis; S. Van Mierlo; H. Vangheluwe 2020 Discrete-event modelling and simulation languages can be classified based on their world view: event scheduling, activity scanning, or process interaction. To study the semantics of these languages one may investigate the relationship between them, and in particular translate models between languages in different world views. A translation approach also lets one re-use all the simulation tooling available for the target language. We describe a translation of the classic process interaction language GPSS developed by Gordon in the early 1960s onto DEVS, a modular discrete-event modelling and simulation language with precise semantics developed by Zeigler in the late 1970s. We specify and implement a translation that produces, for each GPSS model, a behaviourally equivalent DEVS model. As GPSS has no formal semantics, there is no proof of equivalence. Rather, we describe the structure of the translation, starting from Gordon's informal description, centered around the main data structures called chains and the scanning algorithm. We build a working prototype for a representative subset of GPSS blocks found in most tools implementing the language. Finally, we exhaustively test the translation by comparing simulation results of the generated DEVS model with a those obtained by the GPSS World simulator. GPSS World is a popular GPSS variant. We also demonstrate our approach on a small but representative example from the manufacturing domain.10.1109/WSC48552.2020.9383952 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952- IEEE Inglês
OpenACC Profiling Support for Clang and LLVM using Clacc and TAUC. Coti; J. E. Denny; K. Huck; S. Lee; A. D. Malony; S. Shende; J. S. Vetter2020 Since its launch in 2010, OpenACC has evolved into one of the most widely used portable programming models for accelerators on HPC systems today. Clacc is a project funded by the US Exascale Computing Project (ECP) to bring OpenACC support for C and C++ to the popular Clang and LLVM compiler infrastructure. In this paper, we describe Clacc's support for the OpenACC Profiling Interface, a critical component of the OpenACC specification that standardizes an interface that profiling tools and libraries can depend upon across OpenACC implementations. As part of Clacc's general strategy to build OpenACC support upon OpenMP, we describe how Clacc builds OpenACC Profiling Interface support upon an extended version of OMPT. We then describe how a major profiling and tracing toolkit within ECP, the TAU Performance System, takes advantage of this support. We also describe TAU's selective instrumentation support for OpenACC. Finally, using Clacc and TAU, we present example visualizations for several SPEC ACCEL OpenACC benchmarks running on an IBM AC922 node, and we show that the associated performance overhead is negligible.10.1109/HUSTProtools51951.2020.00012 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9308080OpenACC;OpenMP;Clang;LLVM;GPU;accelerators;compiler;profilingIEEE Inglês
A Forwarding Secrecy Based Lightweight Authentication Scheme for Intelligent LogisticsX. Zhu; Y. Li; Y. Lei 2020 With the continuous evolution of the Internet of Things, RFID technology has developed rapidly. Due to the rapid application of RFID technology in various scenarios of intelligent logistics, many security issues and privacy threats have gradually coming to the fore. RFID in an open environment not only brings new security challenges to the two-way authentication of information systems, but also greatly increases the need for identity anonymization. Therefore, a lightweight key protocol for smart logistics is proposed in this paper. The protocol uses a hash function and XOR operation to authenticate the sensor nodes, ensuring the security of wireless communication. It protects against eavesdropping, impersonation, replay, server spoofing, sensor node capture, forward/backward secrecy, interference/desynchronization attacks. Forward confidentiality can be ensured without the use of asymmetric encryption. Finally, we successfully verified the security of our scheme using the automated security verification tool ProVerif. The theoretical analysis and experimental results show that the scheme in this paper not only significantly reduces the computational cost, but also has a lower security risk and higher computational efficiency compared to other lightweight schemes.10.1109/AEECA49918.2020.9213520 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9213520Smart Logistics;Lightweight Authentication;Formal Analysis;ProverifIEEE Inglês
Graphical Editor of Electrical Schemes for Rand Model DesignerY. B. Senichenkov; I. M. Kirjakov; A. E. Semencov2021 The graphical editor of electrical schemes for Rand Model Designer is presented. Rand Model Designer (RMD) is a universal visual tool for modeling and simulation of complex dynamical systems. The editor allows users to build models of electrical devises and carry out computer experiments using hidden calling of RMD. When graphical scheme of a device is completed, the editor automatically translates model description in RMD modeling language, checks, compiles it, and builds executable code in form of *.dll needed for carrying out computer experiments under RMD. The results of computer experiments are passed back to the editor for processing. The examples of using the editor in training are described.10.1109/ElConRus51938.2021.9396227 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9396227object-oriented modeling;electrical components library;graphical editor;manufacturing and training applicationsIEEE Inglês
Structure Preserving Transformations for Practical Model-based Systems EngineeringS. Ji; M. Wilkinson; C. E. Dickerson 2022 In this third decade of systems engineering in the twenty-first century, it is important to develop and demonstrate practical methods to exploit machine-readable models in the engineering of systems. Substantial investment has been made in languages and modelling tools for developing models. A key problem is that system architects and engineers work in a multidisciplinary environment in which models are not the product of any one individual. This paper provides preliminary results of a formal approach to specify models and structure preserving transformations between them that support model synchronization. This is an important area of research and practice in software engineering. However, it is limited to synchronization at the code level of systems. This paper leverages previous research of the authors to define a core fractal for interpretation of concepts into model specifications and transformation between models. This fractal is used to extend the concept of synchronization of models to the system level and is demonstrated through a practical engineering example for an advanced driver assistance system.10.1109/ISSE54508.2022.10005437 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437Model-based Systems Engineering;Model Synchronization;Model Transformation;SysMLIEEE Inglês
Symbolic Testing for C and Rust A. Tomb; S. Pernsteiner; M. Dodds 2020 This tutorial will provide an introduction to Crux, Galois' new open source symbolic testing tool. Traditional testing examines only a small set of test vectors, meaning that the assurance it provides is inherently limited. In symbolic testing, we replace concrete inputs by symbolic variables, and then exhaustively validate the test for all possible input values. Symbolic testing is a type of formal verification, but the close connection to traditional testing makes it much easier to deploy than other approaches. A single symbolic test can efficiently cover billions of possible inputs or more, but an existing test suite can often be made symbolic by trivial code changes.10.1109/SecDev45635.2020.00021 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9230067verification;testing;software quality assurance IEEE Inglês
Symbolic Execution based Verification of Compliance with the ISO 26262 Functional Safety StandardM. Ahmed; M. Safar 2019 This paper proposes a new technique for verifying the compliance of AUTOSAR software with the ISO26262 functional safety standard. A framework is presented which formally verifies that a given implemented AUTOSAR software fulfils high risk Automotive Safety Integrity Level (ASIL) C and D requirements. The framework exploits the power of symbolic execution to uncover defects early in the design stage. The efficacy of the framework is demonstrated on the AUTOSAR watchdog manager and watchdog interface modules.10.1109/DTIS.2019.8735046 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046Symbolic Execution;ISO-26262;Automotive Functional Safety;Formal Verification;AUTOSAR Watchdog ModulesIEEE Inglês
Restful State Machines and SQL DatabaseJ. Kufner; R. Mařík 2019 State machines and a relational database may look like completely unrelated tools, yet they form an interesting couple. By supporting them with well-established architectural patterns and principles, we built a model layer of a web application which utilizes the formal aspects of the state machines to aid the development of the application while standing on traditional technologies. The layered approach fits well with existing frameworks and the Command-Query Separation pattern provides a horizontal separation and compatibility with various conceptually distinct storages, while the overall architecture respects RESTful principles and the features of the underlying SQL database. The integration of the explicitly specified state machines as first-class citizens provides a reliable connection between the well-separated formal model and the implementation; it enables us to use visual comprehensible formal models in a practical and effective way, and it opens new possibilities of using formal methods in application development and business process modeling.10.1109/ACCESS.2019.2944807 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853255State machine;web application;REST;MVC;multi-tier architecture;CQS;CQRS;ORM;SQLIEEE Inglês

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9077081
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9438597
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9139402
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9693054
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9328223
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9140829
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447083
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925656
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8959796
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9350178
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8926459
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10017034
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919655
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972116
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8959196
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952421
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9216579
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877072
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8930710
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9638498
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9626192
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904858
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9144537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9681800
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9232649
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904815
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8780355
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9251070
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8732882
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8746526
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604656
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9808807
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735555
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8732847
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592466
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8744242
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9234113
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9384012
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9377178
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9610657
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8713697
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9214255
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842544
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9322972
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9127413
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9308080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9213520
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9396227
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9230067
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853255

RiverGame - a game testing tool using artificial intelligenceC. Paduraru; M. Paduraru; A. Stefanescu 2022 As is the case with any very complex and interactive software, many video games are released with various minor or major issues that can potentially affect the user experience, cause security issues for players, or exploit the companies that deliver the products. To test their games, companies invest important resources in quality assurance personnel who usually perform the testing mostly manually. The main goal of our work is to automate various parts of the testing process that involve human users (testers) and thus to reduce costs and run more tests in less time. The secondary goal is to provide mechanisms to make test specification writing easier and more efficient. We focus on solving initial real-world problems that have emerged from several discussions with industry partners. In this paper, we present RiverGame, a tool that allows game developers to automatically test their products from different points of view: the rendered output, the sound played by the game, the animation and movement of the entities, the performance and various statistical analyses. We also address the problem of input priorities, scheduling, and directing the testing effort towards custom and dynamic directions. At the core of our methods, we use state-of-the-art artificial intelligence methods for analysis and a behavior-driven development (BDD) methodology for test specifications. Our technical solution is open-source, independent of game engine, platform, and programming language.10.1109/ICST53961.2022.00048 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787838game testing;automated testing;BDD;deep learning;reinforcement learning;computer visionIEEE Inglês
Automating Test Oracle Generation in DevOps for Industrial ElevatorsA. Arrieta; M. Otaegi; L. Han; G. Sagardui; S. Ali; M. Arratibel2022 Orona is a world-renowned elevators developer. During elevators' lives, their software continues to evolve, e.g., due to hardware obsolescence, requirements changes, vulnerabilities, and bug corrections. Such continuous evolution demands the continuous testing of industrial elevators with the minimum manual effort possible. To this end, we present a tool, whose core component is a domain-specific language (DSL) with which a user can specify test oracles at a higher level of abstraction and independent of a testing level. The DSL also supports specifying uncertainty-aware test oracles to test elevators under various uncertainties inherent in them. Finally, the DSL is also equipped with test oracle generation that generates test oracle code automatically at the different DevOps testing levels (i.e., Software and Hardware-in-the-Loop test levels, and in operation) to enable reuse of test oracles across these levels. We evaluated this DSL with an industrial elevators case study at Orona's site to specify and generate test oracles. The evaluation showed that the high expressiveness of the DSL permits the high-level definition of test oracles in our industrial context. Based on the industrial application, we discuss our experiences and lessons learned.10.1109/SANER53432.2022.00044 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9825900Domain Specific Language;Test Oracle Gener-ation;Cyber-Physical Systems;EvolutionIEEE Inglês
Addressing Expressiveness for a UML Microservices-Based Modeling within the Life Cycle of the Ubiquitous System DevelopmentF. Carranza-García; C. Rodríguez-Domínguez; J. L. Garrido2021 Microservices architectures are presented as the next evolution of the software design. They are particularly applied to scalable and distributed systems, such as IoT (Internet of Things). However, in order to take advantage of the microservices-based design for ubiquitous systems and manage its implications in other phases of the development life cycle there is still a need to address expressiveness in the modelling languages, such as UML. This paper identifies some of the main UML language elements to be extended and/or specialized in order to facilitate the design of microservices-based software for ubiquitous systems. The case study case of an intelligent system to check attendance in a ubiquitous learning environment is used as a way of identifying those UML elements. As a result, this work lays the ground to model affinity between microservices at the design level and generate code and other software artifacts. In the next future, it can also contribute to better automatize software development for microservice-based systems by applying a Model-Driven Engineering (MDE) methodology.10.1109/IE51775.2021.9486517 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9486517microservices;design;ubiquitous;model-driven engineering;uml IEEE Inglês
UVM based Verification of Read and Write Transactions in AXI4-Lite ProtocolH. Sangani; U. Mehta 2022 The System-On-Chip (SoC) designs are becoming more complex nowadays. Multiple Intellectual Property (IPs) are integrated in a single SoC and these IPs communicate with the help of various bus protocols. Verification takes almost 70 % time in design cycle hence re-usable verification environment of these commonly used protocols is very important. In this paper, AXI4-Lite protocol is verified using UVM based testbench structure. To verify all channels of AX I protocol, data is written into a 4-bit shift register and it is read back. The UVM testbench acts as a master device which will send all control information, data and address to the register through the AXI interface. To understand verification goal achievement, coverpoints are written and functional and code coverage reports are analyzed. The synopsys V CS tool is used for the simulation.10.1109/TENSYMP54529.2022.9864552 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9864552AXI;UVM;Verification;VCS;System-on-chip(SoC) IEEE Inglês
Model-Driven Engineering Ecosystems V. V. Graciano Neto; F. Basso; R. Pereira dos Santos; N. H. Bakar; M. Kassab; C. Werner; T. Oliveira; E. Y. Nakagawa2019 Model-Driven Engineering (MDE) comprises the practice of systematically using models during software development. The high diversity of MDE assets (e.g., metamodels, models, model transformation engines, and design tools) has raised a rich, diverse, and complex software ecosystem (SECO), where a collection of assets is governed by underlying rules and surrounded by a community of players. The lack of a deeper understanding on those relations has: (i) hampered the adoption of such paradigm by newcomers; (ii) increased the learning curve; (iii) prevented the community from exploiting their full potential; and (iv) inhibited the more essential bene?ts promoted by MDE, such as automation, reuse, productivity, maintainability, and time to market. In this context, this paper presents preliminary results of an investigation on MDE as a SECO. We compiled existing knowledge from literature joining independent research ?ndings to provide an exploratory characterization of the technical dimension of such ecosystem. We also identi?ed research gaps that motivate further investigation considering the relevance and potential of this topic for the forthcoming years.10.1109/SESoS/WDES.2019.00016 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882850Model-Driven Engineering;Model Driven Development;Software Repository;Toolchain;AssetIEEE Inglês
ESBMC-Solidity: An SMT-Based Model Checker for Solidity Smart ContractsK. Song; N. Matulevicius; E. B. de Lima Filho; L. C. Cordeiro2022 Smart contracts written in Solidity are programs used in blockchain networks, such as Etherium, for performing transactions. However, as with any piece of software, they are prone to errors and may present vulnerabilities, which malicious attackers could then use. This paper proposes a solidity frontend for the efficient SMT-based context-bounded model checker (ESBMC), named ESBMC-Solidity, which provides a way of verifying such contracts with its framework. A benchmark suite with vulnerable smart contracts was also developed for evaluation and comparison with other verification tools. The experiments performed here showed that ESBMC-Solidity detected all vulnerabilities, was the fastest tool and provided a counterexample for each benchmark. A demonstration is available at https://youtu.be/3UH8_1QAVN0.10.1145/3510454.3516855 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793786Formal Verification;Solidity IEEE Inglês
Security & Safety by Model-based Requirements EngineeringS. Japs 2020 Cyber-physical systems (CPS), like autonomous vehicles, are intelligent and networked. The development of such systems requires interdisciplinary cooperation between different stakeholders. A lack of system understanding between stakeholders can lead to unidentified security threats & safety hazards in requirements engineering, resulting in high costs in product development. In particular, a lack of an integrative consideration of security threats & safety hazards can compromise safety compliance for CPS. Model-based requirements engineering (MBRE) improves the understanding of systems between stakeholders by additionally creating supporting models to system requirements. However, MBRE approaches only partially address security threats & safety hazards. In particular, their integrative consideration is not taken into account. Established security & safety approaches are either only applicable to specific disciplines or only partially consider security threats & safety hazards. Overall, existing approaches do not fully cover the MBRE process. In the context of this paper, the results of three scientific papers are consolidated with the aim to create a basis for a holistic MBRE approach, which considers security threats & safety hazards integratively. In each of the papers, sub-criteria of the holistic MBRE approach are presented. Furthermore, elaborated and planned tools for the individual process steps are presented.10.1109/RE48521.2020.00062 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218133Security;Safety;Requirements engineering;Cyber-physical systems;Systems engineering and theory - Systems Modeling LanguageIEEE Inglês
Design Structure Matrix Generation from Open-source MBSE ToolsW. Pons; S. S. Cordero; R. Vingerhoeds 2021 The usage of Design Structure Matrices is widely applied to represent, cluster, and partition complex systems information for different purposes, one of them being systems design. Nevertheless, open-source software for their automatic creation is rare. This leads to manual workshop sessions for subject matter experts to fill in the design structure matrices, a practice that is very tedious and time consuming. The importance and application of Model Based System Engineering has increased over the years. Nowadays, there are several open-source MBSE software such as StarUML, Papyrus, TTool, Modelio, Capella. This paper describes a novel approach to generate design structure matrices and extract information automatically from xml and xmi formats used widely in open-source Model Based System Engineering tools. This work presents the algorithm and a tool to extract data from the output model files, in order to automatically create a Design Structure Matrix (DSM) of modeled systems.10.1109/ISSE51541.2021.9582525 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582525DSM;Model Based Systems Engineering;Open source tools;systems thinkingIEEE Inglês
AI4U: A Tool for Game Reinforcement Learning ExperimentsG. Gomes; C. A. Vidal; J. B. Cavalcante-Neto; Y. L. B. Nogueira2020 Reinforcement Learning is a promising approach to the design of Non-Player Characters (NPCs). It is challenging, however, to design games enabled to support reinforcement learning because, in addition to specifying the environment and the agent that controls the character, there is the challenge of modeling a significant reward function for the expected behavior from a virtual character. To alleviate the challenges of this problem, we have developed a tool that allows one to specify, in an integrated way, the environment, the agent, and the reward functions. The tool provides a visual and declarative specification of the environment, providing a graphic language consistent with game events. Besides, it supports the specification of non-Markovian reward functions and is integrated with a game development platform that makes it possible to specify complex and interesting environments. An environment modeled with this tool supports the implementation of most current state-of-the-art reinforcement learning algorithms, such as Proximal Policy Optimization and Soft Actor-Critic algorithms. The objective of the developed tool is to facilitate the experimentation of learning in games, taking advantage of the existing ecosystem around modern game development platforms. Applications developed with the support of this tool show the potential for specifying game environments to experiment with reinforcement learning algorithms.10.1109/SBGames51465.2020.00014 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9291598Games;Reinforcement Learning;Autonomous Non-Player CharactersIEEE Inglês
Explaining Boolean-Logic Driven Markov Processes using GSPNsS. Khan; J. -P. Katoen; M. Bouissou 2020 Boolean-logic driven Markov processes (BDMPs) is a graphical language for reliability analysis of dynamic repairable systems. BDMPs are capable of defining complex interdependencies among failure modes such as functional dependencies and state-dependent failures. The interpretation of BDMPs is non-trivial due to the many possible complex interactions of activation and failure mechanisms. This paper presents a formal semantics of repairable BDMPs by using generalized stochastic Petri nets (GSPNs). Our semantics is modular and thus easily extendable to other elements, e.g., leaves dedicated to security applications. Priorities on GSPN transitions are used to impose a partial order on various possible interleaving of activation and failure mechanisms. The semantics is realized by the prototypical tool BDMP2GSPN that converts a Figaro description of a BDMP into a GSPN. The reliability and availability metrics of BDMPs are obtained using the probabilistic model-checking capability of the existing GreatSPN tool. Experiments show that our GSPN semantics corresponds to the BDMP interpretation by the tool yet another Monte Carlo simulator (YAMS).10.1109/EDCC51268.2020.00028 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784Dependability, formal methods, probabilistic model checking, Monte Carlo simulation, Petri netsIEEE Inglês
Seamless Variability Management with the Virtual PlatformW. Mahmood; D. Strüber; T. Berger; R. Lämmel; M. Mukelabai2021 Customization is a general trend in software engineering, demanding systems that support variable stakeholder requirements. Two opposing strategies are commonly used to create variants: software clone&own and software configuration with an integrated platform. Organizations often start with the former, which is cheap, agile, and supports quick innovation, but does not scale. The latter scales by establishing an integrated platform that shares software assets between variants, but requires high up-front investments or risky migration processes. So, could we have a method that allows an easy transition or even combine the benefits of both strategies? We propose a method and tool that supports a truly incremental development of variant rich systems, exploiting a spectrum between both opposing strategies. We design, formalize, and prototype the variability management framework virtualplatform. It bridges clone&own and platform-oriented development. Relying on programming language independent conceptual structures representing software assets, it offers operators for engineering and evolving a system, comprising: traditional, asset-oriented operators and novel, feature-oriented operators for incrementally adopting concepts of an integrated platform. The operators record meta-data that is exploited by other operators to support the transition. Among others, they eliminate expensive feature-location effort or the need to trace clones. Our evaluation simulates the evolution of a real-world, clone-based system, measuring its costs and benefits.10.1109/ICSE43902.2021.00147 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9401953variability management, variant rich systems, feature location, change propagation, clone&ownIEEE Inglês
A Modeling Method for Model-based Analysis and Design of a System-of-SystemsY. -M. Baek; Z. Mihret; Y. -J. Shin; D. -H. Bae 2020 In recent years, a domain of Systems-of-Systems (SoS) has emerged due to the needs of utilizing collective and collaborative system capabilities. As interest in SoS engineering has grown, this study focuses on the model-based analysis and design of an SoS, and we propose a general-purpose modeling method for the model-based SoS engineering (MBSoSE). Based on requirements that modeling methods of MBSoSE approaches should fulfill, required model types are identified (19 model types) and they are classified on their different modeling purposes and concerns (6 model categories). Model types are meta-modeled using the ADOxx Metamodeling Platform and they are implemented as modeling languages in a tool, called SIMVA-SoS Modeler. Using the modeling tool developed, we designed two different SoS cases and their scenarios that can be utilized as inputs of simulation and verification tools. Through the case studies, overall applicability of our modeling method for MBSoSE is evaluated and specific modeling results are provided as base reference models.10.1109/APSEC51365.2020.00042 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9359318Software System Modeling;Software Modeling Tool;Model-based Systems-of-Systems Engineering (MBSoSE);Simulation ModelIEEE Inglês
Maintaining the Consistency of SysML Model Exports to XML Metadata Interchange (XMI)H. A. H. Handley; W. Khallouli; J. Huang; W. Edmonson; N. Kibret2021 The System Modeling Language (SysML) is a visual modeling language that can be used to describe the structure and behavior of a system. Modeling tools can be used to capture the variety of diagrams and maintain the consistency of elements across the different structural and behavioral representations of the system. Current research is investigating using the XML Metadata Interchange (XMI) standard to convert the diagrammatic information captured in SysML into a format that can be used to produce software code that can then be simulated to ensure conformance with system requirements. The XMI standard can be used as an interim format to migrate the content from a diagrammatic representation, where system elements are sorted by the diagram that contains them, to an object approach, where all elements related to an entity reside in a tree structure below that element. This paper presents a method to ensure the consistency of the XMI representation regardless of whether a functional or physical system engineering approach is used for the design process. This has implications in maintaining the consistency of the XMI file when system development is initiated from a high level of abstraction, followed by iterative addition of detail. The goal is to ensure that XMI file maintains an authoritative representation of the modeled system.10.1109/SysCon48628.2021.9447105 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447105SysML;XMI;Design Methods;System Perspectives IEEE Inglês
Model-driven development of cyber-physical systems using TheatreL. Nigro 2019 Theatre is a control-based, light-weight, reflective actor system designed to address the development of general distributed, timed (possibly probabilistic) systems and cyber-physical systems in particular. Theatre is characterized by its formal operational semantics. An abstract Theatre model, including the services of a possible deterministic network and associated protocol, can be analyzed by exhaustive model-checking or by statistical model checking or through ad-hoc simulators. Theatre is currently implemented in Java. Other languages are possible. A key point of Theatre is its volition to favoring a seamless transformation of an analyzed model into the terms of design and implementation phases. The tutorial will illustrate the modelling aspects of Theatre, its supporting analysis tools, its capability of combining discrete-time with continuous time, its maturity as a software engineering methodology, and some developed applications.10.1109/DS-RT47707.2019.8958650 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958650- IEEE Inglês
Towards the Mechanized Semantics and Refinement of UML Class DiagramsF. Sheng; H. Zhu; Z. Yang 2019 Model Driven Engineering (MDE) uses models to represent the core part of the software systems. The Unified Model Language (UML) is a widely accepted standard for modeling software systems. Although UML provides numbers of concepts and diagrams to describe the system, there is still an unsolved problem that the semantics and refinement relations of models are not formally defined. In this paper, we apply the constructive type theory to formalize the class diagrams and object diagrams. A suitable subset of UML static models is identified and formally defined. The theorem assistant Coq is applied to encode the semantics of class diagrams. Moreover the refinement relations are also formalized in Coq. The whole approach is supported by tools that do not constrain the semantic definition's expressiveness and flexibility while making it machine-checkable. Our approach offers a novel way for giving a precise foundation in UML and contributes to the goal of improving the overall trustworthy software systems by combining theoretical and practical techniques.10.1109/APSEC48747.2019.00016 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945762Unified Modeling Language, Mechanized Semantics, Refinement, Coq, Constructive Type TheoryIEEE Inglês
ESSENCE Kernel in Overcoming Challenges of Agile Software DevelopmentD. Jana; P. Pal 2020 In this paper, we discuss the benefits and challenges of agile programming when used in large-scale software development. We enumerate the myths and ground realities of prevalent agile practice. Agile programming has promises and potentials with small delivery cycles. But at the same time, in practice, individual excellence or infrastructural building blocks as essential components are often prioritized less. Thus, the entire quality may suffer with staggered timelines and compromises. In this context, ESSENCE, a SEMAT kernel is proposed to be used in conjunction with suitably adapted and customized Agile process in order to help mitigating the risks and challenges. We propose to use ESSENCE Alpha cards and competency for health-check of process, tools, procedures and resources in a timely manner. OMG has adopted SEMAT and its kernel, ESSENCE, as an official OMG standard. Essential ESSENCE use with agile practice is a definite way forward for timely saving of catastrophes.10.1109/INDICON49873.2020.9342375 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9342375Agile Programming;Alpha State Cards;Competency Cards;ESSENCE;Iterative development;Object Oriented Methodology;Scrum;SEMAT;Software Engineering;Sprint;Structured methodology;UMLIEEE Inglês
Efficient Extraction of Technical Requirements Applying Data AugmentationI. Gräßler; D. Preuß; L. Brandt; M. Mohr 2022 Requirements for complex technical systems are documented in natural language sources. Manually extracting requirements from these documents – e.g., to transfer them to a requirements management tool – is time-consuming and error-prone. Today, machine learning approaches are used to classify natural language requirements and thus enable extraction of these requirements. However, in practice there is often not enough labeled domain-specific data available to train such models. For this reason, this work investigates the performance in artificially generating requirements through data augmentation. First, success criteria for a method for extracting and augmenting requirements are elicited in cooperation with industry experts. Second, the performance in the augmentation of requirements data is investigated. The results show that GPT-J is suitable for generating artificial requirements: weighted average F1-score: 62.74 %. Third, a method is developed to extract requirements from specifications, augment requirements data, and then classify the requirements. As a final step, the method is evaluated with requirements data from three industry case examples of the engineering service provider EDAG Engineering GmbH: assembly latch hood, adjustable stopper hood and trunk curtain roller blind. Evaluation shows that especially the transferability of models is improved when they are trained with augmented data. The developed method facilitates eliciting complete requirements sets. Performance of artificial intelligence models in requirements extraction is improved applying augmented data and therefore the method leads to efficient product development.10.1109/ISSE54508.2022.10005452 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005452requirements engineering;artificial intelligence;natural language processing;machine learning;data augmentationIEEE Inglês
Managing Security Policies within Cloud Environments Using Aspect-Oriented State MachinesM. Ayache; A. Khoumsi; M. Erradi 2019 Cloud Computing is the most suitable environment for the collaboration of multiple organizations via its multi-tenancy architecture. However, due to the distributed management of policies within these collaborations, they may contain several anomalies, such as conflicts and redundancies, which may lead to both safety and availability problems. On the other hand, current cloud computing solutions do not offer verification tools to manage access control policies. In this paper, we propose a cloud policy verification service (CPVS), that facilitates to users the management of there own security policies within Openstack cloud environment. Specifically, the proposed cloud service offers a policy verification approach to dynamically choose the adequate policy using Aspect-Oriented Finite State Machines (AO-FSM), where pointcuts and advices are used to adopt Domain-Specific Language (DSL) state machine artifacts. The pointcuts define states' patterns representing anomalies (e.g., conflicts) that may occur in a security policy, while the advices define the actions applied at the selected pointcuts to remove the anomalies. In order to demonstrate the efficiency of our approach, we provide time and space complexities. The approach was implemented as middleware service within Openstack cloud environment. The implementation results show that the middleware can detect and resolve different policy anomalies in an efficient manner.10.1109/COMMNET.2019.8742348 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8742348XACML policies;security policies anomalies;anomaly detection and resolution;aspect-oriented finite state machines;Cloud ComputingIEEE Inglês
Model driven programming of autonomous floats for multidisciplinary monitoring of the oceansS. Bonnieux; S. Mosser; M. Blay-Fornarino; Y. Hello; G. Nolet2019 Monitoring of the oceans with autonomous floats is of great interest for many disciplines. Monitoring on a global scale needs a multidisciplinary approach to be affordable. For this purpose, we propose an approach that allows oceanographers from different specialities to develop applications for autonomous floats. However, developing such applications usually requires expertise in embedded systems, and they must be reliable and efficient with regards to the limited resources of the floats (e.g., energy, processing power). We have followed a Model Driven Engineering approach composed of i) a Domain Specific Language to allow oceanographers to develop applications, ii) analysis tools to ensure that applications are efficient and reliable, iii) a composition tool to allow the deployment of different applications on a same float, and iv) a code generator that produce efficient and reliable code for the float. We present our approach with a biological and a seismological application. We validate it with technical metrics and an experiment.10.1109/OCEANSE.2019.8867453 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453Model Driven Engineering;Domain Specific Language;embedded system;constrained resourcesIEEE Inglês
Design Ontology Supporting Model-Based Systems Engineering FormalismsJ. Lu; J. Ma; X. Zheng; G. Wang; H. Li; D. Kiritsis2022 Model-based systems engineering (MBSE) provides an important capability for managing the complexities of system development. MBSE empowers the formalism of system architectures for supporting model-based requirement elicitation, specification, design, development, testing, fielding, etc. However, the modeling languages and techniques are heterogeneous, even within the same enterprise system, which leads to difficulties for data interoperability. The discrepancies among data structures and language syntaxes make information exchange among MBSE models more difficult, resulting in considerable information deviations when connecting data flows across the enterprise. Therefore, this article presents an ontology based upon graphs, objects, points, properties, roles, and relationships with extensions (GOPPRRE), providing metamodels that support the various MBSE formalisms across lifecycle stages. In particular, knowledge graph models are developed to support unified model representations to further implement ontological data integration based on GOPPRRE throughout the entire lifecycle. The applicability of the MBSE formalism is verified using quantitative and qualitative approaches. Moreover, the GOPPRRE ontologies are used to create the MBSE formalisms in a domain-specific modeling tool, MetaGraph, for evaluating its availability. The results demonstrate that the proposed ontology supports the formal structures and descriptive logic of the systems engineering lifecycle.10.1109/JSYST.2021.3106195 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721Formalism;interoperability;knowledge graph;model-based systems engineering;ontologyIEEE Inglês
Applying Declarative Analysis to Software Product Line Models: An Industrial StudyR. Shahin; R. Hackman; R. Toledo; S. Ramesh; J. M. Atlee; M. Chechik2021 Software Product Lines (SPLs) are families of related software products developed from a common set of artifacts. Most existing analysis tools can be applied to a single product at a time, but not to an entire SPL. Some tools have been redesigned/re-implemented to support the kind of variability exhibited in SPLs, but this usually takes a lot of effort, and is error-prone. Declarative analyses written in languages like Datalog have been collectively lifted to SPLs in prior work [1], which makes the process of applying an existing declarative analysis to a product line more straightforward. In this paper, we take an existing declarative analysis (behaviour alteration) and apply it to a set of automotive software product lines from General Motors. We discuss the design of the analysis pipeline used in this process, present its scalability results, and provide a means to visualize the analysis results for a subset of products filtered by feature expression. We also reflect on some of the lessons learned throughout this project.10.1109/MODELS50736.2021.00023 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592384Software Product Lines;Lifting;Behavior alteration;automotive IEEE Inglês
Mining User Reviews for Software Requirements of A New Mobile Banking ApplicationA. E. Amalia; M. Z. Naf'an 2021 Migration to the new system or application is very challenging, especially if the users have to adapt to a new application that is implemented with direct conversion technique. It triggers many user reactions, one of them is their opinions and rate about the application in play store (Google Play Store for example). Application reviews can be used to elicit user requirements or to verify requirements. This paper demonstrated the result of mining application reviews to support software requirements elicitation. It motivated by research area natural language processing (NLP) for requirement engineering (RE). Training and testing conducted to a dataset contains about 1200 application reviews of a new mobile banking application by classifying them into two classes (req and other) using Multinomial Naïve Bayes algorithm. Req is for opinions that contain requirement such as feature addition or user interface (UI) request while other is label for opinions/reviews contain non-requirements. The classification performance measured are accuracy score 0,8220 and one of class that has higher classifier performance is “other” class with value precision 0.83, recall 0.94 and F1 0.99. Even though, the result is not optimal yet, especially for “req” class, this research already implemented all categories of NLP technologies such as NLP techniques, NLP tools, and NLP resources.10.1109/ISRITI54043.2021.9702813 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9702813mining;requirement;classification;software;reviews IEEE Inglês
Generating ROS-based Software for Industrial Cyber-Physical Systems from UML/MARTEM. A. Wehrmeister 2020 This work proposes an approach to generate automatically the embedded software for distributed Cyber-Physical Systems implemented using the Robotic Operating System (ROS) framework. For that, the Aspect-oriented Model Driven Engineering for Real-Time systems (AMoDE-RT) design approach has been extended in order to support the C++ code generation using the semantics and libraries available in ROS framework which is widely used in both academia and industry to implement the embedded software for robotic systems. The system architecture, behavior, requirements and constraints are specified in a UML/MARTE model. The information specified in the high-level model is used as input for a tool that generates a great part of the embedded software for all distributed computing devices. The main goal is to foster the use of Model-Driven Engineering in the context of cyber-physical systems design aiming the rapid prototyping via simulation and also the generation of the actual implementation of the system components. The proposed approach has been validated through a case study that demonstrates the feasibility to implement a ROS/C++ software for industrial systems. The results indicate that the proposed approach can be applied to complex systems comprising a larger number of interacting devices, whereas keeping the high-level of abstraction for system specification in UML/MARTE models.10.1109/ETFA46521.2020.9212077 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9212077Model-Driven Engineering;embedded software;code generation;UML;MARTE;Robot Operating SystemIEEE Inglês
Reducing Ambiguity in Requirements Elicitation via GamificationH. S. Dar 2020 The overall quality and success of software highly depends on the involvement of stakeholders. Requirements elicitation supports RE analyst to gather requirements from the stakeholders based on their needs. There are multiple elicitation techniques present in literature and used by the practitioners. Some of them are questionnaires, interviews, prototyping, and user stories etc. However, these techniques are based on textual representation of requirements. These techniques are quite common among the requirement engineers yet problems of ambiguity, inconsistency, incompleteness still exist mostly due to their textual nature and lack of stakeholder involvement. Lack of clarity about the system increases the ambiguity of what exactly are the system requirements. Since elicitation is carried at an early stage of development the users are not sure of what they want, as requirements tend to evolve with the help of discussions and interactions among various stakeholders and technical team. Furthermore, the conventional elicitation methods are limited when it comes to stakeholders' participation and involvement, thus leaving a space for more ambiguous and incomplete requirements. In this work, Gamification, a game-based context will be used in non-gaming context for user involvement in fun ways. During elicitation, gamification would help to involve and interact with the stakeholders, with an intention to develop their interest in eliciting and finalizing system requirements. The goal of this paper is to reduce ambiguity during requirements elicitation. This would help in reducing the cost and time of development. Furthermore, we will elicit software requirements using gamification by developing a gamification tool with a focus to elicit unambiguous requirements by ensuring users' participation and maintaining interest. The validation of tool would be done using multiple confirmatory case studies from software industry.10.1109/RE48521.2020.00065 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218218ambiguity;requirements engineering;requirements elicitation;gamification;software developmentIEEE Inglês
How to Live with Inconsistencies in Industrial Model-Based Development PracticeR. Jongeling 2019 Modern development of complex embedded systems utilizes models to describe multiple different views on the same system. Consistency between these models is essential to successful development but ensuring it is in current practice often a manual effort. In this research project, we aim to develop a methodology that helps developers to maintain consistency in industrial model-based development projects by identifying inconsistencies throughout the development and maintenance of the system. For such support to be applicable in industrial practice, it should fit in with current development, i.e., should be able to identify inconsistencies between models expressed in different modeling languages and created in different modeling tools. Furthermore, the required user interaction to defining consistency checks should be minimal. This paper sketches an approach meeting these requirements, initial results towards it and discusses future research plans towards a doctoral dissertation.10.1109/MODELS-C.2019.00098 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904865model-based development;consistency checking` IEEE Inglês
Enhancing CREeLS the Crowdsourcing based Requirements Elicitation approach for eLearning Systems Using Bi-Gram EvaluationN. M. Rizk; E. S. Nasr; M. H. Gheith 2019 eLearning is gaining more ranking nowadays; eLearning systems (eLS) are in continuous need for improvements to meet its stakeholders' requirements. Traditional requirements elicitation techniques can't satisfy the continuous requirements of eLearning stakeholders. Crowdsourcing is an emerging concept in the requirements elicitation, an approach of requirements elicitation based on the crowdsourcing concept for eLS is discussed. In this paper the approach is further evaluated using bi-gram topic modeling. This will assess the approach validity to better extract eLearning stakeholders' requirements and help in the requirements elicitation and evolution of eLS. The bi-gram evaluation was applied on three LMS products and the results were compared with the results of LDA algorithm extraction and with the manual extraction of the requirements. The average results of bigram model were 0.68 f-measure, 0.76 precision, and 0.61 recall. The extracted keywords using bi-gram were better than normal LDA algorithm, relevant and can help in requirements evolution of the eLS.10.1109/ICENCO48310.2019.9027371 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9027371Requirements elicitation;eLearning;Crowdsourcing;Topic ModellingIEEE Inglês
Flexible Production Systems: Automated Generation of Operations Plans Based on ISA-95 and PDDLB. Wally; J. Vyskočil; P. Novák; C. Huemer; R. Šindelar; P. Kadera; A. Mazak; M. Wimmer2019 Model-driven engineering (MDE) provides tools and methods for the manipulation of formal models. In this letter, we leverage MDE for the transformation of production system models into flat files that are understood by general purpose planning tools and that enable the computation of “plans”, i.e., sequences of production steps that are required to reach certain production goals. These plans are then merged back into the production system model, thus enriching the formalized production system knowledge.10.1109/LRA.2019.2929991 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8767927AI-based methods;factory automation;intelligent and flexible manufacturingIEEE Inglês
Kirigami, the Verifiable Art of Network CuttingT. A. Thijm; R. Beckett; A. Gupta; D. Walker 2022 Satisfiability Modulo Theories (SMT)-based analysis allows exhaustive reasoning over complex distributed control plane routing behaviors, enabling verification of routing under arbitrary conditions. To improve scalability of SMT solving, we introduce a modular verification approach to network control plane verification, where we cut a network into smaller fragments. Users specify an annotated cut which describes how to generate these fragments from the monolithic network, and we verify each fragment independently, using these annotations to define assumptions and guarantees over fragments akin to assume-guarantee reasoning. We prove this modular network verification procedure is sound and complete with respect to verification over the monolithic network. We implement this procedure as Kirigami, an extension of NV [25] - a network verification language and tool - and evaluate it on industrial topologies with synthesized policies. We observe a 10x improvement in end-to-end NV verification time, with SMT solve time improving by up to 6 orders of magnitude.10.1109/ICNP55882.2022.9940333 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9940333modular verification;network control plane;control plane verification;routing protocolsIEEE Inglês
A Recommendation System for Functional Features to aid Requirements ReuseS. M. Cheema; M. Adnan; A. Baqir; S. Malik; B. A. Munawar2020 Software product lines (SPL) engineering is an efficient means to enhance software quality, support requirement reuse and develop variants of products. Functional and nonfunctional features can be extracted from SRS docs of ancestry built artifacts to aid RR. In this paper we offer a recommendation web tool (prototype) to extract functional features and calculating reusability for amount of data available in the form of SRS of already developed systems. In initial-level, SRS docs are feed into system. System accesses natural language requirements automatically from SRS. Terms extraction is performed which depends on keyword occurrences from several combinations of nouns, verbs, and/or adjectives. Phrases that reflect functional features reside on SRS docs were extracted by using information retrieval (IR). FRs are then stored in knowledgebase automatically. In Secondary-level, requirement analyst inputs summary of prospective system and selects the operation to perform i.e. simple and advance search. System applies POS-tagger technique on software summary for tokenization to search functional features. These tokens are then passed to inference engine to match between knowledgebase to identify which features could be recommended to analyst to aid RR. Matched features with queried features are prioritized using collaborative filtering to assist requirement analyst in making right decision in different software engineering tasks, starting from forming the teams and specifying the requirements to subsequent projects.10.1109/iCoMET48670.2020.9073836 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9073836Software Product Lines Engineering;SPLE;Requirements Reuse;RR;Recommender Systems;Natural Language Processing;Software EngineeringIEEE Inglês
Towards Queryable and Traceable Domain ModelsR. Saini; G. Mussbacher; J. L. C. Guo; J. Kienzle2020 Model-Driven Software Engineering encompasses various modelling formalisms for supporting software development. One such formalism is domain modelling which bridges the gap between requirements expressed in natural language and analyzable and more concise domain models expressed in class diagrams. Due to the lack of modelling skills among novice modellers and time constraints in industrial projects, it is often not possible to build an accurate domain model manually. To address this challenge, we aim to develop an approach to extract domain models from problem descriptions written in natural language by combining rules based on natural language processing with machine learning. As a first step, we report on an automated and tool-supported approach with an accuracy of extracted domain models higher than existing approaches. In addition, the approach generates trace links for each model element of a domain model. The trace links enable novice modellers to execute queries on the extracted domain models to gain insights into the modelling decisions taken for improving their modelling skills. Furthermore, to evaluate our approach, we propose a novel comparison metric and discuss our experimental design. Finally, we present a research agenda detailing research directions and discuss corresponding challenges.10.1109/RE48521.2020.00044 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218176NLP;Machine Learning;Domain Model;Modelling Bot;Requirements Engineering;Trace LinksIEEE Inglês
On the Influence of UML Class Diagrams Refactoring on Code Debt: A Family of Replicated Empirical StudiesS. Freire; A. Passos; M. Mendonça; C. Sant’Anna; R. O. Spínola2020 Context: System modeling usually precedes coding activities during software development. Addressing model smells in the upfront can avoid their propagation to the source code. Technical debt (TD) affects several software development phases, including design, but little is still known about it at the modeling level. Goal: Investigate whether applying refactoring procedures in UML class diagrams improves the quality of the automatically generated code in terms of TD (code debt) reduction. Method: We perform three replications of an empirical study following the same protocol used in the original study, but with variations on the: (1) round- trip engineering tool, (2) code issue identification tool, and (3) analyzed class diagram. Each study considered two sets of refactoring tasks. The first applied successive model refactoring sessions in a class diagram and analyzed their resulting automatically generated code. The second applied successive code refactoring sessions and analyzed their resulting automatically generated model. Results: There is a weak relationship between the analyzed model smells and code issues. Round-trip engineering tools influence the presence of code issues. Lastly, code issues identification tools mostly consider code formatting problems, in detriment of design issues smells. Conclusion: Results confirm the findings of the original study and motivate further investigation on the correspondence between model smells and code issues to prevent code debt at the model level.10.1109/SEAA51224.2020.00064 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9226337model smell;code issues;technical debt;family of studies IEEE Inglês
Towards an Agile Concern-Driven Development ProcessO. Alam 2019 This paper proposes an Agile Concern-Driven Development (Agile CDD) process, a software development process that uses concerns as its primary artifact and applies agile practices. Whereas classical Model-Driven Engineering (MDE) methodologies focus on models that are built from scratch with little support for reuse, Agile CDD is a reuse-focused development process in which an application is built incrementally by repeatedly reusing other existing concerns. In Agile CDD, a modeler would use a modelling language that is appropriate for the current development phase and for the problem domain. Model transformations would then be applied to produce the initial set of models for the next phase. The process will continue until an execute model is produced. In each phase, the modeller should consult a repository of reusable concerns to identify and reuse concerns. Changing requirements are welcome and incomplete implementations are moved to the next iteration by delaying design decisions.10.1109/ICSSP.2019.00028 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8812865Agile;Software Process;Software Reuse;Model Driven DevelopmentIEEE Inglês
Automatically Curated Data Sets M. Kessel; C. Atkinson 2019 o validate hypotheses and tools that depend on the semantics of software, it is necessary to assemble, prepare and maintain (i.e. curate) large, high-quality corpora of executable software systems exhibiting certain desired behavior and/or properties. Today this is a highly tedious and laborious activity requiring significant human time and effort. In this paper we therefore present a prototype platform that supports the notion of “live data sets” where almost all aspects of the data set curation process are automated. Instead of curating data sets by hand, or writing dedicated tools to select and check software samples on a case-by-case basis, a live data set allows users to simply describe their requirements as abstract scripts written in a declarative domain specific language. After explaining the approach and the key ideas behind its implementation, in this paper we present two examples of executable corpora generated automatically from a live data set populated from Maven Central. The first illustrates a “semantics agnostic” use case where the actual behavior of the software is unimportant, while the second illustrates a “semantics specific” use case where software implementing a specific functional abstraction is selected.10.1109/SCAM.2019.00015 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8930881data-set;corpus;executable;behavior;automation;curation IEEE Inglês
Analysis and Design Automation of Cyber-Physical System with Hippo and IOPT-ToolsR. Wiśniewski; G. Bazydło; L. Gomes; A. Costa; M. Wojnakowski2019 The paper presents a novel design methodology of cyber-physical systems supported by computer aided tools. In particular, IOPT and Hippo tools are involved in the design and analysis techniques of the system. The proposed idea combines the main advantages of both tools by offering the complex design path of the control part of the cyber-physical system, including specification, analysis and verification, decomposition, and modelling stages. Additionally, the designer is able to choose the most suitable representation of the system (graphical or formal). The presented concepts are illustrated by a case-study example.10.1109/IECON.2019.8926692 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8926692computer aided design and analysis;cyber-physical systems;Petri nets;IOPT;HippoIEEE Inglês
A Model-Checking Framework for the Verification of Move Smart ContractsE. Keilty; K. Nelaturu; B. Wu; A. Veneris 2022 As the popularity of distributed ledger technology and smart contracts continues to grow, so does the number of decentralized applications and their potential exposure to expensive exploits. The need for strong vulnerability detection tools is critical. Move is a recently developed smart contract language with safety and security at the core of its design containing formal verification tools embedded into the language. Currently, these tools can only verify local properties within a single Move function. They cannot verify global properties that result from multiple function executions. In this paper, we introduce VeriMove, an extension of the VeriSolid correct-by-design model checking framework that supports the Move language. We show that model checking is a feasible method to formally verify global properties in Move smart contracts.10.1109/ICSESS54813.2022.9930214 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214Smart Contract;Verification;Solidity;Move IEEE Inglês
Empirical Evaluation of IC3-Based Model Checking Techniques on Verilog RTL DesignsA. Goel; K. Sakallah 2019 IC3-based algorithms have emerged as effective scalable approaches for hardware model checking. In this paper we evaluate six implementations of IC3-based model checkers on a diverse set of publicly-available and proprietary industrial Verilog RTL designs. Four of the six verifiers we examined operate at the bit level and two employ abstraction to take advantage of word-level RTL semantics. Overall, the word-level verifier employing data abstraction outperformed the others, especially on the large industrial designs. The analysis helped us identify several key insights on the techniques underlying these tools, their strengths and weaknesses, differences and commonalities, and opportunities for improvement.10.23919/DATE.2019.8715289 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715289- IEEE Inglês
JISET: JavaScript IR-based Semantics Extraction ToolchainJ. Park; J. Park; S. An; S. Ryu 2020 JavaScript was initially designed for client-side programming in web browsers, but its engine is now embedded in various kinds of host software. Despite the popularity, since the JavaScript semantics is complex especially due to its dynamic nature, understanding and reasoning about JavaScript programs are challenging tasks. Thus, researchers have proposed several attempts to define the formal semantics of JavaScript based on ECMAScript, the official JavaScript specification. However, the existing approaches are manual, labor-intensive, and error-prone and all of their formal semantics target ECMAScript 5.1 (ES5.1, 2011) or its former versions. Therefore, they are not suitable for understanding modern JavaScript language features introduced since ECMAScript 6 (ES6, 2015). Moreover, ECMAScript has been annually updated since ES6, which already made five releases after ES5.1. To alleviate the problem, we propose JISET, a JavaScript IR-based Semantics Extraction Toolchain. It is the first tool that automatically synthesizes parsers and AST-IR translators directly from a given language specification, ECMAScript. For syntax, we develop a parser generation technique with lookahead parsing for BNFES, a variant of the extended BNF used in ECMAScript. For semantics, JISET synthesizes AST-IR translators using forward compatible rule-based compilation. Compile rules describe how to convert each step of abstract algorithms written in a structured natural language into IRES, an Intermediate Representation that we designed for ECMAScript. For the four most recent ECMAScript versions, JISET automatically synthesized parsers for all versions, and compiled 95.03% of the algorithm steps on average. After we complete the missing parts manually, the extracted core semantics of the latest ECMAScript (ES10, 2019) passed all 18,064 applicable tests. Using this first formal semantics of modern JavaScript, we found nine specification errors in ES10, which were all confirmed by the Ecma Technical Committee 39. Furthermore, we showed that JISET is forward compatible by applying it to nine feature proposals ready for inclusion in the next ECMAScript, which let us find three errors in the BigInt proposal.https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9286074JavaScript;mechanized formal semantics;program synthesis IEEE Inglês
A Metamodeling Approach to Support the Engineering of Modeling Method RequirementsD. Karagiannis; P. Burzynski; W. Utz; R. A. Buchmann2019 The notion of "modeling method requirements" refers to a category typically neglected by RE taxonomies and frameworks - i.e., those requirements that motivate the realization of (conceptual) modeling methods and tools. They can be considered domain-specific, in the sense that all modeling methods provide a knowledge schema for some selected application domain (narrow or broad). Besides this inherent domain-specific nature, we are investigating how the characteristics of modeling methods inform the RE perspective, and how in turn RE can support the engineering of such artifacts. Thus, the work at hand aims to raise awareness about modeling method requirements in the RE community. The core contribution is the CoChaCo (Concept-Characteristic-Connector) method for the representation and management of such requirements, as well as for streamlining with subsequent engineering phases. CoChaCo is itself a modeling method - i.e., it achieves its goals through diagrammatic modeling means for which a supporting tool was prototyped and evolved. The proposal originates in required support for the initial phase of the Agile Modeling Method Engineering (AMME) methodology, which was successfully applied in developing a variety of project-specific modeling tools. From this accumulated experience, awareness of "modeling method requirements" emerged and informed the design decisions of CoChaCo.10.1109/RE.2019.00030 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920624Modeling method requirements, Requirements modeling, Metamodeling, Agile Modeling Method EngineeringIEEE Inglês
Decentralized Application Infrastructures as Smart Contract CodesR. Karanjai; K. Kasichainula; N. Diallo; M. Kaleem; L. Xu; L. Chen; W. Shi2022 With the recent advance in concepts like decentralized "cloud" and blockchain-enabled decentralized computing environments, the legacy modeling and orchestration tools developed to support centrally managed cloud-based ICT infrastructures are challenged by such a new paradigm built on top of decentralization. On the other hand, decentralized "cloud" and computing infrastructures need to support many Dapp use cases. As the complexity of these targeted application scenarios increases, there is an urgent need for developing automation and modeling tools for deploying and managing decentralized infrastructures. Instead of creating such tools from scratch, a natural approach is extending mature infrastructure modeling tools for Dapps and decentralized computing environments. To this end, in this work, we have developed extensions to the TOSCA domain-specific language to support smart contract specification of decentralized computing infrastructures for supporting Dapps, where smart contracts or chain codes manage a decentralized computing environment. The result is blockchain-based orchestration and automation for decentralized "cloud" and computing environments, which is a step forward for achieving full decentralization in general-purpose computing.10.1109/ICBC54727.2022.9805493 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9805493TOSCA;Smart Contracts;Blockchain;Infrastructures IEEE Inglês
Guaranteeing Sound Reactions to Long-Tailed Changes: A Syntax-Directed Annotation ApproachH. Cao; X. Chen; L. Zhang; T. Zhang; X. Xiao 2020 To cope with the long-tailed changes, an annotation-based BPM approach has been proposed to adapts its behavior in a timely manner. It patches existing business process models rather than rebuilds models from scratch, which saves efforts and reacts to unforeseen changes quickly. However, the original annotation-based approach is at risk of improper annotations added that results in unexpected effects or leads to failure. To remedy this loophole, this paper proposes a syntax-directed annotation approach to guarantee sound reactions. we develop a scheme for designing domain specific languages based on abstract syntax trees and generating a syntax-directed editor automatically. As a result, all patched annotations on the process models are soundness guaranteed in terms of the domain specific language. Case studies demonstrate that proposed approach and tools can help domain experts to tackle long-tailed changes more easily guarantee the correct reactions.10.1109/ICSS50103.2020.00033 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283690Long-tailed Changes;Business Process Management;Syntax-Directed Editor Generator;Abstract Grammar TreeIEEE Inglês
Graphical Modeling VS. Textual Modeling: An Experimental Comparison Based on iStar ModelsW. Liu; Y. Wang; Q. Zhou; T. Li 2021 [Context] Establishing requirements models is an effective way to analyze them, which is typically dealt with in a graphical manner (i.e., the drag-and-draw fashion). However, as the size of models increases, the scalability issue has become an unignorable challenge, hindering the practical adoption of requirements modeling approach. Some researchers have recently proposed and promoted textual modeling approaches, mitigating these issues of requirements modeling. [Objective] In this paper, we aim at evaluating the two modeling methods, i.e., a graphical modeling method VS. a textual modeling method. In particular, we apply these two methods to iStar modeling language, which has been widely recognized as an effective means to model and analyze requirements. [Methods] We have systematically designed and conducted a controlled experiment with 38 participants to compare two iStar modeling methods (graphical and textual) using two corresponding modeling tools (piStar and T-Star). The experimental results reveal that the numbers of iStar model nodes and relationships built by the participants had no significant difference, regardless of the modeling method adopted. [Conclusions] First, the results show that the textual modeling method is as usable as the graphical modeling method when creating iStar models. Second, we have identified a number of issues that contribute to improving the utility and practicality of the iStar modeling method.10.1109/COMPSAC51774.2021.00117 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529492Requirements modeling;iStar modeling framework;Controlled experiment;ScalabilityIEEE Inglês
Power and Energy Communication Services for Control-software ModelsR. C. Mendez; D. Dresscher; J. Broenink 2021 Implementing energy-based controllers in software represents a challenge for software engineers, as additional expertise is required to abide by the physics-domain constraints of energy exchange in the design and structure of the control software. Our paper bridges the gap between software engineering and the physics domain by conveying energy exchange to control-software modelling. We use principles of physical systems and the bond -graph modelling language to identify the mechanisms and constraints of energy exchange and represent them as data-communication services for software models. This work resulted in metamodels and models for power and energy communication that can facilitate the first-time-right implementation of robot-control software.10.1109/RoSE52553.2021.00016 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474544domain-specific ontologies;domain-specific constraints;energy exchange;software modelling;real-time systems;bond graphIEEE Inglês
Model-based Engineering of modern Automation Structures with the Interdisciplinary Modeling Language (IML)J. Flender; S. Storms; W. Herfs; M. Witte 2019 In the recent past, automation technologies have experienced significant structural and technological development. Especially Production Machines profit from this evolution, as new production paradigms are integrated into control architectures. In order to incorporate this into superior systems engineering methodologies, we have carried out a comprehensive technology review to derive requirements towards the specification of such new automation structures. Based on the Interdisciplinary Modeling Language (IML), which has been specifically developed for the system design of production machines, we integrated appropriate modeling assets into IML for engineering modern automation structures. With the intention to support a holistic engineering process of production machines, this approach shows - along the automation domain - the integration of the presented methodology into a data-consistent toolchain using IML. Based on this, we enable generating program structures in common automation development tools, derived directly from IML system models. Therefore, a data-consistent engineering toolchain will ideally support the development of the actual procedural sequence implementation based on IML system models.10.1109/SYSCON.2019.8836772 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836772Data-Consistent Engineering;Automation Structure;Production MachinesIEEE Inglês
Clams: A Cloud Application Modeling SolutionO. Bibartiu; F. Dürr; K. Rothermel 2021 A wide range of new modeling languages with a specific focus on cloud computing, also known as cloud modeling languages (CMLs), have been introduced to help developers describe, evaluate, and deploy cloud applications. In general, CMLs define applications as interconnected cloud components within an architectural topology. However, in agile software development, developers describe system-level functionalities using user stories or epics to define end-user scenarios. So far, a CML bridging the gap between formal architectural descriptions and the informal scenario descriptions from agile development is missing. We present Clams (Cloud application modeling solution), a scenario-based CML. Clams uses cloud computing patterns as architectural placeholders in combination with message sequence charts. We introduce standard tooling to handle Clams models and show how one can refine patterns to concrete service offerings. Additionally, we also provide a development framework to support the creation of custom tools to evaluate, analyze, or translate Clams models efficiently.10.1109/SCC53864.2021.00013 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592516Cloud Modeling Language;Scenarios;Cloud Computing Patterns IEEE Inglês
Towards a time editor for orchestrating connected objects in the Web of ThingsI. MEZENNER; S. BOUYAKOUB; F. M. BOUYAKOUB2019 Web of Things is a new paradigm, it constitutes the heart of a great research activity. However, most of this work does not take into account its temporal aspect, whereas it is a critical dimension directly related to customer satisfaction, optimization and is considered as a very effective strategy for cost reduction. For this matter, we propose a tool to edit and verify the time constraints added to an abstract BPEL specification. Furthermore, the editor allows the user to edit abstract BPEL specification that orchestrates Web services offered by objects connected to the Web of Things. Through the latter, the input specification is enriched with constraints and time attributes. Then, a temporal verification and validation process is applied to detect any temporal errors or conflicts.10.1109/ICTAACS48474.2019.8988132 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132Web of Things;Web service orchestration;WS-BPEL;Allen’s algebraIEEE Inglês
Temporal-spatial-domanial features oriented modeling framework for Transboundary ServiceM. Li; Z. Tu; H. Xu; Z. Wang 2020 Service model is an important form to describe service functions and non-functional attributes. Many scholars have given detailed model specifications and modeling languages for various aspects such as business processes, service value delivery, service ontology description, service decision making, and case management. The state of the art of the above models and their associations shows that temporal-spatial-domanial features have received little attention, however, which have great significance on service execution and evaluation, especially in the background of Transboundary Service. There-fore, this paper proposes a Transboundary Service modeling framework oriented to temporal-spatial-domanial features. It defines the representation of service domains, and analyzes the relationship between domain and service functional/non-functional model. In addition, a tool is developed to support visual modeling and annotation work based on this framework. Finally, an actual case of Freshhema from Alibaba is used to verify this framework. Compared with the existing modeling framework (e.g. BPMN, VDML), this framework pays special attention to the description and analysis of temporal-spatial-domanial features, and clarifies the dependency relationship between it and service function/non-function attributes, pro-vides the necessary model extensions to provide more detailed support for subsequent model application and optimization.10.1109/SCC49832.2020.00063 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284634Transboundary Service;service domain;distribution characteristics;hierarchical dependence;model annotationIEEE Inglês
A Layered Reference Architecture for Metamodels to Tailor Quality Modeling and AnalysisR. Heinrich; M. Strittmatter; R. Reussner 2021 Nearly all facets of our everyday life strongly depend on software-intensive systems. Besides correctness, highly relevant quality properties of these systems include performance, as directly perceived by the user, and maintainability, as an important decision factor for evolution. These quality properties strongly depend on architectural design decisions. Hence, to ensure high quality, research and practice is interested in approaches to analyze the system architecture for quality properties. Therefore, models of the system architecture are created and used for analysis. Many different languages (often defined by metamodels) exist to model the systems and reason on their quality. Such languages are mostly specific to quality properties, tools or development paradigms. Unfortunately, the creation of a specific model for any quality property of interest and any different tool used is simply infeasible. Current metamodels for quality modeling and analysis are often not designed to be extensible and reusable. Experience from generalizing and extending metamodels result in hard to evolve and overly complex metamodels. A systematic way of creating, extending and reusing metamodels for quality modeling and analysis, or parts of them, does not exist yet. When comparing metamodels for different quality properties, however, substantial parts show quite similar language features. This leads to our approach to define the first reference architecture for metamodels for quality modeling and analysis. A reference architecture in software engineering provides a general architecture for a given application domain. In this paper, we investigate the applicability of modularization concepts from object-oriented design and the idea of a reference architecture to metamodels for quality modeling and analysis to systematically create, extend and reuse metamodel parts. Thus, the reference architecture allows to tailor metamodels. Requirements on the reference architecture are gathered from a historically grown metamodel. We specify modularization concepts as a foundation of the reference architecture. Detailed application guidelines are described. We argue the reference architecture supports instance compatibility and non-intrusive, independent extension of metamodels. In four case studies, we refactor historically grown metamodels and compare them to the original metamodels. The study results show the reference architecture significantly improves evolvability as well as need-specific use and reuse of metamodels.10.1109/TSE.2019.2903797 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8662719Domain-specific modeling language;reference architecture;metamodel;quality analysisIEEE Inglês
Automated Traceability for Domain Modelling Decisions Empowered by Artificial IntelligenceR. Saini; G. Mussbacher; J. L. C. Guo; J. Kienzle2021 Domain modelling abstracts real-world entities and their relationships in the form of class diagrams for a given domain problem space. Modellers often perform domain modelling to reduce the gap between understanding the problem description which expresses requirements in natural language and the concise interpretation of these requirements. However, the manual practice of domain modelling is both time-consuming and error-prone. These issues are further aggravated when problem descriptions are long, which makes it hard to trace modelling decisions from domain models to problem descriptions or vice-versa leading to completeness and conciseness issues. Automated support for tracing domain modelling decisions in both directions is thus advantageous. In this paper, we propose an automated approach that uses artificial intelligence techniques to extract domain models along with their trace links. We present a traceability information model to enable traceability of modelling decisions in both directions and provide its proof-of-concept in the form of a tool. The evaluation on a set of unseen problem descriptions shows that our approach is promising with an overall median F2 score of 82.04%. We conduct an exploratory user study to assess the benefits and limitations of our approach and present the lessons learned from this study.10.1109/RE51729.2021.00023 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604719Domain Models;Traceability;Natural Language (NL);Machine Learning (ML);Traceability Knowledge Graph (TKG);Traceability Information Model (TIM)IEEE Inglês
Noise Explorer: Fully Automated Modeling and Verification for Arbitrary Noise ProtocolsN. Kobeissi; G. Nicolas; K. Bhargavan 2019 The Noise Protocol Framework, introduced recently, allows for the design and construction of secure channel protocols by describing them through a simple, restricted language from which complex key derivation and local state transitions are automatically inferred. Noise "Handshake Patterns" can support mutual authentication, forward secrecy, zero round-trip encryption, identity hiding and other advanced features. Since the framework's release, Noise-based protocols have been adopted by WhatsApp, WireGuard and other high-profile applications. We present Noise Explorer, an online engine for designing, reasoning about, formally verifying and implementing arbitrary Noise Handshake Patterns. Based on our formal treatment of the Noise Protocol Framework, Noise Explorer can validate any Noise Handshake Pattern and then translate it into a model ready for automated verification and also into a production-ready software implementation written in Go or in Rust. We use Noise Explorer to analyze more than 57 handshake patterns. We confirm the stated security goals for 12 fundamental patterns and provide precise properties for the rest. We also analyze unsafe handshake patterns and document weaknesses that occur when validity rules are not followed. All of this work is consolidated into a usable online tool that presents a compendium of results and can parse formal verification results to generate detailed-but-pedagogical reports regarding the exact security goals of each message of a Noise Handshake Pattern with respect to each party, under an active attacker and including malicious principals. Noise Explorer evolves alongside the standard Noise Protocol Framework, having already contributed new security goal verification results and stronger definitions for pattern validation and security parameters.10.1109/EuroSP.2019.00034 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8806757formal verification;noise protocol framework;cryptographic protocols;secure implementation;secure channel protocolsIEEE Inglês
SugarC: Scalable Desugaring of Real-World Preprocessor Usage into Pure CZ. Patterson; Z. Zhang; B. Pappas; S. Wei; P. Gazzillo2022 Variability-aware analysis is critical for ensuring the quality of con-figurable C software. An important step toward the development of variability-aware analysis at scale is to transform real-world C soft-ware that uses both C and preprocessor into pure C code, by replacing the preprocessor's compile-time variability with C's runtime-variability. In this work, we design and implement a desugaring tool, SugarC, that transforms away real-world preprocessor usage. SugarC augments C's formal grammar specification with translation rules, performs simultaneous type checking during de sugaring, and introduces numerous optimizations to address challenges that appear in real-world preprocessor usage. The experiments on DesugarBench, a benchmark consisting of 108 manually-created programs, show that SugarC supports many more language features than two existing desugaring tools. When applied on three real-world configurable C software, SugarC desugared 774 out of 813 files in the three programs, taking at most ten minutes in the worst case and less than two minutes for 95% of the C files.10.1145/3510003.3512763 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793944C preprocessor;syntax-directed translation;desugaring IEEE Inglês
Web-Based Tracing for Model-Driven ApplicationsJ. C. Kirchhof; L. Malcher; J. Michael; B. Rumpe; A. Wortmann2022 Logging still is a core functionality used to understand the behavior of programs and executable models. Yet, modeling languages rarely consider logging as a first-level activity that is manifested in the language through modeling elements or their behavior. When logging is part of the code generated for the respective models or the corresponding runtime environment only, it must be generic, as the modeler cannot influence, through the models, what and when logging takes place. To enable modelers to log model behavior, we devised a method based on language extension and smart code generation that can integrate logging into arbitrary textual modeling languages. Based on this method, log entries can be produced, traced, and presented through a web application. This method and its infrastructure can facilitate lifting logging to the model level and, hence, improve the understanding of executable models.10.1109/SEAA56994.2022.00066 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10011502Software Engineering;Model-Driven Development;Internet of ThingsIEEE Inglês
Software Requirements Modeling: A Systematic Literature ReviewM. Arif; C. W. Mohammad; M. Sadiq 2020 Software requirements modeling (SRM) is a subprocess of requirements engineering (RE) which is used to elicit and represent the need of the stakeholders. Different systematic literature reviews (SLR) have been performed in different areas of RE like requirements elicitation, stakeholder identification, requirements prioritization, use case models, etc. Despite the availability of different SRM techniques, less attention is given to synthesize the existing SRM techniques in the context of the unified modeling language (UML) and goal oriented techniques like “Knowledge Acquisition for Automated Specifications” (KAOS), I* framework, non-functional requirements (NFR) framework, and Tropos, etc. Therefore, to address this issue, in this paper we present the SLR by analysing the existing SRM techniques based on the following formulated research questions (RQs): (a) how UML and goal oriented techniques were evolved? (b) which modeling techniques are appropriate for modeling the NFRs? (c) what are the tools available for modeling the different types of the software requirements, i.e., functional and nonfunctional requirements? Search items were extracted from the RQs to identify the primary studies from the Journals, Conferences, Workshops, and Symposium. Our SLR has identified 56 distinct studies which have been published from 2008 to 2019. Selected studies were assessed according to the formulated RQs for their quality and coverage to specific SRM technique thus identifying some gaps in the literature. We observed that there is need to develop the SRM techniques for representing the different types of the NFRs; and also to strengthen the UML by integrating the NFRs and multi-criteria decision making techniques.10.1109/GUCON48875.2020.9231058 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9231058Requirements engineering;requirements modeling;notations;systematic literature reviewIEEE Inglês
Perceptions and the extent of Model-Based Systems Engineering (MBSE) use – An industry surveyA. Akundi; W. Ankobiah; O. Mondragon; S. Luna2022 Model-Based Systems Engineering (MBSE) supports the development of complex systems through capturing, communicating, and managing system specifications with an emphasis on the use of modeling languages, tools, and methods. It is a well-known fact that varying levels of effort are required to implement MBSE in industries based on the complexity of the systems a given industry is associated with. This paper shares the results of a survey to industry professionals from Defense, Aerospace, Automotive, Consultancy, Software, and IT industry clusters. The research goal is to understand the current state of perception on what MBSE is and the use of MBSE among different industry clusters. The survey analysis includes a comparison of how MBSE is defined, advantages on the use of MBSE, project types, specific life cycle stage when MBSE is applied, and adoption challenges, as reported by the survey participants. The researchers also aim to trigger discussions in the MBSE community for identifying strategies to address MBSE related challenges tailored to a specific industry type.10.1109/SysCon53536.2022.9773894 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894Model-based System Engineering;MBSE;survey;industry;systems engineering;industry-specific;system complexity;adoption challengesIEEE Inglês
Verification at RTL Using Separation of Design ConcernsM. H. Safieddine; F. A. Zaraket; R. Kanj; A. El-Zein; W. Roesner2019 Design-for-test, logic built-in self-test, memory technology mapping, and clocking concerns require team-months of verification time as they traditionally happen at gate-level. We present a novel concern-oriented methodology that enables automatic insertion of these concerns at the register-transfer-level where verification is easier. The methodology involves three main phases: 1) flipflop inference and instantiation algorithms that handle parametric register transfer level (RTL) modules; 2) transformations that take entry RTL and produce RTL modules where memory elements are separated from functionality; and 3) a concern weaving tool that automatically inserts memory related design concerns implemented in recipe files into the RTL modules. The transformation is sound as proven and validated by equivalence checking using formal verification. We implemented the methodology in a tool that is currently used in an industrial setting wherein it reduced design verification time by more than 40%. The methodology is also effective with open source embedded system frameworks.10.1109/TCAD.2018.2848589 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8387447Concern insertion;design-for-test (DFT);register-transfer level (RTL);verificationIEEE Inglês
Object-oriented Representation of Mechanical Systems for the Automated DesignV. Lavrik; H. Alieksieieva; I. Bardus; O. Shchetynina2021 At the decision of practical task in the technique of presentation of 2-D and 3-D objects there is a problem of choice of optimum calculation chart which is based on a number of concrete methods of formal design. We developed authoring system of computer-aided design, that is based on special language of presentation of geometrical primitives, that allows a design engineer to create reliable models in his subject domain, and it differs from the traditional methods of presentation of objects in mechanics and construction. The modeling language was presented as a formal system, that allows to formulate and formally prove its qualities.10.1109/CONIT51480.2021.9498445 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9498445graphical models;object oriented modeling;systems simulation;model checkingIEEE Inglês
Improving Traceability Link Recovery Using Fine-grained Requirements-to-Code RelationsT. Hey; F. Chen; S. Weigelt; W. F. Tichy 2021 Traceability information is a fundamental prerequisite for many essential software maintenance and evolution tasks, such as change impact and software reusability analyses. However, manually generating traceability information is costly and error-prone. Therefore, researchers have developed automated approaches that utilize textual similarities between artifacts to establish trace links. These approaches tend to achieve low precision at reasonable recall levels, as they are not able to bridge the semantic gap between high-level natural language requirements and code. We propose to overcome this limitation by leveraging fine-grained, method and sentence level, similarities between the artifacts for traceability link recovery. Our approach uses word embeddings and a Word Mover's Distance-based similarity to bridge the semantic gap. The fine-grained similarities are aggregated according to the artifacts structure and participate in a majority vote to retrieve coarse-grained, requirement-to-class, trace links. In a comprehensive empirical evaluation, we show that our approach is able to outperform state-of-the-art unsupervised traceability link recovery approaches. Additionally, we illustrate the benefits of fine-grained structural analyses to word embedding-based trace link generation.10.1109/ICSME52107.2021.00008 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9609109Traceability;Traceability Link Recovery;Requirements Engineering;Word Embeddings;Natural Language Processing;Word Movers DistanceIEEE Inglês
A Rigorous Framework for Specification, Analysis and Enforcement of Access Control PoliciesA. Margheri; M. Masi; R. Pugliese; F. Tiezzi 2019 Access control systems are widely used means for the protection of computing systems. They are defined in terms of access control policies regulating the access to system resources. In this paper, we introduce a formally-defined, fully-implemented framework for specification, analysis and enforcement of attribute-based access control policies. The framework rests on FACPL, a language with a compact, yet expressive, syntax for specification of real-world access control policies and with a rigorously defined denotational semantics. The framework enables the automated verification of properties regarding both the authorisations enforced by single policies and the relationships among multiple policies. Effectiveness and performance of the analysis rely on a semantic-preserving representation of FACPL policies in terms of SMT formulae and on the use of efficient SMT solvers. Our analysis approach explicitly addresses some crucial aspects of policy evaluation, such as missing attributes, erroneous values and obligations, which are instead overlooked in other proposals. The framework is supported by Java-based tools, among which an Eclipse-based IDE offering a tailored development and analysis environment for FACPL policies and a Java library for policy enforcement. We illustrate the framework and its formal ingredients by means of an e-Health case study, while its effectiveness is assessed by means of performance stress tests and experiments on a well-established benchmark.10.1109/TSE.2017.2765640 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8081817Attribute-based access control;policy languages;policy analysis;SMTIEEE Inglês
Control-Flow Modeling with Declare: Behavioral Properties, Computational Complexity, and ToolsV. Fionda; A. Guzzo 2020 Declarative approaches to control-flow modeling use logic-based languages to formalize a number of constraints that valid traces must satisfy. The most noticeable example is the DECLARE framework based on linear temporal logic. Despite the interest that DECLARE has been attracting, the current knowledge about its formal properties was rather limited. The goal of this paper is to fill this gap by: (i) analyzing the behavioral properties of DECLARE by comparing it with the modeling capabilities of traditional procedural design approaches, in particular, block-structured processes; (ii) analyzing DECLARE from the computational point of view. As for the former point, we identify both the block-structured processes constructs that can be simulated in DECLARE and the features of DECLARE that can be encoded in block-structured processes. As for the latter point, we show that checking whether a given set of DECLARE patterns admits a satisfying trace is an NP-hard problem. In particular, we identify some DECLARE specifications whose satisfying traces are all of exponential length and some useful DECLARE fragments where a satisfying trace whose length is polynomially bounded is guaranteed to exist. The paper also discusses the declare2sat prototype system and the results of a thorough experimental validation.10.1109/TKDE.2019.2897309 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8633413Declarative process modelling;linear temporal logic;declare;process miningIEEE Inglês
UML Templates Distilled J. Farinha; A. R. da Silva 2022 UML templates are possibly the most neglected and misused piece of knowledge in UML modelling. This subject has been disregarded in the research and practice literature and even by modelling tools providers. This paper suggests that such oblivion results from a general misunderstanding that UML templates are just graphical representations of genericity like it is found in programming languages, and from the insufficient support from the modelling tools, with a consequence of poor usage of UML templates in practice. Indeed, the capabilities and potential of UML templates are far-reaching. Increasing awareness around them could bring significant benefits for UML users, namely, higher-level abstraction and reuse. Therefore, this paper provides a distilling tutorial on UML templates to highlight their flexibility and advantages. That presentation follows a tutorial style and is supported by several illustrative examples, varying from simpler to more complex ones. This tutorial reviews the Template construct’s core concepts and terminology, presents constraining classifiers and shows how to define properties and operations as template parameters. Then, it presents and discusses advanced aspects such as operation templates, parameter defaults, the relationship between binding and generalization, and the specific semantics of package templates. Furthermore, the paper discusses the related work and uncovers some of the UML templates’ limitations and opportunities for improvement.10.1109/ACCESS.2022.3143898 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9684375Object-oriented modelling;genericity;UML;templates;UML templatesIEEE Inglês
A simple, lightweight framework for testing RESTful services with TTCN-3T. Vassiliou-Gioles 2020 Micro-service architecture has become a standard software architecture style, with loosely coupled, specified, and implemented services, owned by small teams and independently deployable. TTCN-3, as test specification and implementation language, allows an easy and efficient description of complex distributed test behavior and seems to be a natural fit to test micro-services. TTCN-3 is independent of the underlying communication and data technology, which is strength and weakness at the same time. While tools and frameworks are supporting micro-service developers to abstract from the underlying data, implementation, and communication technology, this support has to be modeled in a TTCN-3 based test system, manually. This paper discusses the concepts of a TTCN-3 framework on the four different levels of the Richardson-Maturity Model, introducing support for testing hypermedia controls, HATEOAS, proposes a TTCN-3 framework and open-source implementation to realize them and demonstrates its application by a concrete example.10.1109/QRS-C51114.2020.00089 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9282686TTCN-3;Software testing;test automation;micro service;RESTful API;web serviceIEEE Inglês

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787838
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9825900
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9486517
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9864552
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882850
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793786
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218133
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582525
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9291598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9401953
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9359318
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958650
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9342375
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005452
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8742348
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9702813
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9212077
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218218
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904865
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9027371
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8767927
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9940333
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9073836
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9226337
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8812865
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8930881
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8926692
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715289
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9286074
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920624
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9805493
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283690
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529492
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474544
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836772
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592516
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284634
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8662719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8806757
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793944
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10011502
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9231058
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8387447
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9498445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9609109
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8081817
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8633413
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9684375
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9282686

Verification of Scheduling of Conditional Behaviors in High-Level SynthesisR. Chouksey; C. Karfa 2020 High-level synthesis (HLS) technique translates the behaviors written in high-level languages like C/C++ into register transfer level (RTL) design. Due to its complexity, proving the correctness of an HLS tool is prohibitively expensive. Translation validation is the process of proving that the target code is a correct translation of the source program being compiled. The path-based equivalence checking (PBEC) method is a widely used translation validation method for verification of the scheduling phase of HLS. The existing PBEC methods cannot handle significant control structure modification that occurs in the efficient scheduling of conditional behaviors. Hence, they produce a false-negative result. In this article, we identify some scenarios involving path merge/split where the state-of-the-art PBEC approaches fail to show the equivalence even though behaviors are equivalent. We propose a value propagation-based PBEC method along with a new cutpoint selection scheme to overcome this limitation. Our method can also handle the scenario where adjacent conditional blocks (CBs) having an equivalent conditional expression are combined into one CB. Experimental results demonstrate the usefulness of our method over the existing methods.10.1109/TVLSI.2020.2978242 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9042864Equivalence checking;finite state machine with datapaths (FSMDs) model;formal verification;high-level synthesis (HLS);scheduling verification;translation validationIEEE Inglês
SpeCS — SPARQL Query Containment SolverM. Spasić; M. V. Janičić 2020 With increasing popularity and importance of Semantic Web and its application, SPARQL, as a standard language for querying RDF data, gains more importance and receives additional attention from both practitioners and researchers coming from various domains. In database world, the query containment problem is a fundamental problem, crucially important in verification and optimization of queries. In this paper, we present our work on developing SPECS, an efficient solver for this problem in SPARQL query language. Our approach reduces query containment problem to the satisfiability problem in theories of the first order logic, and exploits SMT solver Z3 for checking the constructed formula. We present an evaluation that shows that our solver is much faster and covers more language features than the other available state-of-the-art solvers.10.1109/ZINC50678.2020.9161435 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9161435semantic web;SPARQL;query containment;query modeling;SMT solving;SPECSIEEE Inglês
Stately: An FSM Design Tool J. Pope; J. Saget; C. -J. H. Seger 2020 Finite state machines (FSMs) are at the heart of many digital circuits, in particular microprocessors such as the IoT-oriented Cephalopode processor we are implementing as part of the Octopi project.We frequently encounter two practical difficulties with FSM design: first, in the case of Mealy machines state transitions and output logic can have complex and overlapping conditions, which are difficult to maintain and comprehend if separated; and second, there is a tension between clarity and clock cycles with respect to the insertion of intermediate states.To address these in the context of the Cephalopode processor we developed the open-source tool Stately, a visual environment for designing finite state machines. States are organized spatially, individually programmed in a simple domain-specific language, and the resulting machine can be compiled to HFL code for the VossII hardware design and simulation platform.In addition to allowing the intermingling of transitions and output declarations, Stately introduces a mechanism by which chosen states can be merged during compilation. While only a modest semantic extension, it resolves several clarity-efficiency tradeoffs while retaining a clear visual interpretation. Other features include lightweight simulation for rudimentary testing, and extensive error-checking.10.1109/MEMOCODE51338.2020.9315130 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315130Finite state machines;Hardware design;Development tool IEEE Inglês
An Automatic VHDL Testbench Generator for Medium Complexity DesignK. T. Kai Xian; N. Kumar Thulasiraman 2021 Design verification is one of the most time-consuming and labor-intensive process in semi-conductor industry. With every growing complexity of electronics designs, verification process become more time consuming so is the time needed to market the product. Furthermore, commercially available automatic testbench tools are either too costly or not being open source particularly for academic purpose. Hence, automatic testbench generator has been developed with intention to reduce the amount time and effort to generate testbench. This paper presents a method of developing automatic testbench tool that is able to develop VHDL testbenches for asynchronous, synchronous, and finite state machine VHDL design files by incorporating the user input parameters. Furthermore, with addition of GUI, the tool is simple and user friendly that develops VHDL testbench rapidly. The tool also incorporates the testbench coverage feature to indicate effectiveness of the developed testbench by indicating the activity of the design nodes, number of times the nodes are tested and percentage of the code coverage. The tool is tested on a few medium complexity designs and the results shows that the developed testbenches provide more than 90% code coverage.10.1109/SCOReD53546.2021.9652717 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9652717Test Bench Generator;Testbench;Verification;VHDL IEEE Inglês
An Integrated Digital System Design Framework With On-Chip Functional Verification and Performance EvaluationG. Cano-Quiveu; P. Ruiz-De-Clavijo-Vazquez; M. J. Bellido-Diaz; D. Guerrero-Martos; J. Viejo-Cortes; J. Juan-Chico2021 This paper introduces a design and on-chip verification framework for IPCores in FPGA platforms. The methodology of the proposed framework is based on the development of a high level software model, an HDL description of the IPCore and the verification of the system under test by the Autotest Core, an on-chip verification core developed for this framework. The test pattern generation is done at the high level in software and used throughout the design and verification process. HDL simulation results can then be compared to on-chip results and get performance measurements from the Autotest Core. The Off-line testing is possible by using standard low-cost Flash storage (SD card). The proposed framework and methodology applied to PRESENT and SPONGENT cryptographic algorithms has shown over two orders of magnitude better performance than commercial tools like Xilinx’s VIO and a hardware footprint of the verification cored below 3% of the available FPGA resources.10.1109/ACCESS.2021.3132188 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9632568FPGA;framework;HDL;IoT;IPCore;on-chip;performance;verificationIEEE Inglês
Monitoring Data Management Services on the Edge Using Enhanced TSDBsW. Zeng; S. Zhang; I. -L. Yen; F. B. Bastani; S. -Y. Hwang2019 Many IoT systems are data intensive and are for the purpose of monitoring of critical systems. In these monitoring systems, a large volume of data steadily flow out of a large number of sensors which monitor the physical systems and environments. Thus, first of all, we need to consider how to store and manage these IoT data. Also, data sharing can greatly enhance the quality of data analytics and help with cold start of similar systems. Thus, the data storage and management solutions should consider how to help discover useful data in order to facilitate data sharing. Time series databases (TSDBs) have been developed in recent years for storing IoT data, but they have some deficiencies. One problem is that they are not very effective in supporting data sharing due to the lack of a good semantic model for proper data specifications, which is critical in data discovery. To resolve this problem, we develop a monitoring data annotation (MDA) model to guide the systematic specification of monitoring data streams. To support the realization of the MDA model, we also develop an external tool suite, which stores the additional MDA-based specifications for the data streams and interfaces with queries to perform preliminary processing to allow effective monitoring data discovery based on the MDA specifications. Another problem with current TSDBs is their focus on storing time series data that arrive at a fixed rate, but not on storing and retrieval of event data, which may come sporadically with irregular timing patterns. When storing such event data in existing TSDBs, the retrieval may have performance problems. Also, existing TSDBs do not have specific query language defined for event analysis. We develop a model for event specifications and use it to specify abnormal system states to be captured to allow timely mitigation. The event model is integrated into the TSDB by translating them to continuous queries defined in some TSDBs. Also, we develop an event storage scheme and incorporate it in TSDBs to facilitate efficient event retrieval. Experimental results show that our event solution for the TSDB is effective and efficient.10.1109/SOCA.2019.00010 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028Monitoring data management;time series databases;edge computing;Internet of Things;data discovery;time series event storageIEEE Inglês
Auditing a Software-Defined Cross Domain Solution ArchitectureN. Daughety; M. Pendleton; R. Perez; S. Xu; J. Franco2022 In the context of cybersecurity systems, trust is the firm belief that a system will behave as expected. Trustworthiness is the proven property of a system that is worthy of trust. Therefore, trust is ephemeral, i.e. trust can be broken; trustworthiness is perpetual, i.e. trustworthiness is verified and cannot be broken. The gap between these two concepts is one which is, alarmingly, often overlooked. In fact, the pressure to meet with the pace of operations for mission critical cross domain solution (CDS) development has resulted in a status quo of high-risk, ad hoc solutions. Trustworthiness, proven through formal verification, should be an essential property in any hardware and/or software security system. We have shown, in "vCDS: A Virtualized Cross Domain Solution Architecture", that developing a formally verified CDS is possible. virtual CDS (vCDS) additionally comes with security guarantees, i.e. confidentiality, integrity, and availability, through the use of a formally verified trusted computing base (TCB). In order for a system, defined by an architecture description language (ADL), to be considered trustworthy, the implemented security configuration, i.e. access control and data protection models, must be verified correct. In this paper we present the first and only security auditing tool which seeks to verify the security configuration of a CDS architecture defined through ADL description. This tool is useful in mitigating the risk of existing solutions by ensuring proper security enforcement. Furthermore, when coupled with the agile nature of vCDS, this tool significantly increases the pace of system delivery.10.1109/CSR54599.2022.9850321 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321Cross Domain Solution;Architecture Description Language;Trustworthiness;Configuration Security;Data Protection;Access Control;Trusted Systems;Security AnalysisIEEE Inglês
A UML Profile for Prediction of Significant Software RequirementsA. Tariq; F. Azam; M. W. Anwar; B. Maqbool; H. A. Javaid2019 The preliminary phase of the software development life cycle is Requirements engineering that is nearest to the user's world. This phase contains tasks that are knowledge concentrated. Therefore, the practice of Bayesian Belief Network (BBN) for modelling this knowledge would be worthful assistance. Accordingly, predicting significant requirements is essential. When poorly identified, numerous problems happen, such as budget overrun, software failures and schedule overrun. However, this phase is usually not performed and skipped by assuming as an inconsequential phase. Significant requirements identification become more vital and challenging when the complexity of the software increases. Therefore, managers and developers recurrently lose confidence in software artifacts. Wavering in the developer's confidence may in return distress the decisions of which requirement is to implement first. In this paper Bayesian belief network (BBN) approach for predicting significant requirements is proposed to solve the problem by UML Profile mechanism. This probabilistic model supports in accomplishing the uncertainties and inaccuracy generally exists in the requirements engineering process. It makes the prediction more precise, intuitionistic and reasonable. The Profile is imported into a UML tool, which helps in prompt validation of meta-model concepts in practice. The approach is practicable in a realistic context and addresses uncertainties.10.1109/IEMCON.2019.8936227 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936227Bayesian Belief Network;Requirements Prediction;UML Profile;Significant Requirement;Risk Analysis;Requirements Dependency;Predictive ModelIEEE Inglês
The Ten Lockheed Martin Cyber-Physical Challenges: Formalized, Analyzed, and ExplainedA. Mavridou; H. Bourbouh; D. Giannakopoulou; T. Pressburger; M. Hejase; P. -L. Garoche; J. Schumann2020 Capturing and analyzing requirements of Cyber-Physical Systems (CPS) can be challenging, since CPS models typically involve time-varying and real-valued variables, physical system dynamics, or even adaptive behavior. MATLAB/Simulink is a development and simulation framework that is widely used in industry to capture such systems. In this paper, we report on the application of NASA Ames tools to perform end-to-end analysis of the Ten Lockheed Martin Challenge Problems (LMCPS). LMCPS is a set of industrial Simulink model benchmarks and natural language requirements developed by domain experts. Our framework, which integrates the tools FRET and COCOSIM, is used to: 1) elicit, explain, and formalize the semantics of the given natural language requirements; 2) generate verification code and monitors that can be automatically attached to the Simulink models; 3) perform verification by using SMT-based model checkers. FRET and COCOS1M are open source, and can be used by other researchers and practitioners to replicate our case study. We provide a categorization of recurring patterns in the formalization of the requirements and discuss the strengths and weaknesses of our automated verification approach.10.1109/RE48521.2020.00040 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218211- IEEE Inglês
Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time ConstraintsB. Lima; J. P. Faria; R. Hierons 2020 Evermore end-to-end digital services depend on the proper interoperation of multiple products, forming a distributed system, often subject to timing requirements. To ensure interoperability and the timely behavior of such systems, it is important to conduct integration tests that verify the interactions with the environment and between the system components in key scenarios. The automation of such integration tests requires that test components are also distributed, with local testers deployed close to the system components, coordinated by a central tester. Test coordination in such a test architecture is a big challenge. To address it, in this article we propose an approach based on the pre-processing of the test scenarios. We first analyze the test scenarios in order to check if conformance errors can be detected locally (local observability) and test inputs can be decided locally (local controllability) by the local testers for the test scenario under consideration, without the need for exchanging coordination messages between the test components during test execution. If such properties do not hold, we next try to determine a minimum set of coordination messages or time constraints to be attached to the given test scenario to enforce those properties and effectively solve the test coordination problem with minimal overhead. The analysis and enforcement procedures were implemented in the DCO Analyzer tool for test scenarios described by means of UML sequence diagrams. Since many local observability and controllability problems may be caused by design flaws or incomplete specifications, and multiple ways may exist to enforce local observability and controllability, the tool was designed as a static analysis assistant to be used before test execution. DCO Analyzer was able to correctly identify local observability and controllability problems in real-world scenarios and help the users fix the detected problems.10.1109/ACCESS.2020.3021858 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9186641Test scenarios;observability;controllability;distributed systems;time constraintsIEEE Inglês
ROSSi A Graphical Programming Interface for ROS 2C. Wanninger; S. Rossi; M. Schörner; A. Hoffmann; A. Poeppel; C. Eymueller; W. Reif2021 The Robot Operating System (ROS) offers developers a large number of ready-made packages for developing robot programs. The multitude of packages and the different interfaces or adapters is also the reason why ROS projects often tend to become confusing. Concepts of model-driven software development using a domain-specific modeling language could counteract this and at the same time speed up the development process of such projects. This is investigated in this paper by transferring the core concepts from ROS 2 into a graphical programming interface. Elements of established graphical programming tools are compared and approaches from modeling languages such as UML are used to create a novel approach for graphical development of ROS projects. The resulting interface is evaluated through the development of a project built on ROS, and the approach shows promise towards facilitating work with the Robot Operating System.10.23919/ICCAS52745.2021.9649736 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9649736robot operating system;ros;unmaned aerial vehicle;uav;model driven development;semantic plug and playIEEE Inglês
ChiselVerify: An Open-Source Hardware Verification Library for Chisel and ScalaA. Dobis; T. Petersen; H. J. Damsgaard; K. J. Hesse Rasmussen; E. Tolotto; S. T. Andersen; R. Lin; M. Schoeberl2021 Modern digital hardware is becoming ever more complex. The development of different application-specific accelerators rather than traditional general purpose processors calls for advanced development methods not only for design, but equally so for subsequent verification. Recently, this has made engineers propose an agile hardware development flow. However, one of the main obstacles when proposing such a method is the lack of efficient tools. Chisel, a high-level hardware construction language, was introduced in order to combat this lack. Since this already enables agile hardware design, we instead focus our attention on the verification flow. Thus, this paper proposes ChiselVerify, an open-source library for verifying circuits described in Chisel. It builds on top of Chisel and uses Scala to drive the verification process. The solution is well integrated into the existing Chisel universe, making it an extension of currently existing testing libraries.10.1109/NorCAS53631.2021.9599869 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599869digital design;verification;Chisel;Scala IEEE Inglês
A Modeling Tool for Reconfigurable Skills in ROSD. Bozhinoski; E. Aguado; M. G. Oviedo; C. Hernandez; R. Sanz; A. Wąsowski2021 Known attempts to build autonomous robots rely on complex control architectures, often implemented with the Robot Operating System platform (ROS). The implementation of adaptable architectures is very often ad hoc, quickly gets cumbersome and expensive. Reusable solutions that support complex, runtime reasoning for robot adaptation have been seen in the adoption of ontologies. While the usage of ontologies significantly increases system reuse and maintainability, it requires additional effort from the application developers to translate requirements into formal rules that can be used by an ontological reasoner. In this paper, we present a design tool that facilitates the specification of reconfigurable robot skills. Based on the specified skills, we generate corresponding runtime models for self-adaptation that can be directly deployed to a running robot that uses a reasoning approach based on ontologies. We demonstrate the applicability of the tool in a real robot performing a patrolling mission at a university campus.10.1109/RoSE52553.2021.00011 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474550self adaptive systems;autonomous robots;domain specific language;ontologies;ROS2 toolIEEE Inglês
Transformation of the UML Deployment Model into a Distributed Ledger Network ConfigurationT. GÓrski; J. Bednarski 2020 A distributed ledger is a decentralized database spread across many participants. Various models describe software architecture and represent different architectural views. The paper concentrates on the deployment view. Model-Driven Development (MDD) is a software engineering approach that leverages models and transformations. The paper describes the UML2Deployment transformation of the distributed ledger’s deployment model into its deployment script. The deployment model, expressed in Unified Modeling Language (UML), is augmented with stereotypes and tagged values from UML Profile for Distributed Ledger Deployment. The target of the transformation is Gradle Groovy Domain Specific Language (DSL) deployment script for DLT network configuration. The transformation has been designed for R3 Corda framework. The authors propose the complete solution. The transformation has been incorporated into Visual Paradigm modeling tool.10.1109/SoSE50414.2020.9130492 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9130492Distributed Ledger;Model-Driven Development;Deployment view;Unified Modeling Language extensibility mechanisms;Gradle Groovy Domain Specific Language.IEEE Inglês
A Coq proof of the correctness of X25519 in TweetNaClP. Schwabe; B. Viguier; T. Weerwag; F. Wiedijk2021 We formally prove that the C implementation of the X25519 key-exchange protocol in the TweetNaCl library is correct. We prove both that it correctly implements the protocol from Bernstein's 2006 paper, as standardized in RFC 7748, as well as the absence of undefined behavior like arithmetic overflows and array out-of-bounds errors. We also formally prove, based on the work of Bartzia and Strub, that X25519 is mathematically correct, i.e., that it correctly computes scalar multiplication on the elliptic curve Curve25519. The proofs are all computer-verified using the Coq theorem prover. To establish the link between C and Coq we use the Verified Software Toolchain (VST).10.1109/CSF51468.2021.00023 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505238Formal-Verification;x22519;Coq;Secure-implementations;Proofs IEEE Inglês
An Actor-Based Design Platform for System of SystemsM. Sirjani; G. Forcina; A. Jafari; S. Baumgart; E. Khamespanah; A. Sedaghatbaf2019 In this paper, we present AdaptiveFlow as a platform for designing system of systems. A model-based development approach is proposed and tools are provided for formal verification and performance evaluation. The actor-based language, Timed Rebeca, is used for modelling, and the model checking tool Afra is used for checking the safety properties and also for performance evaluation. We investigate the efficiency of our approach and the applicability of the developed platform by conducting experiments on a case study based on the Electric Site Research Project of Volvo Construction Equipment. In this project, a fleet of autonomous haulers is utilised to transport materials in a quarry site. We used three adaptive policies as plugins to our platform and examined these policies in different scenarios.10.1109/COMPSAC.2019.00089 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754117System-of-systems;Actor model;Track-based flow management;Model checking;Performance evaluationIEEE Inglês
Open Source Domain-specific Model Interface and Tool Frameworks for a Digital Avionics Systems Development ProcessB. Annighoefer; M. Brunner 2021 Domain-specific tools and models are used in many avionics development processes, and allow us to capture knowledge about a certain activity in the most appropriate format by providing an unambiguous language for the engineers involved. Domain-specific modeling environments are used to create custom models, and auxiliary tools are then applied for automatic validation, processing, and data transformation, thus providing a good baseline for a digital (model-based) development process. Practical experience, however, shows that existing domain-specific environments are often inappropriate for the avionics domain: the user interface is overloaded, the editors cannot reflect the complexity required by the system, and concurrent and role-based development is not possible. We propose two open source frameworks to alleviate this problem. Firstly, Essential Object Query (EOQ) is a generic interface that decouples a domain-specific model from the applications using it. It is programming-language-independent and allows for complex model modifications by multiple users on multiple computers. Secondly, the eXtensible Graphical EMOF Editor (XGEE) uses EOQ to configure customized graphical editors for models within a browser. EOQ and XGEE are used to build an exemplary web-based, multi-user, and domain-specific editor for the Open Avionics Architecture Model (OAAM). This application demonstrates the way in which EOQ and XGEE form the foundation of a model-based real-time collaboration in a digital development process, and highlights the challenges that remain in terms of building a real digital development process.10.1109/DASC52595.2021.9594380 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9594380digitalization;development process;avionics architecture;systems modeling;MBSE;model-based;model-driven;domain-specific;collaborative modeling;XGEE;EOQIEEE Inglês
Efficient Algorithms for Finding Differences between Process ModelsA. Skobtsov; A. Kalenkova 2019 Information systems from various domains record their behavior in a form of event logs. These event logs can be further analyzed and formal process models describing hidden processes can be discovered. In order to relate real and expected process behavior, discovered (constructed from event logs) and reference (manually created by analysts) process models can be compared. The result of comparison should clearly present commonalities and differences between these models. Since most process models are represented by graph-based languages, a graph comparison technique can be applied. It is worth known that graph comparison techniques are computationally expensive. In this paper, we adapt different heuristic graph comparison algorithms to compare BPMN (Business Process Model and Notation) models. These algorithms are implemented and tested on large BPMN models discovered from event logs. We show that some of the heuristic algorithms allow to find nearly optimal solutions in a reasonable amount of time.10.1109/ISPRAS47671.2019.00015 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151process comparison;process mining;BPMN (Business Process Model and Notation);heuristic algorithms;graph edit distanceIEEE Inglês
Enabling Coverage-Based Verification in ChiselA. Dobis; H. J. Damsgaard; E. Tolotto; K. Hesse; T. Petersen; M. Schoeberl2022 Ever-increasing performance demands are pushing hardware designers towards designing domain-specific accelerators. This has created a demand for improving the overall efficiency of the hardware design and verification cycles. The design efficiency was improved with the introduction of Chisel. However, verification efficiency has yet to be tackled. One method that can increase verification efficiency is the use of various types of coverage measures. In this paper, we present our open-source, coverage-related verification tools targeting digital designs described in Chisel. Specifically, we have created a new method allowing for statement coverage at an intermediate representation of Chisel, and several methods for gathering functional coverage directly on a Chisel description.10.1109/ETS54262.2022.9810435 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9810435Hardware Verification;Statement Coverage;Functional Coverage;Chisel;ScalaIEEE Inglês
Simulation of Hybrid Reo Connectors E. Ardeshir-Larijani; A. Farhadi; F. Arbab 2020 The prevalence of complex Cyber-Physical Systems (CPS) as an increasingly ubiquitous technology, necessitates the incorporation of component based and compositional design methods for the development and deployment of such systems. In this paper, we introduce a hybrid coordination framework to specify CPSs with components and use the resulting models to simulate, validate and verify those systems, using UPPAAL statistical model checker (SMC). We use SMC because with a level of uncertainty and unpredictability (e.g., the physical environment with which a CPS interacts), simulation-based verification approaches, where properties are guaranteed with a degree of confidence, produce more meaningful results. To demonstrate the main idea of our paper, we chose Reo as the language for the specification of hybrid components coordination, where both continuous and discrete state transitions can occur inside components. Next, we introduce a transformation that takes the specification of a connector in the language of hybrid Reo, into a network of hybrid timed automata, a commonly used semantic model in SMC. Finally, we report on the implementation of our transformation, and experimentation on two case studies.10.1109/RTEST49666.2020.9140111 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9140111Reo coordination language;component based system;cyber physical system;hybrid system;statistical model checkingIEEE Inglês
Parametric Analyses of Attack-Fault Trees É. André; D. Lime; M. Ramparison; M. Stoelinga2019 Risk assessment of cyber-physical systems, such as power plants, connected devices and IT-infrastructures has always been challenging: safety (i.e., absence of unintentional failures) and security (i. e., no disruptions due to attackers) are conditions that must be guaranteed. One of the traditional tools used to help considering these problems is attack trees, a tree-based formalism inspired by fault trees, a well-known formalism used in safety engineering. In this paper we define and implement the translation of attack-fault trees (AFTs) to a new extension of timed automata, called parametric weighted timed automata. This allows us to parametrize constants such as time and discrete costs in an AFT and then, using the model-checker IMITATOR, to compute the set of parameter values such that a successful attack is possible. Using the different sets of parameter values computed, different attack and fault scenarios can be deduced depending on the budget, time or computation power of the attacker, providing helpful data to select the most efficient counter-measure.10.1109/ACSD.2019.00008 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8843643security;attack-fault trees;parametric timed automata;imitator IEEE Inglês
Design and Verification of AMBA AHB P. Giridhar; P. Choudhury 2019 The AHB (Advanced High-performance Bus) is a high-performance bus in AMBA (Advanced Microcontroller Bus Architecture) family. It is a standard for intercommunication of modules in a system. AHB standards are defined by ARM and supports the communication of on-chip memories processors and interfaces of off-chip external memory. In this paper we present, design and perform verification of AHB which support one master and four slaves. In this work, the design of the AHB Protocol is developed comprising of the basic blocks such as Master, Slave, decoder and multiplexers. This AMBA-AHB protocol can be used in any application provided the design should be an AHB compliant. The building blocks of the design master, slaves, decoder and multiplexers are developed in Verilog. The verification environment is developed in system Verilog (SV). QuestaSim (Advanced verification tool from Mentor Graphics) is used to simulate and verify the design and calculate code and functional coverages.10.1109/ICATIECE45860.2019.9063856 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9063856AHB;AMBA-AHB;QuestaSim;ARM IEEE Inglês
Towards an UML-based SoS Analysis and Design ProcessB. Nadira; C. Bouanaka; M. Bendjaballah; A. Djarri2020 Systems of Systems or SoSs are an emerging class of systems built from large-scale constituent systems, that are often heterogeneous, with independent management, goals and resources. The heterogeneity and managerial independence of the constituent systems is both a strength and a drawback of SoS engineering. Although, the individual systems of an SoS may operate autonomously, their interactions present and usually provide important emerging properties that are constantly evolving. Therefore, coordination and interaction within the SoS constituent systems gives rise to an emerging behavior which defines the SoS overall goal. However, this may lead to unpredictable behavior (arrival/departure, failure to fulfill commitments) of the SoS constituent systems. As a result, a well-defined process for SoS engineering; where missions, capabilities and mainly the expected interactions of the constituent systems are well-established, is missing. Our objective in the present work is to propose an UML-based SoS analysis and design process (USDP). The process is iterative and incremental and will be instrumented and documented with various diagrams to ensure clarity and understandability of the USDP artifacts. Besides, a meta-model for SoS modelling will be defined, it mainly defines the SoS structure in terms of constituent systems, theirs missions, capabilities, and interactions. With the aim of reducing the abstraction of interactions and in order to ensure a high interoperability, a precise and coherent definition of the interactions among the heterogenous constituent systems of an SoS is given to make the description of the SoS more truthful. From a practical point of view, we develop a graphical editor for modeling an SoS, based on the strengths of the MDE approach.10.1109/ICAASE51408.2020.9380112 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380112System of Systems;Software engineering;UML;Design Process;USDPIEEE Inglês
Ambiguity and Generality in Natural Language Privacy PoliciesM. B. Hosseini; J. Heaps; R. Slavin; J. Niu; T. Breaux2021 Privacy policies are legal documents containing application data practices. These documents are well-established sources of requirements in software engineering. However, privacy policies are written in natural language, thus subject to ambiguity and abstraction. Eliciting requirements from privacy policies is a challenging task as these ambiguities can result in more than one interpretation of a given information type (e.g., ambiguous information type "device information" in the statement "we collect your device information"). To address this challenge, we propose an automated approach to infer semantic relations among information types and construct an ontology to guide requirements authors in the selection of the most appropriate information type terms. Our solution utilizes word embeddings and Convolutional Neural Networks (CNN) to classify information type pairs as either hypernymy, synonymy, or unknown. We evaluate our model on a manually-built ontology, yielding predictions that identify hypernymy relations in information type pairs with 0.904 F-1 score, suggesting a large reduction in effort required for ontology construction.10.1109/RE51729.2021.00014 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604600Privacy Policy;Privacy Requirement;Ambiguity;Generality;Semantic Relation;Neural Network;OntologyIEEE Inglês
An Automated Fact Checking System Using Deep Learning Through Word EmbeddingP. Wang; L. Deng; X. Wu 2019 The increasing concern with false information has stimulated research in joint Fact Extraction and VERification (FEVER). Now we propose a system by deep learning which can help people identify the authenticity of most claims as well as providing evidences selected from knowledge source like Wikipedia. In this paper, we examine how to use deep learning method to improve the performance of the automatic fact verification system. Firstly, the inverted index of the knowledge base is established by using a Python package named Whoosh. Secondly, the claim is regularized by the Named Entity Recognition (NER) tool, and the most relevant documents are filtered based on the relevance ranking algorithm. Thirdly, top 20 relevant sentences for each claim are filtered by word embeddings. Finally, the effectiveness of each sentence and the label of claim is judged based on the two-level pre-training model. Our approach achieved a 0.89 document.10.1109/SSCI44817.2019.9002783 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9002783fact checking;cosine similarity;word embedding;deep learning IEEE Inglês
Toward Generation of Dependability Assessment Models for Industrial Control SystemG. BOYER; J. -F. PÉTIN; N. BRÎNZEI; J. CAMERINI; M. NDIAYE2019 This article focuses on the development of a tool-based approach for the assessment of industrial control IT systems. The originality of the approach relies in two main points. First of all, the underlying formal models for dependability assessment must cover dynamic behavior of the IT architectures to take into account reparation, reconfiguration and modes in the life cycle of the architecture. Secondly, these formal models must be automatically established and hidden to the architecture designers to reduce time consumption when dealing with a large amount of candidate architectures evaluated during the engineering phase. This work is a first step towards such an objective by defining a structured UML (Unified Modelling Language) modelling framework for identifying and structuring the key objects of an architecture with regard to dependability.10.1109/DT.2019.8813373 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813373UML diagrams;dependability assessment;industrial control system architecture;automatic generation model;Petri netsIEEE Inglês
Dealing with Non-Functional Requirements in Model-Driven Development: A SurveyD. Ameller; X. Franch; C. Gómez; S. Martínez-Fernández; J. Araújo; S. Biffl; J. Cabot; V. Cortellessa; D. M. Fernández; A. Moreira; H. Muccini; A. Vallecillo; M. Wimmer; V. Amaral; W. Böhm; H. Bruneliere; L. Burgueño; M. Goulão; S. Teufl; L. Berardinelli2021 Context: Managing Non-Functional Requirements (NFRs) in software projects is challenging, and projects that adopt Model-Driven Development (MDD) are no exception. Although several methods and techniques have been proposed to face this challenge, there is still little evidence on how NFRs are handled in MDD by practitioners. Knowing more about the state of the practice may help researchers to steer their research and practitioners to improve their daily work. Objective: In this paper, we present our findings from an interview-based survey conducted with practitioners working in 18 different companies from 6 European countries. From a practitioner's point of view, the paper shows what barriers and benefits the management of NFRs as part of the MDD process can bring to companies, how NFRs are supported by MDD approaches, and which strategies are followed when (some) types of NFRs are not supported by MDD approaches. Results: Our study shows that practitioners perceive MDD adoption as a complex process with little to no tool support for NFRs, reporting productivity and maintainability as the types of NFRs expected to be supported when MDD is adopted. But in general, companies adapt MDD to deal with NFRs. When NFRs are not supported, the generated code is sometimes changed manually, thus compromising the maintainability of the software developed. However, the interviewed practitioners claim that the benefits of using MDD outweight the extra effort required by these manual adaptations. Conclusion: Overall, the results indicate that it is important for practitioners to handle `NFRs in MDD, but further research is necessary in order to lower the barrier for supporting a broad spectrum of NFRs with MDD. Still, much conceptual and tool implementation work seems to be necessary to lower the barrier of integrating the broad spectrum of NFRs in practice.10.1109/TSE.2019.2904476 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8665968Model-driven development;non-functional requirements;quality requirements;requirements engineering;surveyIEEE Inglês
Effectiveness on C Flaws Checking and RemovalJ. Inácio; I. Medeiros 2022 The use of software daily has become inevitable nowadays. Almost all everyday tools and the most different areas (e.g., medicine or telecommunications) are dependent on software. The C programming language is one of the most used languages for software development, such as operating systems, drivers, embedded systems, and industrial products. Even with the appearance of new languages, it remains one of the most used [1] . At the same time, C lacks verification mechanisms, like array boundaries, leaving the entire responsibility to the developer for the correct management of memory and resources. These weaknesses are at the root of buffer overflows (BO) vulnerabilities, which range the first place in the CWE’s top 25 of the most dangerous weaknesses [2] . The exploitation of BO when existing in critical safety systems, such as railways and autonomous cars, can have catastrophic effects for manufacturers or endanger human lives.10.1109/DSN-S54099.2022.00021 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833646Buffer Overflow Vulnerabilities;Static Analysis;Fuzzing;Code Correction;Software SecurityIEEE Inglês
The Python/C API: Evolution, Usage Statistics, and Bug PatternsM. Hu; Y. Zhang 2020 Python has become one of the most popular programming languages in the era of data science and machine learning, especially for its diverse libraries and extension modules. Python front-end with C/C++ native implementation achieves both productivity and performance, almost becoming the standard structure for many mainstream software systems. However, feature discrepancies between two languages can pose many security hazards in the interface layer using the Python/C API. In this paper, we applied static analysis to reveal the evolution and usage statistics of the Python/C API, and provided a summary and classification of its 10 bug patterns with empirical bug instances from Pillow, a widely used Python imaging library. Our toolchain can be easily extended to access different types of syntactic bug-finding checkers. And our systematical taxonomy to classify bugs can guide the construction of more highly automated and high-precision bug-finding tools.10.1109/SANER48275.2020.9054835 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054835Python/C API;Static analysis;Evolution analysis;Fact extraction;Bug patternIEEE Inglês
Theory of Constructed Emotion Meets RE K. Taveter; T. Iqbal 2021 This article proposes to employ one of the most up to date theories of emotion - the theory of constructed emotion for engineering and validating requirements. We first provide an overview of different theories of emotion and indicate where the theory of constructed emotion lies in relation to these theories. After that, we describe possible advantages in applying theory of constructed emotion to requirements engineering. Thereafter, we postulate how the theory of constructed emotion could be applied in requirements engineering. We then hypothesize how the theory of constructed could be supported by appropriate methods and tools. Finally, we draw conclusions, and sketch the research agenda in applying the theory of constructed emotion in requirements engineering.10.1109/REW53955.2021.00067 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582299Theory of constructed emotions;requirements engineering;affective computingIEEE Inglês
The Notion of Cross Coverage in AMS Design VerificationS. Sanyal; A. Hazra; P. Dasgupta; S. Morrison; S. Surendran; L. Balasubramanian2020 Coverage monitoring is fundamental to design verification. Coverage artifacts are well developed for digital integrated circuits and these aim to cover the discrete state space and logical behaviors of the design. Analog designers are similarly concerned with the operating regions of the design and its response to an infinite and dense input space. Analog variables can influence each other in far more complex ways as compared to digital variables, consequently, the notion of cross coverage, as introduced in the analog context for the first time in this paper, is of high importance in analog design verification. This paper presents the formal syntax and semantics of analog cross coverage artifacts, the methods for evaluating them using our tool kit, and most importantly, the insights that can be gained from such cross coverage analysis.10.1109/ASP-DAC47756.2020.9045131 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131- IEEE Inglês
LastLayer: Toward Hardware and Software Continuous IntegrationL. Vega; J. Roesch; J. McMahan; L. Ceze 2020 This article presents LastLayer, an open-source tool that enables hardware and software continuous integration and simulation. Compared to traditional testing approaches based on the register transfer level abstraction, LastLayer provides a mechanism for testing Verilog designs with any programming language that supports the C foreign function interface. Furthermore, it supports a generic C interface that allows external programs convenient access to storage resources such as registers and memories in the design as well as control over the hardware simulation. Moreover, LastLayer achieves this software integration without requiring any hardware modification and automatically generates language bindings for these storage resources according to user specification. Using LastLayer, we evaluated two representative integration examples: a hardware adder written in Verilog operating over NumPy arrays, and a ReLu vector-accelerator written in Chisel processing tensors from PyTorch.10.1109/MM.2020.2997610 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9099634hardware simulation;hardware language interoperability;agile hardware designIEEE Inglês
Blackbird: Object-Oriented Planning, Simulation, and Sequencing Framework Used by Multiple MissionsC. R. Lawler; F. L. Ridenhour; S. A. Khan; N. M. Rossomando; A. Rothstein-Dowden2020 Every JPL flight mission relies on activity planning and sequence generation software to perform operations. Most such tools in use at JPL and elsewhere use attribute-based schemas or domain-specific languages (DSLs) to define activities. This reliance poses user training, software maintenance, performance, and other challenges. To solve this problem for future missions, a new software called Blackbird was developed which allows engineers to specify behavior in standard Java. The new code base has over an order of magnitude fewer lines of code than other JPL planning software, since no DSL or schema interpreter is needed. The use of Java for defining activities also allows mission adapters to debug their code in an integrated development environment, seamlessly call external libraries, and set up truly multi-mission models. These efficiency gains have significantly reduced the amount of development effort required to support the software. This paper discusses Blackbird's design, principles, and use cases. Within a year of its completion, six projects have begun using Blackbird. The Mars 2020 mission is using Blackbird to generate command sequences for cruise and Mars approach. By using multi-mission models, the Mars 2020 cruise adaptation was created in fewer than three months by three engineers at less than half time each. Work has begun to use Blackbird for communications planning during Mars 2020 surface operations. The Psyche mission uses Blackbird to generate its reference mission plans in development. Full simulations with 123,000 activities and 4.7 million resource value changes complete in about one minute. Psyche is also working towards using Blackbird in operations to support integrated activity planning and generate sequences. The InSight project is using Blackbird for mission planning in operations, replacing error-prone manual processes. For the NISAR mission, Blackbird evaluates threats to the commissioning phase timeline. The Europa Lander pre-project used Blackbird to perform a trade study. The ASTERIA mission is automating sequence generation in Blackbird. Going forward, more interested projects are likely to begin using Blackbird, and the capabilities of the core and multi-mission models will keep growing.10.1109/AERO47225.2020.9172680 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172680- IEEE Inglês
Flexible Software to Hardware Migration Methodology for FPGA Design and VerificationM. Trapaglia; R. Cayssials; L. De Pasquale; E. Ferro2019 Modern FPGA developments require flexible and Agile methodologies to support complex designs meeting the current highly demanding time-to-market metrics. Traditional hardware development processes based on waterfall flows are not adequate to get the most of the new reconfigurable FPGA technologies. Co-design and co-verification techniques allow handling both software and hardware development in a highly integrated process. However, such integration requires a deep knowledge of both hardware and software development. DUTILS is a Python/Cocotb-based environment for concurrent development suitable for modern software development technologies. This paper proposes software to hardware migration methodology for the DUTILS environment that allows a seamless integration between software and hardware design and the verification process flow of the whole system.10.1109/SPL.2019.8714377 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714377Co-simulation;Cocotb;FPGA development IEEE Inglês
Positioning-Based Domain-Specific Modelling through Mobile DevicesA. Sebastián-Lombraña; E. Guerra; J. d. Lara2020 Modelling is a central activity in many disciplines. It is typically performed with the support of modelling tools that run on desktop computers or laptops, i.e., in static settings. How-ever, some modelling scenarios require a faithful representation of the position of the model elements in the physical world. Such scenarios would benefit from the ability to model in mobility and exploit the data obtained from the sensors embedded in mobile devices. For this purpose, we propose a conceptual approach to positioning-based modelling based on the combination of a physical dimension (as provided by the sensors of mobile devices) and an ontological one (as provided by domain meta-models). We showcase different scenarios for these ideas, and present a prototype app - called METAPHORE - that runs on iOS devices and realizes these concepts.10.1109/SEAA51224.2020.00033 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9226290Model-driven engineering;domain-specific modelling;positioning-based modelling;mobile appsIEEE Inglês
Integration of ROS communication interfaces in a model-based tool for the description of AUTOSAR-compliant electrical/electronic architectures (E/E-A) in vehicle developmentH. Stoll; E. Koch; E. Sax 2020 In modern cars, software functions and services account for a large part of value creation and competitive differentiation. Several tools exist to address the development of such electrical/electronic architectures (E/E-A). In industry, the proprietary tool PREEvision developed by Vector Informatik GmbH is widely used to support the development for AUTOSAR, while in science and research, tools and ecosystems such as the Robot Operating System (ROS) are preferred because of their open-source nature. This leads to a multitude of freely available ROS components whose reusability in industrial AUTOSAR-based projects is desirable. Therefore, in this paper we present an approach to transform models between both worlds and thus to link them. This enables the further use of already existing components.10.1109/ITSC45102.2020.9294319 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9294319- IEEE Inglês
Model Transformation for Asset Administration ShellsT. Miny; M. Thies; U. Epple; C. Diedrich 2020 In the scope of Industry 4.0 (I40), one goal is the standardized access to asset information and asset services using standardized submodels (submodel templates) in the Asset Administration Shell. Since submodel templates are modeled by different groups of people, the same asset information will be contained in several submodel templates. For automatic generation of new submodels based on existing information from other submodels, model transformation can be a solution. Therefore, in this contribution, we present a guideline on how to develop a new model transformation language for a given use case and apply this guideline to the concrete use case (model transformation for Asset Administration Shells). As a result, we define of the abstract syntax of a customized model transformation language called AASMTL.10.1109/IECON43393.2020.9254649 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9254649Modell transformation;Industry 4.0;Asset Ad-ministration Shell IEEE Inglês
Block Level SoC Verification Using SystemverilogK. K. Yadu; R. Bhakthavatchalu 2019 Introducing a new strategy for verification of System On Chip (SoC) using system Verilog. System Verilog provides a great platform for verification. The OOPs concept in System Verilog make it more reliable. There are many existing SoC verification methods are available. But most of them are not that much efficient. So here we are planning to introduce a new verification strategy that takes many of the positive characteristics of the existing strategies and mixes them together to have an efficient and perfect strategy by using the advantages of System Verilog.10.1109/ICECA.2019.8821909 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8821909System-Verilog (SV);Test-Bench (TB);Register Transfer Level (RTL);Object Oriented Programming (OOP);Design Under Test (DUT)IEEE Inglês
Bidirectional Text-to-Model Element Requirement TransformationM. Ballard; R. Peak; S. Cimtalay; D. Mavris 2020 Elicitation, representation, and analysis of requirements are important tasks performed early in the systems engineering process. This remains true with the adoption of Model-Based Systems Engineering (MBSE) methodologies. Existing SysML-based methodologies often choose between (i) using external requirements documents and/or databases as the authoritative source for requirements truth versus (ii) generating requirements directly, as elements in the system model. In either case, there is often need for the systems engineer to manually develop a model-based requirements representation, as this faculty is not automatic in the commonly-used SysML feature set. Additionally, once the system model has been completed, systems engineers typically must prepare traditional “shall-statement” requirements for external review purposes, as not all stakeholders can be expected to be trained in system model interpretation. This paper details a novel effort to address both problems, by automatically transforming text-based requirements (TBR) into SysML model-based requirement (MBR) representations, and vice versa. The text-to-model based transformation direction uses requirement templates and natural language processing techniques, expanding on work from the field of requirements engineering. This paper also presents an aerospace-domain case study application of the developed tool. In the case study, a selected set of requirements were analyzed, and a system model was constructed. Then, the intermediate output system model was updated with additional elements, to represent the progression of the project's systems engineering process. The modified system model was then analyzed, constructing text-based requirements from the structure. The resulting text-based requirements were compared to the initial set of input requirements to assess consistency in both directions of analysis. The methodology developed in this paper improves the systems engineering process by saving the systems engineer time constructing potentially repetitive model elements, and by enabling model-based requirement analyses to methodologies previously only capable of processing text-based requirements. Further, the methodology eases the responsibility of the systems engineer to maintain a copy of the model-based requirements in text-based format.10.1109/AERO47225.2020.9172306 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172306- IEEE Inglês
ABAC Requirements Engineering for Database ApplicationsJ. Longstaff; M. He 2019 We show how complex privacy requirements can be represented and processed by an extended model of Attribute Based Access Control (ABAC), working with a simple database applications pattern. During application model development, most likely based on UML (e.g. Use Case, Class Diagrams), the analyst and possibly the end user specifies ABAC permissions, and then verifies their effect by running queries on the target data. The ABAC model supports positive and negative permissions, "break glass" overrides of negative permissions, and message/alert generation. The permissions combining algorithms are based on relational database optimisation, and permissions processing is implemented by query modification, producing structurally-optimised queries in an SQL-like language; the queries can then be processed by many database and big data systems. The method and models have been implemented in a prototype Privacy Preferences Tool in collaboration with a large medical records development, and we discuss experiences with focus group evaluations of this tool.10.1109/TASE.2019.00-22 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914135Attribute Based Access Control, Database, Medical Records IEEE Inglês
Model-based Development of a System of Systems Using Unified Architecture Framework (UAF): A Case StudyO. C. Eichmann; S. Melzer; R. God 2019 In the development of safety- and security-relevant systems the V-model is established providing verification possibilities at each development stage. Usually, methods and tools of Model-based Systems Engineering (MBSE) are used in combination with the V-model for the development of single and self-contained complex systems. Nowadays, ubiquitous connectivity leads to a high degree of communication between systems enabling their cooperation for the provision of new services in a so-called System of Systems (SoS). In contrast to conventional systems engineering new methods and tools are required for service enabling SoS. In order to fulfill requirements of System of Systems Engineering (SoSE) the Object Management Group (OMG) developed the Unified Architecture Framework (UAF) for representation of enterprise architecture. This paper presents an approach for model-based development of SoS using UAF according to the V-model. In addition, an application of this new method shows differences between single system and SoS development methods.10.1109/SYSCON.2019.8836749 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836749Cyber-Physical Systems;System of Systems;Hardware Integration;V-model;Message BrokerIEEE Inglês
Topological Functioning Model for Structural Design of Predictive Expert AdvisorsY. E. Midilli; S. Parsutins 2019 In this paper, structural view of predictive expert advisors, one of the most commonly used algorithmic trading tool, has been designed. In this context, topological functioning of the domain has been modeled with topological and logical relationships between functional features. Functional and nonfunctional features are identified derived from informal business description. Stepwise approach is given to transform the topological functioning model into communication diagram, topological class diagram and object diagram of predictive expert advisors.10.1109/ITMS47855.2019.8940740 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8940740Neural networks;architecture;expert advisors;algorithmic trading IEEE Inglês
Analysis and Perspectives of Requirements for Detector Control Systems in High- Energy Physics ExperimentsJ. C. Cabanillas-Noris; M. I. Martínez-Hernández; I. León-Monzón; J. M. Mejía-Camacho; S. Rojas-Torres2020 The high-precision measurements of detectors in a High-Energy Physics (HEP) experiment need a continuous sampling of recorded events during collisions. Therefore, significant hardware changes are required to do online data processing due to a large amount of data generated by such detectors. Because of all these changes, a new Detector Control System (DCS) design is required. This paper presents a definition of the software requirements to be considered during the design, integration, and operation of a detector's DCS into physics data-taking, for continuous and non-continuous measurement conditions in the experiments. For this, the main operating processes, elements, characteristics, and guidelines of the DCS in the most important HEP experiments around the world were analyzed. Additionally, characteristics, functional and non-functional requirements, and use-cases of the main actors involved in the different processes of this control system software are defined. A visual modeling and design tool based on Unified Modeling Language (UML) is used to obtain a description of these requirements.10.1109/CONISOFT50191.2020.00015 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9307806Detector Control System;High-Energy Physics;SCADA;UML IEEE Inglês
Text vs. Graphs in Argument Analysis G. Carneiro; A. Toniolo; M. A. Ncenta; A. J. Quigley2021 The ability to understand, process and evaluate arguments made by others and ourselves is important in many personal and professional spheres, such as political debates. Analysis typically appears in written form, but a growing number of tools support analysis through diagram-based graphical representations. These UIs might support better argument analysis because arguments have non-linear structures that are difficult to convey through linear text. However, there is little empirical evidence on the advantages or mechanisms that might make graph UIs superior to traditional textual documents. We ran and analyzed a study with twenty participants who used text and graph editors to analyze political debates. Our findings demonstrate the tradeoffs between the two approaches and explain key mechanisms that support the analysis in both media.10.1109/VL/HCC51201.2021.9576493 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9576493text;visualization;video analysis;argumentation IEEE Inglês
Verifying Reflex-software with SPIN: Hand Dryer Case StudyT. V. Liakh; N. O. Garanina; I. S. Anureev; V. E. Zyubin2020 Process-oriented programming is a natural way to describe control software as a set of communicating processes with executable states, that allows to speed up its development. The Reflex language is one of the representatives of the family of process-oriented languages. The paper justifies the possibility of applying the model checking method for verification of Reflex programs using the hand dryer case study. The case study includes specification of requirements for the hand dryer, control software in Reflex for it, the result of translation of the Reflex program and the requirements into the input language Promela of the model checker SPIN and LTL formulas, respectively, as well as verification of these formulas in SPIN.10.1109/EDM49804.2020.9153545 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153545Model checking;control software;process-oriented software;formal methods;temporal requirementsIEEE Inglês
Back to the Roots: Linking User Stories to Requirements Elicitation ConversationsT. Spijkman; F. Dalpiaz; S. Brinkkemper 2022 Pre-requirements specification (pre-RS) traceability focuses on tracing requirements back to their sources. In comparison with post-RS traceability, pre-RS traceability is an under-explored area of research. Likely reasons for the limited studies are the scarcity of pre-RS resources, e.g., recorded requirements elicitation conversations such as interviews or workshops, and the challenges of linking requirements to informal, unstructured text. Building on the increasing use of digital communication tools that allow the recording and transcription of conversations, we explore the opportunity of linking requirements to the transcript of a requirements elicitation conversation. We introduce TRACE2CoNV, a prototype tool that aims at tracing user story requirements back to the relevant speaker turns in a conversation. TRACE2CoNV makes use of NLP techniques to determine the relevant speaker turns. As an initial validation, we take automatically generated transcripts from real-world requirements conversations, and we assess the effectiveness of TRACE2CoNV in supporting the process of identifying additional context for the requirements. The validation serves as a formative evaluation that guides the evolution of TRACE2CoNV and as a inspiration for future research in the field of conversational RE.10.1109/RE54965.2022.00042 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920091Requirements Elicitation;User Stories;Natural Language Processing;Conversational REIEEE Inglês
Exploiting the Correlation between Dependence Distance and Latency in Loop Pipelining for HLSJ. Cheng; J. Wickerson; G. A. Constantinides 2021 High-level synthesis (HLS) automatically transforms high-level programs in a language such as C/C++ into a low-level hardware description. In this context, loop pipelining is a key optimisation method for improving hardware performance. The main performance bottleneck of a pipelined loop is the ratio between two values: the latency of each iteration and the dependence distance of the operations in the loop. These two values are usually not known exactly, so existing HLS schedulers model them independently, which can cause sub-optimal performance. This paper extends state-of-the-art static schedulers with a fully automated pass that exposes and takes advantage of potential correlation between these two values, enabling smaller initiation intervals (II). We use the Microsoft Boogie software verifier to prove the existence of these correlations, which allows HLS tools to automatically find a high-performance hardware solution while maintaining correctness. Our results show that for a certain class of programs, our approach achieves, on average, an $11.1\times$ performance gain at the cost of a 95% area overhead.10.1109/FPL53798.2021.00066 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9556337High-Level Synthesis;Loop Pipelining;Formal Methods IEEE Inglês
Populating MBSE Models from MDAO AnalysisO. Aïello; D. S. D. R. Kandel; J. -C. Chaudemar; O. Poitou; P. d. Saqui-Sannes2021 Over the past decade, Systems Engineering has switched from document-centric approaches to model-based ones. In this context, Model Based System Engineering (MBSE) and Multidisciplinary Design Analysis and Optimization (MDAO) have emerged as two complementary disciplines. How to combine MBSE and MDAO approaches for the benefits of systems engineers is still an open issue. This paper discusses a case study of coupling MBSE and MDAO. The MBSE part relies on SysML and timed automata, two modeling languages that are supported by the TTool and UPPAAL-SMC tools, respectively. The MDAO part is developed in the context of Open MDAO. The paper uses a drone as a case study and focuses discussion on battery usage. The SysML model of the drone is enhanced with a timed automata model of the battery. The SysML model of the battery is populated with results from MDAO analysis. In this context, combining SysML, UPPAAL-SMC and Open-MDAO offers to improve self-confidence in some values lying in the model, improve self-confidence in the requirements satisfaction, as well as to refine some requirements values with better accuracy.10.1109/ISSE51541.2021.9582519 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582519MBSE;MDAO;SysML;timed automata;drone IEEE Inglês
Towards Automated Input Generation for Sketching Alloy ModelsA. Jovanovic; A. Sullivan 2022 Writing declarative models has numerous benefits, ranging from automated reasoning and correction of design-level properties before systems are built, to automated testing and debugging of their implementations after they are built. Alloy is a declarative modeling language that is well suited for verifying system designs. While Alloy comes deployed in the Analyzer, an automated scenario-finding tool set, writing correct models remains a difficult and error-prone task. ASketch is a synthesis framework that helps users build their Alloy models. ASketch takes as an input a partial Alloy models with holes and an A Unit test suite. As output, ASketch returns a completed model that passes all tests. ASketch’s initial evaluation reveals ASketch to be a promising approach to synthesize Alloy models. In this paper, we present and explore SketchGen2, an approach that looks to broaden the adoption of ASketch by increasing the automation of the inputs needed for the sketching process. Experimental results show SketchGen2 is effective at producing both expressions and test suites for synthesis.10.1145/3524482.3527651 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796453• Software and its engineering → Formal software verification IEEE Inglês
Work in Progress paper: Experiment Planning for Heterogeneous Programmable NetworksN. Sultana 2022 Private and publicly-funded cloud infrastructure and testbeds increasingly feature programmable network hardware. Programmable network cards and switches support the execution of increasingly-complex in-network programs that can operate independently of end-hosts to improve the network’s performance, resilience and utilisation. Reasoning about in-network programs, their placement, and workloads is needed to plan jobs on programmable networks. On programmable testbed networks, this reasoning feeds into resource allocation, fairness and reproducible research. But this reasoning is made challenging by the performance and resource diversity of hardware and by the failure modes that can arise in a distributed system.Flightplanner is currently the most comprehensive reasoning system for distributed and heterogeneous in-network programs but it uses a custom formalism and tool implementation, making it difficult to understand, extend, and scale.This paper describes Lightplanner, a generalisation of Flight-planner’s reasoning system that has been implemented on Prolog. It provides an executable formalisation in a well-understood logic. By relying on Prolog’s proof search, Lightplanner is 10 smaller than Flightplanner’s implementation in C++, making×it better suited for others to understand, extend, and scale. A benchmark of publicly-available in-network programs is used to evaluate Lightplanner against Flightplanner. Though the time overhead is slightly larger, Lightplanner can find better allocations than the original, more complex C++ implementation.Lightplanner is being incubated to plan experiments in a local programmable network testbed at Illinois Tech, and as a future step it will be extended to work across federated networks such as FABRIC.10.1109/DCOSS54816.2022.00079 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9881621Programmable Networking;Resource Allocation;Program Analysis IEEE Inglês
AutoMap: Automated Mapping of Security Properties Between Different Levels of Abstraction in Design FlowB. Ahmed; F. Rahman; N. Hooten; F. Farahmandi; M. Tehranipoor2021 The security of system-on-chip (SoC) designs is threatened by many vulnerabilities introduced by untrusted third-party IPs, and designers and CAD tools' lack of awareness of security requirements. Ensuring the security of an SoC has become highly challenging due to the diverse threat models, high design complexity, and lack of effective security-aware verification solutions. Moreover, new security vulnerabilities are introduced during the design transformation from higher to lower abstraction levels. As a result, security verification becomes a major bottleneck that should be performed at every level of design abstraction. Reducing the verification effort by mapping the security properties at different design stages could be an efficient solution to lower the total verification time if the new vulnerabilities introduced at different abstraction levels are addressed properly. To address this challenge, we introduce AutoMap that, in addition to the mapping, extends and expands the security properties to identify new vulnerabilities introduced when the design moves from higher-to lower-level abstraction. Starting at the higher abstraction level with a defined set of security properties for the target threat models, AutoMap automatically maps the properties to the lower levels of abstraction to reduce the verification effort. Furthermore, it extends and expands the properties to cover new vulnerabilities introduced by design transformations and updates to the lower abstraction level. We demonstrate AutoMap's efficacy by applying it to AES, RSA, and SHA256 at C++, RTL, and gate-level. We show that AutoMap effectively facilitates the detection of security vulnerabilities from different sources during the design transformation.10.1109/ICCAD51958.2021.9643467 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643467Security Property Mapping;Security Property Extension;Security Property Expansion;Property-based VerificationIEEE Inglês
MBSE for Satellite Communication System ArchitectingS. Gao; W. Cao; L. Fan; J. Liu 2019 The risk of failure for aerospace missions can be reduced if architects model the product in a systematic way and make decisions for physical implementation based on stakeholder needs. Satellite communication system architecting should take one of its dominating elements, the communication satellite, into account for consistent modeling during the whole product lifecycle. Model-based system engineering (MBSE) serves as a useful tool for system modeling activities and connections with manufacturing. In this paper, satellite communication system architecting is investigated in the preliminary design stage via MBSE methodologies and the system modeling language (SysML). Application scenarios and use cases are built up aiming at satisfying stakeholder needs. System black-box analysis and white-box logical decomposition are further realized. The logical architecture is then partitioned for physical implementation and system optimization is carried out to give architecting suggestions. Requirement traceability is examined to finish the current design stage. The models realized by the MBSE method are reusable and easily extendible to detailed system design and implementation in the whole product lifecycle.10.1109/ACCESS.2019.2952889 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8895949MBSE;satellite communication system;architecting;SysML;OOSEMIEEE Inglês
Integrating Provenance Capture and UML With UML2PROV: Principles and ExperienceC. Sáenz-Adán; B. Pérez; F. J. García-Izquierdo; L. Moreau2022 In response to the increasing calls for algorithmic accountability, UML2PROV is a novel approach to address the existing gap between application design, where models are described by UML diagrams, and provenance design, where generated provenance is meant to describe an application's flows of data, processes and responsibility, enabling greater accountability of this application. The originality of UML2PROV is that designers are allowed to follow their preferred software engineering methodology to create the UML Diagrams for their application, while UML2PROV takes the UML diagrams as a starting point to automatically generate: (1) the design of the provenance to be generated (expressed as PROV templates); and (2) the software library for collecting runtime values of interest (encoded as variable-value associations known as bindings), which can be deployed in the application without developer intervention. At runtime, the PROV templates combined with the bindings are used to generate high-quality provenance suitable for subsequent consumption. UML2PROV is rigorously defined by an extensive set of 17 patterns mapping UML diagrams to provenance templates, and is accompanied by a reference implementation based on Model Driven Development techniques. A systematic evaluation of UML2PROV uses quantitative data and qualitative arguments to show the benefits and trade-offs of applying UML2PROV for software engineers seeking to make applications provenance-aware. In particular, as the UML design drives both the design and capture of provenance, we discuss how the levels of detail in UML designs affect aspects such as provenance design generation, application instrumentation, provenance capability maintenance, storage and run-time overhead, and quality of the generated provenance. Some key lessons are learned such as: starting from a non-tailored UML design leads to the capture of more provenance than required to satisfy provenance requirements and therefore, increases the overhead unnecessarily; alternatively, if the UML design is tailored to focus on addressing provenance requirements, only relevant provenance gets to be collected, resulting in lower overheads.10.1109/TSE.2020.2977016 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9018139Provenance;PROV;provenance generation;template IEEE Inglês
Assertion Based Design of Timed Finite State MachineA. Shkil; A. Miroshnyk; G. Kulak; K. Pshenychnyi2021 This work is dedicated to assertion-based verification of real time logic control systems that are specified by a state diagram with state looping and implemented by hardware description language. The proposed method is based on the assertion apparatus that is used to describe the temporal nature of the timed FSM properties.10.1109/EWDTS52692.2021.9581046 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046timed finite state machine;HDL-model;assertion-based design;SystemVerilog;formal verification;SystemVerilog AssertionsIEEE Inglês
SOG-Based Multi-Core LTL Model CheckingC. Ameur Abid; K. K. Kaïs Klai; J. Arias; H. Ouni2020 The model checking is one of the major techniques used in the formal verification. This technique builds on an automatic procedure that takes a model M of a system and a formula φ expressing a temporal property, and decides whether the system satisfies the property (denoted by M\modelsφ). The model checking technique is based on an exhaustive exploration of the state space of the system and, thus suffers from the state space explosion problem: it can happen that the verification process stops because of lack of time or space. Among the existing solutions to tackle this problem the Symbolic Observation Graph (SOG) has been proposed as a reduced representation of the reachability graph preserving linear temporal logic properties (LTL) i.e. checking an LTL property on the SOG is equivalent to check it on the original state space. The parallel construction of the SOG could increase the speedup and scalability of model checking. In this paper, we propose a new model checking algorithm built on a parallel construction of the SOG. The SOG is adapted to allow the preservation of both state and event-based LTL formulae i.e., the atomic propositions involved in the formula to be checked could be either state-based or event-based propositions. We implemented the proposed model checking algorithm within a C++ prototype and compared our preliminary results with the state of the art model checkers.10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00028https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9443795Parallel model checking;Temporal Logic;Decision Diagrams IEEE Inglês
A Methodology for Validation of a Distributed Cloud Reservation ModelJ. C. Conti; E. L. Ursini; P. S. Martins 2019 This work presents a methodology for planning and validation of cloud-based distributed systems, considering a number of bottlenecks. The proposed methodology considers the computational model, the data traffic model, the analytical model, and the simulation model. The validated model is specialized to process an online reservation system. The goal is to analyze the performance of three bottlenecks considering critical resources such as a server, disk-file and disk-channel system. Specifically, we aim to use validation to further determine processor utilization and message delay. The proposed model and simulation tool may be used not only to plan and dimensioning of the system but also to guide the management of the distributed system in critical situations that can be anticipated. The general results are important to the validation of such systems. They showed that the effective verification and validation may be relevant to the adequate resource usage of the system.10.1109/IEMCON.2019.8936254 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936254Distributed Reservation System;Performance Evaluation;Bottleneck Analysis;Cloud Computing;Simulation ModelIEEE Inglês
Artifact Abstract: Deployment of APIs on Android Mobile Devices and MicrocontrollersS. Laso; M. Linaje; J. Garcia-Alonso; J. M. Murillo; J. Berrocal2020 This artifact is a guideline for the generation of APIs through the APIGEND (API Generator for End Devices) tool. This tool is an extension of the OpenAPI Generator [1] . It originally allows developers to create both the client and server side through an OpenAPI Specification with a ServerCentric style in different languages. The extension developed also allows one to generate APIs for end devices, specifically for Android devices and ESP32 Microcontrollers, making the application of the Edge [2] and Mobile-Centric [3] paradigms easier.10.1109/PerCom45495.2020.9127353 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9127353Microservices;Android;Microcontroller;OpenAPI;Edge Computing IEEE Inglês
Addressing the IEEE AV Test Challenge with Scenic and VerifAIK. Viswanadha; F. Indaheng; J. Wong; E. Kim; E. Kalvan; Y. Pant; D. J. Fremont; S. A. Seshia2021 This paper summarizes our formal approach to testing autonomous vehicles (AVs) in simulation for the IEEE AV Test Challenge. We demonstrate a systematic testing framework leveraging our previous work on formally-driven simulation for intelligent cyber-physical systems. First, to model and generate interactive scenarios involving multiple agents, we used Scenic, a probabilistic programming language for specifying scenarios. A Scenic program defines an abstract scenario as a distribution over configurations of physical objects and their behaviors over time. Sampling from an abstract scenario yields many different concrete scenarios which can be run as test cases for the AV. Starting from a Scenic program encoding an abstract driving scenario, we can use the Verifai toolkit to search within the scenario for failure cases with respect to multiple AV evaluation metrics. We demonstrate the effectiveness of our testing framework by identifying concrete failure scenarios for an open-source autopilot, Apollo, starting from a variety of realistic traffic scenarios.10.1109/AITEST52744.2021.00034 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9564360- IEEE Inglês
Verifying Dynamic Trait Objects in Rust A. VanHattum; D. Schwartz-Narbonne; N. Chong; A. Sampson2022 Rust has risen in prominence as a systems programming language in large part due to its focus on reliability. The language's advanced type system and borrow checker eliminate certain classes of memory safety violations. But for critical pieces of code, teams need assurance beyond what the type checker alone can provide. Verification tools for Rust can check other properties, from memory faults in unsafe Rust code to user-defined correctness assertions. This paper particularly focuses on the challenges in reasoning about Rust's dynamic trait objects, a feature that provides dynamic dispatch for function abstractions. While the explicit dyn keyword that denotes dynamic dispatch is used in 37% of the 500 most-downloaded Rust libraries (crates), dynamic dispatch is implicitly linked into 70%. To our knowledge, our open-source Kani Rust Verifier is the first symbolic modeling checking tool for Rust that can verify correctness while supporting the breadth of dynamic trait objects, including dynamically dispatched closures. We show how our system uses semantic trait information from Rust's Mid-level Intermediate Representation (an advantage over targeting a language-agnostic level such as LLVM) to improve verification performance by 5%–15× for examples from open-source virtualization software. Finally, we share an open-source suite of verification test cases for dynamic trait objects.10.1145/3510457.3513031 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794041Rust;verification;model checking;dynamic dispatch IEEE Inglês
Handling Concurrency in Behavior Trees M. Colledanchise; L. Natale 2022 This article addresses the concurrency issues affecting behavior trees (BTs), a popular tool to model the behaviors of autonomous agents in the video game and the robotics industry. BT designers can easily build complex behaviors composing simpler ones, which represents a key advantage of BTs. The parallel composition of BTs expresses a way to combine concurrent behaviors that has high potential, since composing pre-existing BTs in parallel results easier than composing in parallel classical control architectures, as finite state machines or teleo-reactive programs. However, BT designers rarely use such composition due to the underlying concurrency problems similar to the ones faced in concurrent programming. As a result, the parallel composition, despite its potential, finds application only in the composition of simple behaviors or where the designer can guarantee the absence of conflicts by design. In this article, we define two new BT nodes to tackle the concurrency problems in BTs and we show how to exploit them to create predictable behaviors. In addition, we introduce measures to assess execution performance and show how different design choices affect them. We validate our approach in both simulations and the real world. Simulated experiments provide statistically significant data, whereas real-world experiments show the applicability of our method on real robots. We provided an open-source implementation of the novel BT formulation and published all the source code to reproduce the numerical examples and experiments.10.1109/TRO.2021.3125863 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9653148Autonomous systems;behavior trees;behavior-based systems IEEE Inglês

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9042864
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9161435
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315130
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9652717
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9632568
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936227
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218211
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9186641
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9649736
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599869
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474550
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9130492
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505238
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754117
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9594380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9810435
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9140111
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8843643
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9063856
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380112
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604600
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9002783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813373
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8665968
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833646
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054835
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582299
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9099634
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714377
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9226290
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9294319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9254649
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8821909
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172306
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914135
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8940740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9307806
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9576493
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153545
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920091
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9556337
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582519
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9881621
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643467
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8895949
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9018139
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9443795
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936254
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9127353
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9564360
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794041
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9653148

Towards an Effective Implementation of a Model-Driven Engineering Approach for Software DevelopmentI. Khriss; A. Jakimi; H. Abdelmalek 2020 Several studies have raised the issue of the adoption of model-driven engineering (MDE) in industry. We can find there, for example, the lack of mature tools and the lack of employee training. In this paper, we present a summary of 20 years of experience in MDE and how our vision has evolved through all these years. We present our view of an effective approach for a better application of MDE which answers to some of the issues raised. This approach is supported by a set of integrated tools that facilitate not only the learning of MDE but also its implementation. We also discuss some of the results of adopting this approach in university software engineering courses and its use in real software development projects.10.1109/IRASET48871.2020.9092192 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9092192Model-driven engineering (MDE);Model-driven architecture (MDA);MDE teaching experiences;MDE industrial experiencesIEEE Inglês
A Lightweight Authentication Protocol for UAV Networks Based on Security and Computational Resource OptimizationY. Lei; L. Zeng; Y. -X. Li; M. -X. Wang; H. Qin 2021 The widespread use of Unmanned Aerial Vehicles (UAV) has made the security and computing resource application efficiency of UAV a hot topic in the security field of the Internet of Things. In this paper, an optimized lightweight identity security authentication protocol, Optimized Identity Authentication Protocol (ODIAP) is proposed for Internet of Drones (IoD) networks. The protocol is targeted to the security risks faced by IoD networks, and proposes the security authentication mechanism consisting of 3 phases and 7 authentication processes, which enables the protocol has both forward and backward security, and can resist mainstream network attacks. Meanwhile, this paper fully considers the computational load and proposes the identity information generation and verification method based on the Chinese residual theorem, which reduces the computational load of resource-constrained nodes and shifts the complex computational process to server nodes with abundant computational resources. Moreover, after security protocol analysis and tool verification based on the automated security verification tool Proverif, the protocol in this paper has complete security. At the same time, the performance analysis and comparison with other mainstream protocols shows that this protocol effectively optimizes the use of computing resources without compromising security.10.1109/ACCESS.2021.3070683 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9393888UAV;Internet of Drones;lightweight authentication;Proverif;security IEEE Inglês
Observation-Enhanced QoS Analysis of Component-Based SystemsC. Paterson; R. Calinescu 2020 We present a new method for the accurate analysis of the quality-of-service (QoS) properties of component-based systems. Our method takes as input a QoS property of interest and a high-level continuous-time Markov chain (CTMC) model of the analysed system, and refines this CTMC based on observations of the execution times of the system components. The refined CTMC can then be analysed with existing probabilistic model checkers to accurately predict the value of the QoS property. The paper describes the theoretical foundation underlying this model refinement, the tool we developed to automate it, and two case studies that apply our QoS analysis method to a service-based system implemented using public web services and to an IT support system at a large university, respectively. Our experiments show that traditional CTMC-based QoS analysis can produce highly inaccurate results and may lead to invalid engineering and business decisions. In contrast, our new method reduced QoS analysis errors by 84.4-89.6 percent for the service-based system and by 94.7-97 percent for the IT support system, significantly lowering the risk of such invalid decisions.10.1109/TSE.2018.2864159 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8428471Quality of service;component-based systems;Markov models;probabilistic model checkingIEEE Inglês
On How Bit-Vector Logic Can Help Verify LTL-Based SpecificationsM. M. P. Kallehbasti; M. Rossi; L. Baresi 2022 This paper studies how bit-vector logic (bv logic) can help improve the efficiency of verifying specifications expressed in Linear Temporal Logic (LTL). First, it exploits the notion of Bounded Satisfiability Checking to propose an improved encoding of LTL formulae into formulae of bv logic, which can be formally verified by means of Satisfiability Modulo Theories (SMT) solvers. To assess the gain in efficiency, we compare the proposed encoding, implemented in our tool $\mathbb {Z}$Zot, against three well-known encodings available in the literature: the classic bounded encoding and the optimized, incremental one, as implemented in both NuSMV and nuXmv, and the encoding optimized for metric temporal logic, which was the “standard” implementation provided by $\mathbb {Z}$Zot. We also compared the newly proposed solution against five additional efficient algorithms proposed by nuXmv, which is the state-of-the-art tool for verifying LTL specifications. The experiments show that the new encoding provides significant benefits with respect to existing tools. Since the first set of experiments only used Z3 as SMT solver, we also wanted to assess whether the benefits were induced by the specific solver or were more general. This is why we also embedded different SMT solvers in $\mathbb {Z}$Zot. Besides Z3, we also carried out experiments with CVC4, Mathsat, Yices2, and Boolector, and compared the results against the first and second best solutions provided by either NuSMV or nuXmv. Obtained results witness that the benefits of the bv logic encoding are independent of the specific solver. Bv logic-based solutions are better than traditional ones with only a few exceptions. It is also true that there is no particular SMT solver that outperformed the others. Boolector is often the best as for memory usage, while Yices2 and Z3 are often the fastest ones.10.1109/TSE.2020.3014394 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928Formal methods;linear temporal logic;bounded satisfiability checking;bit-vector logicIEEE Inglês
Supporting the Scale-Up of High Performance Application to Pre-Exascale Systems: The ANTAREX ApproachC. Silvano; G. Agosta; A. Bartolini; A. R. Beccari; L. Benini; L. Besnard; J. Bispo; R. Cmar; J. M. P. Cardoso; C. Cavazzoni; D. Cesarini; S. Cherubin; F. Ficarelli; D. Gadioli; M. Golasowski; I. Lasri; A. Libri; C. Manelfi; J. Martinovič; G. Palermo; P. Pinto; E. Rohou; N. Sanna; K. Slaninová; E. Vitali2019 The ANTAREX project developed an approach to the performance tuning of High Performance applications based on an Aspect-oriented Domain Specific Language (DSL), with the goal to simplify the enforcement of extra-functional properties in large scale applications. The project aims at demonstrating its tools and techniques on two relevant use cases, one in the domain of computational drug discovery, the other in the domain of online vehicle navigation. In this paper, we present an overview of the project and of its main achievements, as well as of the large scale experiments that have been planned to validate the approach.10.1109/EMPDP.2019.8671584 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8671584High Performance Computing;Autotuning;Adaptivity;DSL;Compilers;Energy EfficiencyIEEE Inglês
SIF: A Framework for Solidity Contract Instrumentation and AnalysisC. Peng; S. Akca; A. Rajan 2019 Solidity is an object-oriented and high-level language for writing smart contracts that are used to execute, verify and enforce credible transactions on permissionless blockchains. In the last few years, analysis of smart contracts has raised considerable interest and numerous techniques have been proposed to check the presence of vulnerabilities in them. Current techniques lack traceability in source code and have widely differing work flows. There is no single unifying framework for analysis, instrumentation, optimisation and code generation of Solidity contracts at the source code level. In this paper, we present SIF, a comprehensive framework for Solidity contract analysis, query, instrumentation, and code generation. SIF provides support for Solidity contract developers and testers to build source level techniques for analysis, understanding, diagnostics, optimisations and code generation. We show feasibility and applicability of the framework by building practical tools on top of it and running them on 1838 real smart contracts deployed on the Ethereum network.10.1109/APSEC48747.2019.00069 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945726high level languages;software testing;code instrumentation;program analysisIEEE Inglês
Explainable symptom detection in telemetry of ISS with Random Forest and SpecTRMS. Iino; H. Nomoto; Y. Michiura; T. Hirose; M. Sasaki; S. Ishizawa; T. Fukui; Y. Ishitsuka; Y. Itabashi; H. Shibayama; M. Wada2022 Flight controllers of the JEM (Japanese Experiment Module), one element of the International Space Station (ISS), are continuously monitoring ISS status, and it is important for them to detect signs of anomaly of its equipment as early as possible. Automatic symptom detection, in this context, can help flight controllers to assess unusual telemetry trends. To assess the trends efficiently, it is essential to provide the reason of detections. In this paper, we propose a new systemic symptom detection method combining three methodologies: the Functional Resonance Analysis Method (FRAM), the Random Forest Regression (RF), and the Specification Tools and Requirement Methodology-Requirement Language (SpecTRM-RL). The method was verified with data of Low Temperature loop (LTL) of JEM; an actual failure event of pump inverter in LTL was selected as a case study. In this case study, a selected objective variable was successfully predicted based on explanatory variables in normal period, whereas the predicted values showed larger deviation from the actual measured values in off-nominal period. The information for explaining the cause of anomaly was eventually identified with the proposed methods and validated by engineering knowledge. These results show the effectiveness of the new methods as the explainable machine learning-based predictive failure detection. The proposed method can be applied to fields where a single mishap of a system could lead to catastrophic hazard or instantaneous loss of human life due to impossibility of physical access (e.g., deep space explorations and remote medicine).10.1109/AERO53065.2022.9843739 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843739- IEEE Inglês
Automated Generation and Integration of AUTOSAR RTE ConfigurationsS. Smith; M. A. S. Khalid 2022 Automotive Open System Architecture (AUTOSAR) is a system-level standard that is used worldwide by automotive companies and their suppliers to develop the standardized software development framework for automobiles. A Runtime Environment (RTE) is essential for any AUTOSAR software architecture. The information to conFigure the Runtime Environment (RTE), for any embedded Electronic Control Unit (ECU) design, is given in an AUTOSAR Extensible Markup Language (ARXML) file. Currently, these ARXML files are interpreted by the developer to manually create each configuration. That is a huge bottleneck in the design flow of software because of the drawbacks such as the cost and time spent having to manually write code. Also, manual code entry is not scalable for larger projects. Every time manual code is created it needs to be tested and verified to ensure ISO 26262 compliance. Creating an ISO 26262 compliant, RTE code generator is essential in the process of automating integration of AUTOSAR methodology in the design of ECUs. This paper describes the design of a Computer-Aided Design (CAD) tool that automatically interprets the given AUTOSAR XML files and then generates the corresponding optimized C code (*.h and *.c files). The CAD tool is optimized for run time and memory usage and is ready to use for generating any portion of the RTE automatically, while being AUTOSAR compliant.10.1109/CCECE49351.2022.9918435 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9918435CAD tool;Automation;AUTOSAR;Automotive Embedded System IEEE Inglês
Transformation Architecture for Multi-Layered WebApp Source Code GenerationR. Tesoriero; A. Rueda; J. A. Gallud; M. D. Lozano; A. Fernando2022 The evolution of Web technologies leads to software premature obsolescence requiring technology-independent representations to increase the reuse rates during the development process. They also require integration into service-oriented architectures to exchange information with different Web systems supporting runtime interoperability. Web Applications (WebApps) run on devices with different capabilities and limitations increasing the complexity of the development process. To address these challenges, different proposals have emerged to facilitate the development of WebApps, which is still an open research field with many challenges to address. This paper presents a model transformation architecture based on software standards to automatically generate full stack multi-layered WebApps covering Persistence, Service, and Presentation layers. This transformation architecture also generates the set of test cases to test WebApp business logic. The proposed transformation architecture only requires a UML platform-independent class model as an input to generate fully functional Web applications in a three-tier architecture including the three layers, while most proposals focus on the generation of the Presentation layer. In addition, this architecture employs software industry standards to enable an easy integration into third-party tools and development environments. The transformation Architecture proposed has been empirically validated on the case study of a fully functional travel management WebApp that is generated using a UML class diagram employing a third-party tool integrated into the same integrated development environment.10.1109/ACCESS.2022.3141702 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9676609Software product lines;computer-aided software engineering;client-server systemsIEEE Inglês
An Evaluation of General-Purpose Static Analysis Tools on C/C++ Test CodeJ. Malm; E. Enoiu; M. A. Naser; B. Lisper; Z. Porkoláb; S. Eldh2022 In recent years, maintaining test code quality has gained more attention due to increased automation and the growing focus on issues caused during this process.Test code may become long and complex, but maintaining its quality is mostly a manual process, that may not scale in big software projects. Moreover, bugs in test code may give a false impression about the correctness or performance of the production code. Static program analysis (SPA) tools are being used to maintain the quality of software projects nowadays. However, these tools are either not used to analyse test code, or any analysis results on the test code are suppressed.This is especially true since SPA tools are not tailored to generate precise warnings on test code. This paper investigates the use of SPA on test code by employing three state-of-the-art general-purpose static analysers on a curated set of projects used in the industry and a random sample of relatively popular and large open-source C/C++ projects. We have found a number of built-in code checking modules that can detect quality issues in the test code. However, these checkers need some tailoring to obtain relevant results. We observed design choices in test frameworks that raise noisy warnings in analysers and propose a set of augmentations to the checkers or the analysis framework to obtain precise warnings from static analysers.10.1109/SEAA56994.2022.00029 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10011514testing;static analysis;test maintenance;fault detection;code qualityIEEE Inglês
EqBench: A Dataset of Equivalent and Non-equivalent Program PairsS. Badihi; Y. Li; J. Rubin 2021 Equivalence checking techniques help establish whether two versions of a program exhibit the same behavior. The majority of popular techniques for formally proving/refuting equivalence are evaluated on small and simplistic benchmarks, omitting "difficult" programming constructs, such as non-linear arithmetic, loops, floating-point arithmetic, and string and array manipulation. This hinders efficient evaluation of these techniques and the ability to establish their practical applicability in real scenarios. This paper addresses this gap by contributing EqBench - the largest and most comprehensive benchmark for equivalence checking analysis, which contains 147 equivalent and 125 non-equivalent cases, in both C and Java languages. We believe EqBench can facilitate a more realistic evaluation of equivalence checking techniques, assessing their individual strength and weaknesses. EqBench is publicly available at: https://osf.io/93s5b/.10.1109/MSR52588.2021.00084 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9463140Equivalence checking;benchmark;Java;C. IEEE Inglês
Business Process Modeling and Simulation with DPMN: Processing ActivitiesG. Wagner 2021 The Business Process Modeling Notation (BPMN) has been established as a modeling standard in Business Process (BP) Management. However, BPMN lacks several important elements needed for BP simulation and is not well-aligned with the Queueing Network paradigm of Operations Research and the related BP simulation paradigm pioneered by the Discrete Event Simulation (DES) languages/tools GPSS and SIMAN/Arena. The Discrete Event Process Modeling Notation (DPMN) proposed by Wagner (2018) is based on Event Graphs (Schruben 1983), which capture the DES paradigm of Event-Based Simulation. By allowing to make flowchart models of queueing/processing networks with a precise semantics, DPMN reconciles (the flowchart approach of) BPMN with DES. DPMN is the first visual modeling language that supports all important DES approaches: event-based simulation, activity-based DES and Processing Network models, providing a foundation for harmonizing and unifying the many different terminologies/concepts and diagram languages of established DES tools.10.1109/WSC52266.2021.9715457 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457- IEEE Inglês
APPEL - AGILA ProPErty and Dependency Description LanguageC. Grimm; F. Wawrzik; A. L. -F. Jung; K. Luebeck; S. Post; J. Koch; O. Bringmann2021 We give an overview of the language APPEL, the “AGILA Property and Dependency Description Language”. It is part of the cloud-based tool AGILA that supports agile development methods. The language allows us to structure and document the knowledge about system-wide dependencies in a formal, textual form. APPEL models can be uploaded to the cloud, where they are used as a knowledge-base for continuous verification and validation, from early specification to run-time verification. We describe syntax, semantics, and demonstrate its application for predicting the performance of hardware/software systems in the context of the GENIAL! project.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9399724- IEEE Inglês
Interactive Data Comics Z. Wang; H. Romat; F. Chevalier; N. H. Riche; D. Murray-Rust; B. Bach2022 This paper investigates how to make data comics interactive. Data comics are an effective and versatile means for visual communication, leveraging the power of sequential narration and combined textual and visual content, while providing an overview of the storyline through panels assembled in expressive layouts. While a powerful static storytelling medium that works well on paper support, adding interactivity to data comics can enable non-linear storytelling, personalization, levels of details, explanations, and potentially enriched user experiences. This paper introduces a set of operations tailored to support data comics narrative goals that go beyond the traditional linear, immutable storyline curated by a story author. The goals and operations include adding and removing panels into pre-defined layouts to support branching, change of perspective, or access to detail-on-demand, as well as providing and modifying data, and interacting with data representation, to support personalization and reader-defined data focus. We propose a lightweight specification language, COMICSCRIPT, for designers to add such interactivity to static comics. To assess the viability of our authoring process, we recruited six professional illustrators, designers and data comics enthusiasts and asked them to craft an interactive comic, allowing us to understand authoring workflow and potential of our approach. We present examples of interactive comics in a gallery. This initial step towards understanding the design space of interactive comics can inform the design of creation tools and experiences for interactive storytelling.10.1109/TVCG.2021.3114849 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9552591Data comics;Non-linear narrative;interactive storytelling IEEE Inglês
RTL to GDSII of Harvard Structure RISC ProcessorH. V. Ravish Aradhya; G. Kanase; V. Y 2021 This paper speaks about design of RISC processor and its implementation from RTL to GDSII. Verification of RISC processor Harvard structure is carried using Verilog (RTL file) and test bench for that Verilog file. Cadence NC Launch tool is used for simulation of code. Later verified Verilog file along with. sdc and .lib files, gate level net list was generated from cadence Genus tool. Till this part of gate level net list generations front end part of design will be carried out. Output of Genus tool are verified gate level net list file and. sdc constraints file. Pre-layout simulation results for power, area and timing are carried out. In backend design, cadence Innovus tool was used for floor planning, power planning and routing. Here also post layout simulations carried for power, timing and area. All these processes are carried out using 180nm technology cadence tool. The physical implementation of Harvard Structure RISC Processor is successfully implemented on Cadence Innovus tool. After carrying out pre-clock tree synthesis, post clock tree synthesis and post routing of circuit, one has obtained optimized results for timing 9.236ps, power 0.53155682W and area 17067.7584µm2.10.1109/CONECCT52877.2021.9622735 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622735RTL;Harvard Structure;GDSII;MIPS;RISC;Clock Tree Synthesis;Placement;Routing;Physical DesignIEEE Inglês
Requirements-Driven Test Generation for Autonomous Vehicles With Machine Learning ComponentsC. E. Tuncali; G. Fainekos; D. Prokhorov; H. Ito; J. Kapinski2020 Autonomous vehicles are complex systems that are challenging to test and debug. A requirements-driven approach to the development process can decrease the resources required to design and test these systems, while simultaneously increasing the reliability. We present a testing framework that uses signal temporal logic (STL), which is a precise and unambiguous requirements language. Our framework evaluates test cases against the STL formulae and additionally uses the requirements to automatically identify test cases that fail to satisfy the requirements. One of the key features of our tool is the support for machine learning (ML) components in the system design, such as deep neural networks. The framework allows evaluation of the control algorithms, including the ML components, and it also includes models of CCD camera, lidar, and radar sensors, as well as the vehicle environment. We use multiple methods to generate test cases, including covering arrays, which is an efficient method to search discrete variable spaces. The resulting test cases can be used to debug the controller design by identifying controller behaviors that do not satisfy requirements. The test cases can also enhance the testing phase of development by identifying critical corner cases that correspond to the limits of the system's allowed behaviors. We present STL requirements for an autonomous vehicle system, which capture both component-level and system-level behaviors. Additionally, we present three driving scenarios and demonstrate how our requirements-driven testing framework can be used to identify critical system behaviors, which can be used to support the development process.10.1109/TIV.2019.2955903 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8911483Autonomous vehicles;cyber-physical systems;system validation;system verificationIEEE Inglês
Automated Attack Synthesis by Extracting Finite State Machines from Protocol Specification DocumentsM. L. Pacheco; M. v. Hippel; B. Weintraub; D. Goldwasser; C. Nita-Rotaru2022 Automated attack discovery techniques, such as attacker synthesis or model-based fuzzing, provide powerful ways to ensure network protocols operate correctly and securely. Such techniques, in general, require a formal representation of the protocol, often in the form of a finite state machine (FSM). Unfortunately, many protocols are only described in English prose, and implementing even a simple network protocol as an FSM is time-consuming and prone to subtle logical errors. Automatically extracting protocol FSMs from documentation can significantly contribute to increased use of these techniques and result in more robust and secure protocol implementations.In this work we focus on attacker synthesis as a representative technique for protocol security, and on RFCs as a representative format for protocol prose description. Unlike other works that rely on rule-based approaches or use off-the-shelf NLP tools directly, we suggest a data-driven approach for extracting FSMs from RFC documents. Specifically, we use a hybrid approach consisting of three key steps: (1) large-scale word-representation learning for technical language, (2) focused zero-shot learning for mapping protocol text to a protocol-independent information language, and (3) rule-based mapping from protocol-independent information to a specific protocol FSM. We show the generalizability of our FSM extraction by using the RFCs for six different protocols: BGPv4, DCCP, LTP, PPTP, SCTP and TCP. We demonstrate how automated extraction of an FSM from an RFC can be applied to the synthesis of attacks, with TCP and DCCP as case-studies. Our approach shows that it is possible to automate attacker synthesis against protocols by using textual specifications such as RFCs.10.1109/SP46214.2022.9833673 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833673attack-synthesis;network-security;NLP IEEE Inglês
Dynamic Property Enforcement in Programmable Data PlanesM. Neves; B. Huffaker; K. Levchenko; M. Barcellos2021 Network programmers can currently deploy an arbitrary set of protocols in forwarding devices through data plane programming languages such as P4. However, as any other type of software, P4 programs are subject to bugs and misconfigurations. Network verification tools have been proposed as a means of ensuring that the network behaves as expected, but these tools frequently face severe scalability issues. In this paper, we argue for a novel approach to this problem. Rather than statically inspecting a network configuration looking for bugs, we propose to enforce networking properties at runtime. To this end, we developed P4box, a system for deploying runtime monitors in programmable data planes. P4box allows programmers to easily express a broad range of properties (both program-specific and network-wide). Moreover, we provide an automated framework based on assertions and symbolic execution for ensuring monitor correctness. Our experiments on a SmartNIC show that P4box monitors represent a small overhead to network devices in terms of latency, throughput and power consumption.10.1109/TNET.2021.3068339 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9393490P4;SDN;programmable networks;network debugging;monitoring IEEE Inglês
RASAECO: Requirements Analysis of Software for the AECO IndustryM. Ristin; D. F. Edvardsen; H. W. van de Venn2021 Digitalization is forging its path in the architecture, engineering, construction, operation (AECO) industry. This trend demands not only solutions for data governance but also sophisticated cyber-physical systems with a high variety of stakeholder background and very complex requirements. Existing approaches to general requirements engineering ignore the context of the AECO industry. This makes it harder for the software engineers usually lacking the knowledge of the industry context to elicit, analyze and structure the requirements and to effectively communicate with AECO professionals. To live up to that task, we present an approach and a tool for collecting AECO-specific software requirements with the aim to foster reuse and leverage domain knowledge. We introduce a common scenario space, propose a novel choice of an ubiquitous language well-suited for this particular industry and develop a systematic way to refine the scenario ontologies based on the exploration of the scenario space. The viability of our approach is demonstrated on an ontology of 20 practical scenarios from a large project aiming to develop a digital twin of a construction site.10.1109/RE51729.2021.00032 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604691Requirements Engineering;Architecture;Construction;AECO;Building Information Model;BIMIEEE Inglês
What’s up with Requirements Engineering for Artificial Intelligence Systems?K. Ahmad; M. Bano; M. Abdelrazek; C. Arora; J. Grundy2021 In traditional approaches to building software systems (that do not include an Artificial Intelligent (AI) or Machine Learning (ML) component), Requirements Engineering (RE) activities are well-established and researched. However, building software systems with one or more AI components may depend heavily on data with limited or no insight into the system’s workings. Therefore, engineering such systems poses significant new challenges to RE. Our search showed that literature has focused on using AI to manage RE activities, with limited research on RE for AI (RE4AI). Our study’s main objective was to investigate current approaches in writing requirements for AI/ML systems, identify available tools and techniques used to model requirements, and find existing challenges and limitations. We performed a Systematic Literature Review (SLR) of current RE4AI methods and identified 27 primary studies. Using these studies, we analysed the key tools and techniques used to specify and model requirements and found several challenges and limitations of existing RE4AI practices. We further provide recommendations for future research, based on our analysis of the primary studies and mapping to industry guidelines in Google PAIR). The SLR findings highlighted that present RE applications were not adaptive to manage most AI/ML systems and emphasised the need to provide new techniques and tools to support RE4AI.10.1109/RE51729.2021.00008 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604729Requirements Engineering;Artificial Intelligence;Machine Learning;Systematic Literature ReviewIEEE Inglês
Applying Model-based Requirements Engineering in Three Large European Collaborative Projects: An Experience ReportA. Sadovykh; D. Truscan; H. Bruneliere 2021 In this paper, we report on our 5-year’s practical experience of designing, developing and then deploying a Model-based Requirements Engineering (MBRE) approach and language in the context of three different large European collaborative projects providing complex software solutions. Based on data collected both during projects execution and via a survey realized afterwards, we intend to show that such an approach can bring interesting benefits in terms of scalability (e.g., large number of handled requirements), heterogeneity (e.g., partners with different types of RE background), traceability (e.g. from the requirements to the software components), automation (e.g., requirement documentation generation), usefulness or usability. To illustrate our contribution, we exemplify the application of our MBRE approach and language with concrete elements coming from one of these European research projects. We also discuss further the general benefits and current limitations of using this MBRE approach and corresponding language.10.1109/RE51729.2021.00040 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604736Requirements Engineering;Model-based Engineering;Collaborative Projects;Experience Report;Scalability;Heterogeneity;Traceability;AutomationIEEE Inglês
Approximation-Refinement Testing of Compute-Intensive Cyber-Physical Models: An Approach Based on System IdentificationC. Menghi; S. Nejati; L. Briand; Y. I. Parache 2020 Black-box testing has been extensively applied to test models of Cyber-Physical systems (CPS) since these models are not often amenable to static and symbolic testing and verification. Black-box testing, however, requires to execute the model under test for a large number of candidate test inputs. This poses a challenge for a large and practically-important category of CPS models, known as compute-intensive CPS (CI-CPS) models, where a single simulation may take hours to complete. We propose a novel approach, namely ARIsTEO, to enable effective and efficient testing of CI-CPS models. Our approach embeds black-box testing into an iterative approximation-refinement loop. At the start, some sampled inputs and outputs of the CI-CPS model under test are used to generate a surrogate model that is faster to execute and can be subjected to black-box testing. Any failure-revealing test identified for the surrogate model is checked on the original model. If spurious, the test results are used to refine the surrogate model to be tested again. Otherwise, the test reveals a valid failure. We evaluated ARIsTEO by comparing it with S-Taliro, an open-source and industry-strength tool for testing CPS models. Our results, obtained based on five publicly-available CPS models, show that, on average, ARIsTEO is able to find 24% more requirements violations than S-Taliro and is 31% faster than S-Taliro in finding those violations. We further assessed the effectiveness and efficiency of ARIsTEO on a large industrial case study from the satellite domain. In contrast to S-Taliro, ARIsTEO successfully tested two different versions of this model and could identify three requirements violations, requiring four hours, on average, for each violation.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283957Cyber-Physical Systems;Model Testing;Search-Based Testing;Robustness;FalsificationIEEE Inglês
A Guideline for the Requirements Engineering Process of SMEs Regarding to the Development of CPSS. Fritz; F. Weber; J. Ovtcharova 2019 The Fourth Industrial Revolution is in progress and provides a growing interconnectedness of people, machines and products. The fusion of the real and the digital world is based on so-called cyber-physical systems (CPS), which cause a change in product development processes due to their complex and dynamic requirements. In order to shape the change in product development successfully, requirements engineering (RE) plays an increasingly important part. Especially small and medium-sized enterprises (SMEs) are faced with great challenges in this case, as they are no longer able to effectively integrate the large amount of stakeholders and to manage the multitude of dynamic requirements with the commonly used Microsoft Office tools. Regardless of the company size, many companies are faced with the problem of documenting their requirements in a standardized and reusable way. For these reasons, a guideline for a lightweight RE process for SMEs has been developed in the context of this scientific paper, which makes it possible to improve the development process without cost- and time-intensive trainings. For this purpose, the focus was on easily understandable requirements templates. In the course of this, relevant requirements templates from the literature were analyzed, selected and completed with newly developed templates.10.1109/ICITM.2019.8710732 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8710732small and medium-sized enterprises (SMEs);requirements engineering (RE);cyber-physical systems (CPS);guidelineIEEE Inglês
Program Synthesis for Cyber-Resilience N. Catano 2023 Architectural tactics enable stakeholders to achieve cyber-resilience requirements. They permit systems to react, resist, detect, and recover from cyber incidents. This paper presents an approach to generate source code for architectural tactics typically used in safety and mission-critical systems. Our approach extensively relies on the use of the Event-B formal method and the EventB2Java code generation plugin of the Rodin platform. It leverages the modeling of architectural tactics in the Event-B formal language and uses a set of EventB2Java transformation rules to generate certified code implementations for the said tactics. Since resilience requirements are statements about a system over time, and because of the fact that the Event-B language does not provide (native) support for the writing of temporal specifications, we have implemented a novel Linear Temporal Logic (LTL) extension for Event-B. We support several architectural tactics for availability, performance, and security. The generated code is certified in the following sense: discharging proof obligations in Rodin - the platform we use for writing the Event-B models - attests to the soundness of the architectural tactics modelled in Event-B, and the soundness of the translation encoded by the EventB2Java tool attests to the code correctness. Finally, we demonstrate the usability of our resilience validation approach with the aid of an Autonomous Vehicle System. It further helped us increase our confidence in the soundness of our Event-B LTL extension.10.1109/TSE.2022.3168672 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016Code synthesis;Event-B;formal methods;resilience;security;testing;verificationIEEE Inglês
Generating and Analyzing Program Call Graphs using OntologyE. Dorta; Y. Yan; C. Liao 2022 Call graph or caller-callee relationships have been used for various kinds of static program analysis, performance analysis and profiling, and for program safety or security analysis such as detecting anomalies of program execution or code injection attacks. However, different tools generate call graphs in different formats, which prevents efficient reuse of call graph results. In this paper, we present an approach of using ontology and resource description framework (RDF) to create knowledge graphs for specifying call graphs to facilitate the construction of full-fledged and complex call graphs of computer programs, realizing more interoperable and scalable program analyses than conventional approaches. We create a formal ontology-based specification of call graph information to capture concepts and properties of both static and dynamic call graphs so different tools can collaboratively contribute to more comprehensive analysis results. Our experiments show that ontology enables merging of call graphs generated from different tools and flexible queries using a standard query interface.10.1109/ProTools56701.2022.00008 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10027487Callgraph;ontology;knowledge graph;resource description framework;program analysisIEEE Inglês
An Empirical Study of Code Smells in Transformer-based Code Generation TechniquesM. L. Siddiq; S. H. Majumder; M. R. Mim; S. Jajodia; J. C. S. Santos2022 Prior works have developed transformer-based language learning models to automatically generate source code for a task without compilation errors. The datasets used to train these techniques include samples from open source projects which may not be free of security flaws, code smells, and violations of standard coding practices. Therefore, we investigate to what extent code smells are present in the datasets of coding generation techniques and verify whether they leak into the output of these techniques. To conduct this study, we used Pylint and Bandit to detect code smells and security smells in three widely used training sets (CodeXGlue, APPS, and Code Clippy). We observed that Pylint caught 264 code smell types, whereas Bandit located 44 security smell types in these three datasets used for training code generation techniques. By analyzing the output from ten different configurations of the open-source fine-tuned transformer-based GPT-Neo 125M parameters model, we observed that this model leaked the smells and non-standard practices to the generated source code. When analyzing GitHub Copilot's suggestions, a closed source code generation tool, we observed that it contained 18 types of code smells, including substandard coding patterns and 2 security smell types.10.1109/SCAM55253.2022.00014 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10006873code generation;code smell;security smell;transformer;pre-trained model;GitHub copilotIEEE Inglês
Speculative Analysis for Quality Assessment of Code CommentsP. Rani 2021 Previous studies have shown that high-quality code comments assist developers in program comprehension and maintenance tasks. However, the semi-structured nature of comments, unclear conventions for writing good comments, and the lack of quality assessment tools for all aspects of comments make their evaluation and maintenance a non-trivial problem. To achieve high-quality comments, we need a deeper understanding of code comment characteristics and the practices developers follow. In this thesis, we approach the problem of assessing comment quality from three different perspectives: what developers ask about commenting practices, what they write in comments, and how researchers support them in assessing comment quality. Our preliminary findings show that developers embed various kinds of information in class comments across programming languages. Still, they face problems in locating relevant guidelines to write consistent and informative comments, verifying the adherence of their comments to the guidelines, and evaluating the overall state of comment quality. To help developers and researchers in building comment quality assessment tools, we provide: (i) an empirically validated taxonomy of comment convention-related questions from various community forums, (ii) an empirically validated taxonomy of comment information types from various programming languages, (iii) a language-independent approach to automatically identify the information types, and (iv) a comment quality taxonomy prepared from a systematic literature review.10.1109/ICSE-Companion52605.2021.00132 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402522code comments, mining developer sources, developer information needs, comment quality assessmentIEEE Inglês
Verifying and Monitoring UML Models with Observer Automata: A Transformation-Free ApproachV. Besnard; C. Teodorov; F. Jouault; M. Brun; P. Dhaussy2019 The increasing complexity of embedded systems renders verification of software programs more complex and may require applying monitoring and formal techniques, like model-checking. However, to use such techniques, system engineers usually need formal experts to express software requirements in a formal language. To facilitate the use of model-checking tools by system engineers, our approach consists of using a UML model interpreter with which the software requirements can directly be expressed as observer automata in UML as well. These observer automata are synchronously composed with the system, and can be used unchanged both for model verification and runtime monitoring. Our approach has been evaluated on the user interface model of a cruise control system. The observer verification results are in line with the verification of equivalent LTL properties. The runtime overhead of the monitoring infrastructure is 6.5%, with only 1.2% memory overhead.10.1109/MODELS.2019.000-5 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8906967Observer Automata;Monitoring;Model Interpretation;Embedded SystemsIEEE Inglês
Scenario-based Requirements Engineering for Complex Smart City ProjectsC. Wiecher; P. Tendyra; C. Wolff 2022 Various stakeholders with different backgrounds are involved in Smart City projects. These stake-holders define the project goals, e.g., based on participative approaches, market research or innovation management processes. To realize these goals often complex technical solutions must be designed and implemented. In practice, however, it is difficult to synchronize the technical design and implementation phase with the definition of moving Smart City goals. We hypothesize that this is due to a lack of a “common language” for the different stakeholder groups and the technical disciplines. We address this problem with scenario-based requirements engineering techniques. In particular, we use scenarios at different levels of abstraction and formalization that are connected end-to-end by appropriate methods and tools. This enables fast feedback loops to iteratively align technical requirements, stakeholder expectations, and Smart City goals. We demonstrate the applicability of our approach in a case study with different industry partners.10.1109/E-TEMS53558.2022.9944441 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441Systems Engineering;Requirements Engineering;Project Management;Innovation ManagementIEEE Inglês
Co-Evolving Code with Evolving MetamodelsD. E. Khelladi; B. Combemale; M. Acher; O. Barais; J. -M. Jézéquel2020 Metamodels play a significant role to describe and analyze the relations between domain concepts. They are also cornerstone to build a software language (SL) for a domain and its associated tooling. Metamodel definition generally drives code generation of a core API. The latter is further enriched by developers with additional code implementing advanced functionalities, e.g., checkers, recommenders, etc. When a SL is evolved to the next version, the metamodels are evolved as well before to re-generate the core API code. As a result, the developers added code both in the core API and the SL toolings may be impacted and thus may need to be co-evolved accordingly. Many approaches support the co-evolution of various artifacts when metamodels evolve. However, not the co-evolution of code. This paper fills this gap. We propose a semi-automatic co-evolution approach based on change propagation. The premise is that knowledge of the metamodel evolution changes can be propagated by means of resolutions to drive the code co-evolution. Our approach leverages on the abstraction level of metamodels where a given metamodel element has often different usages in the code. It supports alternative co-evaluations to meet different developers needs. Our work is evaluated on three Eclipse SL implementations, namely OCL, Modisco, and Papyrus over several evolved versions of metamodels and code. In response to five different evolved metamodels, we co-evolved 976 impacts over 18 projects. A comparison of our co-evolved code with the versioned ones shows the usefulness of our approach. Our approach was able to reach a weighted average of 87.4% and 88.9% respectively of precision and recall while supporting useful alternative co-evolution that developers have manually performed.https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283913- IEEE Inglês
VHDL Compiler with Natural Parallel Comands ExecutionV. Zhukovskyy; D. Dmitriev; N. Zhukovska; A. Safonyk; A. Sydor2021 The paper considers the process of compilers designing and highlight parallelism in algorithmic structures. The advantages of existing solutions in the hardware and software areas are highlighted and a new approach for creating a software and hardware compiler is designed. The requirements for our language and the peculiarities of the functioning of each component of the compiler were clearly defined. The basis of the alphabet consists of Latin upper and lower case characters, numbers and delimiters. A description of the lexical analyzer, which highlights tokens and keywords in the text of the input program is provided. Syntactic rules of language (structure of constructions) in the form of diagrams of the Bekus-Naur form and semantic requirements concerning identifiers, length of names of identifiers and labels, arithmetic operations and input/output ports are described as well. The processor compiler with natural parallel execution of instructions was developed. Performance testing and comparative analysis of the efficiency of the developed compiler has shown the advantages of the created solution.10.1109/EUROCON52738.2021.9535606 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9535606compiler;analyzer;microprocessor;HDL synthesis IEEE Inglês
Integrating Interobject Scenarios with Intraobject Statecharts for Developing Reactive SystemsD. Harel; R. Marelly; A. Marron; S. Szekely 2021 An important role of cross-layer design is to reconcile model-implementation differences, often stemming from how the two layers are specified. This article shows how a single method and tool can support both the specification and implementation stages, resulting in better closing the “model-implementation10.1109/MDAT.2020.3006805 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9133113- IEEE Inglês
DDUO: General-Purpose Dynamic Analysis for Differential PrivacyC. Abuah; A. Silence; D. Darais; J. P. Near 2021 Differential privacy enables general statistical analysis of data with formal guarantees of privacy protection at the individual level. Tools that assist data analysts with utilizing differential privacy have frequently taken the form of programming languages and libraries. However, many existing programming languages designed for compositional verification of differential privacy impose significant burden on the programmer (in the form of complex type annotations). Supplementary library support for privacy analysis built on top of existing general-purpose languages has been more usable, but incapable of pervasive end-to-end enforcement of sensitivity analysis and privacy composition. We introduce DDuo, a dynamic analysis for enforcing differential privacy. DDuo is usable by non-experts: its analysis is automatic and it requires no additional type annotations. DDuo can be implemented as a library for existing programming languages; we present a reference implementation in Python which features moderate runtime overheads on realistic workloads. We include support for several data types, distance metrics and operations which are commonly used in modern machine learning programs. We also provide initial support for tracking the sensitivity of data transformations in popular Python libraries for data analysis. We formalize the novel core of the DDuo system and prove it sound for sensitivity analysis via a logical relation for metric preservation. We also illustrate DDuo's usability and flexibility through various case studies which implement state-of-the-art machine learning algorithms.10.1109/CSF51468.2021.00043 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505231language-based-security;privacy;security-and-privacy-aspects-of-machine-learningIEEE Inglês
Analyzing Hardware Security Properties of Processors through Model CheckingB. Kumar; A. K. Jaiswal; V. S. Vineesh; R. Shinde2020 Security concerns are growing rapidly in the modern age of the widespread use of electronic products. Due to the increasing dependability on integrated circuits like processors, a security attack can lead to massive damages in different forms. Apart from software-based attacks, design errors in the hardware are also potential sources of security vulnerability. These kinds of vulnerabilities can be unlawfully utilized by attackers and malicious entities for causing damage to the users in different domains. However, discovering such threats is not trivial since simulation-based verification may fail to reveal such corner cases. In this paper, we investigate a formal approach for detecting hardware design errors which can lead to security vulnerabilities. By applying property checking with an industrial strength model checker (JasperGold), we investigate the design of different units of or1200 processor (5-stage pipeline design) for security threats. By an iterative refinement of properties, we were able to successfully write the security-critical properties of the processor through an understanding of the processor design manuals and specification documents. These properties are written in System Verilog Assertions (SVA) format and provided to the tool for model checking. When the properties fail, we obtain counter-examples that can be analyzed and studied for understanding the issues related to the secure operation of the processor. Model checking experiments were done for a total of thirteen security-critical properties. During our experiments, we also observed some security bugs related to the functionality of or 1200 processor design.10.1109/VLSID49098.2020.00036 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105390Hardware Security;Design Vulnerabilities;Property extraction;Counterexamples;Model CheckingIEEE Inglês
Value Expression in Design Science ResearchH. H. Weigand 2019 Design science research has grown into a major research approach in Information System (IS). Most current DSR approaches take a positivist approach that downplays human agency. An alternative framework is transformational design research (TDR), inspired by pragmatism and Rosenstock-Huessy's view on language. This paper's aim is to contribute to TDR by focusing on the expression of values, with a particular interest in values that are embodied in the technology. After a critical review of the traditional Requirement Engineering methods and of the so-called value-sensitive design approaches, we propose a new value expression approach that builds on and extends traditional value modelling. The method is illustrated with a literature example of process mining.10.1109/RCIS.2019.8877079 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877079Design science research;value-sensitive design;value modeling IEEE Inglês
Exploring Tools and Strategies Used During Regular Expression Composition TasksG. R. Bai; B. Clee; N. Shrestha; C. Chapman; C. Wright; K. T. Stolee2019 Regular expressions are frequently found in programming projects. Studies have found that developers can accurately determine whether a string matches a regular expression. However, we still do not know the challenges associated with composing regular expressions. We conduct an exploratory case study to reveal the tools and strategies developers use during regular expression composition. In this study, 29 students are tasked with composing regular expressions that pass unit tests illustrating the intended behavior. The tasks are in Java and the Eclipse IDE was set up with JUnit tests. Participants had one hour to work and could use any Eclipse tools, web search, or web-based tools they desired. Screen-capture software recorded all interactions with browsers and the IDE. We analyzed the videos quantitatively by transcribing logs and extracting personas. Our results show that participants were 30% successful (28 of 94 attempts) at achieving a 100% pass rate on the unit tests. When participants used tools frequently, as in the case of the novice tester and the knowledgeable tester personas, or when they guess at a solution prior to searching, they are more likely to pass all the unit tests. We also found that compile errors often arise when participants searched for a result and copy/pasted the regular expression from another language into their Java files. These results point to future research into making regular expression composition easier for programmers, such as integrating visualization into the IDE to reduce context switching or providing language migration support when reusing regular expressions written in another language to reduce compile errors.10.1109/ICPC.2019.00039 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813286Exploratory study;regular expressions;problem solving strategies;personasIEEE Inglês
Finding Substitutable Binary Code By Synthesizing AdaptersV. Sharma; K. Hietala; S. McCamant 2021 Independently developed codebases typically contain many segments of code that perform same or closely related operations (semantic clones). Finding functionally equivalent segments enables applications like replacing a segment by a more efficient or more secure alternative. Such related segments often have different interfaces, so some glue code (an adapter) is needed to replace one with the other. In previous work, we presented an algorithm that searches for replaceable code segments by attempting to synthesize an adapter between them from some finite family of adapters; it terminates if it finds no possible adapter. In this work, we compare binary symbolic execution-based adapter search with concrete adapter enumeration based on Intel's Pin framework, and explore the relation between size of adapter search space and total search time. We present examples of applying adapter synthesis for improving security of binary functions and switching between binary implementations of RC4. We present two large-scale evaluations: (1) we run adapter synthesis on more than 13,000 function pairs from the Linux C library, and (2) we reverse engineer fragments of ARM binary code by running more than a million adapter synthesis tasks. Our results confirm that several instances of adaptably equivalent binary functions exist in real-world code, and suggest that adapter synthesis can be applied for automatically replacing binary code with its adaptably equivalent variants.10.1109/TSE.2019.2931000 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776650Symbolic execution;equivalence checking;program synthesis;binary analysisIEEE Inglês
Exploring a Comprehensive Approach for the Automated Assessment of UMLH. Cheers; M. Javed; Y. Lin; S. Smith 2019 UML is an important tool in structured software design and is commonly taught in undergraduate software courses. UML defines a complex set of linked notations and mastery requires instruction and examples over many taught courses. Such examples are typically disparate, modelling subsets of distinct systems. Teaching UML benefits from an end-to-end approach where consistency between modelling, design and implementation are equally emphasised and regular feedback is provided. A drawback of this is that assessing learner-derived UML models is a time-intensive and error-prone task if both formative and summative assessment is required. In this paper a novel framework is presented for the automated assessment of UML. The framework allows learners to be provided with automatically generated formative feedback for self-directed learning in the development of UML skills. Emphasis is placed upon the identification of the consistency and coverage of learner diagrams as this is an important skill in the application of UML. By integrating an implementation of this framework, instructor-based UML teaching can be supplemented with an end-to-end tool which allows learners to receive automated formative feedback in their understanding and usage of UML.10.1109/IIAI-AAI.2019.00036 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8992725UML Software Development, Automated, Assessment, Automatic Feedback, Self-LearningIEEE Inglês
Plain and Simple Inductive Invariant Inference for Distributed Protocols in TLA+W. Schultz; I. Dardik; S. Tripakis 2022 We present a new technique for automatically inferring inductive invariants of parameterized distributed protocols specified in TLA+. Ours is the first such invariant inference technique to work directly on TLA+, an expressive, high level specification language. To achieve this, we present a new algorithm for invariant inference that is based around a core procedure for generating plain, potentially non-inductive lemma invariants that are used as candidate conjuncts of an overall inductive invariant. We couple this with a greedy lemma invariant selection procedure that selects lemmas that eliminate the largest number of counterexamples to induction at each round of our inference procedure. We have implemented our algorithm in a tool, endive, and evaluate it on a diverse set of distributed protocol benchmarks, demonstrating competitive performance and ability to uniquely solve an industrial scale reconfiguration protocol.10.34727/2022/isbn.978-3-85448-053-2_34 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026570- IEEE Inglês
An Edge Assisted Secure Lightweight Authentication Technique for Safe Communication on the Internet of Drones NetworkM. Yahuza; M. Y. I. Idris; A. W. A. Wahab; T. Nandy; I. B. Ahmedy; R. Ramli2021 Security and privacy are among the most critical challenges on the internet of drones (IoD) network. The communication entities of the IoD network can communicate securely with the use of authenticated key agreement (AKA) based techniques. However, the design of such techniques must balance the tradeoff between security and lightweight features. Recently, Chen et al. proposed an authentication and key sharing scheme for IoD deployment. It is, however, realized after scrutiny that the proposed technique is vulnerable to security attacks under the well-accepted Canetti-Krawczyk (CK) adversary model. Moreover, the scheme applies to the IoD network with only one drones' flying zone. To solve these challenges, this paper proposed a secure lightweight proven authenticated key agreement (SLPAKA) technique for IoD deployment. The technique is free from all the problems identified in the scheme of Chen et al. To ensure the reliability of the SLPAKA, the security of the technique has been assessed from a theoretical method and formal way using the ProVerif cryptographic protocol verification tool. Apart from comparing the performance of SLPAKA with the benchmarking schemes in terms of security, computational cost, and communication cost, the SLPAKA and the technique proposed by Chen et al. are implemented using a python programming language to evaluate and compare their performance in terms of energy consumption and computational time metrics. The results show that the SLPAKA outperforms the technique of Chen et al. and all the other benchmarking techniques in terms of security and lightweight features.10.1109/ACCESS.2021.3060420 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9358189Authenticated key agreement;CK adversarial model;certificateless AKA;elliptic curve cryptography;Internet of Drones;mobile edge computing;ProVerif;UAS;UAVIEEE Inglês
SPECMATE: Automated Creation of Test Cases from Acceptance CriteriaJ. Fischbach; A. Vogelsang; D. Spies; A. Wehrle; M. Junker; D. Freudenstein2020 In the agile domain, test cases are derived from acceptance criteria to verify the expected system behavior. However, the design of test cases is laborious and has to be done manually due to missing tool support. Existing approaches for automatically deriving tests require semi-formal or even formal notations of acceptance criteria, though informal descriptions are mostly employed in practice. In this paper, we make three contributions: (1) a case study of 961 user stories providing an insight into how user stories are formulated and used in practice, (2) an approach for the automatic extraction of test cases from informal acceptance criteria and (3) a study demonstrating the feasibility of our approach in cooperation with our industry partner. In our study, out of 604 manually created test cases, 56 % can be generated automatically and missing negative test cases are added.10.1109/ICST46399.2020.00040 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159056test case creation;natural language processing;model-based testing;user stories;agile software developmentIEEE Inglês
High-Quality Automated Program Repair M. Motwani 2021 Automatic program repair (APR) has recently gained attention because it proposes to fix software defects with no human intervention. To automatically fix defects, most APR tools use the developer-written tests to (a) localize the defect, and (b) generate and validate the automatically produced candidate patches based on the constraints imposed by the tests. While APR tools can produce patches that appear to fix the defect for 11-19% of the defects in real-world software, most of the patches produced are not correct or acceptable to developers because they overfit to the tests used during the repair process. This problem is known as the patch overfitting problem. To address this problem, I propose to equip APR tools with additional constraints derived from natural-language software artifacts such as bug reports and requirements specifications that describe the bug and intended software behavior but are not typically used by the APR tools. I hypothesize that patches produced by APR tools while using such additional constraints would be of higher quality. To test this hypothesis, I propose an automated and objective approach to evaluate the quality of patches, and propose two novel methods to improve the fault localization and developer-written test suites using natural-language software artifacts. Finally, I propose to use my patch evaluation methodology to analyze the effect of the improved fault localization and test suites on the quality of patches produced by APR tools for real-world defects.10.1109/ICSE-Companion52605.2021.00134 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402293program repair;fault localization;test generation;patch quality IEEE Inglês
RL-GRIT: Reinforcement Learning for Grammar InferenceW. Woods 2021 When working to understand usage of a data format, examples of the data format are often more representative than the format’s specification. For example, two different applications might use very different JSON representations, or two PDF-writing applications might make use of very different areas of the PDF specification to realize the same rendered content. The complexity arising from these distinct origins can lead to large, difficult-to-understand attack surfaces, presenting a security concern when considering both exfiltration and data schizophrenia. Grammar inference can aid in describing the practical language generator behind examples of a data format. However, most grammar inference research focuses on natural language, not data formats, and fails to support crucial features such as type recursion. We propose a novel set of mechanisms for grammar inference, RL-GRIT1, and apply them to understanding de facto data formats. After reviewing existing grammar inference solutions, it was determined that a new, more flexible scaffold could be found in Reinforcement Learning (RL). Within this work, we lay out the many algorithmic changes required to adapt RL from its traditional, sequential-time environment to the highly interdependent environment of parsing. The result is an algorithm which can demonstrably learn recursive control structures in simple data formats, and can extract meaningful structure from fragments of the PDF format. Whereas prior work in grammar inference focused on either regular languages or constituency parsing, we show that RL can be used to surpass the expressiveness of both classes, and offers a clear path to learning context-sensitive languages. The proposed algorithm can serve as a building block for understanding the ecosystems of de facto data formats.1RL-GRIT may be pronounced as “Real Grit.”10.1109/SPW53761.2021.00031 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474312grammar inference;reinforcement learning;convolutional reinforcement learning;deterministic policy gradient;embeddings;parsing;constituency parsingIEEE Inglês
Automatic Classification of Apps Reviews for Requirement Engineering: Exploring the Customers Need from Healthcare ApplicationsN. Al Kilani; R. Tailakh; A. Hanani 2019 In one year, more than 6.5 million mobile applications have been listed for download on the application stores. That is, they are used by millions (or billions) of users across the world. Users express their daily experience of applications as reviews on those stores. This experience may include reporting bugs, demanding new features, posting feedback with regards to performance, reporting security issues, demanding user interface enhancements, and other needs. Interestingly, reviews could contain valuable information for the interest of application vendors and developers. However, the volume of such data is as huge, that is, traditional searching algorithms may not be efficient in extracting such useful information. Machine learning and data mining techniques are one of the popularly used algorithms to efficiently extracting significant information for Software Requirement Engineering; a key phase in the Software Engineering Life Cycle. In this paper, we experience machine learning algorithms and natural language processing techniques to classify a set of reviews about healthcare-domain applications into multiple types of categories such as bug reports, new feature requests, application performance, and user interface. For this purpose, we could extract more than 7500 reviews of ten different health-related mobile applications. More importantly, those reviews were annotated manually by software experts. In our experiments, we use the Weka tool employing different machine learning algorithms. We will also show what algorithms and features will perform better; in terms of accuracy using different evaluation metrics, when classifying reviews about mobile apps into various classes; bugs, new features, sentimental, general bug, usability, security, and performance. Moreover, the conducted experiments show that the overall performance improves when we use the data subset with highly confident labeling; when two experts agree on the same class. For the imbalanced-data problem, this research will show the effect of applying resampling techniques on improving classification accuracy as well.10.1109/SNAMS.2019.8931820 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8931820Requirements Engineering;User's Reviews;Data Annotation;Supervised Machine Learning;Text ClassificationIEEE Inglês
Analysing Real-time Distributed Systems using Timed ActorsM. Sirjani 2019 I will introduce timed actors for modeling distributed systems and will explain our theories, techniques and tools for model checking and performance evaluation of such models. Timed Rebeca can be used to model asynchronous event-based components in systems, and real time constraints can be captured in the language. I will explain how floating-time transition system can be used for model checking of such models when we are interested in event-based properties, and how it helps in state space reduction. I will show different applications of our approach including analysing a wireless sensor network application, mobile ad-hoc network protocols, network-on-chip designs, and a macroscopic agent-based simulation of urban planning.10.1109/DS-RT47707.2019.8958670 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958670- IEEE Inglês
Building Devs Models with the Cadmium ToolL. Belloli; D. Vicino; C. Ruiz-Martin; G. Wainer2019 Discrete Event System Specification (DEVS) is a mathematical formalism to model and simulate discrete-event dynamic systems. The advantages of DEVS include a rigorous formal definition of models and a well-defined mechanism for modular composition. In this tutorial, we introduce Cadmium, a new DEVS simulator. Cadmium is a C++17 header only DEVS simulator easy to include and to integrate into different projects. We discuss the tool's Application Programming Interface, the simulation algorithms used and its implementation. We present a case study as an example to explain how to implement DEVS models in Cadmium.10.1109/WSC40007.2019.9004917 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917- IEEE Inglês
The Role of Linguistic Relativity on the Identification of Sustainability Requirements: An Empirical StudyY. D. Pham; A. Bouraffa; M. Hillen; W. Maalej 2021 Linguistic-Relativity-Theory states that language and its structure influence people’s world view and cognition. We investigate how this theory impacts the identification of requirements in practice. To this end, we conducted two controlled experiments with 101 participants. We randomly showed participants a set of requirements dimensions (i.e. a language structure) either with a focus on software quality or on sustainability and asked them to identify the requirements for a grocery shopping app according to these dimensions. Participants of the control group were not given any dimensions. The results show that the use of requirements dimensions significantly increases the number of identified requirements in comparison to the control group. Furthermore, participants who were given the sustainability dimensions identified more sustainability requirements. In follow up interviews with 16 practitioners, the interviewees reported benefits of the dimensions such as a holistic guidance but were also concerned about the customers acceptance. Furthermore, they stated challenges of implementing sustainability dimensions in the daily business but also suggested solutions like establishing sustainability as a common standard. Our study indicates that carefully structuring requirements engineering along sustainability dimensions can guide development teams towards considering and ensuring software sustainability.10.1109/RE51729.2021.00018 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604723software sustainability;requirements engineering;requirements dimension;interdisciplinary designIEEE Inglês
Designing a Conversational Requirements Elicitation System for End-UsersT. Rietz 2019 Context: Digital transformation impacts an ever-increasing degree of everyone's business and private life. It is imperative to incorporate a wide audience of user requirements in the development process to design successful information systems (IS). Hence, requirements elicitation (RE) is increasingly performed by end-users that are novices at contributing requirements to IS development projects. Objective: We need to develop RE systems that are capable of assisting a wide audience of end-users in communicating their needs and requirements. Prominent methods, such as elicitation interviews, are challenging to apply in such a context, as time and location constraints limit potential audiences. Research Method: The presented dissertation project utilizes design science research to develop a requirements self-elicitation system, LadderBot. A conversational agent (CA) enables end-users to articulate needs and requirements on the grounds of the laddering method. The CA mimics a human interviewer's capability to rephrase questions and provide assistance in the process and allows users to converse in their natural language. Furthermore, the tool will assist requirements analysts with the subsequent aggregation and analysis of collected data. Contribution: The dissertation project makes a practical contribution in the form of a ready-to-use system for wide audience end-user RE and subsequent analysis utilizing laddering as cognitive elicitation technique. A theoretical contribution is provided by developing a design theory for the application of conversational agents for RE, including the laboratory and field evaluation of design principles.10.1109/RE.2019.00061 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920648End user;Wide Audience;Requirements Elicitation;Conversational Agent;Design Science;LadderingIEEE Inglês
SOLOMON: An Automated Framework for Detecting Fault Attack Vulnerabilities in HardwareM. Srivastava; P. SLPSK; I. Roy; C. Rebeiro; A. Hazra; S. Bhunia2020 Fault attacks are potent physical attacks on crypto-devices. A single fault injected during encryption can reveal the cipher's secret key. In a hardware realization of an encryption algorithm, only a tiny fraction of the gates is exploitable by such an attack. Finding these vulnerable gates has been a manual and tedious task requiring considerable expertise. In this paper, we propose SOLOMON, the first automatic fault attack vulnerability detection framework for hardware designs. Given a cipher implementation, either at RTL or gate-level, SOLOMON uses formal methods to map vulnerable regions in the cipher algorithm to specific locations in the hardware thus enabling targeted countermeasures to be deployed with much lesser overheads. We demonstrate the efficacy of the SOLOMON framework using three ciphers: AES, CLEFIA, and Simon.10.23919/DATE48585.2020.9116380 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380fault attack;fault evaluation tools;formal verification IEEE Inglês
Towards identifying and linking data silos along the software life cycleB. Martens; P. Pethő; T. Holm; J. Franke 2021 Software is of increasing importance in all industries and it’s efficient creation an important factor in the success of corporations. Using the data generated during the entire software life cycle to create understanding and derive actionable insights, decisions can be made on a factual basis. One of the key requirements to making these objective decisions possible is the collection, composition, and communication of data to the correct stakeholders. To further these goals, the most complete collection of data artifacts available in the software life cycle is presented. These are abstracted to be independent of programming language, development process and toolset. As value is derived from the connection of entities, a set of possible connections is introduced as well as challenges and solutions in their creation discussed. The theoretical observations, and results are verified in the context of a large development organization with more than a thousand developers working from multiple global locations. Our results show that the combination of multiple data sources and their systematic composition are paramount to deriving value from life cycle data in large corporations.10.1109/ICCSE51940.2021.9569317 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9569317empirical software development;decision making;software life cycle;software artifacts;corporate learningIEEE Inglês
Research Report: Building a Wide Reach Corpus for Secure Parser DevelopmentT. Allison; W. Burke; V. Constantinou; E. Goh; C. Mattmann; A. Mensikova; P. Southam; R. Stonebraker; V. Timmaraju2020 Computer software that parses electronic files is often vulnerable to maliciously crafted input data. Rather than relying on developers to implement ad hoc defenses against such data, the Language-theoretic security (LangSec) philosophy offers formally correct and verifiable input handling throughout the software development lifecycle. Whether developing from a specification or deriving parsers from samples, LangSec parser developers require wide-reach corpora of their target file format in order to identify key edge cases or common deviations from the format's specification. In this research report, we provide the details of several methods we have used to gather approximately 30 million files, extract features and make these features amenable to search and use in analytics. Additionally, we provide documentation on opportunities and limitations of some popular open-source datasets and annotation tools that will benefit researchers which need to efficiently gather a large file corpus for the purposes of LangSec parser development.10.1109/SPW50608.2020.00066 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283855LangSec;language-theoretic security;file corpus creation;file forensics;text extraction;parser resourcesIEEE Inglês
SoCeR: A New Source Code Recommendation Technique for Code ReuseM. M. Islam; R. Iqbal 2020 Motivated by the idea of reusing existing source code from previous projects within a software company, in this paper, we present a new source code recommendation technique called "SoCeR" to help programmers find relevant implementations or sample code based on software requirement specifications. SoCeR assists programmers to search existing code repositories using natural language query. Our proposed approach summarizes Python code into sentences or phrases to match them against user queries. SoCeR extracts and analyzes the content of the code (such as variables, functions, docstrings, and comments) to generate code summary for each function which is then mapped to the respective functions. For evaluation purposes, we developed a web-based tool for users to enter a textual search query and get the relevant code search results that were most relevant to the query. In SoCeR, users can also upload new code to enrich the code base with tested code. If adopted, then SoCeR will benefit a software company to build a trusted code base enabling large-scale software code reuse.10.1109/COMPSAC48688.2020.00-34 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202820Code recommendation;Code reuse;Code search;Software code;Query reformulationIEEE Inglês
Smart Contract Defense through Bytecode RewritingG. Ayoade; E. Bauman; L. Khan; K. Hamlen 2019 An Ethereum bytecode rewriting and validation architecture is proposed and evaluated for securing smart contracts in decentralized cryptocurrency systems without access to contract source code. This addresses a wave of smart contract vulnerabilities that have been exploited by cybercriminals in recent years to steal millions of dollars from victims. Such attacks have motivated various best practices proposals for helping developers write safer contracts; but as the number of programming languages used to develop smart contracts increases, implementing these best practices can be cumbersome and hard to enforce across the development tool chain. Automated hardening at the bytecode level bypasses this source-level heterogeneity to enforce safety and code integrity properties of contracts independently of the sources whence they were derived. In addition, a binary code verification tool implemented atop the Coq interactive theorem prover establishes input-output equivalence between the original code and the modified code. Evaluation demonstrates that the system can enforce policies that protect against integer overflow and underflow vulnerabilities in real Ethereum contract bytecode, and overhead is measured in terms of instruction counts.10.1109/Blockchain.2019.00059 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210blockchain;ethereum;in-lined reference monitors;formal methods IEEE Inglês
Towards Standardization of AV Safety: C++ Library for Responsibility Sensitive SafetyB. Gassmann; F. Oboril; C. Buerkle; S. Liu; S. Yan; M. S. Elli; I. Alvarez; N. Aerrabotu; S. Jaber; P. van Beek; D. Iyer; J. Weast2019 The need for safety in Automated Driving (AD) is becoming increasingly critical with the accelerating deployment of this technology. Beyond functional safety, industry must guarantee the operational safety of automated vehicles. Towards that end, Mobileye introduced the Responsibility Sensitive Safety (RSS), a model-based approach to Safety [1]. In this paper we expand upon this work introducing the C++ Library for Responsibility Sensitive Safety, an open source executable that implements a subset of RSS. We provide architectural details to integrate the C++ Library for Responsibility Sensitive Safety with AD Software pipelines as safety module overseeing decision making of driving policies. We illustrate this application with an example integration with the Baidu Apollo AD stack and simulator, [2] and [3], that provides safety validation of the planning module. Furthermore, we show how the C++ Library for Responsibility Sensitive Safety can be used to explore the usefulness of the RSS model through parameter exploration and analysis on minimum safe longitudinal distance, (dmin), considering different weather conditions. We also compare these results with half-of-speed rule followed in some parts of the world. We expect that the C++ Library for Responsibility Sensitive Safety becomes a critical component of future tools for formal verification, testing and validation of AD safety and that it helps bootstrap the AD research efforts towards standardization of safety.10.1109/IVS.2019.8813885 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813885- IEEE Inglês
Requirement Mining in Software Product ForumsJ. Tizard 2019 The majority of software projects fail, around 71% according to recent research. A shortage of user feedback and missed requirements are cited as primary reasons for failure. There are several prominent online platforms where software users post product feedback, including: app stores, Twitter, issue trackers and product forums. I have identified the study of product forums as a gap in the current requirement mining literature, and have selected them as the focus of this research. Product forums are widely used in the software industry, supporting online discussions between a products users and owners. While their primary function is to help customers use the product, forums are also a rich source of untapped user generated requirements. However, the manual effort to extract these requirements is prohibitively time consuming due to their large volume and inconsistent quality. Analysis tools to assist in requirement mining have been applied successfully to online platforms previously, but as of yet, not in the forum domain, where current techniques may be insufficient. My preliminary research has found that forums contain feedback useful for software maintenance and evolution, including several categories of feedback not identified in the current literature. I have developed forum specific classifiers to help categorise the different feedback in forum posts. I demonstrate that these classifiers significantly outperform a leading app store tool when applied to forums. In this report I present my preliminary findings, then outline my research plan with the final goal of producing an industry evaluated, forum analysis tool.10.1109/RE.2019.00057 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920680Software product forums;Machine learning;Natural language processingIEEE Inglês
Instrumenting Microservices for Concurrent Audit Logging: Beyond Horn ClausesN. D. Ahn; S. Amir–Mohammadian 2022 Instrumenting legacy code is an effective approach to enforce security policies. Formal correctness of this approach in the realm of audit logging relies on semantic frameworks that leverage information algebra to model and compare the information content of the generated audit logs and the program at runtime. Previous work has demonstrated the applicability of instrumentation techniques in the enforcement of audit logging policies for systems with microservices architecture. However, the specified policies suffer from the limited expressivity power as they are confined to Horn clauses being directly used in logic programming engines. In this paper, we explore audit logging specifications that go beyond Horn clauses in certain aspects, and the ways in which these specifications are automatically enforced in microservices. In particular, we explore an instrumentation tool that rewrites Java-based microservices according to a JSON specification of audit logging requirements, where these logging requirements are not limited to Horn clauses. The rewritten set of microservices are then automatically enabled to generate audit logs that are shown to be formally correct.10.1109/COMPSAC54236.2022.00280 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470Audit logs;concurrent systems;microservices;programming languages;securityIEEE Inglês
Foundations and Tools in HOL4 for Analysis of Microarchitectural Out-of-Order ExecutionK. Palmskog; X. Yao; N. Dong; R. Guanciale; M. Dam2022 Program analyses based on Instruction Set Architecture (ISA) abstractions can be circumvented using microarchitectural vulnerabilities, permitting unwanted program information flows even when proven ISA-level properties ostensibly rule them out. However, the low abstraction levels found below ISAs, e.g., in microarchitectures defined in hardware description languages, may obscure information flow and hinder analysis tool development. We present a machine-checked formalization in the HOL4 theorem prover of a language, MIL, that abstractly describes microarchitectural in-order and out-of-order program execution and enables reasoning about low-level program information flows. In particular, MIL programs can exhibit information flow side channels when executed out-of-order, as compared to a reference in-order execution. We prove memory consistency between MIL's out-of-order and in-order dynamic semantics in HOL4, and define a notion of conditional noninterference for MIL programs which rules out trace-driven cache side channels. We then demonstrate how to establish conditional noninterference for programs via a novel semi-automated bisimulation based verification strategy inside HOL4 that we apply to several examples. Based on our results, we believe MIL is suitable as a translation target for ISA code to enable information flow analyses.10.34727/2022/isbn.978-3-85448-053-2_19 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026589information flow;interactive theorem proving;HOL4;microarchitectures;out-of-order executionIEEE Inglês
Distributed Maintenance of a Spanning Tree of k-Connected GraphsB. Hamid; Q. Rouland; J. Jaskolka 2019 This work is devoted to the problem of spanning trees maintenance in the presence of crash failures in a distributed environment using only local knowledge. Using a pre-constructed spanning tree of a k-connected graph, we present a protocol to maintain a spanning tree in the presence of k-1 consecutive failures. The contribution of this paper is threefold. First, the problem is formalized as an occurrence of Menger's theorem in a distributed setting. The second result shows an implementation of the protocol which is composed of a set of modules encoded using a graph relabeling systems model. The last contribution is the implementation of this protocol in the asynchronous message passing model. For a given graph G =(V,E), where M is the number of its edges, N is the number of its nodes, and Δ is its degree; After each failure occurrence, our algorithms need the following requirements: The first one uses O(Δ × N) steps and O(Δ) bits per node. The second one uses O(N+M) messages and O(N) time and O(Δ) bits per node. In addition, we investigate the possible specification and verification of the presented algorithm using Alloy as a tooled formal language.10.1109/PRDC47002.2019.00052 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952145Distributed computing, failure detectors, fault tolerance, graph relabeling systems, local computations, maintenance, spanning tree, vertex connectivity.IEEE Inglês
Automated High-Level Generation of Low-Power Approximate Computing CircuitsK. Nepal; S. Hashemi; H. Tann; R. I. Bahar; S. Reda2019 Numerous application domains (e.g., signal and image processing, computer graphics, computer vision, and machine learning) are inherently error tolerant, which can be exploited to produce approximate ASIC implementations with low power consumption at the expense of negligible or small reductions in application quality. A major challenge is the need for approximate and high-level design generation tools that can automatically work on arbitrary designs. In this article, we provide an expanded and improved treatment of our ABACUS methodology, which aims to automatically generate approximate designs directly from their behavioral register-transfer level (RTL) descriptions, enabling a wider range of possible approximations. ABACUS starts by creating an abstract syntax tree (AST) from the input behavioral RTL description of a circuit, and then applies variant operators to the AST to create acceptable approximate designs. The devised variant operators include data type simplifications, arithmetic operation approximations, arithmetic expressions transformations, variable-to-constant substitutions, and loop transformations. A design space exploration technique is devised to explore the space of possible variant approximate designs and to identify the designs along the Pareto frontier that represents the trade-off between accuracy and power consumption. In addition, ABACUS prioritizes generating approximate designs that, when synthesized, lead to circuits with simplified critical paths, which are exploited to realize complementary power savings through standard voltage scaling. We integrate ABACUS with a standard ASIC design flow, and evaluate it on four realistic benchmarks from three different domains-machine learning, signal processing, and computer vision. Our tool automatically generates many approximate design variants with large power savings, while maintaining good accuracy. We demonstrate the scalability of ABACUS by parallelizing the flow and use of recent standard synthesis tools. Compared to our previous efforts, the new ABACUS tool provides up to 20.5× speed-up in runtime, while able to generate approximate circuits that lead to additional power savings reaching up to 40 percent.10.1109/TETC.2016.2598283 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7533498Approximate computing;design space exploration;low power circuits;low area circuits;voltage scaling;critical path optimizationIEEE Inglês
IFCIL: An Information Flow Configuration Language for SELinuxL. Ceragioli; L. Galletta; P. Degano; D. Basin 2022 Security Enhanced Linux (SELinux) is a security architecture for Linux implementing mandatory access control. It has been used in numerous security-critical contexts ranging from servers to mobile devices. But this is challenging as SELinux security policies are difficult to write, understand, and maintain. Recently, the intermediate language CIL was introduced to foster the development of high-level policy languages and to write structured configurations. However, CIL lacks mechanisms for ensuring that the resulting configurations obey desired information flow policies. To remedy this, we propose IFCIL, a backward compatible extension of CIL for specifying fine-grained information flow requirements for CIL configurations. Using IFCIL, administrators can express, e.g., confidentiality, integrity, and non-interference properties. We also provide a tool to statically verify these requirements.10.1109/CSF54842.2022.9919690 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919690access control;formal methods and verification;information flow control;language based security;SELinuxIEEE Inglês

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9092192
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9393888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8428471
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8671584
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945726
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843739
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9918435
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9676609
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10011514
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9463140
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9399724
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9552591
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622735
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8911483
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833673
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9393490
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604691
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604729
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604736
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8710732
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10027487
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10006873
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8906967
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283913
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9535606
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9133113
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505231
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105390
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877079
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813286
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776650
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8992725
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026570
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9358189
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402293
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474312
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8931820
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958670
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604723
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920648
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9569317
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283855
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202820
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813885
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7533498
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919690

Using the SOCIO Chatbot for UML Modeling: A Second Family of Experiments on Usability in Academic SettingsR. Ren; S. Pérez-soler; J. W. Castro; O. Dieste; S. T. Acuña2022 After improving the SOCIO chatbot prototype model, we wanted to know how/if its usability has changed. An evidence-based empirical evaluation of the usability of SOCIO V1 (updated version) requires an extensive verification of the experimental results. A family of experiments is a method of verification whereby we can check if the experimental results are reproducible. Through comparison with the updated control tool Creately, we aimed to gain a better understanding of the usability of the collaborative modeling chatbot and how it could be improved based on experimental evidence of changes in terms of efficiency, effectiveness, satisfaction, and quality. A total of 87 students from three countries were recruited. We conducted a family of three experiments to compare the usability of SOCIO V1 and updated Creately in academic settings. Students appeared to be more satisfied with SOCIO V1, and SOCIO V1 scored better on completeness. There were no significant differences between the two tools regarding efficiency and quality. This study provides evidence on how to employ a family of experiments to improve chatbot usability and enrich knowledge on chatbot usability experimentation.10.1109/ACCESS.2022.3228772 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9982595Chatbot;usability;family of experiments IEEE Inglês
Towards Pulverised Architectures for Collective Adaptive Systems through Multi-Tier ProgrammingG. Aguzzi; R. Casadei; D. Pianini; G. Salvaneschi; M. Viroli2021 Engineering large-scale Cyber-Physical Systems - like robot swarms, augmented crowds, and smart cities - is challenging, for many issues have to be addressed, including specifying their collective adaptive behaviour and managing the connection of the digital and physical parts. In particular, some approaches propose self-organising mechanisms to actually program global behaviour while fostering decentralised, asynchronous execution. However, most of these approaches couple behavioural specifications to specific network architectures (e.g., peer-to-peer), and therefore do not promote flexible exploitation of the underlying infrastructure. Conversely, pulverisation is a recent approach that enables self-organising behaviour to be defined independently of the available infrastructure while retaining functional correctness. However, there are currently no tools to formally specify and verify concrete architectures for pulverised applications. Therefore, we propose to combine pulverisation with multi-tier programming, a paradigm that supports the specification of the architecture of distributed systems in a single code base, and enables static checks for the correctness of actual deployments. The approach can be implemented by combining the ScaFi aggregate computing toolchain with the ScalaLoci multi-tier programming language, paving the path to support the development of self-organising cyber-physical systems, addressing both functional (behaviour) and non-functional concerns (deployment) in a single code base and modular fashion.10.1109/ACSOS-C52956.2021.00033 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599177Pulverisation;Aggregate Computing;Multi-tier programming IEEE Inglês
Feasibility Study of Machine Learning & AI Algorithms for Classifying Software RequirementsU. Akshatha Nayak; K. S. Swarnalatha; A. Balachandra2022 Software requirements[15] description and classification is the fundamental and most important activity in the software engineering process. Requirements are obtained through an elicitation process which generally involves interaction with stakeholders such as; exchange of information in person, on notes, by email, on phone, through meetings, etc., which involves a communication language such as English. The description of requirements (ex: functional, non-functional, related others) encompasses few properties such as; understandability, completeness, accuracy, clarity, unambiguousness, testability and related others. Classifying requirements into functional and non-functional category using Machine learning approaches have proved to be successful in the past. The goodness of software requirement properties impact’s the quality levels during the development of a software product and on the resulting product quality. The classification should address semantic details and implicit information during classification to completely satisfy a requirement. This paper presents results of applying different ML algorithms using a simple problem (and data set) for classifying software requirements. The requirements have been described in English following semantic language rules adopted to ease the writing process. The requirement may be obtained from a use case tool (for example rational unified software) or alternate sources. The purpose of this research work is for understanding the application and use of Machine Learning algorithms for the problem of requirements classification, while providing inputs for developing a “software requirements definition and description framework” using English language.10.1109/MysuruCon55714.2022.9972410 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9972410Use Case Tool;Rational Unified Natural Language;semantics;Text Normalization;Lexical analyzer;Vectorization;Machine Learning AlgorithmsIEEE Inglês
High Coverage Concolic Equivalence CheckingP. Roy; S. Chaki; P. Chauhan 2019 A concolic approach, called Slec-Cf, to check sequential equivalence between a high-level (e.g., C++/SystemC) hardware description and an RTL (e.g., Verilog) is presented. Slec-Cf searches for counterexamples over the possible values of a set of "control signals" in a depth-first lexicographic manner, avoiding values that are unrealizable by any concrete input. In addition, Slec-Cf respects user-specified design constraints during search, thus only producing stimuli that are of relevance to users. It is a superior alternative to random simulations, which produce an overwhelming number of irrelevant stimuli for user-constrained designs, and are therefore of limited effectiveness. To handle complex designs, we present an incremental version of Slec-Cf, which iteratively increases the search depth, and set of control signals, and uses a cache to reuse prior results. We implemented Slec-Cf on top an existing industrial tool for sequential equivalence checking. Experimental results indicate that Slec-Cf clearly outperforms random simulation in terms of coverage achieved. On complex designs, incremental Slec-Cf demonstrates superior ability to achieve good coverage in almost all cases, compared to non-incremental Slec-Cf.10.23919/DATE.2019.8715131 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715131- IEEE Inglês
Estimating Task Efforts in Hardware Development Projects in a Scrum ContextS. Briatore; A. Golkar 2021 Hardware developers started experimenting with Scrum to accelerate their product development. However, it is not possible to implement Scrum in the same way as it was done for software systems, where the approach is already well established. One of the processes required in Scrum is the estimate of task efforts when creating a backlog for an Agile Sprint. This article presents a pilot validation experiment of a novel Agile framework for the development of hardware systems, including a parametric tool to estimate task effort in a more rigorous way than traditional confidence votes. This article presents the validation of electronic hardware design task estimation and overall project performance. The validation is performed through experimental work with teams of junior engineering students. The validation experiment showed an improvement from a minimum of eight to a maximum of eighteen percent when employing the presented tool during planning phases of the development.10.1109/JSYST.2021.3049737 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9336669Agile;costs;electronics;hardware design;time estimates IEEE Inglês
Flip Flop Weighting: A technique for estimation of safety metrics in Automotive DesignsF. A. da Silva; A. C. Bagbaba; S. Hamdioui; C. Sauer2021 The requirements of ISO26262 for the development of safety-critical Integrated Circuits (IC) demand substantial efforts on fault analysis for safety metrics evaluation. Failing to achieve the required conditions entails modifications to the circuit, additional iterations through critical design phases, and consequently extra costs and delays. For that reason, providing accurate methods to estimate safety metrics is of great importance. This paper proposes a methodology that can efficiently and precisely estimate the safety metrics of Automotive designs. The technique is based on the characterization of a netlist to determine how hardware components contribute to fault propagation. Also, by examining the test stimuli applied during simulation, we can rank Workloads/Testbenches according to their fault detection coverage. The approach was verified running fault injection campaigns on distinct gate-level hardware designs, including an Automotive CPU. Our results show that the fault detection coverage can be estimated with an average error rate of 3% at up to 20X faster execution times when compared to the traditional campaigns. Hence the methodology provides an efficient and cost-effective mechanism to support engineers in a confident design space exploration.10.1109/IOLTS52814.2021.9486697 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9486697ISO26262;Design Space Exploration;Fault Injection;Formal Methods;Simulation;Functional Safety;VerificationIEEE Inglês
Simulation-based Equivalence Checking between IEEE 1687 ICL and RTLA. Damljanovic; A. Jutman; M. Portolan; E. Sanchez; G. Squillero; A. Tsertov2019 A fundamental part of the new IEEE Std 1687 is the Instrument Connectivity Language (ICL), which allows for abstract description of the scan network. The big novelty if compared to legacy solutions like BSDL is the possibility of describing new topology-enabling elements such as the Scan-Muxes in a behavioural way which can be easily and efficiently exploited by Test Generation Tools to retarget instrument-level operations to top-level patterns. This means that for a given design, the Developer will have to write both the RTL and the ICL descriptions: to the author's best knowledge there is no automated tool to make the translation RTL to ICL. This methodology is error-prone due to the human factor, the difference in intent in the two descriptions and the syntactic and semantic complexity of the languages. Incoherence between ICL and RTL will result in retargeting errors, so it is fundamental to validate the equivalence between the two descriptions. This paper presents an automated methodology that starting from the ICL description is able to generate a set of RTL testbenches that can be simulated against the original RTL model to detect discrepancies and incoherence, and provides quantitative metrics in terms of code and functional coverage. Experimental results are reported on the set of ITC2016 set of benchmark networks.10.1109/ITC44170.2019.9000181 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9000181Simulation;RTL;ICL;Code-coverage;Pattern Generation;Reconfigurable Scan Networks;IEEE 1687IEEE Inglês
No Strings Attached: An Empirical Study of String-related Software BugsA. Eghbali; M. Pradel 2020 Strings play many roles in programming because they often contain complex and semantically rich information. For example, programmers use strings to filter inputs via regular expression matching, to express the names of program elements accessed through some form of reflection, to embed code written in another formal language, and to assemble textual output produced by a program. The omnipresence of strings leads to a wide range of mistakes that developers may make, yet little is currently known about these mistakes. The lack of knowledge about string-related bugs leads to developers repeating the same mistakes again and again, and to poor support for finding and fixing such bugs. This paper presents the first empirical study of the root causes, consequences, and other properties of string-related bugs. We systematically study 204 string-related bugs in a diverse set of projects written in JavaScript, a language where strings play a particularly important role. Our findings include (i) that many string-related mistakes are caused by a recurring set of root cause patterns, such as incorrect string literals and regular expressions, (ii) that string-related bugs have a diverse set of consequences, including incorrect output or silent omission of expected behavior, (iii) that fixing string-related bugs often requires changing just a single line, with many of the required repair ingredients available in the surrounding code, (iv) that string-related bugs occur across all parts of applications, including the core components, and (v) that almost none of these bugs are detected by existing static analyzers. Our findings not only show the importance and prevalence of string-related bugs, but they help developers to avoid common mistakes and tool builders to tackle the challenge of finding and fixing string-related bugs.https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9286132strings;software bugs;string-related bugs;empirical study IEEE Inglês
Formalizing Architectural Rules with Ontologies - An Industrial EvaluationS. Schröder; G. Buchgeher 2019 Architecture conformance checking is an important means for quality control to assess that the system implementation adheres to its defined software architecture. Ideally, this process is automated to support continuous quality control. Many different approaches exist for automated conformance checking. However, these approaches are often limited in terms of supported concepts for describing and analyzing software architectures. We have developed an ontology-based approach that seeks to overcome the limited expressiveness of existing approaches. As a frontend of the formalism, we provide a Controlled Natural Language. In this paper, we present an industrial validation of the approach. For this, we collected architectural rules from three industrial projects. In total, we discovered 56 architectural rules in the projects. We successfully formalized 80% of those architectural rules. Additionally, we discussed the formalization with the corresponding software architect of each project. We found that the original intention of each architectural rule is properly reflected in the formalization. The results of the study show that projects could greatly benefit from applying an ontology-based approach, since it helps to precisely define and preserve concepts throughout the development process.10.1109/APSEC48747.2019.00017 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946096software architecture;architecture conformance checking;industrial study;ontologiesIEEE Inglês
Extending the CST: The Distributed Cognitive ToolkitW. Gibaut; R. Gudwin 2020 This work presents the first steps towards the development of a toolkit for aiding in the construction of Distributed Cognitive Systems, designed within the spirit of the System of Systems (SoS) paradigm. The Toolkit is language agnostic and general enough to be used in building problem-specific Cognitive Systems that can spread across several physical or virtual devices such as low-power computers, microcontrollers, and virtual containers. The Toolkit is conceived targeting to be suitable for IoT and Smart City applications.10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00088https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9291619Cognitive Systems;Artificial Intelligence;Distributed Systems;Internet of ThingsIEEE Inglês
Mathematical Programming Modulo StringsA. Kumar; P. Manolios 2021 We introduce TranSeq, a non-deterministic, branching transition system for deciding the satisfiability of conjunctions of string equations. TranSeq is an extension of the Mathematical Programming Modulo Theories (MPMT) constraint solving framework and is designed to enable useful and computationally efficient inferences that reduce the search space, that encode certain string constraints and theory lemmas as integer linear constraints and that otherwise split problems into simpler cases, via branching. We have implemented a prototype, SeqSolve, in ACL2s, which uses Z3 as a back-end solver. String solvers have numerous applications, including in security, software engineering, programming languages and verification. We evaluated SeqSolve by comparing it with existing tools on a set of benchmark problems and our experimental results show that SeqSolve is both practical and efficient.10.34727/2021/isbn.978-3-85448-046-4_36 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617664- IEEE Inglês
Efficient Memory Arbitration in High-Level Synthesis From Multi-Threaded CodeJ. Cheng; S. T. Fleming; Y. T. Chen; J. Anderson; J. Wickerson; G. A. Constantinides2022 High-level synthesis (HLS) is an increasingly popular method for generating hardware from a description written in a software language like C/C++. Traditionally, HLS tools have operated on sequential code, however in recent years there has been a drive to synthesise multi-threaded code. In this context, a major challenge facing HLS tools is how to automatically partition memory among parallel threads to fully exploit the bandwidth available on an FPGA device and minimise memory contention. Existing partitioning approaches require inefficient arbitration circuitry to serialise accesses to each bank because they make conservative assumptions about which threads might access which memory banks. In this article, we design a static analysis that can prove certain memory banks are only accessed by certain threads, and use this analysis to simplify or even remove the arbiters while preserving correctness. We show how this analysis can be implemented using the Microsoft Boogie verifier on top of satisfiability modulo theories (SMT) solver, and propose a tool named EASY using automatic formal verification. Our work supports arbitrary input code with any irregular memory access patterns and indirect array addressing forms. We implement our approach in LLVM and integrate it into the LegUp HLS tool. For a set of typical application benchmarks our results have shown that EASY can achieve 0.13× (avg. 0.43×) of area and 1.64× (avg. 1.28×) of performance compared to the baseline, with little additional compilation time relative to the long time in hardware synthesis.10.1109/TC.2021.3066466 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343High-level synthesis;HLS;formal methods;multi-threaded code;FPGAIEEE Inglês
Tricera: Verifying C Programs Using the Theory of HeapsZ. Esen; P. Rümmer 2022 TRICERA is an automated, open-source verification tool for C programs based on the concept of Constrained Horn Clauses (CHCs). In order to handle programs operating on heap, Tricera applies a novel theory of heaps, which enables the tool to hand off most of the required heap reasoning directly to the underlying CHC solver. This leads to a cleaner interface between the language-specific verification front-end and the language-independent CHC back-end, and enables verification tools for different programming languages to share a common heap back-end. The paper introduces Tricera, gives an overview of the theory of heaps, and presents preliminary experimental results using SV-COMP benchmarks.10.34727/2022/isbn.978-3-85448-053-2_45 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026586- IEEE Inglês
Identity-Based Encryption in UAV Assisted HetNets: A SurveyA. Rashid; D. Sharma; T. A. Lone; S. Gupta; S. K. Gupta2019 In this modern technological world, the Unmanned Ariel Vehicle (UAV) assisted Heterogeneous Networks (HetNets) is almost being used by every developing/developed country for its serving civilian, military missions and natural disasters, etc. The military using UAV aided HetNets in their battlefields and nuclear war conditions and gathering reconnaissance information from hostile areas and neighboring military zones. However, the untypical nature of UAV assisted network requests security inspection at the time of establishing the network. So the UAV assisted HetNets is in need of trusted and secure communication among military users using the same network. The term trusted is being widely used for authorized users within the network. This research work confers the word trusted on the standardization of the cryptographic scheme known Identity-Based Encryption (IBE). Hence, the IBE helps the users to use the UAV aided HetNets securely in getting the reconnaissance information from enemy areas. Also, the IBE prevents the same network from the intrusion attacks of intruders. The security protocols have been formulated with the AVISPA supported language HLPSL and then validated with the same AVISPA TOOL.10.1109/ICCCNT45670.2019.8944826 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8944826UAV;HetNet;IBE;secure communication;network performance IEEE Inglês
Notice of Violation of IEEE Publication Principles: Mobile Application Development: Automated Test Input Generation Via Model Inference based on User Story and Acceptance CriteriaH. Iqbal 2019 In the past few years, there has been observed explosive growth in the development of Mobile Applications across Android and iOS operating system which has led to the direct impact towards mobile app development. In order to design and propose quality-oriented apps, it is the primary responsibility of the developers to devote time and sufficient efforts towards testing to make the Apps bug free and operational in the hands of end users without any hiccup. In order to test the mobile apps, manual testing procedures takes prolonged amount of time in writing test cases and even the full testing requirements are not met. In addition to this, lack of sufficient knowledge by the tester also impacts overall quality and assurance that app is bug free. To overcome all the issues of testing, and to assure that apps designed by developers are almost bug free, we propose a new testing methodology cum tool “AgileUATM” which works primarily towards white-box and black-box testing. With this tool, all the test cases are generated automatically based on user stories and acceptance criteria by using formal specification and Z3 SMT solvers. To test the validity of the proposed tool, we applied the tool in real-time operational environment with regard to test Mobile apps. Using this tool, all the acceptance criteria is determined via user stories. The testers/developers specify requirements with formal specifications based on programs properties, predicates, invariants, and constraints. From the results, it is observed that the proposed tool i.e. AgileUATM generated effective and accurate test cases, test input, and expected output was generated in a unified fashion from the user stories to meet acceptance criteria. In addition to this, the tool also reduced the development time to identify test data as compared to manual Behavior Driven Development (BDD) methodologies. With this tool, the developers got better idea with regard to required tests and able to translate the customers natural languages to the computer language as well.;Notice of Violation of IEEE Publication Principles

 “Mobile Application Development: Automated Test Input Generation Via Model Inference based on User Story and Acceptance Criteria”
 by Hena Iqbal
 in the Proceedings of the International Conference on Digitization (ICD), November 2019, pp. 92-103

 After careful and considered review of the content and authorship of this paper by a duly constituted expert committee, this paper has been found to be in violation of IEEE’s Publication Principles.

 This paper is a near duplication of the original text from the paper cited below. The original text was copied without attribution (including appropriate references to the original author(s) and/or paper title) and without permission.

 Due to the nature of this violation, reasonable effort should be made to remove all past references to this paper, and future references should be made to the following article:

 “Automated Test Input Generation via Model Inference Based on User Story and Acceptance Criteria for Mobile Application Development”
 by Duc-Man Nguyen, Quyet-Thang Huynh, Nhu-Hang Ha and Thanh-Hung Nguyen
 in the International Journal of Software Engineering and Knowledge Engineering, Vol. 30, No. 3 2020, pp. 399-425

10.1109/ICD47981.2019.9105761 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761- IEEE Inglês
Recovery of Mobile Game Design PatternsM. Khan; G. Rasool 2020 The benefits of design patterns to solve recurring and generic problems is well known for the software industry and academia. Game design patterns are being introduced to solve the particular type of problems for the development of computer games. The formal and informal specifications of game design patterns exist because of differences in implementation, design requirements and programming languages. We analyzed the state of the art related to mobile game design patterns and realized that mobile applications are developed by using mobile game design patterns for the development of quality software applications. The recovery of mobile game design patterns is helpful for the comprehension, reverse engineering, maintenance, evolution and refactoring of software applications. The contribution of this paper are specification and detection of 10 mobile game design patterns from 8 open source mobile games. A prototyping tool is developed to demonstrate the concept of the approach. We evaluate our approach by using precision, recall and F-measure metrics.10.1109/ACIT50332.2020.9299966 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9299966Reverse engineering;design patterns;mobile games;game design patternsIEEE Inglês
Type inhabitation of atomic polymorphism is undecidableM. C. Protin 2020 Atomic polymorphism $\mathbf{F_{at}}$ is a restriction of Girard and Reynold’s system $\mathbf{F} $(or $\lambda 2$) which was first introduced in Ferreira [2] in the context of a philosophical commentary on predicativism. $\lambda 2$ is a well-known and powerful formal tool for studying polymorphic functional programming languages and formal methods in program specification and development, but its computational power far exceeds the recursive level of interest in applications. Hence, the interest of studying subsystems of $\lambda 2$ with weaker computational power. $\mathbf{F_{at}}$ is defined by restricting instantiation to atomic variables only. It turns out that the type system is still sufficiently powerful to possess embeddings of full intuitionistic propositional calculus [3, 4], and since the calculus has fewer connectives and strong normalizability is simple to prove [3], this result allows us to circumvent many of the extra computational complexities present when dealing with the proof theory of IPC. It is natural to inquire whether type inhabitation, i.e. provability in the corresponding fragment of second-order intuitionistic propositional logic, is decidable or not and in general to see whether the negative results involving the undecidability of type inhabitation, typability and type-checking for \mathbf{F} still hold in this fragment. A further theme would be to study the result of adding type constructors, recursors or even dependent types to $\mathbf{F_{at}}$. In this paper, we show that type inhabitation for $\mathbf{F_{at}}$ is undecidable by codifying within it an undecidable fragment of first-order intuitionistic predicate calculus, adapting and modifying the technique of Urzyczyn’s [1, 7] purely syntactic proof of the undecidability of type inhabitation for \mathbf{F}.10.1093/logcom/exaa090 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9426547polymorphism;second-order intuitionistic propositional logic;Curry–Howard correspondence;lambda-calculus;functional programmingIEEE Inglês

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9982595
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599177
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9972410
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9336669
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9486697
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9000181
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9286132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9291619
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617664
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026586
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8944826
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9299966
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9426547

TÍTULO AUTORES ANO RESUMO DOI PDF LINK PALAVRAS-CHAVE FONTE DE BUSCA IDIOMA CRITÉRIOS STATUS
The Dogged Pursuit of Bug-Free C Programs: The Frama-C Software Analysis PlatformBaudin P,Bobot F,Bühler D,Correnson L,Kirchner F,Kosmatov N,Maroneze A,Perrelle V,Prevosto V,Signoles J,Williams N2021 A panoramic view of a popular platform for C program analysis and verification.10.1145/3470569 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3470569;http://dx.doi.org/10.1145/3470569- ACM Inglês CE1 Excluído
Structural Embeddings Revisited (Invited Talk)Muñoz C 2022 A semantic embedding is a logical encoding of a formal language, namely the object language, into the specification language of a logical framework. In their seminal paper “Experience with embedding hardware description languages in HOL”, Boulton et al. coined the terms deep and shallow embeddings depending on whether or not the syntax of terms of the target language is represented by a data type in the specification language. Thus, a deep embedding enables reasoning about classes of terms, while a shallow embedding limits reasoning to concrete terms. Embeddings of programming languages are well-known applications of interactive theorem provers, specially of those based on higher-order logic. These embeddings are often intended to support the study of a programming language semantics or to enhance a programming language with the deductive capabilities of the logical framework. A different type of embeddings, here referred to as structural embeddings, are intended to augment specification languages with structural elements of the object language. In a structural embedding, the outermost elements of the object language, i.e., the structural parts, are encoded, either deeply or shallowly, but the internal elements, i.e., the basic expressions, are those of the specification language. Advances in automated reasoning and user interfaces have enabled structural embeddings to enhance usability of interactive theorem provers and to reduce the gap between verification tools and modeling tools used by practitioners. This talk presents an overview of several years of research on theorem proving in safety-critical aerospace systems through the lens of embeddings and, more particularly, structural embeddings. The talk focuses on lessons learned and provides examples of successful applications to automated reasoning, termination analysis, floating-point analysis, and verification of cyber-physical systems. Our main point, which is hardly original, is that interactive theorem provers will serve as intermediate systems that connect a cluster of components. Structural embeddings could then provide the frontend capabilities to access this cluster of components.10.1145/3497775.3503949https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3497775.3503949;http://dx.doi.org/10.1145/3497775.3503949Formal Verification, Embeddings, Prototype Verification System (PVS), Interactive Theorem ProvingACM Inglês CE1 Excluído
A Survey of Smart Contract Formal Specification and VerificationTolmach P,Li Y,Lin SW,Liu Y,Li Z2021 A smart contract is a computer program that allows users to automate their actions on the blockchain platform. Given the significance of smart contracts in supporting important activities across industry sectors including supply chain, finance, legal, and medical services, there is a strong demand for verification and validation techniques. Yet, the vast majority of smart contracts lack any kind of formal specification, which is essential for establishing their correctness. In this survey, we investigate formal models and specifications of smart contracts presented in the literature and present a systematic overview to understand the common trends. We also discuss the current approaches used in verifying such property specifications and identify gaps with the hope to recognize promising directions for future work.10.1145/3464421 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3464421;http://dx.doi.org/10.1145/3464421formal specification, Smart contract, formal verification, propertiesACM Inglês CE1 Excluído
SIGLOG Monthly 233: January 2023Purser D 2023 An annual award, called the Alonzo Church Award for Outstanding Contributions to Logic and Computation, was established in 2015 by the ACM Special Interest Group for Logic and Computation (SIGLOG), the European Association for Theoretical Computer Science (EATCS), the European Association for Computer Science Logic (EACSL), and the Kurt Goedel Society (KGS). The award is for an outstanding contribution represented by a paper or by a small group of papers published within the past 25 years. This time span allows the lasting impact and depth of the contribution to have been established. The award can be given to an individual, or to a group of individuals who have collaborated on the research. For the rules governing this award, see https://siglog.org/alonzo-church-award/, https://www.eatcs.org/index.php/church-award/, and https://www.eacsl.org/alonzo-church-award/.10.1145/3584676.3584683https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3584676.3584683;http://dx.doi.org/10.1145/3584676.3584683- ACM Inglês CE1 Excluído
Soundness of a Dataflow Analysis for Memory MonitoringLy D,Kosmatov N,Signoles J,Loulergue F2019 An important concern addressed by runtime verification tools for C code is related to detecting memory errors. It requires to monitor some properties of memory locations (e.g., their validity and initialization) along the whole program execution. Static analysis based optimizations have been shown to significantly improve the performances of such tools by reducing the monitoring of irrelevant locations. However, soundness of the verdict of the whole tool strongly depends on the soundness of the underlying static analysis technique. This paper tackles this issue for the dataflow analysis used to optimize the E-ACSL runtime assertion checking tool.We formally define the core dataflow analysis used by E-ACSL and prove its soundness.10.1145/3375408.3375416https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375416;http://dx.doi.org/10.1145/3375408.3375416- ACM Inglês CE4 Excluído
How Testing Helps to Diagnose Proof FailuresPetiot G,Kosmatov N,Botella B,Giorgetti A,Julliand J2018 Applying deductive verification to formally prove that a program respects its formal specification is a very complex and time-consuming task due in particular to the lack of feedback in case of proof failures. Along with a non-compliance between the code and its specification (due to an error in at least one of them), possible reasons of a proof failure include a missing or too weak specification for a called function or a loop, and lack of time or simply incapacity of the prover to finish a particular proof. This work proposes a methodology where test generation helps to identify the reason of a proof failure and to exhibit a counterexample clearly illustrating the issue. We define the categories of proof failures, introduce two subcategories of contract weaknesses (single and global ones), and examine their properties. We describe how to transform a C program formally specified in an executable specification language into C code suitable for testing, and illustrate the benefits of the method on comprehensive examples. The method has been implemented in StaDy, a plugin of the software analysis platform Frama-C. Initial experiments show that detecting non-compliances and contract weaknesses allows to precisely diagnose most proof failures.10.1007/s00165-018-0456-4https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0456-4;http://dx.doi.org/10.1007/s00165-018-0456-4Test generation, Deductive verification, Proof debugging, Specification, Frama-CACM Inglês CE1 Excluído
Formal Specification and Verification of Autonomous Robotic Systems: A SurveyLuckcuck M,Farrell M,Dennis LA,Dixon C,Fisher M2019 Autonomous robotic systems are complex, hybrid, and often safety critical; this makes their formal specification and verification uniquely challenging. Though commonly used, testing and simulation alone are insufficient to ensure the correctness of, or provide sufficient evidence for the certification of, autonomous robotics. Formal methods for autonomous robotics have received some attention in the literature, but no resource provides a current overview. This article systematically surveys the state of the art in formal specification and verification for autonomous robotics. Specially, it identifies and categorizes the challenges posed by, the formalisms aimed at, and the formal approaches for the specification and verification of autonomous robotics.10.1145/3342355 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3342355;http://dx.doi.org/10.1145/3342355autonomous robotics, Formal verification, formal specification, formal methodsACM Inglês CE1 Excluído
FASTEN: An Open Extensible Framework to Experiment with Formal Specification Approaches: Using Language Engineering to Develop a Multi-Paradigm Specification Environment for NuSMVRatiu D,Gario M,Schoenhaar H2019 Formal specification approaches have been successfully used to specify and verify complex systems. Verification engineers so far either directly use formal specification languages which can be consumed by verification tools (e.g. SMV, Promela) or main stream modeling languages which are then translated into formal languages and verified (e.g. SysML, AADL). The first approach is expressive and effective but difficult to use by non-experts. The second approach lowers the entry barrier for novices but users are limited to the constructs of the chosen modeling languages and thereby end up abusing the language to encode behaviors of interest.In this paper, we introduce a third approach that we call FASTEN, in which modular and extensible Domain Specific Languages (DSLs) are used to raise the abstraction level of specification languages towards the domain of interest. The approach aims to help novice users to use formal specification, enable experts to use multi-paradigm modeling, and provide tools for the developers of verification technologies to easily experiment with various types of specification approaches. To show the feasibility of the approach, we release an open-source tool based on Jetbrains' MPS language workbench that provides an extensible stack of more than ten DSLs, situated at different levels of abstraction, built on top of the SMV language. We use the NuSMV model checker to perform verification, to simulate the models and lift the traces at the abstraction level of the DSLs. We detail on the experience with designing and developing the DSLs stack and briefly report on using the DSLs in practice for the study of a communication protocol of a safety critical system.10.1109/FormaliSE.2019.00013https://doi-org.ez13.periodicos.capes.gov.br/10.1109/FormaliSE.2019.00013;http://dx.doi.org/10.1109/FormaliSE.2019.00013domain specific languages, formal methodsACM Inglês CE3 Excluído
Reasoning about Human-Friendly Strategies in Repeated Keyword AuctionsBelardinelli F,Jamroga W,Malvone V,Mittelmann M,Murano A,Perrussel L2022 In online advertising, search engines sell ad placements for keywords continuously through auctions. This problem can be seen as an infinitely repeated game since the auction is executed whenever a user performs a query with the keyword. As advertisers may frequently change their bids, the game will have a large set of equilibria with potentially complex strategies. In this paper, we propose the use of natural strategies for reasoning in such setting as they are processable by artificial agents with limited memory and/or computational power as well as understandable by human users. To reach this goal, we introduce a quantitative version of Strategy Logic with natural strategies in the setting of imperfect information. In a first step, we show how to model strategies for repeated keyword auctions and take advantage of the model for proving properties evaluating this game. In a second step, we study the logic in relation to the distinguishing power, expressivity, and model-checking complexity for strategies with and without recall.- strategic reasoning, mechanism design, auctionsACM Inglês CE1 Excluído
Social Machines for All Papapanagiotou P,Davoust A,Murray-Rust D,Manataki A,Van Kleek M,Shadbolt N,Robertson D2018 In today's interconnected world, people interact to a unprecedented degree through the use of digital platforms and services, forming complex 'social machines'. These are now homes to autonomous agents as well as people, providing an open space where human and computational intelligence can mingle---a new frontier for distributed agent systems. However, participants typically have limited autonomy to define and shape the machines they are part of. In this paper, we envision a future where individuals are able to develop their own Social Machines, enabling them to interact in a trustworthy, decentralized way. To make this possible, development methods and tools must see their barriers-to-entry dramatically lowered. People should be able to specify the agent roles and interaction patterns in an intuitive, visual way, analyse and test their designs and deploy them as easy to use systems. We argue that this is a challenging but realistic goal, which should be tackled by navigating the trade-off between the accessibility of the design methods --primarily the modelling formalisms-- and their expressive power. We support our arguments by drawing ideas from different research areas including electronic institutions, agent-based simulation, process modelling, formal verification, and model-driven engineering.- model-driven development, social machines, design, analysis, modellingACM Inglês CE1 Excluído
A Survey of Practical Formal Methods for SecurityKulik T,Dongol B,Larsen PG,Macedo HD,Schneider S,Tran-Jørgensen PW,Woodcock J2022 In today’s world, critical infrastructure is often controlled by computing systems. This introduces new risks for cyber attacks, which can compromise the security and disrupt the functionality of these systems. It is therefore necessary to build such systems with strong guarantees of resiliency against cyber attacks. One way to achieve this level of assurance is using formal verification, which provides proofs of system compliance with desired cyber security properties. The use of Formal Methods (FM) in aspects of cyber security and safety-critical systems are reviewed in this article. We split FM into the three main classes: theorem proving, model checking, and lightweight FM. To allow the different uses of FM to be compared, we define a common set of terms. We further develop categories based on the type of computing system FM are applied in. Solutions in each class and category are presented, discussed, compared, and summarised. We describe historical highlights and developments and present a state-of-the-art review in the area of FM in cyber security. This review is presented from the point of view of FM practitioners and researchers, commenting on the trends in each of the classes and categories. This is achieved by considering all types of FM, several types of security and safety-critical systems, and by structuring the taxonomy accordingly. The article hence provides a comprehensive overview of FM and techniques available to system designers of security-critical systems, simplifying the process of choosing the right tool for the task. The article concludes by summarising the discussion of the review, focusing on best practices, challenges, general future trends, and directions of research within this field.10.1145/3522582 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3522582;http://dx.doi.org/10.1145/3522582Formal Methods, model checking, theorem proving, cyber securityACM Inglês CE1 Excluído
A Lightweight Formalism for Reference Lifetimes and Borrowing in RustPearce DJ 2022 Rust is a relatively new programming language that has gained significant traction since its v1.0 release in 2015. Rust aims to be a systems language that competes with C/C++. A claimed advantage of Rust is a strong focus on memory safety without garbage collection. This is primarily achieved through two concepts, namely, reference lifetimes and borrowing. Both of these are well-known ideas stemming from the literature on region-based memory management and linearity/uniqueness. Rust brings both of these ideas together to form a coherent programming model. Furthermore, Rust has a strong focus on stack-allocated data and, like C/C++ but unlike Java, permits references to local variables.Type checking in Rust can be viewed as a two-phase process: First, a traditional type checker operates in a flow-insensitive fashion; second, a borrow checker enforces an ownership invariant using a flow-sensitive analysis. In this article, we present a lightweight formalism that captures these two phases using a flow-sensitive type system that enforces “type and borrow safety.” In particular, programs that are type and borrow safe will not attempt to dereference dangling pointers. Our calculus core captures many aspects of Rust, including copy- and move-semantics, mutable borrowing, reborrowing, partial moves, and lifetimes. In particular, it remains sufficiently lightweight to be easily digested and understood and, we argue, still captures the salient aspects of reference lifetimes and borrowing. Furthermore, extensions to the core can easily add more complex features (e.g., control-flow, tuples, method invocation). We provide a soundness proof to verify our key claims of the calculus. We also provide a reference implementation in Java with which we have model checked our calculus using over 500B input programs. We have also fuzz tested the Rust compiler using our calculus against 2B programs and, to date, found one confirmed compiler bug and several other possible issues.10.1145/3443420 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3443420;http://dx.doi.org/10.1145/3443420ownership, model checking, type theory, RustACM Inglês CE1 Excluído
Sound Regular Expression Semantics for Dynamic Symbolic Execution of JavaScriptLoring B,Mitchell D,Kinder J 2019 Support for regular expressions in symbolic execution-based tools for test generation and bug finding is insufficient. Common aspects of mainstream regular expression engines, such as backreferences or greedy matching, are ignored or imprecisely approximated, leading to poor test coverage or missed bugs. In this paper, we present a model for the complete regular expression language of ECMAScript 2015 (ES6), which is sound for dynamic symbolic execution of the test and exec functions. We model regular expression operations using string constraints and classical regular expressions and use a refinement scheme to address the problem of matching precedence and greediness. We implemented our model in ExpoSE, a dynamic symbolic execution engine for JavaScript, and evaluated it on over 1,000 Node.js packages containing regular expressions, demonstrating that the strategy is effective and can significantly increase the number of successful regular expression queries and therefore boost coverage.10.1145/3314221.3314645https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3314221.3314645;http://dx.doi.org/10.1145/3314221.3314645SMT, regular expressions, Dynamic symbolic execution, JavaScriptACM Inglês CE1 Excluído
Test-Based Security Certification of Composite ServicesAnisetti M,Ardagna C,Damiani E,Polegri G2018 The diffusion of service-based and cloud-based systems has created a scenario where software is often made available as services, offered as commodities over corporate networks or the global net. This scenario supports the definition of business processes as composite services, which are implemented via either static or runtime composition of offerings provided by different suppliers. Fast and accurate evaluation of services’ security properties becomes then a fundamental requirement and is nowadays part of the software development process. In this article, we show how the verification of security properties of composite services can be handled by test-based security certification and built to be effective and efficient in dynamic composition scenarios. Our approach builds on existing security certification schemes for monolithic services and extends them towards service compositions. It virtually certifies composite services, starting from certificates awarded to the component services. We describe three heuristic algorithms for generating runtime test-based evidence of the composite service holding the properties. These algorithms are compared with the corresponding exhaustive algorithm to evaluate their quality and performance. We also evaluate the proposed approach in a real-world industrial scenario, which considers ENGpay online payment system of Engineering Ingegneria Informatica S.p.A. The proposed industrial evaluation presents the utility and generality of the proposed approach by showing how certification results can be used as a basis to establish compliance to Payment Card Industry Data Security Standard.10.1145/3267468 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3267468;http://dx.doi.org/10.1145/3267468service composition, Cloud, model-based testing, security certification, service-oriented architecture, software-as-a-service, web servicesACM Inglês CE1 Excluído
Research on Security Evaluation of Space Used Very Large Scale Integration (VLSI)Qu R,Zhang W,Lv Q,Zhang M2021 The hardware security of space VLSI is an important issue of the reliable operation of spacecraft system in orbit. This paper focuses on the security evaluation method of VLSI design front-end based on formal verification theory. This method is adopted in the security check of a space Application Specific Integrated Circuit (ASIC). Using assertions of key registers, the potential design vulnerability of ASIC is found, which can lead to tampering of configuration data tampering under lock-in mode, and resulting in abnormal reset and even downtime of the whole chip. Finally, the security design improvement suggestions are given against the tampering.10.1145/3448734.3450457https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3448734.3450457;http://dx.doi.org/10.1145/3448734.3450457front-end security evaluation, formal verification, Space VLSIACM Inglês CE1 Excluído
High-Level Cryptographic AbstractionsKane C,Lin B,Chand S,Stoller SD,Liu YA2019 The interfaces exposed by commonly used cryptographic libraries are clumsy, complicated, and assume an understanding of cryptographic algorithms. The challenge is to design high-level abstractions that require minimum knowledge and effort to use while also allowing maximum control when needed.This paper proposes such high-level abstractions consisting of simple cryptographic primitives and full declarative configuration. These abstractions can be implemented on top of any cryptographic library in any language. We have implemented these abstractions in Python, and used them to write a wide variety of well-known security protocols, including Signal, Kerberos, and TLS.We show that programs using our abstractions are much smaller and easier to write than using low-level libraries, where size of security protocols implemented is reduced by about a third on average. We show our implementation incurs a small overhead, less than 5 microseconds for shared key operations and less than 341 microseconds (< 1%) for public key operations. We also show our abstractions are safe against main types of cryptographic misuse reported in the literature.10.1145/3338504.3357343https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3338504.3357343;http://dx.doi.org/10.1145/3338504.3357343declarative configuration, cryptographic api, high-level abstractionACM Inglês CE1 Excluído
Morbig: A Static Parser for POSIX ShellRégis-Gianas Y,Jeannerod N,Treinen R2018 The POSIX shell language defies conventional wisdom of compiler construction on several levels: The shell language was not designed for static parsing, but with an intertwining of syntactic analysis and execution by expansion in mind. Token recognition cannot be specified by regular expressions, lexical analysis depends on the parsing context and the evaluation context, and the shell grammar given in the specification is ambiguous. Besides, the unorthodox design choices of the shell language fit badly in the usual specification languages used to describe other programming languages. This makes the standard usage of LEX and YACC as a pipeline inadequate for the implementation of a parser for POSIX shell. The existing implementations of shell parsers are complex and use low-level character-level parsing code which is difficult to relate to the POSIX specification. We find it hard to trust such parsers, especially when using them for writing automatic verification tools for shell scripts. This paper offers an overview of the technical difficulties related to the syntactic analysis of the POSIX shell language. It also describes how we have resolved these difficulties using advanced parsing techniques (namely speculative parsing, parser state introspection, context-dependent lexical analysis and longest-prefix parsing) while keeping the implementation at a sufficiently high level of abstraction so that experts can check that the POSIX standard is respected. The resulting tool, called MORBIG, is an open-source static parser for a well-defined and realistic subset of the POSIX shell language. Its implementation crucially relies on the purity and incrementality of LR(1) parsers generated by MENHIR, a parser generator for OCaml.10.1145/3276604.3276615https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3276604.3276615;http://dx.doi.org/10.1145/3276604.3276615functional programming, Parsing, POSIX shellACM Inglês CE1 Excluído
Generating Counterexamples in the Form of Unit Tests from Hoare-Style Verification AttemptsNilizadeh A,Calvo M,Leavens GT,Cok DR2022 Unit tests that demonstrate why a program is incorrect have many potential uses, including localizing bugs (i.e., showing where code is wrong), improving test suites, and better code synthesis. However, counterexamples produced by failed attempts at Hoare-style verification (e.g., by SMT solvers) are difficult to translate into unit tests. We explain how to generate unit tests from counterexamples generated by an SMT solver and how this process could be embodied in a prototype tool. This process combines static verification techniques and runtime assertion checking.10.1145/3524482.3527656https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3524482.3527656;http://dx.doi.org/10.1145/3524482.3527656- ACM Inglês CE1 Excluído
Bayesian Statistical Parametric Verification and Synthesis by Machine LearningBortolussi L,Sanguinetti G,Silvetti S2018 We consider the problem of parametric verification, presenting a recent statistical method to perform parametric verification of linear time properties of stochastic models, estimating the satisfaction probability as a function of model or property parameters. The approach leverages Bayesian Machine Learning based on Gaussian Processes. Under mild conditions on continuity of parameters of the satisfaction probability, it can be shown that property satisfaction is a smooth function of such parameters. Gaussian Processes can effectively capture this smoothness and obtain more-accurate estimates of satisfaction probabilities by transferring information across the parameter space. We leveraged this approach to efficiently solve several tasks, like parameter synthesis, system design, counterexample generation, and requirement synthesis. In this tutorial, we will introduce the basic ideas of the approach and give an overview of the different applications.- ACM Inglês CE1 Excluído
A Proof-Producing Translator for Verilog Development in HOLLööw A,Myreen MO 2019 We present an automatic proof-producing translator targeting the hardware description language Verilog. The tool takes a circuit represented as a HOL function as input, translates the input function to a Verilog program and automatically proves a correspondence theorem between the input function and the output Verilog program ensuring that the translation is correct. As illustrated in the paper, the generated correspondence theorems furthermore enable transporting circuit reasoning from the HOL level to the Verilog level. We also present a formal semantics for the subset of Verilog targeted by the translator, which we have developed in parallel with the translator. The semantics is based on the official Verilog standard and is, unlike previous formalization efforts, designed to be usable for automated and interactive reasoning without sacrificing a clear correspondence to the standard. To illustrate the translator's applicability, we describe case studies of a simple verified processor and verified regexp matchers and synthesize them for two FPGA boards. The development has been carried out in the HOL4 theorem prover.10.1109/FormaliSE.2019.00020https://doi-org.ez13.periodicos.capes.gov.br/10.1109/FormaliSE.2019.00020;http://dx.doi.org/10.1109/FormaliSE.2019.00020- ACM Inglês CE1 Excluído
Automatic Verification of Database-Centric SystemsDeutsch A,Hull R,Li Y,Vianu V 2018 We present an overview of results on verification of temporal properties of infinite-state transition systems arising from processes that carry and manipulate unbounded data. The techniques bring into play tools from logic, database theory, and model checking. The theoretical results establish the boundaries of decidability and the complexity of verification for various models. We also describe verifier implementations with surprisingly good performance, suggesting that this line of research has real potential for practical impact.10.1145/3212019.3212025https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3212019.3212025;http://dx.doi.org/10.1145/3212019.3212025- ACM Inglês CE1 Excluído
Leapfrog: Certified Equivalence for Protocol ParsersDoenges R,Kappé T,Sarracino J,Foster N,Morrisett G2022 We present Leapfrog, a Coq-based framework for verifying equivalence of network protocol parsers. Our approach is based on an automata model of P4 parsers, and an algorithm for symbolically computing a compact representation of a bisimulation, using leaps. Proofs are powered by a certified compilation chain from first-order entailments to low-level bitvector verification conditions, which are discharged using off-the-shelf SMT solvers. As a result, parser equivalence proofs in Leapfrog are fully automatic and push-button. We mechanically prove the core metatheory that underpins our approach, including the key transformations and several optimizations. We evaluate Leapfrog on a range of practical case studies, all of which require minimal configuration and no manual proof. Our largest case study uses Leapfrog to perform translation validation for a third-party compiler from automata to hardware pipelines. Overall, Leapfrog represents a step towards a world where all parsers for critical network infrastructure are verified. It also suggests directions for follow-on efforts, such as verifying relational properties involving security.10.1145/3519939.3523715https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3519939.3523715;http://dx.doi.org/10.1145/3519939.3523715automata, network protocol parsers, P4, foundational verification, Coq, certified parsers, equivalenceACM Inglês CE1 Excluído
Bisimulation Finiteness of Pushdown Systems Is ElementaryGöller S,Parys P 2020 We show that in case a pushdown system is bisimulation equivalent to a finite system, there is already a bisimulation equivalent finite system whose size is elementarily bounded in the description size of the pushdown system. As a consequence we obtain that it is elementarily decidable if a given pushdown system is bisimulation equivalent to some finite system. This improves a previously best-known ACKERMANN upper bound for this problem.10.1145/3373718.3394827https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3373718.3394827;http://dx.doi.org/10.1145/3373718.3394827Bisimulation equivalence K@pushdown automata, bisimulation finiteness, elementaryACM Inglês CE1 Excluído
CPP 2023: Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs2023 Welcome to the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2023)! CPP covers the practical and theoretical topics in all areas that consider formal verification and certification as essential paradigms for their work. CPP spans topics in computer science, mathematics, logic, and education. CPP 2023 will be held on 16-17 January 2023 in Boston, Massachusetts, United States. The conference is co-located with POPL 2023, and is sponsored by ACM SIGPLAN in cooperation with ACM SIGLOG- ACM Inglês CE4 Excluído
SIGLOG Monthly 203 Petrişan D 2019 - 10.1145/3373394.3373399https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3373394.3373399;http://dx.doi.org/10.1145/3373394.3373399- ACM Inglês CE4 Excluído
The Verified Software Initiative: A ManifestoHoare T,Misra J,Leavens GT,Shankar N2021 - https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3477355.3477361- ACM Inglês CE4 Excluído
Graphical Modeling VS. Textual Modeling: An Experimental Comparison Based on iStar ModelsW. Liu; Y. Wang; Q. Zhou; T. Li2021 [Context] Establishing requirements models is an effective way to analyze them, which is typically dealt with in a graphical manner (i.e., the drag-and-draw fashion). However, as the size of models increases, the scalability issue has become an unignorable challenge, hindering the practical adoption of requirements modeling approach. Some researchers have recently proposed and promoted textual modeling approaches, mitigating these issues of requirements modeling. [Objective] In this paper, we aim at evaluating the two modeling methods, i.e., a graphical modeling method VS. a textual modeling method. In particular, we apply these two methods to iStar modeling language, which has been widely recognized as an effective means to model and analyze requirements. [Methods] We have systematically designed and conducted a controlled experiment with 38 participants to compare two iStar modeling methods (graphical and textual) using two corresponding modeling tools (piStar and T-Star). The experimental results reveal that the numbers of iStar model nodes and relationships built by the participants had no significant difference, regardless of the modeling method adopted. [Conclusions] First, the results show that the textual modeling method is as usable as the graphical modeling method when creating iStar models. Second, we have identified a number of issues that contribute to improving the utility and practicality of the iStar modeling method.10.1109/COMPSAC51774.2021.00117https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529492Requirements modeling;iStar modeling framework;Controlled experiment;ScalabilityIEEE Inglês CE1 Excluído
High Coverage Concolic Equivalence CheckingP. Roy; S. Chaki; P. Chauhan 2019 A concolic approach, called Slec-Cf, to check sequential equivalence between a high-level (e.g., C++/SystemC) hardware description and an RTL (e.g., Verilog) is presented. Slec-Cf searches for counterexamples over the possible values of a set of "control signals" in a depth-first lexicographic manner, avoiding values that are unrealizable by any concrete input. In addition, Slec-Cf respects user-specified design constraints during search, thus only producing stimuli that are of relevance to users. It is a superior alternative to random simulations, which produce an overwhelming number of irrelevant stimuli for user-constrained designs, and are therefore of limited effectiveness. To handle complex designs, we present an incremental version of Slec-Cf, which iteratively increases the search depth, and set of control signals, and uses a cache to reuse prior results. We implemented Slec-Cf on top an existing industrial tool for sequential equivalence checking. Experimental results indicate that Slec-Cf clearly outperforms random simulation in terms of coverage achieved. On complex designs, incremental Slec-Cf demonstrates superior ability to achieve good coverage in almost all cases, compared to non-incremental Slec-Cf.10.23919/DATE.2019.8715131https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715131- IEEE Inglês CE1 Excluído
Breaking Type Safety in Go: An Empirical Study on the Usage of the unsafe PackageD. E. Costa; S. Mujahid; R. Abdalkareem; E. Shihab2022 A decade after its first release, the Go language has become a major programming language in the development landscape. While praised for its clean syntax and C-like performance, Go also contains a strong static type-system that prevents arbitrary type casting and memory access, making the language type-safe by design. However, to give developers the possibility of implementing low-level code, Go ships with a special package called unsafe that offers developers a way around the type safety of Go programs. The package gives greater flexibility to developers but comes at a higher risk of runtime errors, chances of non-portability, and the loss of compatibility guarantees for future versions of Go. In this paper, we present the first large-scale study on the usage of the unsafe package in 2,438 popular Go projects. Our investigation shows that unsafe is used in 24 percent of Go projects, motivated primarily by communicating with operating systems and C code, but is also commonly used as a means of performance optimization. Developers are willing to use unsafe to break language specifications (e.g., string immutability) for better performance and 6 percent of the analyzed projects that use unsafe perform risky pointer conversions that can lead to program crashes and unexpected behavior. Furthermore, we report a series of real issues faced by projects that use unsafe, from crashing errors and non-deterministic behavior to having their deployment restricted from certain popular environments. Our findings can be used to understand how and why developers break type safety in Go, and help motivate further tools and language development that could make the usage of unsafe in Go even safer.10.1109/TSE.2021.3057720https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9350178Go language;unsafe;type safety;software packages;Empirical StudyIEEE Inglês CE1 Excluído
Transformation of the UML Deployment Model into a Distributed Ledger Network ConfigurationT. GÓrski; J. Bednarski 2020 A distributed ledger is a decentralized database spread across many participants. Various models describe software architecture and represent different architectural views. The paper concentrates on the deployment view. Model-Driven Development (MDD) is a software engineering approach that leverages models and transformations. The paper describes the UML2Deployment transformation of the distributed ledger’s deployment model into its deployment script. The deployment model, expressed in Unified Modeling Language (UML), is augmented with stereotypes and tagged values from UML Profile for Distributed Ledger Deployment. The target of the transformation is Gradle Groovy Domain Specific Language (DSL) deployment script for DLT network configuration. The transformation has been designed for R3 Corda framework. The authors propose the complete solution. The transformation has been incorporated into Visual Paradigm modeling tool.10.1109/SoSE50414.2020.9130492https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9130492Distributed Ledger;Model-Driven Development;Deployment view;Unified Modeling Language extensibility mechanisms;Gradle Groovy Domain Specific Language.IEEE Inglês CE1 Excluído
Continuous Verification of Network Security ComplianceC. Lorenz; V. Clemens; M. Schrötter; B. Schnor2022 Continuous verification of network security compliance is an accepted need. Especially, the analysis of stateful packet filters plays a central role for network security in practice. But the few existing tools which support the analysis of stateful packet filters are based on general applicable formal methods like Satifiability Modulo Theories (SMT) or theorem prover and show runtimes in the order of minutes to hours making them unsuitable for continuous compliance verification. In this work, we address these challenges and present the concept of state shell interweaving to transform a stateful firewall rule set into a stateless rule set. This allows us to reuse any fast domain specific engine from the field of data plane verification tools leveraging smart, very fast, and domain specialized data structures and algorithms including Header Space Analysis (HSA). First, we introduce the formal language FPL that enables a high-level human-understandable specification of the desired state of network security. Second, we demonstrate the instantiation of a compliance process using a verification framework that analyzes the configuration of complex networks and devices - including stateful firewalls - for compliance with FPL policies. Our evaluation results show the scalability of the presented approach for the well known Internet2 and Stanford benchmarks as well as for large firewall rule sets where it outscales state-of-the-art tools by a factor of over 41.10.1109/TNSM.2021.3130290https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9626142Network;security;compliance;formal verificationIEEE Inglês CE3 Excluído
FASTEN: An Open Extensible Framework to Experiment with Formal Specification ApproachesD. Ratiu; M. Gario; H. Schoenhaar2019 Formal specification approaches have been successfully used to specify and verify complex systems. Verification engineers so far either directly use formal specification languages which can be consumed by verification tools (e.g. SMV, Promela) or main stream modeling languages which are then translated into formal languages and verified (e.g. SysML, AADL). The first approach is expressive and effective but difficult to use by non-experts. The second approach lowers the entry barrier for novices but users are limited to the constructs of the chosen modeling languages and thereby end up abusing the language to encode behaviors of interest. In this paper, we introduce a third approach that we call FASTEN, in which modular and extensible Domain Specific Languages (DSLs) are used to raise the abstraction level of specification languages towards the domain of interest. The approach aims to help novice users to use formal specification, enable experts to use multi-paradigm modeling, and provide tools for the developers of verification technologies to easily experiment with various types of specification approaches. To show the feasibility of the approach, we release an open-source tool based on Jetbrains' MPS language workbench that provides an extensible stack of more than ten DSLs, situated at different levels of abstraction, built on top of the SMV language. We use the NuSMV model checker to perform verification, to simulate the models and lift the traces at the abstraction level of the DSLs. We detail on the experience with designing and developing the DSLs stack and briefly report on using the DSLs in practice for the study of a communication protocol of a safety critical system.10.1109/FormaliSE.2019.00013https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8807686formal methods;language engineering;specification environmentsIEEE Inglês CE3 Excluído
Work-In-Progress: a DSL for the safe deployment of Runtime Monitors in Cyber-Physical SystemsG. S. Nandi; D. Pereira; J. Proença; E. Tovar2020 Guaranteeing that safety-critical Cyber-Physical Systems (CPS) do not fail upon deployment is becoming an even more complicated task with the increased use of complex software solutions. To aid in this matter, formal methods (rigorous mathematical and logical techniques) can be used to obtain proofs about the correctness of CPS. In such a context, Runtime Verification has emerged as a promising solution that combines the formal specification of properties to be validated and monitors that perform these validations during runtime. Although helpful, runtime verification solutions introduce an inevitable overhead in the system, which can disrupt its correct functioning if not safely employed. We propose the creation of a Domain Specific Language (DSL) that, given a generic CPS, 1) verifies if its real- time scheduling is guaranteed, even in the presence of coupled monitors, and 2) implements several verification conditions for the correct-by-construction generation of monitoring architectures. To achieve it, we plan to perform statical verifications, derived from the available literature on schedulability analysis, and powered by a set of semi-automatic formal verification tools.10.1109/RTSS49844.2020.00047https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9355502runtime verification;cyber-physical systems;DSL;safety;mode changeIEEE Inglês CE3 Excluído
Performing Security Proofs of Stateful ProtocolsA. V. Hess; S. Mödersheim; A. D. Brucker; A. Schlichtkrull2021 In protocol verification we observe a wide spectrum from fully automated methods to interactive theorem proving with proof assistants like Isabelle/HOL. The latter provide overwhelmingly high assurance of the correctness, which automated methods often cannot: due to their complexity, bugs in such automated verification tools are likely and thus the risk of erroneously verifying a flawed protocol is non-negligible. There are a few works that try to combine advantages from both ends of the spectrum: a high degree of automation and assurance. We present here a first step towards achieving this for a more challenging class of protocols, namely those that work with a mutable long-term state. To our knowledge this is the first approach that achieves fully automated verification of stateful protocols in an LCF-style theorem prover. The approach also includes a simple user-friendly transaction-based protocol specification language embedded into Isabelle, and can also leverage a number of existing results such as soundness of a typed model10.1109/CSF51468.2021.00006https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505200stateful-security-protocols;interactive-theorem-proving;automated-verificationIEEE Inglês CE3 Excluído
A Study of Modeling Perception in a First-Time Modeling ClassH. Ergin; I. L. Walling; K. P. Rader; D. J. Dobbs2019 In this paper, we have studied the modeling perception change of first-time learners in a heavily undergraduate research institute. The new course has covered a lot of aspects that are a part of a regular modeling course, including domain-specific languages, modeling, metamodeling, code-generation, and model transformation. We have run the study by distributing three surveys to all students: one at the beginning of the course, one in the middle, and one at the end. The results are mixed. Even though there are changes in terms of what modeling is, the primary obstacle seems to be related to the tools and support available (or not) in the modeling community.10.1109/MODELS-C.2019.00104https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904829modeling class;perception;first time classIEEE Inglês CE1 Excluído
An Algebraic Approach to Modeling and Verifying Policy-Driven Smart Devices in IoT SystemsX. Chi; M. Zhang; X. Xu 2019 Internet of Things (IoT) is being widely adopted to facilitate living environments such as cities and homes to become smart. Devices in IoT systems are capable of automatically adjusting their behaviors according to the change of environments. The capability is usually driven by the policies which are predefined inside devices. Policies can be customized by end users. Inconsistencies or conflicts among policies may cause malfunction of systems and therefore must be eliminated before deployment. In this paper, we propose a novel algebraic approach to modeling and verifying policy-driven smart devices in IoT systems on the basis of a domain-specific modeling language called PobSAM (Policy-based Self-Adaptive Model) and an efficient rewriting system called Maude. We formalize the operational semantics of PobSAM using Maude, which is an executable specification as well as a formal verification tool. The Maude formalization can be used to verify smart devices that are specified in PobSAM. We conduct a case study on a smart home setting to evaluate the effectiveness and efficiency of our approach.10.1109/APSEC48747.2019.00034https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945619IoT system, Verification, PobSAM, Maude, Smart homeIEEE Inglês CE3 Excluído
A tool for proving Michelson Smart Contracts in WHY3L. P. Arrojado da Horta; J. Santos Reis; S. M. de Sousa; M. Pereira2020 This paper introduces a deductive verification tool for smart contracts written in Michelson, which is the low-level language of the Tezos blockchain. Our tool accepts a formally specified Michelson contract and automatically translates it to an equivalent program written in WhyML, the programming and specification language of the Why3 framework. Smart contract instructions are mapped into a corresponding WhyML shallow-embedding of the their axiomatic semantics, which we also developed in the context of this work. One major advantage of this approach is that it allows an out-of-the-box integration with the Why3 framework, namely its VCGen and the backend support for several automated theorem provers. We also discuss the use of our tool to automatically prove the correctness of diverse annotated smart contracts.10.1109/Blockchain50366.2020.00059https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284726Formal Verification;Michelson;Smart Contracts;Why3;TezosIEEE Inglês CE3 Excluído
Simulation-based Equivalence Checking between IEEE 1687 ICL and RTLA. Damljanovic; A. Jutman; M. Portolan; E. Sanchez; G. Squillero; A. Tsertov2019 A fundamental part of the new IEEE Std 1687 is the Instrument Connectivity Language (ICL), which allows for abstract description of the scan network. The big novelty if compared to legacy solutions like BSDL is the possibility of describing new topology-enabling elements such as the Scan-Muxes in a behavioural way which can be easily and efficiently exploited by Test Generation Tools to retarget instrument-level operations to top-level patterns. This means that for a given design, the Developer will have to write both the RTL and the ICL descriptions: to the author's best knowledge there is no automated tool to make the translation RTL to ICL. This methodology is error-prone due to the human factor, the difference in intent in the two descriptions and the syntactic and semantic complexity of the languages. Incoherence between ICL and RTL will result in retargeting errors, so it is fundamental to validate the equivalence between the two descriptions. This paper presents an automated methodology that starting from the ICL description is able to generate a set of RTL testbenches that can be simulated against the original RTL model to detect discrepancies and incoherence, and provides quantitative metrics in terms of code and functional coverage. Experimental results are reported on the set of ITC2016 set of benchmark networks.10.1109/ITC44170.2019.9000181https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9000181Simulation;RTL;ICL;Code-coverage;Pattern Generation;Reconfigurable Scan Networks;IEEE 1687IEEE Inglês CE1 Excluído
AWSCPM: A Framework For Automation Of Web Services Composition ProcessesN. Adadi; M. Berrada; D. Chenouni; M. Halim2019 A growing number of companies are using web services to make their expertise and data available through the network. The current problem is the integration of these services in order to implement inter-company collaboration. Research organizations and industrialists are trying to find an adequate solution to achieve this task called services composition. The development of composite services using the Models Driven Approach (MDA) principles is as follows: The developer specifies the composition scenario using a modeling language. Once the specification is complete, it is usually formally validated before proceeding with the implementation of the new composite service. In this paper we present a summary of our developed approach of web services composition based on MDA, and using different languages and systems, like Multi-Agent Reactive Decisional system (MARDS) for the modeling task, LOTOS language for formal verification, and BPEL language for implementation. In order to automate these processes of web services composition approach, we have developed as part of this research the framework AWSCPM "Automatic Web Services Composition Process based on MARDS".10.1109/CMT.2019.8931389https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8931389Web services composition;framework AWSCPM;MARDS;BPEL languageIEEE Inglês CE1 Excluído
A Sanitizer-centric Analysis to Detect Cross-Site Scripting in PHP ProgramsH. Su; L. Xu; H. Chao; F. Li; Z. Yuan; J. Zhou; W. Huo2022 A large number of PHP applications suffer from Cross-Site Scripting (XSS) attacks every year. Static taint analysis is a prevalent way to detect taint-style vulnerabilities like XSS. However, the precision of current tools suffers severely due to dynamic features of PHP programs and the incomplete recognition of user-defined sanitizers, which lead to false negatives and a large number of false positives. In this paper, we present PAT, a PHP static Analysis Tool for effective XSS vulnerability detection. A new concept of “inner” source and sink is introduced for the first time to shorten the taint paths needed to be traced statically, which therefore mitigates the broken path problem induced by dynamic language features to a certain extent. A sanitizer-centric approach is proposed to automatically identify them. Moreover, PAT leverages both data flow analysis and NLP technique to accurately identify user-defined sanitizers with a precision 82.8%. Lastly, PAT performs a classical taint analysis with the enhanced taint specifications (i.e., sources, sinks and sanitizers). Evaluations on 5 large, real-world PHP web applications and 5 popular WordPress plugins show that PAT performs better in XSS detection compared with 3 existing tools. Besides, 8 zero-day bugs are detected and confirmed by the developers.10.1109/ISSRE55969.2022.00042https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9978990XSS;static taint analysis;specification inferenceIEEE Inglês CE1 Excluído
Inferring Metamodel Relaxations Based on Structural Patterns to Support Model FamiliesS. Alwidian; D. Amyot 2019 A model family is a set of related models in a given language that results from the evolution of models over time and/or variations over the space (product) dimension. To enable a more efficient analysis of family members, all at once, we have already proposed union models to capture the union of all elements in all family members, in a compact and exact manner. However, despite having each model in a model family conforming to the same metamodel, there is still no guarantee that their union model will conform to the original metamodel of the family members. This paper aims to support the representation of union models (as valid instances of a metamodel) by inferring, from the structure of the original metamodel, a relaxed metamodel to which a union model conforms. In particular, instead of relaxing all metamodel constraints, the paper contributes a heuristic method that relaxes particular constraints (related only to multiplicities of attributes and association ends) by inferring where such relaxations are needed in the metamodel. To infer relaxation points, structural patterns are first identified in metamodels, then an evidence-based or an anticipation-based approach is applied to get the actual inference. The purpose behind inferring particular metamodel relaxation points is to be able to adapt the existing tools and analysis techniques once and minimally for all potential model families of a given modeling language.10.1109/MODELS-C.2019.00046https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904566Model family;model;Metamodel;Metamodel relaxation;Union model;Relaxation point;Structural patternIEEE Inglês CE1 Excluído
SpeCS — SPARQL Query Containment SolverM. Spasić; M. V. Janičić 2020 With increasing popularity and importance of Semantic Web and its application, SPARQL, as a standard language for querying RDF data, gains more importance and receives additional attention from both practitioners and researchers coming from various domains. In database world, the query containment problem is a fundamental problem, crucially important in verification and optimization of queries. In this paper, we present our work on developing SPECS, an efficient solver for this problem in SPARQL query language. Our approach reduces query containment problem to the satisfiability problem in theories of the first order logic, and exploits SMT solver Z3 for checking the constructed formula. We present an evaluation that shows that our solver is much faster and covers more language features than the other available state-of-the-art solvers.10.1109/ZINC50678.2020.9161435https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9161435semantic web;SPARQL;query containment;query modeling;SMT solving;SPECSIEEE Inglês CE1 Excluído
Leveraging Model-Driven Technologies for JSON Artefacts: The Shipyard Case StudyA. Colantoni; A. Garmendia; L. Berardinelli; M. Wimmer; J. Bräuer2021 With JSON's increasing adoption, the need for structural constraints and validation capabilities led to JSON Schema, a dedicated meta-language to specify languages which are in turn used to validate JSON documents. Currently, the standardisation process of JSON Schema and the implementation of adequate tool support (e.g., validators and editors) are work in progress. However, the periodic issuing of newer JSON Schema drafts makes tool development challenging. Nevertheless, many JSON Schemas as language definitions exist, but JSON documents are still mostly edited in basic text-based editors. To tackle this challenge, we investigate in this paper how Model-Driven Engineering (MDE) methods for language engineering can help in this area. Instead of re-inventing the wheel of building up particular technologies directly for JSON, we study how the existing MDE infrastructures may be utilized for JSON. In particular, we present a bridge between the JSONware and Modelware technical spaces to exchange languages and documents. Based on this bridge, our approach supports language engineers, domain experts, and tool providers in editing, validating, and generating tool support with enhanced capabilities for JSON schemas and their documents. We evaluate our approach with Shipyard, a JSON Schema-based language for the workflow specification for Keptn, an open-source tool for DevOps automation of cloud-native applications. The results of the case study show that proper editors and language evolution support from MDE can be reused and, at the same time, the surface syntax of JSON is maintained.10.1109/MODELS50736.2021.00033https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592494JSON;JSON Schema;MDE;DevOps;Tool InteroperabilityIEEE Inglês CE1 Excluído
A Forwarding Secrecy Based Lightweight Authentication Scheme for Intelligent LogisticsX. Zhu; Y. Li; Y. Lei 2020 With the continuous evolution of the Internet of Things, RFID technology has developed rapidly. Due to the rapid application of RFID technology in various scenarios of intelligent logistics, many security issues and privacy threats have gradually coming to the fore. RFID in an open environment not only brings new security challenges to the two-way authentication of information systems, but also greatly increases the need for identity anonymization. Therefore, a lightweight key protocol for smart logistics is proposed in this paper. The protocol uses a hash function and XOR operation to authenticate the sensor nodes, ensuring the security of wireless communication. It protects against eavesdropping, impersonation, replay, server spoofing, sensor node capture, forward/backward secrecy, interference/desynchronization attacks. Forward confidentiality can be ensured without the use of asymmetric encryption. Finally, we successfully verified the security of our scheme using the automated security verification tool ProVerif. The theoretical analysis and experimental results show that the scheme in this paper not only significantly reduces the computational cost, but also has a lower security risk and higher computational efficiency compared to other lightweight schemes.10.1109/AEECA49918.2020.9213520https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9213520Smart Logistics;Lightweight Authentication;Formal Analysis;ProverifIEEE Inglês CE1 Excluído
Verification Approach for Refactoring Transformation Rules of State-Based ModelsN. Almasri; B. Korel; L. Tahat 2022 With the increased adoption of Model-Driven Engineering (MDE), where models are being used as the primary artifact of software, it is apparent that greater attention to the quality of the models is necessary. Traditionally, refactoring is used to enhance the quality of software systems at the source-code level; however, applying refactoring at the model level will have a more significant improvement on the system. After refactoring a model, proving that it still preserves its original behavior is crucial. In this paper, we present a process for applying refactoring transformations to the Extended Finite State Machine (EFSM) models using verified transformation rules that have been proven to preserve the model's original behavior. We provide a simplified three-step verification approach that can be used to prove that a transformation rule will generate a transformed model that is semantically equivalent to the original model. To do this, we formally define semantical equivalence at three different levels of granularity: models, sub-models, and transitions. Additionally, we introduce five model transformation rules and we demonstrate how our verification approach is used to prove the correctness of these rules. Finally, we present two case studies where we apply the proposed transformation process which adopts the five verified transformation rules. Using model testing, we show that applying a sequence of transformations using the verified transformation rules will keep both the original and the transformed model semantically equivalent. Additionally, the case studies show that model transformation can be used to enhance certain pre-defined model characteristics.10.1109/TSE.2021.3106589https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9520285Extended finite state machine;model refactoring;refactoring transformation rules;verification of transformations;observable behavior;semantic equivalence of modelsIEEE Inglês CE1 Excluído

https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3470569;http://dx.doi.org/10.1145/3470569
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3497775.3503949;http://dx.doi.org/10.1145/3497775.3503949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3464421;http://dx.doi.org/10.1145/3464421
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3584676.3584683;http://dx.doi.org/10.1145/3584676.3584683
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375416;http://dx.doi.org/10.1145/3375408.3375416
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0456-4;http://dx.doi.org/10.1007/s00165-018-0456-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3342355;http://dx.doi.org/10.1145/3342355
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/FormaliSE.2019.00013;http://dx.doi.org/10.1109/FormaliSE.2019.00013
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3522582;http://dx.doi.org/10.1145/3522582
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3443420;http://dx.doi.org/10.1145/3443420
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3314221.3314645;http://dx.doi.org/10.1145/3314221.3314645
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3267468;http://dx.doi.org/10.1145/3267468
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3448734.3450457;http://dx.doi.org/10.1145/3448734.3450457
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3338504.3357343;http://dx.doi.org/10.1145/3338504.3357343
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3276604.3276615;http://dx.doi.org/10.1145/3276604.3276615
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3524482.3527656;http://dx.doi.org/10.1145/3524482.3527656
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/FormaliSE.2019.00020;http://dx.doi.org/10.1109/FormaliSE.2019.00020
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3212019.3212025;http://dx.doi.org/10.1145/3212019.3212025
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3519939.3523715;http://dx.doi.org/10.1145/3519939.3523715
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3373718.3394827;http://dx.doi.org/10.1145/3373718.3394827
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3373394.3373399;http://dx.doi.org/10.1145/3373394.3373399
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3477355.3477361
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529492
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9350178
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9130492
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9626142
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8807686
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9355502
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505200
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904829
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945619
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284726
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9000181
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8931389
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9978990
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904566
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9161435
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592494
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9213520
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9520285

Decentralized Application Infrastructures as Smart Contract CodesR. Karanjai; K. Kasichainula; N. Diallo; M. Kaleem; L. Xu; L. Chen; W. Shi2022 With the recent advance in concepts like decentralized "cloud" and blockchain-enabled decentralized computing environments, the legacy modeling and orchestration tools developed to support centrally managed cloud-based ICT infrastructures are challenged by such a new paradigm built on top of decentralization. On the other hand, decentralized "cloud" and computing infrastructures need to support many Dapp use cases. As the complexity of these targeted application scenarios increases, there is an urgent need for developing automation and modeling tools for deploying and managing decentralized infrastructures. Instead of creating such tools from scratch, a natural approach is extending mature infrastructure modeling tools for Dapps and decentralized computing environments. To this end, in this work, we have developed extensions to the TOSCA domain-specific language to support smart contract specification of decentralized computing infrastructures for supporting Dapps, where smart contracts or chain codes manage a decentralized computing environment. The result is blockchain-based orchestration and automation for decentralized "cloud" and computing environments, which is a step forward for achieving full decentralization in general-purpose computing.10.1109/ICBC54727.2022.9805493https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9805493TOSCA;Smart Contracts;Blockchain;InfrastructuresIEEE Inglês CE1 Excluído
Unified FFL model based reliability, safety and testability integrated analysis methodW. Peng; J. Li 2021 With the widely and deeply application of intelligent Integrated Logistics Support, PHM and other technologies in the field of aviation equipment, the importance of reliability, safety and testability (RST) has become increasingly prominent. This paper proposed the RST integrated analysis method based on the functional fault logic(FFL) model in MBSE. This paper first analyzes the main work content and general idea of RST. The RST work focus on “functional architecture fault logic “of the products, and the common functional fault logic model for RST is established, it realizes model reuse in RST analysis process. Then the modeling language, tools steps in the modeling process are discussed. Based on the functional model, the fault logic relationship could be reflected, and it is more closer to the real situation of the fault, more effectively solves the “two skin” problem in reliability engineering. Based on the common model, by collecting and analyzing the information of the special part of the Reliability, Safety and Testability, RST model could be supplemented and improved, the RST metrics could be evaluated respectively. Finally, a case study of the fuel system with frequent failures is carried out, and the advantages are analyzed.10.1109/PHM-Nanjing52125.2021.9612806https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9612806component;functional fault logic;Reliability;Safety;Testability;Modeling evaluation;MBSEIEEE Inglês CE1 Excluído
Towards Automated Input Generation for Sketching Alloy ModelsA. Jovanovic; A. Sullivan 2022 Writing declarative models has numerous benefits, ranging from automated reasoning and correction of design-level properties before systems are built, to automated testing and debugging of their implementations after they are built. Alloy is a declarative modeling language that is well suited for verifying system designs. While Alloy comes deployed in the Analyzer, an automated scenario-finding tool set, writing correct models remains a difficult and error-prone task. ASketch is a synthesis framework that helps users build their Alloy models. ASketch takes as an input a partial Alloy models with holes and an A Unit test suite. As output, ASketch returns a completed model that passes all tests. ASketch’s initial evaluation reveals ASketch to be a promising approach to synthesize Alloy models. In this paper, we present and explore SketchGen2, an approach that looks to broaden the adoption of ASketch by increasing the automation of the inputs needed for the sketching process. Experimental results show SketchGen2 is effective at producing both expressions and test suites for synthesis.10.1145/3524482.3527651https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796453• Software and its engineering → Formal software verificationIEEE Inglês CE1 Excluído
Feasibility Analysis of a Rule-Based Ontology Framework (ROF) for Auto-Generation of Requirements SpecificationA. P. Yanuarifiani; F. -F. Chua; G. -Y. Chan2020 Writing requirements specification documents plays an important role in determining the success of information system development. To compile documents that are consistent, complete and in accordance with standards, both from a technical and business perspective require enough knowledge. Some previous approaches, such as GUI-F framework, propose automated requirements specification document creation with a variety of different methods. However, most of them do not provide detailed guidance on how stakeholders can identify their needs to support the company's business needs. In addition, some methods only focus on documenting high level requirements specification, such as use case diagram. As for the code development process, this only represents very basic information and lack of technical aspects. In our previous work, we proposed a Rule-Based Ontology Framework (ROF) for Auto-Generating Requirements Specification. ROF covers 2 processes in requirements engineering, namely: elicitation and documentation. The output of the elicitation process is a list of final requirements that are stored in an ontology structure, called Requirements Ontology (RO). Using RO, the documentation process automatically generates 2 outputs: process model in the Business Process Model and Notation (BPMN) standard and Software Requirements Specification (SRS) documents in the IEEE standard. The aim of this paper is to conduct a feasibility analysis to prove that ROF is feasible to be implemented in an Information System (IS) projects. ROF is implemented in a case study, an IS project that calculates lecturer workload activity at a university in Indonesia. The feasibility analysis is carried out in stages for each output using qualitative and quantitative methods. The results of the analysis show that that the framework is feasible to be implemented in the IS project to minimize effort in generating requirements specification.10.1109/IICAIET49801.2020.9257838https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9257838Auto-Generate BPMN;Auto-Generate SRS;Feasibility analysis;ROF Framework;Requirements OntologyIEEE Inglês CE1 Excluído
MCP: A Security Testing Tool Driven by RequirementsP. X. Mai; F. Pastore; A. Goknil; L. C. Briand2019 We present MCP, a tool for automatically generating executable security test cases from misuse case specifications in natural language (i.e., use case specifications capturing the behavior of malicious users). MCP relies on Natural Language Processing (NLP), a restricted form of misuse case specifications, and a test driver API implementing basic utility functions for security testing. NLP is used to identify the activities performed by the malicious user and the control flow of misuse case specifications. MCP matches the malicious user's activities to the methods of the provided test driver API in order to generate executable security test cases that perform the activities described in the misuse case specifications. MCP has been successfully evaluated on an industrial case study.10.1109/ICSE-Companion.2019.00037https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8802766Natural Language Requirements;System Security Testing;Natural Language ProcessingIEEE Inglês CE1 Excluído
Formal Verification of a State-of-the-Art Integer Square RootG. Melquiond; R. Rieu-Helft 2019 We present the automatic formal verification of a state-of-the-art algorithm from the GMP library that computes the square root of a 64-bit integer. Although it uses only integer operations, the best way to understand the program is to view it as a fixed-point arithmetic algorithm that implements Newton's method. The C code is short but intricate, involving magic constants and intentional arithmetic overflows. We have verified the algorithm using the Why3 tool and automated solvers such as Gappa.10.1109/ARITH.2019.00041https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877419Formal verification;Fixed-point arithmeticIEEE Inglês CE1 Excluído
Design and Formal Verification of a Copland-Based Attestation ProtocolA. Petz; G. Jurgensen; P. Alexander2021 We present the design and formal analysis of a remote attestation protocol and accompanying security architecture that generate evidence of trustworthy execution for legacy software. For formal guarantees of measurement ordering and cryptographic evidence strength, we leverage the Copland language and Copland Virtual Machine execution semantics. For isolation of attestation mechanisms we design a layered attestation architecture that leverages the seL4 microkernel. The formal properties of the protocol and architecture together serve to discharge assumptions made by an existing higher-level model-finding tool to characterize all ways an active adversary can corrupt a target and go undetected. As a proof of concept, we instantiate this analysis framework with a specific Copland protocol and security architecture to measure a legacy flight planning application. By leveraging components that are amenable to formal analysis, we demonstrate a principled way to design an attestation protocol and argue for its end-to-end correctness.10.1145/3487212.3487340https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814959remote attestation;formal methods;verificationIEEE Inglês CE1 Excluído
Transforming Natural Language Specifications to Logical Forms for Hardware VerificationR. Krishnamurthy; M. S. Hsiao2020 We propose a framework for extracting natural language assertions from hardware design specification documents. The entire parse tree of each input sentence in a design spec is viewed as a network of words connected to facilitate the creation of semantic frames. We employ a lexicalized grammar that associates words with both semantic and syntactic relations that assist in filling the slots in the semantic frames. At the same time, the accuracy of the extracted semantics is ensured by the incremental understanding algorithm that is guided by both syntactic and semantic rules of the hardware verification domain. We evaluated the framework by writing assertions taken from specification documents of the Memory controller, UART, and the AMBA ACE protocol. System Verilog Assertions (SVA) were automatically generated from logical expressions. Since accuracy is of paramount importance, whenever a complex sentence cannot be understood. we identify and report to the user.10.1109/ICCD50377.2020.00072https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283590Hardware verification;Natural Language specifications;Natural language ProcessingIEEE Inglês CE1 Excluído
ABAC Requirements Engineering for Database ApplicationsJ. Longstaff; M. He 2019 We show how complex privacy requirements can be represented and processed by an extended model of Attribute Based Access Control (ABAC), working with a simple database applications pattern. During application model development, most likely based on UML (e.g. Use Case, Class Diagrams), the analyst and possibly the end user specifies ABAC permissions, and then verifies their effect by running queries on the target data. The ABAC model supports positive and negative permissions, "break glass" overrides of negative permissions, and message/alert generation. The permissions combining algorithms are based on relational database optimisation, and permissions processing is implemented by query modification, producing structurally-optimised queries in an SQL-like language; the queries can then be processed by many database and big data systems. The method and models have been implemented in a prototype Privacy Preferences Tool in collaboration with a large medical records development, and we discuss experiences with focus group evaluations of this tool.10.1109/TASE.2019.00-22https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914135Attribute Based Access Control, Database, Medical RecordsIEEE Inglês CE1 Excluído
Bounded Verification of Sparse Matrix ComputationsT. Dyer; A. Altuntas; J. Baugh 2019 We show how to model and reason about the structure and behavior of sparse matrices, which are central to many applications in scientific computation. Our approach is state-based, relying on a formalism called Alloy to show that one model is a refinement of another. We present examples of sparse matrix-vector multiplication, transpose, and translation between formats using ELLPACK and compressed sparse row formats to demonstrate the approach. To model matrix computations in a declarative language like Alloy, a new idiom is presented for bounded iteration with incremental updates. Mechanical verification is performed using SAT solvers built into the tool.10.1109/Correctness49594.2019.00010https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8951032sparse matrix formats;state-based formal methods;mechanical verificationIEEE Inglês CE1 Excluído
Development and Verification of Smart-Contracts for the ScientificCoin PlatformE. Zhdarkin; I. Anureev 2021 We study the process of creating and testing models of programs in the Solidity language (smart-contracts) for the ScientificCoin crowdfunding platform. This platform is an Internet portal for investing in high-tech projects using blockchain technology. We examine the security of the blockchain-based method of conducting money transactions implemented on this platform and the approach to test and to verify used program code. We analyze the tools and algorithms which allow us to formalize the life cycle of the code in the blockchain system. An example of creating a smart-contract model and the way of checking the feasibility of its functional properties and the truth of invariants using the SMT solver are considered.10.1109/EDM52169.2021.9507717https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507717smart-contract;solidity;blockchain;formal verificationIEEE Inglês CE1 Excluído
Global Analysis of C Concurrency in High-Level SynthesisN. Ramanathan; G. A. Constantinides; J. Wickerson2021 When mapping C programs to hardware, highlevel synthesis (HLS) tools reorder independent instructions, aiming to obtain a schedule that requires as few clock cycles as possible. However, when synthesizing multithreaded C programs, reordering opportunities are limited by the presence of atomic operations (“atomics”), the fundamental concurrency primitives in C. Existing HLS tools analyze and schedule each thread in isolation. In this article, we argue that thread-local analysis is conservative, especially since HLS compilers have access to the entire program. Hence, we propose a global analysis that exploits information about memory accesses by all threads when scheduling each thread. Implemented in the LegUp HLS tool, our analysis is sensitive to sequentially consistent (SC) and weak atomics and supports loop pipelining. Since the semantics of C atomics is complicated, we formally verify that our analysis correctly implements the C memory model using the Alloy model checker. Compared with thread-local analysis, our global analysis achieves a 2.3× average speedup on a set of lock-free data structures and data-flow patterns. We also apply our analysis to a larger application: a lock-free, streamed, and load-balanced implementation of Google's PageRank, where we see a 1.3× average speedup compared with the thread-local analysis.10.1109/TVLSI.2020.3026112https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9234113Field programmable gate arrays;formal verification;high level synthesis;memory architecture;multithreading;parallel programmingIEEE Inglês CE1 Excluído
Personalized and Automatic Model Repairing using Reinforcement LearningA. Barriga; A. Rutle; R. Heldal 2019 When performing modeling activities, the chances of breaking a model increase together with the size of development teams and number of changes in software specifications. Model repair research mostly proposes two different solutions to this issue: fully automatic, non-interactive model repairing tools or support systems where the repairing choice is left to the developer's criteria. In this paper, we propose the use of reinforcement learning algorithms to achieve the repair of broken models allowing both automation and personalization. We validate our proposal by repairing a large set of broken models randomly generated with a mutation tool.10.1109/MODELS-C.2019.00030https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904758Model repair;Reinforcement learning;PersonalizationIEEE Inglês CE1 Excluído
Generating and Employing Witness Automata for ACTLW FormulaeR. Vogrin; R. Meolic; T. Kapus2022 When verifying the validity of a formula in a system model by a model checker, a common feature is the generation of a linear witness or counterexample, which is a computation path usually showing a single reason why the formula is valid or, respectively, not. For systems represented with Labeled Transition Systems (LTS) and a subset of ACTLW (Action-based Computation Tree Logic with Unless operator) formulae, a procedure exists for the generation of witness automata, which contain all the interesting finite linear witnesses, thus revealing all the reasons of the validity of a formula. Although this procedure uses a symbolic representation of LTSs, transitions of a given LTS are traversed one by one. In this paper, we propose a procedure which exploits the symbolic representation efficiently to traverse several transitions at once. We evaluate the procedure on models of a communication protocol from industry and a biological system. The results show it to be at least several times faster than the former one. Witness automata were first introduced to allow for compositional generation of test sequences. We propose two more possible uses. One is for the detection of multiple errors in a model by exploring the witness automaton for a formula, instead of only one, which is usually the case with a single witness. The other one is for the detection of previously unknown system properties. As witness automata can be rather large, we show how some existing tools could help in examining them through visualization and simulation.10.1109/ACCESS.2022.3143478https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9681848Automata;formal verification;logic;model checkingIEEE Inglês CE1 Excluído
RL-GRIT: Reinforcement Learning for Grammar InferenceW. Woods 2021 When working to understand usage of a data format, examples of the data format are often more representative than the format’s specification. For example, two different applications might use very different JSON representations, or two PDF-writing applications might make use of very different areas of the PDF specification to realize the same rendered content. The complexity arising from these distinct origins can lead to large, difficult-to-understand attack surfaces, presenting a security concern when considering both exfiltration and data schizophrenia. Grammar inference can aid in describing the practical language generator behind examples of a data format. However, most grammar inference research focuses on natural language, not data formats, and fails to support crucial features such as type recursion. We propose a novel set of mechanisms for grammar inference, RL-GRIT1, and apply them to understanding de facto data formats. After reviewing existing grammar inference solutions, it was determined that a new, more flexible scaffold could be found in Reinforcement Learning (RL). Within this work, we lay out the many algorithmic changes required to adapt RL from its traditional, sequential-time environment to the highly interdependent environment of parsing. The result is an algorithm which can demonstrably learn recursive control structures in simple data formats, and can extract meaningful structure from fragments of the PDF format. Whereas prior work in grammar inference focused on either regular languages or constituency parsing, we show that RL can be used to surpass the expressiveness of both classes, and offers a clear path to learning context-sensitive languages. The proposed algorithm can serve as a building block for understanding the ecosystems of de facto data formats.1RL-GRIT may be pronounced as “Real Grit.”10.1109/SPW53761.2021.00031https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474312grammar inference;reinforcement learning;convolutional reinforcement learning;deterministic policy gradient;embeddings;parsing;constituency parsingIEEE Inglês CE1 Excluído
Differential coverage: : automating coverage analysisH. Cox 2021 While it is easy to automate coverage data collection, it is a time consuming/difficult/expensive manual process to analyze the data so that it can be acted upon. The goal of the approaches discussed in here is to reduce the cost and barrier to entry of using coverage data analysis in large-scale projects by categorizing and prioritizing coverage changes to avoid the need for manual review at every release or on every build.Differential coverage and date binning are methods of combining coverage data and project/file history to determine if goals have been met and to identify areas of unexercised code which should be reviewed. These methods can be applied to any coverage metric which can be associated with a location - statement, function, expression, toggle, etc. - and to any language, including both software (C++, Python, etc.) and hardware description languages (SystemVerilog, VHDL).The approach is realized in diffcov1, a recently released open-source tool.10.1109/ICST49551.2021.00054https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9438597code coverage;automation;software development;continuous integrationIEEE Inglês CE1 Excluído
Formalization and analysis of quantitative attributes of distributed systemsA. E. M. Suñé 2020 While there is not much discussion on the importance of formally describing and analyzing quantitative requirements in the process of software construction; in the paradigm of API-based software systems, it could be vital. Quantitative attributes can be thought of as attributes determining the Quality of Service - QoS provided by a software component published as a service. In this sense, they play a determinant role in classifying software artifacts according to specific needs stated as requirements. In this work, we present a research program consisting of the development of formal languages and tools to characterize and analyze the Quality of Service attributes of software components in the context of distributed systems. More specifically, our main motivational scenario lays on the execution of a service-oriented architecture.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270314service oriented computing;distributed systems;quality of service;formal verification;non functional requirements;quantitative attributes;qos ranking;service level agreementIEEE Inglês CE1 Excluído
Web-based Editor for Signal Interpretation ModelsD. Gomes; R. Campos-Rebelo; F. Moutinho2019 A web-based editor for Signal Interpretation Models (SIM) is presented in this paper. SIM is a modeling formalism specifically created to specify the occurrence of events based on signals variation. This formalism goal is not only to specify but also to support the validation and implementation of signals interpreters. These signals can be system input signals (environment signals) or system internal signals. The created web-based editor uses Asynchronous JavaScript and XML (AJAX) principles and runs at standard browsers. It supports the creation/edition of graphical SIM models, which are saved in XML files. The XML format and the well defined execution semantics of the SIM formalism, enable the integration of SIM with other tools. This means that the created models can be used as inputs in tools, such as automatic code generators, to create simulation or execution code (namely JavaScript, C, and VHDL). To illustrate the application of the developed editor, the model of a system that detects temperature sensor faults is presented. The created edition tool prototype is currently available at http://gres.uninova.pt/SIM-Tools/.10.1109/IECON.2019.8927437https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8927437Web-based Editor;Graphical Modeling Formalism;Signal Interpretation Model;Events;Model-Driven DevelopmentIEEE Inglês CE1 Excluído
Clams: A Cloud Application Modeling SolutionO. Bibartiu; F. Dürr; K. Rothermel2021 A wide range of new modeling languages with a specific focus on cloud computing, also known as cloud modeling languages (CMLs), have been introduced to help developers describe, evaluate, and deploy cloud applications. In general, CMLs define applications as interconnected cloud components within an architectural topology. However, in agile software development, developers describe system-level functionalities using user stories or epics to define end-user scenarios. So far, a CML bridging the gap between formal architectural descriptions and the informal scenario descriptions from agile development is missing. We present Clams (Cloud application modeling solution), a scenario-based CML. Clams uses cloud computing patterns as architectural placeholders in combination with message sequence charts. We introduce standard tooling to handle Clams models and show how one can refine patterns to concrete service offerings. Additionally, we also provide a development framework to support the creation of custom tools to evaluate, analyze, or translate Clams models efficiently.10.1109/SCC53864.2021.00013https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592516Cloud Modeling Language;Scenarios;Cloud Computing PatternsIEEE Inglês CE1 Excluído
An Automatic Transformation Method from AADL Reliability Model to CTMCC. Yuan; K. Wu; G. Chen; Y. Mo2021 AADL is a semi-formal architecture modeling language for the embedded field. Continuous Time Markov Chain (CTMC) is a formal model for reliability evaluation. In the process of quantitatively evaluating the reliability of embedded software, the AADL model needs to be transformed to the CTMC model, but the semantic gap between AADL and CTMC is too large to be directly transformed. This paper proposes a transformation method, which transforms AADL into PRISM- CTMC, a CTMC model described in PRISM language. This method uses PRISM as an intermediate language to reduce the difficulty of transformation between AADL and CTMC. This paper implements a transformation tool based on this method and evaluates the reliability of the flight control system (FCS) with the aid of the PRISM model checking tool, which verifies the effectiveness of the transformation method.10.1109/ICICSE52190.2021.9404135https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404135AADL;CTMC;PRISM;model transformation;reliabilityIEEE Inglês CE1 Excluído
Teaching and learning Modelling and Specification based on gamificationF. Moreira; M. J. Ferreira; D. F. Escudero; C. S. Pereira; N. Durão2020 Video games are understood by society, particularly young people, and young adults, as a form of entertainment. However, given the transformation of society towards the digital, in recent years the games have crossed the barriers of entertainment, and have been used in more ambitious environments and purposes, especially in business and education. In this context, this practice is called gamification, being used at education and aims to make the teaching and learning more attractive and motivating. Gamification, as noted, has the principles of video games, i.e., leverage the elements of the games, which underpin its enormous success, to make learning more engaging, customizable and relevant. Its use in the teaching- learning process has been carried out in parallel with active methodologies, and in the use of learning management systems that include various elements of the game to be integrated into teaching, learning and evaluation activities. In this paper, the gamified programmatic contents idea is presented, and it specifies a level-based programmatic contents structure as well as other gamification elements used, such as points and different types of rewards, the progress bar, the leaderboard, content locking and trading. The gamified programmatic contents will be implemented on the Moodle platform.10.23919/CISTI49556.2020.9140829https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9140829gamification;higher education;learning;students engagement;students motivation;educational innovation;Requirement Engineering;Modeling and SpecificationIEEE Inglês CE1 Excluído
A Flight Rule Checker for the LADEE Lunar SpacecraftKurklu, Elif (6507367449); Havelund, Klaus (6603400981)2020 As part of the design of a space mission, an important part is the design of so-called flight rules. Flight rules express constraints on various parts and processes of the mission, that if followed, will reduce the risk of failure. One such set of flight rules constrain the format of command sequences regularly (e.g. daily) sent to the spacecraft to control its next near term behavior. We present a high-level view of the automated flight rule checker Frc for checking command sequences sent to NASA’s LADEE Lunar mission spacecraft, used throughout its entire mission. A command sequence is in this case essentially a program (a sequence of commands) with no loops or conditionals, and it can therefore be verified with a trace analysis tool. Frc is implemented using the TraceContract runtime verification tool, an internal Scala DSL for checking event sequences against “formal specifications”. The paper illustrates this untraditional use of runtime verification in a real context, with strong demands on the expressiveness and flexibility of the specification language, illustrating the advantages of an internal DSL. © 2020, Springer Nature Switzerland AG.10.1007/978-3-030-64276-1_1https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097572555&doi=10.1007%2f978-3-030-64276-1_1&partnerID=40&md5=5a9272586222f85dcb64f3be6434a14e- Scopus Inglês CE1 Excluído
Continuous Verification of Network Security ComplianceLorenz, Claas (57189054134); Clemens, Vera (57221191959); Schrotter, Max (57211227069); Schnor, Bettina (9040625200)2022 Continuous verification of network security compliance is an accepted need. Especially, the analysis of stateful packet filters plays a central role for network security in practice. But the few existing tools which support the analysis of stateful packet filters are based on general applicable formal methods like Satifiability Modulo Theories (SMT) or theorem prover and show runtimes in the order of minutes to hours making them unsuitable for continuous compliance verification. In this work, we address these challenges and present the concept of state shell interweaving to transform a stateful firewall rule set into a stateless rule set. This allows us to reuse any fast domain specific engine from the field of data plane verification tools leveraging smart, very fast, and domain specialized data structures and algorithms including Header Space Analysis (HSA). First, we introduce the formal language FPL that enables a high-level human-understandable specification of the desired state of network security. Second, we demonstrate the instantiation of a compliance process using a verification framework that analyzes the configuration of complex networks and devices-including stateful firewalls-for compliance with FPL policies. Our evaluation results show the scalability of the presented approach for the well known Internet2 and Stanford benchmarks as well as for large firewall rule sets where it outscales state-of-the-art tools by a factor of over 41. 10.1109/TNSM.2021.3130290https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120091286&doi=10.1109%2fTNSM.2021.3130290&partnerID=40&md5=511407ae381b7055ef1cddc2f4cfffc0Compliance; Formal verification; Network; SecurityScopus Inglês CE1 Excluído
Formalizing Spark Applications with MSVLWang, Meng (56287466000); Li, Shushan (57226314342)2021 Distributed computing framework Spark is widely used to deal with big data sets efficiently. However, it is more demanding implementing in Spark than coming up with sequential implementations. Thus, formal verification is needed to guarantee the correctness of Spark applications. In order to verify Spark applications using verification tool UMC4M, this paper presents an approach to formalizing Spark applications with Modeling Simulation and Verification Language (MSVL). We first implement Spark operations with MSVL functions, then formalize a Spark application with MSVL based on its directed acyclic graphs (DAGs). As a case study, the word count application is used to show the process. © 2021, Springer Nature Switzerland AG.10.1007/978-3-030-77474-5_13https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111157717&doi=10.1007%2f978-3-030-77474-5_13&partnerID=40&md5=12905b79ee7a395ee4abe62cb914ec8eBig data; DAG; Formal verification; SparkScopus Inglês CE1 Excluído
Teaching practical realistic verification of distributed algorithms in Erlang with TLA+Zeller, Peter (56208935400); Bieniusa, Annette (26321313600); Ferreira, Carla (22733423900)2020 Distributed systems are inherently complex as they need to address the interplay between features like communication, concurrency, and failure. Due to the inherent complexity of these interacting features, it is typically not possible to systematically test these kind of systems; yet, unexpected and unlikely combinations of events might cause corner cases that are hard to find. But since these systems are running typically for long durations, these events are likely to materialize eventually and must be handled correctly. Caught in such a dilemma, students are able to experience the benefits of applying verification tools to check their own algorithms and implementations. Having executable models with automatically generated executions allows them to experiment with different solutions by iteratively adapting and refining their algorithms. In this experience report, we report on our experience of teaching verification in a (hands-on) distributed systems course. We argue that broadcast algorithms provide a sweet spot in design and verification complexity. To this end, we give an implementation of these algorithms in Erlang and derive a TLA+ specification. TLA+ is a formal language for describing and reasoning about distributed and concurrent systems and provides a model checker, TLC, among other things. Our study reveals interesting parallels between the Erlang and TLA+ code, while exposing the challenges of formally modeling communication and parallelism in distributed systems. Presenting selected aspects of our course design, we aim to motivate the feasibility and need for introducing verification in close correspondence to programming tasks. © 2020 ACM.10.1145/3406085.3409009https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096125213&doi=10.1145%2f3406085.3409009&partnerID=40&md5=5e30039eef53859603a9350cfcc2694bBroadcast algorithms; Distributed algorithms; Formal verification; TLA+Scopus Inglês CE1 Excluído
FASTEN: An Open Extensible Framework to Experiment with Formal Specification ApproachesRatiu, Daniel (22235269100); Gario, Marco (55521618800); Schoenhaar, Hannes (57210957804)2019 Formal specification approaches have been successfully used to specify and verify complex systems. Verification engineers so far either directly use formal specification languages which can be consumed by verification tools (e.g. SMV, Promela) or main stream modeling languages which are then translated into formal languages and verified (e.g. SysML, AADL). The first approach is expressive and effective but difficult to use by non-experts. The second approach lowers the entry barrier for novices but users are limited to the constructs of the chosen modeling languages and thereby end up abusing the language to encode behaviors of interest. In this paper, we introduce a third approach that we call FASTEN, in which modular and extensible Domain Specific Languages (DSLs) are used to raise the abstraction level of specification languages towards the domain of interest. The approach aims to help novice users to use formal specification, enable experts to use multi-paradigm modeling, and provide tools for the developers of verification technologies to easily experiment with various types of specification approaches. To show the feasibility of the approach, we release an open-source tool based on Jetbrains' MPS language workbench that provides an extensible stack of more than ten DSLs, situated at different levels of abstraction, built on top of the SMV language. We use the NuSMV model checker to perform verification, to simulate the models and lift the traces at the abstraction level of the DSLs. We detail on the experience with designing and developing the DSLs stack and briefly report on using the DSLs in practice for the study of a communication protocol of a safety critical system. © 2019 IEEE.10.1109/FormaliSE.2019.00013https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072012346&doi=10.1109%2fFormaliSE.2019.00013&partnerID=40&md5=fe889fa7b75d1e70732a3cdbcccc18dfformal methods; language engineering; specification environmentsScopus Inglês CE3 Excluído
Dunuen: A user-friendly formal verification toolCapobianco, Giovanni (16644730200); Giacomo, Umberto Di (57207581495); Mercaldo, Francesco (55842609700); Santone, Antonella (6603700255)2019 Formal verification allows checking the design and the behaviour of a system. One of the main limitations to the adoption of formal verification techniques is the process of model creation using specification languages. For this reason a tool supporting this activity is necessary. Actually, there are several tools allowing analysts to verify models expressed into specification languages. These tools provide support for automatically checking whether a system satisfies a property. However, to use such tools it is important to deeply know a precise notation for defining a system, i.e., the Calculus of Communicating Systems. Since systems are often expressed as time-series, to overcome this problem, we provide an user-friendly tool able to automatically generate a system model starting from the CSV - Comma-Separated Values format (the most widespread format considered to release dataset). In this way we hide the details about the model construction form the analyst, which can only focus immediately on the properties to verify. We introduce Dunuen, a tool allowing the user to firstly perform a kind of pre-processing operation starting from a CSV file, as discretization or removing attributes; subsequently it automatically creates a formal model from the pre-processed CSV file and, by invoking the model checker we embedded in Dunuen, it finally verifies whether the generated model satisfies a property expressed in temporal logic through a graphic interface, proposing formal methods as an alternative to machine learning for classification tasks. © 2019 The Author(s). Published by Elsevier B.V.10.1016/j.procs.2019.09.313https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076261943&doi=10.1016%2fj.procs.2019.09.313&partnerID=40&md5=31f6967e72f52a0172d631b2aaad90f9Automatic Tool; Formal verification; Model CheckingScopus Inglês CE1 Excluído
Multiple Analyses, Requirements Once:: Simplifying Testing and Verification in Automotive Model-Based DevelopmentBerger, Philipp (57203038692); Nellen, Johanna (54956533900); Katoen, Joost-Pieter (7003679176); Ábrahám, Erika (8730197200); Waez, Md Tawhid Bin (55775485700); Rambow, Thomas (6504314037)2019 In industrial model-based development (MBD) frameworks, requirements are typically specified informally using textual descriptions. To enable the application of formal methods, these specifications need to be formalized in the input languages of all formal tools that should be applied to analyse the models at different development levels. In this paper we propose a unified approach for the computer-assisted formal specification of requirements and their fully automated translation into the specification languages of different verification tools. We consider a two-stage MBD scenario where first Simulink models are developed from which executable code is generated automatically. We (i) propose a specification language and a prototypical tool for the formal but still textual specification of requirements, (ii) show how these requirements can be translated automatically into the input languages of Simulink Design Verifier for verification of Simulink models and BTC EmbeddedValidator for source code verification, and (iii) show how our unified framework enables besides automated formal verification also the automated generation of test cases. © Springer Nature Switzerland AG 2019.10.1007/978-3-030-27008-7_4https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072873577&doi=10.1007%2f978-3-030-27008-7_4&partnerID=40&md5=19d935eecb53f5ef5147f49db9699a0a- Scopus Inglês CE3 Excluído
An Algebraic Approach to Modeling and Verifying Policy-Driven Smart Devices in IoT SystemsChi, Xiaotong (57214082983); Zhang, Min (57131645400); Xu, Xiao (57214088972)2019 Internet of Things (IoT) is being widely adopted to facilitate living environments such as cities and homes to become smart. Devices in IoT systems are capable of automatically adjusting their behaviors according to the change of environments. The capability is usually driven by the policies which are predefined inside devices. Policies can be customized by end users. Inconsistencies or conflicts among policies may cause malfunction of systems and therefore must be eliminated before deployment. In this paper, we propose a novel algebraic approach to modeling and verifying policy-driven smart devices in IoT systems on the basis of a domain-specific modeling language called PobSAM (Policy-based Self-Adaptive Model) and an efficient rewriting system called Maude. We formalize the operational semantics of PobSAM using Maude, which is an executable specification as well as a formal verification tool. The Maude formalization can be used to verify smart devices that are specified in PobSAM. We conduct a case study on a smart home setting to evaluate the effectiveness and efficiency of our approach. © 2019 IEEE.10.1109/APSEC48747.2019.00034https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078209325&doi=10.1109%2fAPSEC48747.2019.00034&partnerID=40&md5=8ac7361e3c6f121653edb7706de490a8IoT system; Maude; PobSAM; Smart home; VerificationScopus Inglês CE1 Excluído
A VNF modeling approach for verification purposesMarchetto, Guido (17346106000); Sisto, Riccardo (56262800500); Virgilio, Matteo (55850134900); Yusupov, Jalolliddin (57196119190)2019 Network Function Virtualization (NFV) architectures are emerging to increase networks flexibility. However, this renewed scenario poses new challenges, because virtualized networks, need to be carefully verified before being actually deployed in production environments in order to preserve network coherency (e.g., absence of forwarding loops, preservation of security on network traffic, etc.). Nowadays, model checking tools, SAT solvers, and Theorem Provers are available for formal verification of such properties in virtualized networks. Unfortunately, most of those verification tools accept input descriptions written in specification languages that are difficult to use for people not experienced in formal methods. Also, in order to enable the use of formal verification tools in real scenarios, vendors of Virtual Network Functions (VNFs) should provide abstract mathematical models of their functions, coded in the specific input languages of the verification tools. This process is error-prone, time-consuming, and often outside the VNF developers' expertise. This paper presents a framework that we designed for automatically extracting verification models starting from a Java-based representation of a given VNF. It comprises a Java library of classes to define VNFs in a more developer-friendly way, and a tool to translate VNF definitions into formal verification models of different verification tools. © 2019 Institute of Advanced Engineering and Science.10.11591/ijece.v9i4.pp2627-2636https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066271238&doi=10.11591%2fijece.v9i4.pp2627-2636&partnerID=40&md5=9789127c70b70c8c363f2b4e0384617aFormal verification; Model extraction; Modeling; Network functions; ParserScopus Inglês CE1 Excluído
Cryptographic protocols implementation security verification of the electronic voting system based on blind intermediariesBabenko, Liudmila (55834381100); Pisarev, Ilya (57200647806); Popova, Elena (57212462728)2019 The development of electronic voting systems is a complex and urgent task in today's time. At the heart of the security of any system using network interaction are cryptographic protocols. Their quality is verified by means of formal verification. However, formal verification tools work with protocols in an abstract form of Alice-Bob format, which does not allow to completely check the protocol for all sorts of attacks. In addition, when implementing the protocol in practice using any programming language, it is possible to change this protocol relative to its original form. As a result, the abstract initial form of the protocol, which was verified by means of formal verification, is considered safe, but a modified implemented protocol that has a different type can no longer be recognized as safe. Thus, verification of the cryptographic protocol of the electronic voting system using source codes is relevant. The paper described an electronic voting system based on blind intermediaries. A parser is described to extract the structure of the cryptographic protocol with which the structure of the voting protocol was obtained. The cryptographic e-voting protocol was translated into the CAS+ specification language for the Avispa automated verifier for protocol security verification. © 2019 Association for Computing Machinery.10.1145/3357613.3357641https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076741385&doi=10.1145%2f3357613.3357641&partnerID=40&md5=732b60bc6d743284a770f331bb6c035bAnalysis; Avispa; Cryptographic protocols; E-voting; Parser; VerificationScopus Inglês CE1 Excluído
11th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, ISoLA 2022- 2022 The proceedings contain 111 papers. The special focus in this conference is on Leveraging Applications of Formal Methods, Verification and Validation. The topics include: A Consolidated View on Specification Languages for Data Analysis Workflows; a Systematic Approach for Interfacing Component-Based Software with an Active Automata Learning Tool; Verified Software Units for Simple DFA Modules and Objects in C; a Notion of Equivalence for Refactorings with Abstract Execution; towards a Usable and Sustainable Deductive Verification Tool; on Technical Debt in Software Testing - Observations from Industry; refactoring Solidity Smart Contracts to Protect Against Reentrancy Exploits; a Refactoring for Data Minimisation Using Formal Verification; software System Documentation: Coherent Description of Software System Properties; DIME Days (ISoLA 2022 Track Introduction); Evaluation of Graphical Modeling of CI/CD Workflows with Rig; towards Continuous Quality Control in the Context of Language-Driven Engineering; cinco Cloud: A Holistic Approach for Web-Based Language-Driven Engineering; models as Documents, Documents as Models; using Supplementary Properties to Reduce the Need for Documentation; pragmatics Twelve Years Later: A Report on Lingua Franca; assurance Provenance: The Next Challenge in Software Documentation; Formalization of the AADL Run-Time Services; executable Documentation: Test-First in Action; runtime Verification as Documentation; introduction.- https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142732686&partnerID=40&md5=9d0b4728918fdd8bc7e195b0ca5ea16b- Scopus Inglês CE4 Excluído
11th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, ISoLA 20222022 The proceedings contain 111 papers. The special focus in this conference is on Leveraging Applications of Formal Methods, Verification and Validation. The topics include: A Consolidated View on Specification Languages for Data Analysis Workflows; a Systematic Approach for Interfacing Component-Based Software with an Active Automata Learning Tool; Verified Software Units for Simple DFA Modules and Objects in C; a Notion of Equivalence for Refactorings with Abstract Execution; towards a Usable and Sustainable Deductive Verification Tool; on Technical Debt in Software Testing - Observations from Industry; refactoring Solidity Smart Contracts to Protect Against Reentrancy Exploits; a Refactoring for Data Minimisation Using Formal Verification; software System Documentation: Coherent Description of Software System Properties; DIME Days (ISoLA 2022 Track Introduction); Evaluation of Graphical Modeling of CI/CD Workflows with Rig; towards Continuous Quality Control in the Context of Language-Driven Engineering; cinco Cloud: A Holistic Approach for Web-Based Language-Driven Engineering; models as Documents, Documents as Models; using Supplementary Properties to Reduce the Need for Documentation; pragmatics Twelve Years Later: A Report on Lingua Franca; assurance Provenance: The Next Challenge in Software Documentation; Formalization of the AADL Run-Time Services; executable Documentation: Test-First in Action; runtime Verification as Documentation; introduction.- https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142759479&partnerID=40&md5=4e0eaffccb7fc98f89db3bc9bc480b55- Scopus Inglês CE4 Excluído
11th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, ISoLA 2022- 2022 The proceedings contain 111 papers. The special focus in this conference is on Leveraging Applications of Formal Methods, Verification and Validation. The topics include: A Consolidated View on Specification Languages for Data Analysis Workflows; a Systematic Approach for Interfacing Component-Based Software with an Active Automata Learning Tool; Verified Software Units for Simple DFA Modules and Objects in C; a Notion of Equivalence for Refactorings with Abstract Execution; towards a Usable and Sustainable Deductive Verification Tool; on Technical Debt in Software Testing - Observations from Industry; refactoring Solidity Smart Contracts to Protect Against Reentrancy Exploits; a Refactoring for Data Minimisation Using Formal Verification; software System Documentation: Coherent Description of Software System Properties; DIME Days (ISoLA 2022 Track Introduction); Evaluation of Graphical Modeling of CI/CD Workflows with Rig; towards Continuous Quality Control in the Context of Language-Driven Engineering; cinco Cloud: A Holistic Approach for Web-Based Language-Driven Engineering; models as Documents, Documents as Models; using Supplementary Properties to Reduce the Need for Documentation; pragmatics Twelve Years Later: A Report on Lingua Franca; assurance Provenance: The Next Challenge in Software Documentation; Formalization of the AADL Run-Time Services; executable Documentation: Test-First in Action; runtime Verification as Documentation; introduction.- https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142681894&partnerID=40&md5=54a22568b9d9bb1275754196a807ce1c- Scopus Inglês CE4 Excluído
9th International Workshop on Structured Object-Oriented Formal Language and Method, SOFL+MSVL 2019- 2020 The proceedings contain 23 papers. The special focus in this conference is on Structured Object-Oriented Formal Language and Method. The topics include: Solving constraint optimization problems based on mathematica and abstraction; a forward chaining heuristic search with spatio-temporal control knowledge; Formal development and verification of reusable component in PAR platform; a new mutant generation algorithm based on basic path coverage for mutant reduction; formal specification and model checking of a ride-sharing system in maude; Model checking python programs with MSVL; prediction of function removal propagation in linux evolution; regression models for performance ranking of configurable systems: a comparative study; combining model learning and model checking to analyze java libraries; data provenance based system for classification and linear regression in distributed machine learning; A formal technique for concurrent generation of software’s functional and security requirements in SOFL specifications; metamorphic testing in fault localization of model transformations; a fault localization method based on dynamic failed execution blocks; adaptive random testing by bisection and comprehensive distance; CMM: A combination-based mutation method for SQL injection; distortion and faults in machine learning software; A divide & conquer approach to testing concurrent java programs with JPF and maude; An approach to modeling and verifying multi-level interrupt systems with TMSVL; towards formal verification of neural networks: a temporal logic based framework; UMC4M: A verification tool via program execution; parallel runtime verification approach for alternate execution of multiple threads.- https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081580292&partnerID=40&md5=7d77d6bb6064b90f676f0eacbdbd4a0d- Scopus Inglês CE4 Excluído
Verification of the ROS NavFn planner using executable specification languagesMartin-Martin, Enrique (35956389400); Montenegro, Manuel (7102666158); Riesco, Adrián (23089591800); Rodríguez-Hortalá, Juan (23991527000); Rubio, Rubén (57209537089)2023 The Robot Operating System (ROS) is a framework for building robust software for complex robot systems in several domains. The Navigation Stack stands out among the different libraries available in ROS, providing a set of components that can be reused to build robots with autonomous navigation capabilities. This library is a critical component, as navigation failures could have catastrophic consequences for applications like self-driving cars where safety is crucial. Here we devise a general methodology for verifying this kind of complex systems by specifying them in different executable specification languages with verification support and validating the equivalence between the specifications and the original system using differential testing techniques. The complex system can then be indirectly analyzed using the verification tools of the specification languages like model checking, semi-automated functional verification based on Hoare logic, and other formal techniques. In this paper we apply this verification methodology to the NavFn planner, which is the main planner component of the Navigation Stack of ROS, using Maude and Dafny as specification languages. We have formally proved several desirable properties of this planner algorithm like the absence of obstacles in the planned path. Moreover, we have found counterexamples for other concerns like the optimality of the path cost. © 2023 The Author(s)10.1016/j.jlamp.2023.100860https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148539053&doi=10.1016%2fj.jlamp.2023.100860&partnerID=40&md5=eb79652612662c9dec708415baec5265Dafny; Formal verification; Maude; Model checking; Navigation; ROSScopus Inglês CE4 Excluído
Simple Framework for Efficient Development of the Functional Requirement Verification-Specific LanguagePopic, Srdjan (57190747962); Teslic, Nikola (8370658100); Bjelica, Milan Z. (56605577600)2021 This paper presents the framework for the creation of various domain-specific languages for verification of the functional requirements. When it comes to Requirement Engineering and the process of Validation and Verification of the requirements, there are plenty of tools for modeling, analyzing, and validating the requirements. It comes as a fullblown set of applications for validation of the requirements. But the set of the verification tools is either too complex or usable in a narrow domain. From the customers’ point of view, there is a need for another independent requirement verification. This tool enables the creation of the custom verification in a way that allows users (either clients or developers) to verify requirements. It follows the IEEE guides, standards, and best practices to check all aspects of the software requirements that are neither implemented nor checked by the validation process: correctness, completeness, traceability, dependency, importance, and uniqueness. Tool implements design patterns specific to the verification process, thus enabling the faster implementation of the language. The concept can be used for development of the verification-specific language with any type of requirement representation, which will be shown by a few examples. © 202110.4316/AECE.2021.03002https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115213462&doi=10.4316%2fAECE.2021.03002&partnerID=40&md5=f714f11044abbc8ab000d22d0387a021computer languages; formal languages; formal verification; programming environments; requirement engineeringScopus Inglês CE3 Excluído
A GRAPH TRANSFORMATION APPROACH FOR MODELING AND VERIFICATION OF UML 2.0 SEQUENCE DIAGRAMSHamrouche, Houda (58111246300); Chaoui, Allaoua (35101659400); Mazouzi, Smaine (23393267500)2022 Unified Modeling Language (UML) 2.0 Sequence Diagrams (UML 2.0 SD) are used to describe interactions in software systems. These diagrams must be verified in the early stages of software development process to guarantee the production of a reliable system. However, UML 2.0 SD lack formal semantics as all UML specifications, which makes their verification difficult, especially if we are modeling a critical system where the automation of verification is necessary. Communicating Sequential Processes (CSP) is a formal specification language that is suited for analysis and has many automatic verification tools. Thus, UML and CSP have complementary aspects, which are modeling and analysis. Recently, a formalization of UML 2.0 SD using CSP has been proposed in the literature; however, no automation of that formalization exists. In this paper, we propose an approach on the basis of the above formalization and a visual modeling tool to model and automatically transform UML 2.0 SD to CSP ones; thus, the existing CSP model checker can verify them. This approach aims to use UML 2.0 SD for modeling and CSP and its tools for verification. This approach is based on graph transformation, which uses AToM3 tool and proposes a metamodel of UML 2.0 SD and a graph grammar to perform the mapping of the latter into CSP. Failures-Divergence Refinement (FDR) is the model checking tool used to verify the behavioral properties of the source model transformation such as deadlock, livelock and determinism. The proposed approach and tool are illustrated through a case study. © 2022 Slovak Academy of Sciences. All rights reserved.10.31577/cai_2022_5_1284https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148546611&doi=10.31577%2fcai_2022_5_1284&partnerID=40&md5=77083a544d1e2b5b99ace36ec7baafbcAToM³ tool; graph grammar; Hoare's communicating sequential processes; meta-modeling; model checker; Unified Modeling Language 2.0Scopus Inglês CE1 Excluído
Performing Security Proofs of Stateful ProtocolsHess, Andreas, V; Modersheim, Sebastian; Brucker, Achim D.; Schlichtkrull, Anders2021 In protocol verification we observe a wide spectrum from fully automated methods to interactive theorem proving with proof assistants like Isabelle/HOL. The latter provide overwhelmingly high assurance of the correctness, which automated methods often cannot: due to their complexity, bugs in such automated verification tools are likely and thus the risk of erroneously verifying a flawed protocol is non-negligible. There are a few works that try to combine advantages from both ends of the spectrum: a high degree of automation and assurance. We present here a first step towards achieving this for a more challenging class of protocols, namely those that work with a mutable long-term state. To our knowledge this is the first approach that achieves fully automated verification of stateful protocols in an LCF-style theorem prover. The approach also includes a simple user-friendly transaction-based protocol specification language embedded into Isabelle, and can also leverage a number of existing results such as soundness of a typed model.10.1109/CSF51468.2021.00006- - Web of science Inglês CE1 Excluído
Chaining Model Transformations to Develop a System Model Verification Tool : Application to Capella State Machines and Data Flows ModelsDuhil, Christophe; Babau, Jean-Philippe; Lepicier, Eric; Voirin, Jean-Luc; Navas, Juan2020 In the context of model-based system engineering (MBSE), the need emerges for model verification tools aiming at detecting inconsistencies in the dynamic behavioral aspect of the design. In this paper, a model-based approach is proposed to develop model verification tools. The approach allows targeting different semantics and facilitates the reuse of legacy semantics. The idea is to enforce separation of concerns, by progressively defining a behavioral semantic through a chain of five model transformation steps. The approach ensures traceability between source models and target models, facilitating the interpretation of the verification results. We apply the approach to develop a tool to verify Capella models, allowing simulation of the data flow and state machines diagrams in order to verify their coherency. An experimentation on a clock-radio case study demonstrates the ability of the generated tool to catch design inconsistencies.10.1145/3341105.3374093- - Web of science Inglês CE1 Excluído
Simple Framework for Efficient Development of the Functional Requirement Verification- Specific LanguagePopic, Srdjan; Teslic, Nikola; Bjelica, Milan Z.2021 This paper presents the framework for the creation of various domain-specific languages for verification of the functional requirements. When it comes to Requirement Engineering and the process of Validation and Verification of the requirements, there are plenty of tools for modeling, analyzing, and validating the requirements. It comes as a full-blown set of applications for validation of the requirements. But the set of the verification tools is either too complex or usable in a narrow domain. From the customers' point of view, there is a need for another independent requirement verification. This tool enables the creation of the custom verification in a way that allows users (either clients or developers) to verify requirements. It follows the IEEE guides, standards, and best practices to check all aspects of the software requirements that arc neither implemented nor checked by the validation process: correctness, completeness, traceability, dependency, importance, and uniqueness. Tool implements design patterns specific to the verification process, thus enabling the faster implementation of the language. The concept can be used for development of the verification-specific language with any type of requirement representation, which will be shown by a few examples.- - - Web of science Inglês CE1 Excluído
LTL Under Reductions with Weaker Conditions Than Stutter InvariancePaviot-Adet, Emmanuel; Poitrenaud, Denis; Renault, Etienne; Thierry-Mieg, Yann2022 Verification of properties expressed as co-regular languages such as LTL can benefit hugely from stutter insensitivity, using a diverse set of reduction strategies. However properties that are not stutter invariant, for instance due to the use of the neXt operator of LTL or to some form of counting in the logic, are not covered by these techniques in general.We propose in this paper to study a weaker property than stutter insensitivity. In a stutter insensitive language both adding and removing stutter to a word does not change its acceptance, any stuttering can be abstracted away; by decomposing this equivalence relation into two implications we obtain weaker conditions. We define a shortening insensitive language where any word that stutters less than a word in the language must also belong to the language. A lengthening insensitive language has the dual property. A semi-decision procedure is then introduced to reliably prove shortening insensitive properties or deny lengthening insensitive properties while working with a reduction of a system. A reduction has the property that it can only shorten runs. Lipton's transaction reductions or Petri net agglomerations are examples of eligible structural reduction strategies.An implementation and experimental evidence is provided showing most non-random properties sensitive to stutter are actually shortening or lengthening insensitive. Performance of experiments on a large (random) benchmark from the model-checking competition indicate that despite being a semi-decision procedure, the approach can still improve state of the art verification tools.10.1007/978-3-031-08679-3_11- - Web of science Inglês CE1 Excluído
Pointer Life Cycle Types for Lock-Free Data Structures with Memory ReclamationMeyer, Roland; Wolff, Sebastian2020 We consider the verification of lock-free data structures that manually manage their memory with the help of a safe memory reclamation (SMR) algorithm. Our first contribution is a type system that checks whether a program properly manages its memory. If the type check succeeds, it is safe to ignore the SMR algorithm and consider the program under garbage collection. Intuitively, our types track the protection of pointers as guaranteed by the SMR algorithm. There are two design decisions. The type system does not track any shape information, which makes it extremely lightweight. Instead, we rely on invariant annotations that postulate a protection by the SMR. To this end, we introduce angels, ghost variables with an angelic semantics. Moreover, the SMR algorithm is not hard-coded but a parameter of the type system definition. To achieve this, we rely on a recent specification language for SMR algorithms. Our second contribution is to automate the type inference and the invariant check. For the type inference, we show a quadratic-time algorithm. For the invariant check, we give a source-to-source translation that links our programs to off-the-shelf verification tools. It compiles away the angelic semantics. This allows us to infer appropriate annotations automatically in a guess-and-check manner. To demonstrate the effectiveness of our type-based verification approach, we check linearizability for various list and set implementations from the literature with both hazard pointers and epoch-based memory reclamation. For many of the examples, this is the first time they are verified automatically. For the ones where there is a competitor, we obtain a speed-up of up to two orders of magnitude.10.1145/3371136 - - Web of science Inglês CE1 Excluído
Milestones from the Pure Lisp theorem prover to ACL2Moore, J. Strother 2019 We discuss the evolutionary path from the Edinburgh Pure Lisp Theorem Prover of the early 1970s to its modern counterpart, AComputational Logic for Applicative Common Lisp, aka ACL2, which is in regular industrial use. Among the milestones in this evolution are the adoption of a first-order subset of a programming language as a logic; the analysis of recursive definitions to guess appropriate mathematical induction schemes; the use of simplification in inductive proofs; the incorporation of rewrite rules derived from user-suggested lemmas; the generalization of that idea to allow the user to affect other proof techniques soundly; the recognition that evaluation efficiency is paramount so that formal models can serve as prototypes and the logic can be used to reprogram the system; use of the system to prove extensions correct; the incorporation of decision procedures; the provision of hierarchically structured libraries of previously certified results to configure the prover; the provision of system programming features to allow verification tools to be built and verified within the system; the release of many verified collections of lemmas supporting floating point, programming languages, and hardware platforms; a verified bit-bashing tool exploiting verified BDD and checked external SAT procedures; and the provision of certain higher-order features within the first-order setting. As will become apparent, some of these milestones were suggested or even prototyped by users. Some additional non-technical aspects of the project are also critical. Among these are a devotion to soundness, good documentation, freely available source code, production of a system usable by industry, responsiveness to user needs, and a dedicated, passionate, and brilliant user community.10.1007/s00165-019-00490-3- - Web of science Inglês CE1 Excluído
Contingent Payments on a Public Ledger: Models and Reductions for Automated VerificationBursuc, Sergiu; Kremer, Steve2019 We study protocols that rely on a public ledger infrastructure, concentrating on protocols for zero-knowledge contingent payment, whose security properties combine diverse notions of fairness and privacy. We argue that rigorous models are required for capturing the ledger semantics, the protocol-ledger interaction, the cryptographic primitives and, ultimately, the security properties one would like to achieve.Our focus is on a particular level of abstraction, where network messages are represented by a term algebra, protocol execution by state transition systems (e.g. multiset rewrite rules) and where the properties of interest can be analyzed with automated verification tools.We propose models for: (1) the rules guiding the ledger execution, taking the coin functionality of public ledgers such as Bitcoin as an example; (2) the security properties expected from ledger-based zero-knowledge contingent payment protocols; (3) two different security protocols that aim at achieving these properties relying on different ledger infrastructures; (4) reductions that allow simpler term algebras for homomorphic cryptographic schemes.Altogether, these models allow us to derive a first automated verification for ledger-based zero-knowledge contingent payment using the Tamarin prover. Furthermore, our models help in clarifying certain underlying assumptions, security and efficiency tradeoffs that should be taken into account when deploying protocols on the blockchain.10.1007/978-3-030-29959-0_18- - Web of science Inglês CE1 Excluído
A Rigorous Framework for Specification, Analysis and Enforcement of Access Control PoliciesA. Margheri; M. Masi; R. Pugliese; F. Tiezzi2019 Access control systems are widely used means for the protection of computing systems. They are defined in terms of access control policies regulating the access to system resources. In this paper, we introduce a formally-defined, fully-implemented framework for specification, analysis and enforcement of attribute-based access control policies. The framework rests on FACPL, a language with a compact, yet expressive, syntax for specification of real-world access control policies and with a rigorously defined denotational semantics. The framework enables the automated verification of properties regarding both the authorisations enforced by single policies and the relationships among multiple policies. Effectiveness and performance of the analysis rely on a semantic-preserving representation of FACPL policies in terms of SMT formulae and on the use of efficient SMT solvers. Our analysis approach explicitly addresses some crucial aspects of policy evaluation, such as missing attributes, erroneous values and obligations, which are instead overlooked in other proposals. The framework is supported by Java-based tools, among which an Eclipse-based IDE offering a tailored development and analysis environment for FACPL policies and a Java library for policy enforcement. We illustrate the framework and its formal ingredients by means of an e-Health case study, while its effectiveness is assessed by means of performance stress tests and experiments on a well-established benchmark.10.1109/TSE.2017.2765640https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8081817Attribute-based access control;policy languages;policy analysis;SMTIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9805493
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9612806
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9257838
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8802766
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877419
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814959
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283590
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914135
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8951032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507717
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9234113
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904758
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9681848
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474312
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9438597
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270314
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8927437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592516
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404135
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9140829
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097572555&doi=10.1007%2f978-3-030-64276-1_1&partnerID=40&md5=5a9272586222f85dcb64f3be6434a14e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120091286&doi=10.1109%2fTNSM.2021.3130290&partnerID=40&md5=511407ae381b7055ef1cddc2f4cfffc0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111157717&doi=10.1007%2f978-3-030-77474-5_13&partnerID=40&md5=12905b79ee7a395ee4abe62cb914ec8e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096125213&doi=10.1145%2f3406085.3409009&partnerID=40&md5=5e30039eef53859603a9350cfcc2694b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072012346&doi=10.1109%2fFormaliSE.2019.00013&partnerID=40&md5=fe889fa7b75d1e70732a3cdbcccc18df
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076261943&doi=10.1016%2fj.procs.2019.09.313&partnerID=40&md5=31f6967e72f52a0172d631b2aaad90f9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072873577&doi=10.1007%2f978-3-030-27008-7_4&partnerID=40&md5=19d935eecb53f5ef5147f49db9699a0a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078209325&doi=10.1109%2fAPSEC48747.2019.00034&partnerID=40&md5=8ac7361e3c6f121653edb7706de490a8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066271238&doi=10.11591%2fijece.v9i4.pp2627-2636&partnerID=40&md5=9789127c70b70c8c363f2b4e0384617a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076741385&doi=10.1145%2f3357613.3357641&partnerID=40&md5=732b60bc6d743284a770f331bb6c035b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142732686&partnerID=40&md5=9d0b4728918fdd8bc7e195b0ca5ea16b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142759479&partnerID=40&md5=4e0eaffccb7fc98f89db3bc9bc480b55
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142681894&partnerID=40&md5=54a22568b9d9bb1275754196a807ce1c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081580292&partnerID=40&md5=7d77d6bb6064b90f676f0eacbdbd4a0d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148539053&doi=10.1016%2fj.jlamp.2023.100860&partnerID=40&md5=eb79652612662c9dec708415baec5265
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115213462&doi=10.4316%2fAECE.2021.03002&partnerID=40&md5=f714f11044abbc8ab000d22d0387a021
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148546611&doi=10.31577%2fcai_2022_5_1284&partnerID=40&md5=77083a544d1e2b5b99ace36ec7baafbc
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8081817

Using the SOCIO Chatbot for UML Modeling: A Second Family of Experiments on Usability in Academic SettingsR. Ren; S. Pérez-soler; J. W. Castro; O. Dieste; S. T. Acuña2022 After improving the SOCIO chatbot prototype model, we wanted to know how/if its usability has changed. An evidence-based empirical evaluation of the usability of SOCIO V1 (updated version) requires an extensive verification of the experimental results. A family of experiments is a method of verification whereby we can check if the experimental results are reproducible. Through comparison with the updated control tool Creately, we aimed to gain a better understanding of the usability of the collaborative modeling chatbot and how it could be improved based on experimental evidence of changes in terms of efficiency, effectiveness, satisfaction, and quality. A total of 87 students from three countries were recruited. We conducted a family of three experiments to compare the usability of SOCIO V1 and updated Creately in academic settings. Students appeared to be more satisfied with SOCIO V1, and SOCIO V1 scored better on completeness. There were no significant differences between the two tools regarding efficiency and quality. This study provides evidence on how to employ a family of experiments to improve chatbot usability and enrich knowledge on chatbot usability experimentation.10.1109/ACCESS.2022.3228772https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9982595Chatbot;usability;family of experimentsIEEE Inglês CE1 Excluído
Modeling and Formal Verification of Interlocking System Based on UML and HCPNM. Maofei; Z. Yong 2020 Aiming at the difficulties of modeling and verification of interlocking system and the easy explosion problem of interlocking system state space, a modeling method of interlocking system is proposed based on UML and Hierarchical Colored Petri Nets (HCPN). Firstly, UML is used to realize the semi-formal modeling of the interlocking system, which can reduce the difficulties of modeling interlocking system. Secondly, the UML-CPN transformational rules are used to establish the HCPN layered model of the interlocking system to alleviate the explosion problem of the system state space. Finally, the formal verification of the HCPN model is realized by using CPN Tools. The interlocking modeling method based on UML and HCPN can provide a new idea for the formal modeling and verification of computer interlocking system.10.1109/WCCCT49810.2020.9170006https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9170006interlocking system;UML;HCPN;formal model verificationIEEE Inglês CE1 Excluído
Online Signal Monitoring With Bounded LagK. Mamouras; Z. Wang 2020 An essential approach for guaranteeing the safety of a cyber-physical system is to monitor its execution in real time. The execution trace of such a system typically consists of one or more signals, and a key computational task for safety monitoring is the online processing of these signals in order to identify events that need to be acted upon in a timely manner. There are several existing proposals for the specification of signal monitors: temporal logics, reactive languages, and dataflow formalisms. A shared feature of most of these proposals is that they describe online signal transformations that are causal. The causality requirement enables a real-time implementation, where the input and output signals are perfectly synchronized. We propose a new specification formalism for signal monitors that relaxes the causality restriction and allows the output to depend on a bounded amount of future input. It follows that an online implementation of such a monitor must have a certain amount of lag in the computation. We introduce a formal framework for signal transformations that allow bounded lag (the output has fallen behind the input) and bounded lead (the output is running ahead of the input), and we propose a type discipline for classifying these transformations according to their lead/lag. We show that this typed framework provides a modular approach for succinctly specifying: 1) monitors for temporal properties that involve both past and bounded-future connectives and 2) complex signal processing computations, such as those arising in the monitoring of physiological signals in medical devices. We have implemented the proposed specification formalism and we have compared it against state-of-the-art tools for the online monitoring of temporal properties: MonPoly, StreamLAB, Aerial, and Reelay.10.1109/TCAD.2020.3013053https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9211570Automata;cyber-physical systems;data streams;metric temporal logic (MTL);online monitoring;quantitative properties;runtime verification;signal temporal logic (STL);transducersIEEE Inglês CE1 Excluído
Integrating Interobject Scenarios with Intraobject Statecharts for Developing Reactive SystemsD. Harel; R. Marelly; A. Marron; S. Szekely2021 An important role of cross-layer design is to reconcile model-implementation differences, often stemming from how the two layers are specified. This article shows how a single method and tool can support both the specification and implementation stages, resulting in better closing the “model-implementation10.1109/MDAT.2020.3006805https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9133113- IEEE Inglês CE1 Excluído
Feature Extraction from Japanese Natural Language Requirements Documents for Software Product Line EngineeringK. Hisazumi; Y. Xiao; A. Fukuda2019 Analyzing and extracting features from requirement specifications is an indispensable activity to support Software Product Line Engineering. However, performing features extraction is a time-consuming and inefficient task, since massive textual requirements need to be analyzed and classified. Most of the current approaches exhibited limitations: hindered applicability with requirements in Japanese; the support tools proposed were not made available publicly and thus making it hard for practitioners' adoption. This paper proposes a feature extraction approach from requirement specifications in Japanese using natural language processing techniques. Also, we propose a ranking method for extracted features to reduce efforts reviewing feature candidates. A case study was conducted to evaluate the performance of the proposed approach. Initial results show that 90.7% features were extracted correctly, and the top 40% features extracted contained 79.1% true features.10.1109/QRS-C.2019.00067https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859423Software Product Line, Feature Extraction, Natural Language ProcessingIEEE Inglês CE1 Excluído
Proving the Correctness of Multicopter Rotor Fault Detection and Identification SoftwareA. Bhaumik; A. Dutta; F. Kopsaftopoulos; C. A. Varela2021 Applications for data-driven systems are expected to be correct implementations of the system specifications, but developers usually test against a few indicative scenarios to verify them. In the absence of exhaustive testing, errors may occur in real time scenarios, especially when dealing with large data streams from moving objects like multicopters, vehicles, etc. Model checking techniques also lack scalability and completeness. We present a novel approach based on some existing tools which enables a developer to write high level code directly as system specifications and simultaneously be able to prove the correctness of the generated code. We present a fault detection and identification (FDI) software development approach using declarative programming language: PILOTS. The grammar of PILOTS has been updated to enable easier syntax for threshold validation techniques. The failure detection model is described as high level specifications that the generated code has to adhere to. The complete FDI problem is formally specified using Hoare logic and proven correct using an automated proof assistant: Dafny. A case study of rotor failures in a hexacopter has been used to illustrate the approach and visualize the results.10.1109/DASC52595.2021.9594350https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9594350fault detection;formal verification;multicopter;declarative programming;DafnyIEEE Inglês CE1 Excluído
Formalizing Architectural Rules with Ontologies - An Industrial EvaluationS. Schröder; G. Buchgeher 2019 Architecture conformance checking is an important means for quality control to assess that the system implementation adheres to its defined software architecture. Ideally, this process is automated to support continuous quality control. Many different approaches exist for automated conformance checking. However, these approaches are often limited in terms of supported concepts for describing and analyzing software architectures. We have developed an ontology-based approach that seeks to overcome the limited expressiveness of existing approaches. As a frontend of the formalism, we provide a Controlled Natural Language. In this paper, we present an industrial validation of the approach. For this, we collected architectural rules from three industrial projects. In total, we discovered 56 architectural rules in the projects. We successfully formalized 80% of those architectural rules. Additionally, we discussed the formalization with the corresponding software architect of each project. We found that the original intention of each architectural rule is properly reflected in the formalization. The results of the study show that projects could greatly benefit from applying an ontology-based approach, since it helps to precisely define and preserve concepts throughout the development process.10.1109/APSEC48747.2019.00017https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946096software architecture;architecture conformance checking;industrial study;ontologiesIEEE Inglês CE1 Excluído
Engineering with Full-scale Formal Architecture: Morello, CHERI, Armv8-A, and RISC-VP. Sewell 2021 Architecture specifications define the fundamental interface between hardware and software. Historically, mainstream architecture specifications have been informal prose-and-pseudocode documents. This talk will describe our work to establish and use mechanised semantics for full-scale instruction-set architectures (ISAs): the mainstream Armv8-A architecture, the emerging RISC-V architecture, the CHERI-MIPS and CHERI-RISC-V research architectures that use hardware capabilities for improved security, and Arm’s prototype Morello architecture – an industrial demonstrator incorporating the CHERI ideas.We use a variety of tools, especially our Sail ISA definition language and Isla symbolic evaluation engine, to build semantic definitions that are readable, executable as test oracles, support reasoning within the Coq, HOL4, and Isabelle proof assistants, support SMT-based symbolic evaluation, support model-based test generation, and can be integrated with operational and axiomatic concurrency models. These models are all complete enough to boot operating systems and hypervisors, covering the full sequential ISA (though not other SoC components, such as the Arm Generic Interrupt Controller). They range from 5000 to 60000 lines of specification.For CHERI-MIPS and CHERI-RISC-V, we have used Sail models (and previously L3 models) as the golden reference during design, working with our systems and computer architecture colleagues in the CHERI team to use lightweight formal specification routinely in documentation, testing, and test generation. We have stated and proved (in Isabelle) some of the fundamental intended security properties of the full CHERI-MIPS ISA.For Armv8-A, building on Arm’s internal shift to an executable model in their ASL language, we have the complete sequential ISA semantics automatically translated from the Arm ASL to Sail, and for RISC-V, we have hand-written what is now the offically adopted model. For their concurrent semantics, the “user” semantics, partly as a result of our collaborations with Arm and within the RISC-V concurrency task group, have become simplified and well-defined, with multiple models proved equivalent, and we are currently working on the “system” semantics. Our symbolic execution tool for Sail specifications, Isla, supports axiomatic concurrency models over the full ISA.Morello, supported by the UKRI Digital Security by Design programme, offers a path to hardware enforcement of fine-grained memory safety and/or secure encapsulation in the production Armv8-A architecture, potentially excluding or mitigating a large fraction of today’s security vulnerabilities for existing C/C++ code with little modification. During the ISA design process, we have proved (in Isabelle) fundamental security properties for the complete Morello ISA definition, and generated tests from the definition which were used during hardware development and for QEMU bring-up.All these tools and models are (or will soon be) available under open-source licences, providing well-validated models for others to use and build on.This is joint work by many people, including especially, for Sail and Isla: Alasdair Armstrong, Brian Campbell, Kathryn E. Gray, Mark Wassell, Jon French, Neel Krishnaswami; for Morello verification and ASL-to-Sail translation: Thomas Bauereiss, Thomas Sewell, Brian Campbell, Alasdair Armstrong, Alastair Reid; for Morello and CHERI-MIPS test generation: Brian Campbell; for CHERI-MIPS verification: Kyndylan Nienhuis; for RISC-V and CHERI-RISC-V specifications: Robert M. Norton, Prashanth Mundkur, Jessica Clark; for MIPS and CHERI-MIPS specifications: Alexandre Joannou, Anthony Fox, Michael Roe, Matthew Naylor; and for Concurrency semantics: Christopher Pulte, Shaked Flur, Will Deacon, Ben Simner, Luc Maranget, Susmit Sarkar, Jean Pichon-Pharabod, Ohad Kammar, Jeehoon Kang, Sung-Hwan Lee, Chung-Kil Hur. All this is in collaboration with the rest of the CHERI team and others in Arm (especially Richard Grisenthwaite, Graeme Barnes, and the Morello team) and in the RISC-V community, with the CHERI team jointly led by Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann, and Ian Stark.10.34727/2021/isbn.978-3-85448-046-4_7https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617665- IEEE Inglês CE1 Excluído
RBML: A Refined Behavior Modeling Language for Safety-Critical Hybrid SystemsZ. Chen; J. Liu; X. Ding; M. Zhang2019 As a widely used modeling language, AADL (Architecture Analysis and Design Language) plays an important role in designing safety-critical systems. It provides abundant components for describing system architecture and supports the early prediction and repetitive analysis of performance-critical attributes. However, the approach used by AADL to describe the system behavior is based mainly on automata theory; thus, encountering the state space explosion problem when modeling and verifying large and complex systems is inevitable. Furthermore, due to the lack of means to describe the behavior details, it is also difficult for AADL to support the accurate analysis and verification of functional and non-functional requirements. In this paper, we propose a language called RBML that supports refined behavior modeling to compensate for the behavior modeling and verification deficiencies of AADL. This new language is based on AADL but extends the ability to detail various behaviors and allows SMT (Satisfiability Modulo Theories) solvers to verify the constructed refined behavior model, thus alleviating the state space explosion problem to some extent. Experiments on Baidu Apollo are presented to demonstrate the feasibility of our proposed approach.10.1109/APSEC48747.2019.00053https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945618AADL, Behavior Modeling, Verification, SMT solver, Safety critical Hybrid SystemIEEE Inglês CE1 Excluído
RiverGame - a game testing tool using artificial intelligenceC. Paduraru; M. Paduraru; A. Stefanescu2022 As is the case with any very complex and interactive software, many video games are released with various minor or major issues that can potentially affect the user experience, cause security issues for players, or exploit the companies that deliver the products. To test their games, companies invest important resources in quality assurance personnel who usually perform the testing mostly manually. The main goal of our work is to automate various parts of the testing process that involve human users (testers) and thus to reduce costs and run more tests in less time. The secondary goal is to provide mechanisms to make test specification writing easier and more efficient. We focus on solving initial real-world problems that have emerged from several discussions with industry partners. In this paper, we present RiverGame, a tool that allows game developers to automatically test their products from different points of view: the rendered output, the sound played by the game, the animation and movement of the entities, the performance and various statistical analyses. We also address the problem of input priorities, scheduling, and directing the testing effort towards custom and dynamic directions. At the core of our methods, we use state-of-the-art artificial intelligence methods for analysis and a behavior-driven development (BDD) methodology for test specifications. Our technical solution is open-source, independent of game engine, platform, and programming language.10.1109/ICST53961.2022.00048https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787838game testing;automated testing;BDD;deep learning;reinforcement learning;computer visionIEEE Inglês CE1 Excluído
An executable framework for modeling and validating cooperative capability requirements in emergency response systemC. Lei; W. Zhixue; H. Ming; H. Hongyue; Y. Minggang2021 As the scale of current systems become larger and larger and their complexity is increasing gradually, research on executable models in the design phase becomes significantly important as it is helpful to simulate the execution process and capture defects of a system in advance. Meanwhile, the capability of a system becomes so important that stakeholders tend to emphasize their capability requirements when developing a system. To deal with the lack of official specifications and the fundamental theory basis for capability requirement, we propose a cooperative capability requirements (CCR) meta-model as a theory basis for researchers to refer to in this research domain, in which we provide detailed definition of the CCR concepts, associations and rules. Moreover, we also propose an executable framework, which may enable modelers to simulate the execution process of a system in advance and do well in filling the inconsistency and semantic gaps between stakeholders' requirements and their models. The primary working mechanism of the framework is to transform the Alf activity meta-model into the communicating sequential process (CSP) process meta-model based on some mapping rules, after which the internal communication mechanism between process nodes is designed to smooth the execution of behaviors in a CSP system. Moreover, a validation method is utilized to check the correctness and consistency of the models, and a self-fixing mechanism is used to fix the errors and warnings captured during the validation process automatically. Finally, a validation report is generated and fed back to the modelers for system optimization.10.23919/JSEE.2021.000077https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9574649executable model;capability requirement;consistency validation;Alf;epsilonIEEE Inglês CE1 Excluído
Formal Verification of a Database Management SystemD. Medina-Martínez; E. Bárcenas; G. Molero-Castillo; A. Velázquez-Mena; R. Aldeco-Pérez2020 Assertion based program verification is a well-known formal approach to (dis)prove correctness of algorithms associated to software systems. Assertions are input and output properties a correct program must satisfy. These properties are traditionally written in a specification language based on classical logic. Associated classical reasoning (inference) systems are then used to (dis)prove program correctness. However, when programs manipulate mutable data structures such as pointers, classical logical operators have been unable to successfully model syntactically unrelated expressions. In this article, we study separation logics, which are equipped with specially-purposed operators to model mutable data structures. We describe the use of this logic as a specification language in the verification of a database management system (DMS). In particular, we detect several bugs in two DMS libraries regarding heap manipulation. We describe these bugs in detail and propose solutions.10.1109/CONISOFT50191.2020.00024https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9307818Program Verification;Separation logic;Database Management SystemsIEEE Inglês CE1 Excluído
Do Comments follow Commenting Conventions? A Case Study in Java and PythonP. Rani; S. Abukar; N. Stulova; A. Bergel; O. Nierstrasz2021 Assessing code comment quality is known to be a difficult problem. A number of coding style guidelines have been created with the aim to encourage writing of informative, readable, and consistent comments. However, it is not clear from the research to date which specific aspects of comments the guidelines cover (e.g., syntax, content, structure). Furthermore, the extent to which developers follow these guidelines while writing code comments is unknown.We analyze various style guidelines in Java and Python and uncover that the majority of them address more the content aspect of the comments rather than syntax or formatting. However, when considering the different types of information developers embed in comments and the concerns they raise on various online platforms about the commenting practices, existing comment conventions are not yet specified clearly enough, nor do they adequately cover important concerns. We find that developers of both languages follow the writing style and content-related comment conventions more often than syntax and structure types of conventions. Our results highlight the mismatch between developer commenting practices and style guidelines, and provide several focal points for the design and improvement of comment quality checking tools.10.1109/SCAM52516.2021.00028https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9610657Comment analysis;Software documentation;Coding Style Guidelines;Coding StandardsIEEE Inglês CE1 Excluído
Object-oriented Representation of Mechanical Systems for the Automated DesignV. Lavrik; H. Alieksieieva; I. Bardus; O. Shchetynina2021 At the decision of practical task in the technique of presentation of 2-D and 3-D objects there is a problem of choice of optimum calculation chart which is based on a number of concrete methods of formal design. We developed authoring system of computer-aided design, that is based on special language of presentation of geometrical primitives, that allows a design engineer to create reliable models in his subject domain, and it differs from the traditional methods of presentation of objects in mechanics and construction. The modeling language was presented as a formal system, that allows to formulate and formally prove its qualities.10.1109/CONIT51480.2021.9498445https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9498445graphical models;object oriented modeling;systems simulation;model checkingIEEE Inglês CE1 Excluído
Automatic Extraction of Analysis Class Diagrams from Use CasesM. -H. Chu; D. -H. Dang 2020 At the early phase of software development, functional requirements of the software often need to be represented in the developer's language, resulting in a so-called analysis model. Current works in literature aim to increase automation in software development by either generating automatically the analysis model from a use case specification or transforming the analysis model to a design model. However, up to now, to precisely specify use cases is still a challenge, preventing us from realizing this aim. This paper proposes a method to extract analysis classes from a use case specification. Within our method, use cases are represented using our domain-specific modeling language named USL. We then define algorithms with transformation rules as a representation of analysis patterns in order to extract analysis classes from the USL use case model. We develop a support tool for our method in which transformation rules are realized using the ATL model-to-model transformation technique.10.1109/KSE50997.2020.9287702https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9287702Use Case Specification;Model Transformation;Analysis Model;UML/OCLIEEE Inglês CE1 Excluído
Type inhabitation of atomic polymorphism is undecidableM. C. Protin 2020 Atomic polymorphism $\mathbf{F_{at}}$ is a restriction of Girard and Reynold’s system $\mathbf{F} $(or $\lambda 2$) which was first introduced in Ferreira [2] in the context of a philosophical commentary on predicativism. $\lambda 2$ is a well-known and powerful formal tool for studying polymorphic functional programming languages and formal methods in program specification and development, but its computational power far exceeds the recursive level of interest in applications. Hence, the interest of studying subsystems of $\lambda 2$ with weaker computational power. $\mathbf{F_{at}}$ is defined by restricting instantiation to atomic variables only. It turns out that the type system is still sufficiently powerful to possess embeddings of full intuitionistic propositional calculus [3, 4], and since the calculus has fewer connectives and strong normalizability is simple to prove [3], this result allows us to circumvent many of the extra computational complexities present when dealing with the proof theory of IPC. It is natural to inquire whether type inhabitation, i.e. provability in the corresponding fragment of second-order intuitionistic propositional logic, is decidable or not and in general to see whether the negative results involving the undecidability of type inhabitation, typability and type-checking for \mathbf{F} still hold in this fragment. A further theme would be to study the result of adding type constructors, recursors or even dependent types to $\mathbf{F_{at}}$. In this paper, we show that type inhabitation for $\mathbf{F_{at}}$ is undecidable by codifying within it an undecidable fragment of first-order intuitionistic predicate calculus, adapting and modifying the technique of Urzyczyn’s [1, 7] purely syntactic proof of the undecidability of type inhabitation for \mathbf{F}.10.1093/logcom/exaa090https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9426547polymorphism;second-order intuitionistic propositional logic;Curry–Howard correspondence;lambda-calculus;functional programmingIEEE Inglês CE1 Excluído
Automated Attack Synthesis by Extracting Finite State Machines from Protocol Specification DocumentsM. L. Pacheco; M. v. Hippel; B. Weintraub; D. Goldwasser; C. Nita-Rotaru2022 Automated attack discovery techniques, such as attacker synthesis or model-based fuzzing, provide powerful ways to ensure network protocols operate correctly and securely. Such techniques, in general, require a formal representation of the protocol, often in the form of a finite state machine (FSM). Unfortunately, many protocols are only described in English prose, and implementing even a simple network protocol as an FSM is time-consuming and prone to subtle logical errors. Automatically extracting protocol FSMs from documentation can significantly contribute to increased use of these techniques and result in more robust and secure protocol implementations.In this work we focus on attacker synthesis as a representative technique for protocol security, and on RFCs as a representative format for protocol prose description. Unlike other works that rely on rule-based approaches or use off-the-shelf NLP tools directly, we suggest a data-driven approach for extracting FSMs from RFC documents. Specifically, we use a hybrid approach consisting of three key steps: (1) large-scale word-representation learning for technical language, (2) focused zero-shot learning for mapping protocol text to a protocol-independent information language, and (3) rule-based mapping from protocol-independent information to a specific protocol FSM. We show the generalizability of our FSM extraction by using the RFCs for six different protocols: BGPv4, DCCP, LTP, PPTP, SCTP and TCP. We demonstrate how automated extraction of an FSM from an RFC can be applied to the synthesis of attacks, with TCP and DCCP as case-studies. Our approach shows that it is possible to automate attacker synthesis against protocols by using textual specifications such as RFCs.10.1109/SP46214.2022.9833673https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833673attack-synthesis;network-security;NLPIEEE Inglês CE1 Excluído
RM2Doc: A Tool for Automatic Generation of Requirements Documents from Requirements ModelsT. Bao; J. Yang; Y. Yang; Y. Yin2022 Automatic generation of requirements documents is an essential feature of the model-driven CASE tools such as UML and SysML designers. However, the quality of the generated documents from the current tools highly depends on the attached descriptions of models but not the quality of the model itself. Besides, if the stockholders ask to generate ISO/IEC/IEEE 29148-2018 conformed documents, extra templates are required. In this paper, we propose a CASE tool named RM2Doc, which can automatically generate ISO/IEC/IEEE 29148-2018 conformed requirements documents from UML models without any templates. In addition, the flow description can be generated from a use case without additional information. Moreover, it can automatically generate the semantic description of system operations only based on the formal expression of OCL. We have conducted four case studies with over 50 use cases. Overall, the result is satisfactory. The 95% requirements documents can be generated from the requirements model without any human interactions in 1 second. The proposed tools can be further developed for the industry of software engineering.The tool can be downloaded at http://rm2pt.com/rm2doc, and a demo video casting its features is at https://youtu.be/4z0Z5mrLfBc10.1145/3510454.3516850https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793770Automatic Documentation;Requirements;Requirements Model;Requirements DocumentsIEEE Inglês CE1 Excluído
High-Quality Automated Program RepairM. Motwani 2021 Automatic program repair (APR) has recently gained attention because it proposes to fix software defects with no human intervention. To automatically fix defects, most APR tools use the developer-written tests to (a) localize the defect, and (b) generate and validate the automatically produced candidate patches based on the constraints imposed by the tests. While APR tools can produce patches that appear to fix the defect for 11-19% of the defects in real-world software, most of the patches produced are not correct or acceptable to developers because they overfit to the tests used during the repair process. This problem is known as the patch overfitting problem. To address this problem, I propose to equip APR tools with additional constraints derived from natural-language software artifacts such as bug reports and requirements specifications that describe the bug and intended software behavior but are not typically used by the APR tools. I hypothesize that patches produced by APR tools while using such additional constraints would be of higher quality. To test this hypothesis, I propose an automated and objective approach to evaluate the quality of patches, and propose two novel methods to improve the fault localization and developer-written test suites using natural-language software artifacts. Finally, I propose to use my patch evaluation methodology to analyze the effect of the improved fault localization and test suites on the quality of patches produced by APR tools for real-world defects.10.1109/ICSE-Companion52605.2021.00134https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402293program repair;fault localization;test generation;patch qualityIEEE Inglês CE1 Excluído
Automated Generation and Integration of AUTOSAR RTE ConfigurationsS. Smith; M. A. S. Khalid 2022 Automotive Open System Architecture (AUTOSAR) is a system-level standard that is used worldwide by automotive companies and their suppliers to develop the standardized software development framework for automobiles. A Runtime Environment (RTE) is essential for any AUTOSAR software architecture. The information to conFigure the Runtime Environment (RTE), for any embedded Electronic Control Unit (ECU) design, is given in an AUTOSAR Extensible Markup Language (ARXML) file. Currently, these ARXML files are interpreted by the developer to manually create each configuration. That is a huge bottleneck in the design flow of software because of the drawbacks such as the cost and time spent having to manually write code. Also, manual code entry is not scalable for larger projects. Every time manual code is created it needs to be tested and verified to ensure ISO 26262 compliance. Creating an ISO 26262 compliant, RTE code generator is essential in the process of automating integration of AUTOSAR methodology in the design of ECUs. This paper describes the design of a Computer-Aided Design (CAD) tool that automatically interprets the given AUTOSAR XML files and then generates the corresponding optimized C code (*.h and *.c files). The CAD tool is optimized for run time and memory usage and is ready to use for generating any portion of the RTE automatically, while being AUTOSAR compliant.10.1109/CCECE49351.2022.9918435https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9918435CAD tool;Automation;AUTOSAR;Automotive Embedded SystemIEEE Inglês CE1 Excluído
Formal Software Requirement Elicitation based on Semantic Algebra and Cognitive ComputingJ. Y. Xu; Y. Wang 2020 Autonomous software requirement analysis and generation are a persistent challenge to theories and technologies of software engineering. A cognitive system is demanded to automatically elicit and rigorously refine informal software requirements in natural language descriptions into formal specifications. This paper presents a novel software requirements elicitation methodology based on latest advances in software science and denotational mathematics such as semantic algebra and concept algebra. It is found that user requirements for a software system in natural language may be either expressed in to-be sentences for software structures or to-do sentences for software behaviors. Thus, formal software requirements may be elicited by two sets of structural and functional models. This approach is implemented by a tool for Formal Requirement Elicitation and Analysis (FREA). Experimental results demonstrate that the FREA tool may rigorously elicit and generate formal requirements for arbitrary software systems specified in real-time process algebra (RTPA) or equivalent notations. This technology paves a way towards autonomous code generation in software engineering.10.1109/ICCICC50026.2020.9450275https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9450275Software science;software engineering;formal requirement analysis;rigorous requirement generation;RTPA;concept algebra;semantic algebra;cognitive algorithmsIEEE Inglês CE1 Excluído
Requirements-Driven Test Generation for Autonomous Vehicles With Machine Learning ComponentsC. E. Tuncali; G. Fainekos; D. Prokhorov; H. Ito; J. Kapinski2020 Autonomous vehicles are complex systems that are challenging to test and debug. A requirements-driven approach to the development process can decrease the resources required to design and test these systems, while simultaneously increasing the reliability. We present a testing framework that uses signal temporal logic (STL), which is a precise and unambiguous requirements language. Our framework evaluates test cases against the STL formulae and additionally uses the requirements to automatically identify test cases that fail to satisfy the requirements. One of the key features of our tool is the support for machine learning (ML) components in the system design, such as deep neural networks. The framework allows evaluation of the control algorithms, including the ML components, and it also includes models of CCD camera, lidar, and radar sensors, as well as the vehicle environment. We use multiple methods to generate test cases, including covering arrays, which is an efficient method to search discrete variable spaces. The resulting test cases can be used to debug the controller design by identifying controller behaviors that do not satisfy requirements. The test cases can also enhance the testing phase of development by identifying critical corner cases that correspond to the limits of the system's allowed behaviors. We present STL requirements for an autonomous vehicle system, which capture both component-level and system-level behaviors. Additionally, we present three driving scenarios and demonstrate how our requirements-driven testing framework can be used to identify critical system behaviors, which can be used to support the development process.10.1109/TIV.2019.2955903https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8911483Autonomous vehicles;cyber-physical systems;system validation;system verificationIEEE Inglês CE1 Excluído
Hierarchical Activity-Based Models for Control Flows in Parallel Discrete Event System Specification Simulation ModelsA. Alshareef; H. S. Sarjoughian2021 Behavior modeling grounded in the Discrete-Event System Specification (DEVS) and Unified Modeling Language (UML) activity specifications is crucial for simulating dynamical systems. The Model-Driven Architecture (MDA) design approach provides flexible yet rigorous layered metamodels for the UML activity diagrams. Our approach for behavior modeling is focused on the action and control concepts in the UML activity metamodels and realizing them as artifacts according to the DEVS formalism. The syntax and semantics for the artifacts conform to the parallel DEVS model specification and execution protocol. We use the system-theoretic state, component, and hierarchy concepts as the foundation for formulating the DEVS Activity models and supported with a prototype graphical tool developed in Sirius. This research also proposes the Parallel DEVS as a formal approach for examining the semantics of the UML Activities. We develop, simulate, and analyze a set of prototypical multi-processor architecture systems demonstrating different synchronization and selection schemes using the DEVS-Suite and MS4 Me simulators.10.1109/ACCESS.2021.3084940https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9444417Activity diagrams;behavior modeling;DEVS;parallelism;model-based design;modeling & simulation;software modelingIEEE Inglês CE1 Excluído
Behaviour-Driven Formal Model Development of the ETCS Hybrid Level 3M. Butler; D. Dghaym; T. S. Hoang; T. Omitola; C. Snook; A. Fellner; R. Schlick; T. Tarrach; T. Fischer; P. Tummeltshammer2019 Behaviour driven formal model development (BDFMD) enables domain engineers to influence and validate mathematically precise and verified specifications. In previous work we proposed a process where manually authored scenarios are used initially to support the requirements and help the modeller. The same scenarios are used to verify behavioural properties of the model. The model is then mutated to automatically generate scenarios that have a more complete coverage than the manual ones. These automatically generated scenarios are used to animate the model in a final acceptance stage. In this paper, we discuss lessons learned from applying this BDFMD process to a real-life specification: The European Train Control Systems (ETCS) Hybrid Level 3. During the case study, we have developed our understanding of the process, modifying the way we do some stages and developing improved tool support to make the process more efficient. We discuss (1) the need for abstract scenarios during incremental model development and verification, (2) tools and techniques developed to make the running of scenarios more efficient, and (3) improvements to tools that generate new test cases to improve coverage.10.1109/ICECCS.2019.00018https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882769Event-B, UML-B, MoMuT, BDFMD, Scenario, ETCS Hybrid Level 3IEEE Inglês CE1 Excluído
Towards a System Monitoring Modeling Language (SyMoLa)A. García; P. Cedillo 2020 Best practices in software development suggest that systems include monitoring functionalities, allowing verification, auditing, traceability of operations, and quick response to incidents. On the other hand, domain-specific modeling languages (DSML) have shown great utility by allowing them to portray knowledge at a high level of abstraction. Even the application of DSML transformation tools towards specific implementations considerably reduces development time and effort, optimizing resources to take advantage of them in improving the design of systems, without worrying about low-level details.In this paper, a domain-specific modeling language oriented to systems monitoring specification is proposed, with a focus on the generation of cloud platforms for monitoring services. For this, the monitoring needs of different areas and applications were considered, the relevant concepts were synthesized, everyday needs were unified and consolidated, allowing to generalize and provide the modeling language with sufficient expression capabilities for monitoring the most domains. The syntax and semantics modeling language was provided, defining the graphical components that allow expressing each of the monitoring needs, and specifying restrictions, contexts, and notations, respectively. This study aims to contribute to Industry 4.0, with a design tool to facilitate the development processes of system monitoring solutions. This language is oriented to the integration of data in system of systems, extending the scope of the monitoring towards the perspective of a third party (regulatory entity, audit or monitoring services in the cloud).10.1109/Incodtrin51881.2020.00033https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9516661DSML;systems monitoring;Industry 4.0;modeling language;cloud services;system of systemsIEEE Inglês CE1 Excluído
Cinnamon: A Domain-Specific Language for Binary Profiling and MonitoringM. Arif; R. Zhou; H. -M. Ho; T. M. Jones2021 Binary instrumentation and rewriting frameworks provide a powerful way of implementing custom analysis and transformation techniques for applications ranging from performance profiling to security monitoring. However, using these frameworks to write even simple analyses and transformations is non-trivial. Developers often need to write framework-specific boilerplate code and work with low-level and complex programming details. This not only results in hundreds (or thousands) of lines of code, but also leaves significant room for error. To address this, we introduce Cinnamon, a domain-specific language designed to write programs for binary profiling and monitoring. Cinnamon's abstractions allow the programmer to focus on implementing their technique in a platform-independent way, without worrying about complex lower-level details. Programmers can use these abstractions to perform analysis and instrumentation at different locations and granularity levels in the binary. The flexibility of Cinnamon also enables its programs to be mapped to static, dynamic or hybrid analysis and instrumentation approaches. As a proof of concept, we target Cinnamon to three different binary frameworks by implementing a custom Cinnamon to C/C++ compiler and integrating the generated code within these frameworks. We further demonstrate the ability of Cinnamon to express a range of profiling and monitoring tools through different use-cases.10.1109/CGO51591.2021.9370313https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9370313Domain-Specific language;Profiling;Binary analysis and instrumentationIEEE Inglês CE1 Excluído
Approximation-Refinement Testing of Compute-Intensive Cyber-Physical Models: An Approach Based on System IdentificationC. Menghi; S. Nejati; L. Briand; Y. I. Parache2020 Black-box testing has been extensively applied to test models of Cyber-Physical systems (CPS) since these models are not often amenable to static and symbolic testing and verification. Black-box testing, however, requires to execute the model under test for a large number of candidate test inputs. This poses a challenge for a large and practically-important category of CPS models, known as compute-intensive CPS (CI-CPS) models, where a single simulation may take hours to complete. We propose a novel approach, namely ARIsTEO, to enable effective and efficient testing of CI-CPS models. Our approach embeds black-box testing into an iterative approximation-refinement loop. At the start, some sampled inputs and outputs of the CI-CPS model under test are used to generate a surrogate model that is faster to execute and can be subjected to black-box testing. Any failure-revealing test identified for the surrogate model is checked on the original model. If spurious, the test results are used to refine the surrogate model to be tested again. Otherwise, the test reveals a valid failure. We evaluated ARIsTEO by comparing it with S-Taliro, an open-source and industry-strength tool for testing CPS models. Our results, obtained based on five publicly-available CPS models, show that, on average, ARIsTEO is able to find 24% more requirements violations than S-Taliro and is 31% faster than S-Taliro in finding those violations. We further assessed the effectiveness and efficiency of ARIsTEO on a large industrial case study from the satellite domain. In contrast to S-Taliro, ARIsTEO successfully tested two different versions of this model and could identify three requirements violations, requiring four hours, on average, for each violation.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283957Cyber-Physical Systems;Model Testing;Search-Based Testing;Robustness;FalsificationIEEE Inglês CE1 Excluído
Automated Regression Tests: A No-Code Approach for BPMN-based Process-Driven ApplicationsK. Schneid; L. Stapper; S. Thöne; H. Kuchen2021 BPMN-based Process-Driven Applications (PDA) require less coding since they are not only based on source code, but also on executable process models. Automated testing of such model-driven applications gains growing relevance, and it becomes a key enabler if we want to found their development on continuous integration (CI) techniques.While process analysts are typically responsible for test case specifications from a business perspective, technically skilled process engineers take the responsibility for implementing the required test code. This is time-consuming and, due to their often different skills and backgrounds, might result in communication problems such as information losses and misunderstandings. This paper presents a new approach which enables an analyst to generate executable tests for PDAs without the need for manual coding. It consists of a sophisticated model analysis, a wizard-based specification of test cases, and a subsequent code generation. The resulting tests can easily be integrated into CI pipelines.The concept is underpinned by a user-friendly tool which has been evaluated in case studies and in real-world implementation projects from different industry sectors. During the evaluation, the prototype proved a more efficient test creation process and a higher test quality.10.1109/EDOC52215.2021.00014https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9626192Model-Based Testing;BPMN;No-Code;Process-Driven ApplicationIEEE Inglês CE1 Excluído
Requirements-based Code Model CheckingU. Schöpp; A. Schweiger; M. Reich; T. Chuprina; L. Lúcio; H. Brüning2020 Building the system right is the objective of quality assurance methods. Though testing is the most prominent and widely-adopted means, it cannot prove the absence of software's defects. Therefore, static measures such as formal proofs can complement dynamic methods. However, these techniques require the formal statement of requirements, which is still a challenge in industry development. This paper suggests a way of formalizing requirements in controlled natural language in a way that applies directly to C program code. By mapping natural language terms to conditional breakpoints, requirements can be translated to formal language expressed in observer automata. The creation of a mapping between natural language terms and code is supported by natural language processing methods. Finally, the observer automata are model checked against the code. In our approach we demonstrate the described steps using a set of realistically shaped requirements, which are common in the avionics domain. We implemented a simple tool hiding the abstract and mathematical details, which performs the proofs automatically. The paper is presented as an approach towards the seamless verification of code against requirements typically found in the avionics domain.10.1109/FORMREQ51202.2020.00011https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224538- IEEE Inglês CE1 Excluído
Continuous Process Model Refinement from Business Vision to Event Simulation and Software Automation : Bridging Gaps between Stakeholder Communities, Practices, Notations, and ToolsO. Zimmermann; K. Luban; M. Stocker; G. Bernard2022 Business consultants and software engineers produce and consume process models capturing analysis and design results on different levels of abstraction and at different stages of refinement. Model types commonly found in practice include vision models (current, future), simulation models, and automation models. In this paper, we propose to align and map the terminologies and concepts of these model types to improve stakeholder collaboration. We support this concept mapping with two model transformations to and from discrete event simulation models. We implemented these transformations prototypically (MDSL2JaamSim, JaamSim2MDSL). Our work originates from an industrial case in the FinTech domain. An experimental validation suggests benefits such as effort savings. CCS CONCEPTS • Software and its engineering $^{\rightarrow}$ System description languages; Integration frameworks; System modeling languages; Orchestration languages.10.1145/3524614.3528631https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9808807Business process modeling;discrete event simulation;domain-specific languages;model-driven software engineering;software architecture;API design;enterprise application integrationIEEE Inglês CE1 Excluído
Generating and Analyzing Program Call Graphs using OntologyE. Dorta; Y. Yan; C. Liao 2022 Call graph or caller-callee relationships have been used for various kinds of static program analysis, performance analysis and profiling, and for program safety or security analysis such as detecting anomalies of program execution or code injection attacks. However, different tools generate call graphs in different formats, which prevents efficient reuse of call graph results. In this paper, we present an approach of using ontology and resource description framework (RDF) to create knowledge graphs for specifying call graphs to facilitate the construction of full-fledged and complex call graphs of computer programs, realizing more interoperable and scalable program analyses than conventional approaches. We create a formal ontology-based specification of call graph information to capture concepts and properties of both static and dynamic call graphs so different tools can collaboratively contribute to more comprehensive analysis results. Our experiments show that ontology enables merging of call graphs generated from different tools and flexible queries using a standard query interface.10.1109/ProTools56701.2022.00008https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10027487Callgraph;ontology;knowledge graph;resource description framework;program analysisIEEE Inglês CE1 Excluído
The Ten Lockheed Martin Cyber-Physical Challenges: Formalized, Analyzed, and ExplainedA. Mavridou; H. Bourbouh; D. Giannakopoulou; T. Pressburger; M. Hejase; P. -L. Garoche; J. Schumann2020 Capturing and analyzing requirements of Cyber-Physical Systems (CPS) can be challenging, since CPS models typically involve time-varying and real-valued variables, physical system dynamics, or even adaptive behavior. MATLAB/Simulink is a development and simulation framework that is widely used in industry to capture such systems. In this paper, we report on the application of NASA Ames tools to perform end-to-end analysis of the Ten Lockheed Martin Challenge Problems (LMCPS). LMCPS is a set of industrial Simulink model benchmarks and natural language requirements developed by domain experts. Our framework, which integrates the tools FRET and COCOSIM, is used to: 1) elicit, explain, and formalize the semantics of the given natural language requirements; 2) generate verification code and monitors that can be automatically attached to the Simulink models; 3) perform verification by using SMT-based model checkers. FRET and COCOS1M are open source, and can be used by other researchers and practitioners to replicate our case study. We provide a categorization of recurring patterns in the formalization of the requirements and discuss the strengths and weaknesses of our automated verification approach.10.1109/RE48521.2020.00040https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218211- IEEE Inglês CE1 Excluído
Keywords-based test categorization for Extra-Functional PropertiesM. Abbas; A. Rauf; M. Saadatmand; E. P. Enoiu; D. Sundmark2020 Categorizing existing test specifications can provide insights on coverage of the test suite to extra-functional properties. Manual approaches for test categorization can be time-consuming and prone to error. In this short paper, we propose a semi-automated approach for semantic keywords-based textual test categorization for extra-functional properties. The approach is the first step towards coverage-based test case selection based on extra-functional properties. We report a preliminary evaluation of industrial data for test categorization for safety aspects. Results show that keyword-based approaches can be used to categorize tests for extra-functional properties and can be improved by considering contextual information of keywords.10.1109/ICSTW50294.2020.00035https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9156019test categorization;topic model;keyword extractionIEEE Inglês CE1 Excluído
CATE: CAusality Tree Extractor from Natural Language RequirementsN. Jadallah; J. Fischbach; J. Frattini; A. Vogelsang2021 Causal relations (If A, then B) are prevalent in requirements artifacts. Automatically extracting causal relations from requirements holds great potential for various RE activities (e.g., automatic derivation of suitable test cases). However, we lack an approach capable of extracting causal relations from natural language with reasonable performance. In this paper, we present our tool CATE (CAusality Tree Extractor), which is able to parse the composition of a causal relation as a tree structure. CATE does not only provide an overview of causes and effects in a sentence, but also reveals their semantic coherence by translating the causal relation into a binary tree. We encourage fellow researchers and practitioners to use CATE at https://causalitytreeextractor.com/10.1109/REW53955.2021.00018https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582405Tool;Natural Language Processing;Causality ExtractionIEEE Inglês CE1 Excluído
Verification of CTCS-3 using TMSVLY. Wang; C. Li; X. Wang 2021 Chinese Train Control System 3 (CTCS-3) is a complex real-time and safety critical system. In order to check the real-time and safety property of CTCS-3 protocol, this paper presents an approach using Timed Modeling, Simulation and Verification Language (TMSVL) to model and verify the requirement specification. Firstly, the language TMSVL and its running tool, Timed Modeling, Simulation and Verification platform (TMSV), are briefly introduced. Then, TMSVL is used to model the simplified CTCS-3 system, and typical scenarios are selected for analysis. Some properties that the system needs to meet are extracted and expressed by Timed Propositional Projection Temporal Logic (TPPTL) formula. Finally, TMSV platform is used to verify whether the properties satisfy the real-time requirement.10.1109/DSA52907.2021.00105https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622990CTCS-3;TMSVL;model checking IEEE Inglês CE1 Excluído
Managing Security Policies within Cloud Environments Using Aspect-Oriented State MachinesM. Ayache; A. Khoumsi; M. Erradi2019 Cloud Computing is the most suitable environment for the collaboration of multiple organizations via its multi-tenancy architecture. However, due to the distributed management of policies within these collaborations, they may contain several anomalies, such as conflicts and redundancies, which may lead to both safety and availability problems. On the other hand, current cloud computing solutions do not offer verification tools to manage access control policies. In this paper, we propose a cloud policy verification service (CPVS), that facilitates to users the management of there own security policies within Openstack cloud environment. Specifically, the proposed cloud service offers a policy verification approach to dynamically choose the adequate policy using Aspect-Oriented Finite State Machines (AO-FSM), where pointcuts and advices are used to adopt Domain-Specific Language (DSL) state machine artifacts. The pointcuts define states' patterns representing anomalies (e.g., conflicts) that may occur in a security policy, while the advices define the actions applied at the selected pointcuts to remove the anomalies. In order to demonstrate the efficiency of our approach, we provide time and space complexities. The approach was implemented as middleware service within Openstack cloud environment. The implementation results show that the middleware can detect and resolve different policy anomalies in an efficient manner.10.1109/COMMNET.2019.8742348https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8742348XACML policies;security policies anomalies;anomaly detection and resolution;aspect-oriented finite state machines;Cloud ComputingIEEE Inglês CE1 Excluído
Design and Application of a Domain Specific Modeling Language for Distributed Co-SimulationM. Krammer; M. Benedikt 2019 Co-simulation is considered as a state-of-the-art methodology in many industrial domains. It enables virtual system development in distributed, multi-tiered environments, like the automotive industry. The Distributed Co-Simulation Protocol (DCP) is a novel specification of an application layer communication protocol. It is standardized next to the well-established Functional Mock-Up Interface (FMI). The DCP specification addresses design and behaviour of single DCP slaves, as main components of larger, possibly distributed, co-simulation scenarios. At this point in time, no tailor-made solution for convenient description of distributed co-simulation scenarios is available. This paper presents a first version of DCPML, a domain specific modeling language for distributed co-simulation scenarios. It is based on three layers of integration and contributes to development efficiency by following a front-loading approach. It is designed as a UML profile, extending existing visual notation languages like UML and SysML. The language can be used for design, communication, and preparation for execution, of distributed co-simulation scenarios. For demonstration purposes, it is implemented in an industry relevant systems engineering tool. DCPML models can be used to import and export XML data, representing DCP slave and scenario descriptions. A typical demonstrator from the automotive domain is shown. It highlights a tool implementation and the capabilities of DCPML.10.1109/INDIN41052.2019.8972116https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972116co-simulation;dcp;modeling;languageIEEE Inglês CE1 Excluído
Towards Web Collaborative Modelling for the User Requirements Notation Using Eclipse Che and Theia IDER. Saini; S. Bali; G. Mussbacher2019 Collaborative modelling has become a necessity when developing a complex system or in a team of modellers with a diverse set of expertise. Textual notations have a long history in software engineering because of their fast editing style, simple usage, and scalability. Therefore, we propose a novel collaborative modelling framework for the graphical User Requirements Notation (URN) which we call tColab. It uses the text-based TGRL (Textual Goal-oriented Requirement Language) to build URN goal models and then automatically generates corresponding graphical models. This framework is based on the architecture of Eclipse Che and Theia. On one side, Theia provides support for LSP (Language Server Protocol) so that textual models can be built and their corresponding graphical models can be generated in a browser IDE (Integrated Development Environment). On the other hand, Eclipse Che adds support for collaboration where multiple modellers can contribute to building the textual models in an online collaborative manner. This initiative aims to replace the jUCMNAV tool, which is the most comprehensive URN modelling tool to date but only supports a single user.10.1109/MiSE.2019.00010https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877072User Requirements Notation, URN, jUCMNav, Eclipse Che, Theia, Sprotty, LSP, ELK, TURN, TGRLIEEE Inglês CE1 Excluído
Verification of Cloud Security PoliciesL. Miller; P. Mérindol; A. Gallais; C. Pelsser2021 Companies like Netflix increasingly use the cloud to deploy their business processes. Those processes often involve partnerships with other companies, and can be modeled as workflows where the owner of the data at risk interacts with contractors to realize a sequence of tasks on the data to be secured.In practice, access control is an essential building block to deploy these secured workflows. This component is generally managed by administrators using high-level policies meant to represent the requirements and restrictions put on the workflow. Handling access control with a high-level scheme comes with the benefit of separating the problem of specification, i.e. defining the desired behavior of the system, from the problem of implementation, i.e. enforcing this desired behavior. However, translating such high-level policies into a deployed implementation can be error-prone.Even though semi-automatic and automatic tools have been proposed to assist this translation, policy verification remains highly challenging in practice. In this paper, our aim is to define and propose structures assisting the checking and correction of potential errors introduced on the ground due to a faulty translation or corrupted deployments. In particular, we investigate structures with formal foundations able to naturally model policies. Metagraphs, a generalized graph theoretic structure, fulfill those requirements: their usage enables to compare high-level policies to their implementation. In practice, we consider Rego, a language used by companies like Netflix and Plex for their release process, as a valuable representative of most common policy languages. We propose a suite of tools transforming and checking policies as metagraphs, and use them in a global framework to show how policy verification can be achieved with such structures. Finally, we evaluate the performance of our verification method.10.1109/HPSR52026.2021.9481870https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9481870policy verification;metagraphs;policy modeling;rego;access control;authorizationIEEE Inglês CE1 Excluído
Requirements for a dynamic interface model of IEC 61499 Function BlocksB. Wiesmayr; A. Zoitl 2020 Component-based software engineering has emerged as a principle of software design to facilitate reuse and improve the software quality. This principle is supported by the domain-specific language IEC 61499, where Function Blocks are fully encapsulated software components. For a Function Block definition, a static interface description and an internal implementation are required. Service sequences describe the event flow at a component interface and are an optional dynamic interface model in IEC 61499. In general, dynamic interface models are a powerful tool for various use cases, yet service sequences are rarely used in practice due to their low expressiveness. Therefore, we identify the domain-specific requirements for a comprehensive dynamic interface model and use them for our analysis of service sequences, where several issues are identified.10.1109/ETFA46521.2020.9212107https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9212107IEC 61499;behavior modeling;service sequenceIEEE Inglês CE1 Excluído
Research Report: Building a Wide Reach Corpus for Secure Parser DevelopmentT. Allison; W. Burke; V. Constantinou; E. Goh; C. Mattmann; A. Mensikova; P. Southam; R. Stonebraker; V. Timmaraju2020 Computer software that parses electronic files is often vulnerable to maliciously crafted input data. Rather than relying on developers to implement ad hoc defenses against such data, the Language-theoretic security (LangSec) philosophy offers formally correct and verifiable input handling throughout the software development lifecycle. Whether developing from a specification or deriving parsers from samples, LangSec parser developers require wide-reach corpora of their target file format in order to identify key edge cases or common deviations from the format's specification. In this research report, we provide the details of several methods we have used to gather approximately 30 million files, extract features and make these features amenable to search and use in analytics. Additionally, we provide documentation on opportunities and limitations of some popular open-source datasets and annotation tools that will benefit researchers which need to efficiently gather a large file corpus for the purposes of LangSec parser development.10.1109/SPW50608.2020.00066https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283855LangSec;language-theoretic security;file corpus creation;file forensics;text extraction;parser resourcesIEEE Inglês CE4 Excluído
Preserving Multi-level Semantics in Conventional Two-Level Modeling TechniquesJ. P. A. Almeida; F. A. Musso; V. A. Carvalho; C. M. Fonseca; G. Guizzardi2019 Conceptual models are often built with techniques that propose a strict stratification of entities into two classification levels: a level of types (or classes) and a level of instances. Multi-level conceptual modeling extends the conventional two-level scheme by admitting that types can be instances of other types, giving rise to multiple levels of classification (individuals, classes, metaclasses, metametaclasses, and so on). As a result, multi-level models capture not only invariants about individuals, but also invariants about types themselves, which become regular elements of the domain of inquiry (first-class citizens). Despite the benefits of the multi-level approach, the vast majority of tools for conceptual modeling are still confined to the two-level scheme, and hence cannot accommodate multi-level entities. This paper proposes a transformation of multi-level to two-level models that preserves the semantics of the original multi-level model. We employ the systematic reification of the instance facet of a class and its linking to the type facet. The feasibility of the approach is demonstrated by a transformation of ML2 (multi-level) models to Alloy (two-level) specifications.10.1109/MODELS-C.2019.00025https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904769multi-level modeling, model transformation, multi-level theory, multi-level modeling languageIEEE Inglês CE1 Excluído
Designing a Conversational Requirements Elicitation System for End-UsersT. Rietz 2019 Context: Digital transformation impacts an ever-increasing degree of everyone's business and private life. It is imperative to incorporate a wide audience of user requirements in the development process to design successful information systems (IS). Hence, requirements elicitation (RE) is increasingly performed by end-users that are novices at contributing requirements to IS development projects. Objective: We need to develop RE systems that are capable of assisting a wide audience of end-users in communicating their needs and requirements. Prominent methods, such as elicitation interviews, are challenging to apply in such a context, as time and location constraints limit potential audiences. Research Method: The presented dissertation project utilizes design science research to develop a requirements self-elicitation system, LadderBot. A conversational agent (CA) enables end-users to articulate needs and requirements on the grounds of the laddering method. The CA mimics a human interviewer's capability to rephrase questions and provide assistance in the process and allows users to converse in their natural language. Furthermore, the tool will assist requirements analysts with the subsequent aggregation and analysis of collected data. Contribution: The dissertation project makes a practical contribution in the form of a ready-to-use system for wide audience end-user RE and subsequent analysis utilizing laddering as cognitive elicitation technique. A theoretical contribution is provided by developing a design theory for the application of conversational agents for RE, including the laboratory and field evaluation of design principles.10.1109/RE.2019.00061https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920648End user;Wide Audience;Requirements Elicitation;Conversational Agent;Design Science;LadderingIEEE Inglês CE1 Excluído
Dealing with Non-Functional Requirements in Model-Driven Development: A SurveyD. Ameller; X. Franch; C. Gómez; S. Martínez-Fernández; J. Araújo; S. Biffl; J. Cabot; V. Cortellessa; D. M. Fernández; A. Moreira; H. Muccini; A. Vallecillo; M. Wimmer; V. Amaral; W. Böhm; H. Bruneliere; L. Burgueño; M. Goulão; S. Teufl; L. Berardinelli2021 Context: Managing Non-Functional Requirements (NFRs) in software projects is challenging, and projects that adopt Model-Driven Development (MDD) are no exception. Although several methods and techniques have been proposed to face this challenge, there is still little evidence on how NFRs are handled in MDD by practitioners. Knowing more about the state of the practice may help researchers to steer their research and practitioners to improve their daily work. Objective: In this paper, we present our findings from an interview-based survey conducted with practitioners working in 18 different companies from 6 European countries. From a practitioner's point of view, the paper shows what barriers and benefits the management of NFRs as part of the MDD process can bring to companies, how NFRs are supported by MDD approaches, and which strategies are followed when (some) types of NFRs are not supported by MDD approaches. Results: Our study shows that practitioners perceive MDD adoption as a complex process with little to no tool support for NFRs, reporting productivity and maintainability as the types of NFRs expected to be supported when MDD is adopted. But in general, companies adapt MDD to deal with NFRs. When NFRs are not supported, the generated code is sometimes changed manually, thus compromising the maintainability of the software developed. However, the interviewed practitioners claim that the benefits of using MDD outweight the extra effort required by these manual adaptations. Conclusion: Overall, the results indicate that it is important for practitioners to handle `NFRs in MDD, but further research is necessary in order to lower the barrier for supporting a broad spectrum of NFRs with MDD. Still, much conceptual and tool implementation work seems to be necessary to lower the barrier of integrating the broad spectrum of NFRs in practice.10.1109/TSE.2019.2904476https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8665968Model-driven development;non-functional requirements;quality requirements;requirements engineering;surveyIEEE Inglês CE1 Excluído
On the Influence of UML Class Diagrams Refactoring on Code Debt: A Family of Replicated Empirical StudiesS. Freire; A. Passos; M. Mendonça; C. Sant’Anna; R. O. Spínola2020 Context: System modeling usually precedes coding activities during software development. Addressing model smells in the upfront can avoid their propagation to the source code. Technical debt (TD) affects several software development phases, including design, but little is still known about it at the modeling level. Goal: Investigate whether applying refactoring procedures in UML class diagrams improves the quality of the automatically generated code in terms of TD (code debt) reduction. Method: We perform three replications of an empirical study following the same protocol used in the original study, but with variations on the: (1) round- trip engineering tool, (2) code issue identification tool, and (3) analyzed class diagram. Each study considered two sets of refactoring tasks. The first applied successive model refactoring sessions in a class diagram and analyzed their resulting automatically generated code. The second applied successive code refactoring sessions and analyzed their resulting automatically generated model. Results: There is a weak relationship between the analyzed model smells and code issues. Round-trip engineering tools influence the presence of code issues. Lastly, code issues identification tools mostly consider code formatting problems, in detriment of design issues smells. Conclusion: Results confirm the findings of the original study and motivate further investigation on the correspondence between model smells and code issues to prevent code debt at the model level.10.1109/SEAA51224.2020.00064https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9226337model smell;code issues;technical debt;family of studiesIEEE Inglês CE1 Excluído
An Ontology-based Approach for Automatic Specification, Verification, and Validation of Software Security Requirements: Preliminary ResultsD. Tsoukalas; M. Siavvas; M. Mathioudaki; D. Kehagias2021 Critical software vulnerabilities are often caused by incorrect, vague, or missing security requirements. Hence, there is a strong need in the software engineering community for tools that facilitate software engineers in eliciting and evaluating security requirements. Although several methods have been proposed for specifying, verifying, and validating security requirements, they require a lot of manual effort by requirement engineers, which hinders their practicality. To this end, we introduce a software security requirements specification mechanism, able to automatically identify the main concepts of a given set of security requirements expressed in natural language. Our mechanism applies syntactic and semantic analysis in order to transform requirements into appropriately structured ontology objects. We also propose a software security requirements verification and validation mechanism, which compares a given security requirement to a curated list of well-defined security requirements based on similarity checks, identifies inconsistencies, and proposes refinements. Both of the proposed mechanisms comprise standalone tools, implemented in the form of web services. The capabilities of the proposed mechanisms are demonstrated through a set of test cases.10.1109/QRS-C55045.2021.00022https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742019software security;software security requirements;requirements engineeringIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9982595
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9170006
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9211570
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9133113
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859423
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9594350
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617665
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945618
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787838
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9574649
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9307818
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9610657
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9498445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9287702
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9426547
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833673
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793770
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402293
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9918435
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9450275
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8911483
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9444417
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882769
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9516661
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9370313
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9626192
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224538
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9808807
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10027487
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218211
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9156019
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582405
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622990
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8742348
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972116
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877072
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9481870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9212107
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283855
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904769
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920648
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8665968
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9226337
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742019

ATLaS: A Framework for Traceability Links Recovery Combining Information Retrieval and Semi-Supervised TechniquesE. Effa Bella; S. Creff; M. -P. Gervais; R. Bendraou2019 Current Model-Based Systems Engineering (MBSE) practices to design and implement complex systems require modeling and analysis based on many representations: structure, dynamics, safety, security, etc. This induces a large volume of overlapping heterogeneous artefacts which are subject to frequent changes during the project life cycle. In order to verify and validate systems requirements and ensure that models meet user's needs, MBSE techniques shall rely on consistent traceability management. In this paper, we investigate the benefits of Information Retrieval (IR) techniques and the latest advances in Natural Language Processing (NLP) approaches to suggest stakeholders with candidate semantic links generated from the processing of structured and unstructured contents. We illustrate our approach called ATLaS (Aggregation Trace Links Support) through an application on the design and analysis of a mobility service gathering several industrial partners. We provide an empirical evaluation regarding its limitations as part of an industrial MBSE process. Most importantly, we highlight how our method drastically reduces the false positive links generated compared to current IR techniques. The results obtained suggest a good synergy between the presented approach and MBSE techniques.10.1109/EDOC.2019.00028https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8944976Model-Based Systems Engineering, Requirements, Traceability, Information Retrieval, Natural Language Processing, Semi-supervised techniquesIEEE Inglês CE1 Excluído
Security Analysis of a System-on-Chip Using Assertion-Based VerificationP. Bhamidipati; S. M. Achyutha; R. Vemuri2021 Current systems-on-chip designs contain multiple cores which perform a variety of processing, storage, and communication functions. Complexity of interactions among the cores and of the cores themselves introduce potential security vulnerabilities which can be exploited by malicious actors to mount a variety of attacks. Hence, it is essential to develop appropriate security policies to mitigate the vulnerabilities. In addition, these security policies should be formally specified and the design should be statically verified for security assurance prior to fabrication. In this paper, we show how a catalog of vulnerabilities can be used to develop mitigating security policies for a set of cores in a system-on-chip. We show how temporal logic assertions can be used to formally specify the security policies, parameterized using formal signal names. Given a specific target architecture, these parameterized assertions can be instantiated with actual signal names and verified using a formal verification tool. We demonstrate the application of this process to an OpenRISC-1200 based system-on-chip design written in Verilog. Security policies are specified as SystemVerilog Assertions and verified using Cadence JasperGold™. Three design errors ad-versely effecting the security policies are uncovered in the design.10.1109/MWSCAS47672.2021.9531916https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9531916System-on-Chip;SoC Vulnerabilities;Security analysis;Assertion-Based Verification;OpenRISC-1200 SoC;Sys-temVerilog AssertionsIEEE Inglês CE1 Excluído
Demo Abstract: AutoPCT: An Agile Protocol Conformance Automatic Test Platform Based on Editable EFSMZ. Tang; S. Li; P. Xun; C. Wang; W. Deng; B. Wang2020 Currently, the biggest barrier to adopt the model-based test (MBT) is modeling itself. To simplify the protocol modeling process, an agile protocol conformance automatic test platform (AutoPCT) is proposed in this paper. With our platform, the protocol test state machine can be easily designed and modified in graphical mode, and the conformance test scripts can be automatically generated and executed through integrating enhanced formal modeling tool EFM and TTCN-3 test tool Titan. Meanwhile, editable EFSM (Enhanced Finite State Machine) user interface and flexible input/output packet structure design tool are introduced in our platform to improve the development efficiency of protocol conformance test. Finally, the effectiveness of our proposed platform is analyzed through practical protocol test cases.10.1109/INFOCOMWKSHPS50562.2020.9162718https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9162718Network protocols;Protocol conformance test;Testcase generation;Automatic testIEEE Inglês CE1 Excluído
Seamless Variability Management with the Virtual PlatformW. Mahmood; D. Strüber; T. Berger; R. Lämmel; M. Mukelabai2021 Customization is a general trend in software engineering, demanding systems that support variable stakeholder requirements. Two opposing strategies are commonly used to create variants: software clone&own and software configuration with an integrated platform. Organizations often start with the former, which is cheap, agile, and supports quick innovation, but does not scale. The latter scales by establishing an integrated platform that shares software assets between variants, but requires high up-front investments or risky migration processes. So, could we have a method that allows an easy transition or even combine the benefits of both strategies? We propose a method and tool that supports a truly incremental development of variant rich systems, exploiting a spectrum between both opposing strategies. We design, formalize, and prototype the variability management framework virtualplatform. It bridges clone&own and platform-oriented development. Relying on programming language independent conceptual structures representing software assets, it offers operators for engineering and evolving a system, comprising: traditional, asset-oriented operators and novel, feature-oriented operators for incrementally adopting concepts of an integrated platform. The operators record meta-data that is exploited by other operators to support the transition. Among others, they eliminate expensive feature-location effort or the need to trace clones. Our evaluation simulates the evolution of a real-world, clone-based system, measuring its costs and benefits.10.1109/ICSE43902.2021.00147https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9401953variability management, variant rich systems, feature location, change propagation, clone&ownIEEE Inglês CE1 Excluído
SHML: Stochastic Hybrid Modeling Language for CPS BehaviorD. Du; T. Guo; Y. Wang 2019 Cyber-Physical Systems (CPS) connect the cyberworld with physical world with a network of interrelated el-ements, such as sensors and actuators. It is always runningin an open environment and the main characteristics of CPSis hybrid and stochastic. Domain-Specific Modeling Language(DSML) offers a tailor-made solution for modeling a specific field. However, there still lacks of DSML to model hybrid and stochasticbehavior in CPS. To address these issues, we propose a StochasticHybrid Modeling Language (SHML) based on domain modellanguage engineering, which supports modeling stochastic andhybrid behaviors in CPS. The abstract syntax, concrete syntax, and operational semantics of SHML are presented. The SHMLis implemented based on the GEMOC studio. With the help ofthe GEMOC execution engine and the Scilab plugin, the SHMLmodels can be executed to generate simulation traces of thesystem. These traces are fed into a statistical model checker whichsupports simulation-based verification to enable the qualitativeand quantitative analysis. The novelty of our work is that aDSML is proposed to model the behavior of CPS. Moreover, the tool prototype is implemented based on the model-drivenarchitecture. We illustrate the feasibility of our approach withan energy-aware building.10.1109/APSEC48747.2019.00038https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945607Cyber physical Systems, Model-driven engineering, Domain modeling language, GEMOC studio, Statisticalmodel checkingIIEEE Inglês CE1 Excluído
Security & Safety by Model-based Requirements EngineeringS. Japs 2020 Cyber-physical systems (CPS), like autonomous vehicles, are intelligent and networked. The development of such systems requires interdisciplinary cooperation between different stakeholders. A lack of system understanding between stakeholders can lead to unidentified security threats & safety hazards in requirements engineering, resulting in high costs in product development. In particular, a lack of an integrative consideration of security threats & safety hazards can compromise safety compliance for CPS. Model-based requirements engineering (MBRE) improves the understanding of systems between stakeholders by additionally creating supporting models to system requirements. However, MBRE approaches only partially address security threats & safety hazards. In particular, their integrative consideration is not taken into account. Established security & safety approaches are either only applicable to specific disciplines or only partially consider security threats & safety hazards. Overall, existing approaches do not fully cover the MBRE process. In the context of this paper, the results of three scientific papers are consolidated with the aim to create a basis for a holistic MBRE approach, which considers security threats & safety hazards integratively. In each of the papers, sub-criteria of the holistic MBRE approach are presented. Furthermore, elaborated and planned tools for the individual process steps are presented.10.1109/RE48521.2020.00062https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218133Security;Safety;Requirements engineering;Cyber-physical systems;Systems engineering and theory - Systems Modeling LanguageIEEE Inglês CE1 Excluído
Model-Based Systems Engineering Tool-Chain for Automated Parameter Value SelectionJ. Lu; D. Chen; G. Wang; D. Kiritsis; M. Törngren2022 Cyber-physical systems (CPSs) integrate heterogeneous systems and process sensor data using digital services. As the complexity of CPS increases, it becomes more challenging to efficiently formalize the integrated multidomain views with flexible automated verification across the entire lifecycle. This article illustrates a model-based systems engineering tool-chain to support CPS development with an emphasis on automated parameter value selection for co-simulation. First, a domain-specific modeling approach is introduced to support the formalizations of CPS artifacts, development processes, and simulation configurations. The domain-specific models are used as the basis to generate a Web-based process management system for automated parameter value selections, which coordinates Open Services for Lifecycle Collaboration services of development information and technical resources (models, data, and tools) in order to support automated co-simulation. The services are deployed by a service orchestrator based on a decision-making algorithm for parameter value selection. Finally, developers make use of the WPMS to implement simulations and to select system parameter values for co-simulation automatically. The approach is illustrated by a case study on auto-braking system development and we evaluate the efficiency of this tool-chain by both qualitative and quantitative methods. The results show that parameter values are selected more efficiently and effectively when implementing co-simulations using our tool-chain.10.1109/TSMC.2020.3048821https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9328223Automated parameter value selection;cyber-physical systems (CPSs);model-based systems engineering (MBSE)IEEE Inglês CE1 Excluído
Synthesizing Verified Components for Cyber Assured Systems EngineeringE. Mercer; K. Slind; I. Amundson; D. Cofer; J. Babar; D. Hardin2021 Cyber-physical systems, such as avionics, must be tolerant to cyber-attacks in the same way they are tolerant to random faults: they either gracefully recover or safely shut down as requirements dictate. The DARPA Cyber Assured Systems Engineering program is developing tools for design, analysis, and verification that enable systems engineers to design-in cyber-resiliency in a Model-Based Systems Engineering environment. This paper describes automated model transformations that introduce high-assurance cyber-resiliency components into a system, in particular filters and monitors that prevent malicious input and detect supply chain attacks, respectively. A formal specification defines each high-assurance component, and is used to verify that the component addresses system level cyber requirements. Implementations for these high-assurance components are directly synthesized from their specifications, and are automatically proven to preserve the exact meaning of the specifications all the way down to the binary code level. The model transformations are integrated into the Open Source AADL Tool Environment (OSATE). The paper further reports on a case study applying security-enhancing model transformations to a UAV system that uses the Air Force Research Laboratory's OpenUxAS services for route planning. In the case study, the model transformations add filters to guard against malformed input, as well as monitors to guard against ground station spoofing and malicious flight plans from OpenUxAS.10.1109/MODELS50736.2021.00029https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592420cyber physical systems;cyber assured systems;cyber resiliency;automated code synthesis;code synthesis correctness;AADL;AGREE;SPLATIEEE Inglês CE1 Excluído
Control-Flow Modeling with Declare: Behavioral Properties, Computational Complexity, and ToolsV. Fionda; A. Guzzo 2020 Declarative approaches to control-flow modeling use logic-based languages to formalize a number of constraints that valid traces must satisfy. The most noticeable example is the DECLARE framework based on linear temporal logic. Despite the interest that DECLARE has been attracting, the current knowledge about its formal properties was rather limited. The goal of this paper is to fill this gap by: (i) analyzing the behavioral properties of DECLARE by comparing it with the modeling capabilities of traditional procedural design approaches, in particular, block-structured processes; (ii) analyzing DECLARE from the computational point of view. As for the former point, we identify both the block-structured processes constructs that can be simulated in DECLARE and the features of DECLARE that can be encoded in block-structured processes. As for the latter point, we show that checking whether a given set of DECLARE patterns admits a satisfying trace is an NP-hard problem. In particular, we identify some DECLARE specifications whose satisfying traces are all of exponential length and some useful DECLARE fragments where a satisfying trace whose length is polynomially bounded is guaranteed to exist. The paper also discusses the declare2sat prototype system and the results of a thorough experimental validation.10.1109/TKDE.2019.2897309https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8633413Declarative process modelling;linear temporal logic;declare;process miningIEEE Inglês CE1 Excluído
Distinguishing Similar Design Pattern Instances through Temporal Behavior AnalysisR. Xiong; D. Lo; B. Li 2020 Design patterns (DPs) encapsulate valuable design knowledge of object-oriented systems. Detecting DP instances helps to reveal the underlying rationale, thus facilitates the maintenance of legacy code. Resulting from the internal similarity of DPs, implementation variants, and missing roles, approaches based on static analysis are unable to well identify structurally similar instances. Existing approaches further employ dynamic techniques to test the runtime behaviors of candidate instances. Automatically verifying the runtime behaviors of DP instances is a challenging task in multiple aspects. This paper presents an approach to improve the verification process of existing approaches. To exercise the runtime behaviors of DP instances in cases that test cases of legacy systems are often unavailable, we propose a markup language, TSML (Test Script Markup Language), to direct the generation of test cases by putting a DP instance into use. The execution of test cases is monitored based on a trace method that enables us to specify runtime events of interest using regular expressions. To characterize runtime behaviors, we introduce a modeling and specification method employing Allen's interval-based temporal relations, which supports variant behaviors in a flexible way without hard-coded algorithms. A prototype tool has been implemented and evaluated on six open source systems to verify 466 instances reported by five existing approaches with respect to five DPs. The results show that the dynamic analysis increases the F1-score by 53.6% in distinguishing similar DP instances.10.1109/SANER48275.2020.9054804https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054804Design Pattern Detection;Temporal Analysis;Reverse Engineering;Software Comprehension;Knowledge RepresentationIEEE Inglês CE1 Excluído
Value Expression in Design Science ResearchH. H. Weigand 2019 Design science research has grown into a major research approach in Information System (IS). Most current DSR approaches take a positivist approach that downplays human agency. An alternative framework is transformational design research (TDR), inspired by pragmatism and Rosenstock-Huessy's view on language. This paper's aim is to contribute to TDR by focusing on the expression of values, with a particular interest in values that are embodied in the technology. After a critical review of the traditional Requirement Engineering methods and of the so-called value-sensitive design approaches, we propose a new value expression approach that builds on and extends traditional value modelling. The method is illustrated with a literature example of process mining.10.1109/RCIS.2019.8877079https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877079Design science research;value-sensitive design;value modelingIEEE Inglês CE1 Excluído
Sonar: Writing Testbenches through PythonV. Sharma; N. Tarafdar; P. Chow2019 Design verification is an important though time-consumingaspect of hardware design. A good testbench should supportperforming functional coverage of a design by making it easy to implement tests and determine which tests are being performed. However, for complex designs, creating and main-taining effective testbenches can take increasing amounts of time away from actual design. A further complication is there may be two development flows: conventional hardware written in a hardware description language (HDL) such as Verilog orVHDL and high-level synthesis (HLS). In the HLS approach, the hardware is specified in a higher-level language (HLL) and then converted to an HDL through HLS tools. In this flow, testbenches for the design are written in the same HLLand cosimulation is used to verify the generated HDL. Due totool restrictions, cosimulation may not always work. In VivadoHLS [1] for example, the design must contain control signals to define when to start and stop the module or the initiation interval for new data must be one cycle. Without cosimulation, the user must write an HDL testbench manually in addition to a testbench in the HLL for preliminary verification. To simplify writing testbenches, we present Sonar: an open-source Python library to write cross-language testbenches. From a common source script, Sonar can generate testbenches written in SystemVerilog (SV) and C++. These files can then be imported into standard simulation tools such as ModelSim[2] or Vivado HLS and run. The use of Python makes it easy to extend Sonar with higher layers of abstraction for testbenches and integrate it with other software platforms.Sonar is available at https://github.com/UofT-HPRC/sonar.10.1109/FCCM.2019.00052https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735555Testbenches;design verification;simulationIEEE Inglês CE1 Excluído
An Automatic VHDL Testbench Generator for Medium Complexity DesignK. T. Kai Xian; N. Kumar Thulasiraman2021 Design verification is one of the most time-consuming and labor-intensive process in semi-conductor industry. With every growing complexity of electronics designs, verification process become more time consuming so is the time needed to market the product. Furthermore, commercially available automatic testbench tools are either too costly or not being open source particularly for academic purpose. Hence, automatic testbench generator has been developed with intention to reduce the amount time and effort to generate testbench. This paper presents a method of developing automatic testbench tool that is able to develop VHDL testbenches for asynchronous, synchronous, and finite state machine VHDL design files by incorporating the user input parameters. Furthermore, with addition of GUI, the tool is simple and user friendly that develops VHDL testbench rapidly. The tool also incorporates the testbench coverage feature to indicate effectiveness of the developed testbench by indicating the activity of the design nodes, number of times the nodes are tested and percentage of the code coverage. The tool is tested on a few medium complexity designs and the results shows that the developed testbenches provide more than 90% code coverage.10.1109/SCOReD53546.2021.9652717https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9652717Test Bench Generator;Testbench;Verification;VHDLIEEE Inglês CE1 Excluído
How much Specification is Enough? Mutation Analysis for Software ContractsA. Knüppel; L. Schaer; I. Schaefer2021 Design-by-contract is a light-weight formal development paradigm, in which object-oriented software is specified with so-called software contracts. Contracts are annotations in the source code that explicitly document intended functional behavior and can be used for verifying correctness of a particular implementation or as test oracles during automatic test case generation. As writing strong specifications is an expensive and error-prone activity due to lack of expertise and tool support, developers are often only willing to write simpler specifications, covering only a fraction of all functional properties. As a consequence, software quality is lowered, or even worse, potential bugs remain undetected during software verification. To give developers a sense of specification coverage, we propose a methodology that considers the degree of incomplete specifications by means of mutation analysis. We consider Java programs annotated with JML and employ the deductive program verifier KEY-2.6.3 to show that this approach is applicable to numerous open-source JML projects from the literature.10.1109/FormaliSE52586.2021.00011https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9460939Mutation Analysis;Design by Contract;Software Quality MetricsIEEE Inglês CE1 Excluído
Verification at RTL Using Separation of Design ConcernsM. H. Safieddine; F. A. Zaraket; R. Kanj; A. El-Zein; W. Roesner2019 Design-for-test, logic built-in self-test, memory technology mapping, and clocking concerns require team-months of verification time as they traditionally happen at gate-level. We present a novel concern-oriented methodology that enables automatic insertion of these concerns at the register-transfer-level where verification is easier. The methodology involves three main phases: 1) flipflop inference and instantiation algorithms that handle parametric register transfer level (RTL) modules; 2) transformations that take entry RTL and produce RTL modules where memory elements are separated from functionality; and 3) a concern weaving tool that automatically inserts memory related design concerns implemented in recipe files into the RTL modules. The transformation is sound as proven and validated by equivalence checking using formal verification. We implemented the methodology in a tool that is currently used in an industrial setting wherein it reduced design verification time by more than 40%. The methodology is also effective with open source embedded system frameworks.10.1109/TCAD.2018.2848589https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8387447Concern insertion;design-for-test (DFT);register-transfer level (RTL);verificationIEEE Inglês CE1 Excluído
Counting Bugs in Behavioural Models using Counterexample AnalysisI. Faqrizal; G. Salaün 2022 Designing and developing distributed software has always been a tedious and error-prone task, and the ever increasing software complexity is making matters even worse. Model checking automatically verifies that a model, e.g., a Labelled Transition System (LTS), obtained from higher-level specification languages satisfies a given temporal property. When the model violates the property, the model checker returns a counterexample, but this counterexample does not precisely identify the source of the bug. In this work, we propose some techniques for simplifying the debugging of these models. These techniques first extract from the whole behavioural model the part which does not satisfy the given property. In that model, we then detect specific states (called faulty states) where a choice is possible between executing a correct behaviour or falling into an erroneous part of the model. By using this model, we propose in this paper some techniques to count the number of bugs in the original specification. The core idea of the approach is to change the specification for some specific actions that may cause the property violation, and compare the model before and after modification to detect whether this potential bug is one real bug or not. Beyond introducing in details the solution, this paper also presents tool support and experiments.10.1145/3524482.3527647https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796450Behavioural Models;Model Checking;Debugging;Counterexample;Bug CountingIEEE Inglês CE1 Excluído
Quality Improvement for UML and OCL Models Through Bad Smell and Metrics DefinitionK. -H. Doan; M. Gogolla 2019 Detecting and fixing software quality issues early in the design phase is indispensable for a successful project applying model-based techniques. This paper presents an extension of the tool USE (UML-based Specification Environment) with features for (a) reflective model queries and model exploration, (b) metric measurement, (c) smell detection, and (d) quality assessment with metrics. The newly added functionalities can be fine-tuned by designers, are closely related and can be applied together interactively in order to help designers to achieve better models.10.1109/MODELS-C.2019.00121https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904872UML and OCL Model;Metrics;Metamodel;Smell detection;Model quality assessmentIEEE Inglês CE1 Excluído
An Ontology-Based Approach to the Domain Specific Languages DesignL. N. Lyadova; A. O. Sukhov; M. R. Nureev2021 Developing software systems for various domains is a complex task. The quality of the system, corresponding to the domain requirements, can only be achieved via involving the model development of experts in the relevant fields. Traditional design methods based on the using professional tools and modeling languages are difficult for subject matter experts. Using Domain Specific Languages (DSL) have been increasingly gaining attention of developers because DSLs are created to cope with specific domain particularities. However, DSL development consists of several steps to be performed can be hard. Identifying the correct set of elements and constructions of DSL, defining their constraints can be very error-prone. Automation of the new DSLs development is relevant task. The designing of new DSLs should be based on the knowledge of experts, which can be represented using an ontology. An approach to DSM platform development based on using multifaceted ontology to DSL design is proposed. Examples of DSLs and models illustrating the applicability of the proposed methodology are described.10.1109/AICT52784.2021.9620493https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9620493domain specific modeling;DSM;domain specific language;DSL;visual language;metamodeling;DSM platform;language toolkits;metamodel generation;multifaceted ontologyIEEE Inglês CE1 Excluído
Towards Continuous Consistency Checking of DevOps ArtefactsA. Colantoni; B. Horváth; Á. Horváth; L. Berardinelli; M. Wimmer2021 DevOps tools are often scattered over a multitude of technologies, and thus, their integration is a challenging endeavour. The existing DevOps integration platforms, e.g., Keptn, often employ a family of languages for this purpose. However, as we have learnt from UML, SysML, and many others, a family of languages requires inter-model constraints to be checked in order to guarantee a high consistency between the different artefacts.In this work-in-progress paper, we propose a Model-Driven Engineering (MDE) approach for the continuous consistency checking of DevOps artefacts. First, we explicitly represent each artefact as a model, second, we establish links across them to set a navigable network of model elements; and third, we enable MDE services on top of this network.We envision the possibility of using GitOps to pull the DevOps artefacts, executing services for checking consistency and performing model repairs, uploading the changes to the DevOps tools, and finally pushing the artefacts to Git, thus resulting in a continuous consistency checking process in practice.10.1109/MODELS-C53483.2021.00069https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643713DevOps;MDE;consistency managementIEEE Inglês CE1 Excluído
Evaluation of visual syntax specification techniques: a study of OWLA. Thomas 2021 Diagrams are an integral part of our communication and thus automated processing of diagrams becomes increasingly relevant. One way to realise automated processing is by using declarative specifications of diagrams. These declarative specifications have similarities to domain knowledge modelled in ontologies. The Web Ontology Language (OWL), an open standard of W3C, is a prominent ontology language to model domain knowledge. In this paper, OWL is evaluated for its suitability to specify visual syntax of diagrams. Specifically, reviews of literature are conducted to establish relevant evaluation criteria and to obtain evidence about OWL for the established criteria. The evaluation indicates that OWL is used widely, which could be attributed to its standardisation and expressiveness, and consequently, it has extensive tool support, including reasoners and editors, with noticeable presence of open source tools. The evaluation also indicates that although OWL has been used successfully for diagram specifications, further research is required to understand entirely its strengths and limitations as a visual syntax specification technique.10.1109/icABCD51485.2021.9519313https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9519313Criteria-Based Evaluation;Diagrams;Visual Syntax Specification;OWLIEEE Inglês CE1 Excluído
DDUO: General-Purpose Dynamic Analysis for Differential PrivacyC. Abuah; A. Silence; D. Darais; J. P. Near2021 Differential privacy enables general statistical analysis of data with formal guarantees of privacy protection at the individual level. Tools that assist data analysts with utilizing differential privacy have frequently taken the form of programming languages and libraries. However, many existing programming languages designed for compositional verification of differential privacy impose significant burden on the programmer (in the form of complex type annotations). Supplementary library support for privacy analysis built on top of existing general-purpose languages has been more usable, but incapable of pervasive end-to-end enforcement of sensitivity analysis and privacy composition. We introduce DDuo, a dynamic analysis for enforcing differential privacy. DDuo is usable by non-experts: its analysis is automatic and it requires no additional type annotations. DDuo can be implemented as a library for existing programming languages; we present a reference implementation in Python which features moderate runtime overheads on realistic workloads. We include support for several data types, distance metrics and operations which are commonly used in modern machine learning programs. We also provide initial support for tracking the sensitivity of data transformations in popular Python libraries for data analysis. We formalize the novel core of the DDuo system and prove it sound for sensitivity analysis via a logical relation for metric preservation. We also illustrate DDuo's usability and flexibility through various case studies which implement state-of-the-art machine learning algorithms.10.1109/CSF51468.2021.00043https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505231language-based-security;privacy;security-and-privacy-aspects-of-machine-learningIEEE Inglês CE1 Excluído
Using UML and OCL Models to Realize High-Level Digital TwinsP. Muñoz; J. Troya; A. Vallecillo2021 Digital twins constitute virtual representations of physically existing systems. However, their inherent complexity makes them difficult to develop and prove correct. In this paper we explore the use of UML and OCL, complemented with an executable language, SOIL, to build and test digital twins at a high level of abstraction. We also show how to realize the bidirectional connection between the UML models of the digital twin in the USE tool with the physical twin, using an architectural framework centered on a data lake. We have built a prototype of the framework to demonstrate our ideas, and validated it by developing a digital twin of a Lego Mindstorms car. The results allow us to show some interesting advantages of using high-level UML models to specify virtual twins, such as simulation, property checking and some other types of tests.10.1109/MODELS-C53483.2021.00037https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643725Model-based Software Engineering;Model-based Testing;Digital Twins;UML;OCL;USEIEEE Inglês CE1 Excluído
RASAECO: Requirements Analysis of Software for the AECO IndustryM. Ristin; D. F. Edvardsen; H. W. van de Venn2021 Digitalization is forging its path in the architecture, engineering, construction, operation (AECO) industry. This trend demands not only solutions for data governance but also sophisticated cyber-physical systems with a high variety of stakeholder background and very complex requirements. Existing approaches to general requirements engineering ignore the context of the AECO industry. This makes it harder for the software engineers usually lacking the knowledge of the industry context to elicit, analyze and structure the requirements and to effectively communicate with AECO professionals. To live up to that task, we present an approach and a tool for collecting AECO-specific software requirements with the aim to foster reuse and leverage domain knowledge. We introduce a common scenario space, propose a novel choice of an ubiquitous language well-suited for this particular industry and develop a systematic way to refine the scenario ontologies based on the exploration of the scenario space. The viability of our approach is demonstrated on an ontology of 20 practical scenarios from a large project aiming to develop a digital twin of a construction site.10.1109/RE51729.2021.00032https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604691Requirements Engineering;Architecture;Construction;AECO;Building Information Model;BIMIEEE Inglês CE1 Excluído
Metamodeling NATO Operation Orders: a proof-of-concept to deal with digitalization of the battlefieldN. Belloir; J. Buisson; O. Bartheye2019 Digitalization of the whole society changes the way Systems-of-Systems have to be considered. Remaining independently operated and managed, SoS increase their collaboration skills using shared or cooperated information systems. People can be seen as particular digital sub-systems due to smart equipments they can use. Military operations, which are considered as typical SoS, are no exception to this fact. New operational doctrines have to be created to take advantage of those new capabilities. In this paper, we propose to develop methods and tools inspired by software engineering to create new automated capabilities in battlefield engineering. More precisely, we explain the direction which should be considered in the area of battlefield engineering in order to deal with those new capabilities. Inspired from Model-Based Engineering, we realized a proof-of-concept showing how to change textual operation orders with graphical ones. The latter can be exported in a common standardized format, that enables digital interpretation. We present the OPORD-ML language which is based on a metamodel inspired from a NATO operation order standard. It is supported by an automatically generated tool.10.1109/SYSOSE.2019.8753885https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753885Military SoS;Battlefield Engineering;Model-Based Engineering;Operation OrdersIEEE Inglês CE1 Excluído
Applying Model-Driven Engineering to Distributed Ledger DeploymentT. Górski; J. Bednarski 2020 Distributed Ledger Technology (DLT) enables data storage in a decentralized manner among collaborating parties. The software architecture of such solutions encompasses models placed in the relevant architectural views. A lot of research is devoted to smart contracts and consensus algorithms, which are realized by distributed applications and can be positioned within the Logical view. However, we see the need to provide modeling support for the Deployment view of distributed ledger solutions. Especially since the chosen DLT framework has a significant impact on implementation and deployment. Besides, consistency between models and configuration deployment scripts should be ensured. So, we have applied Model-Driven Engineering (MDE) that allows on the transformation of models into more detailed models, source code, or tests. We have proposed Unified Modeling Language (UML) stereotypes and tagged values for distributed ledger deployment modeling and placed them in the UML Profile for Distributed Ledger Deployment. We have also designed the UML2Deployment model-to-code transformation for the R3 Corda DLT framework. A UML Deployment model is the source whereas a Gradle Groovy deployment script is the target of the transformation. We have provided the complete solution by incorporating the transformation into the Visual Paradigm modeling tool. Furthermore, we have designed a dedicated plug-in to validate generated deployment scripts. In the paper, we have shown how to design transformation for generating deployment scripts for the R3 Corda DLT framework with the ability to switch to another one.10.1109/ACCESS.2020.3005519https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9127413Distributed ledger;model-driven engineering;architectural views model 1+5;deployment view;unified modeling language extensibility mechanismsIEEE Inglês CE1 Excluído
Automatic Generation Method of Airborne Display and Control System Requirement Domain Model Based on NLPY. Mengyuan; W. Lisong; K. Jiexiang; G. Zhongjie; H. Wang; W. Yin; C. Buzhan2021 Domain modeling is a crucial step from natural language requirements to precise specifications, and an essential support for the development of automation system design tools. The existing domain model extraction methods are not accurate enough to be applied into specific fields. In this paper, we present a method for extracting the requirement domain model of airborne display and control system based on Natural Language Processing (NLP). Firstly, the domain model template is defined on the basis of the detailed study of the existing rules. Then in the requirement statement, the parse tree generated from Stanford Parser is utilized to preprocess the requirements for special symbols and conjunctions. Finally, we conduct the comparative experiment and the results indicate that the precision of domain model extraction is 20.01% higher than the existing approaches without preprocessing.10.1109/ICCCS52626.2021.9449277https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9449277NLP;airborne display and control system;requirement;domain model;parse treeIEEE Inglês CE1 Excluído
Automated Traceability for Domain Modelling Decisions Empowered by Artificial IntelligenceR. Saini; G. Mussbacher; J. L. C. Guo; J. Kienzle2021 Domain modelling abstracts real-world entities and their relationships in the form of class diagrams for a given domain problem space. Modellers often perform domain modelling to reduce the gap between understanding the problem description which expresses requirements in natural language and the concise interpretation of these requirements. However, the manual practice of domain modelling is both time-consuming and error-prone. These issues are further aggravated when problem descriptions are long, which makes it hard to trace modelling decisions from domain models to problem descriptions or vice-versa leading to completeness and conciseness issues. Automated support for tracing domain modelling decisions in both directions is thus advantageous. In this paper, we propose an automated approach that uses artificial intelligence techniques to extract domain models along with their trace links. We present a traceability information model to enable traceability of modelling decisions in both directions and provide its proof-of-concept in the form of a tool. The evaluation on a set of unseen problem descriptions shows that our approach is promising with an overall median F2 score of 82.04%. We conduct an exploratory user study to assess the benefits and limitations of our approach and present the lessons learned from this study.10.1109/RE51729.2021.00023https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604719Domain Models;Traceability;Natural Language (NL);Machine Learning (ML);Traceability Knowledge Graph (TKG);Traceability Information Model (TIM)IEEE Inglês CE1 Excluído
DoMoBOT: An AI-Empowered Bot for Automated and Interactive Domain ModellingR. Saini; G. Mussbacher; J. L. C. Guo; J. Kienzle2021 Domain modelling transforms informal requirements written in natural language in the form of problem descriptions into concise and analyzable domain models. As the manual construction of these domain models is often time-consuming, error-prone, and labor-intensive, several approaches already exist to automate domain modelling. However, the current approaches suffer from lower accuracy of extracted domain models and the lack of support for system-modeller interactions. To better assist modellers, we introduce DoMoBOT, a web-based Domain Modelling BOT. Our proposed bot combines artificial intelligence techniques such as natural language processing and machine learning to extract domain models with higher accuracy. More importantly, our bot incorporates a set of features to bring synergy between automated model extraction and bot-modeller interactions. During these interactions, the bot presents multiple possible solutions to a modeller for modelling scenarios present in a given problem description. The bot further enables modellers to switch to a particular solution and updates the other parts of the domain model proactively. In this tool demo paper, we demonstrate how the implementation and architecture of DoMoBOT support the paradigm of automated and interactive domain modelling for assisting modellers.10.1109/MODELS-C53483.2021.00090https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643722Domain Models;Natural Language (NL);Machine Learning (ML);Bot;Model Extraction;Recommendation;Bot-Modeller Interactions;Traceablity Knowledge GraphIEEE Inglês CE1 Excluído
On Designing Applied DSLs for Non-Programming Experts in Evolving DomainsH. S. Borum; H. Niss; P. Sestoft2021 Domain-specific languages (DSLs) have emerged as a plausible way for non-programming experts to efficiently express their domain knowledge. Recent DSL research has taken a technical perspective on how and why to create DSLs, resulting in a wealth of innovative tools, frameworks and technical approaches. Less attention has been paid to the design process. Namely, how can it ensure that the created DSL realises the expected benefits? This paper seeks to answer this question when designing DSLs for highly specialised domains subject to resource constraints, an evolving application domain, and scarce user participation. We propose an iteration of alternating activities in a human-centred design method that seeks to minimise the need for expensive implementation and user involvement. The method moves from a low-validity exploration of highly diverse language designs towards a higher-validity exploration of more homogeneous designs. We give an in-depth case study of designing an actuarial DSL called MAL, or Management Action Language, which allows actuaries to model so-called future management actions in asset/liability projections in life insurance and pension companies. The proposed human-centred design method was synthesised from this case study, where we found it useful for iteratively identifying and removing usability problems during the design.10.1109/MODELS50736.2021.00031https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592498Model-driven engineering;Domain-specific language;Human-centred designIEEE Inglês CE1 Excluído
Open Source Domain-specific Model Interface and Tool Frameworks for a Digital Avionics Systems Development ProcessB. Annighoefer; M. Brunner 2021 Domain-specific tools and models are used in many avionics development processes, and allow us to capture knowledge about a certain activity in the most appropriate format by providing an unambiguous language for the engineers involved. Domain-specific modeling environments are used to create custom models, and auxiliary tools are then applied for automatic validation, processing, and data transformation, thus providing a good baseline for a digital (model-based) development process. Practical experience, however, shows that existing domain-specific environments are often inappropriate for the avionics domain: the user interface is overloaded, the editors cannot reflect the complexity required by the system, and concurrent and role-based development is not possible. We propose two open source frameworks to alleviate this problem. Firstly, Essential Object Query (EOQ) is a generic interface that decouples a domain-specific model from the applications using it. It is programming-language-independent and allows for complex model modifications by multiple users on multiple computers. Secondly, the eXtensible Graphical EMOF Editor (XGEE) uses EOQ to configure customized graphical editors for models within a browser. EOQ and XGEE are used to build an exemplary web-based, multi-user, and domain-specific editor for the Open Avionics Architecture Model (OAAM). This application demonstrates the way in which EOQ and XGEE form the foundation of a model-based real-time collaboration in a digital development process, and highlights the challenges that remain in terms of building a real digital development process.10.1109/DASC52595.2021.9594380https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9594380digitalization;development process;avionics architecture;systems modeling;MBSE;model-based;model-driven;domain-specific;collaborative modeling;XGEE;EOQIEEE Inglês CE1 Excluído
Automatic Decomposition of a Sequential Algorithm for MapReduce FrameworksV. S. Simonov; M. S. Khairetdinov2022 Effective programming of parallel architectures has always been a difficult t ask. T o d ate, programming languages and technologies have been developed that simplify the programmer’s work, but do not make parallelization automatic. MapReduce is a model of programming for the development of large-scale computations with intensive use of data. There are many frameworks where the implementation of this paradigm has been recently developed. There is a need to rewrite existing serial code to use the frameworks listed. The researcher must be familiar with the problems of parallelization, the API of the framework, and also have considerable experience. This prompted us to develop a new tool that automatically translates sequential programs into ready-made versions suitable for execution in the MapReduce paradigm. The code fragment from the serial version is converted in two stages. At the first stage, the synthesis of the program, the functional specification, was made. It was necessary to find information about the calculation structure for each block of code. The result was stored as a high-level intermediate language, reminiscent of the program format for MapReduce frameworks. Checking for semantic equivalence to the original has done using the proof of the theorem. At the second stage, executable code is created, which was the result of generation from a sequential program using the Hadoop or Spark instruction set. Creating a parallelizing compiler is one way to solve this problem. This will allow you to translate code written in a different paradigm (for example, imperative code) into a parallel version for the framework. Classical compilers, such as logical plan-to-physical compilers, use pattern matching rules. The compiler contains a set of rules that identify different patterns of code input (for example, list-sequential looping) and transform consistent code.10.1109/SIBIRCON56155.2022.10017034https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10017034mapreduce;formal languages;compiler;distributed computing;parallel programmingIEEE Inglês CE1 Excluído
Enhancing CREeLS the Crowdsourcing based Requirements Elicitation approach for eLearning Systems Using Bi-Gram EvaluationN. M. Rizk; E. S. Nasr; M. H. Gheith2019 eLearning is gaining more ranking nowadays; eLearning systems (eLS) are in continuous need for improvements to meet its stakeholders' requirements. Traditional requirements elicitation techniques can't satisfy the continuous requirements of eLearning stakeholders. Crowdsourcing is an emerging concept in the requirements elicitation, an approach of requirements elicitation based on the crowdsourcing concept for eLS is discussed. In this paper the approach is further evaluated using bi-gram topic modeling. This will assess the approach validity to better extract eLearning stakeholders' requirements and help in the requirements elicitation and evolution of eLS. The bi-gram evaluation was applied on three LMS products and the results were compared with the results of LDA algorithm extraction and with the manual extraction of the requirements. The average results of bigram model were 0.68 f-measure, 0.76 precision, and 0.61 recall. The extracted keywords using bi-gram were better than normal LDA algorithm, relevant and can help in requirements evolution of the eLS.10.1109/ICENCO48310.2019.9027371https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9027371Requirements elicitation;eLearning;Crowdsourcing;Topic ModellingIEEE Inglês CE1 Excluído
Modelling, Simulation and Code Generation for Electronic Railway Interlocking SystemsR. A. Ghignone; C. F. Falco; F. S. Larosa; H. P. Mendes Gouveia; L. A. Chang; M. N. Menéndez; A. Lutenberg2021 Electronic railway interlockings are critical embedded systems which control the safe operation of train signals. Due to the broad variety of railway network topologies and the high functional safety level required, a flexible solution is needed, capable of taking formal requirements and implementing them accordingly to the required application. The scope of this work is to present an approach in which an automatic code generator transforms the control tables which describe the interlocking logic into functional units written in different programming languages like C or VHDL. The generated code allows its implementation in an embedded system based in a FPGA or a microcontroller. In addition, the project contains a graphical user interface to draw and simulate the behavior of the generated model for verification purposes. The developed tool comprises the entire design flow for interlocking systems and presentes several advantages when compared to previous works.10.1109/TLA.2021.9423859https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9423859Automatic Code Generation;Critical Systems;FPGA;Functional Safety;Object Oriented Programming;Railway InterlockingIEEE Inglês CE1 Excluído
Bidirectional Text-to-Model Element Requirement TransformationM. Ballard; R. Peak; S. Cimtalay; D. Mavris2020 Elicitation, representation, and analysis of requirements are important tasks performed early in the systems engineering process. This remains true with the adoption of Model-Based Systems Engineering (MBSE) methodologies. Existing SysML-based methodologies often choose between (i) using external requirements documents and/or databases as the authoritative source for requirements truth versus (ii) generating requirements directly, as elements in the system model. In either case, there is often need for the systems engineer to manually develop a model-based requirements representation, as this faculty is not automatic in the commonly-used SysML feature set. Additionally, once the system model has been completed, systems engineers typically must prepare traditional “shall-statement” requirements for external review purposes, as not all stakeholders can be expected to be trained in system model interpretation. This paper details a novel effort to address both problems, by automatically transforming text-based requirements (TBR) into SysML model-based requirement (MBR) representations, and vice versa. The text-to-model based transformation direction uses requirement templates and natural language processing techniques, expanding on work from the field of requirements engineering. This paper also presents an aerospace-domain case study application of the developed tool. In the case study, a selected set of requirements were analyzed, and a system model was constructed. Then, the intermediate output system model was updated with additional elements, to represent the progression of the project's systems engineering process. The modified system model was then analyzed, constructing text-based requirements from the structure. The resulting text-based requirements were compared to the initial set of input requirements to assess consistency in both directions of analysis. The methodology developed in this paper improves the systems engineering process by saving the systems engineer time constructing potentially repetitive model elements, and by enabling model-based requirement analyses to methodologies previously only capable of processing text-based requirements. Further, the methodology eases the responsibility of the systems engineer to maintain a copy of the model-based requirements in text-based format.10.1109/AERO47225.2020.9172306https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172306- IEEE Inglês CE1 Excluído
Blended Modelling - What, Why and HowF. Ciccozzi; M. Tichy; H. Vangheluwe; D. Weyns2019 Empirical studies indicate that user experience can significantly be improved in model-driven engineering. Blended modelling aims at mitigating this by enabling users to interact with a single model through different notations. Blended modelling contributes to various modelling qualities, including comprehensibility, analysability, and acceptability. In this paper, we define the notion of blended modelling and propose a set of dimensions that characterise blended modelling. The dimensions are grouped in two classes: user-oriented dimensions and realisation-oriented dimensions. Each dimension describes a facet that is relevant to blended modelling together with its domain (i.e., the range of values for that dimension). The dimensions offer a basic vocabulary to support tool developers with making well-informed design decisions as well as users to select appropriate tools and configure them according to the needs at hand. We illustrate how the dimensions apply to different cases relying on our experience with blended modelling. We discuss the impact of blended modelling on usability and user experience and sketch metrics to measure it. Finally, we outline a number of core research directions in this increasingly important modelling area.10.1109/MODELS-C.2019.00068https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904858modelling, user experience, blended modelling, abstract syntax, concrete syntax, notations, toolsIEEE Inglês CE1 Excluído
Towards Platform Specific Energy Estimation for Executable Domain-Specific Modeling LanguagesT. Beziers la Fosse; M. Tisi; E. Bousse; J. -M. Mottu; G. Sunye2019 Energy consumption is becoming a major subject when designing, developing and running programs. Most developers code and run their applications in an energy oblivious manner, mostly because of a lack of energy-related knowledge about their system. This problem also exists in the realm of executable domain-specific modeling languages, where end-users create models conforming to a given meta-model and execute them with little knowledge about their operational semantic and related energy consumption. In this work, we propose a domain-specific language for decorating meta-models of executable languages with platform-specific energy estimation formulas. We also extend the GEMOC execution engine to dynamically perform energy estimations on any executable model conforming to the decorated meta-model. The energy estimation model defined can then be easily adapted to other models and platforms, without requiring any measurement tooling or knowledge from the end-user.10.1109/MODELS-C.2019.00048https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904596Model-Driven Engineering;xDSMLs;Energy EstimationIEEE Inglês CE1 Excluído
Towards Pulverised Architectures for Collective Adaptive Systems through Multi-Tier ProgrammingG. Aguzzi; R. Casadei; D. Pianini; G. Salvaneschi; M. Viroli2021 Engineering large-scale Cyber-Physical Systems - like robot swarms, augmented crowds, and smart cities - is challenging, for many issues have to be addressed, including specifying their collective adaptive behaviour and managing the connection of the digital and physical parts. In particular, some approaches propose self-organising mechanisms to actually program global behaviour while fostering decentralised, asynchronous execution. However, most of these approaches couple behavioural specifications to specific network architectures (e.g., peer-to-peer), and therefore do not promote flexible exploitation of the underlying infrastructure. Conversely, pulverisation is a recent approach that enables self-organising behaviour to be defined independently of the available infrastructure while retaining functional correctness. However, there are currently no tools to formally specify and verify concrete architectures for pulverised applications. Therefore, we propose to combine pulverisation with multi-tier programming, a paradigm that supports the specification of the architecture of distributed systems in a single code base, and enables static checks for the correctness of actual deployments. The approach can be implemented by combining the ScaFi aggregate computing toolchain with the ScalaLoci multi-tier programming language, paving the path to support the development of self-organising cyber-physical systems, addressing both functional (behaviour) and non-functional concerns (deployment) in a single code base and modular fashion.10.1109/ACSOS-C52956.2021.00033https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599177Pulverisation;Aggregate Computing;Multi-tier programmingIEEE Inglês CE1 Excluído
Petri Nets Based Verification of Epistemic Logic and Its Application on Protocols of Privacy and SecurityL. He; G. Liu 2020 Epistemic logic can specify many design requirements of privacy and security of multi-agent systems (MAS). The existing model checkers of epistemic logic use some programming languages to describe MAS, induce Kripke models as the behavioral representation of MAS, apply Ordered Binary Decision Diagrams (OBDD) to encode Kripke models to solve their state explosion problem and verify epistemic logic based on the encoded Kripke models. However, these programming languages are usually non-intuitive. More seriously, their OBDD-based model checking processes are often time-consuming due to their dynamic variable ordering for OBDD. Therefore, we define Knowledge-oriented Petri Nets (KPN) to intuitively describe MAS, induce similar reachability graphs as the behavioral representation of KPN, apply OBDD to encode all reachable states, and finally verify epistemic logic. Although we also use OBDD, we adopt a heuristic method for the computation of a static variable order instead of dynamic variable ordering. More importantly, while verifying an epistemic formula, we dynamically generate its needed similar relations, which makes our model checking process much more efficient. In this paper, we introduce our work.10.1109/SERVICES48979.2020.00019https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284162model checking;epistemic logic;CTLK;Petri nets;OBDDIEEE Inglês CE1 Excluído
EqBench: A Dataset of Equivalent and Non-equivalent Program PairsS. Badihi; Y. Li; J. Rubin 2021 Equivalence checking techniques help establish whether two versions of a program exhibit the same behavior. The majority of popular techniques for formally proving/refuting equivalence are evaluated on small and simplistic benchmarks, omitting "difficult" programming constructs, such as non-linear arithmetic, loops, floating-point arithmetic, and string and array manipulation. This hinders efficient evaluation of these techniques and the ability to establish their practical applicability in real scenarios. This paper addresses this gap by contributing EqBench - the largest and most comprehensive benchmark for equivalence checking analysis, which contains 147 equivalent and 125 non-equivalent cases, in both C and Java languages. We believe EqBench can facilitate a more realistic evaluation of equivalence checking techniques, assessing their individual strength and weaknesses. EqBench is publicly available at: https://osf.io/93s5b/.10.1109/MSR52588.2021.00084https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9463140Equivalence checking;benchmark;Java;C.IEEE Inglês CE1 Excluído
More Than Two Decades of Research on Verification of UML Class Models: A Systematic Literature ReviewA. Shaikh; A. Hafeez; A. A. Wagan; M. Alrizq; A. Alghamdi; M. S. A. Reshan2021 Error checking is easy and inexpensive in the initial stages as compared to later stages due to when the development cycle precedes the development cost and efforts also increase. UML class model is a key element of modern software methodologies and creates in the initial stage of software development. Therefore, error detection and rectification of the UML class model may save software development costs and time. This paper presents an overview of UML Class model verification approaches and identifies open issues, current research trends, and other improvement areas. This study uses a systematic literature review as an investigation method with six research questions and assesses 65 papers dated January 1997 to December 2020. From 2124 published research papers, 65 papers are selected and distributed into 7 studies. This work provides an analysis of verification approaches and the automation level of proposed approaches. As a result, it is found that the existing UML class model verification methods provide great efforts to check correctness. However, in some situations (when dealing with large and complex models), they consume a significant amount of time and do not support many important features of the UML class model.10.1109/ACCESS.2021.3121222https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9579419Class model;UML;model formalisation;model verification;UML-OCL modelsIEEE Inglês CE1 Excluído
SPrune: A Code Pruning Tool for Ethereum Solidity Contract Static AnalysisZ. Zhou; Y. Xiong; W. Huang; L. Ma2020 Ethereum is a cryptographic currency system built on top of blockchain. It allows anyone to write smart contracts in high-level programming languages, solidity is the most popular and mature one. In the last few years, the use of smart contracts across domains has increased a lot, security analysis to detect the potential issues in contracts thus becomes crucial. Theorem proving is a formal method technique which mathematically prove the correctness of a design with respect to a mathematical formal specification, that can be applied to smart contracts’ secure analysis. The successful implementation of a deduction calculs of theorem proving in an automated reasoning program requires the integration of search strategies that reduce the search space by pruning unnecessary deduction paths.This paper desribes SPrune, a code pruning tool designed to simplify static analysis for solidity contracts. It works by unfolding derived contracts based on the inheritance between contracts in one smart contract, and execute code pruning on the unfolded contract. Our tool allows for the application of static code pruning and provides facility for solidity contract developers and testers to trace and localize bugs in contracts.10.1109/BigCom51056.2020.00015https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9160448Ethereum;Solidity;smart contracts;static analysisIEEE Inglês CE1 Excluído
Enabling Coverage-Based Verification in ChiselA. Dobis; H. J. Damsgaard; E. Tolotto; K. Hesse; T. Petersen; M. Schoeberl2022 Ever-increasing performance demands are pushing hardware designers towards designing domain-specific accelerators. This has created a demand for improving the overall efficiency of the hardware design and verification cycles. The design efficiency was improved with the introduction of Chisel. However, verification efficiency has yet to be tackled. One method that can increase verification efficiency is the use of various types of coverage measures. In this paper, we present our open-source, coverage-related verification tools targeting digital designs described in Chisel. Specifically, we have created a new method allowing for statement coverage at an intermediate representation of Chisel, and several methods for gathering functional coverage directly on a Chisel description.10.1109/ETS54262.2022.9810435https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9810435Hardware Verification;Statement Coverage;Functional Coverage;Chisel;ScalaIEEE Inglês CE1 Excluído
Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time ConstraintsB. Lima; J. P. Faria; R. Hierons2020 Evermore end-to-end digital services depend on the proper interoperation of multiple products, forming a distributed system, often subject to timing requirements. To ensure interoperability and the timely behavior of such systems, it is important to conduct integration tests that verify the interactions with the environment and between the system components in key scenarios. The automation of such integration tests requires that test components are also distributed, with local testers deployed close to the system components, coordinated by a central tester. Test coordination in such a test architecture is a big challenge. To address it, in this article we propose an approach based on the pre-processing of the test scenarios. We first analyze the test scenarios in order to check if conformance errors can be detected locally (local observability) and test inputs can be decided locally (local controllability) by the local testers for the test scenario under consideration, without the need for exchanging coordination messages between the test components during test execution. If such properties do not hold, we next try to determine a minimum set of coordination messages or time constraints to be attached to the given test scenario to enforce those properties and effectively solve the test coordination problem with minimal overhead. The analysis and enforcement procedures were implemented in the DCO Analyzer tool for test scenarios described by means of UML sequence diagrams. Since many local observability and controllability problems may be caused by design flaws or incomplete specifications, and multiple ways may exist to enforce local observability and controllability, the tool was designed as a static analysis assistant to be used before test execution. DCO Analyzer was able to correctly identify local observability and controllability problems in real-world scenarios and help the users fix the detected problems.10.1109/ACCESS.2020.3021858https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9186641Test scenarios;observability;controllability;distributed systems;time constraintsIEEE Inglês CE1 Excluído
Blackbird: Object-Oriented Planning, Simulation, and Sequencing Framework Used by Multiple MissionsC. R. Lawler; F. L. Ridenhour; S. A. Khan; N. M. Rossomando; A. Rothstein-Dowden2020 Every JPL flight mission relies on activity planning and sequence generation software to perform operations. Most such tools in use at JPL and elsewhere use attribute-based schemas or domain-specific languages (DSLs) to define activities. This reliance poses user training, software maintenance, performance, and other challenges. To solve this problem for future missions, a new software called Blackbird was developed which allows engineers to specify behavior in standard Java. The new code base has over an order of magnitude fewer lines of code than other JPL planning software, since no DSL or schema interpreter is needed. The use of Java for defining activities also allows mission adapters to debug their code in an integrated development environment, seamlessly call external libraries, and set up truly multi-mission models. These efficiency gains have significantly reduced the amount of development effort required to support the software. This paper discusses Blackbird's design, principles, and use cases. Within a year of its completion, six projects have begun using Blackbird. The Mars 2020 mission is using Blackbird to generate command sequences for cruise and Mars approach. By using multi-mission models, the Mars 2020 cruise adaptation was created in fewer than three months by three engineers at less than half time each. Work has begun to use Blackbird for communications planning during Mars 2020 surface operations. The Psyche mission uses Blackbird to generate its reference mission plans in development. Full simulations with 123,000 activities and 4.7 million resource value changes complete in about one minute. Psyche is also working towards using Blackbird in operations to support integrated activity planning and generate sequences. The InSight project is using Blackbird for mission planning in operations, replacing error-prone manual processes. For the NISAR mission, Blackbird evaluates threats to the commissioning phase timeline. The Europa Lander pre-project used Blackbird to perform a trade study. The ASTERIA mission is automating sequence generation in Blackbird. Going forward, more interested projects are likely to begin using Blackbird, and the capabilities of the core and multi-mission models will keep growing.10.1109/AERO47225.2020.9172680https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172680- IEEE Inglês CE1 Excluído
Towards Sketching Interfaces for Multi-paradigm ModelingS. Van Mierlo; J. Deantoni; L. Burgueño; C. Verbrugge; H. Vangheluwe2019 Existing design processes typically begin with informal ideation by sketching out a basic approach that can be further developed into a more complete design. Although intuitively simple, and seemingly informal, the sketching process is actually a structured activity that strongly influences the design of the system; hence, it has an important role in the design success. In this work, we develop a well defined specification of the sketching activity. We consider sketching as a process of achieving agreement, based on stakeholders communicating ideas about a design and its properties, with the side-effect of incrementally developing a (set of) common language(s) specific to the idea domain. Our perspective on sketching further differs from more common notions of ideation by noting the roles of requirements and system properties, and offering a general perspective on sketching as a modular activity within design.We validate our approach by analyzing the sketches of a research group at the CAMPaM 2019 workshop. By recognizing sketching as a fundamental activity in design, we enhance the formalization of the design process, and suggest improvements to the tool support for sketching beyond the basic drawing features.10.1109/MODELS-C.2019.00070https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904846sketching, multi-paradigm, ideation, interfaceIEEE Inglês CE1 Excluído
Stately: An FSM Design ToolJ. Pope; J. Saget; C. -J. H. Seger2020 Finite state machines (FSMs) are at the heart of many digital circuits, in particular microprocessors such as the IoT-oriented Cephalopode processor we are implementing as part of the Octopi project.We frequently encounter two practical difficulties with FSM design: first, in the case of Mealy machines state transitions and output logic can have complex and overlapping conditions, which are difficult to maintain and comprehend if separated; and second, there is a tension between clarity and clock cycles with respect to the insertion of intermediate states.To address these in the context of the Cephalopode processor we developed the open-source tool Stately, a visual environment for designing finite state machines. States are organized spatially, individually programmed in a simple domain-specific language, and the resulting machine can be compiled to HFL code for the VossII hardware design and simulation platform.In addition to allowing the intermingling of transitions and output declarations, Stately introduces a mechanism by which chosen states can be merged during compilation. While only a modest semantic extension, it resolves several clarity-efficiency tradeoffs while retaining a clear visual interpretation. Other features include lightweight simulation for rudimentary testing, and extensive error-checking.10.1109/MEMOCODE51338.2020.9315130https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315130Finite state machines;Hardware design;Development toolIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8944976
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9531916
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9162718
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9401953
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945607
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218133
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9328223
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592420
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8633413
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054804
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877079
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735555
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9652717
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9460939
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8387447
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796450
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904872
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9620493
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643713
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9519313
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505231
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643725
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604691
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753885
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9127413
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9449277
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592498
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9594380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10017034
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9027371
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9423859
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172306
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904858
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904596
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599177
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284162
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9463140
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9579419
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9160448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9810435
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9186641
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904846
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315130

Explainable symptom detection in telemetry of ISS with Random Forest and SpecTRMS. Iino; H. Nomoto; Y. Michiura; T. Hirose; M. Sasaki; S. Ishizawa; T. Fukui; Y. Ishitsuka; Y. Itabashi; H. Shibayama; M. Wada2022 Flight controllers of the JEM (Japanese Experiment Module), one element of the International Space Station (ISS), are continuously monitoring ISS status, and it is important for them to detect signs of anomaly of its equipment as early as possible. Automatic symptom detection, in this context, can help flight controllers to assess unusual telemetry trends. To assess the trends efficiently, it is essential to provide the reason of detections. In this paper, we propose a new systemic symptom detection method combining three methodologies: the Functional Resonance Analysis Method (FRAM), the Random Forest Regression (RF), and the Specification Tools and Requirement Methodology-Requirement Language (SpecTRM-RL). The method was verified with data of Low Temperature loop (LTL) of JEM; an actual failure event of pump inverter in LTL was selected as a case study. In this case study, a selected objective variable was successfully predicted based on explanatory variables in normal period, whereas the predicted values showed larger deviation from the actual measured values in off-nominal period. The information for explaining the cause of anomaly was eventually identified with the proposed methods and validated by engineering knowledge. These results show the effectiveness of the new methods as the explainable machine learning-based predictive failure detection. The proposed method can be applied to fields where a single mishap of a system could lead to catastrophic hazard or instantaneous loss of human life due to impossibility of physical access (e.g., deep space explorations and remote medicine).10.1109/AERO53065.2022.9843739https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843739- IEEE Inglês CE1 Excluído
Anomaly Detection in Scratch AssignmentsN. Körber 2021 For teachers, automated tool support for debugging and assessing their students' programming assignments is a great help in their everyday business. For block-based programming languages which are commonly used to introduce younger learners to programming, testing frameworks and other software analysis tools exist, but require manual work such as writing test suites or formal specifications. However, most of the teachers using languages like Scratch are not trained for or experienced in this kind of task. Linters do not require manual work but are limited to generic bugs and therefore miss potential task-specific bugs in student solutions. In prior work, we proposed the use of anomaly detection to find project-specific bugs in sets of student programming assignments automatically, without any additional manual labour required from the teachers' side. Evaluation on student solutions for typical programming assignments showed that anomaly detection is a reliable way to locate bugs in a data set of student programs. In this paper, we enhance our initial approach by lowering the abstraction level. The results suggest that the lower abstraction level can focus anomaly detection on the relevant parts of the programs.10.1109/ICSE-Companion52605.2021.00050https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402627Anomaly Detection;Scratch;Program Analysis;Teaching;Block-Based-ProgrammingIEEE Inglês CE1 Excluído
Survey and Consistency Checking of Formal Requirements AnimationsC. Ponsard; J. -C. Deprez 2021 Formal requirements are written in mathematical language enabling powerful verification but are complex to validate by domain end-users or stakeholders. Requirements animations answer this problem by providing techniques to explore system traces and interact with them using domain specific graphical views and controls. Most formal tools include features to ease the development of such animations for different formal notations. However, to be sound, animations require to be carefully designed. This paper analyses major animation frameworks for system design in order to clearly identify their validation scope and purpose. Based on this, it identifies and discusses a number of checks to make sure an animation is well-designed. Different case studies are used as illustrative support.10.1109/REW53955.2021.00064https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582284Requirements engineering;validation;animation;formal requirements;Event-B;KAOS;LTS;VDMIEEE Inglês CE1 Excluído
Reusable Security Requirements Repository Implementation Based on Application/System ComponentsF. Özdemir Sönmez; B. G. Kiliç2021 Forming high quality requirements has a direct impact on project success. Gathering security requirements could be challenging, since it demands a multidisciplinary approach and security expertise. Security requirements repository enables an effective alternative for addressing this challenge. The main objective of this paper is to present the design of a practical repository model for reusable security requirements, which is easy to use and understand for even non-security experts. The paper also portrays an approach and a software tool for using this model to determine subtle security requirements for improved coverage. Proposed repository consists of attributes determined by examining common security problems covered in state-of-the-art publications. A test repository was prepared using specification files and Common Criteria documents. The outcomes of applying the proposed model were compared with the sample requirement sets included in the state-of-the-art publications. The results reveal that in the absence of a security requirements repository, key security points can be missed. Repository improves the completeness of the security terms with reasonable effort.10.1109/ACCESS.2021.3133020https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9638498Computer security;information security;requirement’s engineering;software reusabilityIEEE Inglês CE1 Excluído
From IEC 61131-3 Function Block Diagrams to Sequentially Constructive StatechartsM. C. Werner; K. Schneider 2022 Function Block Diagrams (FBDs) are widely used for implementing the software of IEC 61131-3 based systems. In general, there is a risk that FBDs used in industry will become more and more complex during their life cycle, while at the same time strict specifications have to be met. On the other hand, a trend towards model-based design with standardized modeling tools can be observed in software engineering. While previous research focuses on translating existing FBDs to formal models for verification purposes, this paper presents two translations from existing FBDs to sequentially constructive statecharts, thus enabling an intuitive functional reuse for a model-based design. Besides a basic translation in the first approach, it is shown in the second approach that it is possible to improve the readability through code refactoring within the synchronous paradigm.10.1109/FDL56239.2022.9925656https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925656model-driven development;programmable logic devices;software reusability;synchronous languages;system analysis and designIEEE Inglês CE1 Excluído
Semi-Automated Classification of Arabic User Requirements into Functional and Non-Functional Requirements using NLP ToolsK. Shehadeh; N. Arman; F. Khamayseh2021 Functional and non-functional requirements are equally important in software engineering. Both of them are mixed together within the same software requirement document. Usually, they are expressed in natural languages. So, a lot of human effort is required to classify them. Software requirements classification is a challenging task. Requirements classification can help developers to deliver quality software that meets users' expectations completely. In this paper, we present a Semi-Automated classification approach of Arabic functional and non-functional requirements using a natural language processing (NLP) tool. We propose a set of heuristics based on basic constructs of Arabic sentences in order to extract information from Arabic software requirements to classify the requirements into functional and non-functional requirements. This research aims to help software engineers by reducing the cost and time required in performing manual classification of software requirements.10.1109/ICIT52682.2021.9491698https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9491698Requirements Classification;Automated Software Engineering;NLP Tools;Functional Requirements;Non-Functional RequirementsIEEE Inglês CE1 Excluído
GDF: A Gamification Design Framework Powered by Model-Driven EngineeringA. Bucchiarone; A. Cicchetti; A. Marconi2019 Gamification refers to the exploitation of gaming mechanisms for serious purposes, like promoting behavioural changes, soliciting participation and engagement in activities, and so forth. In this demo paper we present the Gamification Design Framework (GDF), a tool for designing gamified applications through model-driven engineering mechanisms. In particular, the framework is based on a set of well-defined modelling layers that start from the definition of the main gamification elements, followed by the specification on how those elements are composed to design games, and then progressively refined to reach concrete game implementation and execution. The layers are interconnected through specialization/generalization relationships such that to realize a multi-level modelling approach. The approach is implemented by means of JetBrains MPS, a language workbench based on projectional editing, and has been validated through two gameful systems in the Education and Mobility domains. A prototype implementation of GDF and related artefacts are available at the demo GitHub repository: https://github.com/antbucc/GDF.git, while an illustrative demo of the framework features and their exploitation for the case studies are shown in the following video: https://youtu.be/wxCe6CTeHXk.10.1109/MODELS-C.2019.00117https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904523Gamification Design Framework;Multi-Level Modelling;Model-Driven Engineering;JetBrains MPSIEEE Inglês CE1 Excluído
Modeling with Thinging for Intelligent Monitoring SystemS. S. Al-Fedaghi; Y. Atiyah 2019 Global positioning technology combined with a satellite navigation system has many advantages and reduces the negative effects of many problems; nevertheless, the technology is still relatively new and raises many issues regarding its specification and design levels. More progress is needed to build the involved system's foundation. This paper focuses on conceptual modeling of tracking systems where object-oriented methods and languages are typically used to produce a description of the system. Such a description serves such purposes as documentation and management and as a guide for the subsequent system design phase. The paper applies a new model, Thinging Machine (TM), as a diagrammatic tool to describe notions and concepts of tracking systems. To substantiate TM's applicability in this area, the model is utilized to set up a tracking and management system for a public transportation fleet through the installation of a tracking device on each bus in the fleet. The results point to the viability of applying the TM model in this type of application.10.1109/VTCSpring.2019.8746526https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8746526- IEEE Inglês CE1 Excluído
BHDL: A Lucid, Expressive, and Embedded Programming Language and System for PCB DesignsH. Li; Y. He; Q. Xiao; J. Tian; F. S. Bao2021 Graphical PCB design tools like KiCAD lack support for high-level abstraction such as functions and loops. To improve PCB design productivity, we hereby present BHDL, a programming framework for PCB designs. In its compact and declarative syntax, schematics and layouts can be modeled effectively and expressed concisely. Treating all circuits, even a resistor, as functions, BHDL naturally supports modularized development that builds a complex design up from smaller designs hierarchically. As an embedded Domain Specific Language (eDSL), BHDL allows users to leverage the full feature of the host language for customization and extension. Our Jupyter kernel supports web-based, REPL-style development and generates auto-placed PCBs.10.1109/DAC18074.2021.9586086https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586086Electronic Design Automation (EDA);Computer-Aided Design (CAD);Printed Circuit Board (PCB);Hardware Description Language (HDL);Programming Language (PL);Automatic PlacementIEEE Inglês CE1 Excluído
Estimating Task Efforts in Hardware Development Projects in a Scrum ContextS. Briatore; A. Golkar 2021 Hardware developers started experimenting with Scrum to accelerate their product development. However, it is not possible to implement Scrum in the same way as it was done for software systems, where the approach is already well established. One of the processes required in Scrum is the estimate of task efforts when creating a backlog for an Agile Sprint. This article presents a pilot validation experiment of a novel Agile framework for the development of hardware systems, including a parametric tool to estimate task effort in a more rigorous way than traditional confidence votes. This article presents the validation of electronic hardware design task estimation and overall project performance. The validation is performed through experimental work with teams of junior engineering students. The validation experiment showed an improvement from a minimum of eight to a maximum of eighteen percent when employing the presented tool during planning phases of the development.10.1109/JSYST.2021.3049737https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9336669Agile;costs;electronics;hardware design;time estimatesIEEE Inglês CE1 Excluído
EvoSpex: An Evolutionary Algorithm for Learning Postconditions (artifact)F. Molina; P. Ponzio; N. Aguirre; M. Frias2021 Having the expected behavior of software specified in a formal language can greatly improve the automation of software verification activities, since these need to contrast the intended behavior with the actual software implementation. Unfortunately, software many times lacks such specifications, and thus providing tools and techniques that can assist developers in the construction of software specifications are relevant in software engineering. As an aid in this context, we present EvoSpex, a tool that given a Java method, automatically produces a specification of the method's current behavior, in the form of postcondition assertions. EvoSpex is based on generating software runs from the implementation (valid runs), making modifications to the runs to build divergent behaviors (invalid runs), and executing a genetic algorithm that tries to evolve a specification to satisfy the valid runs, and leave out the invalid ones. Our tool supports a rich JML-like assertion language, that can capture complex specifications, including sophisticated object structural properties.10.1109/ICSE-Companion52605.2021.00080https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402303- IEEE Inglês CE1 Excluído
A New Modeling Framework For Cyber-Physical And Human SystemsM. Poursoltan; N. Pinède; B. Vallespir; M. K. Traore2022 Health, manufacturing, and transport systems are in the midst of the rapid emergence of intelligent systems. In this regard, Cyber-Physical and Human Systems open a new window on intelligent systems in which the role of humans is prominent. Modeling and simulation (M&S) are recognized as practical tools playing a role in promoting the design, analysis, and development of CPHS. However, from a conceptual and technical point of view, CPHS modeling is challenging for modelers since they face some concepts and processes regarding human beings and intelligent artifacts which were not pervasive in M&S before. Thus, the aim of this study is twofold. The first is to shine new lights on the CPHS understanding regardless of application domains by providing an ontological model. The next is to propose an agent-based modeling framework according to the High-Level Language for Systems Specification (HiLLS) to convert conceptual models into executable ones.10.23919/ANNSIM55834.2022.9859402https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9859402Cyber-Physical and Human Systems;High-Level Language for Systems Specification;Ontology;Meta-model;Agent-Based ModellingIEEE Inglês CE1 Excluído
Exploiting the Correlation between Dependence Distance and Latency in Loop Pipelining for HLSJ. Cheng; J. Wickerson; G. A. Constantinides2021 High-level synthesis (HLS) automatically transforms high-level programs in a language such as C/C++ into a low-level hardware description. In this context, loop pipelining is a key optimisation method for improving hardware performance. The main performance bottleneck of a pipelined loop is the ratio between two values: the latency of each iteration and the dependence distance of the operations in the loop. These two values are usually not known exactly, so existing HLS schedulers model them independently, which can cause sub-optimal performance. This paper extends state-of-the-art static schedulers with a fully automated pass that exposes and takes advantage of potential correlation between these two values, enabling smaller initiation intervals (II). We use the Microsoft Boogie software verifier to prove the existence of these correlations, which allows HLS tools to automatically find a high-performance hardware solution while maintaining correctness. Our results show that for a certain class of programs, our approach achieves, on average, an $11.1\times$ performance gain at the cost of a 95% area overhead.10.1109/FPL53798.2021.00066https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9556337High-Level Synthesis;Loop Pipelining;Formal MethodsIEEE Inglês CE1 Excluído
Verification of Scheduling of Conditional Behaviors in High-Level SynthesisR. Chouksey; C. Karfa 2020 High-level synthesis (HLS) technique translates the behaviors written in high-level languages like C/C++ into register transfer level (RTL) design. Due to its complexity, proving the correctness of an HLS tool is prohibitively expensive. Translation validation is the process of proving that the target code is a correct translation of the source program being compiled. The path-based equivalence checking (PBEC) method is a widely used translation validation method for verification of the scheduling phase of HLS. The existing PBEC methods cannot handle significant control structure modification that occurs in the efficient scheduling of conditional behaviors. Hence, they produce a false-negative result. In this article, we identify some scenarios involving path merge/split where the state-of-the-art PBEC approaches fail to show the equivalence even though behaviors are equivalent. We propose a value propagation-based PBEC method along with a new cutpoint selection scheme to overcome this limitation. Our method can also handle the scenario where adjacent conditional blocks (CBs) having an equivalent conditional expression are combined into one CB. Experimental results demonstrate the usefulness of our method over the existing methods.10.1109/TVLSI.2020.2978242https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9042864Equivalence checking;finite state machine with datapaths (FSMDs) model;formal verification;high-level synthesis (HLS);scheduling verification;translation validationIEEE Inglês CE1 Excluído
Extending HLS with High-Level Descriptive Language for Configurable Algorithm-Level Spatial Structure DesignC. Wang; S. Huang; W. -M. Hwu; D. Chen2021 High-level synthesis (HLS) tools have greatly improved the development efficiency of FPGA accelerators in many application areas. With the HLS tools, FPGA designers can focus more on algorithm specifications using software languages such as C/C++, OpenCL, and Python. However, due to the fact that CPU-oriented software languages are designed to describe sequential execution, the repurposing of these languages yields insufficient support for describing parallel data execution and flexible spatial structures on FPGA architecture. To strengthen HLS’s ability to describe configurable algorithmlevel spatial structures, we propose fusing hardware-friendly design patterns, namely high-level descriptive language, into imperative programming model on Python.10.1109/FCCM51124.2021.00048https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9443656FPGA;HLS IEEE Inglês CE1 Excluído
An iStar 2.0 Syntax Validation Formal Rules and Its Implementation on a New TranslatorF. K. Cahyono; B. Hendradjaya; H. Purnama2019 i * framework is a socio-technical goal-based modeling framework and models the actors in the project/system environment. In 2016 iStar 2.0 was proposed to further evolve i* basic concepts to be more acceptable for wider users. Therefore, it motivates us to propose a formal rule for validating iStar 2.0 in XML-based modelling standard similar to iStarML, called iStarML 2.0. In addition to validation process, this paper proposes formal methods for translating i* to iStar 2.0 model and iStar 2.0 to class diagram. iStarService is a tool developed for iStar 2.0 modelling based on iStarML 2.0 with functionalities such as iStar 2.0 model validation, i* to iStar 2.0 model translation, and iStar 2.0 model to class diagram translation. It is implemented in form of web API using Java and had been tested with various models from multiple iStar proceedings.10.1109/ICoDSE48700.2019.9092607https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9092607i*;iStar 2.0;class diagram;iStarML;validation;translation;toolIEEE Inglês CE1 Excluído
Analysing Real-time Distributed Systems using Timed ActorsM. Sirjani 2019 I will introduce timed actors for modeling distributed systems and will explain our theories, techniques and tools for model checking and performance evaluation of such models. Timed Rebeca can be used to model asynchronous event-based components in systems, and real time constraints can be captured in the language. I will explain how floating-time transition system can be used for model checking of such models when we are interested in event-based properties, and how it helps in state space reduction. I will show different applications of our approach including analysing a wireless sensor network application, mobile ad-hoc network protocols, network-on-chip designs, and a macroscopic agent-based simulation of urban planning.10.1109/DS-RT47707.2019.8958670https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958670- IEEE Inglês CE1 Excluído
Empirical Evaluation of IC3-Based Model Checking Techniques on Verilog RTL DesignsA. Goel; K. Sakallah 2019 IC3-based algorithms have emerged as effective scalable approaches for hardware model checking. In this paper we evaluate six implementations of IC3-based model checkers on a diverse set of publicly-available and proprietary industrial Verilog RTL designs. Four of the six verifiers we examined operate at the bit level and two employ abstraction to take advantage of word-level RTL semantics. Overall, the word-level verifier employing data abstraction outperformed the others, especially on the large industrial designs. The analysis helped us identify several key insights on the techniques underlying these tools, their strengths and weaknesses, differences and commonalities, and opportunities for improvement.10.23919/DATE.2019.8715289https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715289- IEEE Inglês CE1 Excluído
Capturing the iccMAX calculatorElement: A Case Study on Format DesignV. H. Kothari; P. Anantharaman; S. W. Smith; B. Hitaj; P. Mundkur; N. Shankar; L. W. Li; I. Diatchki; W. Harris2022 ICC profiles are widely used to provide faithful digital color reproduction across a variety of devices, such as monitors, printers, and cameras. In this paper, we document our efforts on reviewing and identifying security issues with the calculatorElement description from the recent iccMAX specification (ICC.2:2019), which expands upon the ICC v4 specification (ICC.1:2010). The iccMAX calculatorElement, which captures a calculator function through a stack-based computational approach, was designed with security in mind. We analyzed the iccMAX calculatorElement using a variety of approaches that utilized: the proof assistant PVS, the theorem-proving language ACL2, the data description language DaeDaLus, and tools tied to the data description language Parsley. Bringing the tools of formal data description, theorem proving, and static analysis to a non-trivial real-world specification has shed light on both the tools and the specification. This exercise has led us to discover numerous bugs within the specification, to identify specification improvements, to identify flaws with a demo implementation, and to recognize ways that we can improve our own tools. Additionally, this particular case study has broader implications for those who work with specification, data description languages, and parsers. In this paper, we document our work on this exercise and relay our key findings.10.1109/SPW54247.2022.9833859https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833859LangSec;data description languages;formal methods;static analysis;parser;specification;iccMAXIEEE Inglês CE1 Excluído
Power and Energy Communication Services for Control-software ModelsR. C. Mendez; D. Dresscher; J. Broenink2021 Implementing energy-based controllers in software represents a challenge for software engineers, as additional expertise is required to abide by the physics-domain constraints of energy exchange in the design and structure of the control software. Our paper bridges the gap between software engineering and the physics domain by conveying energy exchange to control-software modelling. We use principles of physical systems and the bond -graph modelling language to identify the mechanisms and constraints of energy exchange and represent them as data-communication services for software models. This work resulted in metamodels and models for power and energy communication that can facilitate the first-time-right implementation of robot-control software.10.1109/RoSE52553.2021.00016https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474544domain-specific ontologies;domain-specific constraints;energy exchange;software modelling;real-time systems;bond graphIEEE Inglês CE1 Excluído
Demystifying Attestation in Intel Trust Domain Extensions via Formal VerificationM. U. Sardar; S. Musaev; C. Fetzer2021 In August 2020, Intel asked the research community for feedback on the newly offered architecture extensions, called Intel Trust Domain Extensions (TDX), which give more control to Trust Domains (TDs) over processor resources. One of the key features of these extensions is the remote attestation mechanism, which provides a unified report verification mechanism for TDX and its predecessor Software Guard Extensions (SGX). Based on our experience and intuition, we respond to the request for feedback by formally specifying the attestation mechanism in the TDX using ProVerif's specification language. Although the TDX technology seems very promising, the process of formal specification reveals a number of subtle discrepancies in Intel's specifications that could potentially lead to design and implementation flaws. After resolving these discrepancies, we also present fully automated proofs that our specification of TD attestation preserves the confidentiality of the secret and authentication of the report by considering the state-of-the-art Dolev-Yao adversary in the symbolic model using ProVerif. We have submitted the draft to Intel, and Intel is in the process of making the changes.10.1109/ACCESS.2021.3087421https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9448036Formal verification;symbolic security analysis;ProVerif;trusted execution environment;trust domains;Intel TDX;remote attestationIEEE Inglês CE1 Excluído
A Meta-Model for Representing Consistency as Extension to the Formal Process DescriptionL. Kathrein; K. Meixner; D. Winkler; A. Lüder; S. Biffl2019 In discrete manufacturing, basic and detail engineering workgroups need to collaborate to design highly automated cyber-physical production systems. Product/ion-awareness describes views and requirements coming from product and production process design, which are relevant to engineer production resources. These requirements imply strong dependencies between the product, the production process, and production resources (PPR). The Formal Process Description (FPD) provides basic concepts for modeling PPR knowledge, which support discrete manufacturing to some extent. In this paper, we introduce a meta-model that describes the structure of the FPD including a set of proposed extensions, focusing on expressing consistency dependencies on PPR relations, as a foundation for making design decisions traceable in the engineering process. In addition, the meta-model provides a clear description of how to model parallel or alternative process flows, a common use case in discrete manufacturing. The meta-model provides stakeholders with a clear description of the PPR modeling language (PPR-ML) and a rule set to check the validity of a model.10.1109/ETFA.2019.8869071https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8869071Formal Process Description (VDI/VDE 3682);Product-Process-Resource Modeling;Meta-ModelIEEE Inglês CE1 Excluído
Towards Testing the UML PSSM Test SuiteM. Elekes; Z. Micskei 2021 In model-based engineering approaches, models are executable artefacts used for simulation, generation and verification. The Executable UML specifications enriched the well-known UML language with precisely defined semantics. The Precise Semantics of UML State Machines (PSSM) specification defined an operational semantics for state machines. Moreover, the specification contains a detailed test suite that illustrates the semantics and can be used to check the conformance of model execution tools. However, as the test suite itself is a complex engineering effort, it could contain errors. To the best of our knowledge, this is the first paper to test and verify the PSSM test suite. We report on typical errors and issues found by reviewing the specification and executing it in one of the supporting tools. Finally, we collect recommendations for such test suites that could enhance future modelling language specifications.10.1109/LADC53747.2021.9672570https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672570UML;model-based;state machine;testingIEEE Inglês CE1 Excluído
A Proposal of Features to Support Analysis and Debugging of Declarative Model Transformations with Graphical Syntax by Embedded VisualizationsF. Ege; M. Tichy 2019 In model-driven software engineering (MDSE), chains of model transformations are used to turn a source model via a series of intermediate models into a target artifact. At times such a transformation chain does not deliver the expected result, either because a particular transformation step fails due to unmet preconditions, or the produced target artifact is not the desired one. To better understand the transformation process, and to locate and correct defects in the models or transformations involved, developers need appropriate tool support for analysis and debugging. MDSE tools provide a spectrum of techniques for analysis. These range from model checking approaches for proving logical properties of transformations to low-level stepwise de-bugging functionality that exposes how particular algorithms, e.g., graph matching, are implemented. However, these existing analysis features often do not present concrete suggestions directed at locating and fixing defects, or require developers to reason about their models and transformations in a procedural way. We focus on declarative model-to-model transformations with graphical syntax and consider defects located in source models or transformation specifications. For each of those defects, we sketch how a specific approach based on visualizing information integrated in the graphical syntax could support identifying and fixing that defect. These techniques aim towards enabling developers to analyze models and transformations on the same level of abstraction and with representations in the same syntax they normally work with.10.1109/MODELS-C.2019.00051https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904583declarative model transformations, graphical syntax, analysis, debuggingIEEE Inglês CE1 Excluído
Integration of ROS communication interfaces in a model-based tool for the description of AUTOSAR-compliant electrical/electronic architectures (E/E-A) in vehicle developmentH. Stoll; E. Koch; E. Sax 2020 In modern cars, software functions and services account for a large part of value creation and competitive differentiation. Several tools exist to address the development of such electrical/electronic architectures (E/E-A). In industry, the proprietary tool PREEvision developed by Vector Informatik GmbH is widely used to support the development for AUTOSAR, while in science and research, tools and ecosystems such as the Robot Operating System (ROS) are preferred because of their open-source nature. This leads to a multitude of freely available ROS components whose reusability in industrial AUTOSAR-based projects is desirable. Therefore, in this paper we present an approach to transform models between both worlds and thus to link them. This enables the further use of already existing components.10.1109/ITSC45102.2020.9294319https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9294319- IEEE Inglês CE1 Excluído
Multifaceted Consistency Checking of Collaborative Engineering ArtifactsM. A. Tröls; A. Mashkoor; A. Egyed2019 In modern day engineering projects, different engineers collaborate on creating a vast multitude of different artifacts such as requirements, design specifications and code. While these artifacts are strongly interdependent, they are often treated in isolation and with little regard to their semantical overlappings. Automatic consistency checking approaches between these artifacts are rare and often not feasible. Therefore, artifacts become inconsistent and the consequences are costly errors. This work proposes a multifaceted consistency checking approach for different kinds of engineering artifacts, with the help of a collaborative engineering platform. The proposed approach enables engineers to automatically check the consistency of their individual artifacts against the work results of other engineers, without using different tools than the established ones of their fields and without merging their artifacts with those of others.10.1109/MODELS-C.2019.00044https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904636collaborative engineering;engineering artifacts;consistency checkingIEEE Inglês CE1 Excluído
An empirical study on the impact of introducing a modeling tool in a Requirement Engineering courseL. Burgueño; J. L. C. Izquierdo; E. Planas2021 In numerous Programming and Software Engineering courses, students are asked to program on paper. This has supporters and detractors. Among its advantages, supporters claim that programming on paper allows students to focus on functionality, avoiding the distractions caused by syntax and without limiting their thinking to a specific programming language or paradigm. Detractors claim that this method lacks advanced capabilities provided by IDEs such as syntax check and auto-completion. More importantly, it does not give the opportunity to execute and test the code, which prevents students from discovering bugs.The state of the art has studied the benefits and disadvantages of programming on paper versus computer for general-purpose languages like Java and C with students of initial courses. Nevertheless, to the best of our knowledge, no study has been done targeting formal languages like OCL, which are taught in advanced courses.In this paper, we present our experience after introducing a modeling tool for the specification of OCL constraints in a Requirements Engineering course. This course is optional and is offered in the third and fourth years of the Computer Engineering degree. Our study covers two academic years, 2019 and 2020, in which there were 136 and 161 students enrolled, respectively. We present the context and design of our experiment, the results obtained from the empirical study we have performed and our conclusions, which support the suitability of the use of tools.10.1109/MODELS-C53483.2021.00115https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643678Requirement engineering;modeling tools;OCL;teaching;empirical studyIEEE Inglês CE1 Excluído
Automatic Classification of Apps Reviews for Requirement Engineering: Exploring the Customers Need from Healthcare ApplicationsN. Al Kilani; R. Tailakh; A. Hanani2019 In one year, more than 6.5 million mobile applications have been listed for download on the application stores. That is, they are used by millions (or billions) of users across the world. Users express their daily experience of applications as reviews on those stores. This experience may include reporting bugs, demanding new features, posting feedback with regards to performance, reporting security issues, demanding user interface enhancements, and other needs. Interestingly, reviews could contain valuable information for the interest of application vendors and developers. However, the volume of such data is as huge, that is, traditional searching algorithms may not be efficient in extracting such useful information. Machine learning and data mining techniques are one of the popularly used algorithms to efficiently extracting significant information for Software Requirement Engineering; a key phase in the Software Engineering Life Cycle. In this paper, we experience machine learning algorithms and natural language processing techniques to classify a set of reviews about healthcare-domain applications into multiple types of categories such as bug reports, new feature requests, application performance, and user interface. For this purpose, we could extract more than 7500 reviews of ten different health-related mobile applications. More importantly, those reviews were annotated manually by software experts. In our experiments, we use the Weka tool employing different machine learning algorithms. We will also show what algorithms and features will perform better; in terms of accuracy using different evaluation metrics, when classifying reviews about mobile apps into various classes; bugs, new features, sentimental, general bug, usability, security, and performance. Moreover, the conducted experiments show that the overall performance improves when we use the data subset with highly confident labeling; when two experts agree on the same class. For the imbalanced-data problem, this research will show the effect of applying resampling techniques on improving classification accuracy as well.10.1109/SNAMS.2019.8931820https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8931820Requirements Engineering;User's Reviews;Data Annotation;Supervised Machine Learning;Text ClassificationIEEE Inglês CE1 Excluído
Proof of Properties of a Syntax Analyzer of Robotic Mission PlansL. NANA; F. MONIN; S. GIRE 2019 In order to enhance the dependability of robotic missions designed with the help of the language PILOT, an incremental syntactic analyzer has been built. We have shown, with the help of the SWI-Prolog tool, that the analyzer allows to build all and only all the plans which are syntactically correct under some size. This proof has been done only for plans whose size is less than a threshold, because of a combinatory explosion problem inherent to the working of Prolog and to the used approach. In order to show the validity of the incremental syntactic analyzer for all plans, without any size constraint, we turned to the use of proof-based approaches, and particularly towards PVS tool. This paper deals with the modeling and verification of PILOT plans and their properties with the help of PVS, in order to prove the above properties of the incremental syntactic analyzer of PILOT.10.1109/ICRAIE47735.2019.9037782https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9037782Missions programming;robotics;modeling;verification;proofIEEE Inglês CE1 Excluído
The Heterogeneous Deployment Tool for Hardware and Software Co-designB. Zhao; Z. Li; T. Zhang 2020 In order to solve the shortcomings of manually writing code that cannot meet the requirements of rapid development and product verification, we designed a heterogeneous deployment tool based on Simulink model development. This heterogeneous deployment tool can deploy the algorithm designed by Simulink model to the CPU and FPGA platforms and can communicate between CPU and FPGA via PCI Express. Users do not need to concern the underlying hardware and drivers and but only need to build an algorithm, they can quickly deploy the algorithm on a heterogeneous hardware platform to verify the performance of the algorithm.10.1109/CITS49457.2020.9232649https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9232649heterogeneous deployment tool;FPGA;partial reconfiguration;CPU;PCI Express;Simulink modelIEEE Inglês CE1 Excluído
LAMEME Use Case: The Example of Apache Tomcat Complex SystemE. H. B. Toure; I. Fall; A. Bah; M. S. Camara; M. Ba; A. Fall2019 In previous works, we have proposed the use of a megamodel which is a language-based system for the maintenance of complex systems through a modeling perspective. We have called such a language LAMEME (a LAnguage for the Management and Evolution of MEgamodels and its Semantics). It is about a Domain Specific Language (DSL) which exclusively makes use of Higher-Order Functions (HOF) called Global Operation Models (GOMs) to update the megamodel content by adding or removing Component Models (CMs). The LAMEME semantics is given by specifying requires/ensures predicates that are checked at runtime. The paper presents a case study aiming to highlight how LAMEME can be used to describe a simple evolution of a complex software system such as Apache Tomcat.10.1109/ICoCS.2019.8930710https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8930710Complex Systems;MDE;Megamodeling;DSML;DBCIEEE Inglês CE1 Excluído
Finding Anomalies in Scratch AssignmentsN. Körber; K. Geldreich; A. Stahlbauer; G. Fraser2021 In programming education, teachers need to monitor and assess the progress of their students by investigating the code they write. Code quality of programs written in traditional programming languages can be automatically assessed with automated tests, verification tools, or linters. In many cases these approaches rely on some form of manually written formal specification to analyze the given programs. Writing such specifications, however, is hard for teachers, who are often not adequately trained for this task. Furthermore, similar support for popular block-based introductory programming languages like Scratch is lacking. Anomaly detection is an approach to automatically identify deviations of common behavior in datasets without any need for writing a specification. In this paper, we use anomaly detection to automatically find deviations of Scratch code in a classroom setting, where anomalies can represent erroneous code, alternative solutions, or distinguished work. Evaluation on solutions of different programming tasks demonstrates that anomaly detection can successfully be applied to tightly specified as well as open-ended programming tasks.10.1109/ICSE-SEET52601.2021.00027https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402175Anomaly Detection, Scratch, Block-Based Programming, Program Analysis, TeachingIEEE Inglês CE1 Excluído
A Lean Approach to Building Valid Model-Based Safety ArgumentsT. Viger; L. Murphy; A. Di Sandro; R. Shahin; M. Chechik2021 In recent decades, cyber-physical systems developed using Model-Driven Engineering (MDE) techniques have become ubiquitous in safety-critical domains. Safety assurance cases (ACs) are structured arguments designed to comprehensively show that such systems are safe; however, the reasoning steps, or strategies, used in AC arguments are often informal and difficult to rigorously evaluate. Consequently, AC arguments are prone to fallacies, and unsafe systems have been deployed as a result of fallacious ACs. To mitigate this problem, prior work [32] created a set of provably valid AC strategy templates to guide developers in building rigorous ACs. Yet instantiations of these templates remain error-prone and still need to be reviewed manually. In this paper, we report on using the interactive theorem prover Lean to bridge the gap between safety arguments and rigorous model-based reasoning. We generate formal, modelbased machine-checked AC arguments, taking advantage of the traceability between model and safety artifacts, and mitigating errors that could arise from manual argument assessment. The approach is implemented in an extended version of the MMINT-A model management tool [10]. Implementation includes a conversion of informal claims into formal Lean properties, decomposition into formal sub-properties and generation of correctness proofs. We demonstrate the applicability of the approach on two safety case studies from the literature.10.1109/MODELS50736.2021.00028https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592441Assurance;safety cases;strategies;theorem proving;LeanIEEE Inglês CE1 Excluído
A Modeling Method for Model-based Analysis and Design of a System-of-SystemsY. -M. Baek; Z. Mihret; Y. -J. Shin; D. -H. Bae2020 In recent years, a domain of Systems-of-Systems (SoS) has emerged due to the needs of utilizing collective and collaborative system capabilities. As interest in SoS engineering has grown, this study focuses on the model-based analysis and design of an SoS, and we propose a general-purpose modeling method for the model-based SoS engineering (MBSoSE). Based on requirements that modeling methods of MBSoSE approaches should fulfill, required model types are identified (19 model types) and they are classified on their different modeling purposes and concerns (6 model categories). Model types are meta-modeled using the ADOxx Metamodeling Platform and they are implemented as modeling languages in a tool, called SIMVA-SoS Modeler. Using the modeling tool developed, we designed two different SoS cases and their scenarios that can be utilized as inputs of simulation and verification tools. Through the case studies, overall applicability of our modeling method for MBSoSE is evaluated and specific modeling results are provided as base reference models.10.1109/APSEC51365.2020.00042https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9359318Software System Modeling;Software Modeling Tool;Model-based Systems-of-Systems Engineering (MBSoSE);Simulation ModelIEEE Inglês CE1 Excluído
A verification method for array-based vision chip using a fixed-point neural network simulation toolM. Zhao; X. Zheng; K. Ning; C. Yao; Q. Luo; S. Yu; L. Liu; N. Wu2020 In recent years, customized chips for accelerating deep learning algorithms have been continuously developed with some emerging challenges in the field of deep-learning-based vision chips. Considering the lack of algorithm-level verification tools, poor reusability of simulation code and low development efficiency in deep learning vision chip verification, a novel verification method, which is based on the fixed-point simulation tool, is proposed and utilized in the development of an array-based deep learning vision chip. This simulation tool, implemented by combination of Matlab and CUDA C, enables efficient and accurate verification of the vision chip by taking the classical MobileNet V1 as the benchmark. This method, integrated with the RTL and FPGA co-verification seamlessly, provides the golden reference and reliable verification during the entire development period of the vision chip.10.1109/LASCAS45839.2020.9069000https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9069000fixed-point simulation;algorithm level verification;vision chipIEEE Inglês CE1 Excluído
An Evaluation of General-Purpose Static Analysis Tools on C/C++ Test CodeJ. Malm; E. Enoiu; M. A. Naser; B. Lisper; Z. Porkoláb; S. Eldh2022 In recent years, maintaining test code quality has gained more attention due to increased automation and the growing focus on issues caused during this process.Test code may become long and complex, but maintaining its quality is mostly a manual process, that may not scale in big software projects. Moreover, bugs in test code may give a false impression about the correctness or performance of the production code. Static program analysis (SPA) tools are being used to maintain the quality of software projects nowadays. However, these tools are either not used to analyse test code, or any analysis results on the test code are suppressed.This is especially true since SPA tools are not tailored to generate precise warnings on test code. This paper investigates the use of SPA on test code by employing three state-of-the-art general-purpose static analysers on a curated set of projects used in the industry and a random sample of relatively popular and large open-source C/C++ projects. We have found a number of built-in code checking modules that can detect quality issues in the test code. However, these checkers need some tailoring to obtain relevant results. We observed design choices in test frameworks that raise noisy warnings in analysers and propose a set of augmentations to the checkers or the analysis framework to obtain precise warnings from static analysers.10.1109/SEAA56994.2022.00029https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10011514testing;static analysis;test maintenance;fault detection;code qualityIEEE Inglês CE1 Excluído
Integrating Provenance Capture and UML With UML2PROV: Principles and ExperienceC. Sáenz-Adán; B. Pérez; F. J. García-Izquierdo; L. Moreau2022 In response to the increasing calls for algorithmic accountability, UML2PROV is a novel approach to address the existing gap between application design, where models are described by UML diagrams, and provenance design, where generated provenance is meant to describe an application's flows of data, processes and responsibility, enabling greater accountability of this application. The originality of UML2PROV is that designers are allowed to follow their preferred software engineering methodology to create the UML Diagrams for their application, while UML2PROV takes the UML diagrams as a starting point to automatically generate: (1) the design of the provenance to be generated (expressed as PROV templates); and (2) the software library for collecting runtime values of interest (encoded as variable-value associations known as bindings), which can be deployed in the application without developer intervention. At runtime, the PROV templates combined with the bindings are used to generate high-quality provenance suitable for subsequent consumption. UML2PROV is rigorously defined by an extensive set of 17 patterns mapping UML diagrams to provenance templates, and is accompanied by a reference implementation based on Model Driven Development techniques. A systematic evaluation of UML2PROV uses quantitative data and qualitative arguments to show the benefits and trade-offs of applying UML2PROV for software engineers seeking to make applications provenance-aware. In particular, as the UML design drives both the design and capture of provenance, we discuss how the levels of detail in UML designs affect aspects such as provenance design generation, application instrumentation, provenance capability maintenance, storage and run-time overhead, and quality of the generated provenance. Some key lessons are learned such as: starting from a non-tailored UML design leads to the capture of more provenance than required to satisfy provenance requirements and therefore, increases the overhead unnecessarily; alternatively, if the UML design is tailored to focus on addressing provenance requirements, only relevant provenance gets to be collected, resulting in lower overheads.10.1109/TSE.2020.2977016https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9018139Provenance;PROV;provenance generation;templateIEEE Inglês CE1 Excluído
SPECMATE: Automated Creation of Test Cases from Acceptance CriteriaJ. Fischbach; A. Vogelsang; D. Spies; A. Wehrle; M. Junker; D. Freudenstein2020 In the agile domain, test cases are derived from acceptance criteria to verify the expected system behavior. However, the design of test cases is laborious and has to be done manually due to missing tool support. Existing approaches for automatically deriving tests require semi-formal or even formal notations of acceptance criteria, though informal descriptions are mostly employed in practice. In this paper, we make three contributions: (1) a case study of 961 user stories providing an insight into how user stories are formulated and used in practice, (2) an approach for the automatic extraction of test cases from informal acceptance criteria and (3) a study demonstrating the feasibility of our approach in cooperation with our industry partner. In our study, out of 604 manually created test cases, 56 % can be generated automatically and missing negative test cases are added.10.1109/ICST46399.2020.00040https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159056test case creation;natural language processing;model-based testing;user stories;agile software developmentIEEE Inglês CE1 Excluído
Towards Simulation of CubeSat Operational Scenarios under a Cyber-Physical Systems ViewD. P. de Almeida; B. Graics; R. A. J. Chagas; F. L. de Sousa; F. Mattiello-Francisco2021 In the development of academic CubeSat-based space missions, it is common to skip or rush many practices of the Systems Engineering Process due to time and cost constraints, which may lead to issues later on in the mission and failures. Mission concept analyses are often in these practices, including the analysis of the in-orbit behavior of the satellite with respects to power consumption and data generation. With the purpose of supporting these analyses, this article introduces a workflow based on a Cyber-Physical abstraction of CubeSat mission operation scenarios, which uses architectural models based on SysML Class Diagrams and automatic model transformation to support the simulation of these operational scenarios in an open source Model-Based System Engineering (MBSE) tool. These simulations can be used in mission concept analyses in Phase-0 studies to verify initial operations requirements and drive further design implementations.10.1109/LADC53747.2021.9672594https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672594CubeSat-based space mission;MBSE;code generation;simulationIEEE Inglês CE1 Excluído
Model-based Development of a System of Systems Using Unified Architecture Framework (UAF): A Case StudyO. C. Eichmann; S. Melzer; R. God2019 In the development of safety- and security-relevant systems the V-model is established providing verification possibilities at each development stage. Usually, methods and tools of Model-based Systems Engineering (MBSE) are used in combination with the V-model for the development of single and self-contained complex systems. Nowadays, ubiquitous connectivity leads to a high degree of communication between systems enabling their cooperation for the provision of new services in a so-called System of Systems (SoS). In contrast to conventional systems engineering new methods and tools are required for service enabling SoS. In order to fulfill requirements of System of Systems Engineering (SoSE) the Object Management Group (OMG) developed the Unified Architecture Framework (UAF) for representation of enterprise architecture. This paper presents an approach for model-based development of SoS using UAF according to the V-model. In addition, an application of this new method shows differences between single system and SoS development methods.10.1109/SYSCON.2019.8836749https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836749Cyber-Physical Systems;System of Systems;Hardware Integration;V-model;Message BrokerIEEE Inglês CE1 Excluído
Model-based Systems Engineering Supporting Cost Analysis of Aircraft Development ProcessH. Wang; S. Zhu; J. Tang; J. Lu; J. Wu; D. Kiritsis2021 In the fact of increasing complexity of aircraft development programs, development processes of aircraft and their subsystems are continuously becoming complicated which leads to the growing risks of development cost across the entire lifecycle. In this paper, we propose a model-based systems engineering approach to support process modeling of aircraft development using a multi-architecture modeling language KARMA. At the same time, property verification and hybrid automata simulation are used implement the static cost analysis of each work task and dynamic cost analysis of the entire development process. Finally through one case study, a system-level aircraft development process ”V model” is created which cost analysis is implemented by the KARMA language. From the result, we find the KARMA language enables to integrate process modeling with static analysis and dynamic analysis of development process in a multi-architecture modeling tool MetaGraph.10.1109/ISSE51541.2021.9582507https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582507Model-based Systems Engineering;Cost analysis;Development process;KARMA lanaguageIEEE Inglês CE1 Excluído
DoMoBOT: A Modelling Bot for Automated and Traceable Domain ModellingR. Saini; G. Mussbacher; J. L. C. Guo; J. Kienzle2021 In the initial phases of the software development cycle, domain modelling is typically performed to transform informal requirements expressed in natural language into concise and analyzable domain models. These models capture the key concepts of an application domain and their relationships in the form of class diagrams. Building domain models manually is often a time-consuming and labor-intensive task. The current approaches which aim to extract domain models automatically, are inadequate in providing insights into the modelling decisions taken by extractor systems. This inhibits modellers to quickly confirm the completeness and conciseness of extracted domain models. To address these challenges, we present DoMoBOT, a domain modelling bot that uses a traceability knowledge graph to enable traceability of modelling decisions from extracted domain model elements to requirements and vice-versa. In this tool demo paper, we showcase how the implementation and architecture of DoMoBOT facilitate modellers to extract domain models and gain insights into the modelling decisions taken by our bot.10.1109/RE51729.2021.00054https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604742Domain Models;Traceability;Natural Language (NL);Machine Learning (ML);Traceability Knowledge GraphIEEE Inglês CE1 Excluído
Generating UML Class Diagram from Natural Language Requirements: A Survey of Approaches and TechniquesE. A. Abdelnabi; A. M. Maatuk; M. Hagal2021 In the last years, many methods and tools for generating Unified Modeling Language (UML) class diagrams from natural language (NL) software requirements. These methods and tools deal with the transformation of NL textual requirements to UML diagrams. The transformation process involves analyzing NL requirements and extracting relevant information from the text to generate UML class models. This paper aims to survey the existing works of transforming textual requirements into UML class models to indicate their strengths and limitations. The paper provides a comprehensive explanation and evaluation of the existing approaches and tools. The automation degree, efficiency, and completeness, as well as the used techniques, are studied and analyzed. The study demonstrated the necessity of automating the process, in addition to combining artificial intelligence with engineering requirements and using Natural Language Processing (NLP) techniques to extract class diagrams from NL requirements.10.1109/MI-STA52233.2021.9464433https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9464433System Development;Requirement Engineering;NLP;UML class diagramsIEEE Inglês CE1 Excluído
Model-based Engineering of modern Automation Structures with the Interdisciplinary Modeling Language (IML)J. Flender; S. Storms; W. Herfs; M. Witte2019 In the recent past, automation technologies have experienced significant structural and technological development. Especially Production Machines profit from this evolution, as new production paradigms are integrated into control architectures. In order to incorporate this into superior systems engineering methodologies, we have carried out a comprehensive technology review to derive requirements towards the specification of such new automation structures. Based on the Interdisciplinary Modeling Language (IML), which has been specifically developed for the system design of production machines, we integrated appropriate modeling assets into IML for engineering modern automation structures. With the intention to support a holistic engineering process of production machines, this approach shows - along the automation domain - the integration of the presented methodology into a data-consistent toolchain using IML. Based on this, we enable generating program structures in common automation development tools, derived directly from IML system models. Therefore, a data-consistent engineering toolchain will ideally support the development of the actual procedural sequence implementation based on IML system models.10.1109/SYSCON.2019.8836772https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836772Data-Consistent Engineering;Automation Structure;Production MachinesIEEE Inglês CE1 Excluído
Model Transformation for Asset Administration ShellsT. Miny; M. Thies; U. Epple; C. Diedrich2020 In the scope of Industry 4.0 (I40), one goal is the standardized access to asset information and asset services using standardized submodels (submodel templates) in the Asset Administration Shell. Since submodel templates are modeled by different groups of people, the same asset information will be contained in several submodel templates. For automatic generation of new submodels based on existing information from other submodels, model transformation can be a solution. Therefore, in this contribution, we present a guideline on how to develop a new model transformation language for a given use case and apply this guideline to the concrete use case (model transformation for Asset Administration Shells). As a result, we define of the abstract syntax of a customized model transformation language called AASMTL.10.1109/IECON43393.2020.9254649https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9254649Modell transformation;Industry 4.0;Asset Ad-ministration ShellIEEE Inglês CE1 Excluído
Identity-Based Encryption in UAV Assisted HetNets: A SurveyA. Rashid; D. Sharma; T. A. Lone; S. Gupta; S. K. Gupta2019 In this modern technological world, the Unmanned Ariel Vehicle (UAV) assisted Heterogeneous Networks (HetNets) is almost being used by every developing/developed country for its serving civilian, military missions and natural disasters, etc. The military using UAV aided HetNets in their battlefields and nuclear war conditions and gathering reconnaissance information from hostile areas and neighboring military zones. However, the untypical nature of UAV assisted network requests security inspection at the time of establishing the network. So the UAV assisted HetNets is in need of trusted and secure communication among military users using the same network. The term trusted is being widely used for authorized users within the network. This research work confers the word trusted on the standardization of the cryptographic scheme known Identity-Based Encryption (IBE). Hence, the IBE helps the users to use the UAV aided HetNets securely in getting the reconnaissance information from enemy areas. Also, the IBE prevents the same network from the intrusion attacks of intruders. The security protocols have been formulated with the AVISPA supported language HLPSL and then validated with the same AVISPA TOOL.10.1109/ICCCNT45670.2019.8944826https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8944826UAV;HetNet;IBE;secure communication;network performanceIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843739
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582284
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9638498
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925656
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9491698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904523
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8746526
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586086
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9336669
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402303
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9859402
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9556337
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9042864
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9443656
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9092607
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958670
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715289
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833859
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474544
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9448036
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8869071
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672570
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904583
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9294319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904636
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643678
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8931820
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9037782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9232649
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8930710
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402175
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9359318
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9069000
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10011514
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9018139
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582507
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604742
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9464433
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836772
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9254649
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8944826

Topological Functioning Model for Structural Design of Predictive Expert AdvisorsY. E. Midilli; S. Parsutins 2019 In this paper, structural view of predictive expert advisors, one of the most commonly used algorithmic trading tool, has been designed. In this context, topological functioning of the domain has been modeled with topological and logical relationships between functional features. Functional and nonfunctional features are identified derived from informal business description. Stepwise approach is given to transform the topological functioning model into communication diagram, topological class diagram and object diagram of predictive expert advisors.10.1109/ITMS47855.2019.8940740https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8940740Neural networks;architecture;expert advisors;algorithmic tradingIEEE Inglês CE1 Excluído
Model Based JUnit Testing M. L. Gromov; S. A. Prokopenko; N. V. Shabaldina; A. V. Laputenko2019 In this paper, tools that automate tests conversion are presented. Tests for Java implementations are derived based on formal models. To apply these tests to Java implementations tests should be converted into an appropriate form for the Java programs. In this paper, JUnit is used. The experiments confirm the feasibility of developed tools.10.1109/EDM.2019.8823472https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8823472Finite State Machine;Timed Finite State Machine;JUnut;test;UMLIEEE Inglês CE1 Excluído
Applying Model-Based Systems Engineering to the Development of a Test and Evaluation Tool for Unmanned Autonomous SystemsS. Gebreyohannes; A. Karimoddini; A. Homaifar2020 In this paper, we apply the Model-Based Systems Engineering (MBSE) concepts and approaches to the early phases of the development of a Test & Evaluation (T&E) tool for Unmanned Autonomous Systems (UASs). This helps meet the design requirements and maintain traceability (of design requirements and decisions for satisfying stakeholder's needs). UAS development is driving toward increasing levels of autonomy for unmanned systems. The dynamic, non-deterministic behavior of intelligent autonomous systems presents the testers with a significant challenge. The ability to predict the behavior and evaluate performance of increasingly intelligent systems, especially those that employ vision-based behaviors, is seen as a critical T&E shortfall. To address this challenge, we propose, in this paper, to use a high-fidelity simulation environment. This can significantly aid in the evaluation of UAS behaviors and their perception mechanisms. Such a high-fidelity simulator enables the testes to safely conduct a wide variety of mission scenarios to test an autonomous system by providing truth data to compare with the UAS's perceptions. A major challenge here is to manage the system modeling complexity and maintain traceability of design decisions made at each level of the development to meet stakeholder's needs. In this paper, we follow MBSE methodology and use Systems Modeling Language (SysML - a domain-specific modeling language for systems engineering used to specify, analyze, design, optimize, and verify systems) to establish a systematic framework for designing a T&E tool for UASs and to transform stakeholder's needs into design requirements to maintain traceability.10.1109/SysCon47679.2020.9275894https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275894Test & Evaluation;Model-Based Systems Engineering;Unmanned Autonomous SystemsIEEE Inglês CE1 Excluído
Developing Reflex IDE Kernel with Xtext FrameworkA. Bastrykina; V. Zyubin; A. Rozov2021 In this paper, we describe the technology of the process-oriented language Reflex IDE kernel development. The Reflex language, which is being maintained at the Institute of Automation and Electrometry, is a language for cyber-physical systems software specification. In the paper, we assume that the cyber-physical system is a computational core that interacts with the physical world. In the case of Reflex, the computation platform is an industrial PC. Reflex IDE (RIDE) includes a language-based editor, syntax and semantics analyzers as well as an abstract syntax tree (AST) generator, and a class library for working with the generated AST. In this work, we explain our motivation for the research, formulate the requirements for the development, and present the RIDE architecture. We describe the RIDE development process using Eclipse/Xtext tools and its user interface. We also provide an example of extending the Reflex IDE kernel with a code generator for the AVR platform. In the conclusion, we discuss the possibility of using the obtained result to create a web-version of RIDE.10.1109/EDM52169.2021.9507663https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507663process-oriented programming;Reflex;Xtext;parser;translator;DSLIEEE Inglês CE1 Excluído
ESSENCE Kernel in Overcoming Challenges of Agile Software DevelopmentD. Jana; P. Pal 2020 In this paper, we discuss the benefits and challenges of agile programming when used in large-scale software development. We enumerate the myths and ground realities of prevalent agile practice. Agile programming has promises and potentials with small delivery cycles. But at the same time, in practice, individual excellence or infrastructural building blocks as essential components are often prioritized less. Thus, the entire quality may suffer with staggered timelines and compromises. In this context, ESSENCE, a SEMAT kernel is proposed to be used in conjunction with suitably adapted and customized Agile process in order to help mitigating the risks and challenges. We propose to use ESSENCE Alpha cards and competency for health-check of process, tools, procedures and resources in a timely manner. OMG has adopted SEMAT and its kernel, ESSENCE, as an official OMG standard. Essential ESSENCE use with agile practice is a definite way forward for timely saving of catastrophes.10.1109/INDICON49873.2020.9342375https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9342375Agile Programming;Alpha State Cards;Competency Cards;ESSENCE;Iterative development;Object Oriented Methodology;Scrum;SEMAT;Software Engineering;Sprint;Structured methodology;UMLIEEE Inglês CE1 Excluído
An Actor-Based Design Platform for System of SystemsM. Sirjani; G. Forcina; A. Jafari; S. Baumgart; E. Khamespanah; A. Sedaghatbaf2019 In this paper, we present AdaptiveFlow as a platform for designing system of systems. A model-based development approach is proposed and tools are provided for formal verification and performance evaluation. The actor-based language, Timed Rebeca, is used for modelling, and the model checking tool Afra is used for checking the safety properties and also for performance evaluation. We investigate the efficiency of our approach and the applicability of the developed platform by conducting experiments on a case study based on the Electric Site Research Project of Volvo Construction Equipment. In this project, a fleet of autonomous haulers is utilised to transport materials in a quarry site. We used three adaptive policies as plugins to our platform and examined these policies in different scenarios.10.1109/COMPSAC.2019.00089https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754117System-of-systems;Actor model;Track-based flow management;Model checking;Performance evaluationIEEE Inglês CE1 Excluído
A Model-driven Approach to Continuous Practices for Modern Cloud-based Web ApplicationsT. Tegeler; F. Gossen; B. Steffen2019 In this paper, we propose a model-driven approach to Continuous Software Integration and Deployment (CI/CD) for modern cloud-based applications. Key to our approach is a formal graphical modelling language for the specification of the processes and tasks involved. Based on these specifications the complete CI/CD configurations are generated fully and automatically guaranteeing their correctness with regard to the specification by construction. This way typical sources of critical errors can be avoided lowering the hurdle to introduce CI/CD especially in mature projects. We demonstrate the power of our model-driven approach with the help of an industrial web application - a prime example for cloud-based applications.10.1109/CONFLUENCE.2019.8776962https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776962Continuous Integration;Continuous Deployment;Model-driven;Cloud-based ApplicationsIEEE Inglês CE1 Excluído
Applying Model-based Requirements Engineering in Three Large European Collaborative Projects: An Experience ReportA. Sadovykh; D. Truscan; H. Bruneliere2021 In this paper, we report on our 5-year’s practical experience of designing, developing and then deploying a Model-based Requirements Engineering (MBRE) approach and language in the context of three different large European collaborative projects providing complex software solutions. Based on data collected both during projects execution and via a survey realized afterwards, we intend to show that such an approach can bring interesting benefits in terms of scalability (e.g., large number of handled requirements), heterogeneity (e.g., partners with different types of RE background), traceability (e.g. from the requirements to the software components), automation (e.g., requirement documentation generation), usefulness or usability. To illustrate our contribution, we exemplify the application of our MBRE approach and language with concrete elements coming from one of these European research projects. We also discuss further the general benefits and current limitations of using this MBRE approach and corresponding language.10.1109/RE51729.2021.00040https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604736Requirements Engineering;Model-based Engineering;Collaborative Projects;Experience Report;Scalability;Heterogeneity;Traceability;AutomationIEEE Inglês CE1 Excluído
Work-in-Progress: Automatically Generated Response-Time Proofs as Evidence of TimelinessM. Maida; S. Bozhko; B. Brandenburg2021 In this paper, we report on the ongoing development of POET, the first foundational and automated response-time analysis tool. The certificates produced by POET are short, readable, and fully commented Coq files that can be machine-checked in (usually) minutes.10.1109/RTSS52674.2021.00053https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622378Prosa;aRTA;Coq;POET IEEE Inglês CE1 Excluído
PCIe Transaction and Data link Layers Verification IP Development using UVMS. P. Jagtap; V. Ingale; A. Gokhale2022 In this publication, PCI Express Transaction Layer and Data Link Layer verification is carried out. The author provided detailed information regarding the Transaction Layer and Data Link Layer of PCI Express. The study developed the verification IP for Transaction Layer and Data Link Layer, wrote the testbench environment using UVM (Universal Verification Methodology) to validate the design module's accuracy for function simulation. Using Mentor Graphics Questasim 10.7c tool, the code was simulated. Achieved results demonstrates that the designed verification IP meets the required of the protocol of PCI Express. The testbench in UVM validate its correctness and supports the function of PCI Express Transaction Layer and Data Link Layer.10.1109/GCAT55367.2022.9971829https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9971829Data Link Layer;DLLP;PCIe;TLP;Transaction layer;UVM;Verification IPIEEE Inglês CE1 Excluído
What’s up with Requirements Engineering for Artificial Intelligence Systems?K. Ahmad; M. Bano; M. Abdelrazek; C. Arora; J. Grundy2021 In traditional approaches to building software systems (that do not include an Artificial Intelligent (AI) or Machine Learning (ML) component), Requirements Engineering (RE) activities are well-established and researched. However, building software systems with one or more AI components may depend heavily on data with limited or no insight into the system’s workings. Therefore, engineering such systems poses significant new challenges to RE. Our search showed that literature has focused on using AI to manage RE activities, with limited research on RE for AI (RE4AI). Our study’s main objective was to investigate current approaches in writing requirements for AI/ML systems, identify available tools and techniques used to model requirements, and find existing challenges and limitations. We performed a Systematic Literature Review (SLR) of current RE4AI methods and identified 27 primary studies. Using these studies, we analysed the key tools and techniques used to specify and model requirements and found several challenges and limitations of existing RE4AI practices. We further provide recommendations for future research, based on our analysis of the primary studies and mapping to industry guidelines in Google PAIR). The SLR findings highlighted that present RE applications were not adaptive to manage most AI/ML systems and emphasised the need to provide new techniques and tools to support RE4AI.10.1109/RE51729.2021.00008https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604729Requirements Engineering;Artificial Intelligence;Machine Learning;Systematic Literature ReviewIEEE Inglês CE1 Excluído
OpenErrorPro: A New Tool for Stochastic Model-Based Reliability and Resilience AnalysisA. Morozov; K. Ding; M. Steurer; K. Janschek2019 Increasing complexity and heterogeneity of modern safety-critical systems require advanced tools for quantitative reliability analysis. Most of the available analytical software exploits classical methods such as event trees, static and dynamic fault trees, reliability block diagrams, simple Bayesian networks, and Markov chains. First, these methods fail to adequately model complex interaction of software, hardware, physical components, dynamic feedback loops, propagation of data errors, nontrivial failure scenarios, sophisticated fault tolerance, and resilience mechanisms. Second, these methods are limited to the evaluation of the fixed set of traditional reliability metrics such as the probability of generic system failure, failure rate, MTTF, MTBF, and MTTR. More flexible models, such as the Dual-graph Error Propagation Model (DEPM) can overcome these limitations but have no available tools. This paper introduces the first open-source DEPM-based analytical software tool OpenErrorPro. The DEPM is a formal stochastic model that captures control and data flow structures and reliability-related properties of executable system components. The numerical analysis in OpenErrorPro is based on the automatic generation of Markov chain models and the utilization of modern Probabilistic Model Checking (PMC) techniques. The PMC enables the analysis of highly-customizable resilience metrics, e.g. "the probability of system recovery after a specified system failure during the defined time interval", in addition to the traditional reliability metrics. DEPMs can be automatically generated from Simulink/Stateflow, UML/SysML, and AADL models, as well as source code of software components using LLVM. This allows not only the automated model-based evaluation but also the analysis of systems developed using the combination of several modeling paradigms. The key purpose of the tool is to close the gap between the conventional system design models and advanced analytical methods in order to give system reliability engineers easy and automated access to the full potential of PMC techniques. Finally, OpenErrorPro enables the application of several effective optimizations against the state space explosion of underlying Markov models already in the DEPM level where the system semantics such as control and data flow structures are accessible.10.1109/ISSRE.2019.00038https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8987451Reliability;Resilience;Markov chain model;Probabilistic model checking;Model-based analysisIEEE Inglês CE1 Excluído
Finding Substitutable Binary Code By Synthesizing AdaptersV. Sharma; K. Hietala; S. McCamant2021 Independently developed codebases typically contain many segments of code that perform same or closely related operations (semantic clones). Finding functionally equivalent segments enables applications like replacing a segment by a more efficient or more secure alternative. Such related segments often have different interfaces, so some glue code (an adapter) is needed to replace one with the other. In previous work, we presented an algorithm that searches for replaceable code segments by attempting to synthesize an adapter between them from some finite family of adapters; it terminates if it finds no possible adapter. In this work, we compare binary symbolic execution-based adapter search with concrete adapter enumeration based on Intel's Pin framework, and explore the relation between size of adapter search space and total search time. We present examples of applying adapter synthesis for improving security of binary functions and switching between binary implementations of RC4. We present two large-scale evaluations: (1) we run adapter synthesis on more than 13,000 function pairs from the Linux C library, and (2) we reverse engineer fragments of ARM binary code by running more than a million adapter synthesis tasks. Our results confirm that several instances of adaptably equivalent binary functions exist in real-world code, and suggest that adapter synthesis can be applied for automatically replacing binary code with its adaptably equivalent variants.10.1109/TSE.2019.2931000https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776650Symbolic execution;equivalence checking;program synthesis;binary analysisIEEE Inglês CE1 Excluído
Detection of Variable Misuse Using Static Analysis Combined with Machine LearningG. Morgachev; V. Ignatyev; A. Belevantsev2019 Industrial static analyzers are able to detect only several narrow classes of algorithmic errors, for example actual arguments order swapped with formal parameters, forgotten renaming of variable after copy-paste. However, even for these categories essential part of errors is lost because of heuristical design of a checker. We propose the generalization of specified errors in the form of variable misuse problem and deal with it using machine learning. The proposed method uses message propagation through the program model represented as a graph, combining data from multiple analysis levels, including AST, dataflow. We introduce several error criteria, which were evaluated on the set of open source projects with millions of LoC. Testing in close to industrial conditions shows good false positive and missed errors ratio comparable with remaining detectors and allows to include developed checker (after a minor rework) into a general purpose production static analyzer for error detection.10.1109/ISPRAS47671.2019.00009https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991157static analysis;algorithmic error detection;graph neural networksIEEE Inglês CE1 Excluído
Concept-Level Model of Integrated Syntax and Semantic Validation for Internet of Medical Things DataA. Koren; M. Jurčević 2021 Integrating personal health data into a central medical information system is met with various challenges. Medical data is a critical and highly sensitive resource. Data quality problems can occur at various phases, such as collection of sensor data or its processing. Thus, in order to remedy threats to persons' health and security due to faulty data, syntax verification and semantic validation of medical data is a vital step. Furthermore, the communication must be in line with international standards and regulations and data structure definition (DSD) must be ensured. In order to operate with vastly diverse personal health data, semantic constraints specification is needed. To achieve this, a schematron-based validation tool will be integrated as a module into a larger data cleaning and processing system which ensures the quality of data and its compliance to the existing standards and regulations.10.1109/ICSC50631.2021.00044https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9364404Central Health Information System;Electronic Health Record;EHR;eHealth Services;Healthcare Standards;Medical Data;FHIR;HL7IEEE Inglês CE1 Excluído
Security Analysis for Distributed IoT-Based Industrial AutomationV. Lesi; Z. Jakovljevic; M. Pajic2022 Internet of Things (IoT) technologies enable development of reconfigurable manufacturing systems—a new generation of modularized industrial equipment suitable for highly customized manufacturing. Sequential control in these systems is largely based on discrete events, whereas their formal execution semantics is specified as control interpreted Petri nets (CIPN). Despite industry-wide use of programming languages based on the CIPN formalism, formal verification of such control applications in the presence of adversarial activity is not supported. Consequently, in this article, we introduce security-aware modeling and verification techniques for CIPN-based sequential control applications. Specifically, we show how CIPN models of networked industrial IoT controllers can be transformed into time Petri net (TPN)-based models and composed with plant and security-aware channel models in order to enable system-level verification of safety properties in the presence of network-based attacks. Additionally, we introduce realistic channel-specific attack models that capture adversarial behavior using nondeterminism. Moreover, we show how verification results can be utilized to introduce security patches and facilitate design of attack detectors that improve system resiliency and enable satisfaction of critical safety properties. Finally, we evaluate our framework on an industrial case study. Note to Practitioners—Our main goal is to provide formal security guarantees for distributed sequential controllers. Specifically, we target smart automation controllers geared toward Industrial IoT applications that are typically programed in C/C++ and are running applications originally designed in, for example, GRAFCET (IEC 60848)/SFC (IEC 61131-3) automation programming languages. Since existing tools for the design of distributed automation do not support system-level verification of relevant safety properties, we show how security-aware transceiver and communication models can be developed and composed with distributed controller models. Then, we show how existing tools for verification of time Petri nets can be used to verify relevant properties including safety and liveness of the distributed automation system in the presence of network-based attacks. To provide an end-to-end analysis as well as security patching, results of our analysis can be used to deploy suitable firmware updates during the stage when executable code for target controllers (e.g., in C/C++) is generated based on GRAFCET/SFC control models. We also show that security guarantees can be improved as the relevant safety/liveness properties can be verified after corresponding security patches are deployed. Finally, we show applicability of our framework on a realistic distributed pneumatic manipulator.10.1109/TASE.2021.3106335https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9528498Industrial Internet of Things (IIoT);nondeterministic analysis;Petri nets (PNs);secure distributed automation;sequential control systemsIEEE Inglês CE1 Excluído
Block Level SoC Verification Using SystemverilogK. K. Yadu; R. Bhakthavatchalu2019 Introducing a new strategy for verification of System On Chip (SoC) using system Verilog. System Verilog provides a great platform for verification. The OOPs concept in System Verilog make it more reliable. There are many existing SoC verification methods are available. But most of them are not that much efficient. So here we are planning to introduce a new verification strategy that takes many of the positive characteristics of the existing strategies and mixes them together to have an efficient and perfect strategy by using the advantages of System Verilog.10.1109/ICECA.2019.8821909https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8821909System-Verilog (SV);Test-Bench (TB);Register Transfer Level (RTL);Object Oriented Programming (OOP);Design Under Test (DUT)IEEE Inglês CE1 Excluído
Integrated modeling tool for indexing and analyzing state machine traceS. Delisle; N. Ezzati-Jivan; M. R. Dagenais2021 It is important to model and understand an application or system runtime behavior to identify potential performance problems. Execution tracing, the basis of various dynamic analysis methods includes the collection of events, metrics, and statistics about the runtime behaviors of systems and applications. However, comprehensive execution tracing can result in very large trace files, most of which are irrelevant to the problem at hand. This is compounded by the inflexibility and complexity of common tools in how the user specifies what to capture, making the collection of relevant statistics difficult. While existing solutions allow for an adaptive collection of metrics and statistics, they often require users to write large and complex scripts in a domain-specific language. In this paper, we propose a state machine based modeling tool that simplifies the creation of user-defined and data-driven trace-based analyses. The proposed method combines advanced kernel-space and user-space execution trace events with powerful and adaptable modeling in order to automatically generating event-based analysis based on users’ specific requirements and problems. The difficulty and complexity of user-defined event tracing is drastically reduced. We demonstrate the efficiency, effectiveness, and simplicity of our proposed tool through real use cases of multi-level dynamic execution tracing in the Linux kernel.10.1109/ISNCC52172.2021.9615814https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9615814Performance Analysis;Big Data Analysis;Data-driven Model;Software modeling;Model-driven.IEEE Inglês CE1 Excluído
JSTAR: JavaScript Specification Type Analyzer using RefinementJ. Park; S. An; W. Shin; Y. Sim; S. Ryu2021 JavaScript is one of the mainstream programming languages for client-side programming, server-side programming, and even embedded systems. Various JavaScript engines developed and maintained in diverse fields must conform to the syntax and semantics described in ECMAScript, the standard specification of JavaScript. Since an incorrect description in ECMAScript can lead to wrong JavaScript engine implementations, checking the correctness of ECMAScript is critical and essential. However, all the specification updates are currently manually reviewed by the Ecma Technical Committee 39 (TC39) without any automated tools. Moreover, in late 2014, the committee announced the yearly release cadence and open development process of ECMAScript to quickly adapt to evolving development environments. Because of such frequent updates, checking the correctness of ECMAScript becomes more labor-intensive and error-prone.To alleviate the problem, we propose JSTAR, a JavaScript Specification Type Analyzer using Refinement. It is the first tool that performs type analysis on JavaScript specifications and detects specification bugs using a bug detector. For a given specification, JSTAR first compiles each abstract algorithm written in a structured natural language to a corresponding function in IRES, an untyped intermediate representation for ECMAScript. Then, it performs type analysis for compiled functions with specification types defined in ECMAScript. Based on the result of type analysis, JSTAR detects specification bugs using a bug detector consisting of four checkers. To increase the precision of the type analysis, we present condition-based refinement for type analysis, which prunes out infeasible abstract states using conditions of assertions and branches. We evaluated JSTAR with all 864 versions in the official ECMAScript repository for the recent three years from 2018 to 2021. JSTAR took 137.3 seconds on average to perform type analysis for each version, and detected 157 type-related specification bugs with 59.2% precision; 93 out of 157 bugs are true bugs. Among them, 14 bugs are newly detected by JSTAR, and the committee confirmed them all.10.1109/ASE51524.2021.9678781https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9678781JavaScript;mechanized specification;type analysis;refinement;bug detectionIEEE Inglês CE1 Excluído
JISET: JavaScript IR-based Semantics Extraction ToolchainJ. Park; J. Park; S. An; S. Ryu2020 JavaScript was initially designed for client-side programming in web browsers, but its engine is now embedded in various kinds of host software. Despite the popularity, since the JavaScript semantics is complex especially due to its dynamic nature, understanding and reasoning about JavaScript programs are challenging tasks. Thus, researchers have proposed several attempts to define the formal semantics of JavaScript based on ECMAScript, the official JavaScript specification. However, the existing approaches are manual, labor-intensive, and error-prone and all of their formal semantics target ECMAScript 5.1 (ES5.1, 2011) or its former versions. Therefore, they are not suitable for understanding modern JavaScript language features introduced since ECMAScript 6 (ES6, 2015). Moreover, ECMAScript has been annually updated since ES6, which already made five releases after ES5.1. To alleviate the problem, we propose JISET, a JavaScript IR-based Semantics Extraction Toolchain. It is the first tool that automatically synthesizes parsers and AST-IR translators directly from a given language specification, ECMAScript. For syntax, we develop a parser generation technique with lookahead parsing for BNFES, a variant of the extended BNF used in ECMAScript. For semantics, JISET synthesizes AST-IR translators using forward compatible rule-based compilation. Compile rules describe how to convert each step of abstract algorithms written in a structured natural language into IRES, an Intermediate Representation that we designed for ECMAScript. For the four most recent ECMAScript versions, JISET automatically synthesized parsers for all versions, and compiled 95.03% of the algorithm steps on average. After we complete the missing parts manually, the extracted core semantics of the latest ECMAScript (ES10, 2019) passed all 18,064 applicable tests. Using this first formal semantics of modern JavaScript, we found nine specification errors in ES10, which were all confirmed by the Ecma Technical Committee 39. Furthermore, we showed that JISET is forward compatible by applying it to nine feature proposals ready for inclusion in the next ECMAScript, which let us find three errors in the BigInt proposal.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9286074JavaScript;mechanized formal semantics;program synthesisIEEE Inglês CE1 Excluído
A Tool for Modeling JsonLogic based Business Process RulesK. Soleymanzadeh; Y. Bul; S. Bağcı; G. Kardas2019 JsonLogic structures, based on JavaScript Object Notation (JSON), are used in software applications in order to create business process rules. However, JsonLogic's textual syntax is different from the general purpose programming languages and it causes difficulties on the formalization of complex business rules. This unfamiliar way of rule creation may also lead to a time-consuming and error-prone development process. In this paper, we introduce a web based visual modeling tool which facilitates the construction of such business rules by following a model-driven engineering methodology. Inside this tool, the developers can visually design business rules with the block programming approach and corresponding JsonLogic codes are automatically generated. Moreover, changes made in these auto-generated codes can be reflected automatically to the related models inside the tool without any human intervention. Hence the synchronization between JsonLogic models and codes is provided. It has also been found that JsonLogic business rules can be created with significantly fewer visual components and hence with simpler models in comparison with the unique editor currently available for the similar purpose. The modeling tool is now used by Hermes Iletisim company during the development of various commercial software products.10.1109/UBMYK48245.2019.8965462https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8965462JsonLogic;Business Process Rule;Model-driven Software Development;Domain-specific Modeling LanguageIEEE Inglês CE1 Excluído
A Modeling Tool for Reconfigurable Skills in ROSD. Bozhinoski; E. Aguado; M. G. Oviedo; C. Hernandez; R. Sanz; A. Wąsowski2021 Known attempts to build autonomous robots rely on complex control architectures, often implemented with the Robot Operating System platform (ROS). The implementation of adaptable architectures is very often ad hoc, quickly gets cumbersome and expensive. Reusable solutions that support complex, runtime reasoning for robot adaptation have been seen in the adoption of ontologies. While the usage of ontologies significantly increases system reuse and maintainability, it requires additional effort from the application developers to translate requirements into formal rules that can be used by an ontological reasoner. In this paper, we present a design tool that facilitates the specification of reconfigurable robot skills. Based on the specified skills, we generate corresponding runtime models for self-adaptation that can be directly deployed to a running robot that uses a reasoning approach based on ontologies. We demonstrate the applicability of the tool in a real robot performing a patrolling mission at a university campus.10.1109/RoSE52553.2021.00011https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474550self adaptive systems;autonomous robots;domain specific language;ontologies;ROS2 toolIEEE Inglês CE1 Excluído
Jigsaw: Large Language Models meet Program SynthesisN. Jain; S. Vaidyanath; A. Iyer; N. Natarajan; S. Parthasarathy; S. Rajamani; R. Sharma2022 Large pre-trained language models such as GPT-3 [10], Codex [11], and Coogle's language model [7] are now capable of generating code from natural language specifications of programmer intent. We view these developments with a mixture of optimism and caution. On the optimistic side, such large language models have the potential to improve productivity by providing an automated AI pair programmer for every programmer in the world. On the cautionary side, since these large language models do not understand program semantics, they offer no guarantees about quality of the suggested code. In this paper, we present an approach to augment these large language models with post-processing steps based on program analysis and synthesis techniques, that understand the syntax and semantics of programs. Further, we show that such techniques can make use of user feedback and improve with usage. We present our experiences from building and evaluating such a tool Jigsaw, targeted at synthesizing code for using Python Pandas API using multi-modal inputs. Our experience suggests that as these large language models evolve for synthesizing code from intent, Jigsaw has an important role to play in improving the accuracy of the systems.10.1145/3510003.3510203https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793546Program Synthesis;Machine LearningIEEE Inglês CE1 Excluído
Debugging and Verification Tools for Lingua Franca in Gemoc StudioJ. Deantoni; J. Cambeiro; S. Bateni; S. Lin; M. Lohstroh2021 LINGUA Franca (lf) is a polyglot coordination language designed for the composition of concurrent, time-sensitive, and potentially distributed reactive components called reactors. The LF coordination layer facilitates the use of target languages (e.g., C, C++, Python, TypeScript) to realize the program logic, where each target language requires a separate runtime implementation that must correctly implement the reactor semantics. Verifying the correctness of runtime implementations is not a trivial task, and is currently done on the basis of regression testing. To provide a more formal verification tool for existing and future target runtimes, as well as to help verify properties of LF programs, we recruit the use of GemocStudio-an Eclipse-based workbench for the development, integration, and use of heterogeneous executable modeling languages. We present an operational model for LF, realized in GEmocStudio, that is primed to interact with a rich set of analysis and verification tools. Our instrumentation provides the ability to navigate the execution of LF programs using an omniscient debugger with graphical model animation; to check assertions in particular execution runs, or exhaustively, using a model checker; and to validate or debug traces obtained from arbitrary LF runtime environments.10.1109/FDL53530.2021.9568383https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9568383- IEEE Inglês CE1 Excluído
The Role of Linguistic Relativity on the Identification of Sustainability Requirements: An Empirical StudyY. D. Pham; A. Bouraffa; M. Hillen; W. Maalej2021 Linguistic-Relativity-Theory states that language and its structure influence people’s world view and cognition. We investigate how this theory impacts the identification of requirements in practice. To this end, we conducted two controlled experiments with 101 participants. We randomly showed participants a set of requirements dimensions (i.e. a language structure) either with a focus on software quality or on sustainability and asked them to identify the requirements for a grocery shopping app according to these dimensions. Participants of the control group were not given any dimensions. The results show that the use of requirements dimensions significantly increases the number of identified requirements in comparison to the control group. Furthermore, participants who were given the sustainability dimensions identified more sustainability requirements. In follow up interviews with 16 practitioners, the interviewees reported benefits of the dimensions such as a holistic guidance but were also concerned about the customers acceptance. Furthermore, they stated challenges of implementing sustainability dimensions in the daily business but also suggested solutions like establishing sustainability as a common standard. Our study indicates that carefully structuring requirements engineering along sustainability dimensions can guide development teams towards considering and ensuring software sustainability.10.1109/RE51729.2021.00018https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604723software sustainability;requirements engineering;requirements dimension;interdisciplinary designIEEE Inglês CE1 Excluído
Web-Based Tracing for Model-Driven ApplicationsJ. C. Kirchhof; L. Malcher; J. Michael; B. Rumpe; A. Wortmann2022 Logging still is a core functionality used to understand the behavior of programs and executable models. Yet, modeling languages rarely consider logging as a first-level activity that is manifested in the language through modeling elements or their behavior. When logging is part of the code generated for the respective models or the corresponding runtime environment only, it must be generic, as the modeler cannot influence, through the models, what and when logging takes place. To enable modelers to log model behavior, we devised a method based on language extension and smart code generation that can integrate logging into arbitrary textual modeling languages. Based on this method, log entries can be produced, traced, and presented through a web application. This method and its infrastructure can facilitate lifting logging to the model level and, hence, improve the understanding of executable models.10.1109/SEAA56994.2022.00066https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10011502Software Engineering;Model-Driven Development;Internet of ThingsIEEE Inglês CE1 Excluído
MAANA: An Automated Tool for DoMAin-Specific HANdling of AmbiguityS. Ezzini; S. Abualhaija; C. Arora; M. Sabetzadeh; L. Briand2021 MAANA (in Arabic: "meaning") is a tool for performingdomain-specific handling of ambiguity in requirements. Given a requirements document as input, MAANA detectsthe requirements that are potentially ambiguous. The focus ofMAANA is on coordination ambiguity and prepositional-phraseattachment ambiguity; these are two common ambiguity typesthat have been studied in the requirements engineering literature. To detect ambiguity, MAANA utilizes structural patterns anda set of heuristics derived from a domain-specific corpus. Thegenerated analysis file after running the tool can be reviewed byrequirements analysts. Through combining different knowledgesources, MAANA highlights also the requirements that mightcontain unacknowledged ambiguity. That is when the analystsunderstand different interpretations for the same requirement, without explicitly discussing it with the other analysts due to timeconstraints. This artifact paper presents the details of MAANA. MAANA is associated with the ICSE 2021 technical papertitled "Using Domain-specific Corpora for Improved Handlingof Ambiguity in Requirements". The tool is publicly available onGitHub and Zenodo.10.1109/ICSE-Companion52605.2021.00082https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402505Requirements Engineering, Natural-language Requirements, Ambiguity, Natural Language Processing, Corpus Generation, WikipediaIEEE Inglês CE1 Excluído
Dealing with Requirement Inconsistencies Based on ReqDL LanguageH. Bencharqui; S. Haidrar; A. Anwar2019 Managing requirement for complex systems requires a rigorous methodology practice in all requirement engineering process. Poorly written requirements result in wasted effort and rework [1]. Requirements inconsistencies could occur at all levels of abstraction. Therefore, detecting inconsistencies between requirements is important; particularly in requirements statements. Finding precisely this inconsistency in the textual description requirement is a difficult task. In this paper, we introduce DSL-base approach for managing inconsistent requirements which aims to improve the requirement text description with very fine granularity. Then we use those pieces of grains to detect possible inconsistencies among them.10.1109/WITS.2019.8723726https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8723726requirement engineering;Sysml;MBSE;DSL;ReqDL;Complex SystemIEEE Inglês CE1 Excluído
Co-Evolving Code with Evolving MetamodelsD. E. Khelladi; B. Combemale; M. Acher; O. Barais; J. -M. Jézéquel2020 Metamodels play a significant role to describe and analyze the relations between domain concepts. They are also cornerstone to build a software language (SL) for a domain and its associated tooling. Metamodel definition generally drives code generation of a core API. The latter is further enriched by developers with additional code implementing advanced functionalities, e.g., checkers, recommenders, etc. When a SL is evolved to the next version, the metamodels are evolved as well before to re-generate the core API code. As a result, the developers added code both in the core API and the SL toolings may be impacted and thus may need to be co-evolved accordingly. Many approaches support the co-evolution of various artifacts when metamodels evolve. However, not the co-evolution of code. This paper fills this gap. We propose a semi-automatic co-evolution approach based on change propagation. The premise is that knowledge of the metamodel evolution changes can be propagated by means of resolutions to drive the code co-evolution. Our approach leverages on the abstraction level of metamodels where a given metamodel element has often different usages in the code. It supports alternative co-evaluations to meet different developers needs. Our work is evaluated on three Eclipse SL implementations, namely OCL, Modisco, and Papyrus over several evolved versions of metamodels and code. In response to five different evolved metamodels, we co-evolved 976 impacts over 18 projects. A comparison of our co-evolved code with the versioned ones shows the usefulness of our approach. Our approach was able to reach a weighted average of 87.4% and 88.9% respectively of precision and recall while supporting useful alternative co-evolution that developers have manually performed.https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283913- IEEE Inglês CE1 Excluído
Analysis of System Requirements by Aspects-J MethodologyS. Mohite; A. Sarda; S. D. Joshi2021 Methodology of aspects is a combination of multiple concerns. Multiple types of concerns are facts, logic, area of interest, security, properties of systems. In the Development phase of the aspect model Aspect considers different systems concerns, aspects divide these system concerns into software modules, Different aspects modules use as a way for analysis of systems requirements. In some aspects, methodology use UML design modeling for understanding system requirements, in aspects Methodology UML class is for knowing the system necessities in modeling phases. a UML class structure is used in the Aspects process model for requirement analysis of the system. Class design in UML design consists of various types of attributes, classes, objects, methods, Join of points & Point of cut, various approaches to defining various concerns of the system. Few tools for crafting graph grammar rules for analysis system concerns, crafting G-graph grammar rules start from pre-condition G-grammar rules after that crafting post condition G-graph grammar rules, after crafting G-graph pre and post condition grammar rules G-graph transformation process done on rules in tools, next step is a method of creating a matrix, a matrix is basically cross applying rules to each other and find output, Two types of the matrix created first is a matrix of dependency and matrix of conflicts, this matrix for analysis conflict and dependency in crafted G-graph grammar rules, these G-rules apply as input to aspect methodology Tool. Next step transformation G-graph grammar, G-graph rules shows pre and post transformations of G-graph grammar rules when applying matrix of dependencies with a matrix of conflict, the conflict shows clash in G-graph rules, dependencies show requirement among the G-graph rules.10.1109/CCGE50943.2021.9776384https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9776384Requirement;J-Aspect;join-point;cut-point;matrix;view-point;Dependencies;concern;Transformation;Conflicts;G-Graph;Rule;Methodology;Aspects;around;graph;before;aroundIEEE Inglês CE1 Excluído
A simple, lightweight framework for testing RESTful services with TTCN-3T. Vassiliou-Gioles 2020 Micro-service architecture has become a standard software architecture style, with loosely coupled, specified, and implemented services, owned by small teams and independently deployable. TTCN-3, as test specification and implementation language, allows an easy and efficient description of complex distributed test behavior and seems to be a natural fit to test micro-services. TTCN-3 is independent of the underlying communication and data technology, which is strength and weakness at the same time. While tools and frameworks are supporting micro-service developers to abstract from the underlying data, implementation, and communication technology, this support has to be modeled in a TTCN-3 based test system, manually. This paper discusses the concepts of a TTCN-3 framework on the four different levels of the Richardson-Maturity Model, introducing support for testing hypermedia controls, HATEOAS, proposes a TTCN-3 framework and open-source implementation to realize them and demonstrates its application by a concrete example.10.1109/QRS-C51114.2020.00089https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9282686TTCN-3;Software testing;test automation;micro service;RESTful API;web serviceIEEE Inglês CE1 Excluído
Addressing Expressiveness for a UML Microservices-Based Modeling within the Life Cycle of the Ubiquitous System DevelopmentF. Carranza-García; C. Rodríguez-Domínguez; J. L. Garrido2021 Microservices architectures are presented as the next evolution of the software design. They are particularly applied to scalable and distributed systems, such as IoT (Internet of Things). However, in order to take advantage of the microservices-based design for ubiquitous systems and manage its implications in other phases of the development life cycle there is still a need to address expressiveness in the modelling languages, such as UML. This paper identifies some of the main UML language elements to be extended and/or specialized in order to facilitate the design of microservices-based software for ubiquitous systems. The case study case of an intelligent system to check attendance in a ubiquitous learning environment is used as a way of identifying those UML elements. As a result, this work lays the ground to model affinity between microservices at the design level and generate code and other software artifacts. In the next future, it can also contribute to better automatize software development for microservice-based systems by applying a Model-Driven Engineering (MDE) methodology.10.1109/IE51775.2021.9486517https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9486517microservices;design;ubiquitous;model-driven engineering;umlIEEE Inglês CE1 Excluído
Mining User Reviews for Software Requirements of A New Mobile Banking ApplicationA. E. Amalia; M. Z. Naf'an2021 Migration to the new system or application is very challenging, especially if the users have to adapt to a new application that is implemented with direct conversion technique. It triggers many user reactions, one of them is their opinions and rate about the application in play store (Google Play Store for example). Application reviews can be used to elicit user requirements or to verify requirements. This paper demonstrated the result of mining application reviews to support software requirements elicitation. It motivated by research area natural language processing (NLP) for requirement engineering (RE). Training and testing conducted to a dataset contains about 1200 application reviews of a new mobile banking application by classifying them into two classes (req and other) using Multinomial Naïve Bayes algorithm. Req is for opinions that contain requirement such as feature addition or user interface (UI) request while other is label for opinions/reviews contain non-requirements. The classification performance measured are accuracy score 0,8220 and one of class that has higher classifier performance is “other” class with value precision 0.83, recall 0.94 and F1 0.99. Even though, the result is not optimal yet, especially for “req” class, this research already implemented all categories of NLP technologies such as NLP techniques, NLP tools, and NLP resources.10.1109/ISRITI54043.2021.9702813https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9702813mining;requirement;classification;software;reviewsIEEE Inglês CE1 Excluído
A Model Based Safety Analysis Framework for SysML and A Case StudyJ. Hu; H. Tang; J. Kang; H. Wang2019 Model Based Safety Analysis (MBSA) techniques can improve our modeling and analysis capabilities for today's complex safety-critical system designs. SysML is a kind of informal system functional modeling language widely used in industry and AltaRica is a formal modeling language for system safety analysis. This paper provides a MBSA framework and a prototype tool for SysML oriented system design and safety ananlysis, which including: we firstly extend SysML model elements to describe system fault events and behaviors by using profile definition mechanism, then some mapping rules between SysML design models and AltaRica analysis models are established based on the consideration of model semantics. Therefore, we can design a framework and algorithms to implement an automatic conversion of those two modeling languages Finally, a case study shows how to modeling and analyze a typical wheel brake system which included in the SAE-AIR6110 standard by using a prototype tool.10.1109/EITCE47263.2019.9094927https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9094927Model Based Safety Analysis;SysML;AltaRica;prototype tool;wheel brake systemIEEE Inglês CE1 Excluído
Translating SysML Activity Diagrams for nuXmv Verification of an Autonomous PancreasO. Staskal; J. Simac; L. Swayne; K. Y. Rozier2022 Model Based Systems Engineering (MBSE) provides a single platform capable of defining complex, multidisciplinary systems, but commonly-used tools such as Systems Modeling Language (SysML) lack the ability to formally validate and verify these systems. Symbolic model checking operates on system models of similar levels of abstraction to SysML, providing a push-button technique for ensuring the possible behavior set always obeys temporal requirements, e.g., for safe operation. We propose a translation method from SysML activity diagrams to the popular symbolic model checker nuXmv to enable their formal verification in four main steps: main module definition, submodule definition, activity diagram organization, and activity diagram translation. We apply this process to the Autonomous Artificial Pancreas System (AAPS) as a trade study. We then verify and validate the AAPS nuXmv model against a set of specifications derived from the AAPS safety requirements.10.1109/COMPSAC54236.2022.00260https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842664MBSE;SysML;nuXmv;Cameo;Activity Dia-gram;Model CheckingIEEE Inglês CE1 Excluído
Real-Time System Modeling and Verification Through Labeled Transition System AnalyzerY. Yang; Q. Zu; W. Ke; M. Zhang; X. Li2019 Model checking as a computer-assisted verification method is widely used in many fields to verify whether a design model satisfies the requirements specifications of the target system. In practice, it is difficult to design a system without the sophisticated requirements analysis. Unlike other model checking tools, the labeled transition system analyzer (LTSA) not only can specify the property specifications of the target system but also provides a structure diagram to specify the system architecture of the requirements model, which can be further used to design the target system. In this paper, we demonstrate the abilities of LTSA shipped with the classic case study of the steam boiler system. In the requirements analysis, the LTSA can specify the cyber and physical components of the target system and interactions between the components and the safety properties of the target system. In system design, the LTSA can automatically generate a start-up design model as the finite state process from the requirements model, and then a design model can be further accomplished by system architects and developers. Finally, the LTSA can automatically verify whether the design model meets the requirements specifications. Our work demonstrates the potential power of model checking tools can be applied and useful in software engineering for requirements analysis, system design, and verification.10.1109/ACCESS.2019.2899761https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8642885LTSA;model checking;steam boiler;UMLIEEE Inglês CE1 Excluído
Towards the Mechanized Semantics and Refinement of UML Class DiagramsF. Sheng; H. Zhu; Z. Yang 2019 Model Driven Engineering (MDE) uses models to represent the core part of the software systems. The Unified Model Language (UML) is a widely accepted standard for modeling software systems. Although UML provides numbers of concepts and diagrams to describe the system, there is still an unsolved problem that the semantics and refinement relations of models are not formally defined. In this paper, we apply the constructive type theory to formalize the class diagrams and object diagrams. A suitable subset of UML static models is identified and formally defined. The theorem assistant Coq is applied to encode the semantics of class diagrams. Moreover the refinement relations are also formalized in Coq. The whole approach is supported by tools that do not constrain the semantic definition's expressiveness and flexibility while making it machine-checkable. Our approach offers a novel way for giving a precise foundation in UML and contributes to the goal of improving the overall trustworthy software systems by combining theoretical and practical techniques.10.1109/APSEC48747.2019.00016https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945762Unified Modeling Language, Mechanized Semantics, Refinement, Coq, Constructive Type TheoryIEEE Inglês CE1 Excluído
A Model Query Language for Domain-Specific ModelsJ. Guo; J. Lu; J. Ding; G. Wang2020 Model queries play a crucial role in the Model-driven development processes, particularly for Domain-Specific Modeling (DSM) and Model-based Systems Engineering (MBSE). The model queries are also regarded as the cornerstone for model-driven development activities, such as code generation, model transformation, and model constraints checking. The GOPPRR metamodeling approach is widely used to formalize the domain-specific models. Based on this approach, the KARMA language has been proposed to formalize models, metamodels, and code generation but lacks support for the model querying. This paper proposed one query language based on the GOPPRR metamodeling approach extended from the KARMA language to realize the unified query formalisms for multi-domain models. Finally, a case in a vehicle tracking system development is used to verify the availability of model query language, which is implemented in a domain modeling tool, MetaGraph. Keywords-Domain-Specific Language; model query language; model-driven development; Model-based Systems Engineering.10.1109/ICMCCE51767.2020.00266https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9421869Domain-Specific Language;model query language;model-driven development;Model-based Systems EngineeringIEEE Inglês CE1 Excluído
REAFFIRM: Model-Based Repair of Hybrid Systems for Improving ResiliencyL. Viet Nguyen; G. Mohan; J. Weimer; O. Sokolsky; I. Lee; R. Alur2020 Model-based design offers a promising approach for assisting developers to build reliable and secure cyber-physical systems in a systematic manner. In this methodology, a designer first constructs a model, with mathematically precise semantics, of the system under design, and performs extensive analysis with respect to correctness requirements before generating the implementation from the model. However, as new vulnerabilities are discovered, requirements evolve aimed at ensuring resiliency. There is currently a shortage of an inexpensive, automated software that can effectively repair the initial design, and a model-based system developer regularly needs to redesign and reimplement the system from scratch. In this paper, we propose a new methodology along with a MATLAB software called REAFFIRM to facilitate the model-based repair for improving the resiliency of cyber-physical systems. REAFFIRM takes as inputs 1) an original hybrid system modeled as a Simulink/Stateflow diagram, 2) a given resiliency pattern specified as a model transformation script, and 3) a safety requirement expressed as a Signal Temporal Logic formula, and outputs a repaired model which satisfies the requirement. The tool consists of two main modules, model transformation followed by model synthesis. While the latter component is built on top of the falsification tool Breach, to implement the former, we introduce a new model transformation language for hybrid systems, which we call HATL, to allow a designer to specify resiliency patterns. To evaluate the proposed approach, we use REAFFIRM to automatically synthesize the repaired models of four different case studies.10.1109/MEMOCODE51338.2020.9315153https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315153Model-based repair;resiliency;transformation language;hybrid systemsIEEE Inglês CE1 Excluído
Repository Mining for Changes in Simulink ModelsM. Jaskolka; V. Pantelic; A. Wassyng; M. Lawford; R. Paige2021 Model-Based Development (MBD) is widely used for embedded controls development, with MATLAB/Simulink being one of the most used environments in the automotive industry. Simulink models are the primary design artifact and as with all software, must be constantly maintained and evolved over their lifetime. It is necessary to develop models that support likely changes in order to assist with evolution/maintenance processes. In order to do so, the types of frequently performed changes must be understood and appropriate language mechanisms must be available to support these changes. However, Simulink model changes are currently not well understood. We analyze a real industrial software repository of our industrial partner and its version control system to provide insights into the likely changes for Simulink. The intent with this analysis includes providing guidance on how Simulink is used in industrial practice and how particular model changes can impact system evolution.10.1109/MODELS50736.2021.00014https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592466Simulink;model-based development;model change;repository mining;software evolution;version control systemIEEE Inglês CE1 Excluído
Conformance Testing in UPPAAL: A diabolic approachE. J. Njor; F. Lorber; N. I. Schmidt; S. R. Petersen2020 Model-based mutation testing is a fault-based method in the model-based testing area of research. It has been applied to several modeling formalisms, including timed automata. We propose a model transformation termed “diabolic completion” that allows for conformance testing directly in the UPPAAL tool. We have also developed a system to automate most of the process, which include taking a model, and performing diabolic completion, with the additions of allowing creation of mutants, conformance checking using the UPPAAL verification engine, and test case generation. We then set up a case study using a car alarm system model, which has been used several times in this area of research, and compare the efficiency with two existing tools, Ecdar 2.2 and MoMuT::TA, observing a significant speedup.10.1109/ICSTW50294.2020.00023https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9156025- IEEE Inglês CE1 Excluído
Verification and Validation Approaches for Model-Based Software EngineeringJ. Schumann; K. Goseva-Popstojanova2019 Model-based Software Engineering (MBSwE) and the use of automatic code generation has become popular for safety-critical aerospace applications. For these applications, verification and validation (V&V) is of utmost importance. With models as another layer of artifacts, however, V&V can become more complex in general, as V&V tasks can be carried out at the model level or at the code level. In this short paper, we present a V&V architecture specifically designed for MBSwE, which reflects the interrelationships between the different levels, tasks and tools, and which aims to provide a clear picture on the V&V approaches for MBSwE. We illustrate the architecture with a detailed analysis of two NASA missions and discuss their approaches to model use and understanding, automatic code generation, V&V, and model synchronization.10.1109/MODELS-C.2019.00080https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904785Model-based Software Engineering, V&V, automatic code generationIEEE Inglês CE1 Excluído
Generating Test Scenarios using SysML Activity DiagramX. Yang; J. Zhang; S. Zhou; B. Wang; R. Wang2021 Model-Based System Engineering (MBSE) applies the modeling method to system engineering and is gaining acceptance to software practitioners. SysML is an auxiliary language for MBSE, SysML activity diagram is treated as a useful design artifact to model the behavior of the system under development and identify all possible scenarios. However, it is a challenging task to identify all scenarios. In this paper, we propose an approach to generate test scenarios for systems modeled by the SysML activity diagram. The approach transforms an activity diagram into a testable composite structure, from which it then generates test scenarios. We further implemented a tool to automate the proposed approach and studied its feasibility using a case study. Experiments results show that the generated test scenarios can satisfy the given coverage criterion.10.1109/DSA52907.2021.00039https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9623050Model-Based System Engineering;Model-Based Testing;SysML activity diagram;test scenarios generationIEEE Inglês CE1 Excluído
Software and Methodological Toolkit for the Design and Development of Technical Devices in the Model-Based Systems Engineering ParadigmD. Shpotya; A. Romanov 2021 Model-based systems engineering (MBSE) and its' tool the Systems Modelling Language (SysML) are recognized to serve as the fundament for design and development (D&D) of system models and digital twins. But the existing MBSE software (SW) tools based on SysML are complex and expensive. The paper raises the question: “Is it possible to make usage of MBSE software and methodological tools during space instruments design and development (SIDD) available to a wide audience of potential users?” To answer this question, for SIDD lifecycle phases (LPs) were developed methodological tools (MTs) based on improvements of such MBSE tools as Quality Function Deployment (QFD), House of Quality (HoQ); SysML, and their synthesis with systems engineering (SE) tools. MTs were implemented in the widely available SW tools. Proposed MTs allow to reduce time required for SysML requirements diagram development and update from several days to minutes; for LPs realization from 5 to 10%.10.1109/EnT50460.2021.9681800https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9681800systems engineering;MBSE;paradigm;SysML;QFD;HoQ;design;development;methodological toolkitIEEE Inglês CE1 Excluído
Model-Driven Engineering EcosystemsV. V. Graciano Neto; F. Basso; R. Pereira dos Santos; N. H. Bakar; M. Kassab; C. Werner; T. Oliveira; E. Y. Nakagawa2019 Model-Driven Engineering (MDE) comprises the practice of systematically using models during software development. The high diversity of MDE assets (e.g., metamodels, models, model transformation engines, and design tools) has raised a rich, diverse, and complex software ecosystem (SECO), where a collection of assets is governed by underlying rules and surrounded by a community of players. The lack of a deeper understanding on those relations has: (i) hampered the adoption of such paradigm by newcomers; (ii) increased the learning curve; (iii) prevented the community from exploiting their full potential; and (iv) inhibited the more essential bene?ts promoted by MDE, such as automation, reuse, productivity, maintainability, and time to market. In this context, this paper presents preliminary results of an investigation on MDE as a SECO. We compiled existing knowledge from literature joining independent research ?ndings to provide an exploratory characterization of the technical dimension of such ecosystem. We also identi?ed research gaps that motivate further investigation considering the relevance and potential of this topic for the forthcoming years.10.1109/SESoS/WDES.2019.00016https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882850Model-Driven Engineering;Model Driven Development;Software Repository;Toolchain;AssetIEEE Inglês CE1 Excluído
Automated Requirements Formalisation for Agile MDEK. Lano; S. Yassipour-Tehrani; M. A. Umar2021 Model-driven engineering (MDE) of software systems from precise specifications has become established as an important approach for rigorous software development. However, the use of MDE requires specialised skills and tools, which has limited its adoption.In this paper we describe techniques for automating the derivation of software specifications from requirements statements, in order to reduce the effort required in creating MDE specifications, and hence to improve the usability and agility of MDE. Natural language processing (NLP) and Machine learning (ML) are used to recognise the required data and behaviour elements of systems from textual and graphical documents, and formal specification models of the systems are created. These specifications can then be used as the basis of manual software development, or as the starting point for automated software production using MDE.10.1109/MODELS-C53483.2021.00030https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643614Requirements formalisation;Model-driven engineering;Agile developmentIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8940740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8823472
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507663
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9342375
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754117
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776962
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604736
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622378
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9971829
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604729
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8987451
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776650
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991157
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9364404
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9528498
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8821909
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9615814
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9678781
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9286074
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8965462
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474550
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793546
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9568383
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604723
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10011502
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8723726
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283913
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9776384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9282686
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9486517
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9702813
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9094927
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842664
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8642885
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9421869
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592466
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9156025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904785
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9623050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9681800
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882850
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643614

Flexible Production Systems: Automated Generation of Operations Plans Based on ISA-95 and PDDLB. Wally; J. Vyskočil; P. Novák; C. Huemer; R. Šindelar; P. Kadera; A. Mazak; M. Wimmer2019 Model-driven engineering (MDE) provides tools and methods for the manipulation of formal models. In this letter, we leverage MDE for the transformation of production system models into flat files that are understood by general purpose planning tools and that enable the computation of “plans”, i.e., sequences of production steps that are required to reach certain production goals. These plans are then merged back into the production system model, thus enriching the formalized production system knowledge.10.1109/LRA.2019.2929991https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8767927AI-based methods;factory automation;intelligent and flexible manufacturingIEEE Inglês CE1 Excluído
Generating Sequence Diagram from Natural Language RequirementsM. Jahan; Z. S. H. Abad; B. Far2021 Model-driven requirements engineering is gaining enormous popularity in recent years. Unified Modeling Language (UML) is widely used in the software industry for specifying, visualizing, constructing, and documenting the software systems artifacts. UML models are helpful tools for portraying the structure and behavior of a software system. However, generating UML models like Sequence Diagrams from requirements documents often expressed in unstructured natural language, is time consuming and tedious. In this paper, we present an automated approach towards generating behavioral models as UML sequence diagrams from textual use cases written in natural language. The approach uses different Natural Language Processing (NLP) techniques combined with some rule based decision approaches to identify problem level objects and interactions. Additionally, different quality metrics are defined to assess the validity of generated sequence diagrams in terms of expected behaviour from a given use case. The criteria we established to assess the quality of analysis sequence diagrams can be applied to similar experiments. We evaluate our approach using different case studies concerning correctness and completeness of the generated sequence diagrams using those metrics. In most situations, we attained an average accuracy factor of over 85% and average completeness of over 90%, which is encouraging.10.1109/REW53955.2021.00012https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582297Sequence Diagram;Use Case Scenario;Natural Language Processing;Requirement Engineering;UML model.IEEE Inglês CE1 Excluído
Towards Queryable and Traceable Domain ModelsR. Saini; G. Mussbacher; J. L. C. Guo; J. Kienzle2020 Model-Driven Software Engineering encompasses various modelling formalisms for supporting software development. One such formalism is domain modelling which bridges the gap between requirements expressed in natural language and analyzable and more concise domain models expressed in class diagrams. Due to the lack of modelling skills among novice modellers and time constraints in industrial projects, it is often not possible to build an accurate domain model manually. To address this challenge, we aim to develop an approach to extract domain models from problem descriptions written in natural language by combining rules based on natural language processing with machine learning. As a first step, we report on an automated and tool-supported approach with an accuracy of extracted domain models higher than existing approaches. In addition, the approach generates trace links for each model element of a domain model. The trace links enable novice modellers to execute queries on the extracted domain models to gain insights into the modelling decisions taken for improving their modelling skills. Furthermore, to evaluate our approach, we propose a novel comparison metric and discuss our experimental design. Finally, we present a research agenda detailing research directions and discuss corresponding challenges.10.1109/RE48521.2020.00044https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218176NLP;Machine Learning;Domain Model;Modelling Bot;Requirements Engineering;Trace LinksIEEE Inglês CE1 Excluído
Consistency Control for Model Versions in Evolving Model-Driven Software Product LinesJ. Schröpfer; F. Schwägerl; B. Westfechtel2019 Model-driven software product lines evolve in both time and space. Consistency control for model versions constitutes a key challenge. We propose a novel approach to consistency control called well-formedness analysis and repair: Instead of attempting to guarantee consistency of each configurable version a priori (which is hard and restrictive), consistency is controlled only when a product version is actually configured. Conflicts, i.e., violation of well-formedness constraints, are detected and repaired, driven by configurable strategies. This approach is generic; it is instantiated for feature models (for the variability model) and EMF models (as domain artifacts).10.1109/MODELS-C.2019.00043https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904527model;software product line;version;evolution;consistency controlIEEE Inglês CE1 Excluído
Definition Of A Transparent Constraint-Based Modeling And Simulation Layer For The Management Of Complex SystemsK. Henares; J. L. Risco-Martín; M. Zapater2019 Modeling and Simulation (M&S) is one of the most multifaceted topics present today in both industry and academia. However, we are involved in a new M&S paradigm. Systems are becoming more complex and new simulation needs arise and have to be studied. As a consequence, the way in which we perform M&S must be adapted, providing new ideas and tools. In this paper, we propose a rule-based constraints evaluator, which facilitate the validation and verification of complex models in a transparent manner. For this, constraints are defined. The constraints definition process is completely independent of the model development process because (a) the set of constraints is defined once the model has been developed, and (b) constraints are validated at simulation time. The proposed Constraint M&S architecture has been built using the Discrete Event System Specification (DEVS) formalism and has been tested on a validated data center simulation model.10.23919/SpringSim.2019.8732847https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8732847model checking;constraint modeling and simulation;discrete events;verification;data centersIEEE Inglês CE1 Excluído
Modeling and Verification of Web Services Composition Using CWB-NC ToolN. Pal; M. P. Yadav; D. K. Yadav2021 Modeling and verification of web services composition determines the execution flow of various web services used in conjunction. Existing techniques, such as, UML and testing are used successfully to describe the behavior of the web service system and find the bugs during the communication of the components. However, it is not always possible to identify bugs at all the stages. Formal specification and verification is an emerging technique for specifying the structural and functional property of the web service composition. Calculus of Communicating Systems (CCS) is a process-algebra used as a language for formal specification. In this article, we have utilized CCS for describing the behavioral specification of the web service system. The requirement of the system is captured through formulas or properties utilizing mu-calculus, and formally verified through Concurrency Work Bench of the New Century (CWB-NC) model checker tool.10.1109/INCET51464.2021.9456275https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9456275Web Services;Formal Methods;Formal verification;Model Checking;CWB-NC ToolIEEE Inglês CE1 Excluído
Using Metamodeling for Requirements Engineering: A Best-Practice with ADOxxD. Karagiannis; M. Lee; R. A. Buchmann2019 Modeling tools, as an instrument in support of the Requirements Engineering (RE) process, usually focus on a particular aspect, in a domain-agnostic manner. The tutorial discusses meta-modeling as an approach to over-come such shortcomings, enabling more holistic and specific semantic coverage of requirements models. The meta-modeling platform ADOxx is introduced as an experimentation environment for researchers and practitioners to realize their individual modeling languages and functionality in support of RE. Specific emphasis is given to the practical nature of the tutorial: participants are encouraged to build their individual modeling tool in a hands-on setting and experiment with the capabilities of ADOxx to implement meta-models and model processing mechanisms, to specialize them or to integrate available assets provided by the ADOxx.org community.10.1109/RE.2019.00073https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920408Requirements modeling, Metamodeling, Agile Modeling Method Engineering, Modeling method requirementsIEEE Inglês CE1 Excluído
Positioning-Based Domain-Specific Modelling through Mobile DevicesA. Sebastián-Lombraña; E. Guerra; J. d. Lara2020 Modelling is a central activity in many disciplines. It is typically performed with the support of modelling tools that run on desktop computers or laptops, i.e., in static settings. How-ever, some modelling scenarios require a faithful representation of the position of the model elements in the physical world. Such scenarios would benefit from the ability to model in mobility and exploit the data obtained from the sensors embedded in mobile devices. For this purpose, we propose a conceptual approach to positioning-based modelling based on the combination of a physical dimension (as provided by the sensors of mobile devices) and an ontological one (as provided by domain meta-models). We showcase different scenarios for these ideas, and present a prototype app - called METAPHORE - that runs on iOS devices and realizes these concepts.10.1109/SEAA51224.2020.00033https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9226290Model-driven engineering;domain-specific modelling;positioning-based modelling;mobile appsIEEE Inglês CE1 Excluído
Towards Continuous Delivery for Domain Experts: Using MDE to Integrate Non-Programmers into a Software Delivery PipelineH. Nehls; D. Ratiu 2019 Modern computed tomography (CT) scanners are complex, software-intensive systems whose correct functioning is governed by over 100 parameters which depend on the concrete hardware configurations and on the addressed clinical use-cases. To tame the intrinsic complexity of the parameters configurations, over the last four years, Siemens Healthineers (SHS) have been developing and deploying a set of domain specific languages and tooling based on Jetbrains' Meta-Programming System. In this paper, we report on the challenges and experiences we made while building two delivery pipelines. At meta-level, we built a continuous delivery pipeline such that new versions of our domain specific modeling tool can be deployed continuously based on the feedback of domain experts. At model-level we have integrated the developed domain-specific tool in the continuous delivery pipeline for the computed tomography software and thereby bring the Continuous Delivery mind-set with advantages and challenges to domain experts who are working traditionally "outside" of the software development.10.1109/MODELS-C.2019.00091https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904815model-driven engineering;continuous delivery;Jetbrains' MPSIEEE Inglês CE1 Excluído
EC.LANG – A Language for Specifying Response Time Analyses of Event ChainsM. J. Friese; J. Traub; D. Nowotka2020 Modern cyber-physical systems pose great challenges for system engineers to keep track of the system's behavior when it comes to functions distributed all over the system. To check whether response time constraints are met, measurement data from different development stages is analyzed to track down the worst-case behavior observed.Several complex, signal dependencies have to be examined over long time periods. Therefore, computer aided approaches to support this task are strongly demanded. In this paper, we present EC.LANG, a formal language designed to specify evaluations over measurement data. It is particularly fitted to model event chains representing the data flow of system functions. To validate event chains against timing requirements, we implemented a compiler and an evaluation engine based on EC.LANG.10.1109/ICST46399.2020.00042https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159108- IEEE Inglês CE1 Excluído
How to Live with Inconsistencies in Industrial Model-Based Development PracticeR. Jongeling 2019 Modern development of complex embedded systems utilizes models to describe multiple different views on the same system. Consistency between these models is essential to successful development but ensuring it is in current practice often a manual effort. In this research project, we aim to develop a methodology that helps developers to maintain consistency in industrial model-based development projects by identifying inconsistencies throughout the development and maintenance of the system. For such support to be applicable in industrial practice, it should fit in with current development, i.e., should be able to identify inconsistencies between models expressed in different modeling languages and created in different modeling tools. Furthermore, the required user interaction to defining consistency checks should be minimal. This paper sketches an approach meeting these requirements, initial results towards it and discusses future research plans towards a doctoral dissertation.10.1109/MODELS-C.2019.00098https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904865model-based development;consistency checking`IEEE Inglês CE1 Excluído
ChiselVerify: An Open-Source Hardware Verification Library for Chisel and ScalaA. Dobis; T. Petersen; H. J. Damsgaard; K. J. Hesse Rasmussen; E. Tolotto; S. T. Andersen; R. Lin; M. Schoeberl2021 Modern digital hardware is becoming ever more complex. The development of different application-specific accelerators rather than traditional general purpose processors calls for advanced development methods not only for design, but equally so for subsequent verification. Recently, this has made engineers propose an agile hardware development flow. However, one of the main obstacles when proposing such a method is the lack of efficient tools. Chisel, a high-level hardware construction language, was introduced in order to combat this lack. Since this already enables agile hardware design, we instead focus our attention on the verification flow. Thus, this paper proposes ChiselVerify, an open-source library for verifying circuits described in Chisel. It builds on top of Chisel and uses Scala to drive the verification process. The solution is well integrated into the existing Chisel universe, making it an extension of currently existing testing libraries.10.1109/NorCAS53631.2021.9599869https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599869digital design;verification;Chisel;ScalaIEEE Inglês CE1 Excluído
Flexible Software to Hardware Migration Methodology for FPGA Design and VerificationM. Trapaglia; R. Cayssials; L. De Pasquale; E. Ferro2019 Modern FPGA developments require flexible and Agile methodologies to support complex designs meeting the current highly demanding time-to-market metrics. Traditional hardware development processes based on waterfall flows are not adequate to get the most of the new reconfigurable FPGA technologies. Co-design and co-verification techniques allow handling both software and hardware development in a highly integrated process. However, such integration requires a deep knowledge of both hardware and software development. DUTILS is a Python/Cocotb-based environment for concurrent development suitable for modern software development technologies. This paper proposes software to hardware migration methodology for the DUTILS environment that allows a seamless integration between software and hardware design and the verification process flow of the whole system.10.1109/SPL.2019.8714377https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714377Co-simulation;Cocotb;FPGA developmentIEEE Inglês CE1 Excluído
SoC Trust Validation Using Assertion-Based Security MonitorsK. Alatoun; B. Shankaranarayanan; S. M. Achyutha; R. Vemuri2021 Modern SoC applications include a variety of sensitive modules in which data must be protected against malicious access. Security vulnerabilities, when exercised during the SoC operation, lead to denial of service or disclosure of protected data. Hence, it is essential to undertake security validation before and after SoC fabrication and make provisions for continuous security assessment during operation. This paper presents a methodology for optimized post-deployment monitoring of SoC's security properties by migrating pre-fab design security assertions to post-fab run-time security monitors. We show that the method is scalable for large systems and complex properties by optimizing the hardware monitors and applying it to a large SoC design based on a OpenRISC-1200 SoC. About 40 security assertions were specified in System Verilog Assertions (SVA). Following formal verification, the assertions were synthesized into finite state machines and cross optimized. Following code generation in Verilog, commercial logic and layout synthesis tools were used to generate hardware monitors which were then integrated with the SoC design ready for fabrication.10.1109/ISQED51717.2021.9424363https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9424363System-on-Chip;Assertion Based Verification;System Verilog Assertions;Property Specification Language;Security and Hardware MonitorsIEEE Inglês CE1 Excluído
Enabling Reactive Streams in HLA-based Simulations through a Model-Driven SolutionA. D’Ambrogio; A. Falcone; A. Garro; A. Giglio2019 Modern systems are exposing an ever increasing degree of complexity also due to the heterogeneity of the involved components. Distributed simulation is widely recognized as an effective tool to carry out verification and validation activities for heterogeneous and complex systems. Unfortunately, the use of distributed simulation frameworks and related implementation technologies require a proper modeling and simulation know-how, as well as a significant effort and software development skills. As a result, distributed simulation is not typically addressed by systems engineers who do not have the required expertise or background. The MONADS model-driven method has been introduced to overcome such limitations and provide systems engineers with the ability to properly carry out simulation-based verification and validation activities. The method specifically addresses the HLA (High Level Architecture) distributed simulation framework and introduces an automated approach to generate a significant portion of the HLA code from system models specified in SysML, the standard modeling language in the systems engineering field. The automatically obtained code is then to be finalized by a manual programming activity. This paper contributes to make easier and further reduce the effort of such a manual activity by integrating the reactive features of the RxHLA framework into the MONADS method. This integration enables the use of streams to effectively manage HLA-based asynchronous interactions. The paper describes the technical details of the various strategies that can be used to integrate RxHLA into the MONADS method, thus providing a significant degree of flexibility to MONADS users.10.1109/DS-RT47707.2019.8958697https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958697Distributed Simulation;High Level Architecture (HLA);Model-Driven Systems Engineering;Reactive ProgrammingIEEE Inglês CE1 Excluído
Agile Requirements Engineering: From User Stories to Software ArchitecturesF. Dalpiaz; S. Brinkkemper 2021 Most agile practitioners employ user stories for capturing requirements, also thanks to the embedding of this notation within development and project management tools. Among user story users, circa 70% follow a simple template: As a role, I want to action, so that benefit. User stories’ popularity among practitioners and their template-based structure make them ideal candidates for the application of natural language processing techniques. In our research, we have found that circa 50% of real-world user stories contain easily preventable linguistic defects. To mitigate this problem, we have created tool-supported methods that facilitate the creation of better user stories. This tutorial combines previous work of the RE-Lab@UU into a pipeline for working with user stories: (1) The basics of creating user stories and their use in requirements engineering; (2) How to improve user story quality with the Quality User Story Framework and the AQUSA tool; (3) How to generate conceptual models from user stories using the Visual Narrator tool and analyze them for possible ambiguity and inconsistency; and (4) How to link requirements to architectures via the RE4SA model. Our approach is demonstrated with results obtained from 20+ software companies employing user stories.10.1109/RE51729.2021.00076https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604656Agile requirements engineering;user stories;NLP;AQUSA;Visual Narrator;REVV-Light;RE4SAIEEE Inglês CE1 Excluído
Use Case Extraction through Knowledge AcquisitionD. G. Vasques; G. S. Santos; F. D. Gomes; J. F. Galindo; P. S. Martins2019 Most challenges in requirements analysis and use case extraction are related to the correct comprehension of clients' core processes and activities, as well as their needs. This information is usually available in documents, such as the business vision, written in natural language. This kind of language may lead to interpretation bias and information loss, thus causing project delays and escalation of costs. In order to overcome natural language interpretation challenges in Requirements Engineering, we propose the use of Verbka, a knowledge acquisition process based on verbal semantics, as a complement to traditional requirements analysis. This process extracts the causal relationships among the actors mentioned in the business vision document. We used this process as a use case pre-modeling tool, aiming to minimize subjectivity in the identification of actors and use cases. We tested Verbka using a business vision from a classical textbook. The results show that this process is able to obtain a list containing all requirements defined by the client, all actors involved in the business vision, and how they interact with each other. This process is systematic and provides a textual and visual representation of user requirements and use cases consistently. Its application reduced interpretation bias, thus allowing a more detailed and structured requirements analysis.10.1109/IEMCON.2019.8936279https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936279Business Modeling;Concept Maps;Natural Language Processing;Requirements Analysis;Semantics;UMLIEEE Inglês CE1 Excluído
Integration of Constraint Programming and Model-Based Approach for System SynthesisY. Pierre-Alain; Z. Laurent 2021 Most of the work in the field of Model-Based System Engineering for the design of technical systems consists of implementing solution-oriented approaches. Several system modeling languages are available to represent fully defined systems from several points of view. It is also possible to link these descriptions with simulation or analysis tools to evaluate the solutions thus described. After having studied the limits of this way of designing system, we propose in this paper an approach oriented to the description of the design problem to be solved, through an adapted formalism called DEPS. This formalism allows a model-based approach for architecture and system synthesis. DEPS (Design Problem Specification) addresses problems of sizing, configuration, resource allocation and more generally of architecture generation or synthesis encountered in system design. The systems considered can be physical systems, software-intensive systems or mixed systems (embedded, mechatronical, cyber-physical). This language combines structural modeling features specific to object-oriented languages with problem specification features from constraint programming. We also present an integrated approach through the DEPS Studio environment, allowing DEPS modeling, model compilation and solving using an integrated constraint programming solver. This integration allows, among other things, the development and the debugging of models directly in DEPS rather than in the language of an external solver. The approach is illustrated on a simple case of electrical system synthesis.10.1109/SysCon48628.2021.9447096https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447096constraint programming;model based system synthesis;problem modeling;problem solvingIEEE Inglês CE1 Excluído
SoCeR: A New Source Code Recommendation Technique for Code ReuseM. M. Islam; R. Iqbal 2020 Motivated by the idea of reusing existing source code from previous projects within a software company, in this paper, we present a new source code recommendation technique called "SoCeR" to help programmers find relevant implementations or sample code based on software requirement specifications. SoCeR assists programmers to search existing code repositories using natural language query. Our proposed approach summarizes Python code into sentences or phrases to match them against user queries. SoCeR extracts and analyzes the content of the code (such as variables, functions, docstrings, and comments) to generate code summary for each function which is then mapped to the respective functions. For evaluation purposes, we developed a web-based tool for users to enter a textual search query and get the relevant code search results that were most relevant to the query. In SoCeR, users can also upload new code to enrich the code base with tested code. If adopted, then SoCeR will benefit a software company to build a trusted code base enabling large-scale software code reuse.10.1109/COMPSAC48688.2020.00-34https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202820Code recommendation;Code reuse;Code search;Software code;Query reformulationIEEE Inglês CE1 Excluído
A Pattern-Oriented Design Framework for Self-Adaptive Software SystemsP. Arcaini; R. Mirandola; E. Riccobene; P. Scandurra2019 Multiple interacting MAPE-K loops, structured according to specific interaction patterns, have been introduced to design the adaptation logic in case of decentralized self-adaptive software systems. Designing such complex systems requires the availability of tools where MAPE patterns can be easily instantiated to provide fast architectural solutions, and the encoding towards specific domains is facilitated by automatic mapping of such pattern instantiations in domain-specific languages; validation and verification must be also supported to assure correct development of reliable systems. In this paper, we present a pattern-oriented framework, based on the MSL (MAPE Specification Language) modeling language, for the design of self-adaptive systems. The framework supports: (i) explicit modeling of the adaptation logic in terms of patterns of interactive MAPE-K loops; (ii) ability to tailor MSL models for a specific application domain and synthesize from them other modeling artifacts/code according to a target implementation context and scope (e.g., OpenHAB); (iii) ability to perform validation and verification of MSL models by means of the ASMETA formal framework.10.1109/ICSA-C.2019.00037https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8712366Pattern-oriented design;self-adaptation;MAPE-K loops;MAPE patterns;ASMETA;OpenHABIEEE Inglês CE1 Excluído
Boba: Authoring and Visualizing Multiverse AnalysesY. Liu; A. Kale; T. Althoff; J. Heer2021 Multiverse analysis is an approach to data analysis in which all “reasonable” analytic decisions are evaluated in parallel and interpreted collectively, in order to foster robustness and transparency. However, specifying a multiverse is demanding because analysts must manage myriad variants from a cross-product of analytic decisions, and the results require nuanced interpretation. We contribute Baba: an integrated domain-specific language (DSL) and visual analysis system for authoring and reviewing multiverse analyses. With the Boba DSL, analysts write the shared portion of analysis code only once, alongside local variations defining alternative decisions, from which the compiler generates a multiplex of scripts representing all possible analysis paths. The Boba Visualizer provides linked views of model results and the multiverse decision space to enable rapid, systematic assessment of consequential decisions and robustness, including sampling uncertainty and model fit. We demonstrate Boba's utility through two data analysis case studies, and reflect on challenges and design opportunities for multiverse analysis software.10.1109/TVCG.2020.3028985https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9216579Multiverse Analysis;Statistical Analysis;Analytic Decisions;ReproducibilityIEEE Inglês CE1 Excluído
Mutation Analysis for Coq A. Celik; K. Palmskog; M. Parovic; E. Jesús Gallego Arias; M. Gligoric2019 Mutation analysis, which introduces artificial defects into software systems, is the basis of mutation testing, a technique widely applied to evaluate and enhance the quality of test suites. However, despite the deep analogy between tests and formal proofs, mutation analysis has seldom been considered in the context of deductive verification. We propose mutation proving, a technique for analyzing verification projects that use proof assistants. We implemented our technique for the Coq proof assistant in a tool dubbed mCoq. mCoq applies a set of mutation operators to Coq definitions of functions and datatypes, inspired by operators previously proposed for functional programming languages. mCoq then checks proofs of lemmas affected by operator application. To make our technique feasible in practice, we implemented several optimizations in mCoq such as parallel proof checking. We applied mCoq to several medium and large scale Coq projects, and recorded whether proofs passed or failed when applying different mutation operators. We then qualitatively analyzed the mutants, finding many instances of incomplete specifications. For our evaluation, we made several improvements to serialization of Coq files and even discovered a notable bug in Coq itself, all acknowledged by developers. We believe mCoq can be useful both to proof engineers for improving the quality of their verification projects and to researchers for evaluating proof engineering techniques.10.1109/ASE.2019.00057https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952421mutation proving;Coq;prof assistants;mutation testingIEEE Inglês CE1 Excluído
A Layered Reference Architecture for Metamodels to Tailor Quality Modeling and AnalysisR. Heinrich; M. Strittmatter; R. Reussner2021 Nearly all facets of our everyday life strongly depend on software-intensive systems. Besides correctness, highly relevant quality properties of these systems include performance, as directly perceived by the user, and maintainability, as an important decision factor for evolution. These quality properties strongly depend on architectural design decisions. Hence, to ensure high quality, research and practice is interested in approaches to analyze the system architecture for quality properties. Therefore, models of the system architecture are created and used for analysis. Many different languages (often defined by metamodels) exist to model the systems and reason on their quality. Such languages are mostly specific to quality properties, tools or development paradigms. Unfortunately, the creation of a specific model for any quality property of interest and any different tool used is simply infeasible. Current metamodels for quality modeling and analysis are often not designed to be extensible and reusable. Experience from generalizing and extending metamodels result in hard to evolve and overly complex metamodels. A systematic way of creating, extending and reusing metamodels for quality modeling and analysis, or parts of them, does not exist yet. When comparing metamodels for different quality properties, however, substantial parts show quite similar language features. This leads to our approach to define the first reference architecture for metamodels for quality modeling and analysis. A reference architecture in software engineering provides a general architecture for a given application domain. In this paper, we investigate the applicability of modularization concepts from object-oriented design and the idea of a reference architecture to metamodels for quality modeling and analysis to systematically create, extend and reuse metamodel parts. Thus, the reference architecture allows to tailor metamodels. Requirements on the reference architecture are gathered from a historically grown metamodel. We specify modularization concepts as a foundation of the reference architecture. Detailed application guidelines are described. We argue the reference architecture supports instance compatibility and non-intrusive, independent extension of metamodels. In four case studies, we refactor historically grown metamodels and compare them to the original metamodels. The study results show the reference architecture significantly improves evolvability as well as need-specific use and reuse of metamodels.10.1109/TSE.2019.2903797https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8662719Domain-specific modeling language;reference architecture;metamodel;quality analysisIEEE Inglês CE1 Excluído
Dynamic Property Enforcement in Programmable Data PlanesM. Neves; B. Huffaker; K. Levchenko; M. Barcellos2021 Network programmers can currently deploy an arbitrary set of protocols in forwarding devices through data plane programming languages such as P4. However, as any other type of software, P4 programs are subject to bugs and misconfigurations. Network verification tools have been proposed as a means of ensuring that the network behaves as expected, but these tools frequently face severe scalability issues. In this paper, we argue for a novel approach to this problem. Rather than statically inspecting a network configuration looking for bugs, we propose to enforce networking properties at runtime. To this end, we developed P4box, a system for deploying runtime monitors in programmable data planes. P4box allows programmers to easily express a broad range of properties (both program-specific and network-wide). Moreover, we provide an automated framework based on assertions and symbolic execution for ensuring monitor correctness. Our experiments on a SmartNIC show that P4box monitors represent a small overhead to network devices in terms of latency, throughput and power consumption.10.1109/TNET.2021.3068339https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9393490P4;SDN;programmable networks;network debugging;monitoringIEEE Inglês CE1 Excluído
Generating Heterogeneous Codes for IoT Systems Based on CAPSM. Sharaf; M. Abusair; H. Muccini; R. Eleiwi; Y. Shana’a; I. Saleh2019 Nowadays most systems are relying in their development and evolution on reusing and customizing opensource components, services and frameworks. In this poster, we present our architecture driven code generation methodology that benefits from CAPS and ThingML frameworks. CAPS is an architecture-driven modeling framework for the development of IoT Systems. ThingML includes a modeling language and tool designed for supporting code generation for heterogeneous platforms. The suggested methodology enables IoT designers and architects who are using CAPS environment to generate ThingML models and produce executable codes.10.1109/MODELS-C.2019.00113https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904524- IEEE Inglês CE1 Excluído
State Machines Consistency between Model Based System Engineering and Safety Assessment ModelsJ. Vidalie; M. -S. Kendel; F. Mhenni; M. Batteux; J. -Y. Choley2021 Nowadays with the development of industrial systems, engineers are having more difficulties to design complex systems, meaning that they have to conduct several simulations to design system models. In the case of safety assessment, this creates a need for the safety model to be consistent with the system engineering model, since both models are supposed to represent the same architecture. In this work we present a methodology for synchronisation of two kinds of state machines, Harel’s Statecharts and Guarded Transition Systems. These formalisms are used to model system behavior respectively in MBSE (Model Based System Engineering) and MBSA (Model Based Safety Assessment) tools. This methodology, based on the SmartSync framework [1] that aims at asserting structural consistency between MBSE and MBSA, is composed of 3 steps: abstraction to a pivot formalism, comparison and concretization. We compare two mappings of concepts used for translation from our state machines to the S2ML language.10.1109/ISSE51541.2021.9582470https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582470MBSA;MBSE;AltaRica;SysML;S2ML;Abstraction;Comparison;Concretization;State Machine;Harel StateChart;Guarded Transition SystemIEEE Inglês CE1 Excluído
Test Case Generation Algorithms and Tools for Specifications in Natural LanguageY. Aoyama; T. Kuroiwa; N. Kushiro2020 Nowadays, most consumer products are equipped with methods of network communications, and nondeterministic tests, which are originated from random message exchanges via the network, should be carried out. Therefore, the tests of the consumer products with network have obliged us to consume much time to design and conduct. For reducing the labor of designing test cases, algorithms and tools, which help test engineers to convert specifications written in a natural language into semiformal descriptions, and to generate test cases including deterministic and nondeterministic test cases as decision tables, are proposed in the paper. The algorithms and tools were applied to a tiny example for evaluation and confirmed that they have succeeded in generating test cases from documents in a natural language.10.1109/ICCE46568.2020.9043022https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9043022Consumer products with software product line engineering;Automatic test case generation for specification in natural languageIEEE Inglês CE1 Excluído
Automated High-Level Generation of Low-Power Approximate Computing CircuitsK. Nepal; S. Hashemi; H. Tann; R. I. Bahar; S. Reda2019 Numerous application domains (e.g., signal and image processing, computer graphics, computer vision, and machine learning) are inherently error tolerant, which can be exploited to produce approximate ASIC implementations with low power consumption at the expense of negligible or small reductions in application quality. A major challenge is the need for approximate and high-level design generation tools that can automatically work on arbitrary designs. In this article, we provide an expanded and improved treatment of our ABACUS methodology, which aims to automatically generate approximate designs directly from their behavioral register-transfer level (RTL) descriptions, enabling a wider range of possible approximations. ABACUS starts by creating an abstract syntax tree (AST) from the input behavioral RTL description of a circuit, and then applies variant operators to the AST to create acceptable approximate designs. The devised variant operators include data type simplifications, arithmetic operation approximations, arithmetic expressions transformations, variable-to-constant substitutions, and loop transformations. A design space exploration technique is devised to explore the space of possible variant approximate designs and to identify the designs along the Pareto frontier that represents the trade-off between accuracy and power consumption. In addition, ABACUS prioritizes generating approximate designs that, when synthesized, lead to circuits with simplified critical paths, which are exploited to realize complementary power savings through standard voltage scaling. We integrate ABACUS with a standard ASIC design flow, and evaluate it on four realistic benchmarks from three different domains-machine learning, signal processing, and computer vision. Our tool automatically generates many approximate design variants with large power savings, while maintaining good accuracy. We demonstrate the scalability of ABACUS by parallelizing the flow and use of recent standard synthesis tools. Compared to our previous efforts, the new ABACUS tool provides up to 20.5× speed-up in runtime, while able to generate approximate circuits that lead to additional power savings reaching up to 40 percent.10.1109/TETC.2016.2598283https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7533498Approximate computing;design space exploration;low power circuits;low area circuits;voltage scaling;critical path optimizationIEEE Inglês CE1 Excluído
Automatically Curated Data SetsM. Kessel; C. Atkinson 2019 o validate hypotheses and tools that depend on the semantics of software, it is necessary to assemble, prepare and maintain (i.e. curate) large, high-quality corpora of executable software systems exhibiting certain desired behavior and/or properties. Today this is a highly tedious and laborious activity requiring significant human time and effort. In this paper we therefore present a prototype platform that supports the notion of “live data sets” where almost all aspects of the data set curation process are automated. Instead of curating data sets by hand, or writing dedicated tools to select and check software samples on a case-by-case basis, a live data set allows users to simply describe their requirements as abstract scripts written in a declarative domain specific language. After explaining the approach and the key ideas behind its implementation, in this paper we present two examples of executable corpora generated automatically from a live data set populated from Maven Central. The first illustrates a “semantics agnostic” use case where the actual behavior of the software is unimportant, while the second illustrates a “semantics specific” use case where software implementing a specific functional abstraction is selected.10.1109/SCAM.2019.00015https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8930881data-set;corpus;executable;behavior;automation;curationIEEE Inglês CE1 Excluído
Towards Concrete Syntax Based Find for Graphical Domain Specific LanguagesE. Kalnina; A. Sostaks 2019 One of the main reasons why Model-Driven Engineering (MDE) technologies including Domain-specific modelling languages (DSML) have not reached the expected acceptance in the industry is a poor tool support. One of the features with a limited support even in commercial modelling tools is search (find). Typically, MDE tools support only a simple keyword-based textual search functionality. The same is true for the tools built using Domain-specific language (DSL) tool definition frameworks. It is proposed to provide the concrete syntax-based find functionality as a service of a DSL tool definition framework. The find diagrams are defined in a concrete syntax of a DSL. A definition of a DSL is used to provide a language-specific find functionality in the DSL tool.10.1109/MODELS-C.2019.00038https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904770graphical domain-specific languages;DSL tool definition frameworks;findIEEE Inglês CE1 Excluído
Automating Test Oracle Generation in DevOps for Industrial ElevatorsA. Arrieta; M. Otaegi; L. Han; G. Sagardui; S. Ali; M. Arratibel2022 Orona is a world-renowned elevators developer. During elevators' lives, their software continues to evolve, e.g., due to hardware obsolescence, requirements changes, vulnerabilities, and bug corrections. Such continuous evolution demands the continuous testing of industrial elevators with the minimum manual effort possible. To this end, we present a tool, whose core component is a domain-specific language (DSL) with which a user can specify test oracles at a higher level of abstraction and independent of a testing level. The DSL also supports specifying uncertainty-aware test oracles to test elevators under various uncertainties inherent in them. Finally, the DSL is also equipped with test oracle generation that generates test oracle code automatically at the different DevOps testing levels (i.e., Software and Hardware-in-the-Loop test levels, and in operation) to enable reuse of test oracles across these levels. We evaluated this DSL with an industrial elevators case study at Orona's site to specify and generate test oracles. The evaluation showed that the high expressiveness of the DSL permits the high-level definition of test oracles in our industrial context. Based on the industrial application, we discuss our experiences and lessons learned.10.1109/SANER53432.2022.00044https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9825900Domain Specific Language;Test Oracle Gener-ation;Cyber-Physical Systems;EvolutionIEEE Inglês CE1 Excluído
Using OWL Ontologies as a Domain-Specific Language for Capturing Requirements for Formal Analysis and Test Case GenerationA. W. Crapo; A. Moitra 2019 Our experience at GE Research suggests that the use of a controlled-English grammar and a rich authoring environment can greatly facilitate subject matter experts' ability to understand, create, and collaboratively employ models. A domain ontology is an ideal foundation for many advanced capabilities. An example is extending our controlled-English grammar and authoring environment for OWL model generation to allow the capture of high-level requirements, assumptions, and assertions, enabling requirement engineers to create models of system capability and behavior amenable to formal methods analysis to detect incompleteness, conflict, and a variety of other issues. The same domain models and formal requirements can be used to automatically generate test cases and test procedures. Automated test generation represents a huge reduction in the time and effort required to create and validate critical software. In this paper we illustrate how ontologies enable the ASSERT™ tool suite to support the above capabilities through a small grounding use case.10.1109/ICOSC.2019.8665630https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8665630ontology;requirements;formal methods;automated test generationIEEE Inglês CE1 Excluído
Populating MBSE Models from MDAO AnalysisO. Aïello; D. S. D. R. Kandel; J. -C. Chaudemar; O. Poitou; P. d. Saqui-Sannes2021 Over the past decade, Systems Engineering has switched from document-centric approaches to model-based ones. In this context, Model Based System Engineering (MBSE) and Multidisciplinary Design Analysis and Optimization (MDAO) have emerged as two complementary disciplines. How to combine MBSE and MDAO approaches for the benefits of systems engineers is still an open issue. This paper discusses a case study of coupling MBSE and MDAO. The MBSE part relies on SysML and timed automata, two modeling languages that are supported by the TTool and UPPAAL-SMC tools, respectively. The MDAO part is developed in the context of Open MDAO. The paper uses a drone as a case study and focuses discussion on battery usage. The SysML model of the drone is enhanced with a timed automata model of the battery. The SysML model of the battery is populated with results from MDAO analysis. In this context, combining SysML, UPPAAL-SMC and Open-MDAO offers to improve self-confidence in some values lying in the model, improve self-confidence in the requirements satisfaction, as well as to refine some requirements values with better accuracy.10.1109/ISSE51541.2021.9582519https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582519MBSE;MDAO;SysML;timed automata;droneIEEE Inglês CE1 Excluído
From non-autonomous Petri net models to executable state machinesJ. P. Barros; L. Gomes 2019 Petri nets have long been known as a readable and powerful graphical modelling language. In particular, Petri nets also allow the creation of high-level models of embedded controllers. These models can be translated to executable code. This possibility is already available in some tools including the IOPT Tools. Another possibility is to translate the Petri net model into a state machine, which can then be easily executed by an even larger number of platforms for cyber-physical systems. In that sense, this paper presents a tool that is able to generate a state machine from a non-autonomous class of Petri supported by the IOPT Tools framework (which is publicly available). These state machines would be too large to be manually generated, but can now be automatically created, simulated, and verified using an higher-level modelling language. The state machines can then be used for execution or even as input for additional verification tools. This paper presents the translation algorithm and an illustrative example.10.1109/ISIE.2019.8781246https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8781246model-driven development;cyber-physical systems;Petri nets;design tools;embedded systemsIEEE Inglês CE1 Excluído
UCAnDoModels: A Context-Based Model Editor for Editing and Debugging UML Class and State-Machine DiagramsP. Pourali; J. M. Atlee 2019 Practitioners face cognitive challenges when using model editors to edit and debug UML models, which make them reluctant to adopt modelling. To assist practitioners in their modelling tasks, we have developed effective and easy-to-use tooling techniques and interfaces that address some of these challenges. The principle philosophy behind our tool is to employ cognitive-based techniques such as Focus+Context interfaces and increased automation of modelling tasks, in order to provide the users with valid, relevant and meaningful contextual information that are essential to fulfil a focus task (e.g., writing a transition expression). This paper presents our approach, which we call User-Centric and Artefact-centric Development of Models (UCAnDoModels), and discusses two use-case scenarios to demonstrate how our tooling techniques can enhance the user experience with modelling tools.10.1109/MODELS-C.2019.00122https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904513User-Centric Software Development, UML Modelling Tools, Modelling Challenges, Focus+Context User InterfacesIEEE Inglês CE1 Excluído
Back to the Roots: Linking User Stories to Requirements Elicitation ConversationsT. Spijkman; F. Dalpiaz; S. Brinkkemper2022 Pre-requirements specification (pre-RS) traceability focuses on tracing requirements back to their sources. In comparison with post-RS traceability, pre-RS traceability is an under-explored area of research. Likely reasons for the limited studies are the scarcity of pre-RS resources, e.g., recorded requirements elicitation conversations such as interviews or workshops, and the challenges of linking requirements to informal, unstructured text. Building on the increasing use of digital communication tools that allow the recording and transcription of conversations, we explore the opportunity of linking requirements to the transcript of a requirements elicitation conversation. We introduce TRACE2CoNV, a prototype tool that aims at tracing user story requirements back to the relevant speaker turns in a conversation. TRACE2CoNV makes use of NLP techniques to determine the relevant speaker turns. As an initial validation, we take automatically generated transcripts from real-world requirements conversations, and we assess the effectiveness of TRACE2CoNV in supporting the process of identifying additional context for the requirements. The validation serves as a formative evaluation that guides the evolution of TRACE2CoNV and as a inspiration for future research in the field of conversational RE.10.1109/RE54965.2022.00042https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920091Requirements Elicitation;User Stories;Natural Language Processing;Conversational REIEEE Inglês CE1 Excluído
Speculative Analysis for Quality Assessment of Code CommentsP. Rani 2021 Previous studies have shown that high-quality code comments assist developers in program comprehension and maintenance tasks. However, the semi-structured nature of comments, unclear conventions for writing good comments, and the lack of quality assessment tools for all aspects of comments make their evaluation and maintenance a non-trivial problem. To achieve high-quality comments, we need a deeper understanding of code comment characteristics and the practices developers follow. In this thesis, we approach the problem of assessing comment quality from three different perspectives: what developers ask about commenting practices, what they write in comments, and how researchers support them in assessing comment quality. Our preliminary findings show that developers embed various kinds of information in class comments across programming languages. Still, they face problems in locating relevant guidelines to write consistent and informative comments, verifying the adherence of their comments to the guidelines, and evaluating the overall state of comment quality. To help developers and researchers in building comment quality assessment tools, we provide: (i) an empirically validated taxonomy of comment convention-related questions from various community forums, (ii) an empirically validated taxonomy of comment information types from various programming languages, (iii) a language-independent approach to automatically identify the information types, and (iv) a comment quality taxonomy prepared from a systematic literature review.10.1109/ICSE-Companion52605.2021.00132https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402522code comments, mining developer sources, developer information needs, comment quality assessmentIEEE Inglês CE1 Excluído
An Empirical Study of Code Smells in Transformer-based Code Generation TechniquesM. L. Siddiq; S. H. Majumder; M. R. Mim; S. Jajodia; J. C. S. Santos2022 Prior works have developed transformer-based language learning models to automatically generate source code for a task without compilation errors. The datasets used to train these techniques include samples from open source projects which may not be free of security flaws, code smells, and violations of standard coding practices. Therefore, we investigate to what extent code smells are present in the datasets of coding generation techniques and verify whether they leak into the output of these techniques. To conduct this study, we used Pylint and Bandit to detect code smells and security smells in three widely used training sets (CodeXGlue, APPS, and Code Clippy). We observed that Pylint caught 264 code smell types, whereas Bandit located 44 security smell types in these three datasets used for training code generation techniques. By analyzing the output from ten different configurations of the open-source fine-tuned transformer-based GPT-Neo 125M parameters model, we observed that this model leaked the smells and non-standard practices to the generated source code. When analyzing GitHub Copilot's suggestions, a closed source code generation tool, we observed that it contained 18 types of code smells, including substandard coding patterns and 2 security smell types.10.1109/SCAM55253.2022.00014https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10006873code generation;code smell;security smell;transformer;pre-trained model;GitHub copilotIEEE Inglês CE1 Excluído
PrivacyStory: Tool Support for Extracting Privacy Requirements from User StoriesG. B. Herwanto; G. Quirchmayr; A. M. Tjoa2022 Privacy by design requires that developers address privacy concerns from the early stage of software development life cycle. It encourages them to take a proactive approach to privacy engineering by identifying personal data, creating conceptual data flow diagrams, and identifying privacy threats. We argue that by providing a tool that automates some of the steps can reduce the burden on development teams. We develop a tool called PrivacyStory, including an end-to-end privacy requirement generation from a set of user stories. The tool provides some automation, utilizing a current state-of-the art natural language processing model. The core aim of our tool is to assist development teams in becoming more agile in their approach to privacy requirements engineering.10.1109/RE54965.2022.00036https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920066privacy requirements engineering;user story;natural language processingIEEE Inglês CE1 Excluído
Ambiguity and Generality in Natural Language Privacy PoliciesM. B. Hosseini; J. Heaps; R. Slavin; J. Niu; T. Breaux2021 Privacy policies are legal documents containing application data practices. These documents are well-established sources of requirements in software engineering. However, privacy policies are written in natural language, thus subject to ambiguity and abstraction. Eliciting requirements from privacy policies is a challenging task as these ambiguities can result in more than one interpretation of a given information type (e.g., ambiguous information type "device information" in the statement "we collect your device information"). To address this challenge, we propose an automated approach to infer semantic relations among information types and construct an ontology to guide requirements authors in the selection of the most appropriate information type terms. Our solution utilizes word embeddings and Convolutional Neural Networks (CNN) to classify information type pairs as either hypernymy, synonymy, or unknown. We evaluate our model on a manually-built ontology, yielding predictions that identify hypernymy relations in information type pairs with 0.904 F-1 score, suggesting a large reduction in effort required for ontology construction.10.1109/RE51729.2021.00014https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604600Privacy Policy;Privacy Requirement;Ambiguity;Generality;Semantic Relation;Neural Network;OntologyIEEE Inglês CE1 Excluído
Work in Progress paper: Experiment Planning for Heterogeneous Programmable NetworksN. Sultana 2022 Private and publicly-funded cloud infrastructure and testbeds increasingly feature programmable network hardware. Programmable network cards and switches support the execution of increasingly-complex in-network programs that can operate independently of end-hosts to improve the network’s performance, resilience and utilisation. Reasoning about in-network programs, their placement, and workloads is needed to plan jobs on programmable networks. On programmable testbed networks, this reasoning feeds into resource allocation, fairness and reproducible research. But this reasoning is made challenging by the performance and resource diversity of hardware and by the failure modes that can arise in a distributed system.Flightplanner is currently the most comprehensive reasoning system for distributed and heterogeneous in-network programs but it uses a custom formalism and tool implementation, making it difficult to understand, extend, and scale.This paper describes Lightplanner, a generalisation of Flight-planner’s reasoning system that has been implemented on Prolog. It provides an executable formalisation in a well-understood logic. By relying on Prolog’s proof search, Lightplanner is 10 smaller than Flightplanner’s implementation in C++, making×it better suited for others to understand, extend, and scale. A benchmark of publicly-available in-network programs is used to evaluate Lightplanner against Flightplanner. Though the time overhead is slightly larger, Lightplanner can find better allocations than the original, more complex C++ implementation.Lightplanner is being incubated to plan experiments in a local programmable network testbed at Illinois Tech, and as a future step it will be extended to work across federated networks such as FABRIC.10.1109/DCOSS54816.2022.00079https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9881621Programmable Networking;Resource Allocation;Program AnalysisIEEE Inglês CE1 Excluído
Zoom4PF: A Tool for Refining Static and Dynamic Domain Descriptions in Problem FramesS. Wei; Z. Li; Y. Yang; H. Xiao 2021 Problem analysis has long been considered the key to requirements engineering, and the Problem Frames (PF) approach provides a structured method by deploying a common model for analyzing various types of problems. Problem decomposition is an important technique in structuring the software solution and also the key to reducing problem size and complexity. However, there has not been a suite of flexible and effective tools to describe details of problem domains in PF models. In this paper, we combine model-driven engineering and PF to provide a tool that can refine domain descriptions. In order to support modeling between domain stakeholders and software designers, we provide a technique and tool to allow the modeller to zoom in the details of a problem diagram, by adding UML State Machine Diagrams and SysML Block Definition Diagrams to domain descriptions.A demo video of this tool is available at https://youtu.be/BcQPlDYiOa8. More details of this tool and the appendix to this article are available at https://github.com/Wsfff-lf/ZOOM4PF/tree/main.10.1109/RE51729.2021.00047https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604545Problem Frames approach;Meta-model;Model-driven engineering;State machine;Block diagramIEEE Inglês CE1 Excluído
Verifying Reflex-software with SPIN: Hand Dryer Case StudyT. V. Liakh; N. O. Garanina; I. S. Anureev; V. E. Zyubin2020 Process-oriented programming is a natural way to describe control software as a set of communicating processes with executable states, that allows to speed up its development. The Reflex language is one of the representatives of the family of process-oriented languages. The paper justifies the possibility of applying the model checking method for verification of Reflex programs using the hand dryer case study. The case study includes specification of requirements for the hand dryer, control software in Reflex for it, the result of translation of the Reflex program and the requirements into the input language Promela of the model checker SPIN and LTL formulas, respectively, as well as verification of these formulas in SPIN.10.1109/EDM49804.2020.9153545https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153545Model checking;control software;process-oriented software;formal methods;temporal requirementsIEEE Inglês CE1 Excluído
Foundations and Tools in HOL4 for Analysis of Microarchitectural Out-of-Order ExecutionK. Palmskog; X. Yao; N. Dong; R. Guanciale; M. Dam2022 Program analyses based on Instruction Set Architecture (ISA) abstractions can be circumvented using microarchitectural vulnerabilities, permitting unwanted program information flows even when proven ISA-level properties ostensibly rule them out. However, the low abstraction levels found below ISAs, e.g., in microarchitectures defined in hardware description languages, may obscure information flow and hinder analysis tool development. We present a machine-checked formalization in the HOL4 theorem prover of a language, MIL, that abstractly describes microarchitectural in-order and out-of-order program execution and enables reasoning about low-level program information flows. In particular, MIL programs can exhibit information flow side channels when executed out-of-order, as compared to a reference in-order execution. We prove memory consistency between MIL's out-of-order and in-order dynamic semantics in HOL4, and define a notion of conditional noninterference for MIL programs which rules out trace-driven cache side channels. We then demonstrate how to establish conditional noninterference for programs via a novel semi-automated bisimulation based verification strategy inside HOL4 that we apply to several examples. Based on our results, we believe MIL is suitable as a translation target for ISA code to enable information flow analyses.10.34727/2022/isbn.978-3-85448-053-2_19https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026589information flow;interactive theorem proving;HOL4;microarchitectures;out-of-order executionIEEE Inglês CE1 Excluído
A Semantics Modeling Approach Supporting Property Verification based on Satisfiability Modulo TheoriesJ. Chen; J. Lu; G. Wang; L. Feng; D. Kiritsis2022 Property verification in Model-based systems engineering (MBSE) supports the formalization of model properties and evaluates the constraints of model properties to select an optimal system architecture from alternatives for tradeoff optimization. However, there is a lack of an integrated method that property verification enables to be applied in multi domain specific modeling languages, which is not conductive to the reuse of property verification for different architecture and may increase the learning and use cost. To solve the problem, a semantic approach combining a unified modeling method GOPPRRE modeling method with Satisfiability Modulo Theories (SMT) is proposed to realize property verification. The syntax of the multi-architecture modeling language KARMA based on the GOPPRRE modeling method is extended to realize property verification based on Satisfiability Modulo Theories, which enables the KARMA language to verify the models by evaluating the constraints which are defined based on the model properties. The proposed approach supports the evaluation of property constraints defined by different modeling languages for trade-off optimization in a unified language. The approach is evaluated by a case of optimizing the matching between workers and processes in a multi-architecture modeling tool MetaGraph which is developed based on KARMA. From the result, such approach enables to evaluate constraints consisting of properties and select an optimal scheme from the alternatives.10.1109/SysCon53536.2022.9773841https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773841Property verification;KARMA;GOPPRRE;SMT;MBSEIEEE Inglês CE1 Excluído
RM2PT: A Tool for Automated Prototype Generation from Requirements ModelY. Yang; X. Li; Z. Liu; W. Ke 2019 Prototyping is an effective and efficient way of requirement validation to avoid introducing errors in the early stage of software development. However, manually developing a prototype of a software system requires additional efforts, which would increase the overall cost of software development. Based on our proposed approach, we develop RM2PT: a tool for generating prototypes from requirements models automatically. A requirements model consists of a use case diagram, a conceptual class diagram, system sequence diagrams for use cases, and the formal contracts of their system operations in OCL (Object Constraint Language). RM2PT can generate executable MVC (Model View Controller) prototypes from requirements models automatically. We evaluate the tool with four case studies. 93.65% of requirement specifications can be generated to the executable Java source code successfully, and only 6.35% are non-executable for our current provided generation algorithm such as sorting and event-call, which can be implemented by developers manually or invoking the APIs of advanced algorithms in Java library. The tool is efficient that the one second generated prototype of a case study requires approximate nine hours manual implementation by skilled programmers.10.1109/ICSE-Companion.2019.00038https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8802733Prototype;Code Generation;Requirements Model;Requirements Validation;UML;OCLIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8767927
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582297
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904527
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8732847
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9456275
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9226290
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904815
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159108
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904865
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599869
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714377
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9424363
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958697
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604656
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936279
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202820
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8712366
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9216579
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952421
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8662719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9393490
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904524
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9043022
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7533498
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8930881
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904770
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9825900
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8665630
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582519
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8781246
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904513
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920091
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10006873
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920066
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604600
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9881621
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604545
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153545
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773841
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8802733

Automated Prototype Generation From Formal Requirements ModelY. Yang; X. Li; W. Ke; Z. Liu 2020 Prototyping is an effective and efficient way of requirements validation to avoid introducing errors in the early stage of software development. However, manually developing a prototype of a software system requires additional efforts, which would increase the overall cost of software development. In this article, we present an approach with a developed tool RM2PT to automated prototype generation from formal requirements models for requirements validation. A requirements model consists of a use case diagram, a conceptual class diagram, use case definitions specified by system sequence diagrams, and the contracts of their system operations. A system operation contract is formally specified by a pair of pre and postconditions in object constraint language. We propose a method with a set of transformation rules to decompose a contract into executable parts and nonexecutable parts. An executable part can be automatically transformed into a sequence of primitive operations by applying their corresponding rules, and a nonexecutable part is not transformable with the rules. The tool RM2PT provides a mechanism for developers to develop a piece of program for each nonexecutable part manually, which can be plugged into the generated prototype source code automatically. We have conducted four case studies with over 50 use cases. The experimental result shows that the 93.65% system operations are executable, and only 6.35% are nonexecutable, which can be implemented by developers manually or invoking the third-party application programming interface (APIs). Overall, the result is satisfactory. Each 1 s generated prototype of four case studies requires approximate one day's manual implementation by a skilled programmer. The proposed approach with the developed computer-aided software engineering tool can be applied to the software industry for requirements engineering.10.1109/TR.2019.2934348https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8822502Formal requirements model;object constraint language (OCL);prototype;requirements;requirements model;requirements validation;unified modeling language (UML)IEEE Inglês CE1 Excluído
The Python/C API: Evolution, Usage Statistics, and Bug PatternsM. Hu; Y. Zhang 2020 Python has become one of the most popular programming languages in the era of data science and machine learning, especially for its diverse libraries and extension modules. Python front-end with C/C++ native implementation achieves both productivity and performance, almost becoming the standard structure for many mainstream software systems. However, feature discrepancies between two languages can pose many security hazards in the interface layer using the Python/C API. In this paper, we applied static analysis to reveal the evolution and usage statistics of the Python/C API, and provided a summary and classification of its 10 bug patterns with empirical bug instances from Pillow, a widely used Python imaging library. Our toolchain can be easily extended to access different types of syntactic bug-finding checkers. And our systematical taxonomy to classify bugs can guide the construction of more highly automated and high-precision bug-finding tools.10.1109/SANER48275.2020.9054835https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054835Python/C API;Static analysis;Evolution analysis;Fact extraction;Bug patternIEEE Inglês CE1 Excluído
On Analyzing Rule-Dependencies to Generate Test Cases for Model TransformationsT. -H. Nguyen; D. -H. Dang; Q. -T. Nguyen2019 Quality model transformations play a key role in the successful realization of Model Driven Engineering in practice. In the relational model transformations, rule dependency relations directly impact quality properties such as correctness, completeness, and information preservation. The analysis of rule dependencies from the declarative specification is expected to bring advantages for testing transformation properties.In this paper, we proposed a black-box approach for testing relational model transformations based on the analysis of the declarative specification using Triple Graph Grammar (TGG) rules. We exploit declarative TGG rules to capture the rule dependencies. Then, rule dependencies are combined together using the t-way testing technique to create test case descriptions. We transform patterns representing the input test condition and the oracle function of a test case description into OCL (Object Constraint Language) constraints to facilitate automatically generating input test models by solving constraints and querying interesting properties on the output models.10.1109/KSE.2019.8919486https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8919486Model Transformation;Triple Graph GrammarIEEE Inglês CE1 Excluído
Data2Vis: Automatic Generation of Data Visualizations Using Sequence-to-Sequence Recurrent Neural NetworksV. Dibia; Ç. Demiralp 2019 Rapidly creating effective visualizations using expressive grammars is challenging for users who have limited time and limited skills in statistics and data visualization. Even high-level, dedicated visualization tools often require users to manually select among data attributes, decide which transformations to apply, and specify mappings between visual encoding variables and raw or transformed attributes. In this paper we introduce Data2Vis, an end-to-end trainable neural translation model for automatically generating visualizations from given datasets. We formulate visualization generation as a language translation problem, where data specifications are mapped to visualization specifications in a declarative language (Vega-Lite). To this end, we train a multilayered attention-based encoder–decoder network with long short-term memory (LSTM) units on a corpus of visualization specifications. Qualitative results show that our model learns the vocabulary and syntax for a valid visualization specification, appropriate transformations (count, bins, mean), and how to use common data selection patterns that occur within data visualizations. We introduce two metrics for evaluating the task of automated visualization generation (language syntax validity, visualization grammar syntax validity) and demonstrate the efficacy of bidirectional models with attention mechanisms for this task. Data2Vis generates visualizations that are comparable to manually created visualizations in a fraction of the time, with potential to learn more complex visualization strategies at scale.10.1109/MCG.2019.2924636https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8744242Automated Visualization;Data Visualization;Deep Learning;Machine LearningIEEE Inglês CE1 Excluído
TalkSQL: A Tool for the Synthesis of SQL Queries from Verbal SpecificationsG. Obaido; A. Ade-Ibijola; H. Vadapalli2020 Recent advances in the field of Natural Language Processing (NLP) have led to many robust user interfaces (UIs) designed as intelligent tutoring systems (ITS) that help students learn, query and access data in relational databases. Such tools are generally referred to as Natural Language Interfaces to Databases (NLIDBs). Many of these UIs rely on voice or typewritten for further processing. Research has shown that typewritten remains the preferred input method used by database UIs designers for querying relational databases due to its flexibility. Still, there is a dearth of tools that require voice-based inputs for querying relational databases. Despite the scarcity of these tools, many of them fail to provide a comprehensive feedback to a user. In this paper, we introduce a voice-based query system named TalkSQL that takes voice inputs from a user, converts these words into SQL queries and returns a feedback to the user. Automatic feedback generation is of immense importance. To achieve this, we have used regular expressions, a representation of regular languages for the recognition of the Create, Read, Update, Delete (CRUD) operations in SQL and automatically generate a feedback using pre-defined templates. A survey on 53 participants showed that 91.2% agreed that they were able to understand the CRUD command using TalkSQL. The expected contributions are in two-fold: this work may assist a special (e.g. visually impaired) learner to understand SQL queries, and show that a voice-based interface can assist users in understanding SQL queries.10.1109/IMITEC50163.2020.9334088https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9334088Verbal Specification;Speech recognition;Relational database;SQL tutoringIEEE Inglês CE1 Excluído
Toward Dependable Model-Driven Design of Low-Level Industrial Automation Control SystemsN. Zhou; D. Li; V. Vyatkin; V. Dubinin; C. Liu2022 Recent technological advances and manufacturing paradigm evolutions in industrial settings will dramatically increase the complexity of automation control systems. Traditional solutions to the software development of low-level control kernels (e.g., numerical control kernel, motion control kernel, and real-time communication tasks) are unable to cope effectively with such complexity due to an inadequate level of abstraction and challenges for dependability. This article presents a formal semantics integrated model-driven design approach as a holistic solution. A domain-specific modeling language (DSML) is specified based on the adaption of IEC 61 499 architecture, along with the extensions of task model, task-to-resource allocation, and nonfunctional specification. Both formal structural and behavioral semantics of the proposed DSML are then explicitly defined. Design-time formal verification is also achieved by automated model transformations. A metaprogrammable environment is adopted to facilitate flexible modeling, verification, and code generation. A case study is demonstrated on implementing a prototype computer numerical control (CNC) system using the proposed solution. Note to Practitioners—The low-level automation control system in the modern manufacturing scenarios require more agility while respecting strict timing constraints. Handling such complexity with manual coding is getting harder and less efficient. The DSML and the supporting development environment presented in this article aim to enhance the level of automation, flexibility, and dependability of the whole design process. For the proposed DSML, its syntax is formalized and defined as metamodels, while the semantics is integrated through model annotation and transformation. These definitions are implemented as external rules for a metaprogrammable environment to establish our proposed development tool. The finding and insight from this article can enhance efficiency and dependability during the development of common control kernels, such as CNC kernel and motion controller.10.1109/TASE.2020.3038034https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272668Domain-specific modeling language (DSML);formal verification;IEC 61499;industrial automation control system;model-driven engineering (MDE)IEEE Inglês CE1 Excluído
iContractBot: A Chatbot for Smart Contracts’ Specification and Code GenerationI. Qasse; S. Mishra; M. Hamdaqa2021 Recently, Blockchain technology adoption has expanded to many application areas due to the evolution of smart contracts. However, developing smart contracts is non-trivial and challenging due to the lack of tools and expertise in this field. A promising solution to overcome this issue is to use Model-Driven Engineering (MDE), however, using models still involves a learning curve and might not be suitable for non-technical users. To tackle this challenge, chatbot or conversational interfaces can be used to assess the non-technical users to specify a smart contract in gradual and interactive manner. In this paper, we propose iContractBot, a chatbot for modeling and developing smart contracts. Moreover, we investigate how to integrate iContractBot with iContractML, a domainspecific modeling language for developing smart contracts, and instantiate intention models from the chatbot. The iContractBot framework provides a domain-specific language (DSL) based on the user intention and performs model-to-text transformation to generate the smart contract code. A smart contract use case is presented to demonstrate how iContractBot can be utilized for creating models and generating the deployment artifacts for smart contracts based on a simple conversation.10.1109/BotSE52550.2021.00015https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474392Chatbot;Smart Contracts;Blockchain;Model-Driven Engineering;Domain Specific Language;Ethereum;Hyperledger ComposerIEEE Inglês CE1 Excluído
Exploring Tools and Strategies Used During Regular Expression Composition TasksG. R. Bai; B. Clee; N. Shrestha; C. Chapman; C. Wright; K. T. Stolee2019 Regular expressions are frequently found in programming projects. Studies have found that developers can accurately determine whether a string matches a regular expression. However, we still do not know the challenges associated with composing regular expressions. We conduct an exploratory case study to reveal the tools and strategies developers use during regular expression composition. In this study, 29 students are tasked with composing regular expressions that pass unit tests illustrating the intended behavior. The tasks are in Java and the Eclipse IDE was set up with JUnit tests. Participants had one hour to work and could use any Eclipse tools, web search, or web-based tools they desired. Screen-capture software recorded all interactions with browsers and the IDE. We analyzed the videos quantitatively by transcribing logs and extracting personas. Our results show that participants were 30% successful (28 of 94 attempts) at achieving a 100% pass rate on the unit tests. When participants used tools frequently, as in the case of the novice tester and the knowledgeable tester personas, or when they guess at a solution prior to searching, they are more likely to pass all the unit tests. We also found that compile errors often arise when participants searched for a result and copy/pasted the regular expression from another language into their Java files. These results point to future research into making regular expression composition easier for programmers, such as integrating visualization into the IDE to reduce context switching or providing language migration support when reusing regular expressions written in another language to reduce compile errors.10.1109/ICPC.2019.00039https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813286Exploratory study;regular expressions;problem solving strategies;personasIEEE Inglês CE1 Excluído
AI4U: A Tool for Game Reinforcement Learning ExperimentsG. Gomes; C. A. Vidal; J. B. Cavalcante-Neto; Y. L. B. Nogueira2020 Reinforcement Learning is a promising approach to the design of Non-Player Characters (NPCs). It is challenging, however, to design games enabled to support reinforcement learning because, in addition to specifying the environment and the agent that controls the character, there is the challenge of modeling a significant reward function for the expected behavior from a virtual character. To alleviate the challenges of this problem, we have developed a tool that allows one to specify, in an integrated way, the environment, the agent, and the reward functions. The tool provides a visual and declarative specification of the environment, providing a graphic language consistent with game events. Besides, it supports the specification of non-Markovian reward functions and is integrated with a game development platform that makes it possible to specify complex and interesting environments. An environment modeled with this tool supports the implementation of most current state-of-the-art reinforcement learning algorithms, such as Proximal Policy Optimization and Soft Actor-Critic algorithms. The objective of the developed tool is to facilitate the experimentation of learning in games, taking advantage of the existing ecosystem around modern game development platforms. Applications developed with the support of this tool show the potential for specifying game environments to experiment with reinforcement learning algorithms.10.1109/SBGames51465.2020.00014https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9291598Games;Reinforcement Learning;Autonomous Non-Player CharactersIEEE Inglês CE1 Excluído
DizSpec: Digitalization of Requirements Specification Documents to Automate Traceability and Impact AnalysisA. Rajbhoj; P. Nistala; V. Kulkarni; S. Soni; A. Pathan2022 Requirement engineering in many IT services industries continues to be a document-centric and heavily manual activity, relying on the expertise of business analysts. Requirement specification documents contain details of product features, process flows, activities, rules, parameters, etc. Intricate knowledge of dependencies between these specification elements is necessary for carrying out the effective evolution of the product over time. Today, Business Analysts (BA) are forced to recourse to keyword-based search across multiple requirement specification documents which is a time-, effort-and intellect-intensive endeavor, and vulnerable to the errors of omission and commission. To overcome these lacunae, we propose DizSpec, an automated approach for digitalizing the requirement specification documents into a model form through automatic extraction of specification model elements and the various dependencies between them. The proposed approach creates a digital thread providing machine-processable traceability from product features to its specification elements. It also provides an easy natural language querying mechanism to generate traceability and impact analysis reports of interest. In this paper, we describe the application of this approach to two real-world products thus bringing out its efficacy as well as lessons learned from this transformation journey of the document-centric process to a model-centric and automated process. Though the findings are shared in the specific context of two industry products, we believe, researchers, practitioners, and tool vendors will find the takeaways from this approach and experience applicable in other contexts too.10.1109/RE54965.2022.00030https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920016MDE;Meta-Modeling;Model Extraction;Dependency Extraction;AI in SDLC;NLP4RE;Traceability;Requirements Specification;Feature DependencyIEEE Inglês CE1 Excluído
Modeling Class Diagram using NLP in Object-Oriented DesigningN. Bashir; M. Bilal; M. Liaqat; M. Marjani; N. Malik; M. Ali2021 Requirement's analysis and design is a multifaceted and time-consuming process. The success of software projects critically relies on careful & timely analysis and modeling of system requirements. Mostly, the requirements gathered from the stakeholders are written in some language (probably English). In this regard, significant manual efforts are required for the formation of good class model which unfortunately results in time delays in the software industry. The problems associated with the requirement analysis and class modeling can be overcome by the appropriate employment of machine learning. In this paper, we propose a system, requirement engineering analysis & design (READ) to generate unified modeling language (UML) class diagram using natural language processing (NLP) and domain ontology techniques. We have implemented the READ system in Python and it successfully generates the UML class diagram i.e., class name, attributes methods, and relationships from the textual requirements written in English. To assess the performance of the proposed system, we have evaluated it on publicly available standards and the experimental results show that it outperforms the existing techniques for object-oriented based software designing.10.1109/NCCC49330.2021.9428817https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9428817Machine learning;natural language processing;object-oriented designing;unified modeling language;software designingIEEE Inglês CE1 Excluído
Efficient Parallel Wikipedia Internal Link Extraction for NLP-Assisted Requirements UnderstandingJ. Allen; S. Reddivari 2022 Requirements engineering (RE) is a critical set of activities in the software development life cycle (SDLC). Without effective requirements elicitation, organization, communication, and understanding software engineers cannot build quality soft-ware. Thus, it is necessary for software stakeholders to facilitate the SDLC by following best practices and utilizing software tools as needed to ensure requirements are well understood. One area where RE still faces issues, despite stakeholders' best efforts, is the communication of requirements amongst the various stakeholders. Software stakeholders consist of the customers, developers, managers, end users, and others with a vested interest in the software, and they typically all have different skillsets, backgrounds, vernaculars, and understanding of the requirements. These differences naturally lead to miscommunications which can lead to redundant, missing, or conflicting requirements, especially when customer and end user domains include complex vocabularies developers may not be accustomed to, and vice versa, e.g., biology, physics, and medicine. One approach in recent works to address this challenge has been to bridge the communication gap between stakeholders by constructing domain-specific ontologies using natural language processing (NLP) and Wikipedia [1]. With these ontologies, stakeholders have a convenient tool they can use to translate and understand specific requirements in the terminologies they're accustomed to. These techniques have shown promising potential, however there are computational challenges associated with efficiently handling a large dataset like Wikipedia. In particular, parsing internal links from Wikipedia article metadata can be a bottleneck in such ontology-construction systems. In this work we address this issue by implementing a program for memory-efficient parallel internal link extraction from Wikipedia articles. This builds on the work of Rodriguez et al. [2] by optimizing additional phases in the knowledge acquisition process.10.1109/COMPSAC54236.2022.00077https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842544wikipedia;regular expressions;NLP;parallel computingIEEE Inglês CE1 Excluído
NLP for Requirements Engineering: Tasks, Techniques, Tools, and TechnologiesA. Ferrari; L. Zhao; W. Alhoshan2021 Requirements engineering (RE) is one of the most natural language-intensive fields within the software engineering area. Therefore, several works have been developed across the years to automate the analysis of natural language artifacts that are relevant for RE, including requirements documents, but also app reviews, privacy policies, and social media content related to software products. Furthermore, the recent diffusion of game-changing natural language processing (NLP) techniques and plat-forms has also boosted the interest of RE researchers. However, a reference framework to provide a holistic understanding of the field of NLP for RE is currently missing. Based on the results of a recent systematic mapping study, and stemming from a previous ICSE tutorial by one of the authors, this technical briefing gives an overview of NLP for RE tasks, available techniques, supporting tools and NLP technologies. It is oriented to both researchers and practitioners, and will gently guide the audience towards a clearer view of how NLP can empower RE, providing pointers to representative works and specialised tools.10.1109/ICSE-Companion52605.2021.00137https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402628NLP;Requirements Engineering;Software Engineering;Transfer Learning;Survey;Mapping Study;Empirical Studies;TutorialIEEE Inglês CE1 Excluído
Automatic Detection of Ambiguous Software Requirements: An InsightM. Q. Riaz; W. H. Butt; S. Rehman2019 Requirements Engineering is one of the most important phases of the software development lifecycle. The success of the whole software project depends upon the quality of the requirements. But as we know that mostly the software requirements are stated and documented in the natural language. The requirements written in natural language can be ambiguous and inconsistent. These ambiguities and inconsistencies can lead to misinterpretations and wrong implementations in design and development phase. To address these issues a number of approaches, tools and techniques have been proposed for the automatic detection of natural language ambiguities form software requirement documents. However, to the best of our knowledge, there is very little work done to compare and analyze the differences between these tools and techniques. In this paper, we presented a state of art survey of the currently available tools and techniques for the automatic detection of natural language ambiguities from software requirements. We also focused on figuring out the popularity of different tools and techniques on the basis of citations. This research \mathbf{will} help the practitioners and researchers to get the latest insights in the above-mentioned context.10.1109/INFOMAN.2019.8714682https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714682natural language requirement;requirement engineering;ambiguity;natural language ambiguity;ambiguous software requirements;natural language processingIEEE Inglês CE1 Excluído
Efficient Extraction of Technical Requirements Applying Data AugmentationI. Gräßler; D. Preuß; L. Brandt; M. Mohr2022 Requirements for complex technical systems are documented in natural language sources. Manually extracting requirements from these documents – e.g., to transfer them to a requirements management tool – is time-consuming and error-prone. Today, machine learning approaches are used to classify natural language requirements and thus enable extraction of these requirements. However, in practice there is often not enough labeled domain-specific data available to train such models. For this reason, this work investigates the performance in artificially generating requirements through data augmentation. First, success criteria for a method for extracting and augmenting requirements are elicited in cooperation with industry experts. Second, the performance in the augmentation of requirements data is investigated. The results show that GPT-J is suitable for generating artificial requirements: weighted average F1-score: 62.74 %. Third, a method is developed to extract requirements from specifications, augment requirements data, and then classify the requirements. As a final step, the method is evaluated with requirements data from three industry case examples of the engineering service provider EDAG Engineering GmbH: assembly latch hood, adjustable stopper hood and trunk curtain roller blind. Evaluation shows that especially the transferability of models is improved when they are trained with augmented data. The developed method facilitates eliciting complete requirements sets. Performance of artificial intelligence models in requirements extraction is improved applying augmented data and therefore the method leads to efficient product development.10.1109/ISSE54508.2022.10005452https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005452requirements engineering;artificial intelligence;natural language processing;machine learning;data augmentationIEEE Inglês CE1 Excluído
MBRP: Model-Based Requirements Prioritization Using PageRank AlgorithmM. Abbas; I. Inayat; N. Jan; M. Saadatmand; E. Paul Enoiu; D. Sundmark2019 Requirements prioritization plays an important role in driving project success during software development. Literature reveals that existing requirements prioritization approaches ignore vital factors such as interdependency between requirements. Existing requirements prioritization approaches are also generally time-consuming and involve substantial manual effort. Besides, these approaches show substantial limitations in terms of the number of requirements under consideration. There is some evidence suggesting that models could have a useful role in the analysis of requirements interdependency and their visualization, contributing towards the improvement of the overall requirements prioritization process. However, to date, just a handful of studies are focused on model-based strategies for requirements prioritization, considering only conflict-free functional requirements. This paper uses a meta-model-based approach to help the requirements analyst to model the requirements, stakeholders, and inter-dependencies between requirements. The model instance is then processed by our modified PageRank algorithm to prioritize the given requirements. An experiment was conducted, comparing our modified PageRank algorithm's efficiency and accuracy with five existing requirements prioritization methods. Besides, we also compared our results with a baseline prioritized list of 104 requirements prepared by 28 graduate students. Our results show that our modified PageRank algorithm was able to prioritize the requirements more effectively and efficiently than the other prioritization methods.10.1109/APSEC48747.2019.00014https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945656requirement prioritization;requirements interdependencies;meta model;page-rankIEEE Inglês CE1 Excluído
DBRG: Description-Based Non-Quality Requirements GeneratorM. Osama; A. Zaki-Ismail; M. Abdelrazek; J. Grundy; A. Ibrahim2021 Requirements quality checking is a key process in requirements engineering. For complex and large scale systems, it is recommended to use automated requirements quality checking tools because of the size and complexity of requirements. However, such tools are typically evaluated on a small set of manually curated requirements. This limitation affects the comprehensiveness and reliability of the evaluation and leaves several possible quality issues undetected. In this paper, we de-scribe a novel quality-checking-oriented synthesised requirements generator. We provide an input description language so that several quality checking issues and scenarios can be defined. The generator utilises an input dictionary of nouns and verb frames, and generates requirements sentences complying to a user-defined description of a quality affected requirement.10.1109/RE51729.2021.00052https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604619Requirements Generation;Requirements EngineeringIEEE Inglês CE1 Excluído
Evaluation of Natural Language Processing for Requirements TraceabilityC. D. Laliberte; R. E. Giachetti; M. Kolsch2022 Requirements traceability remains a challenge, especially in multi-level system of systems being developed by many different organizations. This paper develops and tests automated tracing methods based on Natural Language Processing (NLP) techniques to help ensure links between parent and child requirements are correct while preventing common requirements traceability issues. Using publicly available requirements documentation from the National Aeronautics and Space Administration (NASA), the developed software tool analyzed 215 requirements, generated a Term Frequency – Inverse Document Frequency (TF-IDF) matrix of the document collection, and classified parent-child requirement pairs using the histogram distance and cosine similarity measures under eighteen different similarity measure thresholds. Precision, recall, and F-scores were calculated, yielding maximum F-scores for each similarity measure with the objective of understanding the performance and utility of histogram distance for automated requirements tracing. The results indicate natural language processing is likely not a practical approach to requirements traceability.10.1109/SOSE55472.2022.9812649https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9812649Systems engineering;requirements management;requirements traceability;automated requirements tracing;information retrieval;natural language processingIEEE Inglês CE1 Excluído
Parametric Analyses of Attack-Fault TreesÉ. André; D. Lime; M. Ramparison; M. Stoelinga2019 Risk assessment of cyber-physical systems, such as power plants, connected devices and IT-infrastructures has always been challenging: safety (i.e., absence of unintentional failures) and security (i. e., no disruptions due to attackers) are conditions that must be guaranteed. One of the traditional tools used to help considering these problems is attack trees, a tree-based formalism inspired by fault trees, a well-known formalism used in safety engineering. In this paper we define and implement the translation of attack-fault trees (AFTs) to a new extension of timed automata, called parametric weighted timed automata. This allows us to parametrize constants such as time and discrete costs in an AFT and then, using the model-checker IMITATOR, to compute the set of parameter values such that a successful attack is possible. Using the different sets of parameter values computed, different attack and fault scenarios can be deduced depending on the budget, time or computation power of the attacker, providing helpful data to select the most efficient counter-measure.10.1109/ACSD.2019.00008https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8843643security;attack-fault trees;parametric timed automata;imitatorIEEE Inglês CE1 Excluído
Assertion and Coverage Driven Test Generation Tool for RTL DesignsN. Muhammed; N. Hussein; K. Salah; A. Khan2020 RTL verification is still one the most challenging activities in digital system development as it is still the bottleneck in the time-to-market for an integrated circuit development cycle. Thus reducing verification time is one of the most important targets. In this paper, a tool is developed to generate automatic tests from SystemVerilog assertions or SystemVerilog Coverage. The proposed tool is tested using different memory modules starting from single port RAM through Multiple ports RAM, FIFO and the DDRx families. The performance, regarding the runtime, has been compared with the handcrafted test case generation process. Moreover, the performance has been compared with other automatic test generation tools. Results shows the effectiveness of the proposed design. The proposed tool excelled in terms of its run-time, complexity, and coverage percentage.10.1109/UEMCON51285.2020.9298118https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298118Coverage;Assertions;Tests;Generation;RTL;VerificationIEEE Inglês CE1 Excluído
Unified Rational Process: Document Manager Case StudyB. I. P. Cadena; F. J. Bazán; C. O. del Carmen; V. E. Mena; J. Pérez; C. Santiago; G. Rubín2021 RUP captures the best practices of modern software development, applies to a wide range of software projects and organizations, provides us with guidance on how to use UML effectively, and provides access to a knowledge base with guides, templates, and tools. for all critical development activities. Requirements management is done through use case diagrams and visual modeling, which allows for product quality verification. In accordance with the above, it is implemented in the case study of the document version management system to generate a robust architecture through UML modeling.10.1109/ENC53357.2021.9534792https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534792Software Engineering;RUP Methodology;Document Manager System;UML modeling;Projects;RequirementsIEEE Inglês CE1 Excluído
Verifying Dynamic Trait Objects in RustA. VanHattum; D. Schwartz-Narbonne; N. Chong; A. Sampson2022 Rust has risen in prominence as a systems programming language in large part due to its focus on reliability. The language's advanced type system and borrow checker eliminate certain classes of memory safety violations. But for critical pieces of code, teams need assurance beyond what the type checker alone can provide. Verification tools for Rust can check other properties, from memory faults in unsafe Rust code to user-defined correctness assertions. This paper particularly focuses on the challenges in reasoning about Rust's dynamic trait objects, a feature that provides dynamic dispatch for function abstractions. While the explicit dyn keyword that denotes dynamic dispatch is used in 37% of the 500 most-downloaded Rust libraries (crates), dynamic dispatch is implicitly linked into 70%. To our knowledge, our open-source Kani Rust Verifier is the first symbolic modeling checking tool for Rust that can verify correctness while supporting the breadth of dynamic trait objects, including dynamically dispatched closures. We show how our system uses semantic trait information from Rust's Mid-level Intermediate Representation (an advantage over targeting a language-agnostic level such as LLVM) to improve verification performance by 5%–15× for examples from open-source virtualization software. Finally, we share an open-source suite of verification test cases for dynamic trait objects.10.1145/3510457.3513031https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794041Rust;verification;model checking;dynamic dispatchIEEE Inglês CE1 Excluído
Formal Synthesis of Filter Components for Use in Security-Enhancing Architectural TransformationsD. S. Hardin; K. L. Slind 2021 Safety- and security-critical developers have long recognized the importance of applying a high degree of scrutiny to a system’s (or subsystem’s) I/O messages. However, lack of care in the development of message-handling components can lead to an increase, rather than a decrease, in the attack surface. On the DARPA Cyber-Assured Systems Engineering (CASE) program, we have focused our research effort on identifying cyber vulnerabilities early in system development, in particular at the Architecture development phase, and then automatically synthesizing components that mitigate against the identified vulnerabilities from high-level specifications. This approach is highly compatible with the goals of the LangSec community. Advances in formal methods have allowed us to produce hardware/software implementations that are both performant and guaranteed correct. With these tools, we can synthesize high-assurance “building blocks” that can be composed automatically with high confidence to create trustworthy systems, using a method we call Security-Enhancing Architectural Transformations. Our synthesis-focused approach provides a higherleverage insertion point for formal methods than is possible with post facto analytic methods, as the formal methods tools directly contribute to the implementation of the system, without requiring developers to become formal methods experts. Our techniques encompass Systems, Hardware, and Software Development, as well as Hardware/Software Co-Design/CoAssurance. We illustrate our method and tools with an example that implements security-improving transformations on system architectures expressed using the Architecture Analysis and Design Language (AADL). We show how message-handling components can be synthesized from high-level regular or context-free language specifications, as well as a novel specification language for self-describing messages called Contiguity Types, and verified to meet arithmetic constraints extracted from the AADL model. Finally, we guarantee that the intent of the message processing logic is accurately reflected in the application binary code through the use of the verified CakeML compiler, in the case of software, or the Restricted Algorithmic C toolchain with ACL2-based formal verification, in the case of hardware/software co-design.10.1109/SPW53761.2021.00024https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474316Language theoretic security;Formal verification;Formal synthesis;Architecture modelingIEEE Inglês CE1 Excluído
checsdm: A Method for Ensuring Consistency in Heterogeneous Safety-Critical System DesignA. Paz; G. E. Boussaidi; H. Mili2021 Safety-critical systems are highly heterogeneous, combining different characteristics. Effectively designing such systems requires a complex modelling approach that deals with diverse components (e.g., mechanical, electronic, software)—each having its own underlying domain theories and vocabularies—as well as with various aspects of the same component (e.g., function, structure, behaviour). Furthermore, the regulated nature of such systems prescribes the objectives for their design verification and validation. This paper proposes checsdm, a systematic approach, based on Model-Driven Engineering (MDE), for assisting engineering teams in ensuring consistency of heterogeneous design of safety-critical systems. The approach is developed as a generic methodology and a tool framework, that can be applied to various design scenarios involving different modelling languages and different design guidelines. The methodology comprises an iterative three-phased process. The first phase, elicitation, aims at specifying requirements of the heterogeneous design scenario. Using the proposed tool framework, the second phase, codification, consists in building a particular tool set that supports the heterogeneous design scenario and helps engineers in flagging consistency errors for review and eventual correction. The third phase, operation, applies the tool set to actual system designs. Empirical evaluation of the work is presented through two executions of the checsdm approach for the specific cases of a design scenario involving a mix of UML, Simulink and Stateflow, and a design scenario involving a mix of AADL, Simulink and Stateflow. The operation phase of the first case was performed over three avionics systems and the identified inconsistencies in the design models of these systems were compared to the results of a fully manual verification carried out by professional engineers. The evaluation also includes an assessment workshop with industrial practitioners to examine their perceptions about the approach. The empirical validation indicates the feasibility and “cost-effectiveness” of the approach. Inconsistencies were identified in the three avionics systems with a greater recall rate over the manual verification. The assessment workshop shows the practitioners found the approach easy to understand and gave an overall likelihood of adoption within the context of their work.10.1109/TSE.2020.2966994https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8960313Model-driven engineering;safety-critical systems;heterogeneous design;consistency;design guidelines;DO-178CIEEE Inglês CE1 Excluído
Kirigami, the Verifiable Art of Network CuttingT. A. Thijm; R. Beckett; A. Gupta; D. Walker2022 Satisfiability Modulo Theories (SMT)-based analysis allows exhaustive reasoning over complex distributed control plane routing behaviors, enabling verification of routing under arbitrary conditions. To improve scalability of SMT solving, we introduce a modular verification approach to network control plane verification, where we cut a network into smaller fragments. Users specify an annotated cut which describes how to generate these fragments from the monolithic network, and we verify each fragment independently, using these annotations to define assumptions and guarantees over fragments akin to assume-guarantee reasoning. We prove this modular network verification procedure is sound and complete with respect to verification over the monolithic network. We implement this procedure as Kirigami, an extension of NV [25] - a network verification language and tool - and evaluate it on industrial topologies with synthesized policies. We observe a 10x improvement in end-to-end NV verification time, with SMT solve time improving by up to 6 orders of magnitude.10.1109/ICNP55882.2022.9940333https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9940333modular verification;network control plane;control plane verification;routing protocolsIEEE Inglês CE1 Excluído
An Edge Assisted Secure Lightweight Authentication Technique for Safe Communication on the Internet of Drones NetworkM. Yahuza; M. Y. I. Idris; A. W. A. Wahab; T. Nandy; I. B. Ahmedy; R. Ramli2021 Security and privacy are among the most critical challenges on the internet of drones (IoD) network. The communication entities of the IoD network can communicate securely with the use of authenticated key agreement (AKA) based techniques. However, the design of such techniques must balance the tradeoff between security and lightweight features. Recently, Chen et al. proposed an authentication and key sharing scheme for IoD deployment. It is, however, realized after scrutiny that the proposed technique is vulnerable to security attacks under the well-accepted Canetti-Krawczyk (CK) adversary model. Moreover, the scheme applies to the IoD network with only one drones' flying zone. To solve these challenges, this paper proposed a secure lightweight proven authenticated key agreement (SLPAKA) technique for IoD deployment. The technique is free from all the problems identified in the scheme of Chen et al. To ensure the reliability of the SLPAKA, the security of the technique has been assessed from a theoretical method and formal way using the ProVerif cryptographic protocol verification tool. Apart from comparing the performance of SLPAKA with the benchmarking schemes in terms of security, computational cost, and communication cost, the SLPAKA and the technique proposed by Chen et al. are implemented using a python programming language to evaluate and compare their performance in terms of energy consumption and computational time metrics. The results show that the SLPAKA outperforms the technique of Chen et al. and all the other benchmarking techniques in terms of security and lightweight features.10.1109/ACCESS.2021.3060420https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9358189Authenticated key agreement;CK adversarial model;certificateless AKA;elliptic curve cryptography;Internet of Drones;mobile edge computing;ProVerif;UAS;UAVIEEE Inglês CE1 Excluído
Analyzing Hardware Security Properties of Processors through Model CheckingB. Kumar; A. K. Jaiswal; V. S. Vineesh; R. Shinde2020 Security concerns are growing rapidly in the modern age of the widespread use of electronic products. Due to the increasing dependability on integrated circuits like processors, a security attack can lead to massive damages in different forms. Apart from software-based attacks, design errors in the hardware are also potential sources of security vulnerability. These kinds of vulnerabilities can be unlawfully utilized by attackers and malicious entities for causing damage to the users in different domains. However, discovering such threats is not trivial since simulation-based verification may fail to reveal such corner cases. In this paper, we investigate a formal approach for detecting hardware design errors which can lead to security vulnerabilities. By applying property checking with an industrial strength model checker (JasperGold), we investigate the design of different units of or1200 processor (5-stage pipeline design) for security threats. By an iterative refinement of properties, we were able to successfully write the security-critical properties of the processor through an understanding of the processor design manuals and specification documents. These properties are written in System Verilog Assertions (SVA) format and provided to the tool for model checking. When the properties fail, we obtain counter-examples that can be analyzed and studied for understanding the issues related to the secure operation of the processor. Model checking experiments were done for a total of thirteen security-critical properties. During our experiments, we also observed some security bugs related to the functionality of or 1200 processor design.10.1109/VLSID49098.2020.00036https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105390Hardware Security;Design Vulnerabilities;Property extraction;Counterexamples;Model CheckingIEEE Inglês CE1 Excluído
IFCIL: An Information Flow Configuration Language for SELinuxL. Ceragioli; L. Galletta; P. Degano; D. Basin2022 Security Enhanced Linux (SELinux) is a security architecture for Linux implementing mandatory access control. It has been used in numerous security-critical contexts ranging from servers to mobile devices. But this is challenging as SELinux security policies are difficult to write, understand, and maintain. Recently, the intermediate language CIL was introduced to foster the development of high-level policy languages and to write structured configurations. However, CIL lacks mechanisms for ensuring that the resulting configurations obey desired information flow policies. To remedy this, we propose IFCIL, a backward compatible extension of CIL for specifying fine-grained information flow requirements for CIL configurations. Using IFCIL, administrators can express, e.g., confidentiality, integrity, and non-interference properties. We also provide a tool to statically verify these requirements.10.1109/CSF54842.2022.9919690https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919690access control;formal methods and verification;information flow control;language based security;SELinuxIEEE Inglês CE1 Excluído
Pattern-Based Approach to Modelling and Verifying System SecurityX. Zheng; D. Liu; H. Zhu; I. Bayley2020 Security is one of the most important problems in the engineering of online service-oriented systems. The current best practice in security design is a pattern-oriented approach. A large number of security design patterns have been identified, categorised and documented in the literature. The design of a security solution for a system starts with identification of security requirements and selection of appropriate security design patterns; these are then composed together. It is crucial to verify that the composition of security design patterns is valid in the sense that it preserves the features, semantics and soundness of the patterns and correct in the sense that the security requirements are met by the design. This paper proposes a methodology that employs the algebraic specification language SOFIA to specify security design patterns and their compositions. The specifications are then translated into the Alloy formalism and their validity and correctness are verified using the Alloy model checker. A tool that translates SOFIA into Alloy is presented. A case study with the method and the tool is also reported.10.1109/SOSE49046.2020.00018https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9183499Security;Design patterns;Algebraic specifications;Formal verification;Model checkingIEEE Inglês CE1 Excluído
Automating Cryptographic Protocol Language Generation from Structured SpecificationsR. Metere; L. Arnaboldi 2022 Security of cryptographic protocols can be analysed by creating a model in a formal language and verifying the model in a tool. All such tools focus on the last part of the analysis, verification, and the interpretation of the specification is only explained in papers. Rather, we focus on the interpretation and modelling part by presenting a tool to aid the cryptographer throughout the process and automatically generating code in a target language. We adopt a data-centric approach where the protocol design is stored in a structured way rather than as textual specifications. Previous work shows how this approach facilitates the interpretation to a single language (for Tamarin) which required aftermath modifications. By improving the expressiveness of the specification data structure we extend the tool to export to an additional formal language, ProVerif, as well as a C++ fully running implementation. Furthermore, we extend the plugins to verify correctness in ProVerif and executability lemmas in Tamarin. In this paper we model the Diffie-Hellman key exchange, which is traditionally used as a case study; a demo is also provided for other commonly studied protocols, Needham-Schroeder and Needham-Schroeder-Lowe.10.1145/3524482.3527654https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796432• Software and its engineering→Application specific development environments;;• Security and privacy → Formal security models;;• Networks→Network protocol designIEEE Inglês CE1 Excluído
What Can the Sentiment of a Software Requirements Specification Document Tell Us?C. Werner; Z. S. Li; N. Ernst 2019 Sentiment analysis tools are becoming increasingly more prevalent in the software engineering research community. In this data showcase paper, we present a set of twenty-two software requirements specification (SRS) documents that have been preprocessed and subsequently analyzed using the Senti4SD sentiment analysis tool. As part of our preliminary research, we compared the result of the sentiment analysis of the SRS documents and other non-related documents and found that the SRS documents were 6% more neutral than other non-related documents. Finally, we also present a number of research questions that we believe the research community might be able to answer using our published data.10.1109/REW.2019.00022https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933613sentiment analysis;requirements engineering;software requirements specifications;emotionIEEE Inglês CE1 Excluído
Temporal-spatial-domanial features oriented modeling framework for Transboundary ServiceM. Li; Z. Tu; H. Xu; Z. Wang 2020 Service model is an important form to describe service functions and non-functional attributes. Many scholars have given detailed model specifications and modeling languages for various aspects such as business processes, service value delivery, service ontology description, service decision making, and case management. The state of the art of the above models and their associations shows that temporal-spatial-domanial features have received little attention, however, which have great significance on service execution and evaluation, especially in the background of Transboundary Service. There-fore, this paper proposes a Transboundary Service modeling framework oriented to temporal-spatial-domanial features. It defines the representation of service domains, and analyzes the relationship between domain and service functional/non-functional model. In addition, a tool is developed to support visual modeling and annotation work based on this framework. Finally, an actual case of Freshhema from Alibaba is used to verify this framework. Compared with the existing modeling framework (e.g. BPMN, VDML), this framework pays special attention to the description and analysis of temporal-spatial-domanial features, and clarifies the dependency relationship between it and service function/non-function attributes, pro-vides the necessary model extensions to provide more detailed support for subsequent model application and optimization.10.1109/SCC49832.2020.00063https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284634Transboundary Service;service domain;distribution characteristics;hierarchical dependence;model annotationIEEE Inglês CE1 Excluído
Towards an Effective Implementation of a Model-Driven Engineering Approach for Software DevelopmentI. Khriss; A. Jakimi; H. Abdelmalek2020 Several studies have raised the issue of the adoption of model-driven engineering (MDE) in industry. We can find there, for example, the lack of mature tools and the lack of employee training. In this paper, we present a summary of 20 years of experience in MDE and how our vision has evolved through all these years. We present our view of an effective approach for a better application of MDE which answers to some of the issues raised. This approach is supported by a set of integrated tools that facilitate not only the learning of MDE but also its implementation. We also discuss some of the results of adopting this approach in university software engineering courses and its use in real software development projects.10.1109/IRASET48871.2020.9092192https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9092192Model-driven engineering (MDE);Model-driven architecture (MDA);MDE teaching experiences;MDE industrial experiencesIEEE Inglês CE1 Excluído
Generating UML Class Diagram using NLP Techniques and Heuristic RulesE. A. Abdelnabi; A. M. Maatuk; T. M. Abdelaziz; S. M. Elakeili2020 Several tools and approaches have been proposed to generate Unified Modeling Language (UML) diagrams. Researchers focus on automating the process of extracting valuable information from Natural Language (NL) text to generate UML models. The existing approaches show less accurateness because of the ambiguity of NL. In this paper, we present a method for generation class models from software specification requirements using NL practices and a set of heuristic rules to facilitate the transformation process. The NL requirements are converted into a formal and controlled representation to increase the accuracy of the generated class diagram. A set of pre-defined rules has been developed to extract OO concepts such as classes, attributes, methods, and relationships to generate a UML class diagram from the given requirements specifications. The approach has been applied and evaluated practically, where the results show that the approach is both feasible and acceptable.10.1109/STA50679.2020.9329301https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9329301Software Engineering;Natural Language Processing;Requirement Engineering;UML;Natural languageIEEE Inglês CE1 Excluído
A Tool for the Automatic Generation of Test Cases and Oracles for Simulation Models Based on Functional RequirementsA. Arrieta; J. A. Agirre; G. Sagardui2020 Simulation models are frequently used to model, simulate and test complex systems (e.g., Cyber-Physical Systems (CPSs)). To allow full test automation, test cases and test oracles are required. Safety standards (e.g., the ISO 26262) highly recommend that the test cases of systems like CPSs are associated to requirements. As a result, typically, test cases that need to cover specific requirements are manually generated in the context of simulation models. This is, of course, a time-consuming and non-systematic process. However, the current practice lacks tools that generate test cases by considering functional requirements for simulation-based testing. In this short paper we propose a Domain-Specific Language (DSL) for specifying requirements for simulation-based testing in an easy manner. These files are later parsed by an automatic test generation algorithm, which generates test cases that follow the ASAM-XiL standard. The tool was integrated with two professional tools: (1) SYNECT from dSPACE and (2) xMOD from FEV. An initial validation was also performed with an industrial simulation model from YASA motors.10.1109/ICSTW50294.2020.00018https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155827Simulation-based Testing;Functional Requirements;Test Case GenerationIEEE Inglês CE1 Excluído
The Fundamentals of Domain-Specific Simulation Language EngineeringS. Van Mierlo; H. Vangheluwe; J. Denil2019 Simulationists use a plethora of modelling languages. General-purpose languages such as C, extended with simulation constructs, give the user access to abstractions for general-purpose computation and modularization. The learning curve for experts in domains that are far from programming, however, is steep. Languages such as Modelica and DEVS allow for a more intuitive definition of models, often through visual notations and with libraries of reusable components for various domains. The semantics of these languages is fixed. While libraries can be created, the language's syntax and semantics cannot be adapted to suit the needs of a particular domain. This tutorial provides an introduction to modelling language engineering, which allows one to explicitly model all aspects -in particular, syntax and semantics- of a (domain-specific) modelling and simulation language and to subsequently synthesize appropriate tooling. We demonstrate the discussed techniques by means of a simple railway network language using AToMPM, a (meta)modelling tool.10.1109/WSC40007.2019.9004726https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004726- IEEE Inglês CE1 Excluído
Gaps Identification for User Experience for Model Driven EngineeringP. K. Aggarwal; S. Sharma; Riya; P. Jain; Anupam2021 Since ages, Model-Driven Engineering (MDE) has been a very important part of software engineering. It focuses mainly on technical models that simplify the pattern of study and understanding of a topic. The models used in MDE are based on languages and logic. The one unknown fact is the interconnection among UX (user experience), UI (user interaction), and MDE. Feedbacks from users and different industries indicate the necessity of this interconnection in the technical industry. UX and UI are not only responsible for the development of the software industry but are also the future of the technical world due to the increasing need for fulfilling the demands of customers. The designing as well as the functions of models in software engineering can be improved with the help of user experience. UI helps MDE models to be deployed on different user platforms. It involves taking one complete MDE model as input and producing an output that is suitable for both android and web environments. So in this paper, we will see how these three terms are inter-related to each other and how they complement each other very well.10.1109/Confluence51648.2021.9377178https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9377178Software Engineering;Model Driven Engineering (MDE);User Experience;User Interface;Model;Meta model;Modelling LanguageIEEE Inglês CE1 Excluído
OpenACC Profiling Support for Clang and LLVM using Clacc and TAUC. Coti; J. E. Denny; K. Huck; S. Lee; A. D. Malony; S. Shende; J. S. Vetter2020 Since its launch in 2010, OpenACC has evolved into one of the most widely used portable programming models for accelerators on HPC systems today. Clacc is a project funded by the US Exascale Computing Project (ECP) to bring OpenACC support for C and C++ to the popular Clang and LLVM compiler infrastructure. In this paper, we describe Clacc's support for the OpenACC Profiling Interface, a critical component of the OpenACC specification that standardizes an interface that profiling tools and libraries can depend upon across OpenACC implementations. As part of Clacc's general strategy to build OpenACC support upon OpenMP, we describe how Clacc builds OpenACC Profiling Interface support upon an extended version of OMPT. We then describe how a major profiling and tracing toolkit within ECP, the TAU Performance System, takes advantage of this support. We also describe TAU's selective instrumentation support for OpenACC. Finally, using Clacc and TAU, we present example visualizations for several SPEC ACCEL OpenACC benchmarks running on an IBM AC922 node, and we show that the associated performance overhead is negligible.10.1109/HUSTProtools51951.2020.00012https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9308080OpenACC;OpenMP;Clang;LLVM;GPU;accelerators;compiler;profilingIEEE Inglês CE1 Excluído
Using a Model Based Systems Engineering Approach for Aerospace System Requirements ManagementS. Subarna; A. K. Jawale; A. S. Vidap; S. D. Sadachar; S. Fliginger; S. Myla2020 Since systems engineering encompasses the entire scope of a system, successful systems engineering should embody efficient requirements management through a collaborative and interdisciplinary approach. Model Based Systems Engineering (MBSE) is an emerging field, which applies a model-based framework to the elements of a system comprised of requirements, system functions, analysis results, validation and verification artifacts. The effective comprehension of a complex system is more easily visualized through a model-based approach than a document centric one. The representative models and the inherent traceability which one receives through visual associations provides more effective requirements traceability and analysis; and, thus leading to fewer technical risks, earlier detection and resolution of issues, and helps keep schedules and costs in check. This approach yields better, clearer, and more concise requirements and in turn aids in more effective verification and validation processes as well as more expedient impact analyses of unforeseen changes. This paper describes MBSE through SysML (System Modelling Language) by application on a complex aerospace system. The study qualitatively and quantitatively discusses the value addition of such an implementation using commercially available tools that equip SysML to achieve MBSE in systems. SysML is a domain-specific modeling language developed for systems engineering to specify, analyze, design, optimize, and verify systems. From a practitioner's standpoint, this MBSE approach can be used to engineer any complex system from satellite programs to transport networks.10.1109/DASC50938.2020.9256589https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256589MBSE;SysML;Traceability;Verification;Validation;Requirements Engineering;Requirements ManagementIEEE Inglês CE1 Excluído
Verified Development and Deployment of Multiple Interacting Smart Contracts with VeriSolidK. Nelaturu; A. Mavridoul; A. Veneris; A. Laszka2020 Smart contracts enable the creation of decentralized applications which often handle assets of large value. These decentralized applications are frequently built on multiple interacting contracts. While the underlying platform ensures the correctness of smart contract execution, today developers continue struggling to create functionally correct contracts, as evidenced by a number of security incidents in the recent past. Even though these incidents often exploit contract interaction, prior work on smart contract verification, vulnerability discovery, and secure development typically considers only individual contracts. This paper proposes an approach for the correct-by-design development and deployment of multiple interacting smart contracts by introducing a graphical notation (called deployment diagrams) for specifying possible interactions between contract types. Based on this notation, it later presents a framework for the automated verification, generation, and deployment of interacting contracts that conform to a deployment diagram. As an added benefit, the proposed framework provides a clear separation of concerns between the internal contract behavior and contract interaction, which allows one to compositionally model and analyze systems of interacting smart contracts efficiently.10.1109/ICBC48266.2020.9169428https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9169428Smart Contract;Verification;CAD;Solidity;EthereumIEEE Inglês CE1 Excluído
ESBMC-Solidity: An SMT-Based Model Checker for Solidity Smart ContractsK. Song; N. Matulevicius; E. B. de Lima Filho; L. C. Cordeiro2022 Smart contracts written in Solidity are programs used in blockchain networks, such as Etherium, for performing transactions. However, as with any piece of software, they are prone to errors and may present vulnerabilities, which malicious attackers could then use. This paper proposes a solidity frontend for the efficient SMT-based context-bounded model checker (ESBMC), named ESBMC-Solidity, which provides a way of verifying such contracts with its framework. A benchmark suite with vulnerable smart contracts was also developed for evaluation and comparison with other verification tools. The experiments performed here showed that ESBMC-Solidity detected all vulnerabilities, was the fastest tool and provided a counterexample for each benchmark. A demonstration is available at https://youtu.be/3UH8_1QAVN0.10.1145/3510454.3516855https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793786Formal Verification;Solidity IEEE Inglês CE1 Excluído
Compositional-Nominative Approach to the Client-Server Systems Properties Proofs within Different Formal Execution ModelsT. Panchenko; O. Shyshatska; L. Omelchuk; N. Rusina; S. Fabunmi2019 Software correctness is an actual topic throughout the years. Client-server systems are the substantial subclass of all software with some specific characteristics. The research is mainly concentrated on this class of program systems, showing the efficient ways for the reasoning over server side of client-server software. The compositional-nominative models and Interleaving Parallel Composition Languages (IPCL) constructs for different process spawning models, including the dynamic creation, are discussed here. The approach to automatization of reasoning over the programs is also proposed in this work. The applications are mentioned here. Conclusions and the next steps to add more formality to the whole process of functional correctness verification are discussed.10.1109/UKRCON.2019.8880029https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8880029software correctness;compositional methods;formal methods;software properties proof;shared memory concurrency;client-server systems;program functional verificationIEEE Inglês CE1 Excluído
MCoq: Mutation Analysis for Coq Verification ProjectsK. Jain; K. Palmskog; A. Celik; E. J. G. Arias; M. Gligoric2020 Software developed and verified using proof assistants, such as Coq, can provide trustworthiness beyond that of software developed using traditional programming languages and testing practices. However, guarantees from formal verification are only as good as the underlying definitions and specification properties. If properties are incomplete, flaws in definitions may not be captured during verification, which can lead to unexpected system behavior and failures. Mutation analysis is a general technique for evaluating specifications for adequacy and completeness, based on making small-scale changes to systems and observing the results. We demonstrate MCoq, the first mutation analysis tool for Coq projects. MCoq changes Coq definitions, with each change producing a modified project version, called a mutant, whose proofs are exhaustively checked. If checking succeeds, i.e., the mutant is live, this may indicate specification incompleteness. Since proof checking can take a long time, we optimized MCoq to perform incremental and parallel processing of mutants. By applying MCoq to popular Coq libraries, we found several instances of incomplete and missing specifications manifested as live mutants. We believe MCoq can be useful to proof engineers and researchers for analyzing software verification projects. The demo video for MCoq can be viewed at: https://youtu.be/QhigpfQ7dNo.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270399Mutation analysis;Coq;proof assistants;deductive verificationIEEE Inglês CE1 Excluído
Property Satisfiability Analysis for Product Lines of Modelling LanguagesE. Guerra; J. de Lara; M. Chechik; R. Salay2022 Software engineering uses models throughout most phases of the development process. Models are defined using modelling languages. To make these languages applicable to a wider set of scenarios and customizable to specific needs, researchers have proposed using product lines to specify modelling language variants. However, there is currently a lack of efficient techniques for ensuring correctness with respect to properties of the models accepted by a set of language variants. This may prevent detecting problematic combinations of language variants that produce undesired effects at the model level. To attack this problem, we first present a classification of instantiability properties for language product lines. Then, we propose a novel approach to lifting the satisfiability checking of model properties of individual language variants, to the product line level. Finally, we report on an implementation of our proposal in the Merlin tool, and demonstrate the efficiency gains of our lifted analysis method compared to an enumerative analysis of each individual language variant.10.1109/TSE.2020.2989506https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9076306Model-driven engineering;software language engineering;product lines;meta-modelling;OCL;model findingIEEE Inglês CE1 Excluído
Towards identifying and linking data silos along the software life cycleB. Martens; P. Pethő; T. Holm; J. Franke2021 Software is of increasing importance in all industries and it’s efficient creation an important factor in the success of corporations. Using the data generated during the entire software life cycle to create understanding and derive actionable insights, decisions can be made on a factual basis. One of the key requirements to making these objective decisions possible is the collection, composition, and communication of data to the correct stakeholders. To further these goals, the most complete collection of data artifacts available in the software life cycle is presented. These are abstracted to be independent of programming language, development process and toolset. As value is derived from the connection of entities, a set of possible connections is introduced as well as challenges and solutions in their creation discussed. The theoretical observations, and results are verified in the context of a large development organization with more than a thousand developers working from multiple global locations. Our results show that the combination of multiple data sources and their systematic composition are paramount to deriving value from life cycle data in large corporations.10.1109/ICCSE51940.2021.9569317https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9569317empirical software development;decision making;software life cycle;software artifacts;corporate learningIEEE Inglês CE1 Excluído
Model-Driven Engineering for Delta-Oriented Software Product LinesM. R. A. Setyautami; R. R. Rubiantoro; A. Azurat2019 Software product line engineering (SPLE) is an approach in software development that produces various products based on commonality and variability. SPLE maintains the product variations within two main phases: domain engineering and application engineering. Lack of adequate technology and tools support is one of the problems in adopting SPLE. In this research, a model-driven approach based on delta-oriented programming is proposed for SPLE. The process starts with the domain analysis phase by defining a feature diagram and Unified Modeling Language (UML) based on existing systems. While those models represent the problem domain, delta-oriented programming with abstract behavioral specification? (ABS) language is used in the solution domain. This approach is supported by automated model transformations, which transform the feature diagram and UML to ABS models. A code generator mechanism is also used to produce a running application based on ABS models. When the user selects features in this application, our tools generate the running application based on those selections. We provide a running example, a charity organization system, as a case study. Therefore, this research proposes an entire SPLE process based on a model-driven approach that covers the problem and solution domains and produces a running application.10.1109/APSEC48747.2019.00057https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945701abstract behavioral specification;delta-oriented programming;model transformation;software product line engineering;UML diagramIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8822502
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054835
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8919486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8744242
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9334088
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272668
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474392
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813286
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9291598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9428817
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842544
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402628
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714682
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005452
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945656
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604619
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9812649
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8843643
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534792
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794041
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474316
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8960313
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9940333
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9358189
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105390
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919690
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9183499
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796432
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933613
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284634
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9092192
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9329301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155827
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004726
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9377178
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9308080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9169428
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793786
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8880029
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270399
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9076306
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9569317
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945701

A Recommendation System for Functional Features to aid Requirements ReuseS. M. Cheema; M. Adnan; A. Baqir; S. Malik; B. A. Munawar2020 Software product lines (SPL) engineering is an efficient means to enhance software quality, support requirement reuse and develop variants of products. Functional and nonfunctional features can be extracted from SRS docs of ancestry built artifacts to aid RR. In this paper we offer a recommendation web tool (prototype) to extract functional features and calculating reusability for amount of data available in the form of SRS of already developed systems. In initial-level, SRS docs are feed into system. System accesses natural language requirements automatically from SRS. Terms extraction is performed which depends on keyword occurrences from several combinations of nouns, verbs, and/or adjectives. Phrases that reflect functional features reside on SRS docs were extracted by using information retrieval (IR). FRs are then stored in knowledgebase automatically. In Secondary-level, requirement analyst inputs summary of prospective system and selects the operation to perform i.e. simple and advance search. System applies POS-tagger technique on software summary for tokenization to search functional features. These tokens are then passed to inference engine to match between knowledgebase to identify which features could be recommended to analyst to aid RR. Matched features with queried features are prioritized using collaborative filtering to assist requirement analyst in making right decision in different software engineering tasks, starting from forming the teams and specifying the requirements to subsequent projects.10.1109/iCoMET48670.2020.9073836https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9073836Software Product Lines Engineering;SPLE;Requirements Reuse;RR;Recommender Systems;Natural Language Processing;Software EngineeringIEEE Inglês CE1 Excluído
Applying Declarative Analysis to Software Product Line Models: An Industrial StudyR. Shahin; R. Hackman; R. Toledo; S. Ramesh; J. M. Atlee; M. Chechik2021 Software Product Lines (SPLs) are families of related software products developed from a common set of artifacts. Most existing analysis tools can be applied to a single product at a time, but not to an entire SPL. Some tools have been redesigned/re-implemented to support the kind of variability exhibited in SPLs, but this usually takes a lot of effort, and is error-prone. Declarative analyses written in languages like Datalog have been collectively lifted to SPLs in prior work [1], which makes the process of applying an existing declarative analysis to a product line more straightforward. In this paper, we take an existing declarative analysis (behaviour alteration) and apply it to a set of automotive software product lines from General Motors. We discuss the design of the analysis pipeline used in this process, present its scalability results, and provide a means to visualize the analysis results for a subset of products filtered by feature expression. We also reflect on some of the lessons learned throughout this project.10.1109/MODELS50736.2021.00023https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592384Software Product Lines;Lifting;Behavior alteration;automotiveIEEE Inglês CE1 Excluído
A Prediction Model for Software Requirements Change ImpactK. Zamani 2021 Software requirements Change Impact Analysis (CIA) is a pivotal process in requirements engineering (RE) since changes to requirements are inevitable. When a requirement change is requested, its impact on all software artefacts has to be investigated to accept or reject the request. Manually performed CIA in large-scale software development is time-consuming and error-prone so, automating this analysis can improve the process of requirements change management. The main goal of this research is to apply a combination of Machine Learning (ML) and Natural Language Processing (NLP) based approaches to develop a prediction model for forecasting the requirement change impact on other requirements in the specification document. The proposed prediction model will be evaluated using appropriate datasets for accuracy and performance. The resulting tool will support project managers to perform automated change impact analysis and make informed decisions on the acceptance or rejection of requirement change requests.10.1109/ASE51524.2021.9678582https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9678582Change impact analysis;Software requirements change;Machine learning;REIEEE Inglês CE1 Excluído
Software Requirements Modeling: A Systematic Literature ReviewM. Arif; C. W. Mohammad; M. Sadiq2020 Software requirements modeling (SRM) is a subprocess of requirements engineering (RE) which is used to elicit and represent the need of the stakeholders. Different systematic literature reviews (SLR) have been performed in different areas of RE like requirements elicitation, stakeholder identification, requirements prioritization, use case models, etc. Despite the availability of different SRM techniques, less attention is given to synthesize the existing SRM techniques in the context of the unified modeling language (UML) and goal oriented techniques like “Knowledge Acquisition for Automated Specifications” (KAOS), I* framework, non-functional requirements (NFR) framework, and Tropos, etc. Therefore, to address this issue, in this paper we present the SLR by analysing the existing SRM techniques based on the following formulated research questions (RQs): (a) how UML and goal oriented techniques were evolved? (b) which modeling techniques are appropriate for modeling the NFRs? (c) what are the tools available for modeling the different types of the software requirements, i.e., functional and nonfunctional requirements? Search items were extracted from the RQs to identify the primary studies from the Journals, Conferences, Workshops, and Symposium. Our SLR has identified 56 distinct studies which have been published from 2008 to 2019. Selected studies were assessed according to the formulated RQs for their quality and coverage to specific SRM technique thus identifying some gaps in the literature. We observed that there is need to develop the SRM techniques for representing the different types of the NFRs; and also to strengthen the UML by integrating the NFRs and multi-criteria decision making techniques.10.1109/GUCON48875.2020.9231058https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9231058Requirements engineering;requirements modeling;notations;systematic literature reviewIEEE Inglês CE1 Excluído
Feasibility Study of Machine Learning & AI Algorithms for Classifying Software RequirementsU. Akshatha Nayak; K. S. Swarnalatha; A. Balachandra2022 Software requirements[15] description and classification is the fundamental and most important activity in the software engineering process. Requirements are obtained through an elicitation process which generally involves interaction with stakeholders such as; exchange of information in person, on notes, by email, on phone, through meetings, etc., which involves a communication language such as English. The description of requirements (ex: functional, non-functional, related others) encompasses few properties such as; understandability, completeness, accuracy, clarity, unambiguousness, testability and related others. Classifying requirements into functional and non-functional category using Machine learning approaches have proved to be successful in the past. The goodness of software requirement properties impact’s the quality levels during the development of a software product and on the resulting product quality. The classification should address semantic details and implicit information during classification to completely satisfy a requirement. This paper presents results of applying different ML algorithms using a simple problem (and data set) for classifying software requirements. The requirements have been described in English following semantic language rules adopted to ease the writing process. The requirement may be obtained from a use case tool (for example rational unified software) or alternate sources. The purpose of this research work is for understanding the application and use of Machine Learning algorithms for the problem of requirements classification, while providing inputs for developing a “software requirements definition and description framework” using English language.10.1109/MysuruCon55714.2022.9972410https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9972410Use Case Tool;Rational Unified Natural Language;semantics;Text Normalization;Lexical analyzer;Vectorization;Machine Learning AlgorithmsIEEE Inglês CE1 Excluído
Research on test case description languageX. Yu; H. Wang; F. Yang 2021 Software testing is crucial in the development of software interfaces or web pages. In this paper, a test case description language (TCDL) is proposed. TCDL can conveniently describe the process of web UI testing with a grammar that is close to natural language and conforms to manual operation logic. In this paper, the manual UI testing process is abstracted by TCDL, and the syntax specification of TCDL is designed, and the parsing of TCDL is realized with the help of ANTLR tool. Using TCDL, testers can quickly write test scripts with manual test logic. TCDL reduces the learning cost of users and improves the testing efficiency.10.1109/ICCECE51280.2021.9342169https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9342169software testing;domain specific language;TCDL;ANTLRIEEE Inglês CE1 Excluído
Test Case Generation using Unified Modeling LanguageS. A. A. Shah; S. S. A. Bukhari; M. Humayun; N. Jhanjhi; S. F. Abbas2019 Software testing is the major phase of the software development life cycle as it ensures that the software performs according to the requirements. In order to perform testing, a lot of techniques are there that can test the software after the completion of the coding phase. Model-based testing has the capability to test the software before the coding phase. It helps in saving time, cost and budget overrun as it is conducted in the initial stages. In design models, UML diagrams are most widely used in academia and industries. UML class (structural) and sequence (behavioral) diagrams are the most common diagrams being used extensively by designers as they can cover the structural and behavioral aspects of the system respectively. A survey has been conducted in this paper to evaluate our proposed framework in which we have taken both diagrams to generate test cases and it can show the test case generation process in a sequence of steps. Some major issues spotted in test case generation process include usage of intermediate form, coverage criteria, storage of results and provision of the tool. Our study aimed to address all the above issues in the proposed framework. Expert's opinion has been taken and results have been shown in a graphical and a tabular way.10.1109/ICCISci.2019.8716480https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8716480unified modeling language;object constraint language;model-based testing;software development life cycle;object oriented programmingIEEE Inglês CE1 Excluído
Real-Time Collaborative Modeling across Language Workbenches – a Case on Jetbrains MPS and Eclipse SpoofaxS. N. Voogd; K. Aslam; L. Van Gool; B. Theelen; I. Malavolta2021 Software tools known as language workbenches are used to define and deploy custom (domain-specific) languages for the purpose of modeling (specific parts) of a system of interest. Because system modeling is a practice that stands to benefit from real-time collaboration, technologies offering real-time collaborative mechanisms for language workbenches are starting to make an appearance. However, these collaboration technologies are generally limited to providing collaboration among clients of a single designated workbench. If the collaborating engineers wish to use different workbenches to work on the model, cross-platform support for collaborative modeling becomes a necessity. In this paper we propose Parsafix, a tool-based approach for achieving real-time collaboration between different language workbenches for users collaborating on models conforming to the same domain-specific language. We propose the main components and mechanisms that make up Parsafix, as well as the implementation of a prototype tool supporting those mechanisms. The prototype tool allows for collaboration between users of JetBrains MPS and Spoofax (within the Eclipse IDE), by making use of the IDEs’ respective real-time collaboration technologies Modelix and Saros. A hands-on session is proposed to showcase the feasibility of having collaborative modeling across different language workbenches through Parsafix.10.1109/MODELS-C53483.2021.00011https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643799Model-driven development;Computer languages;CollaborationIEEE Inglês CE1 Excluído
Towards Automating a Software-Centered Development Process that considers Timing PropertiesR. Weber; N. Adler; T. Wilhelm; A. Sailer; C. Reichmann2022 Software-centered development processes take a more and more prominent place in automotive system design. Accommodating the growing complexities resulting from the increasing heterogeneity in automotive hardware, software, and their collaborative integration requires new workflows. To address this challenge, we propose an approach for system decomposition based on a behavior description integrated with an architecture description language. Additionally, we consider timing validations as a crosscutting concern during different stages of the development and describe an automation concept to support a correct-by-construction development process. Initial user feedback indicates that our concepts together with a proper tool support will help engineers during system design and speed up the process.10.1109/SOCC56010.2022.9908127https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9908127model-based development;X-by-Construction;behavior modeling;timing validation;automationIEEE Inglês CE1 Excluído
An Integrated Model-Based Tool Chain for Managing Variability in Complex System DesignD. Bilic; E. Brosse; A. Sadovykh; D. Truscan; H. Bruneliere; U. Ryssel2019 Software-intensive systems in the automotive domain are often built in different variants, notably in order to support different market segments and legislation regions. Model-based concepts are frequently applied to manage complexity in such variable systems. However, the considered approaches are often focused on single-product development. In order to support variable products in a model-based systems engineering environment, we describe a tool-supported approach that allows us to annotate SysML models with variability data. Such variability information is exchanged between the system modeling tool and variability management tools through the Variability Exchange Language. The contribution of the paper includes the introduction of the model-based product line engineering tool chain and its application on a practical case study at Volvo Construction Equipment. Initial results suggest an improved efficiency in developing such a variable system.10.1109/MODELS-C.2019.00045https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904766Product Line Engineering, Model-based Systems Engineering, Integrated Tool ChainIEEE Inglês CE1 Excluído
SIF: A Framework for Solidity Contract Instrumentation and AnalysisC. Peng; S. Akca; A. Rajan 2019 Solidity is an object-oriented and high-level language for writing smart contracts that are used to execute, verify and enforce credible transactions on permissionless blockchains. In the last few years, analysis of smart contracts has raised considerable interest and numerous techniques have been proposed to check the presence of vulnerabilities in them. Current techniques lack traceability in source code and have widely differing work flows. There is no single unifying framework for analysis, instrumentation, optimisation and code generation of Solidity contracts at the source code level. In this paper, we present SIF, a comprehensive framework for Solidity contract analysis, query, instrumentation, and code generation. SIF provides support for Solidity contract developers and testers to build source level techniques for analysis, understanding, diagnostics, optimisations and code generation. We show feasibility and applicability of the framework by building practical tools on top of it and running them on 1838 real smart contracts deployed on the Ethereum network.10.1109/APSEC48747.2019.00069https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945726high level languages;software testing;code instrumentation;program analysisIEEE Inglês CE1 Excluído
Towards a Spreadsheet-Based Language WorkbenchM. Barash 2021 Spreadsheets are widely used across industries for various purposes, including for storing and manipulating data in a structured form. Such structured forms—expressed using tabular notation—have found their way in language workbenches, which are tools to define (domain-specific modeling) languages and Integrated Development Environments (IDE) for them. There, a tabular notation is oftentimes used as a secondary way to represent concrete syntax of certain language constructs; however, it is not a primary means for (meta)model definition. We present early results on implementing a language workbench where metamodels, models, and editor services are defined only using a tabular notation. We give an overview of the desired functionality of spreadsheet-based language workbenches.10.1109/MODELS-C53483.2021.00102https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643797Spreadsheets;Microsoft Excel;language workbench;tool support;domain-specific modelingIEEE Inglês CE1 Excluído
Stainless Verification System TutorialV. Kuncak; J. Hamza 2021 Stainless (https://stainless.epfl.ch) is an open-source tool for verifying and finding errors in programs written in the Scala programming language. This tutorial will not assume any knowledge of Scala. It aims to get first-time users started with verification tasks by introducing the language, providing modelling and verification tips, and giving a glimpse of the tool’s inner workings (encoding into functional programs, function unfolding, and using theories of satisfiability modulo theory solvers Z3 and CVC4).Stainless (and its predecessor, Leon) has been developed primarily in the EPFL’s Laboratory for Automated Reasoning and Analysis in the period from 2011-2021. Its core specification and implementation language are typed recursive higher-order functional programs (imperative programs are also supported by automated translation to their functional semantics). Stainless can verify that functions are correct for all inputs with respect to provided preconditions and postconditions, it can prove that functions terminate (with optionally provided termination measure functions), and it can provide counter-examples to safety properties. Stainless enables users to write code that is both executed and verified using the same source files. Users can compile programs using the Scala compiler and run them on the JVM. For programs that adhere to certain discipline, users can generate source code in a small fragment of C and then use standard C compilers.10.34727/2021/isbn.978-3-85448-046-4_2https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617582verification;formal methods;proof;counterexample;model checking;Scala;functional programming;satisfiability modulo theoriesIEEE Inglês CE1 Excluído
Restful State Machines and SQL DatabaseJ. Kufner; R. Mařík 2019 State machines and a relational database may look like completely unrelated tools, yet they form an interesting couple. By supporting them with well-established architectural patterns and principles, we built a model layer of a web application which utilizes the formal aspects of the state machines to aid the development of the application while standing on traditional technologies. The layered approach fits well with existing frameworks and the Command-Query Separation pattern provides a horizontal separation and compatibility with various conceptually distinct storages, while the overall architecture respects RESTful principles and the features of the underlying SQL database. The integration of the explicitly specified state machines as first-class citizens provides a reliable connection between the well-separated formal model and the implementation; it enables us to use visual comprehensible formal models in a practical and effective way, and it opens new possibilities of using formal methods in application development and business process modeling.10.1109/ACCESS.2019.2944807https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853255State machine;web application;REST;MVC;multi-tier architecture;CQS;CQRS;ORM;SQLIEEE Inglês CE1 Excluído
Synergizing Reliability Modeling Languages: BDMPs without Repairs and DFTsS. Khan; J. -P. Katoen; M. Volk; M. Bouissou2019 Static Fault Trees (SFTs) are a key model in reliability and safety analysis. Various extensions have been developed to model, e.g., functional dependencies, state-dependent failures, and SPARE elements. This paper studies the expressive power of two important extensions of SFTs: Dynamic Fault Trees (DFTs) and Boolean Logic Driven Markov Processes (BDMPs). We outline a set of BDMP-to-DFT translation rules and apply them to thirty-three BDMP test cases modeling various scenarios of security, software and system reliability. The main contribution is a DFT modeling an industrial BDMP benchmark study of a Nuclear Power Plant (NPP). Although this DFT does not consider repairs, it is one of the largest industrial cases reported so far and is challenging for DFT analysis. We compare the performance and capabilities of analysis tools for BDMPs-the Monte-Carlo simulation tool YAMS, the proprietary Markovian analysis tool FigSeq-and the DFT analysis capability of the probabilistic model checker Storm. We also address how to do a system sensitivity analysis of the NPP benchmark using probabilistic model checking.10.1109/PRDC47002.2019.00057https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952129Reliability, dependability, formal methods, probabilistic model checking, Monte Carlo simulationIEEE Inglês CE1 Excluído
No Strings Attached: An Empirical Study of String-related Software BugsA. Eghbali; M. Pradel 2020 Strings play many roles in programming because they often contain complex and semantically rich information. For example, programmers use strings to filter inputs via regular expression matching, to express the names of program elements accessed through some form of reflection, to embed code written in another formal language, and to assemble textual output produced by a program. The omnipresence of strings leads to a wide range of mistakes that developers may make, yet little is currently known about these mistakes. The lack of knowledge about string-related bugs leads to developers repeating the same mistakes again and again, and to poor support for finding and fixing such bugs. This paper presents the first empirical study of the root causes, consequences, and other properties of string-related bugs. We systematically study 204 string-related bugs in a diverse set of projects written in JavaScript, a language where strings play a particularly important role. Our findings include (i) that many string-related mistakes are caused by a recurring set of root cause patterns, such as incorrect string literals and regular expressions, (ii) that string-related bugs have a diverse set of consequences, including incorrect output or silent omission of expected behavior, (iii) that fixing string-related bugs often requires changing just a single line, with many of the required repair ingredients available in the surrounding code, (iv) that string-related bugs occur across all parts of applications, including the core components, and (v) that almost none of these bugs are detected by existing static analyzers. Our findings not only show the importance and prevalence of string-related bugs, but they help developers to avoid common mistakes and tool builders to tackle the challenge of finding and fixing string-related bugs.https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9286132strings;software bugs;string-related bugs;empirical studyIEEE Inglês CE1 Excluído
Systems Engineering Modelling Diagrams as Prerequisites to Failure Mode and Effect AnalysisS. Jayatilleka 2020 Summary & Conclusions: Failure mode and effect analysis (FMEA) process starts with several key inputs. A few such traditional inputs are the older generation FMEAs, field failure reports, corrective actions and lessons learned. During the past two decades there had been several diagrams used as important FMEA inputs. The most popular diagrams of all diagrams had been the boundary diagram and the parameter diagram that were used to discover hidden functional requirements and failure modes for Design FMEAs. Similarly, the Process Flow Diagram had been used to discover process steps as input to Process FMEAs. This paper discusses several other diagrams depending on the stage of the product development process. FMEAs begin with Functional Requirements. The two main issues affecting the effectiveness of DFMEA are the (i) poorly written functional requirements and (ii) the missing functional requirements. The main connection and the contribution of this paper to DFMEA is the discovery process of functional requirements, otherwise missed. Once the functional requirements are discovered, the rest of the elements of FMEAs are derived from those functional requirements. For example, failure modes are derived as over-function, under-function, or no function, etc. Therefore, missed and poorly written requirements are going to affect the effectiveness of the all elements of FMEA, thereby the product designed level for reliability. The requirements come from different sources. They could be performance, regulatory, safety, or environmental, to mention a few. As mentioned before, if requirements are missed in a FMEA, verification and validation of that requirement is going to be missed. In addition, poorly written requirements lead to inadequate verification and validation test plans. The traditional Boundary and Parameter Diagrams have been influential as a multidimensional tool in discovering the initial requirements. To strengthen the multidimensional requirement discovery process, systems engineering modeling language (SysML) offers several other diagrams. Few examples are the activity diagrams, sequence diagrams, state machines diagrams and use case diagrams. This paper discusses such popular and useful SysML diagrams used across new product development processes to discover functional requirements that may be missed otherwise and feed the DFMEA to have a good start to an effective FMEAs. Examples are provided from automobile, wind turbine, and heating & air-conditioning industries.10.1109/RAMS48030.2020.9153649https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153649SysML;FMEA;Product Development IEEE Inglês CE1 Excluído
VeriSmart 2.0: Swarm-Based Bug-Finding for Multi-threaded Programs with Lazy-CSeqB. Fischer; S. La Torre; G. Parlato2019 Swarm-based verification methods split a verification problem into a large number of independent simpler tasks and so exploit the availability of large numbers of cores to speed up verification. Lazy-CSeq is a BMC-based bug-finding tool for C programs using POSIX threads that is based on sequentialization. Here we present the tool VeriSmart 2.0, which extends Lazy-CSeq with a swarm-based bug-finding method. The key idea of this approach is to constrain the interleaving such that context switches can only happen within selected tiles (more specifically, contiguous code segments within the individual threads). This under-approximates the program's behaviours, with the number and size of tiles as additional parameters, which allows us to vary the complexity of the tasks. Overall, this significantly improves peak memory consumption and (wall-clock) analysis time.10.1109/ASE.2019.00124https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952527program analysis;verification;concurrency;sequentialization;swarm verificationIEEE Inglês CE1 Excluído
Verification of SDRAM controller using SystemVerilogV. Vutukuri; V. B. Adusumilli; P. K. Uppu; S. Varsa; R. K. Thummala2020 Synchronous DRAM (SDRAM) has become memory of choice for desktop computers, laptops and embedded systems due to its significant features like high speed, burst access..etc. As SDRAM has many phases of operation like write phase, burst phase, active phase, precharge phase there is need for a memory controller to manage the memory. The main purpose of the SDRAM controller is to refresh the SDRAM cells periodically and control the flow of data to/from SDRAM. Efficient design and verification of the SDRAM controller is required to minimize the memory access latency and ensure the correct operation of SDRAM. In this paper we have verified the SDRAM controller using SystemVerilog test bench architecture. Our model has verified the SDRAM controller against most of the test cases provided by the specification sheet and also achieved 100 percent code coverage. The design was verified using Modelsim SE-64 10.5.10.1109/CONECCT50063.2020.9198440https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9198440SDRAM controller;verification;SystemVerilogIEEE Inglês CE1 Excluído
An MDE-Based Tool for Early Analysis of UML2.0/PSM Atomic and Composite ComponentsT. S. Rouis; M. T. Bhiri; L. Sliman; M. Kmimech2020 System analysis is a crucial activity throughout component-based architecture design. It enables detecting and correcting errors in the early stage of the system development life cycle. In this article, we consider system analysis in UML2.0 component-based architectural design phase. This is done by proposing a model-driven engineering (MDE) tool called UML2Ada. It enables the systematic translation of a UML2.0 atomic and composite component into Ada concurrent language. This, in turn, supports the validation of the source description using an Ada dynamic analysis tools such as GNATprove and ObjectAda. In addition, by using an Ada static analysis tool such as FLAVERS or INCA, the proposed tool enables the detection of the potential behavioral concurrency properties of the Ada concurrent program.10.1109/JSYST.2019.2960501https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952652Ada concurrent program;analysis;model driven engineering (MDE);translation tool;UML2.0 componentIEEE Inglês CE1 Excluído
Clustering for Traceability Managing in System SpecificationsM. Mezghani; J. Kang; E. -B. Kang; F. Sedes2019 System specifications are generally organized according to several documents hierarchies levels linked in order to represent the traceability information. Requirements engineering experts verify manually the links between each specification which allows to generate a traceability matrix. The purpose of this paper is to automatize the generation of the traceability matrix since it is a time consuming and costly task. We propose an artificial intelligence based approach to deal with this problem through a clustering approach. This latter is an unsupervised algorithm that doesn't need any prior knowledge on the language neither the domain of the specifications. Our approach generates duplicates and clusters containing linked requirements. We experiment our approach in an aeronautic domain and a space domain. We obtain better results for high level specifications especially with a pre-processing.10.1109/RE.2019.00035https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920512Requirements engineering;Traceability;Clustering;System specifications documents;Documents hierarchiesIEEE Inglês CE1 Excluído
Providing Designers with Automated Decision-Making within SysML Models to Promote Efficient Model-Based Systems DesignC. Kotronis; A. Tsadimas; M. Nikolaidou2021 Systems of Systems (SoS) design is a complex process that involves, among other activities, the specification of system structure and requirements, the analysis of behavior and performance, and the exploration of the most appropriate system design solutions. Integration of these activities is advocated by Model-Based Systems Design (MBSD), where a core system model can be enriched with additional capabilities, such as performance analysis or decision-making. The Systems Modeling Language (SysML) is a standard language to utilize model-based design of SoS and create system models, specifying requirements and system constraints. In this work, we focus on integrating decision-making capabilities into SysML to enable system designers to explore alternative solutions that fit the requirements described in SysML. The system model is transformed to a decision model, whose results are automatically incorporated back into the system model. The proposed approach runs iteratively on any typical SysML model and facilitates the designer to explore alternative design solutions, minimizing the manual effort needed to achieve them. As a case study, the approach is applied in the design of a remote patient monitoring system, namely the Remote Elderly Monitoring System (REMS), where the designer decides on a system configuration that covers the needs of the patients.10.1109/SysCon48628.2021.9447083https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447083MBSD;SysML;system model;decision-makingIEEE Inglês CE1 Excluído
Towards an UML-based SoS Analysis and Design ProcessB. Nadira; C. Bouanaka; M. Bendjaballah; A. Djarri2020 Systems of Systems or SoSs are an emerging class of systems built from large-scale constituent systems, that are often heterogeneous, with independent management, goals and resources. The heterogeneity and managerial independence of the constituent systems is both a strength and a drawback of SoS engineering. Although, the individual systems of an SoS may operate autonomously, their interactions present and usually provide important emerging properties that are constantly evolving. Therefore, coordination and interaction within the SoS constituent systems gives rise to an emerging behavior which defines the SoS overall goal. However, this may lead to unpredictable behavior (arrival/departure, failure to fulfill commitments) of the SoS constituent systems. As a result, a well-defined process for SoS engineering; where missions, capabilities and mainly the expected interactions of the constituent systems are well-established, is missing. Our objective in the present work is to propose an UML-based SoS analysis and design process (USDP). The process is iterative and incremental and will be instrumented and documented with various diagrams to ensure clarity and understandability of the USDP artifacts. Besides, a meta-model for SoS modelling will be defined, it mainly defines the SoS structure in terms of constituent systems, theirs missions, capabilities, and interactions. With the aim of reducing the abstraction of interactions and in order to ensure a high interoperability, a precise and coherent definition of the interactions among the heterogenous constituent systems of an SoS is given to make the description of the SoS more truthful. From a practical point of view, we develop a graphical editor for modeling an SoS, based on the strengths of the MDE approach.10.1109/ICAASE51408.2020.9380112https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380112System of Systems;Software engineering;UML;Design Process;USDPIEEE Inglês CE1 Excluído
A Unified Formal Model for Proving Security and Reliability PropertiesW. Hu; L. Wu; Y. Tai; J. Tan; J. Zhang2020 Taint-propagation and X-propagation analyses are important tools for enforcing circuit design properties such as security and reliability. Fundamental to these tools are effective models for accurately measuring the propagation of information and calculating metadata. In this work, we formalize a unified model for reasoning about taint- and X-propagation behaviors and verifying design properties related to these behaviors. Our model are developed from the perspective of information flow and can be described using standard hardware description language (HDL), which allows formal verification of both taint-propagation (i.e., security) and X-propagation (i.e., reliability) related properties using standard electronic design automation (EDA) verification tools. Experimental results show that our formal model can be used to prove both security and reliability properties in order to uncover unintended design flaw, timing channel and intentional malicious undocumented functionality in circuit designs.10.1109/ATS49688.2020.9301533https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9301533Taint-propagation;X-propagation;formal model;formal verification;design propertyIEEE Inglês CE1 Excluído
A System Function Verification Flow For Mixed-signal SoCY. Fu; K. Huang; L. Zhang; F. Liu2020 Taking a mixed-signal SoC project as an example, this article introduces an efficient system function verification flow applied to mixed-signal SoC. All the inherited analog IPs in this project are developed in virtuoso environment, and the digital modules are simulated in VCS environment. The system function verification platform of this project uses UVM(Universal Verification Methodology) to generate digital stimulus and Verilog-AMS to generate analog stimulus. The overall circuit is transformed into spectre-netlist and integrated into the verification platform. The project has high requirements on the development and simulation progress. The system function verification is realized by using simulation tools VCS and XA of Synopsys. The results of the project are correct, which shows the effectiveness of the flow.10.1109/IFEEA51475.2020.00157https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9356850mixed-signal SoC;system function verification;spectre-netlist;UVM;Verilog-AMSIEEE Inglês CE1 Excluído
Another Tool for Structural Operational Semantics Visualization of Simple Imperative LanguageJ. Perháč; Z. Bilanová 2020 Teaching formal methods, especially semantics of programming languages is an important aspect of theoretical informatics. The learning process often includes a lot of mathematics and learning different notations, which appears to be very difficult for students. In this paper, we present a new interactive tool for visualization of the structural operational semantics of a simple imperative program. We demonstrate our approach on the example of a simple program, where we visualize the inference process of small steps semantic method.10.1109/ICETA51985.2020.9379205https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9379205Structural operational semantics;Semantics of programming languages;Visualization tool;Teaching formal methodsIEEE Inglês CE1 Excluído
A Secure and Resilient Scheme for Telecare Medical Information Systems With Threat Modeling and Formal VerificationS. S. Ahamad; M. Al-Shehri; I. Keshta2022 Telecare Medical Information Systems (TMIS) is a highly focused and unique domain providing healthcare services remotely, the development and advancement in the realm of information and communication technologies boosted the development of TMIS. Smartphones, IoT devices, Mobile Healthcare Applications (MHA) and hospital servers are the building blocks of TMIS. Emergen Research predicts that IoT based healthcare security market will reach USD 5.52 Billion in 2028. Existing IoT based healthcare solutions are facing many security problems which includes information leakage, false authentication, key loss and are not in compliance with Health Insurance Portability and Accountability Act (HIPAA) regulations as IoT devices and sensors used are prone to Blue Borne, DoS (Denial of Service), DDoS (Distributed Denial of Service) and Reverse-engineering attacks. In addition to these healthcare applications in the IoT devices/sensors and mobile healthcare applications in the smart phone of the patient are vulnerable to repackaging attacks and lacked transport layer protection. This paper proposes a SRSTMIS (Secure and Resilient Scheme for Telecare Medical Information Systems) containing its architecture, a procedure to verify the safety and security of patients credentials and Mobile Healthcare Applications (MHA) and finally proposed a secure protocol. White-Box Cryptography (WBC) ensures the safety and security of the keys in the healthcare applications and in the SE, UICC and TPM. We have threat modeled our proposed healthcare framework using STRIDE approach and successfully verified using Microsoft Threat Modeling tool 2016. Our proposed secure and lightweight authentication scheme has been successfully verified with BAN (Burrows, Abadi, and Needham) logic and Scyther tool, and our proposed protocol overcome DoS (Denial of Service), multi-protocol attack, Blue Borne attack, DDoS (Distributed Denial of Service) attack, reverse engineering, insider, outsider and Phlashing attacks. SRSTMIS overcomes information leakage from sensors during rest and during transit, key loss from healthcare applications of the sensors and smart phone and false authentication and ensures HIPAA regulations. Proposed protocol was successfully implemented in Android Studio. We have compared our proposed work with the existing works and found to better in terms of security, resisting attacks, and in consumption of resources.10.1109/ACCESS.2022.3217230https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9950052Telecare medical information systems (TMIS);SRSTMIS (secure and resilient scheme for telecare medical information systems);mobile healthcare applications (MHA);white-box cryptography (WBC);health insurance portability and accountability act (HIPAA);BAN logic;and blue borne attack;phlashing attacks;STRIDE approach;scyther tool;microsoft threat modeling tool 2016;reverse-engineering attacks;kotlin languageIEEE Inglês CE1 Excluído
Automatic Generation of Simulink Models to Find Bugs in a Cyber-Physical System Tool Chain using Deep LearningS. L. Shrestha 2020 Testing cyber-physical system (CPS) development tools such as MathWorks' Simulink is very important as they are widely used in design, simulation, and verification of CPS data-flow models. Existing randomized differential testing frameworks such as SLforge leverages semi-formal Simulink specifications to guide random model generation which requires significant research and engineering investment along with the need to manually update the tool, whenever MathWorks updates model validity rules. To address the limitations, we propose to learn validity rules automatically by learning a language model using our framework DeepFuzzSL from existing corpus of Simulink models. In our experiments, DeepFuz-zSL consistently generate over 90% valid Simulink models and also found 2 confirmed bugs by MathWorks Support.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270395model driven software engineering;deep learning;fuzzing;compiler testing;LSTM;language models;Simulink;CPSIEEE Inglês CE1 Excluído
Model-Checking-Based Automated Test Case Generation for Z Formal Specification of an Urban Railway Interlocking SystemL. Kadakolmath; U. D. Ramu 2022 Testing safety-critical software systems like urban railway interlocking systems is crucial since a software crash may lead to a terrible loss of assets and human life. A key problem in testing safety-critical software systems is the generation of a test suite that can detect feasible faults. The reliability of safety-critical systems is based on the precise functional requirements specification. These functional requirements are made precise by formal specification languages like Z. Formal specifications have less probability of producing an implementation that does not meet the client's requirements. To confirm that the implementation that is to be deployed in the real world, meets the client's requirements, it is essential to test it. This research article exhibits a model-checking-based method to produce a test suite of \mathbf{Z} formal specifications using the ProZ model-checking tool. The model-checking-based method uses a breadth-first search method to produce test cases. Finally, as a case study, we applied this methodology to the formal model of an urban railway interlocking system to generate test cases.10.1109/ICERECT56837.2022.10060801https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10060801Formal specification;Formal testing;Model-Based testing;Model checking;Test template framework;Test case generation;Safety-critical software systems;Z notationIEEE Inglês CE1 Excluído
e-Voting Protocol Modelling To Improve Verifiability RequirementsT. N. Suharsono; Gunawan; R. N. Sukmana2021 The ability of the voting system to protect voter votes until the end of the process can increase public confidence in the voting system. The verifiability aspect allows several parties to ensure that there is no change in the vote of the voters, thereby increasing trust in voting technology. To get to the concept of the proposed system of e-voting, an analysis e-voting needs has been carried out and the stage of the protocol model design analysis for verifiability needs. Some parties involved in meeting the needs of verifiability are Voters, Officers, Witnesses or KPU (Commission of General Election), where some parties can verify the votes of voters before, during, after, and after the vote count in election. In fulfilling the verifiability needs of this e-voting system, traditional simulation modeling and voting testing have been carried out as a comparison with modeling simulations and testing of e-voting protocols. Before modeling simulation and protocol testing, formal notation writing was carried out in the form of Communicating Sequential Processes (CSP) notation. Protocol testing will be carried out with formal verification, which proves that protocol specifications are in accordance with the integrity properties that have been defined previously. The verification tool used is based on reference modeling, which can analyze the specifications logical consistency, and verified properties reports, namely SPIN (Simple Promela Interpreter). The verified system used PROMELA language (MEta LAnguage process) which is translated from CSP formal notation.10.1109/TSSA52866.2021.9768253https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9768253e-voting protocol;verifiability requirements;formal notation;formal methodIEEE Inglês CE1 Excluído
Text vs. Graphs in Argument AnalysisG. Carneiro; A. Toniolo; M. A. Ncenta; A. J. Quigley2021 The ability to understand, process and evaluate arguments made by others and ourselves is important in many personal and professional spheres, such as political debates. Analysis typically appears in written form, but a growing number of tools support analysis through diagram-based graphical representations. These UIs might support better argument analysis because arguments have non-linear structures that are difficult to convey through linear text. However, there is little empirical evidence on the advantages or mechanisms that might make graph UIs superior to traditional textual documents. We ran and analyzed a study with twenty participants who used text and graph editors to analyze political debates. Our findings demonstrate the tradeoffs between the two approaches and explain key mechanisms that support the analysis in both media.10.1109/VL/HCC51201.2021.9576493https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9576493text;visualization;video analysis;argumentationIEEE Inglês CE1 Excluído
Formal Verification of 5G EAP-AKA protocolM. Ajit; S. Sankaran; K. Jain 2021 The advent of 5G, one of the most recent and promising technologies currently under deployment, fulfills the emerging needs of mobile subscribers by introducing several new technological advancements. However, this may lead to numerous attacks in the emerging 5G networks. Thus, to guarantee the secure transmission of user data, 5G Authentication protocols such as Extensible Authentication Protocol - Authenticated Key Agreement Protocol (EAP-AKA) were developed. These protocols play an important role in ensuring security to the users as well as their data. However, there exists no guarantees about the security of the protocols. Thus formal verification is necessary to ensure that the authentication protocols are devoid of vulnerabilities or security loopholes. Towards this goal, we formally verify the security of the 5G EAP-AKA protocol using an automated verification tool called ProVerif. ProVerif identifies traces of attacks and checks for security loopholes that can be accessed by the attackers. In addition, we model the complete architecture of the 5G EAP-AKA protocol using the language called typed pi-calculus and analyze the protocol architecture through symbolic model checking. Our analysis shows that some cryptographic parameters in the architecture can be accessed by the attackers which cause the corresponding security properties to be violated.10.1109/ITNAC53136.2021.9652163https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=96521635G network;Authentication protocol;ProVerif;5G EAP-AKA;formal verification;applied Pi-CalculusIEEE Inglês CE1 Excluído
Design and Verification of AMBA AHBP. Giridhar; P. Choudhury 2019 The AHB (Advanced High-performance Bus) is a high-performance bus in AMBA (Advanced Microcontroller Bus Architecture) family. It is a standard for intercommunication of modules in a system. AHB standards are defined by ARM and supports the communication of on-chip memories processors and interfaces of off-chip external memory. In this paper we present, design and perform verification of AHB which support one master and four slaves. In this work, the design of the AHB Protocol is developed comprising of the basic blocks such as Master, Slave, decoder and multiplexers. This AMBA-AHB protocol can be used in any application provided the design should be an AHB compliant. The building blocks of the design master, slaves, decoder and multiplexers are developed in Verilog. The verification environment is developed in system Verilog (SV). QuestaSim (Advanced verification tool from Mentor Graphics) is used to simulate and verify the design and calculate code and functional coverages.10.1109/ICATIECE45860.2019.9063856https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9063856AHB;AMBA-AHB;QuestaSim;ARM IEEE Inglês CE1 Excluído
Supporting the Scale-Up of High Performance Application to Pre-Exascale Systems: The ANTAREX ApproachC. Silvano; G. Agosta; A. Bartolini; A. R. Beccari; L. Benini; L. Besnard; J. Bispo; R. Cmar; J. M. P. Cardoso; C. Cavazzoni; D. Cesarini; S. Cherubin; F. Ficarelli; D. Gadioli; M. Golasowski; I. Lasri; A. Libri; C. Manelfi; J. Martinovič; G. Palermo; P. Pinto; E. Rohou; N. Sanna; K. Slaninová; E. Vitali2019 The ANTAREX project developed an approach to the performance tuning of High Performance applications based on an Aspect-oriented Domain Specific Language (DSL), with the goal to simplify the enforcement of extra-functional properties in large scale applications. The project aims at demonstrating its tools and techniques on two relevant use cases, one in the domain of computational drug discovery, the other in the domain of online vehicle navigation. In this paper, we present an overview of the project and of its main achievements, as well as of the large scale experiments that have been planned to validate the approach.10.1109/EMPDP.2019.8671584https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8671584High Performance Computing;Autotuning;Adaptivity;DSL;Compilers;Energy EfficiencyIEEE Inglês CE1 Excluído
Evaluating the Ability of Developers to Use Metamodels in Model-Oriented DevelopmentT. Gottardi; R. T. Vaccare Braga2019 The applicability of models has evolved throughout the history of software engineering, from documentation, development and beyond. In this context, we study how to employ models for a common language shared by humans and computers. After studying a model-oriented development method for models at run-time systems, we have identified that this method would heavily rely on metamodels. Therefore, it is important to evaluate if developers are able to use metamodels in software development. In this paper we present a controlled experiment to evaluate the ability and efforts of professional and novice developers to effectively use metamodels. Participants of the experiment had access to newly created metamodeling definition tools, as well as standard Java code and UML diagrams in order to complete their tasks. Results indicate that the definition language was easy to be learned by experienced Java developers, who were able to comprehend metamodeling development artifacts without struggling with modeling concepts. We conclude developers would be able to adapt to new modeling concepts and tools as required by different systems that handle models at run-time.10.1109/MiSE.2019.00012https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877083metamodeling;model-oriented software;experimental study;development tools;model comprehensionIEEE Inglês CE1 Excluído
Verification of a Model of the Isolated Program Environment of Subjects Using the Lamport's Temporal Logic of ActionsA. M. Kanner; T. M. Kanner 2020 The article considers a modern approach to the creation of formal computer system security models, which consists in describing a model in some formal language suitable for its verification for compliance with the expected properties. The article provides an example of such a description in the form of a specification of a formal model of the isolated program environment in the language of the Lamport's temporal logic of actions. The specification is formed as an initial state of the system, a list of possible further actions and a set of invariants and temporal properties to which the system's states must correspond. The initial state is described by some entities that must exist in each system implementation. The system's actions are given in the form of predicates of pre- and postconditions, with some model's variables changing in the latter. Invariants and temporal properties are described in the form of predicates, whose truth must be checked in each possible state of the system or depending on the conditions occurring in previous or future states. The article considers the features of forming a security model specification in TLA+ notation and verifying it using special tools. In its conclusion, the article describes the results of verifying the specification of the formal model of the isolated program environment of subjects, the existing problems and directions for further research on this topic.10.1109/EnT50437.2020.9431263https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9431263isolated program environment of subjects;security model;verification;temporal logicIEEE Inglês CE1 Excluído
Recovery of Mobile Game Design PatternsM. Khan; G. Rasool 2020 The benefits of design patterns to solve recurring and generic problems is well known for the software industry and academia. Game design patterns are being introduced to solve the particular type of problems for the development of computer games. The formal and informal specifications of game design patterns exist because of differences in implementation, design requirements and programming languages. We analyzed the state of the art related to mobile game design patterns and realized that mobile applications are developed by using mobile game design patterns for the development of quality software applications. The recovery of mobile game design patterns is helpful for the comprehension, reverse engineering, maintenance, evolution and refactoring of software applications. The contribution of this paper are specification and detection of 10 mobile game design patterns from 8 open source mobile games. A prototyping tool is developed to demonstrate the concept of the approach. We evaluate our approach by using precision, recall and F-measure metrics.10.1109/ACIT50332.2020.9299966https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9299966Reverse engineering;design patterns;mobile games;game design patternsIEEE Inglês CE1 Excluído
Domain Specific Language of Traffic Flow Factor FrameworkF. X. Habinshuti 2020 the challenge is to provide a convenient tool for modeling traffic problems. Many factors affect traffic related to the driver or human factor, weather factor, road conditions, vehicle performance and characteristics factor, etc. It is necessary to propose a model where the influence of these factors can be described uniformly. Furthermore, the factors described are loaded into the general mechanism of motion modeling. To overcome this problem we started to build a DSL language of Traffic Flow Factor Framework (TFFF). This paper introduces an Xtext grammar of weather condition model, which is part of factors. It also touches on Longitudinal Model (LM) a mathematical model used more often to capture the weather factors involved in driving vehicles and traffic flow modeling.10.1109/EnT50437.2020.9431298https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9431298TFFF;DSL;Xtext grammar;LM IEEE Inglês CE1 Excluído
Priority in Logical Time Partial Orders with Synchronous RelationsR. Gascon; J. Deantoni; J. -F. Le Tallec2019 The Clock Constraint Specification Language (CCSL) offers constructs for expressing chronological and causal relations on events of an embedded system. CCSL simulator, TimeSquare allows one to visualize executions of the specified systems by determining step by step sets of synchronously occurring events. When several different sets of events are possible at a given step, the simulator uses a global simulation policy to choose one. However, this mechanism does not consider any priority between events. Inspired by priority in Petri nets, we show how to formally define a priority system supporting possibly synchronous partial orders of events. Both formal definitions and an efficient implementation are presented.10.1109/RIVF.2019.8713697https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8713697- IEEE Inglês CE1 Excluído
A formal mapping between OPC UA and the Semantic WebR. Schiekofer; S. Grimm; M. M. Brandt; M. Weyrich2019 The communication protocol OPC UA is one of the most important IIoT enablers within the automation domain. OPC UA not only aims to provide interoperability on the transport layer, but also interoperability of the semantic layer shall be addressed based on so-called Companion Specifications. However, the lack of OPC UA formal semantics makes automatic validation of OPC UA data models impossible. Another drawback is the shortage of available tools for OPC UA, such as an implementation of the query engine for the specified OPC UA query language. In this paper we provide a formal translation of OPC UA models to the Semantic Web standard OWL, thus making OPC UA implicit semantics, that is described in the documentation, explicit, by means of OWL axioms. Moreover, we outline how this mapping can be used to offer validation and querying of OPC UA data models based on already existing Semantic Web technology.10.1109/INDIN41052.2019.8972102https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972102OPC UA;OWL;Mapping;Query;ValidationIEEE Inglês CE1 Excluído
Temporal Property-Based Testing of a Timed C Compiler using Time-Flow Graph SemanticsS. Natarajan; D. Broman 2020 The correctness of a real-time system depends both on it being logically sound and temporally correct. To guarantee temporal correctness, the development of such systems includes: (i) developing a model, (ii) formally verifying the model, and (iii) implementing the verified model using a programming language. The temporal correctness then depends on correctly implementing the model using a real-time programming language and compiling it to a hardware platform. Although the timing semantics of many real-time programming languages are well defined, there is no guarantee that the timing semantics of such programs are correctly translated by the compiler. In this paper, we propose a new method for temporal property-based testing. The general method is implemented and evaluated on the Timed C real-time programming language. We formalize the temporal core semantics of Timed C and then use this formalization to specify the properties that are tested by the new property-based testing tool. More specifically, the tool consist of two parts: (i) a generator that randomly generates Timed C programs, and (ii) a property checker that checks whether the language's timing semantics are correctly captured in its execution. We evaluate the method and tool on an embedded Raspberry Pi platform.10.1109/FDL50818.2020.9232935https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9232935- IEEE Inglês CE1 Excluído
Data flow analysis from UML/MARTE models based on binary tracesH. Posadas; J. Merino; E. Villar2020 The design of increasingly complex embedded systems requires powerful solutions from the very beginning of the design process. Model Based Design (MBD) and early simulation have proven to be capable technologies to perform initial design space analysis to optimize system design. Traditional MBD methods and tools typically rely on fixed elements, which makes difficult the evaluation of different platform configurations, communication alternatives or models of computation. Addressing these challenges require flexible design technologies able to support, from a high-level abstract model, full design space exploration, including system specification, binary generation and performance evaluation. In this context, this paper proposes a UML/MARTE based approach able to address the challenges mentioned above by improving design flexibility and evaluation capabilities, including automatic code generation, trace execution collection and trace analysis from the initial UML models. The approach focuses on the definition and analysis of the paths data follow through the different application components, as a way to understand the behavior or the different design solutions.10.1109/DCIS51330.2020.9268671https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9268671UML;MoCs;code generation;trace analysisIEEE Inglês CE1 Excluído
A Concept for a Qualifiable (Meta)-Modeling Framework Deployable in Systems and Tools of Safety-Critical and Cyber-Physical EnvironmentsV. Tietz; J. Schoepf; A. Waldvogel; B. Annighoefer2021 The development of cyber-physical systems can significantly benefit from domain-specific modeling and requires adequate (meta)-modeling frameworks. If such systems are designed for the safety-critical area, the systems must undergo qualification processes defined and monitored by a certification authority. To use the resulting artifacts of modeling tools without further qualification activities, the modeling tool must be additionally qualified. Tool qualification has to be conducted by the tool user and can be assisted by the tool developer by providing qualification artifacts. However, state-of-the-art domain-specific modeling frameworks barely support the user in the qualification process, which results in an extensive manual effort. To reduce this effort and to avoid modeling constructs that can hardly be implemented in a qualifiable way, we propose the development of an open source (meta)-modeling framework that inherently considers qualification issues. Based on the functionality of existing frameworks, we have identified components that necessarily need to be rethought or changed. This leads to the consideration of the following six cornerstones for our framework: (1) an essential meta-language, (2) a minimal runtime, (3) deterministic transformations, (4) a qualification artifact generation, (5) a sophisticated visualization, and (6) a decoupled interaction of framework components. All these cornerstones consider the aspect of a safety-critical (meta)-modeling framework in their own manner. This combination leads to a holistic framework usable in the safety-critical system development domain.10.1109/MODELS50736.2021.00025https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592513Ada SPARK;domain specific modeling;(meta) modeling framework;model based systems engineering;model transformation language;qualifiable runtime environment;safety critical;(tool) qualification;visualizationIEEE Inglês CE1 Excluído
Approach to Construction of Common Information Space of Manufacturing EnterpriseN. S. Mikhailov; A. S. Mikhailova; V. V. Kasatkin2020 The development of methodology and support tools of the design process and practical implementation of the manufacturing enterprise common information space (CIS) is considered. The proposed methodology allows top management, analysts, developers and IT specialists to respond quickly to changing organizational and technical conditions of production and impact of the external environment, to clarify and agree on requirements to elements of the enterprise control system, to continuously improve and modernize the CIS during the operation of the enterprise. It is shown that the application of existing methodologies and notations is not enough to ensure consistency at each level of CIS design with the corresponding program documents: business development strategy, functional strategies (including information technology development strategy, digital transformation strategy, etc.), project description and technical tasks for software and hardware development, etc. The proposed methodology involves using IDEF0 notation at the top level with decomposition and business process modeling in BPMN or eEPC notations at the middle level. For modeling and software development at the lower level it is proposed to use flexible development methodologies - the agile methods based on the use of corresponding models: user stories, abstract UML models, block diagrams. The advantages and peculiarities of practical application of the proposed methodology in the design of the CIS and elements of the production executive system of the manufacturing enterprise are considered.10.1109/ITQMIS51053.2020.9322972https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9322972common information space;business process;manufacturing enterprise;industry 4.0IEEE Inglês CE1 Excluído
WOAL: A Tool to Orchestrate Workflow Using An Abstraction LayerF. H. M. Salleh; I. A. Bin; A. B. Sayuti; R. B. Omar2019 The development of systems with complex business processes needs developers who can orchestrate the system workflow accurately. Orchestrating workflow normally requires someone who has the knowledge in programming. This is because they are the ones who are able to directly link the workflow to the programming framework. Contrary to the normal practise, the business people is actually the best person to design the workflow as they are experts in their domain and therefore, can design complex workflow more accurately. However, business people have difficulty in orchestrating workflows using programming languages without having to go through a long learning process. Hence, the objective of Workflow Orchestration Abstraction Layer (WOAL) is to allow business people to design workflow on their own using an easy-to-understand language. They will be able to produce workflow diagrams for verification and workflow's automator for system development. This paper presents the architecture of WOAL, including the design of domain-specific language (DSL), lexer and parser.10.1109/IC3e47558.2019.8971783https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8971783workflow;domain-specific language;abstraction layerIEEE Inglês CE1 Excluído
Enriching UML Statecharts through a Metamodel: A Model Driven Approach for the Graphical Definition of DEVS Atomic ModelsF. Dalmasso; M. J. Blas; S. Gonnet2023 The Discrete Event System Specification (DEVS) formalism provides a set of mathematical elements for modeling time-varying systems. However, when DEVS models are implemented in an executable representation (i.e., using a general-purpose programming language), some deviation from the formalism is unavoidable. One way to bridge the gap between modeling and simulation theory and practice is to define new artifacts that support both views during the specification. When the specification is supported with a graphical representation, the formalization task is less complex and can be performed by non-expert modelers. For DEVS atomic models, most common graphical representation is through UML statecharts. In this paper, we present a theoretical and practical metamodel for the definition of atomic models structured following the Classic DEVS with Ports formalization. Such a metamodel is the core of a model-driven approach used to develop a modeling software tool that employs enriched UML statecharts for the graphical representation of the DEVS behavior. In here, the traditional UML statechart representation is enriched with a set of new components with the aim to provide a broad definition of DEVS atomic models. The final software tool is deployed as a plugin for Eclipse Platform.10.1109/TLA.2023.10015142https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10015142Discrete Event System Specification;Modeling and Simulation;Theory and Practice;State DiagramIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9073836
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9678582
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9231058
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9972410
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9342169
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8716480
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643799
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9908127
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904766
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945726
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643797
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617582
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853255
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9286132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153649
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952527
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9198440
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952652
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920512
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447083
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380112
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9301533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9356850
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9379205
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9950052
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270395
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10060801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9768253
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9576493
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9652163
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9063856
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8671584
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877083
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9431263
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9299966
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9431298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8713697
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972102
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9232935
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9268671
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592513
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9322972
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8971783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10015142

An Introduction to Modular Modeling and Simulation with PythonPDEVS and the Building-Block Library PythonPDEVS-BBLY. Van Tendeloo; R. Paredis; H. Vangheluwe2020 The Discrete Event System Specification (DEVS) is a popular formalism devised by Bernard Zeigler in the late 1970s for modeling complex dynamical systems using a discrete event abstraction. At this abstraction level, a timed sequence of pertinent "events" input to a system (or internal timeouts) causes instantaneous changes to the state of the system. Main advantages of DEVS are its precise, implementation independent specification, and its support for modular composition. This tutorial introduces the Classic DEVS formalism in a bottom-up fashion, using a simple traffic light example. The syntax and operational semantics of Atomic (i.e., non-hierarchical) models are introduced first. Coupled (i.e., hierarchical) models are introduced to structure and couple Atomic models. We continue to actual applications of DEVS, with an example in performance analysis of queueing systems. This uses generator, queue, etc. components from our PythonPDEVS Building Block Library. All examples in the paper are presented using the language PythonPDEVS and its simulator, though this introduction is equally applicable to other DEVS implementations. We conclude with further reading on DEVS theory, variants, and tools.10.1109/WSC48552.2020.9384012https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9384012- IEEE Inglês CE1 Excluído
A New Modeling Interface for Simulators Implementing the Discrete Event System SpecificationJ. Nutaro 2019 The Discrete Event System Specification (DEVS) offers a unique modeling interface that is often perplexing to modelers more familiar with other simulation paradigms. Recent advances in the use of super dense time for discrete event simulation offer an opportunity to recast the traditional interface into a form less confounding for new users. The new interface proposed here allows a natural progression from a message oriented approach to modeling to the familiar DEVS approach. The proposed approach retains the expressive power of the DEVS formalism, and in this sense represents a simple repackaging of the DEVS approach into a more intuitively appealing form.10.23919/SpringSim.2019.8732882https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8732882agent based model;DEVS;discrete event simulationIEEE Inglês CE1 Excluído
Usability evaluation of a domain-specific language for defining aggregated processing tasksC. Nandra; D. Gorgan 2019 The effective processing of Big Data sets often requires some programming knowledge from a prospective user's part. This could prove costly to achieve, in terms of user training time and effort, depending on the level of previous experience. The premise, when dealing with large data sets, is that it should be as easy as possible for a user to prototype and test processing algorithms, in order to deal with them in an effective manner. For this reason, we have developed a domain- specific language meant to allow users to define data processing tasks as aggregates, consisting of atomic operations. Its goal is to do away with some of the complexities of traditional programming languages, by simplifying the representation model and providing a more intuitive process description tool for its users. This paper aims to evaluate the efficiency and effectiveness with which a novice user could employ our domain-specific language to define processing tasks, and then compare the results to those obtained while using the Python programming language. The experiments will be focused on task duration, description correctness and code interpretation, highlighting possible advantages and disadvantages observed during the usage of the two languages.10.1109/ICCP48234.2019.8959796https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8959796usability evaluation;domain-specific language;process description;big dataIEEE Inglês CE1 Excluído
Semantic Mapping from SysML to FRP: to Enable Executable and Verifiable Systems DesignJ. Huang; W. Khallouli; H. Holly A. H.; W. Edmonson; T. Ahmed; N. Kibret2021 The emerging Digital Engineering demands digital representation of the system of interest and sharing models and data across the boundaries of organizations and the boundaries of the engineering lifecycle. Towards this direction, it is critical to develop systems modeling languages and tools that accommodate Digital Engineering. This paper presents our research on semantic mapping from System Modeling Language (SysML) to Functional Reactive Programming (FRP) with the goal of developing computing mechanisms with functional reactive programming to support executable and verifiable SysML model specification.10.1109/SysCon48628.2021.9447075https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447075Digital Engineering;Model-Based Systems Engineering;SysML;Functional Reactive Programming;Semantic mapping;Executable & verifiable systems design;Modeling language and toolsIEEE Inglês CE1 Excluído
UCM4IoT: A Use Case Modelling Environment for IoT SystemsP. Boutot; M. R. Tabassum; S. Mustafiz2021 The engineering of IoT systems brings about various challenges due to the inherent complexities associated with such adaptive systems. Addressing the adaptive nature of IoT systems in the early stages of the development life cycle is essential for developing a complete and precise system specification. In this paper, we propose a use case modelling environment, UCM4IoT, to support requirements elicitation and specification of IoT systems. Our UCM4IoT language takes into account the heterogeneity of IoT systems and provides domain-specific language constructs to model the different facets of IoT. The language also incorporates the notion of exceptional situations and adaptive system behaviour. Our language is supported with a textual modelling environment to assist modellers in writing use cases. The environment supports syntax-directed editing, validation of use case models, and requirements analysis. The proposed language and tool is demonstrated with a smart store case study.10.1109/MODELS-C53483.2021.00123https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643786use cases;internet of things;requirements engineering;model driven engineeringIEEE Inglês CE1 Excluído
Functional Verification closure using Optimal Test scenarios for Digital designsA. Thalaimalai Vanaraj; M. Raj; L. Gopalakrishnan2020 The ever-increasing design complexity of Integrated Circuits (ICs) resulted in challenging aspects of functional/logic verification, in terms of verification platform complexity, achieving verification goals like code/functional coverage and unbounded verification time/efforts for any given digital design. Currently, Functional Verification closure depends on CAD/EDA tool Random Seed capability combined with constrained random verification methodology like Universal Verification methodology (UVM) to generate exhaustive test scenarios, thereby achieving coverage goals for test regressions. In this paper, a framework is proposed for generating optimal test scenarios by interleaving design under test (DUT), input stimuli solution space, constrained random solution space and required levels of test stimuli combinations.10.1109/ICSSIT48917.2020.9214097https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9214097Functional/Logic verification;constrained random verification;Code Coverage;Functional Coverage;Verification Closure;Verification Complexity;Test Scenario;Input StimuliIEEE Inglês CE1 Excluído
Transformation Architecture for Multi-Layered WebApp Source Code GenerationR. Tesoriero; A. Rueda; J. A. Gallud; M. D. Lozano; A. Fernando2022 The evolution of Web technologies leads to software premature obsolescence requiring technology-independent representations to increase the reuse rates during the development process. They also require integration into service-oriented architectures to exchange information with different Web systems supporting runtime interoperability. Web Applications (WebApps) run on devices with different capabilities and limitations increasing the complexity of the development process. To address these challenges, different proposals have emerged to facilitate the development of WebApps, which is still an open research field with many challenges to address. This paper presents a model transformation architecture based on software standards to automatically generate full stack multi-layered WebApps covering Persistence, Service, and Presentation layers. This transformation architecture also generates the set of test cases to test WebApp business logic. The proposed transformation architecture only requires a UML platform-independent class model as an input to generate fully functional Web applications in a three-tier architecture including the three layers, while most proposals focus on the generation of the Presentation layer. In addition, this architecture employs software industry standards to enable an easy integration into third-party tools and development environments. The transformation Architecture proposed has been empirically validated on the case study of a fully functional travel management WebApp that is generated using a UML class diagram employing a third-party tool integrated into the same integrated development environment.10.1109/ACCESS.2022.3141702https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9676609Software product lines;computer-aided software engineering;client-server systemsIEEE Inglês CE1 Excluído
Formal Specification and Verification of 5G Authentication and Key Agreement Protocol using mCRL2H. E. Hafidi; Z. Hmidi; L. Kahloul; S. Benharzallah2021 The fifth-generation (5G) standard is the last telecommunication technology, widely considered to have the most important characteristics in the future network industry. The 5G system infrastructure contains three principle interfaces, each one follows a set of protocols defined by the 3rd Generation Partnership Project group (3GPP). For the next generation network, 3GPP specified two authentication methods systematized in two protocols namely 5G Authentication and Key Agreement (5G-AKA) and Extensible Authentication Protocol (EAP). Such protocols are provided to ensure the authentication between system entities. These two protocols are critical systems, thus their reliability and correctness must be guaranteed. In this paper, we aim to formally re-examine 5G-AKA protocol using micro Common Representation Language 2 (mCRL2) language to verify such a security protocol. The mCRL2 language and its associated toolset are formal tools used for modeling, validation, and verification of concurrent systems and protocols. In this context, the authentication protocol 5G-AKA model is built using Algebra of Communication Processes (ACP), its properties are specified using Modal mu-Calculus and the properties analysis exploits Model-Checker provided with mCRL2. Indeed, we propose a new mCRL2 model of 3GPP specification considering 5G-AKA protocol and we specify some properties that describe necessary requirements to evaluate the correctness of the protocol where the parsed properties of Deadlock Freedom, Reachability, Liveness and Safety are positively assessed.10.1109/ICNAS53565.2021.9628917https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=96289175G networks;Security;5G-AKA Protocol;Formal methods;Formal verification;mCRL2 language;Process Algebra.IEEE Inglês CE1 Excluído
Enhancing NL Requirements Formalisation Using a Quality Checking ModelM. Osama; A. Zaki-Ismail; M. Abdelrazek; J. Grundy; A. Ibrahim2021 The formalisation of natural language (NL) requirements is a challenging problem because NL is inherently vague and imprecise. Existing formalisation approaches only support requirements adhering to specific boilerplates or templates, and are affected by the requirements quality issues. Several quality models are developed to assess the quality of NL requirements. However, they do not focus on the quality issues affecting the formalisability of requirements. Such issues can greatly compromise the operation of complex systems and even lead to catastrophic consequences or loss of life (in case of critical systems). In this paper, we propose a requirements quality checking approach utilising natural language processing (NLP) analysis. The approach assesses the quality of the requirements against a quality model that we developed to enhance the formalisability of NL requirements. We evaluate the effectiveness of our approach by comparing the formalisation efficiency of a recent automatic formalisation technique before and after utilising our approach. The results show an increase of approximately 15% in the F-measure (from 83.8% to 98%).10.1109/RE51729.2021.00064https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604549Requirements specification;Requirements analysis;Quality analysisIEEE Inglês CE1 Excluído
A Guideline for the Requirements Engineering Process of SMEs Regarding to the Development of CPSS. Fritz; F. Weber; J. Ovtcharova2019 The Fourth Industrial Revolution is in progress and provides a growing interconnectedness of people, machines and products. The fusion of the real and the digital world is based on so-called cyber-physical systems (CPS), which cause a change in product development processes due to their complex and dynamic requirements. In order to shape the change in product development successfully, requirements engineering (RE) plays an increasingly important part. Especially small and medium-sized enterprises (SMEs) are faced with great challenges in this case, as they are no longer able to effectively integrate the large amount of stakeholders and to manage the multitude of dynamic requirements with the commonly used Microsoft Office tools. Regardless of the company size, many companies are faced with the problem of documenting their requirements in a standardized and reusable way. For these reasons, a guideline for a lightweight RE process for SMEs has been developed in the context of this scientific paper, which makes it possible to improve the development process without cost- and time-intensive trainings. For this purpose, the focus was on easily understandable requirements templates. In the course of this, relevant requirements templates from the literature were analyzed, selected and completed with newly developed templates.10.1109/ICITM.2019.8710732https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8710732small and medium-sized enterprises (SMEs);requirements engineering (RE);cyber-physical systems (CPS);guidelineIEEE Inglês CE1 Excluído
Graphical Editor of Electrical Schemes for Rand Model DesignerY. B. Senichenkov; I. M. Kirjakov; A. E. Semencov2021 The graphical editor of electrical schemes for Rand Model Designer is presented. Rand Model Designer (RMD) is a universal visual tool for modeling and simulation of complex dynamical systems. The editor allows users to build models of electrical devises and carry out computer experiments using hidden calling of RMD. When graphical scheme of a device is completed, the editor automatically translates model description in RMD modeling language, checks, compiles it, and builds executable code in form of *.dll needed for carrying out computer experiments under RMD. The results of computer experiments are passed back to the editor for processing. The examples of using the editor in training are described.10.1109/ElConRus51938.2021.9396227https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9396227object-oriented modeling;electrical components library;graphical editor;manufacturing and training applicationsIEEE Inglês CE1 Excluído
Analysis and Perspectives of Requirements for Detector Control Systems in High- Energy Physics ExperimentsJ. C. Cabanillas-Noris; M. I. Martínez-Hernández; I. León-Monzón; J. M. Mejía-Camacho; S. Rojas-Torres2020 The high-precision measurements of detectors in a High-Energy Physics (HEP) experiment need a continuous sampling of recorded events during collisions. Therefore, significant hardware changes are required to do online data processing due to a large amount of data generated by such detectors. Because of all these changes, a new Detector Control System (DCS) design is required. This paper presents a definition of the software requirements to be considered during the design, integration, and operation of a detector's DCS into physics data-taking, for continuous and non-continuous measurement conditions in the experiments. For this, the main operating processes, elements, characteristics, and guidelines of the DCS in the most important HEP experiments around the world were analyzed. Additionally, characteristics, functional and non-functional requirements, and use-cases of the main actors involved in the different processes of this control system software are defined. A visual modeling and design tool based on Unified Modeling Language (UML) is used to obtain a description of these requirements.10.1109/CONISOFT50191.2020.00015https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9307806Detector Control System;High-Energy Physics;SCADA;UMLIEEE Inglês CE1 Excluído
Verifying and Monitoring UML Models with Observer Automata: A Transformation-Free ApproachV. Besnard; C. Teodorov; F. Jouault; M. Brun; P. Dhaussy2019 The increasing complexity of embedded systems renders verification of software programs more complex and may require applying monitoring and formal techniques, like model-checking. However, to use such techniques, system engineers usually need formal experts to express software requirements in a formal language. To facilitate the use of model-checking tools by system engineers, our approach consists of using a UML model interpreter with which the software requirements can directly be expressed as observer automata in UML as well. These observer automata are synchronously composed with the system, and can be used unchanged both for model verification and runtime monitoring. Our approach has been evaluated on the user interface model of a cruise control system. The observer verification results are in line with the verification of equivalent LTL properties. The runtime overhead of the monitoring infrastructure is 6.5%, with only 1.2% memory overhead.10.1109/MODELS.2019.000-5https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8906967Observer Automata;Monitoring;Model Interpretation;Embedded SystemsIEEE Inglês CE1 Excluído
An Automated Fact Checking System Using Deep Learning Through Word EmbeddingP. Wang; L. Deng; X. Wu 2019 The increasing concern with false information has stimulated research in joint Fact Extraction and VERification (FEVER). Now we propose a system by deep learning which can help people identify the authenticity of most claims as well as providing evidences selected from knowledge source like Wikipedia. In this paper, we examine how to use deep learning method to improve the performance of the automatic fact verification system. Firstly, the inverted index of the knowledge base is established by using a Python package named Whoosh. Secondly, the claim is regularized by the Named Entity Recognition (NER) tool, and the most relevant documents are filtered based on the relevance ranking algorithm. Thirdly, top 20 relevant sentences for each claim are filtered by word embeddings. Finally, the effectiveness of each sentence and the label of claim is judged based on the two-level pre-training model. Our approach achieved a 0.89 document.10.1109/SSCI44817.2019.9002783https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9002783fact checking;cosine similarity;word embedding;deep learningIEEE Inglês CE1 Excluído
Model-Driven Fault Injection in Java Source CodeE. Rodrigues; L. Montecchi; A. Ceccarelli2020 The injection of software faults in source code requires accurate knowledge of the programming language, both to craft faults and to identify injection locations. As such, fault injection and code mutation tools are typically tailored for a specific language and have limited extensibility. In this paper we present a model-driven approach to craft and inject software faults in source code. While its concrete application is presented for Java, the workflow we propose does not depend on a specific programming language. Following Model-Driven Engineering principles, the faults and the criteria to select injection locations are described using structured, machine-readable specifications based on a domain-specific language. Then, automated transformations craft artifacts based on OCL and Java, which represent the faults to be injected and are able to select the candidate injection locations. Finally, artifacts are executed against the target source code, performing the injection in the desired locations. We devise a supporting tool and exercise the approach injecting 13 different kinds of software faults in the Java source code of six different projects.10.1109/ISSRE5003.2020.00046https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9251070Software faults;fault libraries;metamodel;OCL;code patterns;Java.IEEE Inglês CE1 Excluído
Multi-layered Model-based Design Approach towards System Safety and Security Co-engineeringM. Quamara; G. Pedroza; B. Hamid2021 The integration of safety and security concerns in critical domains (e.g., Cyber-Physical Systems (CPSs)) is of utmost importance, and should be conducted in early design phases of system engineering process. Within a Model-Based System Engineering (MBSE) context, safety and security requirements cascade-down across models and views, thus contributing to the detailed missions, functions, and lastly, the architecture. Such enrichment process is often complex and lacks guidance to consistently breakdown high-level mission-centric system specifications into the detailed architecture. In particular, non-savvy safety and security engineers require support to facilitate integration and verification of stringent safety constraints and security exigencies. In this regard, we propose a multi-layered design approach that leverages existing techniques like Model-Driven Engineering (MDE) and formal methods, to facilitate integrated verification of high-level safety and security objectives that can be further specialized across different representations (i.e. mission, functional, and architectural) of the system. The overall approach is validated based upon a Connected Driving Vehicles (CDVs) case study, and using Eclipse Papyrus and Rodin as experimentation tools.10.1109/MODELS-C53483.2021.00048https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643661safety;security;co-engineering;design;model-driven engineering;formal methods;connected driving vehiclesIEEE Inglês CE1 Excluído
A Formal Modeling and Verification Framework for Service Oriented Intelligent Production Line DesignH. Yuan; F. Li; X. Huang 2019 The intelligent production line is a complex application with a large number of independent equipment network integration. In view of the characteristics of CPS, the existing modeling methods cannot well meet the application requirements of large scale high-performance system. a formal simulation verification framework and verification method are designed for the performance constraints such as the real-time and security of the intelligent production line based on soft bus. A model-based service-oriented integration approach is employed, which adopts a model-centric way to automate the development course of the entire software life cycle. Developing experience indicate that the proposed approach based on the formal modeling and verification framework in this paper can improve the performance of the system, which is also helpful to achieve the balance of the production line and maintain the reasonable use rate of the processing equipment.10.1109/ICIS46139.2019.8940189https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8940189Intelligent production line;model and verification;service orientedIEEE Inglês CE1 Excluído
Reliability Modeling and Verification of Communication Algorithm Flow for Intelligent Control SystemW. Ran; W. Jiajia 2021 The intelligent system controls the subsystems of each aircraft in real time to ensure the normal development of the tasks of the aircraft system. In the process of system communication, the control system is required to strictly control the correctness of the control algorithm flow and the accuracy of the control sequence in order to ensure the safety of the aircraft system. This paper uses UPPAAL, a formal model detection tool based on time automata theory, to formally model and validate the algorithm flow of an intelligent system and a subsystem. First, the algorithm flow of the intelligent system is analyzed, and then it is formally modeled using the time automaton method. Second, the properties that need to be verified are extracted from the algorithm flow and described with the formal language BNF. Finally, the function and performance correctness are automatically verified using the UPPAAL model detection tool. The experimental results verify that the intelligent system meets the security, accessibility and activity requirements.10.1109/AEMCSE51986.2021.00189https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9512884intelligent systems;communication algorithm flow;formal modeling and validation;UPPAALIEEE Inglês CE1 Excluído
Development and Application of the CubeSat System Reference ModelD. Kaslow; P. T. Cahill; B. Ayres2020 The International Council on Systems Engineering (INCOSE) Space System Working Group (SSWG) has created the CubeSat System Reference Model (CSRM), a representation of the logical architecture of a CubeSat system, intended to be used by system architects and engineers as a starting point as they develop the logical architecture of the Space and Ground components of the CubeSat mission of interest to them. The CSRM is based on Model-Based System Engineering (MBSE) principles, is System Modeling Language (SysML) compliant, is hosted in a graphical modeling tool, and is intended to introduce quality enhancements and economies associated with reusability. The CSRM has been vetted by System Engineering professionals and has been introduced to the CubeSat mission development team community with favorable results. It has been submitted to the Object Management Group (OMG) as a CubeSat specification, and is being evaluated for that role. The SSWG has created a notional outline describing how the CSRM can be applied to a specific mission development effort; and has also identified possible future efforts to expand the applicability, value, and use of the CSRM by the satellite development community.10.1109/AERO47225.2020.9172714https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172714- IEEE Inglês CE1 Excluído
Mission Engineering and the CubeSat System Reference ModelD. Kaslow; A. Levi; P. T. Cahill; B. Ayres; D. Hurst; C. Croney2021 The International Council on Systems Engineering (INCOSE) Space System Working Group (SSWG) has created the CubeSat System Reference Model (CSRM), a representation of the logical architecture of a CubeSat system, intended to be used by system architects and engineers as a starting point as they develop the physical architecture of the Space and Ground segments of the CubeSat mission of interest to them. The CSRM is based on Model-Based System Engineering (MBSE) principles, is System Modeling Language (SysML) compliant, is hosted in a graphical modeling tool, and is intended to foster completeness and economies of scale associated with reusability. The CSRM has been vetted by System Engineering professionals and has been introduced to the CubeSat mission development team community with favorable results. The CSRM has been submitted to the Object Management Group (OMG) as a CubeSat specification, and is being evaluated for that role. Mission Engineering, a concept where the mission itself is looked at as a system is being explored as a means to maintain balance between the spacecraft system, operations (including ground systems), and the mission (the integration of needed capabilities). Now opportunities exist to extend the already-developed CSRM to enable the application of Mission Engineering to modeling a complete CubeSat mission. This paper presents the challenges and approach that the INCOSE SSWG will address, including a path for extension of the CRSM for use in exploring its applicability to the Mission Engineering concept, and capturing the Mission as a Model to create a unifying environment for universities to build on each other's successes as they learn to design for Space.10.1109/AERO50100.2021.9438168https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9438168- IEEE Inglês CE1 Excluído
A Domain-Specific Language for Modeling IoT System Architectures That Support MonitoringL. Erazo-Garzón; P. Cedillo; G. Rossi; J. Moyano2022 The Internet of Things (IoT) is a technological paradigm involved in a diversity of domains with favorable impacts on people’s daily lives and the development of industry and cities. Nowadays, one of the most critical challenges is developing software for IoT systems since the traditional Software Engineering methodologies and tools are unproductive in the face of the complex requirements resulting from the highly distributed, heterogeneous, and dynamic scenarios in which these systems operate. Model-Driven Engineering (MDE) emerges as an appropriate approach to abstract the complexity of IoT systems. However, there are no domain-specific languages (DSLs) aligned to standardized reference architectures for IoT. Furthermore, existing DSLs have an incomplete language to represent the IoT entities that may be needed at the edge, fog, and cloud layers to monitor IoT environments. Therefore, this paper proposes a domain-specific language named Monitor-IoT, which supports developers in designing multi-layer monitoring architectures for IoT systems with high abstraction, expressiveness, and flexibility. Monitor-IoT consists of a high-level visual modeling language and a metamodel aligned with the ISO/IEC 30141:2018 reference architecture. In addition, it provides a language capable of modeling architectures with a wide variety of digital entities and dataflows (synchronous and asynchronous) between them across the edge, fog, and cloud layers to support the monitoring of a diversity of IoT scenarios. The empirical evaluation of Monitor-IoT through the application of an experiment, which contemplates the use of the Technology Acceptance Model (TAM), demonstrates the intention of the participants to use this tool in the future since they consider it easy to use and useful.10.1109/ACCESS.2022.3181166https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9791260Architecture;domain-specific language (DSL);Internet of Things (IoT);metamodel;model-driven engineering (MDE);monitoringIEEE Inglês CE1 Excluído
EADSA: Energy-Aware Distributed Sink Algorithm for Hotspot Problem in Wireless Sensor and Actor NetworksU. Draz; T. Ali; S. Yasin; U. Waqas; U. Rafiq2019 The issue of hotspot occurs when the sink neighboring nodes drain more energy and become dead early. For a time being the whole network is isolated due to dying nodes and the overall lifetime of the network is decreased. Thus, the big challenge in WSANs systems is to prolong the lifetime of the network by solving the Hotspot problem. The lifetime of the network is directly based on the energy consumption of the network. Several challenges are associated with this problem like delays in the network, data packets losses, decrement of lifetime and throughput of the network. Therefore, its need to investigate the issue of Hotspot problem with the help of some energy aware technique. In this paper, the Energy-Aware Distributed Sink Algorithm is introduced to rescue the Hotspot issue in Wireless Sensors and Actors Network (WSANs). The proposed algorithm is formally analyzed with the help of Formal Methods based specification language. For the verification and validation of the proposed algorithm, the Vienna development Method Specification-Language Tool Box (VDM-SL) is used. Both the dynamic and static models are developed to ensure the correctness of the algorithm with some pre/post conditions, invariants, and attributes.10.1109/CEET1.2019.8711858https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8711858WSAN;Distributed Sink;Hotspot;Secondary Nodes;Dying Nodes;Verification & ValidationIEEE Inglês CE1 Excluído
Execution of Partial State Machine ModelsM. Bagherzadeh; N. Kahani; K. Jahed; J. Dingel2022 The iterative and incremental nature of software development using models typically makes a model of a system incomplete (i.e., partial) until a more advanced and complete stage of development is reached. Existing model execution approaches (interpretation of models or code generation) do not support the execution of partial models. Supporting the execution of partial models at early stages of software development allows early detection of defects, which can be fixed more easily and at lower cost. This paper proposes a conceptual framework for the execution of partial models, which consists of three steps: static analysis, automatic refinement, and input-driven execution. First, a static analysis that respects the execution semantics of models is applied to detect problematic elements of models that cause problems for the execution. Second, using model transformation techniques, the models are refined automatically, mainly by adding decision points where missing information can be supplied. Third, refined models are executed, and when the execution reaches the decision points, it uses inputs obtained either interactively or by a script that captures how to deal with partial elements. We created an execution engine called PMExec for the execution of partial models of UML-RT (i.e., a modeling language for the development of soft real-time systems) that embodies our proposed framework. We evaluated PMExec based on several use-cases that show that the static analysis, refinement, and application of user input can be carried out with reasonable performance, and that the overhead of approach, which is mostly due to the refinement and the increase in model complexity it causes, is manageable. We also discuss the properties of the refinement formally, and show how the refinement preserves the original behaviors of the model.10.1109/TSE.2020.3008850https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9139402MDD;model-level debugging;partial models;incomplete models;model executionIEEE Inglês CE1 Excluído
Requirement Mining in Software Product ForumsJ. Tizard 2019 The majority of software projects fail, around 71% according to recent research. A shortage of user feedback and missed requirements are cited as primary reasons for failure. There are several prominent online platforms where software users post product feedback, including: app stores, Twitter, issue trackers and product forums. I have identified the study of product forums as a gap in the current requirement mining literature, and have selected them as the focus of this research. Product forums are widely used in the software industry, supporting online discussions between a products users and owners. While their primary function is to help customers use the product, forums are also a rich source of untapped user generated requirements. However, the manual effort to extract these requirements is prohibitively time consuming due to their large volume and inconsistent quality. Analysis tools to assist in requirement mining have been applied successfully to online platforms previously, but as of yet, not in the forum domain, where current techniques may be insufficient. My preliminary research has found that forums contain feedback useful for software maintenance and evolution, including several categories of feedback not identified in the current literature. I have developed forum specific classifiers to help categorise the different feedback in forum posts. I demonstrate that these classifiers significantly outperform a leading app store tool when applied to forums. In this report I present my preliminary findings, then outline my research plan with the final goal of producing an industry evaluated, forum analysis tool.10.1109/RE.2019.00057https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920680Software product forums;Machine learning;Natural language processingIEEE Inglês CE1 Excluído
Towards Formalism of Link Failure Detection Algorithm for Wireless Sensor and Actor NetworksU. Draz; T. Ali; S. Yasin; U. Waqas; U. Rafiq2019 The merger of actors and sensors in a wireless network has evolved those opportunities that we can't think before some years. This merger has captured the interest of researchers from around the globe. In the last decade, wireless networks have become much stronger, reliable and secure but as the technology evolves, it carries their own problems. Researchers are targeting different problem according to their own interest like power consumption, network security, link failure etc., so we are also working on link failure detection that can be caused by power breakage, network delay or traffic overload. This model detects the link failure in the network through Link Failure Detection Algorithm (LFDA) and provide recovery mechanism against failure using cluster-based approach. Our purposed model detects network link failure accuratly and precisely solve the problem by creating alternative virtual route for data packets. Our technique can detect current failures also it can detect weaker links, those might be the cause for future failures. Most of the literature have their proof of correctness as simulation but no technique is there which is formally verified, therefore we have presented our idea including its formal verification and validation with the help of formal methods tool box and its formal specification language like (VDM-SL).10.1109/CEET1.2019.8711857https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8711857WSAN;Link Failure;Link Recovery;Gateways Node;Cluster head;Virtual Links;Verification & ValidationIEEE Inglês CE1 Excluído
SOG-Based Multi-Core LTL Model CheckingC. Ameur Abid; K. K. Kaïs Klai; J. Arias; H. Ouni2020 The model checking is one of the major techniques used in the formal verification. This technique builds on an automatic procedure that takes a model M of a system and a formula φ expressing a temporal property, and decides whether the system satisfies the property (denoted by M\modelsφ). The model checking technique is based on an exhaustive exploration of the state space of the system and, thus suffers from the state space explosion problem: it can happen that the verification process stops because of lack of time or space. Among the existing solutions to tackle this problem the Symbolic Observation Graph (SOG) has been proposed as a reduced representation of the reachability graph preserving linear temporal logic properties (LTL) i.e. checking an LTL property on the SOG is equivalent to check it on the original state space. The parallel construction of the SOG could increase the speedup and scalability of model checking. In this paper, we propose a new model checking algorithm built on a parallel construction of the SOG. The SOG is adapted to allow the preservation of both state and event-based LTL formulae i.e., the atomic propositions involved in the formula to be checked could be either state-based or event-based propositions. We implemented the proposed model checking algorithm within a C++ prototype and compared our preliminary results with the state of the art model checkers.10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00028https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9443795Parallel model checking;Temporal Logic;Decision DiagramsIEEE Inglês CE1 Excluído
Early Analysis of Cyber-Physical Systems using Co-simulation and Multi-level ModellingT. Nägele; T. Broenink; J. Hooman; J. Broenink2019 The multi-disciplinary nature of the design of cyber-physical systems makes it hard to gain insight in the system behaviour early in the design process. Our aim is to allow the designers to analyse the integration of system components as well as the behaviour of the complete system in an early stage. This is achieved by creating abstract component models and refining them throughout the design process. After every refinement cycle, the models can be co-simulated to analyse the behaviour of the system, supporting design decisions. The co-simulation is created based on existing standards such as HLA and FMI and uses a domain-specific language to construct a co-simulation automatically. This approach is illustrated using a case study which resembles a confidential industrial case.10.1109/ICPHYS.2019.8780355https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8780355Cyber-physical systems;System design;System analysis;Co-simulation;Multi-level modelling;Concurrent development;HLA;FMIIEEE Inglês CE1 Excluído
Towards Standardization of AV Safety: C++ Library for Responsibility Sensitive SafetyB. Gassmann; F. Oboril; C. Buerkle; S. Liu; S. Yan; M. S. Elli; I. Alvarez; N. Aerrabotu; S. Jaber; P. van Beek; D. Iyer; J. Weast2019 The need for safety in Automated Driving (AD) is becoming increasingly critical with the accelerating deployment of this technology. Beyond functional safety, industry must guarantee the operational safety of automated vehicles. Towards that end, Mobileye introduced the Responsibility Sensitive Safety (RSS), a model-based approach to Safety [1]. In this paper we expand upon this work introducing the C++ Library for Responsibility Sensitive Safety, an open source executable that implements a subset of RSS. We provide architectural details to integrate the C++ Library for Responsibility Sensitive Safety with AD Software pipelines as safety module overseeing decision making of driving policies. We illustrate this application with an example integration with the Baidu Apollo AD stack and simulator, [2] and [3], that provides safety validation of the planning module. Furthermore, we show how the C++ Library for Responsibility Sensitive Safety can be used to explore the usefulness of the RSS model through parameter exploration and analysis on minimum safe longitudinal distance, (dmin), considering different weather conditions. We also compare these results with half-of-speed rule followed in some parts of the world. We expect that the C++ Library for Responsibility Sensitive Safety becomes a critical component of future tools for formal verification, testing and validation of AD safety and that it helps bootstrap the AD research efforts towards standardization of safety.10.1109/IVS.2019.8813885https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813885- IEEE Inglês CE1 Excluído
Noise Explorer: Fully Automated Modeling and Verification for Arbitrary Noise ProtocolsN. Kobeissi; G. Nicolas; K. Bhargavan2019 The Noise Protocol Framework, introduced recently, allows for the design and construction of secure channel protocols by describing them through a simple, restricted language from which complex key derivation and local state transitions are automatically inferred. Noise "Handshake Patterns" can support mutual authentication, forward secrecy, zero round-trip encryption, identity hiding and other advanced features. Since the framework's release, Noise-based protocols have been adopted by WhatsApp, WireGuard and other high-profile applications. We present Noise Explorer, an online engine for designing, reasoning about, formally verifying and implementing arbitrary Noise Handshake Patterns. Based on our formal treatment of the Noise Protocol Framework, Noise Explorer can validate any Noise Handshake Pattern and then translate it into a model ready for automated verification and also into a production-ready software implementation written in Go or in Rust. We use Noise Explorer to analyze more than 57 handshake patterns. We confirm the stated security goals for 12 fundamental patterns and provide precise properties for the rest. We also analyze unsafe handshake patterns and document weaknesses that occur when validity rules are not followed. All of this work is consolidated into a usable online tool that presents a compendium of results and can parse formal verification results to generate detailed-but-pedagogical reports regarding the exact security goals of each message of a Noise Handshake Pattern with respect to each party, under an active attacker and including malicious principals. Noise Explorer evolves alongside the standard Noise Protocol Framework, having already contributed new security goal verification results and stronger definitions for pattern validation and security parameters.10.1109/EuroSP.2019.00034https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8806757formal verification;noise protocol framework;cryptographic protocols;secure implementation;secure channel protocolsIEEE Inglês CE1 Excluído
A Metamodeling Approach to Support the Engineering of Modeling Method RequirementsD. Karagiannis; P. Burzynski; W. Utz; R. A. Buchmann2019 The notion of "modeling method requirements" refers to a category typically neglected by RE taxonomies and frameworks - i.e., those requirements that motivate the realization of (conceptual) modeling methods and tools. They can be considered domain-specific, in the sense that all modeling methods provide a knowledge schema for some selected application domain (narrow or broad). Besides this inherent domain-specific nature, we are investigating how the characteristics of modeling methods inform the RE perspective, and how in turn RE can support the engineering of such artifacts. Thus, the work at hand aims to raise awareness about modeling method requirements in the RE community. The core contribution is the CoChaCo (Concept-Characteristic-Connector) method for the representation and management of such requirements, as well as for streamlining with subsequent engineering phases. CoChaCo is itself a modeling method - i.e., it achieves its goals through diagrammatic modeling means for which a supporting tool was prototyped and evolved. The proposal originates in required support for the initial phase of the Agile Modeling Method Engineering (AMME) methodology, which was successfully applied in developing a variety of project-specific modeling tools. From this accumulated experience, awareness of "modeling method requirements" emerged and informed the design decisions of CoChaCo.10.1109/RE.2019.00030https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920624Modeling method requirements, Requirements modeling, Metamodeling, Agile Modeling Method EngineeringIEEE Inglês CE1 Excluído
Recurrence in Dense-Time AMS AssertionsS. Sanyal; A. A. B. da Costa; P. Dasgupta2021 The notion of recurrence over continuous or dense time, as required for expressing analog and mixed-signal behaviors, is fundamentally different from what is offered by the recurrence operators of SystemVerilog assertions (SVAs). This article introduces the formal semantics of recurrence over dense time and provides a methodology for the runtime verification of such properties using interval arithmetic. Our property language extends SVA with dense real-time intervals and predicates containing real-valued signals. We provide a tool kit that interfaces with off-the-shelf EDA tools through the standard VPI.10.1109/TCAD.2020.3040259https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9268140Analog mixed-signal;assertions;recurrence;sequence expressionsIEEE Inglês CE1 Excluído
Computer-Aided Analysis of Hybrid Dynamical Systems in the ISMA EnvironmentA. V. Garder; Y. V. Shornikov 2022 The numerical analysis of complex event-continuous processes represented by the class of Cauchy problems with constraints on an event function is considered. The processes are specified in the developed unique textual-graphical language LISMA using Harel statecharts. The program models are edited, numerically analyzed, and their results are processed in the computer-aided analysis environment ISMA. The numerical analysis is performed using a collection of traditional and developed original explicit numerical integration methods of variable order and step with extended stability domains and an original algorithm detecting unilateral events in hybrid systems. The efficiency of the original methods has been tested on typical examples of hybrid systems. The chosen visual specification of program models satisfies the representation semantics of discrete-continuous processes with complex operational mode switching logic. Moreover, such a specification is understandable to an end user, who is rather interested in analyzing complex dynamic processes using simple and comprehensible tools for composing and editing models and being able to change the model structure and parameters fast.10.1109/EDM55285.2022.9855163https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855163complex event-continuous processes;hybrid dynamical systems;textual-graphical languages;Harel statecharts;computer-aided analysis environmentsIEEE Inglês CE1 Excluído
Reducing Ambiguity in Requirements Elicitation via GamificationH. S. Dar 2020 The overall quality and success of software highly depends on the involvement of stakeholders. Requirements elicitation supports RE analyst to gather requirements from the stakeholders based on their needs. There are multiple elicitation techniques present in literature and used by the practitioners. Some of them are questionnaires, interviews, prototyping, and user stories etc. However, these techniques are based on textual representation of requirements. These techniques are quite common among the requirement engineers yet problems of ambiguity, inconsistency, incompleteness still exist mostly due to their textual nature and lack of stakeholder involvement. Lack of clarity about the system increases the ambiguity of what exactly are the system requirements. Since elicitation is carried at an early stage of development the users are not sure of what they want, as requirements tend to evolve with the help of discussions and interactions among various stakeholders and technical team. Furthermore, the conventional elicitation methods are limited when it comes to stakeholders' participation and involvement, thus leaving a space for more ambiguous and incomplete requirements. In this work, Gamification, a game-based context will be used in non-gaming context for user involvement in fun ways. During elicitation, gamification would help to involve and interact with the stakeholders, with an intention to develop their interest in eliciting and finalizing system requirements. The goal of this paper is to reduce ambiguity during requirements elicitation. This would help in reducing the cost and time of development. Furthermore, we will elicit software requirements using gamification by developing a gamification tool with a focus to elicit unambiguous requirements by ensuring users' participation and maintaining interest. The validation of tool would be done using multiple confirmatory case studies from software industry.10.1109/RE48521.2020.00065https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218218ambiguity;requirements engineering;requirements elicitation;gamification;software developmentIEEE Inglês CE1 Excluído
Special Features of TLA + Temporal Logic of Actions for Verifying Access Control PoliciesA. M. Kanner; T. M. Kanner 2021 The paper considers special features of applying Lamport's temporal logic of actions when verifying access control policies for arbitrary data protection tools. It justifies the necessity of implementing verification in the process of development and certification of various software tools and algorithms, in particular, policies for controlling subjects' access to objects. It contains a general structure of notation or specification of the system being studied in a formal language suitable for verification, and its particular version in the TLA + language. The paper considers special features of using Lamport's temporal logic of actions, and gives recommendations regarding dos and don'ts when initializing the modeled system, when forming and using invariants or temporal properties, history and auxiliary variables, safety and liveness properties, as well as when accounting for the termination of the verification process. Such features and recommendations are formulated in a quite universal way and do not depend on the applied verification approach and on the system being studied. The paper lists typical errors that may be done during verification, which make its results useless, while artificially creating a feeling of confidence in the system's “rightness”, “correctness” or “security / safety”. The conclusion presents key features that can have a significant impact on verification results, as well as on feasibility of its implementation. It proposes one of the possible directions for further research on the development of a general approach to substantiating conformity of the verified system specification in some formal language with its practical implementation.10.1109/USBEREIT51232.2021.9455090https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9455090verification;temporal logic of actions;auxiliary variables;history variables;invariants;temporal properties;safety properties;liveness propertiesIEEE Inglês CE1 Excluído
Decomposition of Process Control Algorithms for Parallel Computing Systems Using Automata ModelsD. V. Pashchenko; A. I. Martyshkin; D. A. Trokoz2020 The paper considers the decomposition of process control algorithms for parallel computing systems using automata models. When designing parallel processing systems, an important problem is the formal representation of process control algorithms since they allow integrated solving the tasks of development, implementation, and analysis of complex control systems, including the control over interacting processes and resources in parallel systems. One of the control algorithm formal description techniques is based on the use of nondeterministic automaton (NDA) logic; it allows representing the data processing control algorithms as canonical equation systems describing all private events implemented in the algorithm. This language's advantage is describing all the control system transitions in not the system state terms but private event ones, the simultaneous existence of which determines all the system states and transitions, which allows avoiding a `combinatorial explosion' in the state space at the currently available verification capabilities. The paper objective is studying the process control algorithms for parallel computing systems using the NDA tool. Herein, the development and research object is the parallel decomposition of control algorithms for parallel computing systems using automata models. An automata model has been obtained that describes the synchronization of parallel processes based on the finite NDA logic, the correctness of which has been proved by simulation in the VHDL language. The experimental hardware implementation of synchronization device using FPGAs and the resulting time-charts of its operation completely confirm its correct functioning. Conclusions have been drawn on the correctness of the basic results obtained in the study.10.1109/RusAutoCon49822.2020.9208165https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208165control algorithm;verification;finite automaton;simulation;parallel system;temporal logic;formalizationIEEE Inglês CE1 Excluído
VHDL Compiler with Natural Parallel Comands ExecutionV. Zhukovskyy; D. Dmitriev; N. Zhukovska; A. Safonyk; A. Sydor2021 The paper considers the process of compilers designing and highlight parallelism in algorithmic structures. The advantages of existing solutions in the hardware and software areas are highlighted and a new approach for creating a software and hardware compiler is designed. The requirements for our language and the peculiarities of the functioning of each component of the compiler were clearly defined. The basis of the alphabet consists of Latin upper and lower case characters, numbers and delimiters. A description of the lexical analyzer, which highlights tokens and keywords in the text of the input program is provided. Syntactic rules of language (structure of constructions) in the form of diagrams of the Bekus-Naur form and semantic requirements concerning identifiers, length of names of identifiers and labels, arithmetic operations and input/output ports are described as well. The processor compiler with natural parallel execution of instructions was developed. Performance testing and comparative analysis of the efficiency of the developed compiler has shown the advantages of the created solution.10.1109/EUROCON52738.2021.9535606https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9535606compiler;analyzer;microprocessor;HDL synthesisIEEE Inglês CE1 Excluído
Static Analysis of Resource Consumption in Programs Using Rewriting RulesT. Mamedov; A. Doroshenko; R. Shevchenko2020 The paper presents a method of static analysis of resource consumption for C# programs. A software tool based on rewriting rules is proposed for that purpose for the case of opened and closed files. In order to work with C#-programs, the special plugin for TermWare, which helps to generate appropriate terms from source code, was developed. The plugin uses the Roslyn compiler to find different syntax errors and focus on the primary task of generating terms from source code. Also, an application based on TermWare system - a static analyzer that finds problems with open-close files, is described in the article.10.1109/ATIT50783.2020.9349290https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9349290analysis of resource consumption;terms;generator;analyzer;rewriting rules;TermWareIEEE Inglês CE1 Excluído
Analysis and Design Automation of Cyber-Physical System with Hippo and IOPT-ToolsR. Wiśniewski; G. Bazydło; L. Gomes; A. Costa; M. Wojnakowski2019 The paper presents a novel design methodology of cyber-physical systems supported by computer aided tools. In particular, IOPT and Hippo tools are involved in the design and analysis techniques of the system. The proposed idea combines the main advantages of both tools by offering the complex design path of the control part of the cyber-physical system, including specification, analysis and verification, decomposition, and modelling stages. Additionally, the designer is able to choose the most suitable representation of the system (graphical or formal). The presented concepts are illustrated by a case-study example.10.1109/IECON.2019.8926692https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8926692computer aided design and analysis;cyber-physical systems;Petri nets;IOPT;HippoIEEE Inglês CE1 Excluído
Parallel Specification-Based Testing for Concurrent ProgramsC. Minh Do; K. Ogata 2022 The paper proposes a new testing technique for concurrent programs. The technique is a specification-based testing. For a formal specification S and a concurrent program P, state sequences are generated from P and checked to be accepted by S. We suppose that S is specified in Maude and P is implemented in Java. Java Pathfinder (JPF) and Maude are then used to generate state sequences from P and to check if such state sequences are accepted by S, respectively. Even without checking any property violations with JPF, JPF often encounters the notorious state space explosion while only generating state sequences. Thus, we propose a technique to generate state sequences from P and check if such state sequences are accepted by S in a stratified way. A tool is developed to support the proposed technique that can be processed naturally in parallel. Some experiments demonstrate that the proposed technique mitigates the state space explosion, which cannot be achieved with the straightforward use of JPF.10.1109/ACCESS.2022.3155629https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9723036Simulation;divide & conquer approach;parallel algorithms;concurrent programs;specification-based testingIEEE Inglês CE1 Excluído
Program translation using model-driven engineeringK. Lano 2022 The porting or translation of software applications from one programming language to another is a common requirement of organisations that utilise software, and the increasing number and diversity of programming languages makes this capability as relevant today as in previous decades.Several approaches have been used to address this challenge, including machine learning and the manual definition of explicit translation rules. We define a novel approach using model-driven engineering (MDE) techniques: reverse-engineering source programs into specifications in the UML and OCL formalisms, and then forward-engineering the specifications to the required target language. This approach has the additional advantage of extracting specifications of software from code. We provide an evaluation based on a comprehensive dataset of examples, including industrial cases, and compare our results to those of other approaches and tools.10.1145/3510454.3528639https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793785Program translation;Model driven engineeringIEEE Inglês CE1 Excluído
A UML Profile for Prediction of Significant Software RequirementsA. Tariq; F. Azam; M. W. Anwar; B. Maqbool; H. A. Javaid2019 The preliminary phase of the software development life cycle is Requirements engineering that is nearest to the user's world. This phase contains tasks that are knowledge concentrated. Therefore, the practice of Bayesian Belief Network (BBN) for modelling this knowledge would be worthful assistance. Accordingly, predicting significant requirements is essential. When poorly identified, numerous problems happen, such as budget overrun, software failures and schedule overrun. However, this phase is usually not performed and skipped by assuming as an inconsequential phase. Significant requirements identification become more vital and challenging when the complexity of the software increases. Therefore, managers and developers recurrently lose confidence in software artifacts. Wavering in the developer's confidence may in return distress the decisions of which requirement is to implement first. In this paper Bayesian belief network (BBN) approach for predicting significant requirements is proposed to solve the problem by UML Profile mechanism. This probabilistic model supports in accomplishing the uncertainties and inaccuracy generally exists in the requirements engineering process. It makes the prediction more precise, intuitionistic and reasonable. The Profile is imported into a UML tool, which helps in prompt validation of meta-model concepts in practice. The approach is practicable in a realistic context and addresses uncertainties.10.1109/IEMCON.2019.8936227https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936227Bayesian Belief Network;Requirements Prediction;UML Profile;Significant Requirement;Risk Analysis;Requirements Dependency;Predictive ModelIEEE Inglês CE1 Excluído
Automatic Test Cases Generation for C Written Programs Using Model CheckingD. G. Lima; R. E. González Torres; P. M. Alvarez2021 The present work focuses on the development of a tool that automatically generates coverage criteria based test cases from a C written program. For accomplishing this, the tool translates the C code into PROMELA and generates specifications based on the wanted coverage criteria. Once the model (PROMELA code) and specifications are obtained, it uses SPIN model checker for executing the verification and generating counterexamples which can be used as test cases.10.1109/CSCI54926.2021.00361https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9799272model checking;compiler;PROMELA;SPIN;software testingIEEE Inglês CE1 Excluído
Simulation of Hybrid Reo ConnectorsE. Ardeshir-Larijani; A. Farhadi; F. Arbab2020 The prevalence of complex Cyber-Physical Systems (CPS) as an increasingly ubiquitous technology, necessitates the incorporation of component based and compositional design methods for the development and deployment of such systems. In this paper, we introduce a hybrid coordination framework to specify CPSs with components and use the resulting models to simulate, validate and verify those systems, using UPPAAL statistical model checker (SMC). We use SMC because with a level of uncertainty and unpredictability (e.g., the physical environment with which a CPS interacts), simulation-based verification approaches, where properties are guaranteed with a degree of confidence, produce more meaningful results. To demonstrate the main idea of our paper, we chose Reo as the language for the specification of hybrid components coordination, where both continuous and discrete state transitions can occur inside components. Next, we introduce a transformation that takes the specification of a connector in the language of hybrid Reo, into a network of hybrid timed automata, a commonly used semantic model in SMC. Finally, we report on the implementation of our transformation, and experimentation on two case studies.10.1109/RTEST49666.2020.9140111https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9140111Reo coordination language;component based system;cyber physical system;hybrid system;statistical model checkingIEEE Inglês CE1 Excluído
Promela and Spin Formal Verification of an M-Health Medical Social Media SystemS. M. S. Al-Gayar; N. Goga; N. A. J. Al-Habeeb2019 The process of detecting and identifying errors early in the life-cycle of any software has many challenges. The tools used for model checking are however becoming more effective and usable because they are helping the identification of errors. This has empowered users to apply model checking to large-scale problems. The process of validating the model implementation is normally harder. We created a Promela model by using a model checker called Spin in order to verify the Medical Social Media System based on Social Oriented Networks by using M-Health technology and sensors in smartphones and bracelets for medical data acquisition, in order for it to be used in the healthcare sector in Iraq. For the Promela Model, we first described the behaviors of the Medical Social Media Systems via UML timelines. After that, we combined the UML timelines in state diagrams that were finally transformed into a Promela model and verified with the Spin model checker.10.1109/ICACTM.2019.8776807https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776807UML;Verification;Validation;Promela;Spin;M-Health;Social Oriented NetworksIEEE Inglês CE1 Excluído
Proving Reflex Program Verification Conditions in Coq Proof AssistantI. Chernenko; I. Anureev; N. Garanina2021 The process-oriented paradigm is a promising approach to the development of control software based on the natural concept of the process. Many safety-critical systems use control software. This is a reason for the formal verification of such systems. Deductive verification is the formal method of proving the program's correctness (the satisfiability program requirements). Requirements are formalized as annotations added to programs. The resulting annotated programs are reduced to verification conditions - formulas in some logical language. The original program is considered to be correct if all the verification conditions are true. This paper presents the results of experiments on proving verification conditions in Coq proof assistant within the framework of the two-step method of deductive verification of process-oriented programs in Reflex language.10.1109/EDM52169.2021.9507628https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507628process-oriented programming;Reflex language;deductive verification;requirements;annotations;verification conditions;temporal properties;control softwareIEEE Inglês CE1 Excluído
Modeling Routing Protocols in ASMETALP. Campanella 2021 The proliferation of mobile computing and devices communication (e.g., cell phones, laptops, handheld digital devices, personal digital assistants or wearable computers) is driving a revolutionary change in our information society. The increasing application of formal method ASM in academic and industrial projects has caused a rapid development of tools around ASM of various complexity and goals. Today, there exist various routing protocols for this environment. The Abstract State Machines (ASM) are nowadays acknowledged as a formal method successfully employed as system engineering method that guides development of systems complex seamlessly from requirements capture to their implementation. Several tools supporting ASM have been developed in the past. ASMETA modelling toolset, which is a set of tools for ASM based on the metamodelling approach of the Model-driven Engineering (MDE). In this paper it is discuss the ASMETA framework, and how the language and the simulator have been developed exploiting the advantages offered by the metamodelling approach, is explained the AsmetaS architecture, its kernel engine, and how the simulator works within ASMETA tool set, the features currently supported by the simulator and the language AsmetaL used to write ASM specifications, and we provide the AsmetaL encoding of ASM specifications of increasing complexity.10.1109/ICETA54173.2021.9726565https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9726565asmeta;manet;modeling;protocol;ruleIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9384012
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8732882
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8959796
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447075
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643786
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9214097
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9676609
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9628917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604549
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8710732
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9396227
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9307806
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8906967
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9002783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9251070
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643661
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8940189
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9512884
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172714
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9438168
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9791260
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8711858
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9139402
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8711857
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9443795
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8780355
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813885
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8806757
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920624
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9268140
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855163
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218218
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9455090
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208165
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9535606
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9349290
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8926692
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9723036
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793785
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936227
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9799272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9140111
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776807
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507628
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9726565

A Semantic Framework for the Design of Distributed Reactive Real-Time Languages and ApplicationsM. Sanabria-Ardila; L. D. B. Navarro; D. Díaz-López; W. Garzón-Alfonso2020 The proliferation of on-demand internet services delivered over a network of a heterogeneous set of computing devices has created the need for high-performing dynamic systems in real-time. Services such as audio and video streaming, self-driving cars, the Internet of things (IoT), or instant communication on social networks have forced system designers to rethink the architectures and tools for implementing computer systems. Reactive programming has been advocated as a programming paradigm suitable for implementing dynamic applications with complex and heterogeneous architectural needs. However, there is no consensus on the core set of features that a reactive framework must-have. Furthermore, the current set of features proposed in reactive tools seems very restricted to cope with the actual needs for concurrency and distribution in modern systems. In this paper, several alternative semantics for distributed reactive languages are investigated, addressing complex open issues such as glitch avoidance, explicit distribution support, and constructs for explicit time management. First, we propose a reactive event-based programming language with explicit support for distribution, concurrency, and explicit time manipulation (ReactiveXD). Second, we present a reactive event-based semantic framework called Distributed Reactive Rewriting Framework (DRRF). The framework uses rewriting logic to model the components of a distributed base application, observables, and observers, and predicates supporting explicit time manipulation. Finally, to validate the proposal, the paper discusses the specification of the semantics of ReactiveXD and a scenario describing a case of intrusion detection on IoT networks.10.1109/ACCESS.2020.3010697https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9144537Distributed computing;the Internet of Things (IoT);logical clocks;Maude;real-time languages;reactive programming;rewriting logic;cybersecurity applicationsIEEE Inglês CE1 Excluído
A Model Driven Framework for Standardizing Requirement Elicitation by Quantifying Software Quality FactorS. Khalid; U. Rasheed; M. Abbas2021 The quality monitoring of a software is ensured in every activity of software development lifecycle. Software Quality Requirements are defined in terms of Software Quality Factors and they are gathered to ensure that the software produced meets the user defined quality standards; framework activities are also performed to ensure the incorporation of quality into the developed product. However, these quality factors are qualitative in nature and are thus hard to understand, elicit and record; it also makes the analysing process of the factors hard due to natural language constraints. In order to overcome this, standards and templates are proposed by researchers and devised by organization for eliciting quality factors and then models and procedures are defined to convert the qualitative quality factors into quantitative measures. However, no standardized procedure, tool or model exist that can be applied to this process of recording qualitative software quality factors in quantifiable form for every kind of software product. This paper presents a model driven framework to standardize the procedure of eliciting quality requirements in a quantifiable manner. It uses Obeo Designer to develop the Platform Independent Metamodel (PIM) for the proposed framework. Based on the PIM, it develops a drag-and-drop tool palette and an M1 level instance model using Sirius. The validation of the proposed framework is demonstrated with the help of a case study.10.1109/ICIC53490.2021.9693054https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9693054software quality factors;ISO 9126;quality metrics;metamodel;model driven architectureIEEE Inglês CE1 Excluído
ATGP_RISC-V: Automation of Test Generator using Pluggy for RISC-V ArchitectureB. Madhavan; A. Kamerish; R. Manimegalai2020 The reduced instruction set computing (RISC) architecture is a free and open Instruction Set Architecture (ISA), which enables a new era of processor innovation through open standard collaboration. It directly challenges several well-established processor families such as intel x-86, Motorola 68k processor. To thrive an RISC-V ecosystem, the core suppliers need an independent verification solution to ensure that their designs are compliant with the ISA specification. Verification of RISC-V designs become challenging due to their optional features, implementation flexibility, and provisions for customer extensions. Hence, a thorough verification is essential to compete successfully against the established processor families. Automation is the key for reducing the time taken for the processor verification. This paper provides a way to develop an automated tool ATGP_RISC-V, which uses the same arguments to run all instruction generators. This helps in verifying the processor in an efficient way by reducing the time taken to manually compare the test results.10.1109/ICSSIT48917.2020.9214255https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9214255RISC-V;instruction;exceptions;VCS;verification;testbed;functional verification;instruction set architectureIEEE Inglês CE1 Excluído
Flip Flop Weighting: A technique for estimation of safety metrics in Automotive DesignsF. A. da Silva; A. C. Bagbaba; S. Hamdioui; C. Sauer2021 The requirements of ISO26262 for the development of safety-critical Integrated Circuits (IC) demand substantial efforts on fault analysis for safety metrics evaluation. Failing to achieve the required conditions entails modifications to the circuit, additional iterations through critical design phases, and consequently extra costs and delays. For that reason, providing accurate methods to estimate safety metrics is of great importance. This paper proposes a methodology that can efficiently and precisely estimate the safety metrics of Automotive designs. The technique is based on the characterization of a netlist to determine how hardware components contribute to fault propagation. Also, by examining the test stimuli applied during simulation, we can rank Workloads/Testbenches according to their fault detection coverage. The approach was verified running fault injection campaigns on distinct gate-level hardware designs, including an Automotive CPU. Our results show that the fault detection coverage can be estimated with an average error rate of 3% at up to 20X faster execution times when compared to the traditional campaigns. Hence the methodology provides an efficient and cost-effective mechanism to support engineers in a confident design space exploration.10.1109/IOLTS52814.2021.9486697https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9486697ISO26262;Design Space Exploration;Fault Injection;Formal Methods;Simulation;Functional Safety;VerificationIEEE Inglês CE1 Excluído
A Framework for Model-Based Dependability Analysis of Cyber-Physical SystemsM. Adedjouma; N. Yakymets 2019 The rise of complex Cyber-Physical Systems has led to many initiatives to promote automation of the assurance of their dependability. There exists mature practices and tools to perform necessary activities to provide evidence that a system satisfies dependability requirements. However, there is few harmonized an integrated framework that can support both the definition of the evidence and their collection and management from the specification to the V&V activities to testify of the assurance of those systems in compliance with standards. This paper presents Sophia, a framework that supports assurance of critical cyber physical systems using compositional model-based approaches. Sophia features a wide range of dependability analysis tools targeting all phases of system lifecycle for development of cyber physical systems. Sophia further helps trace the developed analysis outcomes to the requirements in standards for compliance support. We have validated the framework components through different case studies that indicate its usefulness and efficiency in helping prepare for certification of the systems.10.1109/HASE.2019.00022https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673028assurance evidence, dependability assessment, model-driven engineering, FMEA, FTA, hazard analysis, requirements, property verification, standard complianceIEEE Inglês CE1 Excluído
Model-Driven Development of UML-Based Domain-Specific Languages for System Architecture VariantsA. Wichmann; R. Maschotta; F. Bedini; A. Zimmermann2019 The rising overall complexity of modern complex systems leads to an increasing number of decisions made during system design. To achieve efficient, resource saving systems, modern engineering methods and techniques are necessary. Model-based approaches are widely applied in systems engineering, using several types of models in the development phases at different abstraction levels. Model-based design of complex systems benefits from the early validation of design decisions. Indirect optimization with simulation-based validation can be used to determine optimal system solutions. A method for model-driven optimization of system architectures based on the UML standard has been proposed in our earlier work and implemented in a software framework.This paper describes our approach to specify domain-specific languages and corresponding domain-specific tools. The specifications are based on UML extensions using profiles only, which is a lightweight approach compared to other proposals. This allows the reuse and extension of existing UML models. A domain-specific graphical editor for system architecture variants is presented based on the specified extensions. The resulting graphical editor is used to model system architecture variants as an example.10.1109/SYSCON.2019.8836895https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836895system architecture optimization;design space specification;model analysis;model queries;UML;model validation;model driven engineering;Eclipse SiriusIEEE Inglês CE1 Excluído
Bounded Exhaustive Search of Alloy Specification RepairsS. Gutiérrez Brida; G. Regis; G. Zheng; H. Bagheri; T. Nguyen; N. Aguirre; M. Frias2021 The rising popularity of declarative languages and the hard to debug nature thereof have motivated the need for applicable, automated repair techniques for such languages. However, despite significant advances in the program repair of imperative languages, there is a dearth of repair techniques for declarative languages. This paper presents BeAFix, an automated repair technique for faulty models written in Alloy, a declarative language based on first-order relational logic. BeAFix is backed with a novel strategy for bounded exhaustive, yet scalable, exploration of the spaces of fix candidates and a formally rigorous, sound pruning of such spaces. Moreover, different from the state-of-the-art in Alloy automated repair, that relies on the availability of unit tests, BeAFix does not require tests and can work with assertions that are naturally used in formal declarative languages. Our experience with using BeAFix to repair thousands of real-world faulty models, collected by other researchers, corroborates its ability to effectively generate correct repairs and outperform the state-of-the-art.10.1109/ICSE43902.2021.00105https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402059Alloy;Automated Repair;Formal Specification;Bounded exhaustive analysisIEEE Inglês CE1 Excluído
MBSE for Satellite Communication System ArchitectingS. Gao; W. Cao; L. Fan; J. Liu2019 The risk of failure for aerospace missions can be reduced if architects model the product in a systematic way and make decisions for physical implementation based on stakeholder needs. Satellite communication system architecting should take one of its dominating elements, the communication satellite, into account for consistent modeling during the whole product lifecycle. Model-based system engineering (MBSE) serves as a useful tool for system modeling activities and connections with manufacturing. In this paper, satellite communication system architecting is investigated in the preliminary design stage via MBSE methodologies and the system modeling language (SysML). Application scenarios and use cases are built up aiming at satisfying stakeholder needs. System black-box analysis and white-box logical decomposition are further realized. The logical architecture is then partitioned for physical implementation and system optimization is carried out to give architecting suggestions. Requirement traceability is examined to finish the current design stage. The models realized by the MBSE method are reusable and easily extendible to detailed system design and implementation in the whole product lifecycle.10.1109/ACCESS.2019.2952889https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8895949MBSE;satellite communication system;architecting;SysML;OOSEMIEEE Inglês CE1 Excluído
ROSSi A Graphical Programming Interface for ROS 2C. Wanninger; S. Rossi; M. Schörner; A. Hoffmann; A. Poeppel; C. Eymueller; W. Reif2021 The Robot Operating System (ROS) offers developers a large number of ready-made packages for developing robot programs. The multitude of packages and the different interfaces or adapters is also the reason why ROS projects often tend to become confusing. Concepts of model-driven software development using a domain-specific modeling language could counteract this and at the same time speed up the development process of such projects. This is investigated in this paper by transferring the core concepts from ROS 2 into a graphical programming interface. Elements of established graphical programming tools are compared and approaches from modeling languages such as UML are used to create a novel approach for graphical development of ROS projects. The resulting interface is evaluated through the development of a project built on ROS, and the approach shows promise towards facilitating work with the Robot Operating System.10.23919/ICCAS52745.2021.9649736https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9649736robot operating system;ros;unmaned aerial vehicle;uav;model driven development;semantic plug and playIEEE Inglês CE1 Excluído
Automating Performance Antipattern Detection and Software Refactoring in UML ModelsD. Arcelli; V. Cortellessa; D. D. Pompeo2019 The satisfaction of ever more stringent performance requirements is one of the main reasons for software evolution. However, it is complex to determine the primary causes of performance degradation, because they may depend on the joint combination of multiple factors (e.g., workload, software deployment, hardware utilization). With the increasing complexity of software systems, classical bottleneck analysis shows limitations in capturing complex performance problems. Hence, in the last decade, the detection of performance antipatterns has gained momentum as an effective way to identify performance degradation causes. We introduce PADRE (Performance Antipattern Detection and REfactoring), that is a tool for: (i) detecting performance antipattern in UML models, and (ii) refactoring models with the aim of removing the detected antipatterns. PADRE has been implemented within Epsilon, an open-source platform for model-driven engineering. It is based on a methodology that allows performance antipattern detection and refactoring within the same implementation context.10.1109/SANER.2019.8667967https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8667967Software Performance;Model-Driven DevelopmentIEEE Inglês CE1 Excluído
AutoMap: Automated Mapping of Security Properties Between Different Levels of Abstraction in Design FlowB. Ahmed; F. Rahman; N. Hooten; F. Farahmandi; M. Tehranipoor2021 The security of system-on-chip (SoC) designs is threatened by many vulnerabilities introduced by untrusted third-party IPs, and designers and CAD tools' lack of awareness of security requirements. Ensuring the security of an SoC has become highly challenging due to the diverse threat models, high design complexity, and lack of effective security-aware verification solutions. Moreover, new security vulnerabilities are introduced during the design transformation from higher to lower abstraction levels. As a result, security verification becomes a major bottleneck that should be performed at every level of design abstraction. Reducing the verification effort by mapping the security properties at different design stages could be an efficient solution to lower the total verification time if the new vulnerabilities introduced at different abstraction levels are addressed properly. To address this challenge, we introduce AutoMap that, in addition to the mapping, extends and expands the security properties to identify new vulnerabilities introduced when the design moves from higher-to lower-level abstraction. Starting at the higher abstraction level with a defined set of security properties for the target threat models, AutoMap automatically maps the properties to the lower levels of abstraction to reduce the verification effort. Furthermore, it extends and expands the properties to cover new vulnerabilities introduced by design transformations and updates to the lower abstraction level. We demonstrate AutoMap's efficacy by applying it to AES, RSA, and SHA256 at C++, RTL, and gate-level. We show that AutoMap effectively facilitates the detection of security vulnerabilities from different sources during the design transformation.10.1109/ICCAD51958.2021.9643467https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643467Security Property Mapping;Security Property Extension;Security Property Expansion;Property-based VerificationIEEE Inglês CE1 Excluído
A Specification-Based Semi-Formal Functional Verification Method by a Stage Transition Graph ModelZ. Lv; S. Chen; T. Zhang; Y. Wang2019 The semi-formal verification method, in which the functionality is formally specified and the checking is undertaken through the formal model-based simulation, has been a promising choice for the functional verification of hardware designs. The existing methods derive the formal model from design implementation. This causes poor scalability and practicality. A more feasible solution is to derive the formal model directly from the specification. In this paper, we propose a specification-based semi-formal method for functional verification. The proposed semi-formal method uses a stage transition graph (STG) model to formally describe the function points in the specification. Meanwhile, we propose an automatic test pattern generation (ATPG) method to generate the test vectors based on the STG model. The proposed STG-based ATPG method can reach possible corner cases and ensure exhaustive exploration of functionality for both control-dominated designs and data-dominated designs. Moreover, we develop an STG-based tool for automatic verification. Our experiments show that our method can automatically verify the functional correctness from the specification while achieving similar code coverage as implementation-based semi-formal approaches.10.1109/ACCESS.2019.2892649https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8611078Functional verification;simulation;formal;semi-formal;ATPGIEEE Inglês CE1 Excluído
Executable Test Case Generation from Specifications Written in Natural Language and Test Execution EnvironmentY. Aoyama; T. Kuroiwa; N. Kushiro2021 The Software Product Line Engineering (SPLE) realizes various products, reusing software parts, whereas issues remain in test case design and execution. Test cases are conventionally designed by a manual routine from specifications written in a natural language, and the routine and redesign of the test cases caused by the defects in the specification require much human time. Also, functions of recent consumer products are invoked in non-deterministic order by messages sent over a network, and combinations of software parts and execution orders require many regression tests, which are time-consuming and often infeasible to execute manually due to limited development time. Against the above issues, we introduce a test design process for specifications written in natural language, support tools for the process, and a test execution environment that automatically executes the non-deterministic tests to reduce the human time of both test case design and execution. Case studies confirmed that the proposing process automated the manual routine, removed defects in a specification, and generated test cases. The case studies also showed that the test execution environment automatically executed the non-deterministic tests for an HVAC system developed with the SPLE. Finally, we confirmed that the proposing methods shortened the human time of design and execution of tests.10.1109/CCNC49032.2021.9369549https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9369549test case generation;semi-formal description;test execution environmentIEEE Inglês CE1 Excluído
A Method to Ensure Compliance with Attribute and Role Based Access Control Policy for Executing BPMN ModelsD. -H. Nguyen; V. -V. Le; T. -H. Nguyen; D. -H. Dang2021 The stringent control of access rights during business processes execution is an important technique to ensure systems security. Business processes are often designed and operated based on models represented by domain-specific languages, such as BPMN. Moreover, access control policies are often studied and specified based on access control models, such as Role-based Access Control (RBAC) and Attribute-based Access Control (ABAC). These security techniques have several challenges that need to be addressed, such as (1) ensuring consistency of RBAC/ABAC policy specifications and (2) ensuring compliance with RBAC/ABAC policies when executing a business process. In this paper, we propose using a metamodeling technique to take advantage of UML and OCL’s expressive power in order to facilitate validation and verification of RBAC/ABAC policies. Within our approach, the RBAC metamodel is extended so that ABAC constraints for complex business rules could be captured and checked. We build a support tool by incorporating Activiti (the support tool for specifying and implementing BPMN models) with USE (UML-based Specification Environment). The proposed method is experimented and evaluated for the process of liquidating the individual teaching contracts of a training management system.10.1109/ICSSE52999.2021.9538430https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9538430Business Rules;RBAC – Role Based Access Control;ABAC – Attribute Based Access Control;BPMN - Business Process Model and Notation;UML/OCL - Unified Modeling Language/Object Constraint LanguageIEEE Inglês CE1 Excluído
Maintaining the Consistency of SysML Model Exports to XML Metadata Interchange (XMI)H. A. H. Handley; W. Khallouli; J. Huang; W. Edmonson; N. Kibret2021 The System Modeling Language (SysML) is a visual modeling language that can be used to describe the structure and behavior of a system. Modeling tools can be used to capture the variety of diagrams and maintain the consistency of elements across the different structural and behavioral representations of the system. Current research is investigating using the XML Metadata Interchange (XMI) standard to convert the diagrammatic information captured in SysML into a format that can be used to produce software code that can then be simulated to ensure conformance with system requirements. The XMI standard can be used as an interim format to migrate the content from a diagrammatic representation, where system elements are sorted by the diagram that contains them, to an object approach, where all elements related to an entity reside in a tree structure below that element. This paper presents a method to ensure the consistency of the XMI representation regardless of whether a functional or physical system engineering approach is used for the design process. This has implications in maintaining the consistency of the XMI file when system development is initiated from a high level of abstraction, followed by iterative addition of detail. The goal is to ensure that XMI file maintains an authoritative representation of the modeled system.10.1109/SysCon48628.2021.9447105https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447105SysML;XMI;Design Methods;System PerspectivesIEEE Inglês CE1 Excluído
UVM based Verification of Read and Write Transactions in AXI4-Lite ProtocolH. Sangani; U. Mehta 2022 The System-On-Chip (SoC) designs are becoming more complex nowadays. Multiple Intellectual Property (IPs) are integrated in a single SoC and these IPs communicate with the help of various bus protocols. Verification takes almost 70 % time in design cycle hence re-usable verification environment of these commonly used protocols is very important. In this paper, AXI4-Lite protocol is verified using UVM based testbench structure. To verify all channels of AX I protocol, data is written into a 4-bit shift register and it is read back. The UVM testbench acts as a master device which will send all control information, data and address to the register through the AXI interface. To understand verification goal achievement, coverpoints are written and functional and code coverage reports are analyzed. The synopsys V CS tool is used for the simulation.10.1109/TENSYMP54529.2022.9864552https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9864552AXI;UVM;Verification;VCS;System-on-chip(SoC)IEEE Inglês CE1 Excluído
Design Structure Matrix Generation from Open-source MBSE ToolsW. Pons; S. S. Cordero; R. Vingerhoeds2021 The usage of Design Structure Matrices is widely applied to represent, cluster, and partition complex systems information for different purposes, one of them being systems design. Nevertheless, open-source software for their automatic creation is rare. This leads to manual workshop sessions for subject matter experts to fill in the design structure matrices, a practice that is very tedious and time consuming. The importance and application of Model Based System Engineering has increased over the years. Nowadays, there are several open-source MBSE software such as StarUML, Papyrus, TTool, Modelio, Capella. This paper describes a novel approach to generate design structure matrices and extract information automatically from xml and xmi formats used widely in open-source Model Based System Engineering tools. This work presents the algorithm and a tool to extract data from the output model files, in order to automatically create a Design Structure Matrix (DSM) of modeled systems.10.1109/ISSE51541.2021.9582525https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582525DSM;Model Based Systems Engineering;Open source tools;systems thinkingIEEE Inglês CE1 Excluído
Effectiveness on C Flaws Checking and RemovalJ. Inácio; I. Medeiros 2022 The use of software daily has become inevitable nowadays. Almost all everyday tools and the most different areas (e.g., medicine or telecommunications) are dependent on software. The C programming language is one of the most used languages for software development, such as operating systems, drivers, embedded systems, and industrial products. Even with the appearance of new languages, it remains one of the most used [1] . At the same time, C lacks verification mechanisms, like array boundaries, leaving the entire responsibility to the developer for the correct management of memory and resources. These weaknesses are at the root of buffer overflows (BO) vulnerabilities, which range the first place in the CWE’s top 25 of the most dangerous weaknesses [2] . The exploitation of BO when existing in critical safety systems, such as railways and autonomous cars, can have catastrophic effects for manufacturers or endanger human lives.10.1109/DSN-S54099.2022.00021https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833646Buffer Overflow Vulnerabilities;Static Analysis;Fuzzing;Code Correction;Software SecurityIEEE Inglês CE1 Excluído
Refinement-based Construction of Correct Distributed AlgorithmsD. Méry 2021 The verification of distributed algorithms is a challenge for formal techniques supported by tools, as model checkers and proof assistants. The difficulties, even for powerful tools, lie in the derivation of proofs of required properties, such as safety and eventuality, for distributed algorithms. Verification by construction can be achieved by using a formal framework in which models are constructed at different levels of abstraction; each level of abstraction is refined by the one below, and this refinement relationships is documented by an abstraction relation namely a gluing invariant. The highest levels of abstraction are used to express the required behavior in terms of the problem domain and the lowest level of abstraction corresponds to an implementation from which an efficient implementation can be derived automatically. We describe a methodology based on the general concept of refinement and used for developing distributed algorithms satisfying a given list of safety and liveness properties. We will show also how formal models can be used for producing distributed programs of a real programming language. The modelling methodology is defined in the Event-B modelling language using the Rodin Formal IDE.10.1109/ICI2ST51859.2021.00015https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447336formal method;distributed algorithm;correct by cinstruction;refinement;verificationIEEE Inglês CE1 Excluído
A Lightweight Authentication Protocol for UAV Networks Based on Security and Computational Resource OptimizationY. Lei; L. Zeng; Y. -X. Li; M. -X. Wang; H. Qin2021 The widespread use of Unmanned Aerial Vehicles (UAV) has made the security and computing resource application efficiency of UAV a hot topic in the security field of the Internet of Things. In this paper, an optimized lightweight identity security authentication protocol, Optimized Identity Authentication Protocol (ODIAP) is proposed for Internet of Drones (IoD) networks. The protocol is targeted to the security risks faced by IoD networks, and proposes the security authentication mechanism consisting of 3 phases and 7 authentication processes, which enables the protocol has both forward and backward security, and can resist mainstream network attacks. Meanwhile, this paper fully considers the computational load and proposes the identity information generation and verification method based on the Chinese residual theorem, which reduces the computational load of resource-constrained nodes and shifts the complex computational process to server nodes with abundant computational resources. Moreover, after security protocol analysis and tool verification based on the automated security verification tool Proverif, the protocol in this paper has complete security. At the same time, the performance analysis and comparison with other mainstream protocols shows that this protocol effectively optimizes the use of computing resources without compromising security.10.1109/ACCESS.2021.3070683https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9393888UAV;Internet of Drones;lightweight authentication;Proverif;securityIEEE Inglês CE1 Excluído
Model-driven development of cyber-physical systems using TheatreL. Nigro 2019 Theatre is a control-based, light-weight, reflective actor system designed to address the development of general distributed, timed (possibly probabilistic) systems and cyber-physical systems in particular. Theatre is characterized by its formal operational semantics. An abstract Theatre model, including the services of a possible deterministic network and associated protocol, can be analyzed by exhaustive model-checking or by statistical model checking or through ad-hoc simulators. Theatre is currently implemented in Java. Other languages are possible. A key point of Theatre is its volition to favoring a seamless transformation of an analyzed model into the terms of design and implementation phases. The tutorial will illustrate the modelling aspects of Theatre, its supporting analysis tools, its capability of combining discrete-time with continuous time, its maturity as a software engineering methodology, and some developed applications.10.1109/DS-RT47707.2019.8958650https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958650- IEEE Inglês CE1 Excluído
ThEodorE: a Trace Checker for CPS PropertiesC. Menghi; E. Viganò; D. Bianculli; L. C. Briand2021 ThEodorE is a trace checker for Cyber-Physical systems (CPS). It provides users with (i) a GUI editor for writing CPS requirements; (ii) an automatic procedure to check whether the requirements hold on execution traces of a CPS. ThEodorE enables writing requirements using the Hybrid Logic of Signals (HLS), a novel, logic-based specification language to express CPS requirements. The trace checking procedure of ThEodorE reduces the problem of checking if a requirement holds on an execution trace to a satisfiability problem, which can be solved using off-the-shelf Satisfiability Modulo Theories (SMT) solvers. This artifact paper presents the tool support provided by ThEodorE.10.1109/ICSE-Companion52605.2021.00079https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402530Monitors, Languages, Specification, Validation, Formal methods, SemanticsIEEE Inglês CE1 Excluído
Handling Concurrency in Behavior TreesM. Colledanchise; L. Natale 2022 This article addresses the concurrency issues affecting behavior trees (BTs), a popular tool to model the behaviors of autonomous agents in the video game and the robotics industry. BT designers can easily build complex behaviors composing simpler ones, which represents a key advantage of BTs. The parallel composition of BTs expresses a way to combine concurrent behaviors that has high potential, since composing pre-existing BTs in parallel results easier than composing in parallel classical control architectures, as finite state machines or teleo-reactive programs. However, BT designers rarely use such composition due to the underlying concurrency problems similar to the ones faced in concurrent programming. As a result, the parallel composition, despite its potential, finds application only in the composition of simple behaviors or where the designer can guarantee the absence of conflicts by design. In this article, we define two new BT nodes to tackle the concurrency problems in BTs and we show how to exploit them to create predictable behaviors. In addition, we introduce measures to assess execution performance and show how different design choices affect them. We validate our approach in both simulations and the real world. Simulated experiments provide statistically significant data, whereas real-world experiments show the applicability of our method on real robots. We provided an open-source implementation of the novel BT formulation and published all the source code to reproduce the numerical examples and experiments.10.1109/TRO.2021.3125863https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9653148Autonomous systems;behavior trees;behavior-based systemsIEEE Inglês CE1 Excluído
Toward Generation of Dependability Assessment Models for Industrial Control SystemG. BOYER; J. -F. PÉTIN; N. BRÎNZEI; J. CAMERINI; M. NDIAYE2019 This article focuses on the development of a tool-based approach for the assessment of industrial control IT systems. The originality of the approach relies in two main points. First of all, the underlying formal models for dependability assessment must cover dynamic behavior of the IT architectures to take into account reparation, reconfiguration and modes in the life cycle of the architecture. Secondly, these formal models must be automatically established and hidden to the architecture designers to reduce time consumption when dealing with a large amount of candidate architectures evaluated during the engineering phase. This work is a first step towards such an objective by defining a structured UML (Unified Modelling Language) modelling framework for identifying and structuring the key objects of an architecture with regard to dependability.10.1109/DT.2019.8813373https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813373UML diagrams;dependability assessment;industrial control system architecture;automatic generation model;Petri netsIEEE Inglês CE1 Excluído
LastLayer: Toward Hardware and Software Continuous IntegrationL. Vega; J. Roesch; J. McMahan; L. Ceze2020 This article presents LastLayer, an open-source tool that enables hardware and software continuous integration and simulation. Compared to traditional testing approaches based on the register transfer level abstraction, LastLayer provides a mechanism for testing Verilog designs with any programming language that supports the C foreign function interface. Furthermore, it supports a generic C interface that allows external programs convenient access to storage resources such as registers and memories in the design as well as control over the hardware simulation. Moreover, LastLayer achieves this software integration without requiring any hardware modification and automatically generates language bindings for these storage resources according to user specification. Using LastLayer, we evaluated two representative integration examples: a hardware adder written in Verilog operating over NumPy arrays, and a ReLu vector-accelerator written in Chisel processing tensors from PyTorch.10.1109/MM.2020.2997610https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9099634hardware simulation;hardware language interoperability;agile hardware designIEEE Inglês CE1 Excluído
Theory of Constructed Emotion Meets REK. Taveter; T. Iqbal 2021 This article proposes to employ one of the most up to date theories of emotion - the theory of constructed emotion for engineering and validating requirements. We first provide an overview of different theories of emotion and indicate where the theory of constructed emotion lies in relation to these theories. After that, we describe possible advantages in applying theory of constructed emotion to requirements engineering. Thereafter, we postulate how the theory of constructed emotion could be applied in requirements engineering. We then hypothesize how the theory of constructed could be supported by appropriate methods and tools. Finally, we draw conclusions, and sketch the research agenda in applying the theory of constructed emotion in requirements engineering.10.1109/REW53955.2021.00067https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582299Theory of constructed emotions;requirements engineering;affective computingIEEE Inglês CE1 Excluído
Artifact Abstract: Deployment of APIs on Android Mobile Devices and MicrocontrollersS. Laso; M. Linaje; J. Garcia-Alonso; J. M. Murillo; J. Berrocal2020 This artifact is a guideline for the generation of APIs through the APIGEND (API Generator for End Devices) tool. This tool is an extension of the OpenAPI Generator [1] . It originally allows developers to create both the client and server side through an OpenAPI Specification with a ServerCentric style in different languages. The extension developed also allows one to generate APIs for end devices, specifically for Android devices and ESP32 Microcontrollers, making the application of the Edge [2] and Mobile-Centric [3] paradigms easier.10.1109/PerCom45495.2020.9127353https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9127353Microservices;Android;Microcontroller;OpenAPI;Edge ComputingIEEE Inglês CE1 Excluído
The MULTI Process ChallengeJ. P. A. Almeida; A. Rutle; M. Wimmer; T. Kühne2019 This challenge is intended to allow submitters to demonstrate the use of multi-level modeling techniques and enable the comparison of submissions and hence framework/language capabilities. The multi-level modeling community is invited to respond to this challenge with papers describing solutions to the challenge. Authors should emphasize the merits of their solutions according to the aspects defined in this challenge description. The challenge follows up on the "MULTI Bicycle Challenge" which was used in MULTI 2017 and MULTI 2018, and reuses some criteria that were established in these previous editions. Despite the similar criteria, the subject domain has been changed entirely and new criteria have been added which are intended to increase opportunities for languages and tools to exercise their capabilities.10.1109/MODELS-C.2019.00027https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904775Multi-level modeling;challenge;process management;MULTI workshopIEEE Inglês CE1 Excluído
Classification Algorithms Framework (CAF) to Enable Intelligent Systems Using JetBrains MPS Domain-Specific Languages EnvironmentS. Meacham; V. Pech; D. Nauck2020 This paper describes the design and development of a Classification Algorithms Framework (CAF) using the JetBrains MPS domain-specific languages (DSLs) development environment. It is increasingly recognized that the systems of the future will contain some form of adaptivity therefore making them intelligent systems as opposed to the static systems of the past. These intelligent systems can be extremely complex and difficult to maintain. Descriptions at higher-level of abstraction (system-level) have long been identified by industry and academia to reduce complexity. This research presents a Framework of Classification Algorithms at system-level that enables quick experimentation with several different algorithms from Naive Bayes to Logistic Regression. It has been developed as a tool to address the requirements of British Telecom's (BT's) data-science team. The tool has been presented at BT and JetBrains MPS and feedback has been collected and evaluated. Beyond the reduction in complexity through the system-level description, the most prominent advantage of this research is its potential applicability to many application contexts. It has been designed to be applicable for intelligent applications in several domains from business analytics, eLearning to eHealth, etc. Its wide applicability will contribute to enabling the larger vision of Artificial Intelligence (AI) adoption in context.10.1109/ACCESS.2020.2966630https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8959196Classification algorithms;domain-specific languages;framework;intelligent systemsIEEE Inglês CE1 Excluído
SysMD: Towards “Inclusive” Systems EngineeringŠ. Dalecke; K. A. Rafique; A. Ratzke; C. Grimm; J. Koch2022 This paper gives an overview of SysMD. SysMD is a tool and a SysML v2 inspired language. It is a modeling tool specifically aimed at domain experts with little to no high level systems modeling expertise. The language is designed to use intuitive, near natural-language statements and is able to propagate constraints throughout the model by continuously solving a constraint net. Furthermore, the SysMD tool aims to use a recommender system to incentivize the users to document their work in markdown as the tool gives recommendations of existing elements and relationships applicable to the current statements. This structures the knowledge in an easy to use, highly connected, way. This paper describes the syntax and semantics of the language, as well as the reasoning why it was designed in this specific way.10.1109/ICPS51978.2022.9816856https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9816856SysMD;system modeling;knowledge representation;modeling toolIEEE Inglês CE1 Excluído
An Integrated Digital System Design Framework With On-Chip Functional Verification and Performance EvaluationG. Cano-Quiveu; P. Ruiz-De-Clavijo-Vazquez; M. J. Bellido-Diaz; D. Guerrero-Martos; J. Viejo-Cortes; J. Juan-Chico2021 This paper introduces a design and on-chip verification framework for IPCores in FPGA platforms. The methodology of the proposed framework is based on the development of a high level software model, an HDL description of the IPCore and the verification of the system under test by the Autotest Core, an on-chip verification core developed for this framework. The test pattern generation is done at the high level in software and used throughout the design and verification process. HDL simulation results can then be compared to on-chip results and get performance measurements from the Autotest Core. The Off-line testing is possible by using standard low-cost Flash storage (SD card). The proposed framework and methodology applied to PRESENT and SPONGENT cryptographic algorithms has shown over two orders of magnitude better performance than commercial tools like Xilinx’s VIO and a hardware footprint of the verification cored below 3% of the available FPGA resources.10.1109/ACCESS.2021.3132188https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9632568FPGA;framework;HDL;IoT;IPCore;on-chip;performance;verificationIEEE Inglês CE1 Excluído
Domain-specific language to design educational programs with the use of X-matrix approachA. Kuzmin; A. Dukhanov; S. Kraev2022 This paper introduces a prototype of a domain-specific language for quick and efficient preparation of educational programs. Rapid changes in technology lead to constant modification process of the current program especially in scientific-intensive areas. As a result, teachers may need a tool representing a convenient, structural and formalized approach for learning program construction. The domain-specific language is devoted to serve as such an instrument and is based on concepts of X-matrix and problem areas map. In this paper functions of the language prototype and its syntax are represented. Key entities which comprise X-matrix and problem area matrix are explained. The implementation of operations on the entities in the markup language are described.10.1109/FIE56618.2022.9962384https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9962384problem areas map;X-matrix;domain-specific languagesIEEE Inglês CE1 Excluído
Interactive Data Comics Z. Wang; H. Romat; F. Chevalier; N. H. Riche; D. Murray-Rust; B. Bach2022 This paper investigates how to make data comics interactive. Data comics are an effective and versatile means for visual communication, leveraging the power of sequential narration and combined textual and visual content, while providing an overview of the storyline through panels assembled in expressive layouts. While a powerful static storytelling medium that works well on paper support, adding interactivity to data comics can enable non-linear storytelling, personalization, levels of details, explanations, and potentially enriched user experiences. This paper introduces a set of operations tailored to support data comics narrative goals that go beyond the traditional linear, immutable storyline curated by a story author. The goals and operations include adding and removing panels into pre-defined layouts to support branching, change of perspective, or access to detail-on-demand, as well as providing and modifying data, and interacting with data representation, to support personalization and reader-defined data focus. We propose a lightweight specification language, COMICSCRIPT, for designers to add such interactivity to static comics. To assess the viability of our authoring process, we recruited six professional illustrators, designers and data comics enthusiasts and asked them to craft an interactive comic, allowing us to understand authoring workflow and potential of our approach. We present examples of interactive comics in a gallery. This initial step towards understanding the design space of interactive comics can inform the design of creation tools and experiences for interactive storytelling.10.1109/TVCG.2021.3114849https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9552591Data comics;Non-linear narrative;interactive storytellingIEEE Inglês CE1 Excluído
Better Late Than Never : Verification of Embedded Systems After DeploymentM. Ring; F. Bornebusch; C. Lüth; R. Wille; R. Drechsler2019 This paper investigates the benefits of verifying embedded systems after deployment. We argue that one reason for the huge state spaces of contemporary embedded and cyber-physical systems is the large variety of operating contexts, which are unknown during design. Once the system is deployed, these contexts become observable, confining several variables. By this, the search space is dramatically reduced, making verification possible even on the limited resources of a deployed system. In this paper, we propose a design and verification flow which exploits this observation. We show how specifications are transferred to the deployed system and verified there. Evaluations on a number of case studies demonstrate the reduction of the search space, and we sketch how the proposed approach can be employed in practice.10.23919/DATE.2019.8714967https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714967- IEEE Inglês CE1 Excluído
A Model Driven Tool for Requirements and Hardware EngineeringA. Charfi; S. Li; T. Payret; P. Tessier; C. Mraidha; S. Gérard2019 This paper presents a model driven tool for both requirements and hardware engineering. For the requirements engineering, the tool offers many functionalities such as classifying the requirements and linking them with the hardware system elements. For the Hardware engineering, the tool offers different levels of the EE architecture design: Three levels of modelling are used from the more abstract to the more detailed: Function level, Architecture level and Real Component (physical) level. The tool proposes libraries to enable the reuse of hardware components for the different design levels. The tool offers also a list of automatic generation modules such as the automatic generation of the documentation either for the Requirements or the Hardware model and the automatic generation of the BOM specification from the Hardware model. In this paper, we will present a specific use of the tool for the automotive domain. We will identify different requirements imposed by the automotive domain and show how the tool has contributed to satisfy these requirements.10.1109/MODELS-C.2019.00120https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904517Model-driven-engineering,-Hardware-engineering,-Requirements-engineeringIEEE Inglês CE1 Excluído
Enhancing Software Testing with Ontology Engineering ApproachS. Charoenreh; A. Intana 2019 This paper presents a novel hybrid framework, Software Requirement Ontologies based Test Case Generation (ReqOntoTestGen) to increase the confidence in the reliability of existing verification and validation (V&V) techniques. This framework integrates the benefits of ontology modelling with the test case generation approaches based on use case-based requirement specifications. ROO (Rabbit to OWL Ontologies Authoring) tool is used in this work to eliminate the ambiguous requirement in natural language by using Controlled Natural Language (CNL). The ontology result from this tool, then, is translated into OWL before this OWL model is mapped into the XML file of data dictionary. Test cases are generated from this XML file by using Combination of Equivalence and Classification Tree Method (CCTM). This testing technique enables the redundant test cases to be eliminated and the coverage of testing to be increased. The contribution of this work has been explored by using the real case study. The result shows how the requirement ontology enhances the testing technique as we expected.10.1109/ICSEC47112.2019.8974672https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8974672test case;requirement ontology;software requirement specification;software testing;black-box testingIEEE Inglês CE1 Excluído
Model Checking the Multi-Formalism Language FIGAROS. Khan; M. Volk; J. -P. Katoen; A. Braibant; M. Bouissou2021 This paper presents a probabilistic model-checking tool for FIGARO, a multi-formalism modelling language that includes e.g., generalised stochastic Petri nets, Boolean-logic driven Markov processes, telecommunication networks, dynamic reliability block diagrams, process diagrams, and electric circuits. FIGARO has been developed and maintained by EDF for the analysis of system dependability such as reliability, availability and maintainability. We present a probabilistic model-checking tool for FIGARO models. It combines efficient, fully automated verification algorithms with numerical analysis techniques. Whereas the existing FIGARO tools, the Monte Carlo simulator YAMS and the most-probable-sequence explorer FiGSEQ, provide respectively statistical guarantees and upper bounds for unreliability and unavailability, our tool provides hard guarantees: its results are correct up to a given numerical accuracy. The key ingredient is the tool-component FiGAROAPI that enables the state-space generation for FIGARO models thus facilitating model checking. This paper describes the details of FiGAROAPI and empirically evaluates the feasibility and merits of the proposed framework. FiGAROAPI leverages upon the state-of-the-art STORM model checker as back-end, and it can model check various types of formalism in their FIGARO representation.10.1109/DSN48987.2021.00056https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505095Model checking;Figaro;Dependability;Reliability;Formal MethodsIEEE Inglês CE1 Excluído
Model Driven Software Engineering of Power Systems Applications: Literature Review and TrendsP. Neis; M. A. Wehrmeister; M. F. Mendes2019 This paper presents a survey on Software Engineering techniques for the power systems area. Our goal is to identify tools and techniques that can improve the life cycle management of customized applications for Energy Management Systems (SCADA/EMS), by applying a Model Driven Engineering (MDE) approach. We conducted a systematic literature review of published works related to the design and development of such applications. Two main repositories of publications in the area were used as sources and four search strategies were applied. Several works found are not directed to SCADA/EMS, but are related to other power systems applications. We have collected evidence that such applications are more commonly modeled using concepts specific to the power systems' domain, like control theory, rather than traditional techniques and tools from the software industry, like UML. However, few details about the process of transforming those specifications into software artifacts could be gathered. On the other hand, a few published works mention the MDE approach for power systems related applications, although clear methodology or frameworks applicable to the production of fully functional software are still missing. We have also identified promising technologies that need to be evaluated in order to propose such a framework, like domain specific languages, transformation engines and integration interfaces. The appealing MDE concept of automatically transforming design and specification models into programs and other software artifacts has the potential to facilitate the porting and migration of EMS applications from one platform to others. Ultimately, such an approach may help improving software quality and cutting development costs.10.1109/ACCESS.2019.2958275https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8926459Model driven engineering;SCADA/EMS;software engineering;power systemsIEEE Inglês CE1 Excluído
A Model Checkable UML Soccer PlayerV. Besnard; C. Teodorov; F. Jouault; M. Brun; P. Dhaussy2019 This paper presents a UML implementation of the MDETools'19 challenge problem with EMI (our Embedded/Experimental Model Interpreter). EMI is a model interpreter that can be used to execute, simulate, and formally verify UML models on host or embedded targets. The tool's main specificity relies on a single implementation of the language semantics such that consistency is ensured between all development phases: from design to verification and execution activities. Using this approach, we have succeeded in (i) designing a UML model for the challenge problem, (ii) applying formal verification using model-checking on the design model, and (iii) executing this model in order to participate in the challenge.10.1109/MODELS-C.2019.00035https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904603UML;Model-Driven Engineering;ToolIEEE Inglês CE1 Excluído
Implementation of the simple domain-specific language for system testing in V-Model development lifecycleS. Popic; V. Komadina; R. Arsenovic; M. Stepanovic2020 This paper presents easy to use domain-specific language for system testing in V-model development lifecycle. The systematic approach offered by the domain-specific language for system testing eliminates miscommunications between testers and requirement engineers making the testing closer to the requirement engineers. This concept enables automation in the generation of the tests based on given System Requirements in the future. As many would argue on V-Model's difficulty to align system requirements and system tests, this approach enables better mapping between those two parts of the V-diagram. This will make no functional requirement missing its counterpart in testing and vice-versa.10.1109/ZINC50678.2020.9161781https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9161781domain-specific language;V-model;system testingIEEE Inglês CE1 Excluído
MIST: monitor generation from informal specifications for firmware verificationS. Germiniani; M. Bragaglio; G. Pravadelli2020 This paper presents MIST, an all-in-one tool capable of generating a complete environment to verify C/C++ firmwares starting from informal specifications. Given a set of specifications written in natural language, the tool guides the user in translating each specification into an XML formal description, capturing a temporal behavior that must hold in the design. Our XML format guarantees the same expressiveness of linear temporal logic, but it is designed to be used by designers that are not familiar with formal methods. Once each behavior is formalized, MIST automatically generates the corresponding test-bench and checker to stimulate and verify the design. In order to guide the verification process, MIST employs a clustering procedure that classifies the internal states of the firmware. Such classification aims at finding an effective ordering to check the expected behaviors and to advise for possible specification holes. MIST has been fully integrated into the IAR System Embedded Workbench. Its effectiveness and efficiency have been evaluated to formalize and check a complex test-plan for an industrial firmware.10.1109/VLSI-SOC46417.2020.9344072https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9344072assertion;verification;testing;simulation;checker;PSL;LTL;specificationIEEE Inglês CE1 Excluído
A Framework for Quantitative Modeling and Analysis of Highly (Re)configurable SystemsM. H. Ter Beek; A. Legay; A. L. Lafuente; A. Vandin2020 This paper presents our approach to the quantitative modeling and analysis of highly (re)configurable systems, such as software product lines. Different combinations of the optional features of such a system give rise to combinatorially many individual system variants. We use a formal modeling language that allows us to model systems with probabilistic behavior, possibly subject to quantitative feature constraints, and able to dynamically install, remove or replace features. More precisely, our models are defined in the probabilistic feature-oriented language QFLan, a rich domain specific language (DSL) for systems with variability defined in terms of features. QFLan specifications are automatically encoded in terms of a process algebra whose operational behavior interacts with a store of constraints, and hence allows to separate system configuration from system behavior. The resulting probabilistic configurations and behavior converge seamlessly in a semantics based on discrete-time Markov chains, thus enabling quantitative analysis. Our analysis is based on statistical model checking techniques, which allow us to scale to larger models with respect to precise probabilistic analysis techniques. The analyses we can conduct range from the likelihood of specific behavior to the expected average cost, in terms of feature attributes, of specific system variants. Our approach is supported by a novel Eclipse-based tool which includes state-of-the-art DSL utilities for QFLan based on the Xtext framework as well as analysis plug-ins to seamlessly run statistical model checking analyses. We provide a number of case studies that have driven and validated the development of our framework.10.1109/TSE.2018.2853726https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8405597Software product lines;probabilistic modeling;quantitative constraints;statistical model checking;formal methodsIEEE Inglês CE1 Excluído
PMExec: An Execution Engine of Partial UML-RT ModelsM. Bagherzadeh; K. Jahed; N. Kahani; J. Dingel2019 This paper presents PMExec, a tool that supports the execution of partial UML-RT models. To this end, the tool implements the following steps: static analysis, automatic refinement, and input-driven execution. The static analysis that respects the execution semantics of UML-RT models is used to detect problematic model elements, i.e., elements that cause problems during execution due to the partiality. Then, the models are refined automatically using model transformation techniques, which mostly add decision points where missing information can be supplied. Third, the refined models are executed, and when the execution reaches the decision points, input required to continue the execution is obtained either interactively or from a script that captures how to deal with partial elements. We have evaluated PMExec using several use-cases that show that the static analysis, refinement, and application of user input can be carried out with reasonable performance, and that the overhead of approach is manageable. https://youtu.be/BRKsselcMnc Note: Interested readers can refer to [1] for a thorough discussion and evaluation of this work.10.1109/ASE.2019.00131https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952369MDD;Partial Models;Execution;Debugging;Model level debugging;Model executionIEEE Inglês CE1 Excluído
A Noval Method of Security Verification for JTAG Protection FunctionD. Li; W. Shen; Z. Wang 2019 This paper proposed a formal verification method for JTAG security based on information flow tracking. The security property script is used to describe the security requirements. Compared with the traditional writing method of assertions, our method does not need to consider much about the design features, which not only greatly reduces the assertion writing time but also can effectively detect the security violations in the design. Based on the generated information-flow tracking model, the proposed method can generate formal constraints and System Verilog Assertions supported by formal verification tools. Experiment of JTAG security verification proves that the proposed method can effectively verify the security functions related to information flow such as access control.10.1109/QRS-C.2019.00093https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859411JTAG security;security verification;formal verification;information flowIEEE Inglês CE1 Excluído
Research on Business-oriented Smart Grid Asset Information Modeling TechnologyZ. Zhao; D. Li; J. She; L. Zhao; K. Wang2019 This paper proposes a smart grid asset information modeling language based on domain-specific modeling method, which is used to describe the data specification of smart grid asset account, and is easy for experts in the field of asset management to understand and use. In order to meet the requirements of asset life cycle management, asset objects are described from three dimensions: functional location, product and spatial location, which have the characteristics of flexibility and wide applicability. A meta-model of asset information modeling language is proposed and a modeling tool is implemented. It can be used to model and edit asset account specifications for business personnel. It can be divided into asset classification model, structural model and parameter model. The validity of the proposed modeling language is proved by the case study and large-scale application.10.1109/CIEEC47146.2019.CIEEC-2019473https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9077081smart grid;domain specific language;asset information modeling language;meta-modelIEEE Inglês CE1 Excluído
Towards an Agile Concern-Driven Development ProcessO. Alam 2019 This paper proposes an Agile Concern-Driven Development (Agile CDD) process, a software development process that uses concerns as its primary artifact and applies agile practices. Whereas classical Model-Driven Engineering (MDE) methodologies focus on models that are built from scratch with little support for reuse, Agile CDD is a reuse-focused development process in which an application is built incrementally by repeatedly reusing other existing concerns. In Agile CDD, a modeler would use a modelling language that is appropriate for the current development phase and for the problem domain. Model transformations would then be applied to produce the initial set of models for the next phase. The process will continue until an execute model is produced. In each phase, the modeller should consult a repository of reusable concerns to identify and reuse concerns. Changing requirements are welcome and incomplete implementations are moved to the next iteration by delaying design decisions.10.1109/ICSSP.2019.00028https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8812865Agile;Software Process;Software Reuse;Model Driven DevelopmentIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9144537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9693054
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9214255
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9486697
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836895
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8895949
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9649736
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8667967
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643467
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8611078
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9369549
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9538430
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9864552
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582525
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833646
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447336
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9393888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958650
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402530
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9653148
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813373
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9099634
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582299
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9127353
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904775
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8959196
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9816856
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9632568
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9962384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9552591
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714967
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904517
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8974672
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505095
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8926459
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904603
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9161781
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9344072
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8405597
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952369
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859411
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9077081
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8812865

A Hybrid Formal Verification System in Coq for Ensuring the Reliability and Security of Ethereum-Based Service Smart ContractsZ. Yang; H. Lei; W. Qian 2020 This paper reports a formal symbolic process virtual machine (FSPVM) denoted as FSPVM-E for verifying the reliability and security of Ethereum-based services at the source code level of smart contracts. A Coq proof assistant is employed for programming the system and for proving its correctness. The current version of FSPVM-E adopts execution-verification isomorphism, which is an application extension of Curry-Howard isomorphism, as its fundamental theoretical framework to combine symbolic execution and higher-order logic theorem proving. The four primary components of FSPVM-E include a general, extensible, and reusable formal memory framework, an extensible and universal formal intermediate programming language denoted as Lolisa, which is a large subset of the Solidity programming language using generalized algebraic datatypes, the corresponding formally verified interpreter of Lolisa, denoted as FEther, and assistant tools and libraries. The self-correctness of all components is certified in Coq. FSPVM-E supports the ERC20 token standard, and can automatically and symbolically execute Ethereum-based smart contracts, scan their standard vulnerabilities, and verify their reliability and security properties with Hoare-style logic in Coq.10.1109/ACCESS.2020.2969437https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8970279Blockchain;theorem proving;distributed systems;security;verificationIEEE Inglês CE1 Excluído
RTL to GDSII of Harvard Structure RISC ProcessorH. V. Ravish Aradhya; G. Kanase; V. Y2021 This paper speaks about design of RISC processor and its implementation from RTL to GDSII. Verification of RISC processor Harvard structure is carried using Verilog (RTL file) and test bench for that Verilog file. Cadence NC Launch tool is used for simulation of code. Later verified Verilog file along with. sdc and .lib files, gate level net list was generated from cadence Genus tool. Till this part of gate level net list generations front end part of design will be carried out. Output of Genus tool are verified gate level net list file and. sdc constraints file. Pre-layout simulation results for power, area and timing are carried out. In backend design, cadence Innovus tool was used for floor planning, power planning and routing. Here also post layout simulations carried for power, timing and area. All these processes are carried out using 180nm technology cadence tool. The physical implementation of Harvard Structure RISC Processor is successfully implemented on Cadence Innovus tool. After carrying out pre-clock tree synthesis, post clock tree synthesis and post routing of circuit, one has obtained optimized results for timing 9.236ps, power 0.53155682W and area 17067.7584µm2.10.1109/CONECCT52877.2021.9622735https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622735RTL;Harvard Structure;GDSII;MIPS;RISC;Clock Tree Synthesis;Placement;Routing;Physical DesignIEEE Inglês CE1 Excluído
Addressing the IEEE AV Test Challenge with Scenic and VerifAIK. Viswanadha; F. Indaheng; J. Wong; E. Kim; E. Kalvan; Y. Pant; D. J. Fremont; S. A. Seshia2021 This paper summarizes our formal approach to testing autonomous vehicles (AVs) in simulation for the IEEE AV Test Challenge. We demonstrate a systematic testing framework leveraging our previous work on formally-driven simulation for intelligent cyber-physical systems. First, to model and generate interactive scenarios involving multiple agents, we used Scenic, a probabilistic programming language for specifying scenarios. A Scenic program defines an abstract scenario as a distribution over configurations of physical objects and their behaviors over time. Sampling from an abstract scenario yields many different concrete scenarios which can be run as test cases for the AV. Starting from a Scenic program encoding an abstract driving scenario, we can use the Verifai toolkit to search within the scenario for failure cases with respect to multiple AV evaluation metrics. We demonstrate the effectiveness of our testing framework by identifying concrete failure scenarios for an open-source autopilot, Apollo, starting from a variety of realistic traffic scenarios.10.1109/AITEST52744.2021.00034https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9564360- IEEE Inglês CE1 Excluído
Formal Notations of Linguistic Analysis for Monetary PolicyA. S. Sohail; M. Sameen; Q. Ahmed2019 This study proposes mathematical tools derived from topology and category theory along with computational linguistics which can be used to analyze the linguistics of the monetary policy statements and quantify its tone.10.1109/ICGHIT.2019.00035https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8866964Topology, Category theory, Computational linguisticsIEEE Inglês CE1 Excluído
Symbolic Testing for C and RustA. Tomb; S. Pernsteiner; M. Dodds2020 This tutorial will provide an introduction to Crux, Galois' new open source symbolic testing tool. Traditional testing examines only a small set of test vectors, meaning that the assurance it provides is inherently limited. In symbolic testing, we replace concrete inputs by symbolic variables, and then exhaustively validate the test for all possible input values. Symbolic testing is a type of formal verification, but the close connection to traditional testing makes it much easier to deploy than other approaches. A single symbolic test can efficiently cover billions of possible inputs or more, but an existing test suite can often be made symbolic by trivial code changes.10.1109/SecDev45635.2020.00021https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9230067verification;testing;software quality assuranceIEEE Inglês CE1 Excluído
Intelligent System for Communicating with Special Aircraft PassengersE. I. Chekmareva; I. S. Sineva; O. A. Slatina2022 This work deals with the development of translating text into sign language for communication with passengers with impaired hearing perception onboard an aircraft or vessel. A review of existing research is presented, usually aimed at establishing correspondence between different speech formats in specific languages. The analysis of the existing systems of sign language translation is carried out, their advantages and disadvantages are determined. A mathematical model is presented that describes the process of translating text into sign language, invariant with respect to the language used. The technical requirements for the system of such a translation are formulated, the optimal implementation tools are described, and the corresponding semantic analysis is carried out based on the previously presented mathematical model.10.1109/IEEECONF53456.2022.9744373https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744373sign language;computer sign language interpretation;natural language processing;mathematical model of speech translation;semantic analysisIEEE Inglês CE1 Excluído
Distributed Maintenance of a Spanning Tree of k-Connected GraphsB. Hamid; Q. Rouland; J. Jaskolka2019 This work is devoted to the problem of spanning trees maintenance in the presence of crash failures in a distributed environment using only local knowledge. Using a pre-constructed spanning tree of a k-connected graph, we present a protocol to maintain a spanning tree in the presence of k-1 consecutive failures. The contribution of this paper is threefold. First, the problem is formalized as an occurrence of Menger's theorem in a distributed setting. The second result shows an implementation of the protocol which is composed of a set of modules encoded using a graph relabeling systems model. The last contribution is the implementation of this protocol in the asynchronous message passing model. For a given graph G =(V,E), where M is the number of its edges, N is the number of its nodes, and Δ is its degree; After each failure occurrence, our algorithms need the following requirements: The first one uses O(Δ × N) steps and O(Δ) bits per node. The second one uses O(N+M) messages and O(N) time and O(Δ) bits per node. In addition, we investigate the possible specification and verification of the presented algorithm using Alloy as a tooled formal language.10.1109/PRDC47002.2019.00052https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952145Distributed computing, failure detectors, fault tolerance, graph relabeling systems, local computations, maintenance, spanning tree, vertex connectivity.IEEE Inglês CE1 Excluído
A Methodology for Validation of a Distributed Cloud Reservation ModelJ. C. Conti; E. L. Ursini; P. S. Martins2019 This work presents a methodology for planning and validation of cloud-based distributed systems, considering a number of bottlenecks. The proposed methodology considers the computational model, the data traffic model, the analytical model, and the simulation model. The validated model is specialized to process an online reservation system. The goal is to analyze the performance of three bottlenecks considering critical resources such as a server, disk-file and disk-channel system. Specifically, we aim to use validation to further determine processor utilization and message delay. The proposed model and simulation tool may be used not only to plan and dimensioning of the system but also to guide the management of the distributed system in critical situations that can be anticipated. The general results are important to the validation of such systems. They showed that the effective verification and validation may be relevant to the adequate resource usage of the system.10.1109/IEMCON.2019.8936254https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936254Distributed Reservation System;Performance Evaluation;Bottleneck Analysis;Cloud Computing;Simulation ModelIEEE Inglês CE1 Excluído
Tooling for automated testing of cyber-physical system modelsT. Broenink; B. Jansen; J. Broenink2020 This work presents a tool for automatic testing of cyber-physical systems via simulation. Cyber-physical system design can benefit from this automated testing as it allows for system-level requirements and prevents regression of the design. The tool is based on three parts: A testing language, a simulator controller, and a post processor. The testing language is a domain-specific language based on a Gherkin style syntax and can define test for multiple models and simulators. The domain specific language also defines algebraic, logical, and linear temporal logic transformations for outputs to define testing conditions. The tool can perform different sub-sets of tests based on a graphical or command line interface. The tool is demonstrated using an example where a motor is selected for a winch system. Here it is shown that the tool can verify component- and system-level requirements, and can detect regression. The tool is basis for a method supporting the design of cyber-physical systems.10.1109/ICPS48405.2020.9274794https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9274794- IEEE Inglês CE1 Excluído
Extending the CST: The Distributed Cognitive ToolkitW. Gibaut; R. Gudwin 2020 This work presents the first steps towards the development of a toolkit for aiding in the construction of Distributed Cognitive Systems, designed within the spirit of the System of Systems (SoS) paradigm. The Toolkit is language agnostic and general enough to be used in building problem-specific Cognitive Systems that can spread across several physical or virtual devices such as low-power computers, microcontrollers, and virtual containers. The Toolkit is conceived targeting to be suitable for IoT and Smart City applications.10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00088https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9291619Cognitive Systems;Artificial Intelligence;Distributed Systems;Internet of ThingsIEEE Inglês CE1 Excluído
Generating ROS-based Software for Industrial Cyber-Physical Systems from UML/MARTEM. A. Wehrmeister 2020 This work proposes an approach to generate automatically the embedded software for distributed Cyber-Physical Systems implemented using the Robotic Operating System (ROS) framework. For that, the Aspect-oriented Model Driven Engineering for Real-Time systems (AMoDE-RT) design approach has been extended in order to support the C++ code generation using the semantics and libraries available in ROS framework which is widely used in both academia and industry to implement the embedded software for robotic systems. The system architecture, behavior, requirements and constraints are specified in a UML/MARTE model. The information specified in the high-level model is used as input for a tool that generates a great part of the embedded software for all distributed computing devices. The main goal is to foster the use of Model-Driven Engineering in the context of cyber-physical systems design aiming the rapid prototyping via simulation and also the generation of the actual implementation of the system components. The proposed approach has been validated through a case study that demonstrates the feasibility to implement a ROS/C++ software for industrial systems. The results indicate that the proposed approach can be applied to complex systems comprising a larger number of interacting devices, whereas keeping the high-level of abstraction for system specification in UML/MARTE models.10.1109/ETFA46521.2020.9212077https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9212077Model-Driven Engineering;embedded software;code generation;UML;MARTE;Robot Operating SystemIEEE Inglês CE1 Excluído
Improved Bounded Model Checking of Timed AutomataR. L. Smith; M. M. Bersani; M. Rossi; P. S. Pietro2021 Timed Automata (TA) are a very popular modeling formalism for systems with time-sensitive properties. A common task is to verify if a network of TA satisfies a given property, usually expressed in Linear Temporal Logic (LTL), or in a subset of Timed Computation Tree Logic (TCTL). In this paper, we build upon the TACK bounded model checker for TA, which supports a signal-based semantics of TA and the richer Metric Interval Temporal Logic (MITL). TACK encodes both the TA network and property into a variant of LTL, Constraint LTL over clocks (CLTLoc). The produced CLTLoc formula can then be solved by tools such as Zot, which transforms CLTLoc properties into the input logics of Satisfiability Modulo Theories (SMT) solvers. We present a novel method that preserves TACK's encoding of MITL properties while encoding the TA network directly into the SMT solver language, making use of both the BitVector logic and the logic of real arithmetics. We also introduce several optimizations that allow us to significantly outperform the CLTLoc encoding in many practical scenarios.10.1109/FormaliSE52586.2021.00016https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9460955Formal Verification;Timed Automata;Bounded Model CheckingIEEE Inglês CE1 Excluído
Guaranteeing Sound Reactions to Long-Tailed Changes: A Syntax-Directed Annotation ApproachH. Cao; X. Chen; L. Zhang; T. Zhang; X. Xiao2020 To cope with the long-tailed changes, an annotation-based BPM approach has been proposed to adapts its behavior in a timely manner. It patches existing business process models rather than rebuilds models from scratch, which saves efforts and reacts to unforeseen changes quickly. However, the original annotation-based approach is at risk of improper annotations added that results in unexpected effects or leads to failure. To remedy this loophole, this paper proposes a syntax-directed annotation approach to guarantee sound reactions. we develop a scheme for designing domain specific languages based on abstract syntax trees and generating a syntax-directed editor automatically. As a result, all patched annotations on the process models are soundness guaranteed in terms of the domain specific language. Case studies demonstrate that proposed approach and tools can help domain experts to tackle long-tailed changes more easily guarantee the correct reactions.10.1109/ICSS50103.2020.00033https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283690Long-tailed Changes;Business Process Management;Syntax-Directed Editor Generator;Abstract Grammar TreeIEEE Inglês CE1 Excluído
Generic Navigation of Model-Based Development ArtefactsH. Ali; G. Mussbacher; J. Kienzle2019 To describe the characteristics of complex software systems, model-driven engineering (MDE) advocates the use of different modeling languages and multiple views. These models are typically organized in a nested structure or grouped according to some criteria. A modeller needs to navigate this structure to understand and modify the system under development. This paper introduces a navigation bar that visually indicates to the modeller the place of a model in that structure. Furthermore, a generic navigation mechanism facilitates navigation within a model and from one model to other linked models potentially expressed in a different language. We present a navigation metamodel that a language designer can use to enhance a modelling language at the metamodel level with our generic navigation capabilities.10.1109/MiSE.2019.00013https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877031navigation bar;metamodel;multi-view modelling;model-driven engineeringIEEE Inglês CE1 Excluído
An Evolutionary Tool For Requirements and Design Crosscutting ConcernsJ. Jasmis; A. A. Aziz; S. Jamel Elias; M. N. Hajar Hasrol Jono; R. Abd Razak; S. Mansor2019 To elevate a simple but important fashion to tolerate rapid changes in cross-cutting concerns in the requirements and design phases in multiple sizes of software development and maintenance tasks, Identification, Modularization, Design Composition Rule and Conflict Dissolution (IM-DeCRuD) approach was previously offered. This study delivered a tailored-design, prototype and constructed tool as a proof of concept of the proposed approach to IM-DeCRuD. The main attributes of the IMDeCRUD prototype are: requirements specification definition, requirements specification modification, requirements prioritization setting and graphics visualization of the representation generated using the Generic Modeling Environment (GME) tool. Java language was used as an interpreter to integrate the prototype functions. This research applied a library system as a simple case study to determine the importance of the IM-DeCRuD prototype. Ultimately, during the software development and evaluation activities, the prototype showed its ability for the tedious engineering process of requirements and design crosscutting concerns becoming more simpler.10.1109/ICRAIE47735.2019.9037754https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9037754Identification;Modularization;Design Composition Rule and Conflict Dissolution (IM-DeCRuD); software design; Generic Modelling Environment (GME)IEEE Inglês CE1 Excluído
A Survey on Systems Engineering Methodologies for Large Multi-Energy Cyber-Physical SystemsE. Azzouzi; A. Jardin; D. Bouskela; F. Mhenni; J. -Y. Choley2019 Today's large distributed energy cyber-physical systems such as power networks with multiple production units are becoming more and more complex due to the increasing share of renewables. They are characterized by long-lived lifecycles that can even be eternal such as electric grids where design and operational phases can overlap. These systems exhibit dynamic configurations and involve several interacting disciplines and manifold stakeholders that can, at any time, take part in the system or leave it. A pressing need has emerged for means to test a large number of scenarios all along the system design, operation and maintenance phases. Doing so requires the ability to model the system behavior and perform simulation on each of its facets using accurate tools for the purpose of automated testing, verification and validation. Existing industrial engineering design practices are becoming obsolete and do not have the means to follow the growing complexity of such multi-disciplinary and multi-stakeholder systems. For this matter, we have explored systems engineering (SE) practices among research communities and tool editors. Design methodologies found in literature are generally based on the functional breakdown of requirements and use general modeling languages for representing the system behavior. They are limited to finite state machines representation with a wide gap regarding the physical aspects that are neglected or at best developed in a separate corner. A survey on existing engineering methodologies is presented in this work. The main common missing aspects of these practices are identified and emphasized. A focus on formal approaches for system design and especially for automatic verification and validation processes is also introduced. Finally, an outlook of the main concepts that we chose to focus on in future works concerning the engineering of multi-energy systems is presented in this paper.10.1109/SYSCON.2019.8836741https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836741- IEEE Inglês CE1 Excluído
Trace-based Timing Analysis of Automotive Software Systems: an Experience ReportA. Bucaioni; E. Ferko; H. Lönn2021 Trace-based timing analysis is a technique, which assesses the software timing requirements against the timing information contained in so-called traces, which are files collected from simulation tools or by running the actual systems. In this experience report, we describe our joint effort with Volvo Group Trucks Technology in designing and developing a round-trip, model-based framework for the trace-based timing analysis of automotive software. To validate the proposed framework, we use a mix of observational and descriptive methods. In particular, we validate the correctness and feasibility of the proposed approach using the Washer Wiper automotive functionality. Eventually, we discuss lessons learnt, the benefits and limitations of the proposed framework.10.1109/MODELS-C53483.2021.00046https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643829model-based software engineering;automotive software;model-based timing verification;trace analysisIEEE Inglês CE1 Excluído
Improving Traceability Link Recovery Using Fine-grained Requirements-to-Code RelationsT. Hey; F. Chen; S. Weigelt; W. F. Tichy2021 Traceability information is a fundamental prerequisite for many essential software maintenance and evolution tasks, such as change impact and software reusability analyses. However, manually generating traceability information is costly and error-prone. Therefore, researchers have developed automated approaches that utilize textual similarities between artifacts to establish trace links. These approaches tend to achieve low precision at reasonable recall levels, as they are not able to bridge the semantic gap between high-level natural language requirements and code. We propose to overcome this limitation by leveraging fine-grained, method and sentence level, similarities between the artifacts for traceability link recovery. Our approach uses word embeddings and a Word Mover's Distance-based similarity to bridge the semantic gap. The fine-grained similarities are aggregated according to the artifacts structure and participate in a majority vote to retrieve coarse-grained, requirement-to-class, trace links. In a comprehensive empirical evaluation, we show that our approach is able to outperform state-of-the-art unsupervised traceability link recovery approaches. Additionally, we illustrate the benefits of fine-grained structural analyses to word embedding-based trace link generation.10.1109/ICSME52107.2021.00008https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9609109Traceability;Traceability Link Recovery;Requirements Engineering;Word Embeddings;Natural Language Processing;Word Movers DistanceIEEE Inglês CE1 Excluído
Tricera: Verifying C Programs Using the Theory of HeapsZ. Esen; P. Rümmer 2022 TRICERA is an automated, open-source verification tool for C programs based on the concept of Constrained Horn Clauses (CHCs). In order to handle programs operating on heap, Tricera applies a novel theory of heaps, which enables the tool to hand off most of the required heap reasoning directly to the underlying CHC solver. This leads to a cleaner interface between the language-specific verification front-end and the language-independent CHC back-end, and enables verification tools for different programming languages to share a common heap back-end. The paper introduces Tricera, gives an overview of the theory of heaps, and presents preliminary experimental results using SV-COMP benchmarks.10.34727/2022/isbn.978-3-85448-053-2_45https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026586- IEEE Inglês CE1 Excluído
Verifying Deadlock and Nondeterminism in Activity DiagramsL. Lima; A. Tavares 2019 UML Activity diagrams are flowcharts that can be used to model behaviors, even concurrent ones, which makes them adequate for describing complex dynamics. Although the UML community noticeably adopts them, there is no standard approach to verify properties like the absence of deadlock and nondeterminism. The latter is usually neglected by tools even though it may be considered relevant in complex architectures like cloud computing and real-time systems. In this paper, we present a tool-chain that is supported by formal reasoning tools and formal semantics for activity diagrams to verify deadlock freedom and nondeterminism. This tool is part of a UML modeling environment, and it provides complete traceability to the UML models. Therefore, the user does not need to understand or manipulate formal notations in any part of the process. During the modeling of an activity diagram, the user can perform the analysis and have a result in the diagrammatic level. We discuss some case studies and future applications due to the potential of our approach. Therefore, our major contribution is a framework for reasoning about deadlock and nondeterminism in activity diagrams, requiring no knowledge of the underlying formal semantics.10.1109/MODELS-C.2019.00119https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904590activity diagram;verification;nondeterminism;deadlockIEEE Inglês CE1 Excluído
Exploring a Comprehensive Approach for the Automated Assessment of UMLH. Cheers; M. Javed; Y. Lin; S. Smith2019 UML is an important tool in structured software design and is commonly taught in undergraduate software courses. UML defines a complex set of linked notations and mastery requires instruction and examples over many taught courses. Such examples are typically disparate, modelling subsets of distinct systems. Teaching UML benefits from an end-to-end approach where consistency between modelling, design and implementation are equally emphasised and regular feedback is provided. A drawback of this is that assessing learner-derived UML models is a time-intensive and error-prone task if both formative and summative assessment is required. In this paper a novel framework is presented for the automated assessment of UML. The framework allows learners to be provided with automatically generated formative feedback for self-directed learning in the development of UML skills. Emphasis is placed upon the identification of the consistency and coverage of learner diagrams as this is an important skill in the application of UML. By integrating an implementation of this framework, instructor-based UML teaching can be supplemented with an end-to-end tool which allows learners to receive automated formative feedback in their understanding and usage of UML.10.1109/IIAI-AAI.2019.00036https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8992725UML Software Development, Automated, Assessment, Automatic Feedback, Self-LearningIEEE Inglês CE1 Excluído
UML Templates Distilled J. Farinha; A. R. da Silva 2022 UML templates are possibly the most neglected and misused piece of knowledge in UML modelling. This subject has been disregarded in the research and practice literature and even by modelling tools providers. This paper suggests that such oblivion results from a general misunderstanding that UML templates are just graphical representations of genericity like it is found in programming languages, and from the insufficient support from the modelling tools, with a consequence of poor usage of UML templates in practice. Indeed, the capabilities and potential of UML templates are far-reaching. Increasing awareness around them could bring significant benefits for UML users, namely, higher-level abstraction and reuse. Therefore, this paper provides a distilling tutorial on UML templates to highlight their flexibility and advantages. That presentation follows a tutorial style and is supported by several illustrative examples, varying from simpler to more complex ones. This tutorial reviews the Template construct’s core concepts and terminology, presents constraining classifiers and shows how to define properties and operations as template parameters. Then, it presents and discusses advanced aspects such as operation templates, parameter defaults, the relationship between binding and generalization, and the specific semantics of package templates. Furthermore, the paper discusses the related work and uncovers some of the UML templates’ limitations and opportunities for improvement.10.1109/ACCESS.2022.3143898https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9684375Object-oriented modelling;genericity;UML;templates;UML templatesIEEE Inglês CE1 Excluído
On Applying Model Checking in Formal VerificationH. Hjort 2022 Use of Hardware model checking in the EDA industry is widespread and now considered an essential part of verification. While there are many papers, and books, about SAT, SMT and Symbolic model checking, often very little is written about how these methods can be applied. Choices made when modeling systems can have large impacts on applicability and scalability. There is generally no formal semantics defined for the hardware design languages, nor for the intermediate representations in common use. As unsatisfactory as it may be, industry conventions and behaviour exhibited by real hardware have instead been the guides. In this tutorial we will give an overview of some of the steps needed to apply hardware model checking in an EDA tool. We will touch on synthesis, hierarchy flattening, gate lowering, driver resolution, issues with discrete/synchronous time models, feedback loops and environment constraints, input rating and initialisation/reset. Design compilation, also known as elaboration and (quick) synthesis, is used to create a gate netlist from a hardware description language, commonly System Verilog. When done for implementation this often leverages any semantic freedom in order to create a more efficient implementation. In contrast, for verification we prefer to preserve all possible behaviour of any valid implementation choice. Assertions (properties) are normally handled similarly and translated to an automata representation that is then implemented by a gate netlist. The gate netlist is a hierarchical representation of gates and their connections (to wires). Removal of hierarchy can largely be done replicating the logic. Most gate types represent combinatorial functions, these can be kept as is, or lowered to smaller subset of gate functions (such as in And-Inverter graphs). The state holding gates, (Flip-)Flops (edge sensitive) and Latches (level sensitive) require some more care to model their (as)synchronous behaviour. Special care is also needed to model Tri-state gates (and weak drivers), which can either drive a value on their output or hold it isolated. Verilog wire uses a domain with 4-values 0,1,X,Z where Z is high-impedance / not-driving. Resolving the drivers means replacing the gates that drive a common wire with a model for the resolved logic value (and possibly checks for invalid/bad combinations). It is common to have configurations, modes of operation and/or parts that should not be validated. Forcing some inputs to a fixed value is referred to as environment constraints. Mode complex constraints are instead normally considered part of the verification setup and handled as SV assumptions. The fixed values can be propagated into the gates to remove parts that become constant or disconnected. For power and performance reasons it is common that designs are multi-clocked, or that clocks are gated (can be turned off and on). To have a global synchronous model for verification we need to reduce these multi-clock systems to a single global system (or tool) clock. This is often handled by mux-feedback added to the flops/latches along with logic generating the condition for the muxes. Inputs to the netlist may also have constraints at which rate/phase they can change. Rated inputs are free to take any value but only at certain points, clock generators follow a periodic pattern. The use of a zero-delay timing model, meaning combinatorial gate output the function of their inputs without any delay, can give rise to problems when there are feedback loops in the netlist. Causing contradictions when a net would have two (or more) values, had there some delay in propagating the values through gates. There are 5 kinds of loops we can occur, through flops (data and clock), through latches (data and enable) and those only going through combinatorial gates. The ones going through flop data are benign, as its effect is mediated by the clock. The others need to be ruled out, or handled by modeling. Introducing some (fractional-)delay/steps seems an attractive approach, but establishing a bound on the number steps needed is challenging (and for some, no bound exists). Initialisation, also referred to as reset, is commonly done by applying sequence of values to a subset of inputs. This aims to get the design from an arbitrary unknown state into a set of states from which it will have predictable behaviour. Part of the design flops might have asynchronous reset, others can receive values on the data input from other flops and inputs, yet others might be left uninitialised. Automating the computation of an (over-)approximation of the reset states will provide more information to the constructed model checking problem.10.34727/2022/isbn.978-3-85448-053-2_3https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026592- IEEE Inglês CE1 Excluído
Evolution from Modeling by Means of Function Block Diagrams to Domain-specific Modeling in AutomationV. Djukić 2020 Using domain-specific modeling tools for conceptual modeling in automation can significantly improve not only quality and productivity in the development and maintenance of software, but can also influence the expected functional features related to applied electronics and mechanics. When specifying control logic in contemporary automation, engineers predominantly use general-purpose languages, like PLC code function block diagrams. The levels of abstraction and representation of the real environment and operations performed by various devices are generally low. Therefore, it is difficult to satisfy requirements and expectations of users, domain experts and software engineers and present complete control logic using a single language understandable to every one of them. This paper describes one way of evolving from the use of general-purpose to the use of domain-specific languages, which offers some practical benefits. The evolutionary path is illustrated by examples from the automotive. Special attention is paid to automated refinement of modeling languages and full application of the “model execution” paradigm to model views. The automated language refinement is achieved by means of modifiers and action reports, as an extension to code generator languages.10.1109/INISTA49547.2020.9194670https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9194670Domain-specific Modeling;Meta-modeling;Programmable logic controller (PLC);IEC 61131-3;Automated language refinementIEEE Inglês CE1 Excluído
Optimizing for Recall in Automatic Requirements Classification: An Empirical StudyJ. P. Winkler; J. Grönberg; A. Vogelsang2019 Using Machine Learning to solve requirements engineering problems can be a tricky task. Even though certain algorithms have exceptional performance, their recall is usually below 100%. One key aspect in the implementation of machine learning tools is the balance between recall and precision. Tools that do not find all correct answers may be considered useless. However, some tasks are very complicated and even requirements engineers struggle to solve them perfectly. If a tool achieves performance comparable to a trained engineer while reducing her workload considerably, it is considered to be useful. One such task is the classification of specification content elements into requirements and non-requirements. In this paper, we analyze this specific requirements classification problem and assess the importance of recall by performing an empirical study. We compared two groups of students who performed this task with and without tool support, respectively. We use the results to compute an estimate of β for the Fβ score, allowing us to choose the optimal balance between precision and recall. Furthermore, we use the results to assess the practical time savings realized by the approach. By using the tool, users may not be able to find all defects in a document, however, they will be able to find close to all of them in a fraction of the time necessary. This demonstrates the practical usefulness of our approach and machine learning tools in general.10.1109/RE.2019.00016https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920507Empirical-research;controlled-experiment;machine-learning;automationIEEE Inglês CE1 Excluído
SugarC: Scalable Desugaring of Real-World Preprocessor Usage into Pure CZ. Patterson; Z. Zhang; B. Pappas; S. Wei; P. Gazzillo2022 Variability-aware analysis is critical for ensuring the quality of con-figurable C software. An important step toward the development of variability-aware analysis at scale is to transform real-world C soft-ware that uses both C and preprocessor into pure C code, by replacing the preprocessor's compile-time variability with C's runtime-variability. In this work, we design and implement a desugaring tool, SugarC, that transforms away real-world preprocessor usage. SugarC augments C's formal grammar specification with translation rules, performs simultaneous type checking during de sugaring, and introduces numerous optimizations to address challenges that appear in real-world preprocessor usage. The experiments on DesugarBench, a benchmark consisting of 108 manually-created programs, show that SugarC supports many more language features than two existing desugaring tools. When applied on three real-world configurable C software, SugarC desugared 774 out of 813 files in the three programs, taking at most ten minutes in the worst case and less than two minutes for 95% of the C files.10.1145/3510003.3512763https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793944C preprocessor;syntax-directed translation;desugaringIEEE Inglês CE1 Excluído
Is Eve nearby? Analysing protocols under the distant-attacker assumptionR. Gil-Pons; R. Horne; S. Mauw; A. Tiu; R. Trujillo-Rasua2022 Various modern protocols tailored to emerging wire-less networks, such as body area networks, rely on the proximity and honesty of devices within the network to achieve their security goals. However, there does not exist a security framework that supports the formal analysis of such protocols, leaving the door open to unexpected flaws. In this article we introduce such a security framework, show how it can be implemented in the protocol verification tool Tamarin, and use it to find previously unknown vulnerabilities on two recent key exchange protocols.10.1109/CSF54842.2022.9919655https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919655security protocols;formal verification;key exchange;distance bounding;distant attackerIEEE Inglês CE1 Excluído
Verification of Mixed Signal IPsS. Naik; U. Raddy 2019 Verification is the most critical step in manufacture of any design. Most of the time and resources are wasted during this. In spite of spending maximum amount of time in verifying sometimes, bugs escape during pre-silicon stage. These bugs need to be removed in post-silicon stage which is very expensive and time consuming. Lack of observability is also an issue in post-silicon because of restricted access to the internal signals. This paper proposes a method in which an extra debug tool is added which facilitates observation of signal behavior on the silicon as well and fix the errors. VCS and DVE are the software tools by Synopsys used to implement the design. Overview of verification of Mixed signal IP' s using System Verilog and Open Verification Methodology (OVM) is also described. This method helps in detecting bugs at early stages of silicon thereby reducing cost and resources and also in reducing simulation run time.10.1109/RTEICT46194.2019.9016387https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9016387Verification;Pre-silicon verification;Mixed signal IP’ s;System Verilog;OVMIEEE Inglês CE1 Excluído
Assertion-Based Verification through Binary InstrumentationE. Brignon; L. Pierre 2019 Verifying the correctness and the reliability of C or C++ embedded software is a crucial issue. To alleviate this verification process, we advocate runtime assertion-based verification of formal properties. Such logic and temporal properties can be specified using the IEEE standard PSL (Property Specification Language) and automatically translated into software assertion checkers. A major issue is the instrumentation of the embedded program so that those assertion checkers will be triggered upon specific events during execution. This paper presents an automatic instrumentation solution for object files, which enables such an event-driven property evaluation. It also reports experimental results for different kinds of applications and properties.10.23919/DATE.2019.8715117https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715117- IEEE Inglês CE1 Excluído
Verifying the Conformance of a Driver Implementation to the VirtIO SpecificationM. Vara Larsen 2021 VirtIO is a specification that enables developers to base on a common interface to implement devices and drivers for virtual environments. This paper proposes the verification and analysis of the VirtIO specification by using the Clock Constraint Specification Language (CCSL) [1]. In our proof-of-concept approach, a verification engineer translates requirements into a CCSL specification. Then, the tool TimeSquare [2] is used to detect inconsistencies with a implementation but also to understand what the specification enables. This paper aims to present the approach and to have face-to-face discussions and debate about the benefits, drawbacks and trade-offs.10.23919/DATE51398.2021.9474210https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474210kernel;virtio;conformance;verification;formalIEEE Inglês CE1 Excluído
A Coq proof of the correctness of X25519 in TweetNaClP. Schwabe; B. Viguier; T. Weerwag; F. Wiedijk2021 We formally prove that the C implementation of the X25519 key-exchange protocol in the TweetNaCl library is correct. We prove both that it correctly implements the protocol from Bernstein's 2006 paper, as standardized in RFC 7748, as well as the absence of undefined behavior like arithmetic overflows and array out-of-bounds errors. We also formally prove, based on the work of Bartzia and Strub, that X25519 is mathematically correct, i.e., that it correctly computes scalar multiplication on the elliptic curve Curve25519. The proofs are all computer-verified using the Coq theorem prover. To establish the link between C and Coq we use the Verified Software Toolchain (VST).10.1109/CSF51468.2021.00023https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505238Formal-Verification;x22519;Coq;Secure-implementations;ProofsIEEE Inglês CE1 Excluído
APPEL - AGILA ProPErty and Dependency Description LanguageC. Grimm; F. Wawrzik; A. L. -F. Jung; K. Luebeck; S. Post; J. Koch; O. Bringmann2021 We give an overview of the language APPEL, the “AGILA Property and Dependency Description Language”. It is part of the cloud-based tool AGILA that supports agile development methods. The language allows us to structure and document the knowledge about system-wide dependencies in a formal, textual form. APPEL models can be uploaded to the cloud, where they are used as a knowledge-base for continuous verification and validation, from early specification to run-time verification. We describe syntax, semantics, and demonstrate its application for predicting the performance of hardware/software systems in the context of the GENIAL! project.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9399724- IEEE Inglês CE1 Excluído
Mathematical Programming Modulo StringsA. Kumar; P. Manolios 2021 We introduce TranSeq, a non-deterministic, branching transition system for deciding the satisfiability of conjunctions of string equations. TranSeq is an extension of the Mathematical Programming Modulo Theories (MPMT) constraint solving framework and is designed to enable useful and computationally efficient inferences that reduce the search space, that encode certain string constraints and theory lemmas as integer linear constraints and that otherwise split problems into simpler cases, via branching. We have implemented a prototype, SeqSolve, in ACL2s, which uses Z3 as a back-end solver. String solvers have numerous applications, including in security, software engineering, programming languages and verification. We evaluated SeqSolve by comparing it with existing tools on a set of benchmark problems and our experimental results show that SeqSolve is both practical and efficient.10.34727/2021/isbn.978-3-85448-046-4_36https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617664- IEEE Inglês CE1 Excluído
Observation-Enhanced QoS Analysis of Component-Based SystemsC. Paterson; R. Calinescu 2020 We present a new method for the accurate analysis of the quality-of-service (QoS) properties of component-based systems. Our method takes as input a QoS property of interest and a high-level continuous-time Markov chain (CTMC) model of the analysed system, and refines this CTMC based on observations of the execution times of the system components. The refined CTMC can then be analysed with existing probabilistic model checkers to accurately predict the value of the QoS property. The paper describes the theoretical foundation underlying this model refinement, the tool we developed to automate it, and two case studies that apply our QoS analysis method to a service-based system implemented using public web services and to an IT support system at a large university, respectively. Our experiments show that traditional CTMC-based QoS analysis can produce highly inaccurate results and may lead to invalid engineering and business decisions. In contrast, our new method reduced QoS analysis errors by 84.4-89.6 percent for the service-based system and by 94.7-97 percent for the IT support system, significantly lowering the risk of such invalid decisions.10.1109/TSE.2018.2864159https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8428471Quality of service;component-based systems;Markov models;probabilistic model checkingIEEE Inglês CE1 Excluído
Plain and Simple Inductive Invariant Inference for Distributed Protocols in TLA+W. Schultz; I. Dardik; S. Tripakis2022 We present a new technique for automatically inferring inductive invariants of parameterized distributed protocols specified in TLA+. Ours is the first such invariant inference technique to work directly on TLA+, an expressive, high level specification language. To achieve this, we present a new algorithm for invariant inference that is based around a core procedure for generating plain, potentially non-inductive lemma invariants that are used as candidate conjuncts of an overall inductive invariant. We couple this with a greedy lemma invariant selection procedure that selects lemmas that eliminate the largest number of counterexamples to induction at each round of our inference procedure. We have implemented our algorithm in a tool, endive, and evaluate it on a diverse set of distributed protocol benchmarks, demonstrating competitive performance and ability to uniquely solve an industrial scale reconfiguration protocol.10.34727/2022/isbn.978-3-85448-053-2_34https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026570- IEEE Inglês CE1 Excluído
RTL Assertion Mining with Automated RTL-to-TLM AbstractionT. Ghasempouri; A. Danese; G. Pravadelli; N. Bombieri; J. Raik2019 We present a three-step flow to improve Assertion-based Verification methodology with integrated RTL-to-TLM abstraction: First, an automatic assertion miner generates a large set of possible assertions from an RTL design. Second, automatic assertion qualification identifies the most interesting assertions from this set. Third, the assertions are abstracted to the transaction level, such that they can be re-used in TLM verification. We show that the proposed flow automatically chooses the best assertions among the ones generated to verify the design components when abstracted from RTL to TLM. Our experimental results indicate that the proposed methodology allows us to re-use the most interesting set at TLM without relying on any time consuming or error-prone manual transformations with a considerable amount of speed up and considerable reduction in the execution time.10.1109/FDL.2019.8876941https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8876941- IEEE Inglês CE1 Excluído
A Proof-Producing Translator for Verilog Development in HOLA. Lööw; M. O. Myreen 2019 We present an automatic proof-producing translator targeting the hardware description language Verilog. The tool takes a circuit represented as a HOL function as input, translates the input function to a Verilog program and automatically proves a correspondence theorem between the input function and the output Verilog program ensuring that the translation is correct. As illustrated in the paper, the generated correspondence theorems furthermore enable transporting circuit reasoning from the HOL level to the Verilog level. We also present a formal semantics for the subset of Verilog targeted by the translator, which we have developed in parallel with the translator. The semantics is based on the official Verilog standard and is, unlike previous formalization efforts, designed to be usable for automated and interactive reasoning without sacrificing a clear correspondence to the standard. To illustrate the translator's applicability, we describe case studies of a simple verified processor and verified regexp matchers and synthesize them for two FPGA boards. The development has been carried out in the HOL4 theorem prover.10.1109/FormaliSE.2019.00020https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8807452interactive theorem proving;hardware verification;verilogIEEE Inglês CE1 Excluído
JGuard: Programming Misuse-Resilient APIsBinder S,Narasimhan K,Kernig S,Mezini M2022 APIs provide access to valuable features, but studies have shown that they are hard to use correctly. Misuses of these APIs can be quite costly. Even though documentations and usage manuals exist, developers find it hard to integrate these in practice. Several static and dynamic analysis tools exist to detect and mitigate API misuses. But it is natural to wonder if APIs can be made more difficult to misuse by capturing the knowledge of domain experts (, API designers). Approaches like CogniCrypt have made inroads into this direction by offering API specification languages like CrySL which are then consumed by static analysis tools. But studies have shown that developers do not enjoy installing new tools into their pipeline. In this paper, we present jGuard, an extension to Java that allows API designers to directly encode their specifications while implementing their APIs. Code written in jGuard is then compiled to regular Java with the checks encoded as exceptions, thereby making sure the API user does not need to install any new tooling. Our evaluation shows that jGuard can be used to express the most commonly occuring misuses in practice, matches the accuracy of state of the art in API misuse detection tools, and introduces negligible performance overhead.10.1145/3567512.3567526https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526DSL, API, Java ACM Inglês CI1 Incluído
A Deep Reinforcement Learning Framework with Formal VerificationBoudi Z,Wakrime AA,Toub M,Haloua M2023 Artificial Intelligence (AI) and data are reshaping organizations and businesses. Human Resources (HR) management and talent development make no exception, as they tend to involve more automation and growing quantities of data. Because this brings implications on workforce, career transparency, and equal opportunities, overseeing what fuels AI and analytical models, their quality standards, integrity, and correctness becomes an imperative for those aspiring to such systems. Based on an ontology transformation to B-machines, this article presents an approach to constructing a valid and error-free career agent with Deep Reinforcement Learning (DRL). In short, the agent's policy is built on a framework we called Multi State-Actor (MuStAc) using a decentralized training approach. Its purpose is to predict both relevant and valid career steps to employees, based on their profiles and company pathways (observations). Observations can comprise various data elements such as the current occupation, past experiences, performance, skills, qualifications, and so on. The policy takes in all these observations and outputs the next recommended career step, in an environment set as the combination of an HR ontology and an Event-B model, which generates action spaces with respect to formal properties. The Event-B model and formal properties are derived using OWL to B transformation.10.1145/3577204 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204Formal Verification, Safe RL, Model Transformation, AI Control, Safe AI, Atelier B, Event-BACM Inglês CI1 Incluído
Reachability Analysis of Cost-Reward Timed Automata for Energy Efficiency SchedulingWang W,Dong G,Deng Z,Zeng G,Liu W,Xiong H2018 As the ongoing scaling of semiconductor technology causing severe increase of on-chip power density in microprocessors, this leads for urgent requirement for power management during each level of computer system design. In this paper, we describe an approach for solving the general class of energy optimal task graph scheduling problems using cost-reward timed automata. We propose a formal technique based on model checking using extended timed automata to solve the processor frequency assignment problem in an energy-constrained multitasking system. To handle the problem of state space explosion in symbolic model checking, we also provide an efficient zone-based algorithm for minimum-cost reachability. Our approach is capable of finding efficient solutions under various constraints and applicable to other problem variants as well. Experimental results demonstrate the usefulness and effectiveness of our approach.10.1145/2560683.2560695https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695Model Checking, Real-time scheduling, DVS, Timed automata, Energy efficiencyACM Inglês CI1 Incluído
Integration of Formal Proof into Unified Assurance Cases with Isabelle/SACMFoster S,Nemouchi Y,Gleirscher M,Wei R,Kelly T2021 Assurance cases are often required to certify critical systems. The use of formal methods in assurance can improve automation, increase confidence, and overcome errant reasoning. However, assurance cases can never be fully formalised, as the use of formal methods is contingent on models that are validated by informal processes. Consequently, assurance techniques should support both formal and informal artifacts, with explicated inferential links between them. In this paper, we contribute a formal machine-checked interactive language, called Isabelle/SACM, supporting the computer-assisted construction of assurance cases compliant with the OMG Structured Assurance Case Meta-Model. The use of Isabelle/SACM guarantees well-formedness, consistency, and traceability of assurance cases, and allows a tight integration of formal and informal evidence of various provenance. In particular, Isabelle brings a diverse range of automated verification techniques that can provide evidence. To validate our approach, we present a substantial case study based on the Tokeneer secure entry system benchmark. We embed its functional specification into Isabelle, verify its security requirements, and form a modular security case in Isabelle/SACM that combines the heterogeneous artifacts. We thus show that Isabelle is a suitable platform for critical systems assurance.10.1007/s00165-021-00537-4https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4Assurance cases, Safety cases, Integrated formal methods, Common criteria, Proof assistantsACM Inglês CI1 Incluído
StaBL: Statecharts with Local VariablesChakrabarti SK,Venkatesan K2020 Complexity of specification models of the present day have started becoming non-trivial. Hence, there is a need to evolve existing specification languages to support writing specifications following good coding practices such as incremental development and modularisation. Statechart is a modelling notation that has wide acceptance in the industry. To the best of our knowledge all current implementations of Statecharts have one common shortcoming: all Statechart variables are global. Global variables in a specification can lead to monolithic and fragile models which are hard to maintain and reuse.In this paper, we introduce local variables in Statecharts, motivate their use through illustrative examples, formalise their semantics, and analyse their interaction with basic Statechart features like hierarchical states, transitions and history. We have implemented this Statechart variant with local variables in a specification language called StaBL. Our case studies demonstrate significant improvement in modularity in models with local variable w.r.t those without local variables.10.1145/3385032.3385040https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040- ACM Inglês CI1 Incluído
Tools for Disambiguating RFCsYen J,Govindan R,Raghavan B2021 For decades, drafting Internet protocols has taken significant amounts of human supervision due to the fundamental ambiguity of natural language. Given such ambiguity, it is also not surprising that protocol implementations have long exhibited bugs. This pain and overhead can be significantly reduced with the help of natural language processing (NLP).We recently applied NLP to identify ambiguous or under-specified sentences in RFCs, and to generate protocol implementations automatically when the ambiguity is clarified. However this system is far from general or deployable. To further reduce the overhead and errors due to ambiguous sentences, and to improve the generality of this system, much work remains to be done. In this paper, we consider what it would take to produce a fully-general and useful system for easing the natural-language challenges in the RFC process.10.1145/3472305.3472314https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314natural language, protocol specificationsACM Inglês CI1 Incluído
New Opportunities for Integrated Formal MethodsGleirscher M,Foster S,Woodcock J2019 Formal methods have provided approaches for investigating software engineering fundamentals and also have high potential to improve current practices in dependability assurance. In this article, we summarise known strengths and weaknesses of formal methods. From the perspective of the assurance of robots and autonomous systems (RAS), we highlight new opportunities for integrated formal methods and identify threats to the adoption of such methods. Based on these opportunities and threats, we develop an agenda for fundamental and empirical research on integrated formal methods and for successful transfer of validated research to RAS assurance. Furthermore, we outline our expectations on useful outcomes of such an agenda.10.1145/3357231 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231threats, robots and autonomous systems, SWOT, opportunities, weaknesses, integration, strengths, research agenda, unification, challenges, Formal methodsACM Inglês CI1 Incluído
Unifying Separation Logic and Region Logic to Allow InteroperabilityBao Y,Leavens GT,Ernst G 2018 Framing is important for specification and verification, especially in programs that mutate data structures with shared data, such as DAGs. Both separation logic and region logic are successful approaches to framing, with separation logic providing a concise way to reason about data structures that are disjoint, and region logic providing the ability to reason about framing for shared mutable data. In order to obtain the benefits of both logics for programs with shared mutable data, this paper unifies them into a single logic, which can encode both of them and allows them to interoperate. The new logic thus provides a way to reason about program modules specified in a mix of styles.10.1007/s00165-018-0455-5https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5Formal verification, Separation logic, Unified fine-grained region logic (UFRL), Framing, Fine-grained region logic, Formal specification, Shared mutable data, Hoare logicACM Inglês CI1 Incluído
Bounded Verification of State Machine ModelsKahani N,Cordy JR 2020 In this work, we propose a bounded verification approach for state machine (SM) models that is independent of any model checking tools. This independence is achieved by encoding the execution semantics of SM models as Satisfiability Modulo Theories (SMT) formulas that reduce the verification of a SM to the satisfiability problem for its corresponding formula. More specifically, our approach takes as input a SM model, a depth bound, and the system properties (as invariants), and then automatically verifies models of systems in a three-phase process: (1) First it generates all possible execution paths of the model to the specified bound, and encodes each of the execution paths as SMT formulas; (2) It then augments the SMT formulas with the negation of the given invariants; and (3) Finally, it uses an SMT solver to check the satisfiability of the instrumented formula. We have applied our approach in the context of UML-RT (the UML profile for modeling real-time embedded systems) and assessed the applicability, performance, and scalability of our approach using several case studies.10.1145/3419804.3420263https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263State Machine, Bounded Verification, MDE, MDDACM Inglês CI1 Incluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8970279
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622735
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9564360
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8866964
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9230067
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744373
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936254
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9274794
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9291619
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9212077
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9460955
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283690
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877031
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9037754
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836741
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643829
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9609109
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026586
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904590
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8992725
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9684375
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026592
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9194670
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920507
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793944
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919655
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9016387
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715117
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505238
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9399724
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617664
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8428471
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026570
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8876941
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8807452
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263

Model-Checking Legal Contracts with SymboleoPCParvizimosaed A,Roveri M,Rasti A,Amyot D,Logrippo L,Mylopoulos J2022 Legal contracts specify requirements for business transactions. As any other requirements specification, contracts may contain errors and violate properties expected by contracting parties. Symboleo was recently proposed as a formal specification language for legal contracts. This paper presents SymboleoPC, a tool for analyzing Symboleo contracts using model checking. It highlights the architecture, implementation and testing of the tool, as well as a scalability evaluation with respect to the size of contracts and properties to be checked through a series of experiments. The results suggest that SymboleoPC can be usefully applied to the analysis of formal specifications of contracts with real-life sizes and structures.10.1145/3550355.3552449https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449legal contracts, model checking, nuXmv, performance analysis, smart contracts, software requirements specifications, formal specification languagesACM Inglês CI1 Incluído
Toward Verified Artificial IntelligenceSeshia SA,Sadigh D,Sastry SS2022 Making AI more trustworthy with a formal methods-based approach to AI system verification and validation.10.1145/3503914 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914- ACM Inglês CI1 Incluído
Verification of Railway Network Models with EVERESTMartins J,Fonseca JM,Costa R,Campos JC,Cunha A,Macedo N,Oliveira JN2022 Models - at different levels of abstraction and pertaining to different engineering views - are central in the design of railway networks, in particular signalling systems. The design of such systems must follow numerous strict rules, which may vary from project to project and require information from different views. This renders manual verification of railway networks costly and error-prone.This paper presents EVEREST, a tool for automating the verification of railway network models that preserves the loosely coupled nature of the design process. To achieve this goal, EVEREST first combines two different views of a railway network model - the topology provided in signalling diagrams containing the functional infrastructure, and the precise coordinates of the elements provided in technical drawings (CAD) - in a unified model stored in the railML standard format. This railML model is then verified against a set of user-defined infrastructure rules, written in a custom modal logic that simplifies the specification of spatial constraints in the network. The violated rules can be visualized both in the signalling diagrams and technical drawings, where the element(s) responsible for the violation are highlighted.EVEREST is integrated in a long-term effort of EFACEC to implement industry-strong tools to automate and formally verify the design of railway solutions.10.1145/3550355.3552439https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439formal infrastructure rule specification, railway engineering, railway network model verification, railMLACM Inglês CI1 Incluído
Towards Verified Self-Driving InfrastructureLiu B,Kheradmand A,Caesar M,Godfrey PB2020 Modern self-driving'' service infrastructures consist of a diverse collection of distributed control components providing a broad spectrum of application- and network-centric functions. The complex and non-deterministic nature of these interactions leads to failures, ranging from subtle gray failures to catastrophic service outages, that are difficult to anticipate and repair.Our goal is to call attention to the need for formal understanding of dynamic service infrastructure control. We provide an overview of several incidents reported by large service providers as well as issues in a popular orchestration system, identifying key characteristics of the systems and their failures. We then propose a verification approach in which we treat abstract models of control components and the environment as parametric transition systems and leverage symbolic model checking to verify safety and liveness properties, or propose safe configuration parameters. Our preliminary experiments show that our approach is effective in analyzing complex failure scenarios with acceptable performance overhead.10.1145/3422604.3425949https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949verification, parameter synthesis, service infrastructure control, self-driving infrastructure, symbolic model checkingACM Inglês CI1 Incluído
Bigraphical Modelling and Design of Multi-Agent SystemsDib AT,Maamri R 2021 Multi-agent systems are recognized as a major area of distributed artificial intelligence. In fact, MAS have found multiple applications, including the design and development of complex, hierarchical and critical systems. However, ensuring the accuracy of complex interactions and the correct execution of activities of a MAS is becoming a tedious task. In this work, we focus on the formal specification of interaction, holonic and sociotechnical concepts to the BRS-MAS model. The proposed approach, is based on Bigraphical reactive systems. Bigraphs, provide means to specify at same time locality and connectivity of different type of system ranging from soft systems to cyber physical systems. In addition, to its intuitive graphical representation, it provides algebraic definition. This, makes the resulted specifications more precise. Further, it enables the verification of the specified system at the design time (before the implementation) using verification tools.10.1145/3467707.3467762https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762Computing methodologies, Holonic, Algebraic language theory, Multi-agent system, Formal specification, Theory of computationACM Inglês CI1 Incluído
Cerberus: Query-Driven Scalable Vulnerability Detection in OAuth Service Provider ImplementationsRahat TA,Feng Y,Tian Y 2022 OAuth protocols have been widely adopted to simplify user authentication and service authorization for third-party applications. However, little effort has been devoted to automatically checking the security of the libraries that service providers widely use. In this paper, we formalize the OAuth specifications and security best practices, and design Cerberus, an automated static analyzer, to find logical flaws and identify vulnerabilities in the implementation of OAuth service provider libraries. To efficiently detect security violations in a large codebase of service provider implementation, Cerberus employs a query-driven algorithm for answering queries about OAuth specifications. We demonstrate the effectiveness of Cerberus by evaluating it on datasets of popular OAuth libraries with millions of downloads. Among these high-profile libraries, Cerberus has identified 47 vulnerabilities from ten classes of logical flaws, 24 of which were previously unknown. We got acknowledged by the developers of eight libraries and had three accepted CVEs.10.1145/3548606.3559381https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381vulnerability detection, authorization attacks, oauth security, static analysis, automata theory, automated analysisACM Inglês CI1 Incluído
Verification of Distributed Systems via Sequential EmulationDi Stefano L,De Nicola R,Inverso O2022 Sequential emulation is a semantics-based technique to automatically reduce property checking of distributed systems to the analysis of sequential programs. An automated procedure takes as input a formal specification of a distributed system, a property of interest, and the structural operational semantics of the specification language and generates a sequential program whose execution traces emulate the possible evolutions of the considered system. The problem as to whether the property of interest holds for the system can then be expressed either as a reachability or as a termination query on the program. This allows to immediately adapt mature verification techniques developed for general-purpose languages to domain-specific languages, and to effortlessly integrate new techniques as soon as they become available. We test our approach on a selection of concurrent systems originated from different contexts from population protocols to models of flocking behaviour. By combining a comprehensive range of program verification techniques, from traditional symbolic execution to modern inductive-based methods such as property-directed reachability, we are able to draw consistent and correct verification verdicts for the considered systems.10.1145/3490387 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387Concurrency, semantics-based verification, termination, distribution, sequentialization, process algebra, domain-specific languages, program verification, reachability, structural operational semanticsACM Inglês CI1 Incluído
A Solicitous Approach to Smart Contract VerificationOtoni R,Marescotti M,Alt L,Eugster P,Hyvärinen A,Sharygina N2023 Smart contracts are tempting targets of attacks, as they often hold and manipulate significant financial assets, are immutable after deployment, and have publicly available source code, with assets estimated in the order of millions of dollars being lost in the past due to vulnerabilities. Formal verification is thus a necessity, but smart contracts challenge the existing highly efficient techniques routinely applied in the symbolic verification of software, due to specificities not present in general programming languages. A common feature of existing works in this area is the attempt to reuse off-the-shelf verification tools designed for general programming languages. This reuse can lead to inefficiency and potentially unsound results, as domain translation is required. In this article, we describe a carefully crafted approach that directly models the central aspects of smart contracts natively, going from the contract to its logical representation without intermediary steps. We use the expressive and highly automatable logic of constrained Horn clauses for modeling and instantiate our approach to the Solidity language. A tool implementing our approach, called Solicitous, was developed and integrated into the SMTChecker module of the Solidity compiler solc. We evaluated our approach on an extensive benchmark set containing 22,446 real-world smart contracts deployed on the Ethereum blockchain over a 27-month period. The results show that our approach is able to establish safety of significantly more contracts than comparable, publicly available verification tools, with an order of magnitude increase in the percentage of formally verified contracts.10.1145/3564699 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699Smart contracts, direct modeling, vulnerability detectionACM Inglês CI1 Incluído
Dargent: A Silver Bullet for Verified Data Layout RefinementChen Z,Lafont A,O'Connor L,Keller G,McLaughlin C,Jackson V,Rizkallah C2023 Systems programmers need fine-grained control over the memory layout of data structures, both to produce performant code and to comply with well-defined interfaces imposed by existing code, standardised protocols or hardware. Code that manipulates these low-level representations in memory is hard to get right. Traditionally, this problem is addressed by the implementation of tedious marshalling code to convert between compiler-selected data representations and the desired compact data formats. Such marshalling code is error-prone and can lead to a significant runtime overhead due to excessive copying. While there are many languages and systems that address the correctness issue, by automating the generation and, in some cases, the verification of the marshalling code, the performance overhead introduced by the marshalling code remains. In particular for systems code, this overhead can be prohibitive. In this work, we address both the correctness and the performance problems. We present a data layout description language and data refinement framework, called Dargent, which allows programmers to declaratively specify how algebraic data types are laid out in memory. Our solution is applied to the Cogent language, but the general ideas behind our solution are applicable to other settings. The Dargent framework generates C code that manipulates data directly with the desired memory layout, while retaining the formal proof that this generated C code is correct with respect to the functional semantics. This added expressivity removes the need for implementing and verifying marshalling code, which eliminates copying, smoothens interoperability with surrounding systems, and increases the trustworthiness of the overall system.10.1145/3571240 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240certifying compiler, data refinement, systems programmingACM Inglês CI1 Incluído
Using UML Activity Diagram for Adapting Experiments under a Virtual Laboratory EnvironmentSypsas A,Kalles D 2021 The development of a system model can be an extremely complex process. A common approach to modeling system behavior uses activity diagrams (AD) in Unified Modeling Language (UML), which, however, do not support the formal analysis that is possible when using formal languages such as Petri Nets (PN). In this paper, we show how a model describing an experiment in a Virtual Laboratory and represented by an AD can be transformed into an equivalent PN. Then, the model represented as a PN can be readily compared to a model of a similar experiment used in another educational setting, in order to decide the extent to which it can be reused.10.1145/3437120.3437267https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267Petri nets, Activity Diagram, Virtual laboratoryACM Inglês CI1 Incluído
A Model Checkable UML Soccer PlayerBesnard V,Teodorov C,Jouault F,Brun M,Dhaussy P2021 This paper presents a UML implementation of the MDETools'19 challenge problem with EMI (our Embedded/Experimental Model Interpreter). EMI is a model interpreter that can be used to execute, simulate, and formally verify UML models on host or embedded targets. The tool's main specificity relies on a single implementation of the language semantics such that consistency is ensured between all development phases: from design to verification and execution activities. Using this approach, we have succeeded in (i) designing a UML model for the challenge problem, (ii) applying formal verification using model-checking on the design model, and (iii) executing this model in order to participate in the challenge.10.1109/MODELS-C.2019.00035https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035UML, model-driven engineering, toolACM Inglês CI1 Incluído
SPARK by Example: An Introduction to Formal Verification through the Standard C++ LibraryCreuse L,Huguet J,Garion C,Hugues J2019 This paper presents SPARK by Example [10], a guide for people wanting to get involved in formal verification of SPARK programs. SPARK by Example is inspired by ACSL by Example, a similar effort for C/ACSL programs, and provides detailed specification, implementation and proof of classic algorithms (array manipulation, sorting, heap etc). A comparison between ACSL and SPARK is done in the light of proof performance and ease of use.10.1145/3375408.3375415https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415- ACM Inglês CI1 Incluído
Composable Finite State Machine-Based Modeling for Quality-of-Information-Aware Cyber-Physical SystemsRosales R,Paulitsch M 2021 Time plays a major role in the specification of Cyber-physical Systems (CPS) behavior with concurrency, timeliness, asynchrony, and resource limits as their main characteristics. In addition to timeliness, the specification of CPS needs to assess and unambiguously define its behavior with respect to the other Quality-of-Information (QoI) properties: (1) Correctness, (2) Completeness, (3) Consistency, and (4) Accuracy. Very often, CPS need to handle these QoI properties, and any combination thereof, multiple times when performing computation and communication processes. However, a model-driven and systematic approach to specify CPS behavior that jointly considers combined QoI aspects is possible but missing in existing methodologies.As the first contribution of this work, we provide an extension to an established model of computation (MoC) based on “Functions driven by Finite State Machine” (FunState) to enable a model-driven composition mechanism to create CPS behavior specifications from reusable components.Second, we present a novel set of design patterns to illustrate the modeling of QoI-aware CPS specifications that can be applied in several state-of-the-art Electronic System Level (ESL) methodologies. The time semantics of the MoC are formalized using the tagged-signal-model, and the presented model-driven approach enables the composition of multiple design patterns. The main benefits of the presented model-driven approach and design patterns to create CPS specifications are as follows: (a) reduce modeling effort, errors, and time through the reuse of known recipes to re-incurring tasks and allow to automatically generate repetitive control flows based on extended Finite State Machines; (b) increase system robustness and facilitate the creation of holistic QoI management allowing to unambiguously define system behavior for scenarios with single/multiple QoI requirement violations in different models of computation; (c) dynamically validate timing behavior of system implementations to enable a multi-objective optimization of nonfunctional properties that influence CPS timing. We demonstrate the aforementioned benefits through the modeling and evaluation of an infrastructure-assisted automated driving case study using Infrastructure-to-Vehicle (I2V) communications to distribute QoI critical road environment information.10.1145/3386244 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244moc, model-driven design, timeliness, design patterns, quality-of-information, cyber-physical systems, model of computation, performance, TimeACM Inglês CI1 Incluído
Reasoning about Functional Programming in Java and C++Cok DR 2018 Verification projects on industrial code have required reasoning about functional programming constructs in Java 8. General functional programming requires reasoning about how the specifications of function objects that are inputs to a method combine to produce the specifications of output function objects. This short paper describes our in-progress experience in adapting prior work (Kassios & Müller) to Java 8, JML, OpenJML, and to ACSL++, a specification language for C++ built on ACSL.10.1145/3236454.3236483https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483JML, ACSL++, ACSL, specification, functional programming, formal verification, OpenJMLACM Inglês CI1 Incluído
From Real-Time Logic to Timed AutomataFerrère T,Maler O,Ničković D,Pnueli A2019 We show how to construct temporal testers for the logic MITL, a prominent linear-time logic for real-time systems. A temporal tester is a transducer that inputs a signal holding the Boolean value of atomic propositions and outputs the truth value of a formula along time. Here we consider testers over continuous-time Boolean signals that use clock variables to enforce duration constraints, as in timed automata. We first rewrite the MITL formula into a “simple” formula using a limited set of temporal modalities. We then build testers for these specific modalities and show how to compose testers for simple formulae into complex ones. Temporal testers can be turned into acceptors, yielding a compositional translation from MITL to timed automata. This construction is much simpler than previously known and remains asymptotically optimal. It supports both past and future operators and can easily be extended.10.1145/3286976 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976formal verification, timed automata, real-time, Temporal logic, model checkingACM Inglês CI1 Incluído
Methods and Tools for Formal Verification of Cloud Sisal ProgramsV. N. Kasyanov; E. V. Kasyanova2020 A cloud parallel programming system CPPS being under development at the Institute of Informatics Systems is aimed to be an interactive visual environment of functional and parallel programming for supporting of computer science teaching and learning. The system will support the development, verification and debugging of architecture-independent parallel Cloud Sisal programs and their correct conversion into efficient code of parallel computing systems for its execution in clouds. In the paper, methods and tools of the CPPS system intended for formal verification of Cloud Sisal programs are described.10.1109/MACISE49704.2020.00047https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627automated theorem proof;Cloud Sisal;deductive verification;functional programming;parallel programmingIEEE Inglês CI1 Incluído
Towards the Specification and Verification of Legal ContractsA. Parvizimosaed 2020 A contract is a legally binding agreement that expresses high-level requirements of parties in terms of obligations, powers and constraints. Parties' actions influence the status of a contract and shall comply with its clauses. Manual contract monitoring is very laborious in real markets, such as transactive energy, where plenty of complex contracts are running concurrently. Furthermore, liability, right and performance transition through run-time operations such as subcontracting, assignment and substitution complicate contract interpretation. Automation is needed to ensure that contracts respect desirable properties and to support monitoring of compliance and handling of violations. In this thesis research, I propose an innovative ontology that defines fundamental contractual notions (such as the ones mentioned above) and their relationships, on which is built a specification language, called Symboleo, that provides syntax and axiomatic semantics of contracts via first-order logic. Symboleo enables the development of advanced automation tools such as a compliance checker that monitors contracts at runtime, and a model checking verification method that analyzes liveness and safety properties of contracts. This paper reports on the problem domain, research method, current status, expected contributions, and main foreseen challenges.10.1109/RE48521.2020.00066https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173Legal Contract;Specification Language;Model Checking;Smart Contract;OntologyIEEE Inglês CI1 Incluído
Safety Verification of IEC 61131-3 Structured Text ProgramsJ. Xiong; X. Bu; Y. Huang; J. Shi; W. He2021 With the development of the industrial control system, programmable logic controllers (PLCs) are increasingly adopted in the process automation. Moreover, many PLCs play key roles in safety-critical systems, such as nuclear power plants, where robust and reliable control programs are required. To ensure the quality of programs, testing and verification methods are necessary. In this article, we present a novel methodology which applies model checking to verifying PLC programs. Specifically, we focus on the structured text (ST) language which is a widely used, high-level programming language defined in the electro-technical commission (IEC) 61131-3 standard. A formal model named behavior model (BM) is defined to specify the behavior of ST programs. An algorithm based on variable state analysis for automatically extracting the BM from an ST program is given. An algorithm based on the automata-theoretic approach is proposed to verify linear temporal logic properties on the BM. Finally, a real-life case study is presented.10.1109/TII.2020.2999716https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345Formal verification;electro-technical commission (IEC) 61131-3 standard;model checking;structured text (ST);weighted pushdown system (WPDS)IEEE Inglês CI1 Incluído
Teaching Design by Contract using Snap!M. Huisman; R. E. Monti 2021 With the progress in deductive program verification research, new tools and techniques have become available to support design-by-contract reasoning about non-trivial programs written in widely-used programming languages. However, deductive program verification remains an activity for experts, with ample experience in programming, specification and verification. We would like to change this situation, by developing program verification techniques that are available to a larger audience. In this paper, we present how we developed prototypal program verification support for Snap!. Snap! is a visual programming language, aiming in particular at high school students. We added specification language constructs in a similar visual style, designed to make the intended semantics clear from the look and feel of the specification constructs. We provide support both for static and dynamic verification of Snap! programs. Special attention is given to the error messaging, to make this as intuitive as possible.10.1109/SEENG53126.2021.00007https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640verification;software;education IEEE Inglês CI1 Incluído
Design and Implementation of SysML Activity Diagram Simulation Function Based on fUML SpecificationB. Huang; Y. Liu; X. Wu; J. Lv; Y. Liu2022 With the rapid development of computer science and technology, Model-Based Systems Engineering (MBSE) has been widely used in the field of system design and simulation, gradually replacing traditional text-based systems engineering methods. As a standard modeling language in the field of systems engineering, SysML, together with modeling tools and modeling methods, is called the three pillars of MBSE. Activity diagram is a kind of behavior diagram of SysML, and its simulation plays an important role in MBSE practice. Aiming at the problem that the activity diagram simulation capability of domestic SysML modeling software is insufficient, this paper implements the simulation function of SysML activity diagram based on the fUML specification.10.1109/CRC55853.2022.10041232https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232MBSE;fUML;SysML;Activity Diagram;System SimulationIEEE Inglês CI1 Incluído
Formal Requirements in an Informal WorldD. Dietsch; V. Langenfeld; B. Westphal2020 With today's increasing complexity of systems and requirements there is a need for formal analysis of requirements. Although there exist several formal requirements description languages and corresponding analysis tools that target an industrial audience, there is a large gap between the form of requirements and the training in formal methods available in industry today, and the form of requirements and the knowledge that is necessary to successfully operate the analysis tools. We propose a process to bridge the gap between customer requirements and formal analysis. The process is designed to support in-house formalisation and analysis as well as formalisation and analysis as a service provided by a third party. The basic idea is that we obtain dependability and comprehensibility by assuming a senior formal requirements engineer who prepares the requirements and later interprets the analysis results in tandem with the client. We obtain scalability as most of the formalisation and analysis is supposed to be conducted by junior formal requirements engineers. In this paper, we define and analyse the process and report on experience from different instantiations, where the process was well received by customers.10.1109/FORMREQ51202.2020.00010https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533requirements;formal-requirements;requirements-formalisation;requirements-analysis;process-modelIEEE Inglês CI1 Incluído
Interactive Behavior-driven Development: a Low-code PerspectiveN. Patkar; A. Chiş; N. Stulova; O. Nierstrasz2021 Within behavior-driven development (BDD), different types of stakeholders collaborate in creating scenarios that specify application behavior. The current workflow for BDD expects non-technical stakeholders to use an integrated development environment (IDE) to write textual scenarios in the Gherkin language and verify application behavior using test passed/failed reports. Research to date shows that this approach leads non-technical stakeholders to perceive BDD as an overhead in addition to the testing. In this vision paper, we propose an alternative approach to specify and verify application behavior visually, interactively, and collaboratively within an IDE. Instead of writing textual scenarios, non-technical stakeholders compose, edit, and save scenarios by using tailored graphical interfaces that allow them to manipulate involved domain objects. Upon executing such interactively composed scenarios, all stakeholders verify the application behavior by inspecting domain-specific representations of run-time domain objects instead of a test run report. Such a low code approach to BDD has the potential to enable nontechnical stakeholders to engage more harmoniously in behavior specification and validation together with technical stakeholders within an IDE. There are two main contributions of this work: (i) we present an analysis of the features of 13 BDD tools, (ii) we describe a prototype implementation of our approach, and (iii) we outline our plan to conduct a large-scale developer survey to evaluate our approach to highlight the perceived benefits over the existing approach.10.1109/MODELS-C53483.2021.00024https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783bdd;behavior-driven development;collaborative development;acceptance testing;visual programming;end-user programmingIEEE Inglês CI1 Incluído
Prema: A Tool for Precise Requirements Editing, Modeling and AnalysisY. Huang; J. Feng; H. Zheng; J. Zhu; S. Wang; S. Jiang; W. Miao; G. Pu2019 We present Prema, a tool for Precise Requirement Editing, Modeling and Analysis. It can be used in various fields for describing precise requirements using formal notations and performing rigorous analysis. By parsing the requirements written in formal modeling language, Prema is able to get a model which aptly depicts the requirements. It also provides different rigorous verification and validation techniques to check whether the requirements meet users' expectation and find potential errors. We show that our tool can provide a unified environment for writing and verifying requirements without using tools that are not well inter-related. For experimental demonstration, we use the requirements of the automatic train protection (ATP) system of CASCO signal co. LTD., the largest railway signal control system manufacturer of China. The code of the tool cannot be released here because the project is commercially confidential. However, a demonstration video of the tool is available at https://youtu.be/BX0yv8pRMWs.10.1109/ASE.2019.00128https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250formal methods;requirements modeling;requirements verification;formal engineering methodsIEEE Inglês CI1 Incluído
Towards a time editor for orchestrating connected objects in the Web of ThingsI. MEZENNER; S. BOUYAKOUB; F. M. BOUYAKOUB2019 Web of Things is a new paradigm, it constitutes the heart of a great research activity. However, most of this work does not take into account its temporal aspect, whereas it is a critical dimension directly related to customer satisfaction, optimization and is considered as a very effective strategy for cost reduction. For this matter, we propose a tool to edit and verify the time constraints added to an abstract BPEL specification. Furthermore, the editor allows the user to edit abstract BPEL specification that orchestrates Web services offered by objects connected to the Web of Things. Through the latter, the input specification is enriched with constraints and time attributes. Then, a temporal verification and validation process is applied to detect any temporal errors or conflicts.10.1109/ICTAACS48474.2019.8988132https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132Web of Things;Web service orchestration;WS-BPEL;Allen’s algebraIEEE Inglês CI1 Incluído
Automated Analysis of Inter-Parameter Dependencies in Web APIsA. Martin-Lopez 2020 Web services often impose constraints that restrict the way in which two or more input parameters can be combined to form valid calls to the service, i.e. inter-parameter dependencies. Current web API specification languages like the OpenAPI Specification (OAS) provide no support for the formal description of such dependencies, making it hardly possible to interact with the services without human intervention. We propose specifying and automatically analyzing inter-parameter dependencies in web APIs. To this end, we propose a domain-specific language to describe these dependencies, a constraint programming-aided tool supporting their automated analysis, and an OAS extension integrating our approach and easing its adoption. Together, these contributions open a new range of possibilities in areas such as source code generation and testing.https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345Web service;DSL;interdependency;CSP;automated analysisIEEE Inglês CI1 Incluído
Specification and Automated Analysis of Inter-Parameter Dependencies in Web APIsA. Martin-Lopez; S. Segura; C. Müller; A. Ruiz-Cortés2022 Web services often impose inter-parameter dependencies that restrict the way in which two or more input parameters can be combined to form valid calls to the service. Unfortunately, current specification languages for web services like the OpenAPI Specification (OAS) provide no support for the formal description of such dependencies, which makes it hardly possible to automatically discover and interact with services without human intervention. In this article, we present an approach for the specification and automated analysis of inter-parameter dependencies in web APIs. We first present a domain-specific language, called Inter-parameter Dependency Language (IDL), for the specification of dependencies among input parameters in web services. Then, we propose a mapping to translate an IDL document into a constraint satisfaction problem (CSP), enabling the automated analysis of IDL specifications using standard CSP-based reasoning operations. Specifically, we present a catalogue of seven analysis operations on IDL documents allowing to compute, for example, whether a given request satisfies all the dependencies of the service. Finally, we present a tool suite including an editor, a parser, an OAS extension, a constraint programming-aided library, and a test suite supporting IDL specifications and their analyses. Together, these contributions pave the way for a new range of specification-driven applications in areas such as code generation and testing.10.1109/TSC.2021.3050610https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562Web API;REST;inter-parameter dependency;DSL;automated analysisIEEE Inglês CI1 Incluído
Proposal of an Approach to Generate VDM++ Specifications from Natural Language Specification by Machine LearningY. Shigyo; T. Katayama 2020 A natural language contains ambiguous expressions. The VDM++ is one of the methodotogies on the formal methods to write the specification without ambiguity. It is difficult to write a VDM++ specification, because VDM++ is written by strict grammar. This research proposes an approach to automatically generate the VDM++ specification by machine learning. This approach defines four data structures and has four processes. In this paper, variables and only real type in the VDM++ specification are generated automatically by this approach. In order to generate the variables and real type, it is necessary to extract the noun corresponding to the variable from the natural language specification. Consequently, our proposed approach can generate a VDM++ specification and we have confirmed that the generated VDM++ specification is grammatically correct.10.1109/GCCE50665.2020.9292047https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047natural language specification;machine learning;automatic generation;formal method;VDM++ specificationIEEE Inglês CI1 Incluído
Formal Verification of Blockchain Smart Contract Based on Colored Petri Net ModelsZ. Liu; J. Liu 2019 A smart contract is a computer protocol intended to digitally facilitate and enforce the negotiation of a contract in undependable environment. However, the number of attacks using the vulnerabilities of the smart contracts is also growing in recent years. Many solutions have been proposed in order to deal with them, such as documenting vulnerabilities or setting the security strategies. Among them, the most influential progress is made by the formal verification method. In this paper, we propose a formal verification method based on Colored Petri Nets (CPN) to verify smart contracts in blockchain system. First, we develop the smart contract models with possible attacker models based on hierarchical CPN modeling, then the smart contract models are executed by step-by-step simulation to validate their functional correctness, and finally we utilize the branch timing logic ASK-CTL based model checking technology in the CPN tools to detect latent vulnerabilities in smart contracts. We demonstrate that our CPN modeling based verification method can not only detect the logical vulnerabilities of the smart contract, but also consider the impacts of users behavior to find out potential non-logical vulnerabilities in the contracts, such as the vulnerabilities caused by the limitations of the Solidity language.10.1109/COMPSAC.2019.10265https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908blockchain, smart contract, formal verification, CPNIEEE Inglês CI1 Incluído
Celestial: A Smart Contracts Verification FrameworkS. Dharanikota; S. Mukherjee; C. Bhardwaj; A. Rastogi; A. Lal2021 We present CELESTIAL, a framework for formally verifying smart contracts written in the Solidity language for the Ethereum blockchain. CELESTIAL allows programmers to write expressive functional specifications for their contracts. It translates the contracts and the specifications to F* to formally verify, against an F* model of the blockchain semantics, that the contracts meet their specifications. Once the verification succeeds, CELESTIAL performs an erasure of the specifications to generate Solidity code for execution on the Ethereum blockchain. We use CELESTIAL to verify several real-world smart contracts from different application domains. Our experience shows that CELESTIAL is a valuable tool for writing high-assurance smart contracts.10.34727/2021/isbn.978-3-85448-046-4_22https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700Smart contracts;Blockchain;Reliability;TestingIEEE Inglês CI1 Incluído
Fvil: Intermediate language based on formal verification virtual machineZeng, Weiru (57192409388); Liao, Yong (55213715800); Qian, Weizhong (55710445300); Yan, Zehui (57219163124); Yang, Zheng (57198347264); Li, Ang (57219158755)2020 As the software scale continues to increase, the software development cycle becomes more and more compact, which takes more time to the software test. How to test the software and ensure its safety efficiently and accurately is an urgent problem to be solved. The formal verification virtual machine (FSPVM) [1] developed by Coq [2] assistant verification tool can effectively verify programs with formal method. However, its widespread application is heavily restricted by the compliant syntax of the formal specification language Lolisa [3] and the mechanism of generalized algebraic types GADTs [4]. This paper proposes a more user-friendly intermediate language (FVIL) based on FSPVM, which changes the hierarchical structure of Lolisa and expands the type of Lolisa, makes the formal verification of software easier to be applied in practice. The experiments show that the intermediate language can make the formal method easier to understand, apply and expand. © Springer Nature Singapore Pte Ltd 2020.10.1007/978-981-15-8101-4_59https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414aCoq; Formal verification; Intermediate language; Software securityScopus Inglês CI1 Incluído
Formal Verification for VRM Requirement ModelsZhang, Yang (55506039300); Hu, Jun (57198193833); Wang, Lisong (36968141200); Gu, Qingfan (56204861600); Rong, Hao (56603776800)2022 At the requirements level, formal verification and analysis are the focus of task’s attention which is developing complex systems by formal methods. Model checking is a technique for analysis and automated verification of complex safety-critical software systems. In this paper, a requirement model verification method based on formal technology is proposed to practice the model checking activity into the development process. Firstly, this essay analyzes syntax and semantics of models, which are defined by tabular expressions in VRM (variables relationship model). Then we preprocess the VRM model to classify into events tables, conditions tables and model class tables, and transform the VRM model into the automaton state transfer diagram with the help of semantic complementary work. Finally, we design an automatic model transformation framework from the VRM model to the model verification tool (nuXmv) and implement a translator between the formal specification language VRM and the symbolic model checker nuXmv. In this paper, we discuss our translation and abstraction approach in some depth and illustrate its feasibility with some preliminary examples. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.10.1007/978-981-19-0390-8_121https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1Model checking; Model translation; nuXmv; Safety verification; VRM modelScopus Inglês CI1 Incluído
Open and Branching Behavioral Synthesis with Scenario ClausesAsteasuain, Fernando (15076943400); Calonge, Federico (57216952638); Dubinsky, Manuel (57222081187); Gamboa, Pablo Daniel (57216948794)2021 The Software Engineering community has identified behavioral specification as one of the main challenges to be addressed for the transference of formal verification techniques such as model checking. In particular, expressivity of the specification language is a key factor, especially when dealing with Open Systems and controllability of events and branching time behavior reasoning. In this work, we propose the Feather Weight Visual Scenarios (FVS) language as an appealing declarative and formal verification tool to specify and synthesize the expected behavior of systems. FVS can express linear and branching properties in closed and Open systems. The validity of our approach is proved by employing FVS in complex, complete, and industrial relevant case studies, showing the flexibility and expressive power of FVS, which constitute the crucial features that distinguish our approach. © 2021 Latin American Center for Informatics Studies. All Rights Reserved.10.19153/CLEIEJ.24.3.1https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07bBehavioral specifications; Branching reasoning; Open systems; SynthesisScopus Inglês CI1 Incluído
A tool for proving Michelson Smart Contracts in WHY3Arrojado Da Horta, Luis Pedro (57219764980); Santos Reis, Joao (57221474614); De Sousa, Simao Melo (15135137100); Pereira, Mario (57190032035)2020 This paper introduces a deductive verification tool for smart contracts written in Michelson, which is the low-level language of the Tezos blockchain. Our tool accepts a formally specified Michelson contract and automatically translates it to an equivalent program written in WhyML, the programming and specification language of the Why3 framework. Smart contract instructions are mapped into a corresponding WhyML shallow-embedding of the their axiomatic semantics, which we also developed in the context of this work. One major advantage of this approach is that it allows an out-of-the-box integration with the Why3 framework, namely its VCGen and the backend support for several automated theorem provers. We also discuss the use of our tool to automatically prove the correctness of diverse annotated smart contracts. © 2020 IEEE.10.1109/Blockchain50366.2020.00059https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63Formal Verification; Michelson; Smart Contracts; Tezos; Why3Scopus Inglês CI1 Incluído
A DSL for Integer Range Reasoning: Partition, Interval and Mapping DiagramsEriksson, Johannes; Parsa, Masoumeh2020 Continuous verification of network security compliance is an accepted need. Especially, the analysis of stateful packet filters plays a central role for network security in practice. But the few existing tools which support the analysis of stateful packet filters are based on general applicable formal methods like Satifiability Modulo Theories (SMT) or theorem prover and show runtimes in the order of minutes to hours making them unsuitable for continuous compliance verification. In this work, we address these challenges and present the concept of state shell interweaving to transform a stateful firewall rule set into a stateless rule set. This allows us to reuse any fast domain specific engine from the field of data plane verification tools leveraging smart, very fast, and domain specialized data structures and algorithms including Header Space Analysis (HSA). First, we introduce the formal language FPL that enables a high-level human-understandable specification of the desired state of network security. Second, we demonstrate the instantiation of a compliance process using a verification framework that analyzes the configuration of complex networks and devices-including stateful firewalls-for compliance with FPL policies. Our evaluation results show the scalability of the presented approach for the well known Internet2 and Stanford benchmarks as well as for large firewall rule sets where it outscales state-of-the-art tools by a factor of over 41. 10.1007/978-3-030-39197-3_13- - Web of science Inglês CI1 Incluído
FASTEN: An Open Extensible Framework to Experiment with Formal Specification ApproachesRatiu, Daniel; Gario, Marco; Schoenhaar, Hannes2019 Formal specification approaches have been successfully used to specify and verify complex systems. Verification engineers so far either directly use formal specification languages which can be consumed by verification tools (e.g. SMV, Promela) or main stream modeling languages which are then translated into formal languages and verified (e.g. SysML, AADL). The first approach is expressive and effective but difficult to use by non-experts. The second approach lowers the entry barrier for novices but users are limited to the constructs of the chosen modeling languages and thereby end up abusing the language to encode behaviors of interest.In this paper, we introduce a third approach that we call FASTEN, in which modular and extensible Domain Specific Languages (DSLs) are used to raise the abstraction level of specification languages towards the domain of interest. The approach aims to help novice users to use formal specification, enable experts to use multi-paradigm modeling, and provide tools for the developers of verification technologies to easily experiment with various types of specification approaches. To show the feasibility of the approach, we release an open-source tool based on Jetbrains' MPS language workbench that provides an extensible stack of more than ten DSLs, situated at different levels of abstraction, built on top of the SMV language. We use the NuSMV model checker to perform verification, to simulate the models and lift the traces at the abstraction level of the DSLs. We detail on the experience with designing and developing the DSLs stack and briefly report on using the DSLs in practice for the study of a communication protocol of a safety critical system.10.1109/FormaliSE.2019.00013- - Web of science Inglês CI1 Incluído
Work-In-Progress: a DSL for the safe deployment of Runtime Monitors in Cyber-Physical SystemsNandi, Giann Spilere; Pereira, David; Proenca, Jose; Tovar, Eduardo2020 Guaranteeing that safety-critical Cyber-Physical Systems (CPS) do not fail upon deployment is becoming an even more complicated task with the increased use of complex software solutions. To aid in this matter, formal methods (rigorous mathematical and logical techniques) can be used to obtain proofs about the correctness of CPS. In such a context, Runtime Verification has emerged as a promising solution that combines the formal specification of properties to be validated and monitors that perform these validations during runtime. Although helpful, runtime verification solutions introduce an inevitable overhead in the system, which can disrupt its correct functioning if not safely employed. We propose the creation of a Domain Specific Language (DSL) that, given a generic CPS, 1) verifies if its real-time scheduling is guaranteed, even in the presence of coupled monitors, and 2) implements several verification conditions for the correct-by-construction generation of monitoring architectures. To achieve it, we plan to perform statical verifications, derived from the available literature on schedulability analysis, and powered by a set of semi-automatic formal verification tools.10.1109/RTSS49844.2020.00047- - Web of science Inglês CI1 Incluído
Multiple Analyses, Requirements Once: Simplifying Testing and Verification in Automotive Model-Based DevelopmentBerger, Philipp; Nellen, Johanna; Katoen, Joost-Pieter; Abraham, Erika Prime; Bin Waez, Tawhid; Rambow, Thomas2019 In industrial model-based development (MBD) frameworks, requirements are typically specified informally using textual descriptions. To enable the application of formal methods, these specifications need to be formalized in the input languages of all formal tools that should be applied to analyse the models at different development levels. In this paper we propose a unified approach for the computer-assisted formal specification of requirements and their fully automated translation into the specification languages of different verification tools. We consider a two-stage MBD scenario where first Simulink models are developed from which executable code is generated automatically. We (i) propose a specification language and a prototypical tool for the formal but still textual specification of requirements, (ii) show how these requirements can be translated automatically into the input languages of Simulink Design Verifier for verification of Simulink models and BTC Embedded-Validator for source code verification, and (iii) show how our unified framework enables besides automated formal verification also the automated generation of test cases.10.1007/978-3-030-27008-7_4- - Web of science Inglês CI1 Incluído
A Formally Verified Monitor for Metric First-Order Temporal LogicSchneider, Joshua; Basin, David; Krstic, Srdan; Traytel, Dmitriy2019 Runtime verification tools must correctly establish a specification's validity or detect violations. This task is difficult, especially when the specification is given in an expressive declarative language that demands a non-trivial monitoring algorithm. We use a proof assistant to not only solve this task, but also to gain confidence in our solution. We formally verify the correctness of a monitor for metric first-order temporal logic specifications using the Isabelle/HOL proof assistant. From our formalization, we extract an executable algorithm with correctness guarantees and use differential testing to find discrepancies in the outputs of two unverified monitors for first-order specification languages.10.1007/978-3-030-32079-9_18- - Web of science Inglês CI1 Incluído
Low-Cost Optical Tracking Controller System for Fine Motor Rehabilitation in Children with Brain Damage: Formal Specification and ValidationE. E. Saavedra Parisaca; E. Enriqueta Vidal Duarte2021 Acquired brain damage in children is increasingly frequent, and as main deficit produces motor alterations that manifest as the child grows, affecting muscle tone, coordination and motor control, in order to influence these aspects, fine motor skills are intervened, since these involve a coordinated effort of the brain and muscles, having a direct impact on the learning capacity of children and can improve their independence and autonomy. Although traditional therapies have been proven with great effectiveness, there are also different rehabilitation systems that make use of tracking devices, however not all of them are accessible due to their high cost or the lack of specialists who master them. That is the reason a low-cost optical tracking Controller System is proposed to complement fine motor-oriented rehabilitation, allowing movements to be captured with precision and to obtain feedback on the accuracy of the exercises. In this paper we focus on the first stage referring to the formal specification of the requirements and their validation. The proposal is based on the Leap Motion optical tracking device and limited to exercises with a fine motor and wrist. The controller system aims to provide a better environment for users to run their rehabilitation process, in addition to considering the rehabilitation progress. The proposal uses formal specifications to reduce possible ambiguities in the face of a system that may cause future damage to its users if the rehabilitation is not carried out correctly, in the same way they are used to validate the main properties of the functional requirements. The formal specification language VDM ++ is used to describe the system properties for later modeling and validation through the VDMToolBox tool. As a result, a formal specification of 4 requirements and a 100% coverage analysis were achieved.10.23919/CISTI52073.2021.9476615https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615Virtual Rehabilitation;Formal Specification;Validation and VerificationIEEE Inglês CI1 Incluído
Documentation-based functional constraint generation for library methodsR. Jiang; Z. Chen; Y. Pei; M. Pan; T. Zhang; X. Li2022 Although software libraries promote code reuse and facilitate software development, they increase the complexity of programme analysis tasks. To effectively analyse programmes built on top of software libraries, it is essential to have specifications for the library methods that can be easily processed by analysis tools. However, the availability of such specifications is seriously limited at the moment. Manually writing the specifications can be prohibitively expensive and error-prone, while existing automated approaches to inferring the specifications seldom produce results that are strong enough to be used in programme analysis. In this work, we propose the DOC2SMT approach to generating strong functional constraints in SMT for library methods based on their documentations. DOC2SMT first applies natural language processing (NLP) techniques and a set of rules to translate a method's natural language documentation into a large number of candidate constraint clauses in OCL. Then, it utilises a manually enhanced domain model to identify OCL candidate constraint clauses that comply with the problem domain in static validation, translates well-formed OCL constraints into the SMT-LIB format, and checks whether each 5MB-LIB constraint rightly abstracts the functionalities of the method under consideration via testing in dynamic validation. In the end, it reports the first functional constraint that survives both validations to the user as the result. We have implemented the approach into a supporting tool with the same name. In experiments conducted on 451 methods from the Java Collections Framework and the Java IO library, DOC2SMT generated correct constraints for 309 methods, with the average generation time for each correct constraint being merely 2.7 min. We have also applied the generated constraints to facilitate symbolic-execution-based test generation with the Symbolic Java PathFinder (SPF) tool. For 24 utility methods manipulating Java container and IO objects, SPF with access to the generated constraints produced 51.2 times more test cases than SPF without the access.10.1109/ICST53961.2022.00056https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888documentation analysis;domain model;OCL;SMT;specification generationIEEE Inglês CI1 Incluído
Smart Contract Defense through Bytecode RewritingG. Ayoade; E. Bauman; L. Khan; K. Hamlen2019 An Ethereum bytecode rewriting and validation architecture is proposed and evaluated for securing smart contracts in decentralized cryptocurrency systems without access to contract source code. This addresses a wave of smart contract vulnerabilities that have been exploited by cybercriminals in recent years to steal millions of dollars from victims. Such attacks have motivated various best practices proposals for helping developers write safer contracts; but as the number of programming languages used to develop smart contracts increases, implementing these best practices can be cumbersome and hard to enforce across the development tool chain. Automated hardening at the bytecode level bypasses this source-level heterogeneity to enforce safety and code integrity properties of contracts independently of the sources whence they were derived. In addition, a binary code verification tool implemented atop the Coq interactive theorem prover establishes input-output equivalence between the original code and the modified code. Evaluation demonstrates that the system can enforce policies that protect against integer overflow and underflow vulnerabilities in real Ethereum contract bytecode, and overhead is measured in terms of instruction counts.10.1109/Blockchain.2019.00059https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210blockchain;ethereum;in-lined reference monitors;formal methodsIEEE Inglês CI1 Incluído
Sim: A Contract-Based Programming Language for Safety-Critical SoftwareT. Benoit 2019 An important benefit of formal methods is the ability to unambiguously describe the requirements of a program and to provide evidence of the compliance of the software code with these requirements. However, formal analysis on programs written in languages that are used today in avionics can be challenging since these languages have features, such as pointers, that complicate program verification. So, to enable formal verification, one must limit the language to a subset and/or one must endure a considerable annotation overhead. This paper presents Sim, a new high-level programming language that is designed for the development and verification of safety-critical software. The Sim language has been designed so that only a small annotation overhead is needed and one can make extensive use of automatic verification tools. We show that in Sim 4 to 5 times fewer annotations are needed compared to programs written in VeriFast-C to prove equivalent properties. We additionally demonstrate that Sim is suitable as a language for avionics software development by implementing and verifying an elementary fly-by-wire application and deploying it on an STM32 microcontroller.10.1109/DASC43569.2019.9081681https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681contracts;semi-automatic verification;formal methods;programming language;safety-critical systemsIEEE Inglês CI1 Incluído
Program Synthesis for Cyber-ResilienceN. Catano 2023 Architectural tactics enable stakeholders to achieve cyber-resilience requirements. They permit systems to react, resist, detect, and recover from cyber incidents. This paper presents an approach to generate source code for architectural tactics typically used in safety and mission-critical systems. Our approach extensively relies on the use of the Event-B formal method and the EventB2Java code generation plugin of the Rodin platform. It leverages the modeling of architectural tactics in the Event-B formal language and uses a set of EventB2Java transformation rules to generate certified code implementations for the said tactics. Since resilience requirements are statements about a system over time, and because of the fact that the Event-B language does not provide (native) support for the writing of temporal specifications, we have implemented a novel Linear Temporal Logic (LTL) extension for Event-B. We support several architectural tactics for availability, performance, and security. The generated code is certified in the following sense: discharging proof obligations in Rodin - the platform we use for writing the Event-B models - attests to the soundness of the architectural tactics modelled in Event-B, and the soundness of the translation encoded by the EventB2Java tool attests to the code correctness. Finally, we demonstrate the usability of our resilience validation approach with the aid of an Autonomous Vehicle System. It further helped us increase our confidence in the soundness of our Event-B LTL extension.10.1109/TSE.2022.3168672https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016Code synthesis;Event-B;formal methods;resilience;security;testing;verificationIEEE Inglês CI1 Incluído
A Model-Checking Framework for the Verification of Move Smart ContractsE. Keilty; K. Nelaturu; B. Wu; A. Veneris2022 As the popularity of distributed ledger technology and smart contracts continues to grow, so does the number of decentralized applications and their potential exposure to expensive exploits. The need for strong vulnerability detection tools is critical. Move is a recently developed smart contract language with safety and security at the core of its design containing formal verification tools embedded into the language. Currently, these tools can only verify local properties within a single Move function. They cannot verify global properties that result from multiple function executions. In this paper, we introduce VeriMove, an extension of the VeriSolid correct-by-design model checking framework that supports the Move language. We show that model checking is a feasible method to formally verify global properties in Move smart contracts.10.1109/ICSESS54813.2022.9930214https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214Smart Contract;Verification;Solidity;MoveIEEE Inglês CI1 Incluído
Formalization and Verification of Cyclic GroupY. Tang; Y. Xu; P. Liu; G. Zeng2021 At present, the formal method is an important system design verification method, which effectively compensates the “incomplete” problem of the traditional methods such as simulation and testing in the system design verification. Since the logical method as a typical formal method is our research direction, we naturally choose the first-order logic language in the logical method to formalize Group theory in the field of mathematics. Based on some formalized conclusions of Group theory in TPTP, this paper completes the formal description of missing definitions about the Group in TPTP, namely the order of element in group, nth-order cyclic group and Klein four-group. Some propositions and theorems related to these definitions are further formal described, and the correctness of these descriptions is verified by the theorem tool Prover9.10.1109/ISKE54062.2021.9755331https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331cyclic group;first-order logic;formalization;Prover9;verificationIEEE Inglês CI1 Incluído
Formal verification of deadlock avoidance rules for AGV systemsS. Riazi; J. Falk; A. Greger; A. Pettersson; M. Fabian2022 Automated Guided Vehicles (AGVs) are increasingly popular and bring many industrial benefits. However, when a number of AGVs autonomously execute their itineraries, it is possible for two or more AGVs to prevent each other from completing their tasks and cause a deadlock from where the system cannot progress. One way that companies try to avoid this is to, based on simulations, generate deadlock avoidance rules (DA-rules) that determine for different scenarios how the AGVs should behave. This paper presents an application of translating such DA-rules to extended finite-state automata and then to formally verify if the rules actually do avoid deadlocks. This is done by using information of an existing system setup where there are two major types of DA-rules. Both of these can be modelled as automata with guards and actions that prevent a transition from occurring if associated conditions are not fulfilled. These guards are generated automatically for all the DA-rules corresponding to the current itineraries. For a chosen itinerary a complete automaton is generated, as well as automata representing the DA-rules. Using the supervisor synthesis tool SUPREMICA, it is shown that the existing DA-rules do not manage to remove all deadlocks in all cases. Even worse, the DA-rules can lead to a fully blocking system, even though a deadlock-free solution does exist, as can be shown by computing a supervisor for the system without the DA-rules.10.1109/MED54222.2022.9837154https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154- IEEE Inglês CI1 Incluído

https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154

Space-time Constraint Resources Modeling and Safety Verification Method for Automated VehiclesY. Zhu; X. Chen; Y. Zhao 2022 Automated vehicle combines physics and computation on the basis of environment perception. It can realize intelligent interaction with the environment. Automated vehicle is a typical CPS. However, the continuous changes of driving physical space bring certain challenges to the safety of CPS resources. Therefore, how to solve this kind of CPS resource safety problems caused by space and time changes becomes the key. We propose a space-time constraint resource modeling and safety verification method for automated vehicle to solve this problem. Firstly, the physical topology model is proposed to model the physical topology space of CPS, which is able to describe the topology space. Secondly, the Resource-Space Time Communicating Sequential Process (RS- TCSP) is proposed by extending the resource vector on the basis of Time Communicating Sequential Process(TCSP) to describe the resources in CPS topology. Thirdly, the physical topology model and RS- TCSP are mapped to bigraphs and bigraphs reactive system, respectively. The safety of CPS resources is verified by BigMC, the verification tool of bigraphs, and the counterexample path is modified. Finally, a driving scene is given to verify the effectiveness of the proposes method.10.1109/DSA56465.2022.00112https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482cyber physical system;formal verification;process algebra;space-time constraint;resource safetyIEEE Inglês CI1 Incluído
Artifact of Bounded Exhaustive Search of Alloy Specification RepairsS. Gutiérrez Brida; G. Regis; G. Zheng; H. Bagheri; T. Nguyen; N. Aguirre; M. Frias2021 BeAFix is a tool and technique for automated repair of faulty models written in Alloy, a declarative formal specification language based on first-order relational logic. BeAFix takes a faulty Alloy model, i.e., an Alloy model with at least one analysis command whose result is contrary to the developer's expectation, and a set of suspicious specification locations, and explores the space of fix candidates consisting of all alternative expressions for the indicated locations, that can be constructed by bounded application of a family of mutation operations. BeAFix can work with any kind of specification oracle, from Alloy test cases to standard predicates and assertions typically found in Alloy specifications, and is backed with a number of sound pruning strategies, for efficient exploration of fix candidate search spaces.10.1109/ICSE-Companion52605.2021.00093https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585- IEEE Inglês CI1 Incluído
Explaining Boolean-Logic Driven Markov Processes using GSPNsS. Khan; J. -P. Katoen; M. Bouissou2020 Boolean-logic driven Markov processes (BDMPs) is a graphical language for reliability analysis of dynamic repairable systems. BDMPs are capable of defining complex interdependencies among failure modes such as functional dependencies and state-dependent failures. The interpretation of BDMPs is non-trivial due to the many possible complex interactions of activation and failure mechanisms. This paper presents a formal semantics of repairable BDMPs by using generalized stochastic Petri nets (GSPNs). Our semantics is modular and thus easily extendable to other elements, e.g., leaves dedicated to security applications. Priorities on GSPN transitions are used to impose a partial order on various possible interleaving of activation and failure mechanisms. The semantics is realized by the prototypical tool BDMP2GSPN that converts a Figaro description of a BDMP into a GSPN. The reliability and availability metrics of BDMPs are obtained using the probabilistic model-checking capability of the existing GreatSPN tool. Experiments show that our GSPN semantics corresponds to the BDMP interpretation by the tool yet another Monte Carlo simulator (YAMS).10.1109/EDCC51268.2020.00028https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784Dependability, formal methods, probabilistic model checking, Monte Carlo simulation, Petri netsIEEE Inglês CI1 Incluído
Towards Formal Verification of Program ObfuscationW. Lu; B. Sistany; A. Felty; P. Scott2020 Code obfuscation involves transforming a program to a new version that performs the same computation but hides the functionality of the original code. An important property of such a transformation is that it preserves the behavior of the original program. In this paper, we lay the foundation for studying and reasoning about code obfuscating transformations, and show how the preservation of certain behaviours may be formally verified. To this end, we apply techniques of formal specification and verification using the Coq Proof Assistant. We use and extend an existing encoding of a simple imperative language in Coq along with an encoding of Hoare logic for reasoning about this language. We formulate what it means for a program's semantics to be preserved by an obfuscating transformation, and give formal machine-checked proofs that these behaviours or properties hold. We also define a lower-level block-structured language which is "wrapped around" our imperative language, allowing us to model certain flattening transformations and treat blocks of codes as objects in their own right.10.1109/EuroSPW51379.2020.00091https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802obfuscation;verification;security;correctness;Coq;proofIEEE Inglês CI1 Incluído
Pattern Based Model Reuse Using Colored Petri NetsS. H. Askari; S. A. Khan; M. Haris; M. Shoaib2019 Colored Petri Net (CPN) is a graphical modeling language for simulation and modeling and for verification of discrete event systems. CPN allows developers to define a model in the form of reusable components. A model component is an independent element, which is specified using a formalized description, can conform to a certain component standard, has a well-defined interface, and encapsulates certain behavior. Modern components can help the developer reuse existing models according to their requirement as it reduces the cost and time of development. Composability is the capability to select and integrate various components to fulfill user requirements. Composability provides the means to achieve reusability where "reuse" is the ability of a simulation component to be reclaimed for various applications. We propose a verification framework for developers to select and assemble CPN-based components and verify their composability. The goal of this paper is to provide a pattern which helps developer in making models of concurrent systems. We present a case study of a restaurant model as proof of concept. A verified composition affirms reuse of model components in a meaningful manner by satisfying given requirement specifications.10.1109/ICCSA.2019.000-7https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585Patterns, Pattern Reuse, Colored Petri nets, Composability VerificationIEEE Inglês CI1 Incluído
Adversary Safety by Construction in a Language of Cryptographic ProtocolsT. M. Braje; A. R. Lee; A. Wagner; B. Kaiser; D. Park; M. Kalke; R. K. Cunningham; A. Chlipala2022 Compared to ordinary concurrent and distributed systems, cryptographic protocols are distinguished by the need to reason about interference by adversaries. We suggest a new layered approach to tame that complexity, via an executable protocol language whose semantics does not reveal an adversary directly, instead enforcing a set of intuitive hygiene rules. By virtue of those rules, protocols written in this language provably behave identically with or without interference by active Dolev-Yao-style adversaries. As a result, formal reasoning about protocols can be simplified enough that even naïve model checking can establish correctness of a multiparty protocol, through analysis of a state space with no adversary. We present the design and implementation of SPICY, short for Secure Protocols Implemented CorrectlY, including the semantics of its input languages; the essential safety proofs, formalized in the Coq theorem prover; and the automation techniques. We provide a preliminary evaluation of the tool's performance and capabilities via a handful of case studies.10.1109/CSF54842.2022.9919638https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638formal verification;coq;cryptography;protocol analysisIEEE Inglês CI1 Incluído
CCSpec: A Correctness Condition Specification ToolC. Peterson; P. LaBorde; D. Dechev2019 Concurrent libraries provide data structures whose operations appear to execute atomically when invoked individually. Although these libraries guarantee safety for the data structure operations, the composition of operations may be vulnerable to undefined behavior. The difficulty of reasoning about safety properties in a concurrent environment has led to the development of tools to verify that a concurrent data structure meets a correctness condition. The disadvantage of these tools is that they cannot verify that the composition of concurrent data structure operations respects the intended semantics of the algorithm. Formal logic has been proposed to enable the verification of correctness specifications for a concurrent algorithm. However, a large amount of manual labor is required to fully mechanize the correctness proofs of the concurrent algorithm and each concurrent data structure invoked in the algorithm. In this research, we propose Correctness Condition Specification (CCSpec), the first tool that automatically checks the correctness of a composition of concurrent multi-container operations performed in a non-atomic manner. In addition to checking the correctness of a composition of data structure operations in a concurrent algorithm, CCSpec also checks the correctness of each concurrent data structure utilized in the algorithm. A reference to a container is associated with each method called in a concurrent history to enable the evaluation of correctness for a composition of multiple containers. We develop a lightweight custom specification language that allows the user to define a correctness condition associated with the concurrent algorithm and a correctness condition associated with the concurrent data structures. We demonstrate the practical application of CCSpec by checking the correctness of a concurrent depth-first search utilizing a non-blocking stack, a concurrent breadth-first search utilizing a non-blocking queue, a concurrent shortest path algorithm utilizing a non-blocking priority queue, and a concurrent adjacency list utilizing non-blocking sets.10.1109/ICPC.2019.00041https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298concurrency;verification;correctness conditionIEEE Inglês CI1 Incluído
CIM-CSS: A Formal Modeling Approach to Context Identification and Management for Intelligent Context-Sensitive SystemsA. M. Baddour; J. Sang; H. Hu; M. A. Akbar; H. Loulou; A. Ali; K. Gulzar2019 Context modeling is often used to relate the context in which a system will operate to the entities of interest in the problem domain. It remains the case that context models are inadequate in emerging computing paradigms (e.g., smart spaces and the Internet of Things), in which the relevance of context is shaped dynamically by the changing needs of users. Formal models are required to fuse and interpret contextual information obtained from the heterogeneous sources. In this paper, we propose an integrated and formal context modeling approach for intelligent systems operating in the context-sensitive environments. We introduce a goal-driven, entity-centered identification method for determining which context elements are influential in adapting the system behavior. We then describe a four-layered framework for metamodeling the identification and management of context. First, the framework presents a formal metamodel of context. A formalization of context using the first-order logic with relational operators is then presented to specify formally the context information at different abstraction levels. The metamodel, therefore, prepares the ground for building a formal modeling language and automated support tool (https://github.com/metamodeler/CIM-CSS/). The proposed model is then evaluated using an application scenario in the smart meeting rooms domain, and the results are analyzed qualitatively.10.1109/ACCESS.2019.2931001https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087Context modeling;context aware systems;unified modeling language;computational modeling;object recognition;data models;complexity theoryIEEE Inglês CI1 Incluído
Model-Based Systems Engineering to Design An Onboard Surround Vision System for Cooperative Automated VehiclesN. Kemsaram; A. Das; G. Dubbelman2021 Cooperative automated vehicles have various electronic control units with multiple sensors running complex software algorithms to perceive and navigate their environment. Hence, there is a need to use advanced software engineering design methodology to reduce the software complexity and increase modularity. In this paper, we applied the SysCARS model-based systems engineering methodology to design an onboard surround vision system with a SysML modeling language using the IBM Rational Rhapsody modeling tool. The modeling methodology is described through various phases and steps with a modeling language to overcome the challenges. The modeling tool takes the information from the design model of the system and generates a skeletal code. The algorithm is written for each generated skeletal code, compiled with a C++ compiler on the host Desktop PC (Ubuntu 16.04 LTS), and deployed on the target Nvidia Drive PX2 embedded hardware platform. The designed solution fulfills the requirements of the onboard surround vision system.10.1109/IISEC54230.2021.9672396https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396Cooperative automated vehicle;deep neural networks;model-based systems engineering;surround vision system;system modeling language;unified modeling languageIEEE Inglês CI1 Incluído
Smart Bound Selection for the Verification of UML/OCL Class DiagramsR. Clarisó; C. A. González; J. Cabot2019 Correctness of UML class diagrams annotated with OCL constraints can be checked using bounded verification techniques, e.g., SAT or constraint programming (CP) solvers. Bounded verification detects faults efficiently but, on the other hand, the absence of faults does not guarantee a correct behavior outside the bounded domain. Hence, choosing suitable bounds is a non-trivial process as there is a trade-off between the verification time (faster for smaller domains) and the confidence in the result (better for larger domains). Unfortunately, bounded verification tools provide little support in the bound selection process. In this paper, we present a technique that can be used to (i) automatically infer verification bounds whenever possible, (ii) tighten a set of bounds proposed by the user and (iii) guide the user in the bound selection process. This approach may increase the usability of UML/OCL bounded verification tools and improve the efficiency of the verification process.10.1109/TSE.2017.2777830https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996Formal verification;UML;class diagram;OCL;constraint propagation;SATIEEE Inglês CI1 Incluído
Design Ontology in a Case Study for Cosimulation in a Model-Based Systems Engineering Tool-ChainJ. Lu; G. Wang; M. Törngren 2020 Cosimulation is an important system-level verification approach aimed at integrating multidomain and multi-physics models during complex system development. Currently, the lack of integrating system development process with cosimulations leads to gaps between them, decreasing the effectiveness and efficiency of system development. Model-based systems engineering (MBSE) tool-chains have been proposed to facilitate the integration of complex system development and automated verification using a model-based approach. However, due to the lack of formal and structured specifications, development information sharing is difficult for supporting MBSE facilitating automated cosimulations. In order to formalize cosimulation in an MBSE tool-chain, a scenario-based ontology is developed in this paper, using formal web ontology language (OWL). Ontology refers to a specification expressing the cosimulation implementations as well as the development information represented in the models supporting the MBSE. It is illustrated by a case study of a cosimulation based on Simulink. Protocol and resource description framework (RDF) query language (SPARQL) and semantic query-enhanced web rule language queries are proposed for evaluating the ontology's completeness and logic for supporting cosimulations. The result demonstrates that the scenario-based ontology formalizes the information related to automated cosimulation development and configurations while using the proposed MBSE tool-chain.10.1109/JSYST.2019.2911418https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748Cosimulation;model-based systems engineering (MBSE);ontology design;simulation automation;tool-chainIEEE Inglês CI1 Incluído
The Notion of Cross Coverage in AMS Design VerificationS. Sanyal; A. Hazra; P. Dasgupta; S. Morrison; S. Surendran; L. Balasubramanian2020 Coverage monitoring is fundamental to design verification. Coverage artifacts are well developed for digital integrated circuits and these aim to cover the discrete state space and logical behaviors of the design. Analog designers are similarly concerned with the operating regions of the design and its response to an infinite and dense input space. Analog variables can influence each other in far more complex ways as compared to digital variables, consequently, the notion of cross coverage, as introduced in the analog context for the first time in this paper, is of high importance in analog design verification. This paper presents the formal syntax and semantics of analog cross coverage artifacts, the methods for evaluating them using our tool kit, and most importantly, the insights that can be gained from such cross coverage analysis.10.1109/ASP-DAC47756.2020.9045131https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131- IEEE Inglês CI1 Incluído
Verifying Cross-Layer Interactions Through Formal Model-Based Assertion GenerationA. Salehi Fathabadi; M. Dalvandi; M. Butler; B. M. Al-Hashimi2020 Cross-layer runtime management (RTM) frameworks for embedded systems provide a set of standard application programming interfaces (APIs) for communication between different system layers (i.e., RTM, applications, and device) and simplify the development process by abstracting these layers. Integration of independently developed components of the system is an error-prone process that requires careful verification. In this letter, we propose a formal approach to integration testing through automatic generation of runtime assertions in order to test the implementation of the APIs. Our approach involves a formal model of the APIs developed using the Event-B formal method, which is automatically translated to a set of assertions and embedded in the existing implementation of APIs. The embedded assertions are used at runtime to check the correctness of the integration.10.1109/LES.2019.2955316https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436Embedded systems;Event-B;formal methods;formal verification;runtime managementIEEE Inglês CI1 Incluído
Integration of a formal specification approach into CPPS engineering workflow for machinery validationB. Vogel-Heuser; C. Huber; S. Cha; B. Beckert2021 Cyber Physical Production Systems (CPPS) operate for a long time and face continuous and incremental changes to follow up varying requirements. Interdisciplinary engineering of CPPS is often subject to delay and cost overrun; and quality control may even fail due to the lack of efficient information exchange between multiple involved actors. We propose to integrate a formal requirement specification approach, namely Generalized Test Tables including tool support, into industrial workflows and present the approach through extended notations of Business Process Model and Notation (BPMN), namely BPMN++*, with the tool-coupling aspect. The suggested tooling enables automation engineers to follow the defined workflow systematically and communicate easier through the formally represented change requirement. The approach is demonstrated by two typical use cases of changing a CPPS’ control software and showing the result by means of an extended BPMN++ model exemplarily.10.1109/INDIN45523.2021.9557505https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505Engineering workflow;CSCW (Computer Supported Cooperative Work);Software development management;PLC programming;Control code;Formal specification;Information management;Test tablesIEEE Inglês CI1 Incluído
SMT-Based Consistency Checking of Configuration-Based Components SpecificationsL. Pandolfo; L. Pulina; S. Vuotto2021 Cyber-Physical Systems (CPSs) are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. CPSs are widely used in many safety-critical domains, making it crucial to ensure that they operate safely without causing harm to people and the environment. Therefore, their design should be robust enough to deal with unexpected conditions and flexible to answer to the high scalability and complexity of systems. Nowadays, it is well-established that formal verification has a great potential in reinforcing safety of critical systems, but nevertheless its application in the development of industrial products may still be a challenging activity. In this paper, we describe an approach based on Satisfiability Modulo Theories (SMT) to formally verify, at the design stage, the consistency of the system design - expressed in a given domain-specific language, called QRML, which is specifically designed for CPSs - with respect to some given property constraints, with the purpose to reduce inconsistencies during the system development process. To this end, we propose an SMT-based approach for checking the consistency of configuration based-components specifications and we report the results of the experimental analysis using three different state-of-the-art SMT solvers. The main goal of the experimental analysis is to test the scalability of the selected SMT solvers and thus to determine which SMT solver is the best in checking the satisfiability of the properties.10.1109/ACCESS.2021.3085911https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129Design verification;application of formal methods;satisfiability modulo theoriesIEEE Inglês CI1 Incluído
Trace-Checking CPS Properties: Bridging the Cyber-Physical GapC. Menghi; E. Viganò; D. Bianculli; L. C. Briand2021 Cyber-physical systems combine software and physical components. Specification-driven trace-checking tools for CPS usually provide users with a specification language to express the requirements of interest, and an automatic procedure to check whether these requirements hold on the execution traces of a CPS. Although there exist several specification languages for CPS, they are often not sufficiently expressive to allow the specification of complex CPS properties related to the software and the physical components and their interactions. In this paper, we propose (i) the Hybrid Logic of Signals (HLS), a logic-based language that allows the specification of complex CPS requirements, and (ii) ThEodorE, an efficient SMT-based trace-checking procedure. This procedure reduces the problem of checking a CPS requirement over an execution trace, to checking the satisfiability of an SMT formula. We evaluated our contributions by using a representative industrial case study in the satellite domain. We assessed the expressiveness of HLS by considering 212 requirements of our case study. HLS could express all the 212 requirements. We also assessed the applicability of ThEodorE by running the trace-checking procedure for 747 trace-requirement combinations. ThEodorE was able to produce a verdict in 74.5% of the cases. Finally, we compared HLS and ThEodorE with other specification languages and trace-checking tools from the literature. Our results show that, from a practical standpoint, our approach offers a better trade-off between expressiveness and performance.10.1109/ICSE43902.2021.00082https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030Monitors;Languages;Specification;Validation;Formal methods;SemanticsIEEE Inglês CI1 Incluído
SecML: A Proposed Modeling Language for CyberSecurityC. Easttom 2019 Cybersecurity is a comparatively new discipline, related to computer science, electrical engineering, and similar subjects. As a newer discipline it lacks some of the tools found in more established subject areas. As one example, many engineering disciplines have modeling languages specific for that engineering discipline. As two examples, software engineering utilizes Unified Modeling Language (UML) and systems engineering uses System Modeling Language (SysML). Cybersecurity engineering lacks such a generalized modeling language. Cybersecurity as a profession would be enhanced with a security specific modeling language. This paper describes such a modeling language. The model is described in sufficient detail to be actionable and applicable. However, suggestions for future work are also provided.10.1109/UEMCON47517.2019.8993105https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105Cybersecurity;Modeling languages;Engineering;Cybersecurity engineering;SysML;Systems EngineeringIEEE Inglês CI1 Incluído
Applying B and ProB to a Real-world Data Validation ProjectC. Peng; W. Keming 2021 Data validation is a constraint satisfaction problem that can be modelled rigorously by formal methods like B. This paper presents our experiences on validating a real-world section topology of tram lines using the B language and ProB tool. Based on the section topology, validation rules are designed and implemented by using the ASSERTIONS Clause of B. The Epsilon Generation Language Script is used to build a data conversion schema under automatically deriving the topology data into the B model. Furthermore, the ProB is used to validate whether the data satisfy the rules. In this way, the validated topology improves the functional correctness of the tram control system.10.1109/ISKE54062.2021.9755408https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408B method;rule programming;section topologyIEEE Inglês CI1 Incluído
Salty-A Domain Specific Language for GR(1) Specifications and DesignsT. Elliott; M. Alshiekh; L. R. Humphrey; L. Pike; U. Topcu2019 Designing robot controllers that correctly react to changes in the environment is a time-consuming and error-prone process. An alternative is to use “correct-by-construction” synthesis approaches to automatically generate controller designs from high-level specifications. In particular, Generalized Reactivity(l) or GR(1) specifications are well-suited to express specifications for robots that must act in dynamic environments, and approaches to generate controller designs from GR(1) specifications are highly computationally efficient. Toward that end, this paper presents Salty, a domain-specific language for GR(1) specifications. While tools exist to synthesize system designs from GR(1) specifications, Salty makes such specifications easier to write and debug by supporting features such as richer input and output types, user-defined macros, common specification patterns, and specification optimization and sanity checking. Salty interfaces with the separately developed synthesis tool Slugs to produce a system or controller design, and Salty translates this design to a software implementation in a variety of languages. We demonstrate Salty on an application involving coordination of multiple unmanned air vehicles (UAVs) and provide a workflow for connecting synthesized UAV controllers to freely available UAV planning and simulation software suites UxAS and AMASE.10.1109/ICRA.2019.8793722https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722- IEEE Inglês CI1 Incluído
Building Devs Models with the Cadmium ToolL. Belloli; D. Vicino; C. Ruiz-Martin; G. Wainer2019 Discrete Event System Specification (DEVS) is a mathematical formalism to model and simulate discrete-event dynamic systems. The advantages of DEVS include a rigorous formal definition of models and a well-defined mechanism for modular composition. In this tutorial, we introduce Cadmium, a new DEVS simulator. Cadmium is a C++17 header only DEVS simulator easy to include and to integrate into different projects. We discuss the tool's Application Programming Interface, the simulation algorithms used and its implementation. We present a case study as an example to explain how to implement DEVS models in Cadmium.10.1109/WSC40007.2019.9004917https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917- IEEE Inglês CI1 Incluído
Translating Process Interaction World View Models to DEVS: GPSS to (Python(P))DEVSR. Paredis; S. Van Mierlo; H. Vangheluwe2020 Discrete-event modelling and simulation languages can be classified based on their world view: event scheduling, activity scanning, or process interaction. To study the semantics of these languages one may investigate the relationship between them, and in particular translate models between languages in different world views. A translation approach also lets one re-use all the simulation tooling available for the target language. We describe a translation of the classic process interaction language GPSS developed by Gordon in the early 1960s onto DEVS, a modular discrete-event modelling and simulation language with precise semantics developed by Zeigler in the late 1970s. We specify and implement a translation that produces, for each GPSS model, a behaviourally equivalent DEVS model. As GPSS has no formal semantics, there is no proof of equivalence. Rather, we describe the structure of the translation, starting from Gordon's informal description, centered around the main data structures called chains and the scanning algorithm. We build a working prototype for a representative subset of GPSS blocks found in most tools implementing the language. Finally, we exhaustively test the translation by comparing simulation results of the generated DEVS model with a those obtained by the GPSS World simulator. GPSS World is a popular GPSS variant. We also demonstrate our approach on a small but representative example from the manufacturing domain.10.1109/WSC48552.2020.9383952https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952- IEEE Inglês CI1 Incluído
Modeling and Verifying Storm Using CSPH. Zhao; H. Zhu; Y. Fang; L. Xiao2019 Due to the higher pursuit of information timeliness, a number of distributed stream processing computation frameworks have emerged, among which the most successful and widely used at present is Storm. Storm is a stream-only processing computation framework which can deal with continuous streaming data. This paper applies Communicating Sequential Processes (CSP), a formal language in process algebra, to analyze and model the communication behaviors in the workflow of Storm. Then, we transform the established model and use the refinement checking tool Failures-Divergences Refinement (FDR) to verify whether it satisfies deadlock-free and sequential consistency properties.10.1109/HASE.2019.00037https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039Storm, CSP, FDR, Formal modeling, VerificationIEEE Inglês CI1 Incluído
Better Development of Safety Critical Systems: Chinese High Speed Railway System Development Experience ReportZ. Wu; J. Liu; X. Chen 2019 Ensure the correctness of safety critical systems play a key role in the worldwide software engineering. Over the past years we have been helping CASCO Signal Ltd which is the Chinese biggest high speed railway company to develop high speed railway safety critical software. We have also contributed specific methods for developing better safety critical software, including a search-based model-driven software development approach which uses SysML diagram refinement method to construct SysML model and SAT solver to check the model. This talk aims at sharing the challenge of developing high speed railway safety critical system, what we learn from develop a safety critical software with a Chinese high speed railway company, and we use ZC subsystem as a case study to show the systematic model-driven safety critical software development method.10.1109/ASE.2019.00143https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294SysML;Formal Method;Model-Driven;SATIEEE Inglês CI1 Incluído
Work-in-Progress: Formal Analysis of Hybrid-Dynamic Timing Behaviors in Cyber-Physical SystemsL. Huang; E. Y. Kang 2019 Ensuring correctness of timed behaviors in cyber-physical systems (CPS) using closed-loop verification is challenging due to the hybrid dynamics in both systems and environments. Simulink and Stateflow are tools for model-based design that support a variety of mechanisms for modeling and analyzing hybrid dynamics of real-time embedded systems. In this paper, we present an SMT-based approach for formal analysis of the hybrid-dynamic timing behaviors of CPS modeled in Simulink blocks and Stateflow states (S/S). The hierarchically interconnected S/S are flattened and translated into the input language of SMT solver for formal verification. A translation algorithm is provided to facilitate the translation. Formal verification of timing constraints against the S/S models is reduced to the validity checking of the resulting SMT encodings. The applicability of our approach is demonstrated on an unmanned surface vessel case study.10.1109/RTSS46320.2019.00069https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141Cyber physical system;Simulink/Stateflow;dReal;Timing Constraints;Formal verificationIEEE Inglês CI1 Incluído
Hierarchical Formal Modeling of Internet of Things System Oriented to User BehaviorL. Yu; Y. Lu; B. Zhang; L. Shi; F. Huang; Y. Li; Y. Shen2020 Ensuring the correctness and reliability of the Internet of Things system is the key to the advancement of the Internet of Things project. It is very necessary to fully inspect the Internet of Things system before it is actually deployed, so as to find the errors and defects in the system design as soon as possible and make improvements. Compared with conventional simulation and testing, the formal method has the advantages of low cost, short cycle and simple steps, which provides efficient support for the inspection and analysis of the Internet of Things system before deployment. Based on the stateful timed communication sequence process (STCSP), we consider the formal modeling framework for the Internet of things system from the perspective of external environment input and system architecture. We then propose a hierarchical formal modeling method for the Internet of things system oriented to user behavior. Taking the elderly home monitoring application scene as an example, as the input of the external environment, the user behavior and its implementation object are combined into a whole for modeling, so as to keep the two states in sync, restrict each other, and avoid unrealistic sequence of activities. From the perspectives of perception mode, communication mode, predefined rules and application services, we have completed the hierarchical modeling of the three-layer architecture of the Internet of Things system, that is, perception layer, middle layer and application layer. Finally, the model verification tool PAT analyzes and verifies the above model from the aspects of security, accessibility, and system consistency. This method provides scientific basis for the correctness inspection and reliability analysis of the Internet of Things system before deployment in the Internet of Things project.10.1109/SmartIoT49966.2020.00050https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003Internet of things system;Formal modeling;User behavior;STCSP;PAT;Home monitoring for the elderlyIEEE Inglês CI1 Incluído
SOLOMON: An Automated Framework for Detecting Fault Attack Vulnerabilities in HardwareM. Srivastava; P. SLPSK; I. Roy; C. Rebeiro; A. Hazra; S. Bhunia2020 Fault attacks are potent physical attacks on crypto-devices. A single fault injected during encryption can reveal the cipher's secret key. In a hardware realization of an encryption algorithm, only a tiny fraction of the gates is exploitable by such an attack. Finding these vulnerable gates has been a manual and tedious task requiring considerable expertise. In this paper, we propose SOLOMON, the first automatic fault attack vulnerability detection framework for hardware designs. Given a cipher implementation, either at RTL or gate-level, SOLOMON uses formal methods to map vulnerable regions in the cipher algorithm to specific locations in the hardware thus enabling targeted countermeasures to be deployed with much lesser overheads. We demonstrate the efficacy of the SOLOMON framework using three ciphers: AES, CLEFIA, and Simon.10.23919/DATE48585.2020.9116380https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380fault attack;fault evaluation tools;formal verificationIEEE Inglês CI1 Incluído
Qualification of Hardware Description Language Designs for Safety Critical Applications in Nuclear Power PlantsA. K. John; A. K. Bhattacharjee2020 Field-programmable gate-array (FPGA)-based intelligent hardware modules are increasingly being used in safety systems of nuclear power plants. Qualification of these modules as per safety standards such as IEC 62566/60880 and IEEE-7.4.3.2-2010 needs considerable effort. Many of the safety standards demand high rigor in verifying that the designs of these modules meet the design intent. Use of hardware description languages such as VHDL or Verilog makes the process of code review and verification difficult due to the complex nonsequential semantics of these languages. It is now recognized that formal verification offers a complementary approach to conventional verification. Formal verification tools perform analysis of designs based on language semantics to prove/refute their functional correctness. In this article, we present the architecture of a formal verification tool for VHDL designs and our experience of using this tool on VHDL designs in nuclear applications.10.1109/TNS.2020.2972903https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153Bounded model checking;formal verification;field-programmable gate-array (FPGA) qualification;VHDLIEEE Inglês CI1 Incluído
Using tabular notation to support model based testing: A practical experience using STTSpec and Spec ExplorerR. Kherrazi 2020 Finite state machines are a widely used concept for specifying the behavior of reactive systems for development as well as for testing purpose. Numerous graphical notations based on finite state machines have been developed and are commonly used today, such as state transition diagrams, state charts, and Unified Modeling Language (UML) state machine diagrams. While not as widely used, tabular notations for state machine-based specifications offer complementary advantages to diagrammatic notations. In this article, we describe an approach using tabular notations for state machine-based specifications in Model Based Testing and we evaluate these approaches using Spec Explorer from Microsoft. We developed a tool, called STTSpec, to convert tabular notation from an Excel sheet to the C# input models of Spec Explorer, allowing us to do functional testing with the benefit of simplicity of tabular notation. We demonstrate this by applying our approach to an industrial-size case study.10.1109/ICSTW50294.2020.00021https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719State Machine Diagrams;Tabular Notation;State Transition Table (STT);Excel Sheet;Model Based Testing (MBT);Spec Explorer;STTSpecIEEE Inglês CI1 Incluído
Formal verification of Fischer’s real-time mutual exclusion protocol by the OTS/CafeOBJ methodM. Nakamura; S. Higashi; K. Sakakibara; a. Ogata2020 Fischer's protocol is a well-known real-time mutual exclusion protocol for multiple processes. The mutual exclusiveness is guaranteed by treating time aspects of transitions. In such a multitask real-time system, since processes run concurrently, the size of the state space grows exponentially. It is not easy to verify time constraints of a give system. Formal descriptions of multitask real-time systems may help us to verify time constraints formally with computer supports. In this paper, as a case study of the OTS/CafeOBJ method, we model Fischer's protocol as an observational transition system, describe it in CafeOBJ algebraic specification language, and verify that different processes do not enter the critical section at the same time by the proof score method based on equational reasoning implemented in CafeOBJ interpreter.10.23919/SICE48898.2020.9240272https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272Multitask real-time system;Fischer’s real-time mutual exclusion protocol;Algebraic specification;Observational transition system;Proof score methodIEEE Inglês CI1 Incluído
Model-checking infinite-state nuclear safety I&C systems with nuXmvA. Pakonen 2021 For over a decade, model checking has been successfully used to formally verify the instrumentation and control (I&C) logic design in Finnish nuclear power plant projects. One of the practical challenges is that the model checker NuSMV forces the user to abstract the way analog signals are processed in the model, which causes extra manual work, and could mask actual design issues. In this paper, we experiment with the newer tool nuXmv, which supports infinite-state modelling. Using actual models from practical industrial projects, we show that after changing the analog signal processing to be based on real number math, the analysis times are still manageable. The disadvantage is that certain useful types of formal properties are not supported by the infinite-state algorithms. We also discuss the nuclear industry specific features of I&C programming languages, which cause significant constraints on domain-specific formal verification method and tool development.10.1109/INDIN45523.2021.9557445https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445formal verification;model checking;control engineering;software safetyIEEE Inglês CI1 Incluído
Formal Verification of Dynamic and Stochastic Behaviors for Automotive SystemsL. Huang; T. Liang; E. -Y. Kang2019 Formal analysis of functional and non-functional requirements is crucial in automotive systems. The behaviors of those systems often rely on complex dynamics as well as on stochastic behaviors. We have proposed a probabilistic extension of Clock Constraint Specification Language, called PrCCSL, for specification of (non)-functional requirements and proved the correctness of requirements by mapping the semantics of the specifications into UPPAAL models. Previous work is extended in this paper by including an extension of PrCCSL, called PrCCSL*, for specification of stochastic and dynamic system behaviors, as well as complex requirements related to multiple events. To formally analyze the system behaviors/requirements specified in PrCCSL*, the PrCCSL* specifications are translated into stochastic UPPAAL models for formal verification. We implement an automatic translation tool, namely ProTL, which can also perform formal analysis on PrCCSL* specifications using UPPAAL-SMC as an analysis backend. Our approach is demonstrated on two automotive systems case studies.10.1109/ICECCS.2019.00009https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750Automotive Systems;PrCCSL*;UPPAAL-SMC;ProTLIEEE Inglês CI1 Incluído
Tool-Supported Analysis of Dynamic and Stochastic Behaviors in Cyber-Physical SystemsL. Huang; T. Liang; E. -Y. Kang2019 Formal analysis of functional and non-functional requirements is crucial in cyber-physical systems (CPS), in which controllers interact with physical environments. The continuous time behaviors of CPS often rely on complex dynamics as well as on stochastic behaviors. We have previously proposed a probabilistic extension of Clock Constraint Specification Language, called PrCCSL, for specification of (non)-functional requirements of CPS and proved the correctness of requirements by mapping the semantics of the specifications into verifiable UPPAAL models. Previous work is extended in this paper by including an extension of PrCCSL, i.e., PrCCSL*, which incorporates annotations of continuous behaviors and stochastic characteristics of CPS. The CPS behaviors are specified in PrCCSL* and translated into stochastic UPPAAL models for formal verification. The translation algorithm from PrCCSL* into UPPAAL models is provided and implemented in an automatic translation tool, namely ProTL. Formal verification of CPS against (non)-functional requirements is performed by ProTL using UPPAAL-SMC as an analysis backend. Our approach is demonstrated on a series of CPS case studies.10.1109/QRS.2019.00039https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706CPS;PrCCSL*;UPPAAL-SMC;ProTLIEEE Inglês CI1 Incluído
Systematic Evaluation and Usability Analysis of Formal Methods Tools for Railway Signaling System DesignA. Ferrari; F. Mazzanti; D. Basile; M. H. ter Beek2022 Formal methods and supporting tools have a long record of success in the development of safety-critical systems. However, no single tool has emerged as the dominant solution for system design. Each tool differs from the others in terms of the modeling language used, its verification capabilities and other complementary features, and each development context has peculiar needs that require different tools. This is particularly problematic for the railway industry, in which formal methods are highly recommended by the norms, but no actual guidance is provided for the selection of tools. To guide companies in the selection of the most appropriate formal methods tools to adopt in their contexts, a clear assessment of the features of the currently available tools is required. To address this goal, this paper considers a set of 13 formal methods tools that have been used for the early design of railway systems, and it presents a systematic evaluation of such tools and a preliminary usability analysis of a subset of 7 tools, involving railway practitioners. The results are discussed considering the most desired aspects by industry and earlier related studies. While the focus is on the railway signaling domain, the overall methodology can be applied to similar contexts. Our study thus contributes with a systematic evaluation of formal methods tools and it shows that despite the poor graphical interfaces, usability and maturity of the tools are not major problems, as claimed by contributions from the literature. Instead, support for process integration is the most relevant obstacle for the adoption of most of the tools. Our contribution can be useful to R&D engineers from railway signaling companies and infrastructure managers, but also to tool developers and academic researchers alike.10.1109/TSE.2021.3124677https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463- IEEE Inglês CI1 Incluído
DeepSTL - From English Requirements to Signal Temporal LogicJ. He; E. Bartocci; D. Ničković; H. Isakovic; R. Grosu2022 Formal methods provide very powerful tools and techniques for the design and analysis of complex systems. Their practical application remains however limited, due to the widely accepted belief that formal methods require extensive expertise and a steep learning curve. Writing correct formal specifications in form of logical formulas is still considered to be a difficult and error prone task. In this paper we propose DeepSTL, a tool and technique for the translation of informal requirements, given as free English sentences, into Signal Temporal Logic (STL), a formal specification language for cyber-physical systems, used both by academia and advanced research labs in industry. A major challenge to devise such a translator is the lack of publicly available informal requirements and formal specifications. We propose a two-step workflow to address this challenge. We first design a grammar-based generation technique of synthetic data, where each output is a random STL formula and its associated set of possible English translations. In the second step, we use a state-of-the-art transformer-based neural translation technique, to train an accurate attentional translator of English to STL. The experimental results show high translation quality for patterns of English requirements that have been well trained, making this workflow promising to be extended for processing more complex translation tasks.10.1145/3510003.3510171https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051Requirements Engineering;Formal Specification;Signal Temporal Logic (STL);Machine TranslationIEEE Inglês CI1 Incluído
SAT-Based Arithmetic Support for AlloyC. Cornejo 2020 Formal specifications in Alloy are organized around user-defined data domains, associated with signatures, with almost no support for built-in datatypes. This minimality in the built-in datatypes provided by the language is one of its main features, as it contributes to the automated analyzability of models. One of the few built-in datatypes available in Alloy specifications are integers, whose SAT-based treatment allows only for small bit-widths. In many contexts, where relational datatypes dominate, the use of integers may be auxiliary, e.g., in the use of cardinality constraints and other features. However, as the applications of Alloy are increased, e.g., with the use of the language and its tool support as backend engine for different analysis tasks, the provision of efficient support for numerical datatypes becomes a need. In this work, we present our current preliminary approach to providing an efficient, scalable and user-friendly extension to Alloy, with arithmetic support for numerical datatypes. Our implementation allows for arithmetic with varying precisions, and is implemented via standard Alloy constructions, thus resorting to SAT solving for resolving arithmetic constraints in models.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654alloy;sat solving IEEE Inglês CI1 Incluído
Speed up the validation process by formal veerification methodR. M. Sarikhada; P. K Shah 2020 Formal verification (FV) has been widely accepted as a verification approach for catching corner logic design issues, it also fastens the verification process of any subsystem. Usage of formal verification for any RTL verification is an easy task compared to the traditional simulation method. In this paper, we discuss the approaches of verifying a DUT by formal verification method, and how it will reduce the time of the overall verification cycle. In addition to that, I'll also discuss the flow of verification to test any DUT under the formal verification method. In this test case, I used an assertion-based verification methodology to test the DUT and compare it with traditional simulation-based verification methodology.10.1109/INOCON50539.2020.9298384https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384Formal Verification;Assertion based verification;system verilog assertionIEEE Inglês CI1 Incluído
ARF: Automatic Requirements Formalisation ToolA. Zaki-Ismail; M. Osama; M. Abdelrazek; J. Grundy; A. Ibrahim2021 Formal verification techniques enable the detection of complex quality issues within system specifications. However, the majority of system requirements are usually specified in natural language (NL). Manual formalisation of NL requirements is an error-prone and labour-intensive process requiring strong mathematical expertise, and can be infeasible for large numbers of requirements. Existing automatic formalisation techniques usually support heavily constrained natural language relying on requirement boilerplates or templates. In this paper, we introduce ARF: Automatic Requirements Formalisation Tool. ARF can automatically transform free-format natural language requirements into temporal logic based formal notations. This is achieved through two steps: 1) extraction of key requirement attributes into an intermediate representation (RCM: Requirement Capturing Model), and 2) transformation rules that convert requirements from the RCM format to formal notations.10.1109/RE51729.2021.00060https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679Requirements engineering;Requirements Formalisation;Requirements ExtractionIEEE Inglês CI1 Incluído
A Survey on Formal Specification of Security RequirementsA. D. Mishra; K. Mustafa 2021 Formalization of security requirements ensures the correctness of any safety-critical system, software system, and web applications through specification and verification. Although there is a gap between security requirements expressed in natural language and formal language. Formal language is a more powerful tool based on higher-order mathematics to express unambiguous and concise security requirements.it remains an active research challenge to express precise, concrete, and correct security requirements. Identification of security requirements is also a challenging task because requirement inherent in the software changes frequently. Specification through formal methods is possible only after fixing the security requirements. In this study, we propose a formal specification software process model (FSSPM). The proposed model indicates the use of formal specification at the early phase of software development is cost-effective, time saving, and reduces the possibility of error at the later phase of software development.10.1109/ICAC3N53548.2021.9725779https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779Security Requirements;Formal Specification;Formal Verification;Security PropertyIEEE Inglês CI1 Incluído
Diversity-Driven Automated Formal VerificationE. First; Y. Brun 2022 Formally verified correctness is one of the most desirable properties of software systems. But despite great progress made via interactive theorem provers, such as Coq, writing proof scripts for verification remains one of the most effort-intensive (and often prohibitively difficult) software development activities. Recent work has created tools that automatically synthesize proofs or proof scripts. For example, CoqHammer can prove 26.6% of theorems completely automatically by reasoning using precomputed facts, while TacTok and ASTactic, which use machine learning to model proof scripts and then perform biased search through the proof-script space, can prove 12.9% and 12.3% of the theorems, respectively. Further, these three tools are highly complementary; together, they can prove 30.4% of the theorems fully automatically. Our key insight is that control over the learning process can produce a diverse set of models, and that, due to the unique nature of proof synthesis (the existence of the theorem prover, an oracle that infallibly judges a proof's correctness), this diversity can significantly improve these tools' proving power. Accordingly, we develop Diva, which uses a diverse set of models with TacTok's and ASTactic's search mech-anism to prove 21.7% of the theorems. That is, Diva proves 68% more theorems than TacTok and 77% more than ASTactic. Complementary to CoqHammer, Diva proves 781 theorems (27% added value) that CoqHammer does not, and 364 theorems no existing tool has proved automatically. Together with CoqHammer, Diva proves 33.8% of the theorems, the largest fraction to date. We explore nine dimensions for learning diverse models, and identify which dimensions lead to the most useful diversity. Further, we develop an optimization to speed up Diva's execution by 40×. Our study introduces a completely new idea for using diversity in machine learning to improve the power of state-of-the-art proof-script synthesis techniques, and empirically demonstrates that the improvement is significant on a dataset of 68K theorems from 122 open-source software projects.10.1145/3510003.3510138https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984Automated formal verification;language models;Coq;interactive proof assistants;proof synthesisIEEE Inglês CI1 incluído
Scalable Translation Validation of Unverified Legacy OS CodeA. Tahat; S. Joshi; P. Goswami; B. Ravindran2019 Formally verifying functional and security properties of a large-scale production operating system is highly desirable. However, it is challenging as such OSes are often written in multiple source languages that have no formal semantics - a prerequisite for formal reasoning. To avoid expensive formalization of the semantics of multiple high-level source languages, we present a lightweight and rigorous verification toolchain that verifies OS code at the binary level, targeting ARM machines. To reason about ARM instructions, we first translate the ARM Specification Language that describes the semantics of the ARMv8 ISA into the PVS7 theorem prover and verify the translation. We leverage the radare2 reverse engineering tool to decode ARM binaries into PVS7 and verify the translation. Our translation verification methodology is a lightweight formal validation technique that generates large-scale instruction emulation test lemmas whose proof obligations are automatically discharged. To demonstrate our verification methodology, we apply the technique on two OSes: Google's Zircon and a subset of Linux. We extract a set of 370 functions from these OSes, translate them into PVS7, and verify the correctness of the translation by automatically discharging hundreds of thousands of proof obligations and tests. This took 27.5 person-months to develop.10.23919/FMCAD.2019.8894252https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252Formal Verification;Linux OS;Google ZirconIEEE Inglês CI1 incluído
KAIROS: Incremental Verification in High-Level Synthesis through Latency-Insensitive DesignL. Piccolboni; G. D. Guglielmo; L. P. Carloni2019 High-level synthesis (HLS) improves design productivity by replacing cycle-accurate specifications with untimed or transaction-based specifications. Obtaining high-quality RTL implementations requires significant manual effort from designers, who must manipulate the code and evaluate different HLS-knob settings. These modifications can introduce bugs in the RTL implementations. We present KAIROS, a methodology for incremental formal verification in HLS. KAIROS verifies the equivalence of the RTL implementations the designer subsequently derives from the same specification by applying code manipulations and knobs.10.23919/FMCAD.2019.8894295https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295- IEEE Inglês CI1 incluído
Efficient Memory Arbitration in High-Level Synthesis From Multi-Threaded CodeJ. Cheng; S. T. Fleming; Y. T. Chen; J. Anderson; J. Wickerson; G. A. Constantinides2022 High-level synthesis (HLS) is an increasingly popular method for generating hardware from a description written in a software language like C/C++. Traditionally, HLS tools have operated on sequential code, however in recent years there has been a drive to synthesise multi-threaded code. In this context, a major challenge facing HLS tools is how to automatically partition memory among parallel threads to fully exploit the bandwidth available on an FPGA device and minimise memory contention. Existing partitioning approaches require inefficient arbitration circuitry to serialise accesses to each bank because they make conservative assumptions about which threads might access which memory banks. In this article, we design a static analysis that can prove certain memory banks are only accessed by certain threads, and use this analysis to simplify or even remove the arbiters while preserving correctness. We show how this analysis can be implemented using the Microsoft Boogie verifier on top of satisfiability modulo theories (SMT) solver, and propose a tool named EASY using automatic formal verification. Our work supports arbitrary input code with any irregular memory access patterns and indirect array addressing forms. We implement our approach in LLVM and integrate it into the LegUp HLS tool. For a set of typical application benchmarks our results have shown that EASY can achieve 0.13× (avg. 0.43×) of area and 1.64× (avg. 1.28×) of performance compared to the baseline, with little additional compilation time relative to the long time in hardware synthesis.10.1109/TC.2021.3066466https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343High-level synthesis;HLS;formal methods;multi-threaded code;FPGAIEEE Inglês CI1 incluído
Formalizing Loop-Carried Dependencies in Coq for High-Level SynthesisF. Faissole; G. A. Constantinides; D. Thomas2019 High-level synthesis (HLS) tools such as VivadoHLS interpret C/C++ code supplemented by proprietary optimization directives called pragmas. In order to perform loop pipelining, HLS compilers have to deal with non-trivial loop-carried data dependencies. In VivadoHLS, the dependence pragma could be used to enforce or to eliminate such dependencies, but, the behavior of this directive is only informally specified through examples. Most of the time programmers and the compiler seem to agree on what the directive means, but the accidental misuse of this pragma can lead to the silent generation of an erroneous register-transfer level (RTL) design, meaning code that previously worked may break with newer more aggressively optimised releases of the compiler. We use the Coq proof assistant to formally specify and verify the behavior of the VivadoHLS dependence pragma. We first embed the syntax and the semantics of a tiny imperative language Imp in Coq and specify a conformance relation between an Imp program and a dependence pragma based on data-flow transformations. We then implement semi-automated methods to formally verify such conformance relations for non-nested loop bodies.10.1109/FCCM.2019.00056https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537High level synthesis;Formal proofs;Loop dependenciesIEEE Inglês CI1 incluído
Formalization of Requirements for Correct SystemsI. Sayar; J. Souquieres 2020 Improving the quality of a system begins by their requirements elicitation: the challenge is to bridge the gap between the requirements of the client and their formal specification defined by the scientist. A first step consists on understanding and rewriting the existing requirements. Along the development process, we introduce formal terms in the requirements coming the formal specification and make explicit the interactions between them by a glossary. The trace of the requirements and their corresponding specification is managed and serves to simplify the activities of validation and verification. The validation is studied since the understanding of the first requirements and all along the development of their formal specification. The verification may detect imperfections like incoherences and ambiguities in both the formal specification and their corresponding requirements.10.1109/FORMREQ51202.2020.00012https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522- IEEE Inglês CI1 incluído
Coverage of Meta-Stability Using Formal Verification in Asynchronous Gray Code FIFOShivali; M. Khosla 2022 In Formal Verification Environment, setup time and hold time are not honored by formal verification tool. To analyze the impact of metastability on functionality of the design in formal verification environment, buffer has been designed. Buffer induces the delay of either ‘0’, ‘1’ or ‘2’ clock cycles leading to metastability in the pointers of Asynchronous Gray Code FIFO in formal verification environment. Reference code has been written which describe the functionality of Asynchronous Gray Code FIFO in ideal case. Using formal equivalence checking, output of FIFO obtained from design provided by the designer, is compared with the output obtained from the reference code of FIFO. Formal verification properties are written to do the verification of the design and check if the design is working as predicted specifications. Coverage written ensures no corner case is skipped which may lead to escapism of potential design bugs. The command language script containing the verification program has been run to invoke the JasperGold Tool. Comparative analysis has been done between the waveforms obtained from the design including a buffer and the design without including a buffer. If both the waveforms are not same which means metastability has influenced the functionality of the design. So, to overcome the effect of metastability on functionality of the design, there is need to add more synchronizers in the design. While if the waveforms obtained from the design with and without buffer are same, it means synchronizers / Meta flops already present in the design are enough to deal with the metastability which may arise during functioning of the design.10.1109/CONIT55038.2022.9848195https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195Meta-stability;Formal Verification;Formal Environment;Asynchronous Gray Code FIFOIEEE Inglês CI1 incluído
Formal Specification and Validation of a Gas Detection System in the Industrial SectorA. Choquehuanca; D. Rondon; K. Quiñones; R. León2020 In gas concentrations greater than the allowable amounts, these become an imminent danger. It is true that there are devices that already read information, but are intended exclusively for the mining sector and are very expensive. That is why we propose to model and validate a new system for other industrial sectors. Our proposal, The Gas Detection System is based on The Explosive Discussion Triangle method developed by Coward and Jones. We use this method to develop a control system that will allow gas concentrations to be detected in a given environment and send an alarm if a risk situation arises. Formal Specifications allows the use of mathematical notations that help in the process of implementing critical systems and helps to reduce the potential ambiguities that occur in the interpretation of traditional graphic models. This work uses the VDM ++ formal specification language to describe system properties for its subsequent modeling and validation through the VDMToolBox tool. The System architecture is based on sensors, a control module and a set of alarms. Our proposal makes use of formal specifications in order to validate the main properties of the functional requirements.10.23919/CISTI49556.2020.9141056https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056Formal specification;validation;VDM++;gas detection;triangle CowardIEEE Inglês CI1 incluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056

VrFy: Verification of Formal Requirements using Generic TracesJ. J. Olthuis; R. Jordão; F. Robino; S. Borrami2021 In order to fulfil standards governing the development of safety-critical systems, requirements are often shown to be satisfied by means of traditional techniques such as system analysis and testing activities. While these techniques have been used for many years, issues can still arise due to weak tests, not fully covering all requirement scenarios; and due to misinterpretation of requirements, leading to futile test activities. Having simpler techniques to show that requirements are properly fulfilled and that depend less on thoroughness of the tester is beneficial. To tackle these issues, we present an analysis method together with an accompanying toolset, VrFy, implementing a novel technique to automate the detection of violations of require-ments. Monitors are generated automatically, and the risk due to misinterpretation of requirements is reduced by using a formal notation (LTL3). Compared to related work, the proposed technique is programming language agnostic and can identify the exact time when requirements are violated, supporting the end user to quickly spot the root cause. By means of a real-world use case in the railway domain, we show how the tool can be used to augment traditional verification techniques.10.1109/QRS-C55045.2021.00034https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213Trace Validation;LTL3;NBA;Programming Language Agnostic;Railway Domain;Trace CompassIEEE Inglês CI1 incluído
Automated analysis of e-learning web applicationsF. Škopljanac-Mačina; B. Blašković; i. I. Zakarija2019 In our paper we are exploring the use of formal methods for testing and verification of interactive e-learning web applications. These programs can be highly interactive and are often used for knowledge assessment and on-line tutoring purposes. They are written in web standard languages and executed in client browsers. Even simpler web applications can have various different interaction scenarios which makes them hard to test reliably. Therefore, we are using formal methods tools such as SPIN model checker and its Promela language to improve web application testing process. We create semi-automatically Promela process models from web application source code, and run their simulations, as well as verification using SPIN. Using these techniques, we want to identify flaws in web application design, and find and visualize all interaction scenarios using finite state automata. We will present use case example based on tutoring web application from our e-learning system used on our course Fundamentals of Electrical Engineering.10.23919/MIPRO.2019.8756749https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749e-learning web applications;testing;verification;SPIN;PromelaIEEE Inglês CI1 incluído
Auditing a Software-Defined Cross Domain Solution ArchitectureN. Daughety; M. Pendleton; R. Perez; S. Xu; J. Franco2022 In the context of cybersecurity systems, trust is the firm belief that a system will behave as expected. Trustworthiness is the proven property of a system that is worthy of trust. Therefore, trust is ephemeral, i.e. trust can be broken; trustworthiness is perpetual, i.e. trustworthiness is verified and cannot be broken. The gap between these two concepts is one which is, alarmingly, often overlooked. In fact, the pressure to meet with the pace of operations for mission critical cross domain solution (CDS) development has resulted in a status quo of high-risk, ad hoc solutions. Trustworthiness, proven through formal verification, should be an essential property in any hardware and/or software security system. We have shown, in "vCDS: A Virtualized Cross Domain Solution Architecture", that developing a formally verified CDS is possible. virtual CDS (vCDS) additionally comes with security guarantees, i.e. confidentiality, integrity, and availability, through the use of a formally verified trusted computing base (TCB). In order for a system, defined by an architecture description language (ADL), to be considered trustworthy, the implemented security configuration, i.e. access control and data protection models, must be verified correct. In this paper we present the first and only security auditing tool which seeks to verify the security configuration of a CDS architecture defined through ADL description. This tool is useful in mitigating the risk of existing solutions by ensuring proper security enforcement. Furthermore, when coupled with the agile nature of vCDS, this tool significantly increases the pace of system delivery.10.1109/CSR54599.2022.9850321https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321Cross Domain Solution;Architecture Description Language;Trustworthiness;Configuration Security;Data Protection;Access Control;Trusted Systems;Security AnalysisIEEE Inglês CI1 incluído
Poster: Automatic Consistency Checking of Requirements with ReqVS. Vuotto; M. Narizzano; L. Pulina; A. Tacchella2019 In the context of Requirements Engineering, checking the consistency of functional requirements is an important and still mostly open problem. In case of requirements written in natural language, the corresponding manual review is time consuming and error prone. On the other hand, automated consistency checking most often requires overburdening formalizations. In this paper we introduce ReqV, a tool for formal consistency checking of requirements. The main goal of the tool is to provide an easy-to-use environment for the verification of requirements in Cyber-Physical Systems (CPS). ReqV takes as input a set of requirements expressed in a structured natural language, translates them in a formal language and it checks their inner consistency. In case of failure, ReqV can also extracts a minimal set of conflicting requirements to help designers in correcting the specification.10.1109/ICST.2019.00043https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195Requirements Engineering;Verification;Consistency;CPSIEEE Inglês CI1 incluído
Using the SCADE Toolchain to Generate Requirements-Based Test Cases for an Adaptive Cruise Control SystemA. Aniculaesei; A. Vorwald; A. Rausch2019 In the last years, model-driven engineering has gained a lot of traction, especially in industrial domains, such as automotive or avionics. Various tools which support model-driven engineering, e.g. SCADE or MATLAB/Simulink, have developed over the years in fully fledged integrated development environments, with strong capabilities for the modeling of complex software systems. Model-driven engineering tools are mature enough so that the model created with them are amenable to formal analysis for the purpose of verification and validation. Acceptance testing is a validation method by which a system is tested extensively against legal and customer requirements, before it is allowed in series production. Due to the inherent complexity of automotive systems, large requirements catalogues have become usual in this domain. Checking that a complex automotive software system conforms to an extensive requirements catalogue is a task which cannot be managed manually anymore. In this paper, we design a workflow for test engineers to construct test cases from formalized requirements and examine the quality of tests via mutant testing within the SCADE toolchain. We construct an academic case study based on a prototypical adaptive cruise control system and evaluate our workflow on it. We report on results and lessons learned.10.1109/MODELS-C.2019.00079https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521requirements-based testing; model-driven engineering; automated test case generation; model checking; adaptive cruise control; SCADE toolchainIEEE Inglês CI1 Incluído
Visualization of Promela with NS-ChartA. Chawanothai; W. Vatanawood2019 In the paradigm of model checking, a formal model is considered as one of the crucial sources that tends to be verified with the desired properties. The definition of the formal model should be understandable and clear in order to express the structure and behaviors of the system visually using diagrammatic tools. In this paper, we focused on the formal model which is written in Promela language that supports the non-determinism of the concurrent system. From our study, we found that the Promela syntax could probably be drawn by using NS-chart visual symbols. The classic NS-chart symbols represents the control flow of the system that was written in Promela. As a main purpose of this paper, we aim to propose a set of mapping rules for generating the NS-chart drawing from Promela source codes. The result of the drawing with the proposed NS-Chart syntax showed that the Promela control flow structure could be represented succinctly and the chart could be practically used for tracing the counterexample of the verification.10.1109/ICTS.2019.8850971https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971Promela;NS-chart;Control Flow Graph;Validation;SPIN toolIEEE Inglês CI1 Incluído
Notice of Violation of IEEE Publication Principles: Mobile Application Development: Automated Test Input Generation Via Model Inference based on User Story and Acceptance CriteriaH. Iqbal 2019 In the past few years, there has been observed explosive growth in the development of Mobile Applications across Android and iOS operating system which has led to the direct impact towards mobile app development. In order to design and propose quality-oriented apps, it is the primary responsibility of the developers to devote time and sufficient efforts towards testing to make the Apps bug free and operational in the hands of end users without any hiccup. In order to test the mobile apps, manual testing procedures takes prolonged amount of time in writing test cases and even the full testing requirements are not met. In addition to this, lack of sufficient knowledge by the tester also impacts overall quality and assurance that app is bug free. To overcome all the issues of testing, and to assure that apps designed by developers are almost bug free, we propose a new testing methodology cum tool “AgileUATM” which works primarily towards white-box and black-box testing. With this tool, all the test cases are generated automatically based on user stories and acceptance criteria by using formal specification and Z3 SMT solvers. To test the validity of the proposed tool, we applied the tool in real-time operational environment with regard to test Mobile apps. Using this tool, all the acceptance criteria is determined via user stories. The testers/developers specify requirements with formal specifications based on programs properties, predicates, invariants, and constraints. From the results, it is observed that the proposed tool i.e. AgileUATM generated effective and accurate test cases, test input, and expected output was generated in a unified fashion from the user stories to meet acceptance criteria. In addition to this, the tool also reduced the development time to identify test data as compared to manual Behavior Driven Development (BDD) methodologies. With this tool, the developers got better idea with regard to required tests and able to translate the customers natural languages to the computer language as well.;Notice of Violation of IEEE Publication Principles

 “Mobile Application Development: Automated Test Input Generation Via Model Inference based on User Story and Acceptance Criteria”
 by Hena Iqbal
 in the Proceedings of the International Conference on Digitization (ICD), November 2019, pp. 92-103

 After careful and considered review of the content and authorship of this paper by a duly constituted expert committee, this paper has been found to be in violation of IEEE’s Publication Principles.

 This paper is a near duplication of the original text from the paper cited below. The original text was copied without attribution (including appropriate references to the original author(s) and/or paper title) and without permission.

 Due to the nature of this violation, reasonable effort should be made to remove all past references to this paper, and future references should be made to the following article:

 “Automated Test Input Generation via Model Inference Based on User Story and Acceptance Criteria for Mobile Application Development”
 by Duc-Man Nguyen, Quyet-Thang Huynh, Nhu-Hang Ha and Thanh-Hung Nguyen
 in the International Journal of Software Engineering and Knowledge Engineering, Vol. 30, No. 3 2020, pp. 399-425

10.1109/ICD47981.2019.9105761https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761- IEEE Inglês CI1 Incluído
Formal Verification and Performance Analysis of a New Data Exchange Protocol for Connected VehiclesS. Chouali; A. Boukerche; A. Mostefaoui; M. A. Merzoug2020 In this article, we focus on the usage of MQTT (Message Queuing Telemetry Transport) within Connected Vehicles (CVs). Indeed, in the original version of MQTT protocol, the broker is responsible “only” for sending received data to subscribers; abstracting then the underlying mechanism of data exchange. However, within CVs context, subscribers (i.e., the processing infrastructure) may be overloaded with irrelevant data, in particular when the requirement is real or near real-time processing. To overcome this issue, we propose MQTT-CV; a new variant of MQTT protocol, in which the broker is able to perform local processing in order to reduce the workload at the infrastructure; i.e., filtering data before sending them. In this article, we first validate formally the correctness of MQTT-CV protocol (i.e., the three components of the proposed protocol are correctly interacting), through the use of Promela language and its system verification tool; the model checker SPIN. Secondly, using real-world data provided by our car manufacturer partner, we have conducted real implementation and experiments. The obtained results show the effectiveness of our approach in term of data workload reduction at the processing infrastructure. The mean improvement, besides the fact that it is dependent of the target application, was in general about 10 times less in comparison to native MQTT protocol.10.1109/TVT.2020.3040817https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870Connected vehicles;data filtration;formal analysis;formal verification;MQTT;promela;SPINIEEE Inglês CI1 Incluído
Sampling of Shape Expressions with ShapExN. Basset; T. Dang; F. Gigler; C. Mateis; D. Ničković2021 In this paper we present SHAPEx, a tool that generates random behaviors from shape expressions, a formal specification language for describing sophisticated temporal behaviors of CPS. The tool samples a random behavior in two steps: (1) it first explores the space of qualitative parameterized shapes and then (2) instantiates parameters by sampling a possibly non-linear constraint. We implement several sampling strategies in the tool that we present in the paper and demonstrate its applicability on two use scenarios.10.1145/3487212.3487350https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952shape expressions;sampling;hit-and-run;testingIEEE Inglês CI1 Incluído
Formalization of Robot Skills with Descriptive and Operational ModelsC. Lesire; D. Doose; C. Grand2020 In this paper, we propose a formal language to specify robot skills, i.e. the elementary behaviours or functions provided by the robot platform in order to perform an autonomous mission. The advantage of the language we propose is that it integrates a wide range of elements that allows to define and provide automatic translation both to operational models, used online to control the skill execution, and descriptive models, allowing to reason about the expected skill execution, and then apply automated planning or model-checking taking skill models into account.10.1109/IROS45743.2020.9340698https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698- IEEE Inglês CI1 Incluído
Structure Preserving Transformations for Practical Model-based Systems EngineeringS. Ji; M. Wilkinson; C. E. Dickerson2022 In this third decade of systems engineering in the twenty-first century, it is important to develop and demonstrate practical methods to exploit machine-readable models in the engineering of systems. Substantial investment has been made in languages and modelling tools for developing models. A key problem is that system architects and engineers work in a multidisciplinary environment in which models are not the product of any one individual. This paper provides preliminary results of a formal approach to specify models and structure preserving transformations between them that support model synchronization. This is an important area of research and practice in software engineering. However, it is limited to synchronization at the code level of systems. This paper leverages previous research of the authors to define a core fractal for interpretation of concepts into model specifications and transformation between models. This fractal is used to extend the concept of synchronization of models to the system level and is demonstrated through a practical engineering example for an advanced driver assistance system.10.1109/ISSE54508.2022.10005437https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437Model-based Systems Engineering;Model Synchronization;Model Transformation;SysMLIEEE Inglês CI1 Incluído
Efficient Algorithms for Finding Differences between Process ModelsA. Skobtsov; A. Kalenkova 2019 Information systems from various domains record their behavior in a form of event logs. These event logs can be further analyzed and formal process models describing hidden processes can be discovered. In order to relate real and expected process behavior, discovered (constructed from event logs) and reference (manually created by analysts) process models can be compared. The result of comparison should clearly present commonalities and differences between these models. Since most process models are represented by graph-based languages, a graph comparison technique can be applied. It is worth known that graph comparison techniques are computationally expensive. In this paper, we adapt different heuristic graph comparison algorithms to compare BPMN (Business Process Model and Notation) models. These algorithms are implemented and tested on large BPMN models discovered from event logs. We show that some of the heuristic algorithms allow to find nearly optimal solutions in a reasonable amount of time.10.1109/ISPRAS47671.2019.00015https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151process comparison;process mining;BPMN (Business Process Model and Notation);heuristic algorithms;graph edit distanceIEEE Inglês CI1 Incluído
Instrumenting Microservices for Concurrent Audit Logging: Beyond Horn ClausesN. D. Ahn; S. Amir–Mohammadian2022 Instrumenting legacy code is an effective approach to enforce security policies. Formal correctness of this approach in the realm of audit logging relies on semantic frameworks that leverage information algebra to model and compare the information content of the generated audit logs and the program at runtime. Previous work has demonstrated the applicability of instrumentation techniques in the enforcement of audit logging policies for systems with microservices architecture. However, the specified policies suffer from the limited expressivity power as they are confined to Horn clauses being directly used in logic programming engines. In this paper, we explore audit logging specifications that go beyond Horn clauses in certain aspects, and the ways in which these specifications are automatically enforced in microservices. In particular, we explore an instrumentation tool that rewrites Java-based microservices according to a JSON specification of audit logging requirements, where these logging requirements are not limited to Horn clauses. The rewritten set of microservices are then automatically enabled to generate audit logs that are shown to be formally correct.10.1109/COMPSAC54236.2022.00280https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470Audit logs;concurrent systems;microservices;programming languages;securityIEEE Inglês CI1 Incluído
Context-Aware IoT Device Functionality Extraction from Specifications for Ensuring Consumer SecurityU. Paudel; A. Dolan; S. Majumdar; I. Ray2021 Internet of Thing (IoT) devices are being widely used in smart homes and organizations. An IoT device has some intended purposes, but may also have hidden functionalities. Typically, the device is installed in a home or an organization and the network traffic associated with the device is captured and analyzed to infer high-level functionality to the extent possible. However, such analysis is dynamic in nature, and requires the installation of the device and access to network data which is often hard to get for privacy and confidentiality reasons. We propose an alternative static approach which can infer the functionality of a device from vendor materials using Natural Language Processing (NLP) techniques. Information about IoT device functionality can be used in various applications, one of which is ensuring security in a smart home. We demonstrate how security policies associated with device functionality in a smart home can be formally represented using the NIST Next Generation Access Control (NGAC) model and automatically analyzed using Alloy, which is a formal verification tool. This will provide assurance to the consumer that these devices will be compliant to the home or organizational policy even before they have been purchased.10.1109/CNS53000.2021.9705050https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050IoT;Smart Home;Device Functionality;NLPIEEE Inglês CI1 Incluído
Scalable and Robust Algorithms for Task-Based Coordination From High-Level Specifications (ScRATCHeS)K. Leahy; Z. Serlin; C. -I. Vasile; A. Schoer; A. M. Jones; R. Tron; C. Belta2022 Many existing approaches for coordinating heterogeneous teams of robots either consider small numbers of agents, are application-specific, or do not adequately address common real-world requirements, e.g., strict deadlines or intertask dependencies. We introduce scalable and robust algorithms for task-based coordination from high-level specifications (ScRATCHeS) to coordinate such teams. We define a specification language, capability temporal logic, to describe rich, temporal properties involving tasks requiring the participation of multiple agents with multiple capabilities, e.g., sensors or end effectors. Arbitrary missions and team dynamics are jointly encoded as constraints in a mixed integer linear program, and solved efficiently using commercial off-the-shelf solvers. ScRATCHeS optionally allows optimization for maximal robustness to agent attrition at the penalty of increased computation time. We include an online replanning algorithm that adjusts the plan after an agent has dropped out. The flexible specification language, fast solution time, and optional robustness of ScRATCHeS provide a first step toward a multipurpose on-the-fly planning tool for tasking large teams of agents with multiple capabilities enacting missions with multiple tasks. We present randomized computational experiments to characterize scalability and hardware demonstrations to illustrate the applicability of our methods.10.1109/TRO.2021.3130794https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414Formal methods;multiagent systems;planning;roboticsIEEE Inglês CI1 Incluído
Monitoring Data Management Services on the Edge Using Enhanced TSDBsW. Zeng; S. Zhang; I. -L. Yen; F. B. Bastani; S. -Y. Hwang2019 Many IoT systems are data intensive and are for the purpose of monitoring of critical systems. In these monitoring systems, a large volume of data steadily flow out of a large number of sensors which monitor the physical systems and environments. Thus, first of all, we need to consider how to store and manage these IoT data. Also, data sharing can greatly enhance the quality of data analytics and help with cold start of similar systems. Thus, the data storage and management solutions should consider how to help discover useful data in order to facilitate data sharing. Time series databases (TSDBs) have been developed in recent years for storing IoT data, but they have some deficiencies. One problem is that they are not very effective in supporting data sharing due to the lack of a good semantic model for proper data specifications, which is critical in data discovery. To resolve this problem, we develop a monitoring data annotation (MDA) model to guide the systematic specification of monitoring data streams. To support the realization of the MDA model, we also develop an external tool suite, which stores the additional MDA-based specifications for the data streams and interfaces with queries to perform preliminary processing to allow effective monitoring data discovery based on the MDA specifications. Another problem with current TSDBs is their focus on storing time series data that arrive at a fixed rate, but not on storing and retrieval of event data, which may come sporadically with irregular timing patterns. When storing such event data in existing TSDBs, the retrieval may have performance problems. Also, existing TSDBs do not have specific query language defined for event analysis. We develop a model for event specifications and use it to specify abnormal system states to be captured to allow timely mitigation. The event model is integrated into the TSDB by translating them to continuous queries defined in some TSDBs. Also, we develop an event storage scheme and incorporate it in TSDBs to facilitate efficient event retrieval. Experimental results show that our event solution for the TSDB is effective and efficient.10.1109/SOCA.2019.00010https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028Monitoring data management;time series databases;edge computing;Internet of Things;data discovery;time series event storageIEEE Inglês CI1 Incluído
Specification Patterns for Robotic MissionsC. Menghi; C. Tsigkanos; P. Pelliccione; C. Ghezzi; T. Berger2021 Mobile and general-purpose robots increasingly support everyday life, requiring dependable robotics control software. Creating such software mainly amounts to implementing complex behaviors known as missions. Recognizing this need, a large number of domain-specific specification languages has been proposed. These, in addition to traditional logical languages, allow the use of formally specified missions for synthesis, verification, simulation or guiding implementation. For instance, the logical language LTL is commonly used by experts to specify missions as an input for planners, which synthesize a robot's required behavior. Unfortunately, domain-specific languages are usually tied to specific robot models, while logical languages such as LTL are difficult to use by non-experts. We present a catalog of 22 mission specification patterns for mobile robots, together with tooling for instantiating, composing, and compiling the patterns to create mission specifications. The patterns provide solutions for recurrent specification problems; each pattern details the usage intent, known uses, relationships to other patterns, and—most importantly—a template mission specification in temporal logic. Our tooling produces specifications expressed in the temporal logics LTL and CTL to be used by planners, simulators or model checkers. The patterns originate from 245 mission requirements extracted from the robotics literature, and they are evaluated upon a total of 441 real-world mission requirements and 1251 mission specifications. Five of these reflect scenarios defined with two well-known industrial partners developing human-size robots. We further validate our patterns’ correctness with simulators and two different types of real robots.10.1109/TSE.2019.2945329https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226Mission specification;pattern catalog;robotic mission;model driven engineeringIEEE Inglês CI1 Incluído
Formal Analysis of Language-Based Android Security Using Theorem Proving ApproachW. Khan; M. Kamran; A. Ahmad; F. A. Khan; A. Derhab2019 Mobile devices are an indispensable part of modern-day lives to support portable computations and context-aware communication. Android applications within a mobile device share data to support application operations and better user experience, which also increases security risks to device's data integrity and confidentiality. To analyze the security provided by the Android permissions, modern security techniques, based on the programming languages, have been used to enforce best practices for developing the secure Android applications. Android security assessment, based on the language-based techniques in an informal setting without formal tool support, is tedious and error-prone. Furthermore, the lack of proof of the soundness of the language-based techniques raises questions about the validity of the analysis. To enable computer-aided formal verification in Android security domain, we have developed a mathematical model of language-based Android security using computer-based proof assistant Coq. One of the main challenges for mechanizing the language-based security in theorem prover relates to the complexity of variable bindings in language-based security techniques. As the main contributions of the paper: 1) the language-based security, including variable binding, is formalized in theorem prover Coq; 2) a formal type checker is built to type check (capture safe data flows within) Android applications using computer; and 3) the soundness of the language-based security technique (type system) is mechanically verified. The formal model of the Android type system and their proof of soundness are machine-readable, and their correctness can be checked in the computer using Coq proof and type checkers.10.1109/ACCESS.2019.2895261https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096Android security;formal verification;language-based security;locally nameless representation;machine-readable proofs;theorem provingIEEE Inglês CI1 Incluído
Model Checking Software in Cyberphysical SystemsM. Sirjani; E. A. Lee; E. Khamespanah2020 Model checking a software system is about verifying that the state trajectory of every execution of the software satisfies formally specified properties. The set of possible executions is modeled as a transition system. Each "state" in the transition system represents an assignment of values to variables, and a state trajectory (a path through the transition system) is a sequence of such assignments. For cyberphysical systems (CPSs), however, we are more interested in the state of the physical system than the values of the software variables. The value of model checking the software therefore depends on the relationship between the state of the software and the state of the physical system. This relationship can be complex because of the real-time nature of the physical plant, the sensors and actuators, and the software that is almost always concurrent and distributed. In this paper, we study different ways to construct a transition system model for the distributed and concurrent software components of a CPS. We describe a logical-time based transition system model, which is commonly used for verifying programs written in synchronous languages, and derive the conditions under which such a model faithfully reflects physical states. When these conditions are not met (a common situation), a finer-grained event-based transition system model may be required. Even this finer-grained model, however, may not be sufficiently faithful, and the transition system model needs to be refined further to express not only the properties of the software, but also the properties of the hardware on which it runs. We illustrate these tradeoffs using a coordination language called Lingua Franca that is well-suited to extracting transition system models at these various levels of granularity, and we extend the Timed Rebeca language and its tool Afra to perform this extraction and then to perform model checking.10.1109/COMPSAC48688.2020.0-138https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762Cyberphysical systems, Lingua Franca, Model checking, Rebeca, VerificationIEEE Inglês CI1 Incluído
Transformation of non-standard nuclear I&C logic drawings to formal verification modelsA. Pakonen; P. Biswas; N. Papakonstantinou2020 Model checking methods have been proven to be a valuable asset for identifying undesired behaviour of safety-critical Instrumentation and Control (I&C) logics. Their application in the nuclear domain has been very successful and has triggered significant interest from the safety community. Creating formal models from the diagrams found on paper or from digital formats without the needed semantics is one bottleneck that hinders the adoption of model checking due to costs in time and may introduce errors. This paper proposes a methodology for the creation of formal models from I&C diagrams drawn in generic modelling tools (lacking specific I&C semantics). The generic I&C logic diagram is transformed into an intermediate UML model that in turn can be transformed to other target formats like IEC 61131 PLCopen XML I&C software or NuSMV formal model code. This methodology is demonstrated with a typical example of a trip signal generator application logic. This application logic is drawn in MS Visio, it is transformed to an I&C model in UML with the needed properties for model checking, then to IEC 61131 PLCopen XML and to an input file for the NuSMV model checker.10.1109/IECON43393.2020.9255176https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176I&C;function block diagram;nuclear energy;IEC61131;PLCOpen XML;Model-Based System EngineeringIEEE Inglês CI1 Incluído
Formalizing Cyber–Physical System Model Transformation Via Abstract InterpretationN. Jarus; S. S. Sarvestani; A. Hurson2019 Model transformation tools assist system designers by reducing the labor-intensive task of creating and updating models of various aspects of systems, ensuring that modeling assumptions remain consistent across every model of a system, and identifying constraints on system design imposed by these modeling assumptions. We have proposed a model transformation approach based on abstract interpretation, a static program analysis technique. Abstract interpretation allows us to define transformations that are provably correct and specific. This work develops the foundations of this approach to model transformation. We define model transformation in terms of abstract interpretation and prove the soundness of our approach. Furthermore, we develop formalisms useful for encoding model properties. This work provides a methodology for relating models of different aspects of a system and for applying modeling techniques from one system domain, such as smart power grids, to other domains, such as water distribution networks.10.1109/HASE.2019.00025https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032Modeling, Model transformation, Formal methods, Abstract interpretationIEEE Inglês CI1 Incluído
Design Ontology Supporting Model-Based Systems Engineering FormalismsJ. Lu; J. Ma; X. Zheng; G. Wang; H. Li; D. Kiritsis2022 Model-based systems engineering (MBSE) provides an important capability for managing the complexities of system development. MBSE empowers the formalism of system architectures for supporting model-based requirement elicitation, specification, design, development, testing, fielding, etc. However, the modeling languages and techniques are heterogeneous, even within the same enterprise system, which leads to difficulties for data interoperability. The discrepancies among data structures and language syntaxes make information exchange among MBSE models more difficult, resulting in considerable information deviations when connecting data flows across the enterprise. Therefore, this article presents an ontology based upon graphs, objects, points, properties, roles, and relationships with extensions (GOPPRRE), providing metamodels that support the various MBSE formalisms across lifecycle stages. In particular, knowledge graph models are developed to support unified model representations to further implement ontological data integration based on GOPPRRE throughout the entire lifecycle. The applicability of the MBSE formalism is verified using quantitative and qualitative approaches. Moreover, the GOPPRRE ontologies are used to create the MBSE formalisms in a domain-specific modeling tool, MetaGraph, for evaluating its availability. The results demonstrate that the proposed ontology supports the formal structures and descriptive logic of the systems engineering lifecycle.10.1109/JSYST.2021.3106195https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721Formalism;interoperability;knowledge graph;model-based systems engineering;ontologyIEEE Inglês CI1 Incluído
Perceptions and the extent of Model-Based Systems Engineering (MBSE) use – An industry surveyA. Akundi; W. Ankobiah; O. Mondragon; S. Luna2022 Model-Based Systems Engineering (MBSE) supports the development of complex systems through capturing, communicating, and managing system specifications with an emphasis on the use of modeling languages, tools, and methods. It is a well-known fact that varying levels of effort are required to implement MBSE in industries based on the complexity of the systems a given industry is associated with. This paper shares the results of a survey to industry professionals from Defense, Aerospace, Automotive, Consultancy, Software, and IT industry clusters. The research goal is to understand the current state of perception on what MBSE is and the use of MBSE among different industry clusters. The survey analysis includes a comparison of how MBSE is defined, advantages on the use of MBSE, project types, specific life cycle stage when MBSE is applied, and adoption challenges, as reported by the survey participants. The researchers also aim to trigger discussions in the MBSE community for identifying strategies to address MBSE related challenges tailored to a specific industry type.10.1109/SysCon53536.2022.9773894https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894Model-based System Engineering;MBSE;survey;industry;systems engineering;industry-specific;system complexity;adoption challengesIEEE Inglês CI1 Incluído
Combining Model-Based Testing and Automated Analysis of Behavioural Models using GraphWalker and UPPAALS. Tiwari; K. Iyer; E. P. Enoiu 2022 Model-based Testing (MBT) has been proposed to create test cases more efficiently and effectively. In contrast, analysis techniques (e.g., model checking) have been used separately from testing and have shown great potential when applied early in the development process. Still, these are confronted by applicability and scalability issues and work on specific modeling languages. The combined use of MBT and analysis techniques can support engineers in using both dynamic and static techniques. This paper proposes a hybrid approach by combining MBT using GraphWalker (GW) with Model-Based Analysis using UPPAAL by transforming the GW model into UPPAAL timed automata and supporting a combined analysis and testing process. The approach enables the automatic verification of both reachability and deadlock freedom properties to exploit the results obtained from this analysis step to improve the test model before generating and executing test cases on the system under test. The proposed approach can improve the combination of analysis and testing using a promising open-source MBT tool and is currently being evaluated in the context of actual use cases.10.1109/APSEC57359.2022.00061https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283Model-Based Testing;analysis;behavioural models;model checking;GraphWalker;UPPAALIEEE Inglês CI1 Incluído
A multi-view and programming language agnostic framework for model-driven engineeringR. Jordão; F. Bahrami; R. Chen; I. Sander2022 Model-driven engineering (MDE) addresses the complexity of modern-day embedded system design. Multiple MDE frameworks are often integrated into a design process to use each MDE framework’s state-of-the-art tools for increased productivity. However, this integration requires substantial development effort.In this paper, we propose an MDE framework based on a formalism of system graphs and trait hierarchies for programming-language-agnostic integration between tools within our frame-work and with tools of other MDE frameworks. Implementing our framework for each programming language is a one-time development effort.We evaluate our proposal in an MDE design process by developing a Java supporting library and an AMALTHEA connector. Then we perform an MDE industrial avionics case study with both. The evaluation shows that our framework facilitates the integration of different tools and the independent development of different system parts. Therefore, our framework is a reliable MDE framework that lowers the effort of integrating tools to benefit from their combined state-of-the-art.10.1109/FDL56239.2022.9925666https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666Model-driven Engineering;System Modelling;Collaborative ToolsIEEE Inglês CI1 Incluído
Static Profiling of Alloy ModelsE. Eid; N. A. Day 2023 Modeling of software-intensive systems using formal declarative modeling languages offers a means of managing software complexity through the use of abstraction and early identification of correctness issues by formal analysis. Alloy is one such language used for modeling systems early in the development process. Little work has been done to study the styles and techniques commonly used in Alloy models. We present the first static analysis study of Alloy models. We investigate research questions that examine a large corpus of 1,652 Alloy models. To evaluate these research questions, we create a methodology that leverages the power of ANTLR pattern matching and the query language XPath. Our research questions are split into two categories depending on their purpose. The Model Characteristics category aims to identify what language constructs are used commonly. Modeling Practices questions are considerably more complex and identify how modelers are using Alloy's constructs. We also evaluate our research questions on a subset of models from our corpus written by expert modelers. We compare the results of the expert corpus to the results obtained from the general corpus to gain insight into how expert modelers use the Alloy language. We draw conclusions from the findings of our research questions and present actionable items for educators, language and environment designers, and tool developers. Actionable items for educators are intended to highlight underutilized language constructs and features, and help student modelers avoid discouraged practices. Actionable items aimed at language designers present ways to improve the Alloy language by adding constructs or removing unused ones based on trends identified in our corpus of models. The actionable items aimed at environment designers address features to facilitate model creation. Actionable items for tool developers provide suggestions for back-end optimizations.10.1109/TSE.2022.3162985https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446Declarative modeling;Alloy;static analysisIEEE Inglês CI1 Incluído
AutoSVA: Democratizing Formal Verification of RTL Module InteractionsM. Orenes-Vera; A. Manocha; D. Wentzlaff; M. Martonosi2021 Modern SoC design relies on the ability to separately verify IP blocks relative to their own specifications. Formal verification (FV) using SystemVerilog Assertions (SVA) is an effective method to exhaustively verify blocks at unit-level. Unfortunately, FV has a steep learning curve and requires engineering effort that discourages hardware designers from using it during RTL module development. We propose AutoSVA, a framework to automatically generate FV testbenches that verify liveness and safety of control logic involved in module interactions. We demonstrate AutoSVA’s effectiveness and efficiency on deadlock-critical modules of widely-used open-source hardware projects.10.1109/DAC18074.2021.9586118https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118automatic;modular;formal;verification;SVAIEEE Inglês CI1 Incluído
Model driven programming of autonomous floats for multidisciplinary monitoring of the oceansS. Bonnieux; S. Mosser; M. Blay-Fornarino; Y. Hello; G. Nolet2019 Monitoring of the oceans with autonomous floats is of great interest for many disciplines. Monitoring on a global scale needs a multidisciplinary approach to be affordable. For this purpose, we propose an approach that allows oceanographers from different specialities to develop applications for autonomous floats. However, developing such applications usually requires expertise in embedded systems, and they must be reliable and efficient with regards to the limited resources of the floats (e.g., energy, processing power). We have followed a Model Driven Engineering approach composed of i) a Domain Specific Language to allow oceanographers to develop applications, ii) analysis tools to ensure that applications are efficient and reliable, iii) a composition tool to allow the deployment of different applications on a same float, and iv) a code generator that produce efficient and reliable code for the float. We present our approach with a biological and a seismological application. We validate it with technical metrics and an experiment.10.1109/OCEANSE.2019.8867453https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453Model Driven Engineering;Domain Specific Language;embedded system;constrained resourcesIEEE Inglês CI1 Incluído
A Framework for Verification-Oriented User-Friendly Network Function ModelingG. Marchetto; R. Sisto; F. Valenza; J. Yusupov2019 Network virtualization and softwarization will serve as a new way to implement new services, increases network functionality and flexibility. However, the increasing complexity of the services and the management of very large scale environments drastically complicate detecting alerts and configuration errors of the network components. Nowadays, misconfigurations can be identified using formal analysis of network components for compliance with network requirements. Unfortunately, formal specification of network services requires familiarity with discrete mathematical modeling languages of verification tools, which requires extensive training for network engineers to have the essential knowledge. This paper addresses the above-mentioned problem by presenting a framework designed for automatically extracting verification models starting from an abstract representation of a given network function. Using guidelines provided in this paper, vendors can describe the forwarding behavior of their network function in developer-friendly, high-level languages, which can be then translated into formal verification models of different verification tools.10.1109/ACCESS.2019.2929325https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301Network function modeling;model extraction;NFVIEEE Inglês CI1 Incluído
A Survey on Network Verification and Testing With Formal Methods: Approaches and ChallengesY. Li; X. Yin; Z. Wang; J. Yao; X. Shi; J. Wu; H. Zhang; Q. Wang2019 Networks have grown increasingly complicated. Violations of intended policies can compromise network availability and network reliability. Network operators need to ensure that their policies are correctly implemented. This has inspired a research field, network verification and testing, that enables users to automatically detect bugs and systematically reason their network. Furthermore, techniques ranging from formal modeling to verification and testing have been applied to help operators build reliable systems in electronic design automation and software. Inspired by its success, network verification has recently seen increased attention in the academic and industrial communities. As an area of current interest, it is an interdisciplinary subject (with fields including formal methods, mathematical logic, programming languages, and networks), making it daunting for a nonprofessional. We perform a comprehensive survey on well-developed methodologies and tools for data plane verification, control plane verification, data plane testing and control plane testing. This survey also provides lessons gained from existing solutions and a perspective of future research developments.10.1109/COMST.2018.2868050https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007Network verification;network testing;formal methods;network reliability;software-defined networkIEEE Inglês CI1 Incluído
A Research Landscape on Formal Verification of Software Architecture DescriptionsC. Araújo; E. Cavalcante; T. Batista; M. Oliveira; F. Oquendo2019 One of the many different purposes of software architecture descriptions is contributing to an early analysis of the architecture with respect to quality attributes. The critical nature of many software systems calls for formal approaches aiming at precisely verifying if their designed architectures can meet important properties such as consistency, completeness, and correctness. In this context, it is worthwhile investigating the role of architecture descriptions to support the formal verification of software architectures to ensure their quality, as well as how such a process happens and is supported by existing languages and verification tools. To evaluate the research landscape on this subject, we have carried out a systematic mapping study in which we collected and analyzed studies available at the literature on formal verification of architecture descriptions. This work contributes with (i) a structured overview and taxonomy of the current state of the art on this topic and (ii) the elicitation of important issues to be addressed in future research.10.1109/ACCESS.2019.2953858https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988Architecture description;formal verification;property specification;software architectures;systematic mappingIEEE Inglês CI1 Incluído
Analyzing the Validation Flaws of Online Shopping Systems Based on Coloured Petri NetsW. Yu; L. Liu; Y. An; X. Zhai 2019 Online shopping systems integrating multiple participants have rapidly developed worldwide. The complex business interactions among the multiple participants introduce new security problems, and the validation flaw is one of the main issues. A legal user can utilize the validation flaws, by some special behaviours, to obtain illegal interests. To deal with above issue, we propose the process to analyze validation flaws by formal methods based on CPN (Coloured Petri nets). The modeling method is based on CPN Modeling Language, and the analyzing process utilizes the transaction properties of online shopping systems. CPN tools can provide the basic support to the analyzing process. A case study throughout this work is used to illustrate the proposed methodology.10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00304https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216formal model;Petri net;online shopping;validation;securityIEEE Inglês CI1 Incluído
Automated Generation of LTL Specifications For Smart Home IoT Using Natural LanguageS. Zhang; J. Zhai; L. Bu; M. Chen; L. Wang; X. Li2020 Ordinary users can build their smart home automation system easily nowadays, but such user-customized systems could be error-prone. Using formal verification to prove the correctness of such systems is necessary. However, to conduct formal proof, formal specifications such as Linear Temporal Logic (LTL) formulas have to be provided, but ordinary users cannot author LTL formulas but only natural language.To address this problem, this paper presents a novel approach that can automatically generate formal LTL specifications from natural language requirements based on domain knowledge and our proposed ambiguity refining techniques. Experimental results show that our approach can achieve a high correctness rate of 95.4% in converting natural language sentences into LTL formulas from 481 requirements of real examples.10.23919/DATE48585.2020.9116374https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374- IEEE Inglês CI1 Incluído
PUF-G: A CAD Framework for Automated Assessment of Provable Learnability from Formal PUF RepresentationsD. Chatterjee; D. Mukhopadhyay; A. Hazra2020 Physically Unclonable Functions (PUFs) are widely adopted in various lightweight authenticating devices due to their unique fingerprints - providing uniform, unpredictable and reliable nature of responses. However, with the growth of machine learning (ML) attacks in recent times, it is imperative that the PUFs need to be resilient to such modeling attacks as well. Consequently, analyzing the learnability of PUFs has initiated a new branch of study leading to establishing provable guarantees (and PAC-learnability) of various PUF designs. However, these derivations are often carried out manually while implementing the design and thereby cannot automatically adjust the changes in PUF designs or its various compositions. In this paper, for the first time, we present an automated framework, called PUF-G, to reason about the PAC-learnability of PUF designs from an architectural level. To enable this, we propose a formal PUF representation language by which any architectural PUF design and its compositions can be specified upfront. This PUF specification can be automatically analyzed through a CAD framework by translating the same to an interim model and then deriving the PAC-learnability bounds from the model. Such a tool will help the designer to explore various compositional architectures of PUFs and its resilience to ML attacks automatically before converging on a strong PUF design for implementation. We also show the efficacy of our proposed framework over a wide range of PUF architectures while automatically deriving their learnability guarantees. As a matter of independent interest, the framework presents the first reported proofs to show that Interpose-PUF (newly proposed), MUX-PUF, FF-APUF, FF-XOR APUF and DA-PUF, are all PAC-learnable.https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782- IEEE Inglês CI1 Incluído
Domain Specific Program SynthesisP. Archana; P. B. Harish; N. Rajan; S. P; N. S. Kumar2021 Program Synthesis refers to the task of constructing a program in a specific programming language, given its intent in a particular format. This emerging field can be applied in diverse domains and is currently being investigated with different techniques. A program synthesizer would simplify the efforts of programmers and help them focus on the program's core logic, without worrying about language syntax and other domain specifics. We applied the concepts of program synthesis in the context of solving a propositional logic word problem. We have developed a tool that is capable of understanding, parsing and evaluating a propositional logic word problem. With the user's natural language input, this tool processes the query and evaluates truth values of the question expressions. The working of the tool can be explained in three major phases: natural language processing, machine learning to obtain postfix notations of the Boolean expressions involved, and further evaluation of the postfix notations to determine the answers. Our goal was to explore the domain agnostic capabilities of our program-synthesis-based techniques of learning used in the implementation of this tool.10.1109/ASIANCON51346.2021.9544738https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738propositional logic;program synthesis;boolean;natural language processing;sequence-to-sequence modelIEEE Inglês CI1 Incluído
Prioritizing Scenarios based on STAMP/STPA Using Statistical Model CheckingM. Tsuji; T. Takai; K. Kakimoto; N. Ishihama; M. Katahira; H. Iida2020 Recently, a hazard analysis technique STAMP/STPA has been widely accepted since it is recognized as being suitable for software-intensive systems. Using STAMP/STPA, we can find hazardous scenarios of the target system that cannot be obtained by other traditional hazard analysis methods and those scenarios can be used for validation testing. However, generally the number of obtained scenarios can be huge and the validation testing involves a considerable cost. In this study, we propose a method to prioritize hazardous scenarios identified by STAMP/STPA with the help of a statistical model-checking technique. We give a procedure for systematically transforming the model defined by STAMP/STPA to a formal model for a statistical model-checking tool. We also show the usefulness of the proposed method using an example of train gate control system.10.1109/ICSTW50294.2020.00032https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811STAMP/STPA;statistical model checking;risk analysisIEEE Inglês CI1 Incluído
A Lightweight Framework for Regular Expression VerificationX. Liu; Y. Jiang; D. Wu 2019 Regular expressions and finite state automata have been widely used in programs for pattern searching and string matching. Unfortunately, despite the popularity, regular expressions are difficult to understand and verify even for experienced programmers. Conventional testing techniques remain a challenge as large regular expressions are constantly used for security purposes such as input validation and network intrusion detection. In this paper, we present a lightweight verification framework for regular expressions. In this framework, instead of a large number of test cases, it takes in requirements in natural language descriptions to automatically synthesize formal specifications. By checking the equivalence between the synthesized specifications and target regular expressions, errors will be detected and counterexamples will be reported. We have built a web application prototype and demonstrated its usability with two case studies.10.1109/HASE.2019.00011https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038regular expression;verification;natural language;formal specification;domain-specific languageIEEE Inglês CI1 Incluído
Generating Test Cases from Requirements: A Case Study in Railway Control System DomainH. Zheng; J. Feng; W. Miao; G. Pu2021 Requirements-based testing is one of the most commonly used ways to ensure the correctness of software, especially for embedded control software in safety-critical domains such as spacecraft and railway systems. Many industrial standards such as the DO-333 and EN50128 also request rigorous requirements-based software testing. To test embedded control software effectively and efficiently, generating high-quality test cases automatically is extremely important. However, existing methods for generating test cases from requirements require intensive manual efforts and expertise. To address this problem, we proposed an automatic requirements-based software testing method for embedded control software. To obtain automatic test case generation and precise test oracles derivation, requirements specification should be precise and readable for the industrial practitioners. Therefore, we use the light-weight domain-specific formal description language, CASDL (Casco Accurate Specification Description Language) for the industrial practitioners to define software requirements into formal specifications at the first step. Based on the formal specification, we propose an algorithm to automatically generate test inputs that satisfy the MC/DC criteria suggested by typical industrial standards and precise test oracles can be derived by “running” the specification with such test inputs. To this end, we proposed an algorithm for simulating the formal specification to generate the test oracles, i.e., the expected outputs corresponding to the test inputs. To facilitate the application of this method in the industry, we have built a tool that can automatically perform the overall testing process. To validate and evaluate its effectiveness in real industrial projects, we have applied it in testing a real Automatic Train Protection (ATP) system provided by our industrial partner, the Casco Signal Co., Ltd (one of the largest railway control system companies in China). In the case study on ATP requirements, our approach generated test cases for 129 requirement items following MC/DC criteria and caught 40 inconsistencies between Casco’s requirements and implementation.10.1109/TASE52547.2021.00029https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822Test cases;software testing;requirements validation and verification;requirements modelingIEEE Inglês CI1 Incluído
Automated Model-Based Test Case Generation for Web User Interfaces (WUI) From Interaction Flow Modeling Language (IFML) ModelsN. Yousaf; F. Azam; W. H. Butt; M. W. Anwar; M. Rashid2019 Since the emergence of web 2.0, the architecture of web applications has been transformed significantly and its complexity has grown enormously. In such web applications, the user interface (UI) is an important ingredient and with the increased complexity, its testing is getting increasingly complex and cost/time-consuming process. Recently introduced, interaction flow modeling language (IFML) is an object management group (OMG) standard. IFML is gaining popularity for developing web applications, primarily, because of its excellent features for modeling UI elements, their content, and their interaction capturing capabilities. However, despite its superior UI modeling features, its UI testing is accomplished through traditional time-consuming techniques, which are employed after implementing the UI code. Hence, to overcome these limitations, this paper introduces a novel model-based testing approach for IFML UI elements. The proposed approach provides complete navigation testing using formal models. Moreover, the approach transforms the IFML models to all necessary UI testing artifacts by generating state transition matrix plus detailed UI test case document. As a part of a research, model-based user interface test case (MBUITC) generator tool is implemented to automatically generate navigation model for formal verification, test case document, and transition matrices from IFML models. The applicability of the proposed approach is validated through two benchmark case studies. The results have shown that the proposed approach provides test cases at the early stages of development, i.e., specification and analysis, which eventually helps in building a right product at the right time at a comparatively lower cost.10.1109/ACCESS.2019.2917674https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593Formal verification;IFML;MBT;model-based testing;UI;web applications;WUIIEEE Inglês CI1 Incluído
A Formal Verification Method for Smart ContractX. Wang; X. Yang; C. Li 2020 Smart contract is a computer protocol running on the blockchain, which is widely used in various fields. However, its security problems continue to emerge. Therefore, it is necessary to audit the security of smart contract before it is deployed on the blockchain. Traditional testing methods cannot guarantee a high reliability and correctness required by the smart contract. This paper shows a method for using modeling, simulation and verification language (MSVL) and propositional projection temporal logic (PPTL) to model and verify the smart contract. First, a converter tool SOL2M which can convert Solidity program to MSVL program is developed. Then, the security properties of the smart contract are described by PPTL and a standardized process to verify the contract is designed through UMC4M (Unified Model Checker for MSVL). Finally, an example is given to illustrate the feasibility and practicability of this method in smart contract verification.10.1109/DSA51864.2020.00011https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049blockchains;Smart Contract;formal methods;MSVLIEEE Inglês CI1 Incluído
Formal Simulation and Verification of Solidity contracts in Event-BJ. Zhu; K. Hu; M. Filali; J. -P. Bodeveix; J. -P. Talpin; H. Cao2021 Smart contracts are the artifact of the blockchain that provides immutable and verifiable specifications of physical transactions. Solidity is a domain-specific programming language with the purpose of defining smart contracts. It aims at reducing the transaction costs occasioned by the execution of contracts on the distributed ledgers such as Ethereum. However, Solidity contracts need to adhere to safety and security requirements that require formal verification and certification. This paper proposes a method to meet such requirements by translating Solidity contracts to Event-B models, supporting certification. To that purpose, we define a restrained Solidity subset and a transfer function that translates Solidity contracts to Event-B models. Besides, we have implemented a translator to improve the conversion efficiency. As a case study, we take advantage of Event-B method capabilities to simulate models at different levels of abstraction and to express the properties of a typical smart contract: Honeypot contract. Lastly, we verify the generated proof obligations of the Event-B model with the help of the Rodin platform.10.1109/COMPSAC51774.2021.00183https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594Blockchain;Smart contract;Solidity;Event-B model;formal verification for securityIEEE Inglês CI1 Incluído
Formal Methods for the Security Analysis of Smart ContractsM. Maffei 2021 Smart contracts consist of distributed programs built over a blockchain and they are emerging as a disruptive paradigm to perform distributed computations in a secure and efficient way. Given their nature, however, program flaws may lead to dramatic financial losses and can be hard to fix. This motivates the need for formal methods that can provide smart contract developers with correctness and security guarantees, ideally automating the verification task. This tutorial introduces the semantic foundations of smart contracts and reviews the state-of-the-art in the field, focusing in particular on the automated, sound, static analysis of Ethereum smart contracts. We will highlight the strengths and drawbacks of different methods, suggesting open challenges that can stimulate new research strands. Finally, we will overview eThor, an automated static analysis tool that we recently developed based on rigorous semantic foundations.10.34727/2021/isbn.978-3-85448-046-4_3https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687- IEEE Inglês CI1 Incluído
Tooled approach for formal verification of components interactions modeled in SysMLM. S. GHITRI; M. MESSABIHI; A. BENAMAR2019 Software systems are becoming more complex and their implementation requires more rigorous modeling approaches, for this reason the OMG (Object Management Group) has implemented the SysML standard to model complex systems. Sequence diagram is one of the fundamental diagrams of SysML because it allows behavioral specification of systems. However, SysML still has a lack of formal semantics following his semi-formal definition, which makes it impossible to directly apply the simulation and verification methods to these diagrams. The model transformation community offers several solutions to transform the SysML specification into formal methods in order to bridge the gap between them, this community is divided into two principal's axes, the first ones working on the formalization of structural diagrams, and the others have worked on behavioral diagrams. Our work contributes to behavioral modeling and aims to combine all the highlights of the other approaches in a single framework for formal verification of SDs, using TAN and Uppaal model checker. The proposed approach has been tested through a case study of an interaction between ATM and Bank to prove their reliability.10.1109/ICTAACS48474.2019.8988134https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134SysML;ATL;Formal Verification;Timed Automata Network;Model Checking;Acceleo;UppaalIEEE Inglês CI1 Incluído
On Complementing an Undergraduate Software Engineering Course with Formal MethodsB. Westphal 2020 Software systems continue to pervade day-to-day life and so it becomes increasingly important to ensure the dependability, safety, and security of software. One approach to this end can be summarised under the broad term of formal methods, i.e., the formal analysis of requirements, software models, or programs. Formal methods in this sense are today used in many branches of the software industry, such as the huge internet companies, aerospace, automotive, etc. and even made their way into small to medium sized enterprises. In this article, we argue the opinion that today's students (and tomorrow's engineers) need to be provided with a basic understanding of formal methods in the broad sense (what is it, how does it feel to use it, what are advantages and limitations) already in undergraduate introductions to software engineering. We propose a generic course design that complements (otherwise completely ordinary) undergraduate introductions to software engineering with formal semantics and analyses of (visual) software description languages. We report on five years of teaching an implementation of the course design that indicate the feasibility of teaching without sacrificing classical software engineering topics and without over-straining students wrt. level or workload.10.1109/CSEET49119.2020.9206234https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234Teaching;Formal Methods;Software EngineeringIEEE Inglês CI1 Incluído
Formal Verification of SDN-Based Firewalls by Using TLA+Y. -M. Kim; M. Kang 2020 Software-defined networking (SDN) has generated increased interest due to the rapid growth in the amount of data generated by the development of the Internet and communications, the commercialization of 5G, and increasingly complex networks. While SDN is more advantageous than traditional networks in terms of efficient network management, rapid deployment, and dynamic scalability, the correctness of a network configuration must be ensured in advance. In other words, SDN components such as network devices, SDN controllers, and applications need to be deployed correctly and must be free of rule conflicts, particularly between various application policies; otherwise, it may result in network paralysis in the worst case. This paper assumes that the SDN network is free of rule conflicts when the rules in the SDN switches correctly obey firewall application or policies. To solve this problem, this paper proposes a verification framework for SDN using TLA+. We show that the firewall rule behavior of switches can be formalized using TLA+, and this is verified with the TLC model checker that uses TLA+ as the model description language. We check two different types of topology models through our verification framework to ensure that the same firewall rules are maintained even if the topology changes. The findings show that the firewall rules may be inconsistent as the topology changes.10.1109/ACCESS.2020.2979894https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323Firewall;formal methods;software-defined networking;TLA+IEEE Inglês CI1 Incluído
A Systematic Identification of Formal and Semi-Formal Languages and Techniques for Software-Intensive Systems-of-Systems Requirements ModelingC. A. Lana; M. Guessi; P. O. Antonino; D. Rombach; E. Y. Nakagawa2019 Software-intensive systems-of-systems (SoS) refer to an arrangement of managerially and operationally independent systems (i.e., constituent systems), which work collaboratively toward the achievement of global missions. Because some SoS are being developed for critical domains, such as healthcare and transportation, there is an increasing need to attain higher quality levels, which often justifies the additional costs that can be incurred by adopting formal and semi-formal approaches (i.e., languages and techniques) for modeling requirements. Various approaches have been employed, but a detailed landscape is still missing, and it is not well known whether these approaches are appropriate for addressing the inherent characteristics of SoS. The main contribution of this paper is to present this landscape by reporting on the state of the art in SoS requirements modeling. This landscape was built by means of a systematic mapping and shows formal and semi-formal approaches grouped from model-based to property-oriented ones. Most of them have been tested in safety-critical domains, where formal approaches such as finite-state machines are aimed at critical system parts, whereas semi-formal approaches (e.g., unified modeling language and i*) address non-critical parts. Although formal and semi-formal modeling is an essential activity, the quality of SoS requirements does not rely solely on the formalism that is used, but also on the availability of supporting tools/mechanisms that enable, for instance, requirements verification along the SoS life cycle.10.1109/JSYST.2018.2874061https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059Formal languages;requirements modeling;semi-formal languages;systematic mapping;systems-of-systems (SoS)IEEE Inglês CI1 Incluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059

Reactive Synthesis with Spectra: A TutorialS. Maoz; J. O. Ringert 2021 Spectra is a formal specification language specifically tailored for use in the context of reactive synthesis, an automated procedure to obtain a correct-by-construction reactive system from its temporal logic specification. Spectra comes with the Spectra Tools, a set of analyses, including a synthesizer to obtain a correct-by-construction implementation, several means for executing the resulting controller, and additional analyses aimed at helping engineers write higher-quality specifications. This hands-on tutorial will introduce participants to the language and the tool set, using examples and exercises, covering an end-to-end process from specification writing to synthesis to execution. The tutorial may be of interest to software engineers and researchers who are interested in the potential applications of formal methods to software engineering.10.1109/ICSE-Companion52605.2021.00136https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598Reactive synthesis IEEE Inglês CI1 Incluído
Tutorial: A Practical Introduction to Formal Development and Verification of High-Assurance Software with SPARKB. M. Brosgol; C. Dross; Y. Moy2019 Summary form only given, as follows. The complete presentation was not made available for publication as part of the conference proceedings. This hands-on tutorial will show attendees how to use formal methods in developing and verifying high-assurance software. It will cover the benefits and costs of formal methods technology, describe its capabilities and limits, summarize how to adopt formal methods at varying levels depending on assurance requirements, show how to combine formal methods with traditional testing-based techniques, and highlight industrial experience. The SPARK language (a subset of Ada 2012) will be used as the vehicle for explaining formal methods. The techniques presented can be applied to other language technologies, and the tutorial will compare the SPARK and Frama-C approaches. Demonstrations will use the GNATprove toolset, and hands-on exercises will be drawn from the SPARK section of the learn.adacore.com site.10.1109/SecDev.2019.00012https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601formal methods, high-assurance software, safety critical software, high-security software, software verification, SPARK languageIEEE Inglês CI1 Incluído
Combining STPA with SysML ModelingF. G. R. de Souza; J. de Melo Bezerra; C. M. Hirata; P. de Saqui-Sannes; L. Apvrille2020 System-Theoretic Process Analysis (STPA) is a technique, based on System-Theoretic Accident Model and Process (STAMP), to identify hazardous control actions, loss scenarios, and safety requirements. STPA is considered a rather complex technique and lacks formalism, but there exists a growing interest in using STPA in certifications of safety-critical systems development. SysML is a modeling language for systems engineering. It enables representing models for analysis, design, verification, and validation of systems. In particular, the free software TTool and the model-checker UPPAAL enable formal verification of SysML models. This paper proposes a method that combines STPA and SysML modeling activities in order to allow simulation and formal verification of systems' models. An automatic door system serves as example to illustrate the effectiveness of the proposed approach.10.1109/SysCon47679.2020.9275867https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867STPA;SysML;method;safety analysis;formal verificationIEEE Inglês CI1 Incluído
Towards Formal Modeling and Analysis of SystemJ GALS Systems using Coloured Petri NetsW. Zhang; Z. Salcic; A. Malik 2019 SystemJ is a programming language developed for implementing safety critical cyber-physical systems, including industrial automation systems. However, the current tools do not support an efficient mechanism to verify SystemJ programs formally. This paper presents a semantics-preserving translation of the synchronous subset of SystemJ to Coloured Petri Net (CPN), which in turn enables leveraging the plethora of analysis and verification tools for CPN to verify SystemJ programs. The translation and verification approach is illustrated on a pedagogical industrial automation example of a SystemJ program.10.1109/INDIN41052.2019.8972025https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025Petri Nets;Coloured Petri Nets;GALS;formal modeling;formal analysisIEEE Inglês CI1 Incluído
A Categorical Framework for Collaborative Design of Safety Critical Mechatronic SystemsN. Abdeljabbar; F. Mhenni; J. -Y. Choley2021 Systems engineering relies on a diversity of views of the same mechatronic system built by different design teams from several domains at different abstraction levels and using different modeling languages and tools. These views must be and remain consistent throughout the engineering process. To this end, a collaboration methodology based on a unique and formal collaborative framework is needed to connect these views while ensuring their consistency. The aim of this paper is to introduce such collaborative methodology. The category theory is chosen as formal basis to enhance collaboration between different design teams and help them maintain consistency between their corresponding models. The main objective of applying category theory in the current research is to model collaboration and consistency via interaction, transformation and synchronization, considering that all these model management scenarios can be implemented by the category theory. Moreover, our proposed methodology is mainly focused on the construction of a model that merges the different model elements according to three systems engineering aspects: requirements and constraints, behavior, and structure. To this purpose, a category based Meta-Model is established for the collaboration between systems engineering (SE) and safety assessment (SA). In this categorical framework, each model is represented by a category and, in order to link and maintain connection between these models, functors will be used. The proposed methodology was applied to a case study from the aeronautics domain, namely an Electro-Mechanical Actuator (EMA) modeled using SysML, Modelica and AltaRica languages. Therefore, the proposed collaborative methodology implemented in a categorical framework may be generalized and enhanced to take into account any other model involved in systems engineering, such as a 3D model for geometrical modeling.10.1109/ISSE51541.2021.9582486https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486- IEEE Inglês CI1 Incluído
Mining Specifications from Documentation using a CrowdP. Sun; C. Brown; I. Beschastnikh; K. T. Stolee2019 Temporal API specifications are useful for many software engineering tasks, such as test case generation. In practice, however, APIs are rarely formally specified, inspiring researchers to develop tools that infer or mine specifications automatically.Traditional specification miners infer likely temporal properties by statically analyzing the source code or by analyzing program runtime traces. These approaches are frequently confounded by the complexity of modern software and by the unavailability of representative and correct traces. Formally specifying software is traditionally an expert task. We hypothesize that human crowd intelligence provides a scalable and high-quality alternative to experts, without compromising on quality. In this work we present CrowdSpec, an approach to use collective intelligence of crowds to generate or improve automatically mined specifications. CrowdSpec uses the observation that APIs are often accompanied by natural language documentation, which is a more appropriate resource for humans to interpret and is a complementary source of information to what is used by most automated specification miners.10.1109/SANER.2019.8668025https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025Specification mining;crowdsourcing;Java APIsIEEE Inglês CI1 Incluído
PyFoReL: A Domain-Specific Language for Formal Requirements in Temporal LogicJ. Anderson; M. Hekmatnejad; G. Fainekos2022 Temporal Logic (TL) bridges the gap between natural language and formal reasoning in the field of complex systems verification. However, in order to leverage the expressivity entailed by TL, the syntax and semantics must first be understood—a large task in itself. This significant knowledge gap leads to several issues: (1) the likelihood of adopting a TL-based verification method is decreased, and (2) the chance of poorly written and inaccurate requirements is increased. In this ongoing work, we present the Pythonic Formal Requirements Language (PyFoReL) tool: a Domain-Specific Language inspired by the programming language Python to simplify the elicitation of TL-based requirements for engineers and non-experts.10.1109/RE54965.2022.00037https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080domain-specific language;temporal logic;formal requirements;requirements-based testingIEEE Inglês CI1 Incluído
From BPMN2 to Event B: A Specification and Verification Approach of Workflow ApplicationsA. Ben Younes; Y. Ben Daly Hlaoui; L. Ben Ayed; M. Bessifi2019 The BPMN2 language suffers from the absence of a precise formal semantics of the various notations used, which often leads to ambiguities. In addition, this language does not have a proof system that validates a BPMN2 specification. Consequently, the use of a formal method, such as Event B, is a solution for dealing with the shortcomings found in the BPMN2 language. We propose in this paper a model-driven approach based on meta-model and meta-model transformation implemented in KerMeta to specify and formally verify workflows.10.1109/COMPSAC.2019.10266https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325Workflow Meta-model Transformation BPMN EventB KerMetaIEEE Inglês CI1 Incluído
Business Process Modeling and Simulation with DPMN: Processing ActivitiesG. Wagner 2021 The Business Process Modeling Notation (BPMN) has been established as a modeling standard in Business Process (BP) Management. However, BPMN lacks several important elements needed for BP simulation and is not well-aligned with the Queueing Network paradigm of Operations Research and the related BP simulation paradigm pioneered by the Discrete Event Simulation (DES) languages/tools GPSS and SIMAN/Arena. The Discrete Event Process Modeling Notation (DPMN) proposed by Wagner (2018) is based on Event Graphs (Schruben 1983), which capture the DES paradigm of Event-Based Simulation. By allowing to make flowchart models of queueing/processing networks with a precise semantics, DPMN reconciles (the flowchart approach of) BPMN with DES. DPMN is the first visual modeling language that supports all important DES approaches: event-based simulation, activity-based DES and Processing Network models, providing a foundation for harmonizing and unifying the many different terminologies/concepts and diagram languages of established DES tools.10.1109/WSC52266.2021.9715457https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457- IEEE Inglês CI1 Incluído
Enumeration and Deduction Driven Co-Synthesis of CCSL Specifications using Reinforcement LearningM. Hu; J. Ding; M. Zhang; F. Mallet; M. Chen2021 The Clock Constraint Specification Language (CCSL) has become popular for modeling and analyzing timing behaviors of real-time embedded systems. However, it is difficult for requirement engineers to accurately figure out CCSL specifications from natural language-based requirement descriptions. This is mainly because: i) most requirement engineers lack expertise in formal modeling; and ii) few existing tools can be used to facilitate the generation of CCSL specifications. To address these issues, this paper presents a novel approach that combines the merits of both Reinforcement Learning (RL) and deductive techniques in logical reasoning for efficient co-synthesis of CCSL specifications. Specifically, our method leverages RL to enumerate all the feasible solutions to fill the holes of incomplete specifications and deductive techniques to judge the quality of each trial. Our proposed deductive mechanisms are useful for not only pruning enumeration space, but also guiding the enumeration process to reach an optimal solution quickly. Comprehensive experimental results on both well-known benchmarks and complex industrial examples demonstrate the performance and scalability of our method. Compared with the state-of-the-art, our approach can drastically reduce the synthesis time by several orders of magnitude while the accuracy of synthesis can be guaranteed.10.1109/RTSS52674.2021.00030https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334Specification synthesis;reinforcement learning;logical clocks;deduction;enumerationIEEE Inglês CI1 Incluído
Towards a Simplified Evaluation of Graphical DSL WorkbenchesA. Dembri; M. Redjimi 2022 The design and development of graphical tools for new domain-specific languages is still a challenge for designers; the Model-Driven Architecture (MDA) makes a qualitative difference in the creation of Domain Specific Language (DSL). We aim in this paper to analyze and evaluate the performance of some language workbenches that makes the development of domain-specific language simpler and more specialised. To evaluate these tools, a formal specification of a Petri net called Agent Petri Net is selected. We analyze criteria related to abstraction level, facilities to tailor DSL to specific domains, simplicity of development and the productivity guarantee with these tools. Practical experience highlights the real capabilities of each tool and considers as an evaluation support to select the adequate solution to design DSL that responds to user requirements.10.1109/ISIA55826.2022.9993580https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580MDA;DSL;Language workbenches;evaluation;graphical modelling framework;Cinco;SiriusIEEE Inglês CI1 Incluído
QualiBD: A Tool for Modelling Quality Requirements for Big Data ApplicationsD. Arruda; N. H. Madhavji 2019 The development of Big Data applications is not well-explored, to our knowledge. Embracing Big Data in system building, questions arise as to how to elicit, specify, analyse, model, and document Big Data quality requirements. In our ongoing research, we explore a requirements modelling language for Big Data software applications. In this paper, we introduce QualiBD, a modelling tool that implements the proposed goal-oriented requirements language that facilitates the modelling of Big Data quality requirements.10.1109/BigData47090.2019.9006294https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294Big Data Applications;Quality Requirements;Big Data Goal-oriented Requirements Language;Requirements Modelling ToolIEEE Inglês CI1 Incluído
SSpinJa: Facilitating Schedulers in Model CheckingT. Nhat-Hoa; T. Aoki 2021 The execution of a software system that runs on top of an Operating System (OS) is usually controlled by the scheduler. Therefore, to accurately verify the system, the scheduling policy needs to be taken into account in the verification. In model checking techniques, the scheduling policy affects the search algorithm to explore the state space to check the behaviors of the system. Existing works try to specify/implement the scheduler(s) along with the set of processes in the specification language(s) used by the model checking tool(s). In reality, many kinds of scheduling policies are used by the OS(s), e.g. round-robin, priority, and first-in-first-out. There are also many variations of these policies, which are usually different from the 'textbook’ ones. That means dealing with the variations of the scheduling policies in model checking is necessary and important. However, because the implementation of the scheduler always starts from scratch, it is error-prone and time-consuming. Therefore, the existing works are difficult to deal with the different scheduling policies. To address this problem, we propose a method that introduces a domain-specific language (DSL) to facilitate the variation of the policies. All necessary information to perform the scheduling tasks is generated automatically from the description of the scheduler. We also introduce a search algorithm using this information to explore the states of the system to verify the behaviors of the system. In this paper, we introduce SSpinJa, a tool in which we implemented this approach. Our tool supports an environment for editing the scheduling policy (in the DSL) and the model checker for verifying the system. The results of our experiments show that a) we can handle different scheduling policies easily, b) we can accurately verify the behaviors of the systems, and c) our approach is also practical.10.1109/QRS54544.2021.00073https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957scheduling policy;model checking;domain-specific languageIEEE Inglês CI1 Incluído
Towards a Formal Specification of Multi-paradigm ModellingM. Amrani; D. Blouin; R. Heinrich; A. Rensink; H. Vangheluwe; A. Wortmann2019 The notion of a programming paradigm is used to classify programming languages and their accompanying workflows based on their salient features. Similarly, the notion of a modelling paradigm can be used to characterise the plethora of modelling approaches used to engineer complex Cyber-Physical Systems (CPS). Modelling paradigms encompass formalisms, abstractions, workflows and supporting tool(chain) s. A precise definition of this modelling paradigm notion is lacking however. Such a definition will increase insight, will allow for formal reasoning about the consistency of modelling frameworks and may serve as the basis for the construction of new modelling, simulation, verification, synthesis, ...environments to support design of CPS . We present a formal framework aimed at capturing the notion of modelling paradigm, as a first step towards a comprehensive formalisation of multi-paradigm modelling. Our formalisation is illustrated by CookieCAD, a simple Computer-Aided Design paradigm used in the development of cookie stencils.10.1109/MODELS-C.2019.00067https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740Model Driven Engineering;Multi Paradigm;Cyber Physical Systems;FormalisationIEEE Inglês CI1 Incluído
An Approach to Validation of Combined Natural Language and Formal Requirements for Control SystemsM. Trakhtenbrot 2019 The paper presents a novel approach to validation of behavioral requirements for control systems. A requirement is specified by a natural language pattern and its expression in Linear Temporal Logic (LTL). This way flexibility and understandability of natural language is combined with advantages of formalization that is a basis for various stages of system development, testing and verification. Still, validity of the requirements remains a major challenge. The paper considers application of mutation analysis for capturing of correct behavioral requirements. Generation and exploration of mutants supports a better understanding of requirements, The novelty of the approach is that the suggested mutations are semantic-based, as opposed to the more common syntax-based mutation analysis. A significant advantage of the approach is that it allows to focus only on plausible potential faults in understanding of the required system behavior, and to avoid generation of a vast amount of mutants that are irrelevant to the intended meaning of the requirements. Moreover, in many cases the effect of semantic-based mutations just can not be achieved by usual syntax-based mutations of LTL formulas associated with requirements. The approach is illustrated using a rail cross control example.10.1109/REW.2019.00025https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687control systems, behavior requirements validation, mutation analysisIEEE Inglês CI1 Incluído
Score-Based Automatic Detection and Resolution of Syntactic Ambiguity in Natural Language RequirementsM. Osama; A. Zaki-Ismail; M. Abdelrazek; J. Grundy; A. Ibrahim2020 The quality of a delivered product relies heavily upon the quality of its requirements. Across many disciplines and domains, system and software requirements are mostly specified in natural language (NL). However, natural language is inherently ambiguous and inconsistent. Such intrinsic challenges can lead to misinterpretations and errors that propagate to the subsequent phases of the system development. Pattern-based natural language processing (NLP) techniques have been proposed to detect the ambiguity in requirements specifications. However, such approaches typically address specific cases or patterns and lack the versatility essential to detecting different cases and forms of ambiguity. In this paper, we propose an efficient and versatile automatic syntactic ambiguity detection technique for NL requirements. The proposed technique relies on filtering the possible scored interpretations of a given sentence obtained via Stanford CoreNLP library. In addition, it provides feedback to the user with the possible correct interpretations to resolve the ambiguity. Our approach incorporates four filtering pipelines on the input NL-requirements working in conjunction with the CoreNLP library to provide the most likely possible correct interpretations of a requirement. We evaluated our approach on a suite of datasets of 126 requirements and achieved 65% precision and 99% recall on average.10.1109/ICSME46990.2020.00067https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680Requirements specification;Requirements analysis;Quality checking;AmbiguityIEEE Inglês CI1 Incluído
Modeling of Natural Language Requirements based on States and ModesY. Liu; J. -M. Bruel 2022 The relationship between states (status of a system) and modes (capabilities of a system) used to describe system requirements is often poorly defined. The unclear relationship could make systems of interest out of control because of the out of boundaries of the systems caused by the newly added modes. Formally modeling requirements can clarify the relationship between states and modes, making the system safe.To this end, the MoSt language (a Domain Specific Language implemented on the Xtext framework) is proposed to modeling requirements based on states and modes. In this article, the relationship between states and modes is firstly provided. The metamodel and grammar of the language are then proposed. Finally, a validator is implemented to realise static checks of the MoSt model. The grammar and the validator are integrated into a publicly available Eclipse-based tool. A case study on requirements for designing cars has been conducted to illustrate the feasibility of the MoSt language. In this case study, we injected 9 errors. The results show that all the errors were detected in the static analysis.10.1109/REW56159.2022.00043https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159States and Modes;Requirements Modeling;Domain Specific LanguageIEEE Inglês CI1 Incluído
A Temporal Requirements Language for Deductive Verification of Process-Oriented ProgramsI. Chernenko; I. S. Anureev; N. O. Garanina; S. M. Staroletov2022 The requirements engineering process is primarily useful for complex software that controls industrial processes. Requirements for control software suppose a description of the change in input and output signals over time, which encourages the elaborations of temporal requirements. A verification method that allows one to obtain a certified proof of system operation correctness against given requirements is the theorem proving or deductive verification. At the same time, the process of deductive verification should take into account both the specifics of models of control programs and the requirements for them. While models of control programs can be obtained from domain-oriented languages, it is also expedient to develop a language for requirements. The present paper introduces a predicative domain-specific language for definition of temporal requirements intended to be used with deductive verification tools. It focuses on specification of requirements for control software written in process-oriented languages. Moreover, we propose to use special patterns to describe a wide range of such requirements. We discuss a benchmark of ten case studies and the requirements for them which are linked to these patterns. The results can be used for building automatic verification systems for industrial control software.10.1109/EDM55285.2022.9855145https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145deductive verification;temporal requirements;formal methods;control software;process-oriented programsIEEE Inglês CI1 Incluído
Integrated Automotive Requirements Engineering with a SysML-Based Domain-Specific LanguageR. Maschotta; A. Wichmann; A. Zimmermann; K. Gruber2019 The rising overall complexity of modern cars as a special case of mechatronic systems leads to an increasing number of functions implemented by electric and electronic (E/E-) systems. Well-known design problems of complex modular systems arise out of this. To achieve high-quality standards along the whole product life cycle, modern systems and software engineering methods and techniques are necessary. Model-based approaches are widely used in the automotive domain, based on different types of models used in development phases at different abstraction levels. The Unified Modeling Language and the Systems Modeling Language are general-propose modeling languages that are widely used in the automotive domain. However, there are several domain-specific languages that support the automotive domain more specifically. A domain-specific SysML profile for functional and nonfunctional requirements in automotive technical systems has been proposed in our previous work. This paper describes our model-driven approach to specify domain-specific languages and corresponding domain-specific tools. The specifications are based on UML extensions using profiles only, which is a lightweight approach compared to other proposals. This allows the reuse and extension of existing UML or SysML models. A domain-specific graphical editor is presented in this paper based on the specified extensions. The resulting graphical editor is used to model an automotive technical system as an example.10.1109/ICMECH.2019.8722951https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951Automotive system design;integrated mechatronic design;model analysis;model queries;UML;SysML;validation;model-driven engineering;Eclipse SiriusIEEE Inglês CI1 Incluído
Translation Validation of Code Generation from the SIGNAL Data-Flow Language to VerilogH. M. Amjad; K. Hu; J. Niu; N. Khan; L. Besnard; J. -P. Talpin2019 The SIGNAL is a high-level synchronous data-flow language for the design and implementation of safety-critical embedded systems. It provides a unified framework for specification, modeling, formal analysis, and automatic code generation for different general-purpose languages like Java, C, and C++. However, fully implemented and verified open source tool for code generation from SIGNAL to Hardware Description Language (HDL) is not available. This paper describes the formal verification of the generated Verilog code from the SIGNAL language. Proving the correctness of generated code is very important when it is for safety-critical embedded systems. We use the translation validation technique for verifying the correctness of the generated code. In this approach, the Polychrony Toolset builds the models of source SIGNALprograms with its associated model checker SIGALI. The open source tool Yosys generates models for target Verilog programs in the SMT-LIB standard format. We transform the model generated by Yosys to the model accepted by the SIGALI model checker. Finally, we use the SIGALI model checker to validate the translation by symbolic simulation between both source and target program models. The target program may have fewer behaviors than the source program therefore if the model of the target program implies the model of the source program, it means the target program preserves the semantics of the source program, and the translation is correct.10.1109/SKG49510.2019.00034https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129translation validation, embedded systems, Verilog, SIGNAL, SIGALI, Yosys, semanticsIEEE Inglês CI1 Incluído
NFA Based Formal Modeling of Smart Parking System Using TLA +S. Latif; A. Rehman; N. A. Zafar2019 The smart objects are used to sense, communicate, send and to share information within a network. Everything which is connected directly or indirectly within a network for the sake of getting, analyze or interpreting data known as IoT. There are many proposed applications of IoT infrastructure in smart city. We have proposed model of smart parking system in this paper which is based on UML, automata-based model and formal methods. The depiction of real-world parking system is done in UML based models to indicate the flow and working of the system. Automata models are used to convert UML diagram into automated system which provides smart mechanism of parking system. Automated model of automata is represented in terms of states and transitions. Every state has unique identity and defined functionality. There are many operations of parking system which are modeled in this paper including find free spaces, search shortest path towards empty slot, car entrance and exit with in a region. A region is an area of parking system which is automated and use to sense a vehicle, car entrance, exit or to find a location. The formal method techniques are used to formally verify system properties using available facilities available in formal method tools. We have used Temporal Logic of Actions (TLA+) formal language to validate and verify system properties using formal techniques. TLA+ is mathematical based notation to describe a system using discrete mathematics concepts. We have integrated these three approaches to model parking system from depiction side, automation side and from the angle of verification and validation of the model.10.1109/CISCT.2019.8777445https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445Parking;UML;Formal methods;Verification and validation;TLCIEEE Inglês CI1 Incluído
A Formal Methods Approach to Security Requirements Specification and VerificationQ. Rouland; B. Hamid; J. -P. Bodeveix; M. Filali2019 The specification and the verification of security requirements is one of the major computer-based systems challenges. Security requirements need to be precisely specified before a tool can manipulate them, and though several approaches to security requirements specification have been proposed, they do not provide the scalability and flexibility required in practice. We take this problem towards an integrated approach for security requirement specification and treatment during the software architecture design time. The general idea of the approach is to: (1) specify security requirements as properties of a modeled system in a technology-independent specification language; (2) implement the developed model in a suitable language with tool support for requirement satisfaction through model verification; and (3) suggest a set of security policies to constrain the operation of the system and to guarantee the security properties. In the scope of this paper, we use first-order logic as a formalism that is abstract and technology-independent and Alloy as a tooled language used in modeling and software development. To validate our work, we explore a set of representative security properties from categories based on CIA classification in the context of secure component-based software architecture development.10.1109/ICECCS.2019.00033https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749Engineering secure systems;Security properties;Formal methods;MetamodelIEEE Inglês CI1 Incluído
Conception of a formal model-based methodology to support railway engineers in the specification and verification of interlocking systemsG. Lukács; T. Bartha 2022 The use of formal modeling is gaining popularity in the development of safety-critical transport applications, in particular railway interlocking systems, due to its ability to specify the functionality of systems using mathematically precise logical rules. The goal of the research described here is to con-ceptualize a methodology that provides a specification/verification environment supporting the developers (domain engineers) in the construction and verification of formal specifications. The aim of the methodology is to decrease the need for mathematical-computer science background/knowledge at the system engineering level. The proposed approach includes a set of well-known and widely used methods, techniques, and tools to specify and verify the functionality related to the development of railway interlocking systems, such as structured and object-oriented formalisms (e.g., the Unified Modeling Language), model-driven development, model checking, etc. The application of the methodology facilitates the construction of correct, complete, consistent, and verifiable functional specifications of a given component. This in turn brings a significant improvement of quality, and distributes the development costs more evenly among the related life-cycle phases.10.1109/SACI55618.2022.9919532https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532railway applications;functionality;specification;model checking;computation tree logicIEEE Inglês CI1 Incluído
CyberGSN: A Semi-formal Language for Specifying Safety CasesT. A. Beyene; C. Carlan 2021 The use of safety cases to explicitly present safety considerations and decisions is a common practice in the safety-critical domain. A safety case can be used to scrutinize the safety assessment approach used by practitioners internally, or as an input for the certification process for an external certifying authority. However, safety cases are still created manually to explicate the followed safety assessment and assurance measures. In addition, although safety cases may be created in a modular way by multiple entities, and it may be critical for each entity to digitally sign its part of the assurance for accountability, the common notations are not expressive enough to include the notion of entity. Especially in cyber-security applications, the notion of entity is very critical. In this paper, we propose a formal logic based language called CyberGSN, with an explicit notion of entity, that can be used for specifying safety cases and safety case patterns, enabling the automated creation and maintenance of safety cases.10.1109/DSN-W52860.2021.00021https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448Safety Case;Pattern;Entity;DecentralizationIEEE Inglês CI1 Incluído
Formal Modeling and Verification of Autonomous Driving ScenarioB. Chen; T. Li 2021 There are abundant spatio-temporal data and dynamic stochastic behaviors in the autonomous driving scenario, which makes it full of challenges for the modeling and verification of the scenario. In this paper, we propose a Scenario Modeling Language (SCML) for autonomous driving. SCML can not only express the stochastic dynamic behaviors of autonomous driving but also abstract the primary objects and state transitions to model the autonomous driving scenario. Firstly, we propose the syntax and semantics of SCML. Then, we construct a metamodel of SCML and propose mapping rules to transform the SCML model into the Network of Stochastic Hybrid Automata (NSHA) model. According to the NSHA model, we use UPPAAL-SMC to verify the autonomous driving scenario. Finally, we use the forward-collision warning system to illustrate that the proposed approach can effectively model and verify the driving scenario.10.1109/ICICSE52190.2021.9404128https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128autonomous driving scenario modeling;SCML;NSHA;UPPAAL-SMC;formal verificationIEEE Inglês CI1 Incluído
An Educational Case Study of Using SysML and TTool for Unmanned Aerial Vehicles DesignL. Apvrille; P. de Saqui-Sannes; R. Vingerhoeds2020 This article shares an experience in using the systems modeling language (SysML) for the design and formal verification of unmanned aerial vehicles (UAVs). In particular, this article shows how our approach helps detecting early design errors. A UAV in charge of taking pictures serves as an educational and running example throughout this article. The SysML model of the UAV is simulated and formally verified using the free and open-source tool named TTool. This educational case study gives the authors of this article an opportunity to draw lessons from teaching SysML.10.1109/JMASS.2020.3013325https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801Educational case study;model formal verification;model simulation;systems modeling language (SysML);unmanned aerial vehicle (UAV)IEEE Inglês CI1 Incluído
Towards Facilitating the Exploration of Informal Concepts in Formal Modeling ToolsM. Gogolla; R. Clarisó; B. Selic; J. Cabot2021 This contribution proposes to apply informal ideas for model development within a formal tool. The basic idea is to relax the requirements expressed with particular modeling language elements and allow developers to dynamically customize the level of formality in a visual and intuitive way. For UML and OCL class models, the requirements for usual object typing, role typing, role multiplicity, attribute typing and constraint satisfaction are relaxed in order to achieve flexible object models. The long-term aim is to support flexible, iterative model development with qualified tool feedback.10.1109/MODELS-C53483.2021.00044https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627UML class model;UML object model;OCL constraint;flexible development processIEEE Inglês CI1 Incluído
Automatic Formal Model Generation from UML Diagrams – An Implementation ExperienceK. KH; S. Mansoor; S. G 2022 This paper discusses the implementation of a formal method integrated Unified Modeling Language (UML) modelling methodology for the verification of embedded software specifications. The methodology generates mathematically verifiable models, synergising UML visual models with formal methods. The implementation is carried out using Umbrello UML Modeller and Qt. It provides a Graphical User Interface-based tool and a model checking engine, integrated into Umbrello UML Modeller, which can interpret UML diagrams and generate a formal model automatically. The tool architecture has three distinct layers: the UML, Interface, and Formal layers; the Interface layer is the innovative one. GUI is developed for this layer, and all the actions associated with the Interface layer are made available through interactive menus and toolbars.10.1109/DELCON54057.2022.9753518https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518Computational Tree Logic;Formal Verification;Linear Temporal Logic;Property Specification;State Chart Diagram;State Transition Matrix;UML ModellingIEEE Inglês CI1 Incluído
The Post Language: Process-Oriented Extension for IEC 61131-3 Structured TextV. Bashev; I. Anureev; V. Zyubin2020 This paper introduces a new programming language for control software specification. The language called poST is a process-oriented extension of the IEC 61131-3 Structured Text language widely used in the PLC domain. The poST language enables control software specification as a set of interacting FSM-based processes that have event-driven behaviour and operate with time intervals. The language is intended to provide a possibility to use the process-oriented approach for IEC 61131-3 users and comparing to the other process-oriented languages poST is easy to learn for the IEC 61131-3 community. An IDE for poST was developed with Eclipse (Xtext) toolset. Paper illustrates the poST language using for a hand dryer control software: we provide the source poST code and the generated C code for Arduino (ATmega 168) platform.10.1109/RusAutoCon49822.2020.9208049https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049process-oriented programming;PLC languages;IEC 61131-3;Structured TextIEEE Inglês CI1 Incluído
The Formal Mechanism of the UML Model Based on SBOPNY. Xiaoling 2019 This paper introduces the State-Based Object Petri net, gives the definition, firing rule and analysis methods of the net. Based on aforementioned, state-based object petri net is chosen to formalize the UML and give the mechanism and corresponding algorithms that can be used to map state chart diagrams and the collaboration diagram of UML specification into state-based object petri net model in the early phase of UML modeling. The state-based object petri net model gotten by these algorithms not only is object-oriented but also can be analyzed and validated to find out deadlock with powerful Petri tools, thus the verification of the model in the early phase is can be realized.10.1109/ICSAI48974.2019.9010446https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446component;Object-Oriented;Petri Net;UML;State- Based Object Petri Net;formal mechanismIEEE Inglês CI1 Incluído
From Prose to Prototype: Synthesising Executable UML Models from Natural LanguageG. J. Ramackers; P. P. Griffioen; M. B. J. Schouten; M. R. V. Chaudron2021 This paper presents a vision for a development tool that provides automated support for synthesising UML models from requirements text expressed in natural language. This approach aims to simplify the process of analysis - i.e. moving from written (and spoken) descriptions of the functionality of a system and a domain to an executable specification of that system. The contribution focuses on the AI techniques used to transform natural language into structural and dynamic UML models. Moreover, we envision a ‘human-in-the-loop’ approach where an interactive conversational component is used based on machine learning of the system under construction and corpora of external natural language texts and UML models. To illustrate the approach, we present a tool prototype. As a scoping, this approach targets data-intensive systems rather than control-intensive (embedded) systems.10.1109/MODELS-C53483.2021.00061https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623UML;MDA;requirement text;natural language processing;model driven engineering;executable specification;transformer architectureIEEE Inglês CI1 Incluído
A Tool to Assist the Compiler Construction Instructor in Checking the Equivalence of Specifications Based on Regular ExpressionsR. Benito-Montoro; X. Chen; J. L. Sierra2021 This paper presents CheRegES (CHEcking REGular Expression-based Specifications), a tool that assists the Compiler Construction instructor in checking the equivalence of computer language lexical specifications based on regular expressions. The tool allows the comparison of a reference specification, provided by the instructor, with the specification proposed by the student. As a result, the tool can report that: (i) both specifications are equivalent (and, therefore, the specification proposed by the student can be considered correct); (ii) there are discrepancies between the specification proposed by the student and the one provided by the instructor (and, therefore, the specification proposed by the student can be considered incorrect); or (iii) the result of the comparison is inconclusive. Also, in case discrepancies are discovered, the tool provides sentences that allow differentiation between the two specifications, and that help the instructor to diagnose the problems underlying the student’s specification. The paper motivates the need for the tool, describes its functionality, briefly summarizes its internals, and presents a preliminary evaluation of the tool that makes the usefulness of CheRegES as a tool to support assessment in Compiler Construction courses apparent.10.1109/SIIE53363.2021.9583625https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625Assessment Tool;Lexical Specifications;Compiler Construction;Regular Expressions;Computer Science EducationIEEE Inglês CI1 Incluído
XML-Based Video Game Description LanguageJ. R. Quiñones; A. J. Fernández-Leiva2020 This paper presents the XML-based Video Game Description Language (XVGDL), a new language for specifying Video games which is based on the Extensible Markup Language (XML). The proposal is portable and extensible, and allows games to not only be defined at engine level but also includes specific features that can lead the game design process whilst simultaneously reducing the gap between game specification and its corresponding game implementation. XVGDL is as generic as possible, making it possible to describe different genres of games. This paper focuses on presenting the basis of the language. The paper describes the syntax as well as the components of XVGDL, and provides examples of their use. Defining games via XML structures provides all the advantages of the management of XML files and opens up interesting lines of research. Our proposal provides a number of novel features. So, XVGDL game definitions can be managed as any other XML file, which means that it can be automatically handled by any XML file management software. Another interesting feature is that XVGDL can specify game components (e.g., game Artificial), in-game processes (e.g., the procedural generation of maps) or in-game events (e.g., the checking of the conditions to end a game match) via the association with external (possibly non-XML) files. Moreover, XVGDL files can be easily validated as any XML file what means that validations against a particular Document Type Definition (DTD) or XML Schema Definition (XSD) are possible. In addition, the paper presents a first prototype implementation of a (text-based) interpreter that allows XVGDL game specifications as a playable game to be executed. This tool not only validates our proposal but also represents a first step towards smoothing the path to obtaining an executable version of a game from its game specification.10.1109/ACCESS.2019.2962969https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249Video game description language;extensible markup language;XML;game design;game toolsIEEE Inglês CI1 Incluído
Symbolic Execution based Verification of Compliance with the ISO 26262 Functional Safety StandardM. Ahmed; M. Safar 2019 This paper proposes a new technique for verifying the compliance of AUTOSAR software with the ISO26262 functional safety standard. A framework is presented which formally verifies that a given implemented AUTOSAR software fulfils high risk Automotive Safety Integrity Level (ASIL) C and D requirements. The framework exploits the power of symbolic execution to uncover defects early in the design stage. The efficacy of the framework is demonstrated on the AUTOSAR watchdog manager and watchdog interface modules.10.1109/DTIS.2019.8735046https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046Symbolic Execution;ISO-26262;Automotive Functional Safety;Formal Verification;AUTOSAR Watchdog ModulesIEEE Inglês CI1 Incluído
On How Bit-Vector Logic Can Help Verify LTL-Based SpecificationsM. M. P. Kallehbasti; M. Rossi; L. Baresi2022 This paper studies how bit-vector logic (bv logic) can help improve the efficiency of verifying specifications expressed in Linear Temporal Logic (LTL). First, it exploits the notion of Bounded Satisfiability Checking to propose an improved encoding of LTL formulae into formulae of bv logic, which can be formally verified by means of Satisfiability Modulo Theories (SMT) solvers. To assess the gain in efficiency, we compare the proposed encoding, implemented in our tool $\mathbb {Z}$Zot, against three well-known encodings available in the literature: the classic bounded encoding and the optimized, incremental one, as implemented in both NuSMV and nuXmv, and the encoding optimized for metric temporal logic, which was the “standard” implementation provided by $\mathbb {Z}$Zot. We also compared the newly proposed solution against five additional efficient algorithms proposed by nuXmv, which is the state-of-the-art tool for verifying LTL specifications. The experiments show that the new encoding provides significant benefits with respect to existing tools. Since the first set of experiments only used Z3 as SMT solver, we also wanted to assess whether the benefits were induced by the specific solver or were more general. This is why we also embedded different SMT solvers in $\mathbb {Z}$Zot. Besides Z3, we also carried out experiments with CVC4, Mathsat, Yices2, and Boolector, and compared the results against the first and second best solutions provided by either NuSMV or nuXmv. Obtained results witness that the benefits of the bv logic encoding are independent of the specific solver. Bv logic-based solutions are better than traditional ones with only a few exceptions. It is also true that there is no particular SMT solver that outperformed the others. Boolector is often the best as for memory usage, while Yices2 and Z3 are often the fastest ones.10.1109/TSE.2020.3014394https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928Formal methods;linear temporal logic;bounded satisfiability checking;bit-vector logicIEEE Inglês CI1 Incluído
Assertion Based Design of Timed Finite State MachineA. Shkil; A. Miroshnyk; G. Kulak; K. Pshenychnyi2021 This work is dedicated to assertion-based verification of real time logic control systems that are specified by a state diagram with state looping and implemented by hardware description language. The proposed method is based on the assertion apparatus that is used to describe the temporal nature of the timed FSM properties.10.1109/EWDTS52692.2021.9581046https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046timed finite state machine;HDL-model;assertion-based design;SystemVerilog;formal verification;SystemVerilog AssertionsIEEE Inglês CI1 Incluído
A Rule-Based Language for Configurable N-way Model MatchingM. -S. Kasaei; M. Sharbaf; B. Zamani2022 To build complex software-intensive systems, different stakeholders from diverse domains must collaborate to create and modify models. Model matching is a fundamental precondition of collaborative development, which is concerned with identifying common elements in input models. When stakeholders work on multiple models, they need to simultaneously compare all models to better understand differences and similarities. However, the literature shows no consensus on how to specify comparison criteria for matching multiple models, especially in a form that is independent of modeling language, which hampers their reuse and adoption. In this paper, we present a rule-based formalism that enables the user to specify their comparison criteria for multiple models at a high level of abstraction. We also introduce an N-way matching algorithm for comparing both homogeneous and heterogeneous models. As the tool support, we implemented a syntax-aware editor and a parser for specifying comparison rules for EMF-based models. The evaluation of our formalism shows that it is applicable in real modeling scenarios.10.1109/ICCKE57176.2022.9960014https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014Model Comparison;N-way Matching;Formal Specification Language;Model-Driven EngineeringIEEE Inglês CI1 Incluído
Certified Embedding of B Models in an Integrated Verification FrameworkA. Halchin; Y. Ait-Ameur; N. K. Singh; A. Feliachi; J. Ordioni2019 To check the correctness of heterogeneous models of a complex critical system is challenging to meet the certification standard. Such guarantee can be provided by embedding the heterogeneous models into an integrated modelling framework. This work is proposed in the B-PERFect project of RATP (Parisian Public Transport Operator and Maintainer), it aims to apply formal verification using the PERF approach on the integrated safety-critical software related to railway domain expressed in a single modelling language: HLL. This paper presents a certified translation from B formal language to HLL. The proposed approach uses HOL as a unified logical framework to describe the formal semantics and to formalize the translation relation of both languages. The developed Isabelle/HOL models are proved in order to guarantee the correctness of our translation process. Moreover, we have also used weak-bisimulation relation to check the correctness of translation steps. The overall approach is illustrated through a case study issued from a railway software system: onboard localization function. Furthermore, it discusses the integrated verification at system level.10.1109/TASE.2019.000-4https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050Formal Semantics, B to HLL Translation Validation, Theorem Proving, Model AnimationIEEE Inglês CI1 Incluído
Formally Verifying Sequence Diagrams for Safety Critical SystemsX. Chen; F. Mallet; X. Liu 2020 UML interactions, aka sequence diagrams, are frequently used by engineers to describe expected scenarios of good or bad behaviors of systems under design, as they provide allegedly a simple enough syntax to express a quite large variety of behaviors. This paper uses them to express formal safety requirements for safety critical systems in an incremental way, where the scenarios are progressively refined after checking the consistency of the requirements. As before, the semantics of these scenarios are expressed by transforming them into an intermediate semantic model amenable to formal verification. We rely on the Clock Constraint Specification Language (CCSL) as the intermediate semantic language. An SMT-based analysis tool called MyCCSL is used to check consistency of the sequence diagrams. We compare these requirements against actual execution traces to prove the validity of our transformation. In some sense, sequence diagrams and CCSL constraints both express a family of acceptable infinite traces that must include the behaviors given by the finite set of finite execution traces against which we validate. Finally, the whole process is illustrated on partial requirements for a railway transit system.10.1109/TASE49443.2020.00037https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319Safety Critical Systems;Sequence Diagram;Clock Constraint Specification Language;Formal Verification;Safety RequirementsIEEE Inglês CI1 Incluído
Automated Goal Model Extraction from User Stories Using NLPT. Güneş; F. B. Aydemir 2020 User stories are commonly used to capture user needs in agile methods due to their ease of learning and understanding. Yet, the simple structure of user stories prevents us from capturing relations among them. Such relations help the developers to better understand and structure the backlog items derived from the user stories. One solution to this problem is to build goal models that provide explicit relations among goals but require time and effort to build. This paper presents a pipeline to automatically generate a goal model from a set of user stories by applying natural language processing (NLP) techniques and our initial heuristics to build realistic goal models. We first parse and identify the dependencies in the user stories, and store the results in a graph database to maintain the relations among the roles, actions, and objects mentioned in the set of user stories. By applying NLP techniques and several heuristics, we generate goal models that resemble human-built models. Automatically generating models significantly decreases the time spent on this tedious task. Our research agenda includes calculating the similarity between the automatically generated models and the expert-built models. Our overarching research goals are to provide i. an NLP-powered framework that generates goal models from a set of user stories, ii. several heuristics to generate goal models that resemble human-built models, and iii. a repository that includes sets of user stories, with corresponding human-built and automatically generated goal models.10.1109/RE48521.2020.00052https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185natural language processing;requirements engineering;model driven development;user stories;agile development;goal modelsIEEE Inglês CI1 Incluído
ArTu: A Tool for Generating Goal Models from User StoriesT. Günes; C. A. Öz; F. B. Aydemir2021 User stories are widely used to capture the desires of the users in agile development. A set of user stories is easy to read and write but incapable of representing the hierarchical relations and synergies among the user stories. By contrast, goal models are uncommon in industrial projects however they can express the structure and other relations among requirements captured as goals. This paper presents ArTu, a tool for generating goal models from user stories to effortlessly benefit from both. Given a set of user stories, our tool generates goal models with different structures depending on the heuristic selected by the user. Users can import, edit, and export model data in different formats.10.1109/RE51729.2021.00058https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615requirements engineering;model–driven development;user stories;agile development;goal models;natural language processingIEEE Inglês CI1 Incluído
Scenario-based Requirements Engineering for Complex Smart City ProjectsC. Wiecher; P. Tendyra; C. Wolff2022 Various stakeholders with different backgrounds are involved in Smart City projects. These stake-holders define the project goals, e.g., based on participative approaches, market research or innovation management processes. To realize these goals often complex technical solutions must be designed and implemented. In practice, however, it is difficult to synchronize the technical design and implementation phase with the definition of moving Smart City goals. We hypothesize that this is due to a lack of a “common language” for the different stakeholder groups and the technical disciplines. We address this problem with scenario-based requirements engineering techniques. In particular, we use scenarios at different levels of abstraction and formalization that are connected end-to-end by appropriate methods and tools. This enables fast feedback loops to iteratively align technical requirements, stakeholder expectations, and Smart City goals. We demonstrate the applicability of our approach in a case study with different industry partners.10.1109/E-TEMS53558.2022.9944441https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441Systems Engineering;Requirements Engineering;Project Management;Innovation ManagementIEEE Inglês CI1 Incluído
Verification of a Rule-Based Expert System by Using SAL Model CheckerM. U. Siregar; S. Abriani 2019 Verification of a rule-based expert system ensures that the knowledge base of the expert system is logically correct and consistent. Application of verification into a rule-based expert system is one approach to integrate software engineering methodology and knowledge base system. The expert system, which we has built, is a rule-based system developed by using forward chaining method and Dempster-Shafer theory of belief functions or evidence. We use Z language as the modelling language for this expert system and SAL model checker as the verification tool. To be able to use SAL model checker, Z2SAL will translate the Z specification, which models the system. In this paper, we present some parts of our Z specification that represent some parts of our rule-based expert system. We also present some parts of our SAL specification and theorems that we added to this SAL specification. At the last, we present the usage of SAL model checker over these theorems. Based on these model-checking processes, we argue that the results are expected. This means that each of theorems can be model checked and the outputs of those model checking are the same as the outputs that we obtain from manual investigation; either it is VALID or INVALID. Other interpretation of the model check's results is some parts of our rule-based expert system have been verified.10.1109/ICICoS48119.2019.8982426https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426verification;expert system;rule-based system;Z2SAL;SAL model checkerIEEE Inglês CI1 Incluído
A Methodology for Developing a Verifiable Aircraft Engine Controller from Formal RequirementsM. Luckcuck; M. Farrell; O. Sheridan; R. Monahan2022 Verification of complex, safety-critical systems is a significant challenge. Manual testing and simulations are often used, but are only capable of exploring a subset of the system's reachable states. Formal methods are mathematically-based techniques for the specification and development of software, which can provide proofs of properties and exhaustive checks over a system's state space. In this paper, we present a formal requirements-driven methodology, applied to a model of an aircraft engine controller that has been provided by our industrial partner. Our methodology begins by formalising the controller's natural-language requirements using the (pre-existing) Formal Requirements Elicitation Tool (FRET), iteratively, in consultation with our industry partner. Once formalised, FRET can automatically translate the requirements to enable their verification alongside a Simulink model of the aircraft engine controller; the requirements can also guide formal verification using other approaches. These two parallel streams in our methodology seek to combine the results from formal requirements elicitation, classical verification approaches, and runtime verification; to support the verification of aerospace systems modelled in Simulink, from the requirements phase through to execution. Our methodology harnesses the power of formal methods in a way that complements existing verification techniques, and supports the traceability of requirements throughout the verification process. This methodology streamlines the process of developing verifiable aircraft engine controllers, by ensuring that the requirements are formalised up-front and useable during development. In this paper we give an overview of FRET, describe our methodology and work to-date on the formalisation and verification of the requirements, and outline future work using our methodology.10.1109/AERO53065.2022.9843589https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589- IEEE Inglês CI1 Incluído
CROME: Contract-Based Robotic Mission SpecificationP. Mallozzi; P. Nuzzo; P. Pelliccione; G. Schneider2020 We address the problem of automatically constructing a formal robotic mission specification in a logic language with precise semantics starting from an informal description of the mission requirements. We present CROME (Contract-based RObotic Mission spEcification), a framework that allows capturing mission requirements in terms of goals by using specification patterns, and automatically building linear temporal logic mission specifications conforming with the requirements. CROME leverages a new formal model, termed Contract-based Goal Graph (CGG), which enables organizing the requirements in a modular way with a rigorous compositional semantics. By relying on the CGG, it is then possible to automatically: i) check the feasibility of the overall mission, ii) further refine it from a library of pre-defined goals, and iii) synthesize multiple controllers that implement different parts of the mission at different abstraction levels, when the specification is realizable. If the overall mission is not realizable, CROME identifies mission scenarios, i.e., sub-missions that can be realizable. We illustrate the effectiveness of our methodology and supporting tool on a case study.10.1109/MEMOCODE51338.2020.9315065https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065- IEEE Inglês CI1 Incluído
Automated Assertion Generation from Natural Language SpecificationsS. J. Frederiksen; J. Aromando; M. S. Hsiao2020 We explore contemporary natural language processing (NLP) techniques for converting NL specifications found in design documents directly to an temporal logic-like intermediate representation (IR). Generally, attempts to use NLP for assertion generation have relied on restrictive sentence formats and grammars as well as being difficult to handle new sentence formats. We tackle these issues by first implementing a system that uses commonsense mappings to process input sentences into a normalized form. Then we use frame semantics to convert the normalized sentences into an IR based on the information and context contained in the Frames. Through this we are able to handle a large number of sentences from real datasheets allowing for complex formats using temporal conditions, property statements, and compound statements; all order agnostic. Our system can also be easy extended by modifying an external, rather than internal, commonsense knowledge-base to handle new sentence formats without requiring code changes or intimate knowledge of the algorithms used.10.1109/ITC44778.2020.9325264https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264NLP;Verification;Specification IEEE Inglês CI1 Incluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264

Formal UML-based Modeling and Analysis for Securing Location-based IoT ApplicationsH. Cardenas; R. Zimmerman; A. R. Viesca; M. Al Lail; A. J. Perez2022 We present a process and a tool to apply formal methods in Internet of Things (IoT) applications using the Unified Modeling Language (UML). As there are no best practices to develop secured IoT systems, we have developed a plug-in tool that integrates a framework to validate UML software models and we present the design of a location-based IoT application as a use case for the validation tool.10.1109/MASS56207.2022.00109https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521UML;Formal methods;Security;Internet of ThingsIEEE Inglês CI1 Incluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521

TÍTULO AUTORES ANO RESUMO DOI PDF LINK PALAVRAS-CHAVE FONTE DE BUSCA IDIOMA CRITÉRIOS STATUS
JGuard: Programming Misuse-Resilient APIsBinder S,Narasimhan K,Kernig S,Mezini M2022 APIs provide access to valuable features, but studies have shown that they are hard to use correctly. Misuses of these APIs can be quite costly. Even though documentations and usage manuals exist, developers find it hard to integrate these in practice. Several static and dynamic analysis tools exist to detect and mitigate API misuses. But it is natural to wonder if APIs can be made more difficult to misuse by capturing the knowledge of domain experts (, API designers). Approaches like CogniCrypt have made inroads into this direction by offering API specification languages like CrySL which are then consumed by static analysis tools. But studies have shown that developers do not enjoy installing new tools into their pipeline. In this paper, we present jGuard, an extension to Java that allows API designers to directly encode their specifications while implementing their APIs. Code written in jGuard is then compiled to regular Java with the checks encoded as exceptions, thereby making sure the API user does not need to install any new tooling. Our evaluation shows that jGuard can be used to express the most commonly occuring misuses in practice, matches the accuracy of state of the art in API misuse detection tools, and introduces negligible performance overhead.10.1145/3567512.3567526https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526DSL, API, Java ACM Inglês CI1 Incluído
A Deep Reinforcement Learning Framework with Formal VerificationBoudi Z,Wakrime AA,Toub M,Haloua M2023 Artificial Intelligence (AI) and data are reshaping organizations and businesses. Human Resources (HR) management and talent development make no exception, as they tend to involve more automation and growing quantities of data. Because this brings implications on workforce, career transparency, and equal opportunities, overseeing what fuels AI and analytical models, their quality standards, integrity, and correctness becomes an imperative for those aspiring to such systems. Based on an ontology transformation to B-machines, this article presents an approach to constructing a valid and error-free career agent with Deep Reinforcement Learning (DRL). In short, the agent's policy is built on a framework we called Multi State-Actor (MuStAc) using a decentralized training approach. Its purpose is to predict both relevant and valid career steps to employees, based on their profiles and company pathways (observations). Observations can comprise various data elements such as the current occupation, past experiences, performance, skills, qualifications, and so on. The policy takes in all these observations and outputs the next recommended career step, in an environment set as the combination of an HR ontology and an Event-B model, which generates action spaces with respect to formal properties. The Event-B model and formal properties are derived using OWL to B transformation.10.1145/3577204 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204Formal Verification, Safe RL, Model Transformation, AI Control, Safe AI, Atelier B, Event-BACM Inglês CI1 Incluído
Reachability Analysis of Cost-Reward Timed Automata for Energy Efficiency SchedulingWang W,Dong G,Deng Z,Zeng G,Liu W,Xiong H2018 As the ongoing scaling of semiconductor technology causing severe increase of on-chip power density in microprocessors, this leads for urgent requirement for power management during each level of computer system design. In this paper, we describe an approach for solving the general class of energy optimal task graph scheduling problems using cost-reward timed automata. We propose a formal technique based on model checking using extended timed automata to solve the processor frequency assignment problem in an energy-constrained multitasking system. To handle the problem of state space explosion in symbolic model checking, we also provide an efficient zone-based algorithm for minimum-cost reachability. Our approach is capable of finding efficient solutions under various constraints and applicable to other problem variants as well. Experimental results demonstrate the usefulness and effectiveness of our approach.10.1145/2560683.2560695https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695Model Checking, Real-time scheduling, DVS, Timed automata, Energy efficiencyACM Inglês CI1 Incluído
Integration of Formal Proof into Unified Assurance Cases with Isabelle/SACMFoster S,Nemouchi Y,Gleirscher M,Wei R,Kelly T2021 Assurance cases are often required to certify critical systems. The use of formal methods in assurance can improve automation, increase confidence, and overcome errant reasoning. However, assurance cases can never be fully formalised, as the use of formal methods is contingent on models that are validated by informal processes. Consequently, assurance techniques should support both formal and informal artifacts, with explicated inferential links between them. In this paper, we contribute a formal machine-checked interactive language, called Isabelle/SACM, supporting the computer-assisted construction of assurance cases compliant with the OMG Structured Assurance Case Meta-Model. The use of Isabelle/SACM guarantees well-formedness, consistency, and traceability of assurance cases, and allows a tight integration of formal and informal evidence of various provenance. In particular, Isabelle brings a diverse range of automated verification techniques that can provide evidence. To validate our approach, we present a substantial case study based on the Tokeneer secure entry system benchmark. We embed its functional specification into Isabelle, verify its security requirements, and form a modular security case in Isabelle/SACM that combines the heterogeneous artifacts. We thus show that Isabelle is a suitable platform for critical systems assurance.10.1007/s00165-021-00537-4https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4Assurance cases, Safety cases, Integrated formal methods, Common criteria, Proof assistantsACM Inglês CI1 Incluído
StaBL: Statecharts with Local VariablesChakrabarti SK,Venkatesan K2020 Complexity of specification models of the present day have started becoming non-trivial. Hence, there is a need to evolve existing specification languages to support writing specifications following good coding practices such as incremental development and modularisation. Statechart is a modelling notation that has wide acceptance in the industry. To the best of our knowledge all current implementations of Statecharts have one common shortcoming: all Statechart variables are global. Global variables in a specification can lead to monolithic and fragile models which are hard to maintain and reuse.In this paper, we introduce local variables in Statecharts, motivate their use through illustrative examples, formalise their semantics, and analyse their interaction with basic Statechart features like hierarchical states, transitions and history. We have implemented this Statechart variant with local variables in a specification language called StaBL. Our case studies demonstrate significant improvement in modularity in models with local variable w.r.t those without local variables.10.1145/3385032.3385040https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040- ACM Inglês CI1 Incluído
Tools for Disambiguating RFCsYen J,Govindan R,Raghavan B2021 For decades, drafting Internet protocols has taken significant amounts of human supervision due to the fundamental ambiguity of natural language. Given such ambiguity, it is also not surprising that protocol implementations have long exhibited bugs. This pain and overhead can be significantly reduced with the help of natural language processing (NLP).We recently applied NLP to identify ambiguous or under-specified sentences in RFCs, and to generate protocol implementations automatically when the ambiguity is clarified. However this system is far from general or deployable. To further reduce the overhead and errors due to ambiguous sentences, and to improve the generality of this system, much work remains to be done. In this paper, we consider what it would take to produce a fully-general and useful system for easing the natural-language challenges in the RFC process.10.1145/3472305.3472314https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314natural language, protocol specifications ACM Inglês CI1 Incluído
New Opportunities for Integrated Formal MethodsGleirscher M,Foster S,Woodcock J2019 Formal methods have provided approaches for investigating software engineering fundamentals and also have high potential to improve current practices in dependability assurance. In this article, we summarise known strengths and weaknesses of formal methods. From the perspective of the assurance of robots and autonomous systems (RAS), we highlight new opportunities for integrated formal methods and identify threats to the adoption of such methods. Based on these opportunities and threats, we develop an agenda for fundamental and empirical research on integrated formal methods and for successful transfer of validated research to RAS assurance. Furthermore, we outline our expectations on useful outcomes of such an agenda.10.1145/3357231 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231threats, robots and autonomous systems, SWOT, opportunities, weaknesses, integration, strengths, research agenda, unification, challenges, Formal methodsACM Inglês CI1 Incluído
Unifying Separation Logic and Region Logic to Allow InteroperabilityBao Y,Leavens GT,Ernst G2018 Framing is important for specification and verification, especially in programs that mutate data structures with shared data, such as DAGs. Both separation logic and region logic are successful approaches to framing, with separation logic providing a concise way to reason about data structures that are disjoint, and region logic providing the ability to reason about framing for shared mutable data. In order to obtain the benefits of both logics for programs with shared mutable data, this paper unifies them into a single logic, which can encode both of them and allows them to interoperate. The new logic thus provides a way to reason about program modules specified in a mix of styles.10.1007/s00165-018-0455-5https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5Formal verification, Separation logic, Unified fine-grained region logic (UFRL), Framing, Fine-grained region logic, Formal specification, Shared mutable data, Hoare logicACM Inglês CI1 Incluído
Bounded Verification of State Machine ModelsKahani N,Cordy JR 2020 In this work, we propose a bounded verification approach for state machine (SM) models that is independent of any model checking tools. This independence is achieved by encoding the execution semantics of SM models as Satisfiability Modulo Theories (SMT) formulas that reduce the verification of a SM to the satisfiability problem for its corresponding formula. More specifically, our approach takes as input a SM model, a depth bound, and the system properties (as invariants), and then automatically verifies models of systems in a three-phase process: (1) First it generates all possible execution paths of the model to the specified bound, and encodes each of the execution paths as SMT formulas; (2) It then augments the SMT formulas with the negation of the given invariants; and (3) Finally, it uses an SMT solver to check the satisfiability of the instrumented formula. We have applied our approach in the context of UML-RT (the UML profile for modeling real-time embedded systems) and assessed the applicability, performance, and scalability of our approach using several case studies.10.1145/3419804.3420263https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263State Machine, Bounded Verification, MDE, MDDACM Inglês CI1 Incluído
Model-Checking Legal Contracts with SymboleoPCParvizimosaed A,Roveri M,Rasti A,Amyot D,Logrippo L,Mylopoulos J2022 Legal contracts specify requirements for business transactions. As any other requirements specification, contracts may contain errors and violate properties expected by contracting parties. Symboleo was recently proposed as a formal specification language for legal contracts. This paper presents SymboleoPC, a tool for analyzing Symboleo contracts using model checking. It highlights the architecture, implementation and testing of the tool, as well as a scalability evaluation with respect to the size of contracts and properties to be checked through a series of experiments. The results suggest that SymboleoPC can be usefully applied to the analysis of formal specifications of contracts with real-life sizes and structures.10.1145/3550355.3552449https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449legal contracts, model checking, nuXmv, performance analysis, smart contracts, software requirements specifications, formal specification languagesACM Inglês CI1 Incluído
Toward Verified Artificial IntelligenceSeshia SA,Sadigh D,Sastry SS2022 Making AI more trustworthy with a formal methods-based approach to AI system verification and validation.10.1145/3503914 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914- ACM Inglês CI1 Incluído
Verification of Railway Network Models with EVERESTMartins J,Fonseca JM,Costa R,Campos JC,Cunha A,Macedo N,Oliveira JN2022 Models - at different levels of abstraction and pertaining to different engineering views - are central in the design of railway networks, in particular signalling systems. The design of such systems must follow numerous strict rules, which may vary from project to project and require information from different views. This renders manual verification of railway networks costly and error-prone.This paper presents EVEREST, a tool for automating the verification of railway network models that preserves the loosely coupled nature of the design process. To achieve this goal, EVEREST first combines two different views of a railway network model - the topology provided in signalling diagrams containing the functional infrastructure, and the precise coordinates of the elements provided in technical drawings (CAD) - in a unified model stored in the railML standard format. This railML model is then verified against a set of user-defined infrastructure rules, written in a custom modal logic that simplifies the specification of spatial constraints in the network. The violated rules can be visualized both in the signalling diagrams and technical drawings, where the element(s) responsible for the violation are highlighted.EVEREST is integrated in a long-term effort of EFACEC to implement industry-strong tools to automate and formally verify the design of railway solutions.10.1145/3550355.3552439https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439formal infrastructure rule specification, railway engineering, railway network model verification, railMLACM Inglês CI1 Incluído
Towards Verified Self-Driving InfrastructureLiu B,Kheradmand A,Caesar M,Godfrey PB2020 Modern self-driving'' service infrastructures consist of a diverse collection of distributed control components providing a broad spectrum of application- and network-centric functions. The complex and non-deterministic nature of these interactions leads to failures, ranging from subtle gray failures to catastrophic service outages, that are difficult to anticipate and repair.Our goal is to call attention to the need for formal understanding of dynamic service infrastructure control. We provide an overview of several incidents reported by large service providers as well as issues in a popular orchestration system, identifying key characteristics of the systems and their failures. We then propose a verification approach in which we treat abstract models of control components and the environment as parametric transition systems and leverage symbolic model checking to verify safety and liveness properties, or propose safe configuration parameters. Our preliminary experiments show that our approach is effective in analyzing complex failure scenarios with acceptable performance overhead.10.1145/3422604.3425949https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949verification, parameter synthesis, service infrastructure control, self-driving infrastructure, symbolic model checkingACM Inglês CI1 Incluído
Bigraphical Modelling and Design of Multi-Agent SystemsDib AT,Maamri R 2021 Multi-agent systems are recognized as a major area of distributed artificial intelligence. In fact, MAS have found multiple applications, including the design and development of complex, hierarchical and critical systems. However, ensuring the accuracy of complex interactions and the correct execution of activities of a MAS is becoming a tedious task. In this work, we focus on the formal specification of interaction, holonic and sociotechnical concepts to the BRS-MAS model. The proposed approach, is based on Bigraphical reactive systems. Bigraphs, provide means to specify at same time locality and connectivity of different type of system ranging from soft systems to cyber physical systems. In addition, to its intuitive graphical representation, it provides algebraic definition. This, makes the resulted specifications more precise. Further, it enables the verification of the specified system at the design time (before the implementation) using verification tools.10.1145/3467707.3467762https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762Computing methodologies, Holonic, Algebraic language theory, Multi-agent system, Formal specification, Theory of computationACM Inglês CI1 Incluído
Cerberus: Query-Driven Scalable Vulnerability Detection in OAuth Service Provider ImplementationsRahat TA,Feng Y,Tian Y 2022 OAuth protocols have been widely adopted to simplify user authentication and service authorization for third-party applications. However, little effort has been devoted to automatically checking the security of the libraries that service providers widely use. In this paper, we formalize the OAuth specifications and security best practices, and design Cerberus, an automated static analyzer, to find logical flaws and identify vulnerabilities in the implementation of OAuth service provider libraries. To efficiently detect security violations in a large codebase of service provider implementation, Cerberus employs a query-driven algorithm for answering queries about OAuth specifications. We demonstrate the effectiveness of Cerberus by evaluating it on datasets of popular OAuth libraries with millions of downloads. Among these high-profile libraries, Cerberus has identified 47 vulnerabilities from ten classes of logical flaws, 24 of which were previously unknown. We got acknowledged by the developers of eight libraries and had three accepted CVEs.10.1145/3548606.3559381https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381vulnerability detection, authorization attacks, oauth security, static analysis, automata theory, automated analysisACM Inglês CI1 Incluído
Verification of Distributed Systems via Sequential EmulationDi Stefano L,De Nicola R,Inverso O2022 Sequential emulation is a semantics-based technique to automatically reduce property checking of distributed systems to the analysis of sequential programs. An automated procedure takes as input a formal specification of a distributed system, a property of interest, and the structural operational semantics of the specification language and generates a sequential program whose execution traces emulate the possible evolutions of the considered system. The problem as to whether the property of interest holds for the system can then be expressed either as a reachability or as a termination query on the program. This allows to immediately adapt mature verification techniques developed for general-purpose languages to domain-specific languages, and to effortlessly integrate new techniques as soon as they become available. We test our approach on a selection of concurrent systems originated from different contexts from population protocols to models of flocking behaviour. By combining a comprehensive range of program verification techniques, from traditional symbolic execution to modern inductive-based methods such as property-directed reachability, we are able to draw consistent and correct verification verdicts for the considered systems.10.1145/3490387 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387Concurrency, semantics-based verification, termination, distribution, sequentialization, process algebra, domain-specific languages, program verification, reachability, structural operational semanticsACM Inglês CI1 Incluído
A Solicitous Approach to Smart Contract VerificationOtoni R,Marescotti M,Alt L,Eugster P,Hyvärinen A,Sharygina N2023 Smart contracts are tempting targets of attacks, as they often hold and manipulate significant financial assets, are immutable after deployment, and have publicly available source code, with assets estimated in the order of millions of dollars being lost in the past due to vulnerabilities. Formal verification is thus a necessity, but smart contracts challenge the existing highly efficient techniques routinely applied in the symbolic verification of software, due to specificities not present in general programming languages. A common feature of existing works in this area is the attempt to reuse off-the-shelf verification tools designed for general programming languages. This reuse can lead to inefficiency and potentially unsound results, as domain translation is required. In this article, we describe a carefully crafted approach that directly models the central aspects of smart contracts natively, going from the contract to its logical representation without intermediary steps. We use the expressive and highly automatable logic of constrained Horn clauses for modeling and instantiate our approach to the Solidity language. A tool implementing our approach, called Solicitous, was developed and integrated into the SMTChecker module of the Solidity compiler solc. We evaluated our approach on an extensive benchmark set containing 22,446 real-world smart contracts deployed on the Ethereum blockchain over a 27-month period. The results show that our approach is able to establish safety of significantly more contracts than comparable, publicly available verification tools, with an order of magnitude increase in the percentage of formally verified contracts.10.1145/3564699 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699Smart contracts, direct modeling, vulnerability detectionACM Inglês CI1 Incluído
Dargent: A Silver Bullet for Verified Data Layout RefinementChen Z,Lafont A,O'Connor L,Keller G,McLaughlin C,Jackson V,Rizkallah C2023 Systems programmers need fine-grained control over the memory layout of data structures, both to produce performant code and to comply with well-defined interfaces imposed by existing code, standardised protocols or hardware. Code that manipulates these low-level representations in memory is hard to get right. Traditionally, this problem is addressed by the implementation of tedious marshalling code to convert between compiler-selected data representations and the desired compact data formats. Such marshalling code is error-prone and can lead to a significant runtime overhead due to excessive copying. While there are many languages and systems that address the correctness issue, by automating the generation and, in some cases, the verification of the marshalling code, the performance overhead introduced by the marshalling code remains. In particular for systems code, this overhead can be prohibitive. In this work, we address both the correctness and the performance problems. We present a data layout description language and data refinement framework, called Dargent, which allows programmers to declaratively specify how algebraic data types are laid out in memory. Our solution is applied to the Cogent language, but the general ideas behind our solution are applicable to other settings. The Dargent framework generates C code that manipulates data directly with the desired memory layout, while retaining the formal proof that this generated C code is correct with respect to the functional semantics. This added expressivity removes the need for implementing and verifying marshalling code, which eliminates copying, smoothens interoperability with surrounding systems, and increases the trustworthiness of the overall system.10.1145/3571240 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240certifying compiler, data refinement, systems programmingACM Inglês CI1 Incluído
Using UML Activity Diagram for Adapting Experiments under a Virtual Laboratory EnvironmentSypsas A,Kalles D 2021 The development of a system model can be an extremely complex process. A common approach to modeling system behavior uses activity diagrams (AD) in Unified Modeling Language (UML), which, however, do not support the formal analysis that is possible when using formal languages such as Petri Nets (PN). In this paper, we show how a model describing an experiment in a Virtual Laboratory and represented by an AD can be transformed into an equivalent PN. Then, the model represented as a PN can be readily compared to a model of a similar experiment used in another educational setting, in order to decide the extent to which it can be reused.10.1145/3437120.3437267https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267Petri nets, Activity Diagram, Virtual laboratoryACM Inglês CI1 Incluído
A Model Checkable UML Soccer PlayerBesnard V,Teodorov C,Jouault F,Brun M,Dhaussy P2021 This paper presents a UML implementation of the MDETools'19 challenge problem with EMI (our Embedded/Experimental Model Interpreter). EMI is a model interpreter that can be used to execute, simulate, and formally verify UML models on host or embedded targets. The tool's main specificity relies on a single implementation of the language semantics such that consistency is ensured between all development phases: from design to verification and execution activities. Using this approach, we have succeeded in (i) designing a UML model for the challenge problem, (ii) applying formal verification using model-checking on the design model, and (iii) executing this model in order to participate in the challenge.10.1109/MODELS-C.2019.00035https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035UML, model-driven engineering, tool ACM Inglês CI1 Incluído
SPARK by Example: An Introduction to Formal Verification through the Standard C++ LibraryCreuse L,Huguet J,Garion C,Hugues J2019 This paper presents SPARK by Example [10], a guide for people wanting to get involved in formal verification of SPARK programs. SPARK by Example is inspired by ACSL by Example, a similar effort for C/ACSL programs, and provides detailed specification, implementation and proof of classic algorithms (array manipulation, sorting, heap etc). A comparison between ACSL and SPARK is done in the light of proof performance and ease of use.10.1145/3375408.3375415https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415- ACM Inglês CI1 Incluído
Composable Finite State Machine-Based Modeling for Quality-of-Information-Aware Cyber-Physical SystemsRosales R,Paulitsch M 2021 Time plays a major role in the specification of Cyber-physical Systems (CPS) behavior with concurrency, timeliness, asynchrony, and resource limits as their main characteristics. In addition to timeliness, the specification of CPS needs to assess and unambiguously define its behavior with respect to the other Quality-of-Information (QoI) properties: (1) Correctness, (2) Completeness, (3) Consistency, and (4) Accuracy. Very often, CPS need to handle these QoI properties, and any combination thereof, multiple times when performing computation and communication processes. However, a model-driven and systematic approach to specify CPS behavior that jointly considers combined QoI aspects is possible but missing in existing methodologies.As the first contribution of this work, we provide an extension to an established model of computation (MoC) based on “Functions driven by Finite State Machine” (FunState) to enable a model-driven composition mechanism to create CPS behavior specifications from reusable components.Second, we present a novel set of design patterns to illustrate the modeling of QoI-aware CPS specifications that can be applied in several state-of-the-art Electronic System Level (ESL) methodologies. The time semantics of the MoC are formalized using the tagged-signal-model, and the presented model-driven approach enables the composition of multiple design patterns. The main benefits of the presented model-driven approach and design patterns to create CPS specifications are as follows: (a) reduce modeling effort, errors, and time through the reuse of known recipes to re-incurring tasks and allow to automatically generate repetitive control flows based on extended Finite State Machines; (b) increase system robustness and facilitate the creation of holistic QoI management allowing to unambiguously define system behavior for scenarios with single/multiple QoI requirement violations in different models of computation; (c) dynamically validate timing behavior of system implementations to enable a multi-objective optimization of nonfunctional properties that influence CPS timing. We demonstrate the aforementioned benefits through the modeling and evaluation of an infrastructure-assisted automated driving case study using Infrastructure-to-Vehicle (I2V) communications to distribute QoI critical road environment information.10.1145/3386244 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244moc, model-driven design, timeliness, design patterns, quality-of-information, cyber-physical systems, model of computation, performance, TimeACM Inglês CI1 Incluído
Reasoning about Functional Programming in Java and C++Cok DR 2018 Verification projects on industrial code have required reasoning about functional programming constructs in Java 8. General functional programming requires reasoning about how the specifications of function objects that are inputs to a method combine to produce the specifications of output function objects. This short paper describes our in-progress experience in adapting prior work (Kassios & Müller) to Java 8, JML, OpenJML, and to ACSL++, a specification language for C++ built on ACSL.10.1145/3236454.3236483https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483JML, ACSL++, ACSL, specification, functional programming, formal verification, OpenJMLACM Inglês CI1 Incluído
From Real-Time Logic to Timed AutomataFerrère T,Maler O,Ničković D,Pnueli A2019 We show how to construct temporal testers for the logic MITL, a prominent linear-time logic for real-time systems. A temporal tester is a transducer that inputs a signal holding the Boolean value of atomic propositions and outputs the truth value of a formula along time. Here we consider testers over continuous-time Boolean signals that use clock variables to enforce duration constraints, as in timed automata. We first rewrite the MITL formula into a “simple” formula using a limited set of temporal modalities. We then build testers for these specific modalities and show how to compose testers for simple formulae into complex ones. Temporal testers can be turned into acceptors, yielding a compositional translation from MITL to timed automata. This construction is much simpler than previously known and remains asymptotically optimal. It supports both past and future operators and can easily be extended.10.1145/3286976 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976formal verification, timed automata, real-time, Temporal logic, model checkingACM Inglês CI1 Incluído
Methods and Tools for Formal Verification of Cloud Sisal ProgramsV. N. Kasyanov; E. V. Kasyanova2020 A cloud parallel programming system CPPS being under development at the Institute of Informatics Systems is aimed to be an interactive visual environment of functional and parallel programming for supporting of computer science teaching and learning. The system will support the development, verification and debugging of architecture-independent parallel Cloud Sisal programs and their correct conversion into efficient code of parallel computing systems for its execution in clouds. In the paper, methods and tools of the CPPS system intended for formal verification of Cloud Sisal programs are described.10.1109/MACISE49704.2020.00047https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627automated theorem proof;Cloud Sisal;deductive verification;functional programming;parallel programmingIEEE Inglês CI1 Incluído
Towards the Specification and Verification of Legal ContractsA. Parvizimosaed 2020 A contract is a legally binding agreement that expresses high-level requirements of parties in terms of obligations, powers and constraints. Parties' actions influence the status of a contract and shall comply with its clauses. Manual contract monitoring is very laborious in real markets, such as transactive energy, where plenty of complex contracts are running concurrently. Furthermore, liability, right and performance transition through run-time operations such as subcontracting, assignment and substitution complicate contract interpretation. Automation is needed to ensure that contracts respect desirable properties and to support monitoring of compliance and handling of violations. In this thesis research, I propose an innovative ontology that defines fundamental contractual notions (such as the ones mentioned above) and their relationships, on which is built a specification language, called Symboleo, that provides syntax and axiomatic semantics of contracts via first-order logic. Symboleo enables the development of advanced automation tools such as a compliance checker that monitors contracts at runtime, and a model checking verification method that analyzes liveness and safety properties of contracts. This paper reports on the problem domain, research method, current status, expected contributions, and main foreseen challenges.10.1109/RE48521.2020.00066https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173Legal Contract;Specification Language;Model Checking;Smart Contract;OntologyIEEE Inglês CI1 Incluído
Safety Verification of IEC 61131-3 Structured Text ProgramsJ. Xiong; X. Bu; Y. Huang; J. Shi; W. He2021 With the development of the industrial control system, programmable logic controllers (PLCs) are increasingly adopted in the process automation. Moreover, many PLCs play key roles in safety-critical systems, such as nuclear power plants, where robust and reliable control programs are required. To ensure the quality of programs, testing and verification methods are necessary. In this article, we present a novel methodology which applies model checking to verifying PLC programs. Specifically, we focus on the structured text (ST) language which is a widely used, high-level programming language defined in the electro-technical commission (IEC) 61131-3 standard. A formal model named behavior model (BM) is defined to specify the behavior of ST programs. An algorithm based on variable state analysis for automatically extracting the BM from an ST program is given. An algorithm based on the automata-theoretic approach is proposed to verify linear temporal logic properties on the BM. Finally, a real-life case study is presented.10.1109/TII.2020.2999716https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345Formal verification;electro-technical commission (IEC) 61131-3 standard;model checking;structured text (ST);weighted pushdown system (WPDS)IEEE Inglês CI1 Incluído
Teaching Design by Contract using Snap!M. Huisman; R. E. Monti 2021 With the progress in deductive program verification research, new tools and techniques have become available to support design-by-contract reasoning about non-trivial programs written in widely-used programming languages. However, deductive program verification remains an activity for experts, with ample experience in programming, specification and verification. We would like to change this situation, by developing program verification techniques that are available to a larger audience. In this paper, we present how we developed prototypal program verification support for Snap!. Snap! is a visual programming language, aiming in particular at high school students. We added specification language constructs in a similar visual style, designed to make the intended semantics clear from the look and feel of the specification constructs. We provide support both for static and dynamic verification of Snap! programs. Special attention is given to the error messaging, to make this as intuitive as possible.10.1109/SEENG53126.2021.00007https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640verification;software;education IEEE Inglês CI1 Incluído
Design and Implementation of SysML Activity Diagram Simulation Function Based on fUML SpecificationB. Huang; Y. Liu; X. Wu; J. Lv; Y. Liu2022 With the rapid development of computer science and technology, Model-Based Systems Engineering (MBSE) has been widely used in the field of system design and simulation, gradually replacing traditional text-based systems engineering methods. As a standard modeling language in the field of systems engineering, SysML, together with modeling tools and modeling methods, is called the three pillars of MBSE. Activity diagram is a kind of behavior diagram of SysML, and its simulation plays an important role in MBSE practice. Aiming at the problem that the activity diagram simulation capability of domestic SysML modeling software is insufficient, this paper implements the simulation function of SysML activity diagram based on the fUML specification.10.1109/CRC55853.2022.10041232https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232MBSE;fUML;SysML;Activity Diagram;System SimulationIEEE Inglês CI1 Incluído
Formal Requirements in an Informal WorldD. Dietsch; V. Langenfeld; B. Westphal2020 With today's increasing complexity of systems and requirements there is a need for formal analysis of requirements. Although there exist several formal requirements description languages and corresponding analysis tools that target an industrial audience, there is a large gap between the form of requirements and the training in formal methods available in industry today, and the form of requirements and the knowledge that is necessary to successfully operate the analysis tools. We propose a process to bridge the gap between customer requirements and formal analysis. The process is designed to support in-house formalisation and analysis as well as formalisation and analysis as a service provided by a third party. The basic idea is that we obtain dependability and comprehensibility by assuming a senior formal requirements engineer who prepares the requirements and later interprets the analysis results in tandem with the client. We obtain scalability as most of the formalisation and analysis is supposed to be conducted by junior formal requirements engineers. In this paper, we define and analyse the process and report on experience from different instantiations, where the process was well received by customers.10.1109/FORMREQ51202.2020.00010https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533requirements;formal-requirements;requirements-formalisation;requirements-analysis;process-modelIEEE Inglês CI1 Incluído
Interactive Behavior-driven Development: a Low-code PerspectiveN. Patkar; A. Chiş; N. Stulova; O. Nierstrasz2021 Within behavior-driven development (BDD), different types of stakeholders collaborate in creating scenarios that specify application behavior. The current workflow for BDD expects non-technical stakeholders to use an integrated development environment (IDE) to write textual scenarios in the Gherkin language and verify application behavior using test passed/failed reports. Research to date shows that this approach leads non-technical stakeholders to perceive BDD as an overhead in addition to the testing. In this vision paper, we propose an alternative approach to specify and verify application behavior visually, interactively, and collaboratively within an IDE. Instead of writing textual scenarios, non-technical stakeholders compose, edit, and save scenarios by using tailored graphical interfaces that allow them to manipulate involved domain objects. Upon executing such interactively composed scenarios, all stakeholders verify the application behavior by inspecting domain-specific representations of run-time domain objects instead of a test run report. Such a low code approach to BDD has the potential to enable nontechnical stakeholders to engage more harmoniously in behavior specification and validation together with technical stakeholders within an IDE. There are two main contributions of this work: (i) we present an analysis of the features of 13 BDD tools, (ii) we describe a prototype implementation of our approach, and (iii) we outline our plan to conduct a large-scale developer survey to evaluate our approach to highlight the perceived benefits over the existing approach.10.1109/MODELS-C53483.2021.00024https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783bdd;behavior-driven development;collaborative development;acceptance testing;visual programming;end-user programmingIEEE Inglês CI1 Incluído
Prema: A Tool for Precise Requirements Editing, Modeling and AnalysisY. Huang; J. Feng; H. Zheng; J. Zhu; S. Wang; S. Jiang; W. Miao; G. Pu2019 We present Prema, a tool for Precise Requirement Editing, Modeling and Analysis. It can be used in various fields for describing precise requirements using formal notations and performing rigorous analysis. By parsing the requirements written in formal modeling language, Prema is able to get a model which aptly depicts the requirements. It also provides different rigorous verification and validation techniques to check whether the requirements meet users' expectation and find potential errors. We show that our tool can provide a unified environment for writing and verifying requirements without using tools that are not well inter-related. For experimental demonstration, we use the requirements of the automatic train protection (ATP) system of CASCO signal co. LTD., the largest railway signal control system manufacturer of China. The code of the tool cannot be released here because the project is commercially confidential. However, a demonstration video of the tool is available at https://youtu.be/BX0yv8pRMWs.10.1109/ASE.2019.00128https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250formal methods;requirements modeling;requirements verification;formal engineering methodsIEEE Inglês CI1 Incluído
Towards a time editor for orchestrating connected objects in the Web of ThingsI. MEZENNER; S. BOUYAKOUB; F. M. BOUYAKOUB2019 Web of Things is a new paradigm, it constitutes the heart of a great research activity. However, most of this work does not take into account its temporal aspect, whereas it is a critical dimension directly related to customer satisfaction, optimization and is considered as a very effective strategy for cost reduction. For this matter, we propose a tool to edit and verify the time constraints added to an abstract BPEL specification. Furthermore, the editor allows the user to edit abstract BPEL specification that orchestrates Web services offered by objects connected to the Web of Things. Through the latter, the input specification is enriched with constraints and time attributes. Then, a temporal verification and validation process is applied to detect any temporal errors or conflicts.10.1109/ICTAACS48474.2019.8988132https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132Web of Things;Web service orchestration;WS-BPEL;Allen’s algebraIEEE Inglês CI1 Incluído
Automated Analysis of Inter-Parameter Dependencies in Web APIsA. Martin-Lopez 2020 Web services often impose constraints that restrict the way in which two or more input parameters can be combined to form valid calls to the service, i.e. inter-parameter dependencies. Current web API specification languages like the OpenAPI Specification (OAS) provide no support for the formal description of such dependencies, making it hardly possible to interact with the services without human intervention. We propose specifying and automatically analyzing inter-parameter dependencies in web APIs. To this end, we propose a domain-specific language to describe these dependencies, a constraint programming-aided tool supporting their automated analysis, and an OAS extension integrating our approach and easing its adoption. Together, these contributions open a new range of possibilities in areas such as source code generation and testing.https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345Web service;DSL;interdependency;CSP;automated analysisIEEE Inglês CI1 Incluído
Specification and Automated Analysis of Inter-Parameter Dependencies in Web APIsA. Martin-Lopez; S. Segura; C. Müller; A. Ruiz-Cortés2022 Web services often impose inter-parameter dependencies that restrict the way in which two or more input parameters can be combined to form valid calls to the service. Unfortunately, current specification languages for web services like the OpenAPI Specification (OAS) provide no support for the formal description of such dependencies, which makes it hardly possible to automatically discover and interact with services without human intervention. In this article, we present an approach for the specification and automated analysis of inter-parameter dependencies in web APIs. We first present a domain-specific language, called Inter-parameter Dependency Language (IDL), for the specification of dependencies among input parameters in web services. Then, we propose a mapping to translate an IDL document into a constraint satisfaction problem (CSP), enabling the automated analysis of IDL specifications using standard CSP-based reasoning operations. Specifically, we present a catalogue of seven analysis operations on IDL documents allowing to compute, for example, whether a given request satisfies all the dependencies of the service. Finally, we present a tool suite including an editor, a parser, an OAS extension, a constraint programming-aided library, and a test suite supporting IDL specifications and their analyses. Together, these contributions pave the way for a new range of specification-driven applications in areas such as code generation and testing.10.1109/TSC.2021.3050610https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562Web API;REST;inter-parameter dependency;DSL;automated analysisIEEE Inglês CI1 Incluído
Proposal of an Approach to Generate VDM++ Specifications from Natural Language Specification by Machine LearningY. Shigyo; T. Katayama 2020 A natural language contains ambiguous expressions. The VDM++ is one of the methodotogies on the formal methods to write the specification without ambiguity. It is difficult to write a VDM++ specification, because VDM++ is written by strict grammar. This research proposes an approach to automatically generate the VDM++ specification by machine learning. This approach defines four data structures and has four processes. In this paper, variables and only real type in the VDM++ specification are generated automatically by this approach. In order to generate the variables and real type, it is necessary to extract the noun corresponding to the variable from the natural language specification. Consequently, our proposed approach can generate a VDM++ specification and we have confirmed that the generated VDM++ specification is grammatically correct.10.1109/GCCE50665.2020.9292047https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047natural language specification;machine learning;automatic generation;formal method;VDM++ specificationIEEE Inglês CI1 Incluído
Formal Verification of Blockchain Smart Contract Based on Colored Petri Net ModelsZ. Liu; J. Liu 2019 A smart contract is a computer protocol intended to digitally facilitate and enforce the negotiation of a contract in undependable environment. However, the number of attacks using the vulnerabilities of the smart contracts is also growing in recent years. Many solutions have been proposed in order to deal with them, such as documenting vulnerabilities or setting the security strategies. Among them, the most influential progress is made by the formal verification method. In this paper, we propose a formal verification method based on Colored Petri Nets (CPN) to verify smart contracts in blockchain system. First, we develop the smart contract models with possible attacker models based on hierarchical CPN modeling, then the smart contract models are executed by step-by-step simulation to validate their functional correctness, and finally we utilize the branch timing logic ASK-CTL based model checking technology in the CPN tools to detect latent vulnerabilities in smart contracts. We demonstrate that our CPN modeling based verification method can not only detect the logical vulnerabilities of the smart contract, but also consider the impacts of users behavior to find out potential non-logical vulnerabilities in the contracts, such as the vulnerabilities caused by the limitations of the Solidity language.10.1109/COMPSAC.2019.10265https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908blockchain, smart contract, formal verification, CPNIEEE Inglês CI1 Incluído
Celestial: A Smart Contracts Verification FrameworkS. Dharanikota; S. Mukherjee; C. Bhardwaj; A. Rastogi; A. Lal2021 We present CELESTIAL, a framework for formally verifying smart contracts written in the Solidity language for the Ethereum blockchain. CELESTIAL allows programmers to write expressive functional specifications for their contracts. It translates the contracts and the specifications to F* to formally verify, against an F* model of the blockchain semantics, that the contracts meet their specifications. Once the verification succeeds, CELESTIAL performs an erasure of the specifications to generate Solidity code for execution on the Ethereum blockchain. We use CELESTIAL to verify several real-world smart contracts from different application domains. Our experience shows that CELESTIAL is a valuable tool for writing high-assurance smart contracts.10.34727/2021/isbn.978-3-85448-046-4_22https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700Smart contracts;Blockchain;Reliability;TestingIEEE Inglês CI1 Incluído
Low-Cost Optical Tracking Controller System for Fine Motor Rehabilitation in Children with Brain Damage: Formal Specification and ValidationE. E. Saavedra Parisaca; E. Enriqueta Vidal Duarte2021 Acquired brain damage in children is increasingly frequent, and as main deficit produces motor alterations that manifest as the child grows, affecting muscle tone, coordination and motor control, in order to influence these aspects, fine motor skills are intervened, since these involve a coordinated effort of the brain and muscles, having a direct impact on the learning capacity of children and can improve their independence and autonomy. Although traditional therapies have been proven with great effectiveness, there are also different rehabilitation systems that make use of tracking devices, however not all of them are accessible due to their high cost or the lack of specialists who master them. That is the reason a low-cost optical tracking Controller System is proposed to complement fine motor-oriented rehabilitation, allowing movements to be captured with precision and to obtain feedback on the accuracy of the exercises. In this paper we focus on the first stage referring to the formal specification of the requirements and their validation. The proposal is based on the Leap Motion optical tracking device and limited to exercises with a fine motor and wrist. The controller system aims to provide a better environment for users to run their rehabilitation process, in addition to considering the rehabilitation progress. The proposal uses formal specifications to reduce possible ambiguities in the face of a system that may cause future damage to its users if the rehabilitation is not carried out correctly, in the same way they are used to validate the main properties of the functional requirements. The formal specification language VDM ++ is used to describe the system properties for later modeling and validation through the VDMToolBox tool. As a result, a formal specification of 4 requirements and a 100% coverage analysis were achieved.10.23919/CISTI52073.2021.9476615https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615Virtual Rehabilitation;Formal Specification;Validation and VerificationIEEE Inglês CI1 Incluído
Documentation-based functional constraint generation for library methodsR. Jiang; Z. Chen; Y. Pei; M. Pan; T. Zhang; X. Li2022 Although software libraries promote code reuse and facilitate software development, they increase the complexity of programme analysis tasks. To effectively analyse programmes built on top of software libraries, it is essential to have specifications for the library methods that can be easily processed by analysis tools. However, the availability of such specifications is seriously limited at the moment. Manually writing the specifications can be prohibitively expensive and error-prone, while existing automated approaches to inferring the specifications seldom produce results that are strong enough to be used in programme analysis. In this work, we propose the DOC2SMT approach to generating strong functional constraints in SMT for library methods based on their documentations. DOC2SMT first applies natural language processing (NLP) techniques and a set of rules to translate a method's natural language documentation into a large number of candidate constraint clauses in OCL. Then, it utilises a manually enhanced domain model to identify OCL candidate constraint clauses that comply with the problem domain in static validation, translates well-formed OCL constraints into the SMT-LIB format, and checks whether each 5MB-LIB constraint rightly abstracts the functionalities of the method under consideration via testing in dynamic validation. In the end, it reports the first functional constraint that survives both validations to the user as the result. We have implemented the approach into a supporting tool with the same name. In experiments conducted on 451 methods from the Java Collections Framework and the Java IO library, DOC2SMT generated correct constraints for 309 methods, with the average generation time for each correct constraint being merely 2.7 min. We have also applied the generated constraints to facilitate symbolic-execution-based test generation with the Symbolic Java PathFinder (SPF) tool. For 24 utility methods manipulating Java container and IO objects, SPF with access to the generated constraints produced 51.2 times more test cases than SPF without the access.10.1109/ICST53961.2022.00056https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888documentation analysis;domain model;OCL;SMT;specification generationIEEE Inglês CI1 Incluído
Smart Contract Defense through Bytecode RewritingG. Ayoade; E. Bauman; L. Khan; K. Hamlen2019 An Ethereum bytecode rewriting and validation architecture is proposed and evaluated for securing smart contracts in decentralized cryptocurrency systems without access to contract source code. This addresses a wave of smart contract vulnerabilities that have been exploited by cybercriminals in recent years to steal millions of dollars from victims. Such attacks have motivated various best practices proposals for helping developers write safer contracts; but as the number of programming languages used to develop smart contracts increases, implementing these best practices can be cumbersome and hard to enforce across the development tool chain. Automated hardening at the bytecode level bypasses this source-level heterogeneity to enforce safety and code integrity properties of contracts independently of the sources whence they were derived. In addition, a binary code verification tool implemented atop the Coq interactive theorem prover establishes input-output equivalence between the original code and the modified code. Evaluation demonstrates that the system can enforce policies that protect against integer overflow and underflow vulnerabilities in real Ethereum contract bytecode, and overhead is measured in terms of instruction counts.10.1109/Blockchain.2019.00059https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210blockchain;ethereum;in-lined reference monitors;formal methodsIEEE Inglês CI1 Incluído
Sim: A Contract-Based Programming Language for Safety-Critical SoftwareT. Benoit 2019 An important benefit of formal methods is the ability to unambiguously describe the requirements of a program and to provide evidence of the compliance of the software code with these requirements. However, formal analysis on programs written in languages that are used today in avionics can be challenging since these languages have features, such as pointers, that complicate program verification. So, to enable formal verification, one must limit the language to a subset and/or one must endure a considerable annotation overhead. This paper presents Sim, a new high-level programming language that is designed for the development and verification of safety-critical software. The Sim language has been designed so that only a small annotation overhead is needed and one can make extensive use of automatic verification tools. We show that in Sim 4 to 5 times fewer annotations are needed compared to programs written in VeriFast-C to prove equivalent properties. We additionally demonstrate that Sim is suitable as a language for avionics software development by implementing and verifying an elementary fly-by-wire application and deploying it on an STM32 microcontroller.10.1109/DASC43569.2019.9081681https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681contracts;semi-automatic verification;formal methods;programming language;safety-critical systemsIEEE Inglês CI1 Incluído
Program Synthesis for Cyber-ResilienceN. Catano 2023 Architectural tactics enable stakeholders to achieve cyber-resilience requirements. They permit systems to react, resist, detect, and recover from cyber incidents. This paper presents an approach to generate source code for architectural tactics typically used in safety and mission-critical systems. Our approach extensively relies on the use of the Event-B formal method and the EventB2Java code generation plugin of the Rodin platform. It leverages the modeling of architectural tactics in the Event-B formal language and uses a set of EventB2Java transformation rules to generate certified code implementations for the said tactics. Since resilience requirements are statements about a system over time, and because of the fact that the Event-B language does not provide (native) support for the writing of temporal specifications, we have implemented a novel Linear Temporal Logic (LTL) extension for Event-B. We support several architectural tactics for availability, performance, and security. The generated code is certified in the following sense: discharging proof obligations in Rodin - the platform we use for writing the Event-B models - attests to the soundness of the architectural tactics modelled in Event-B, and the soundness of the translation encoded by the EventB2Java tool attests to the code correctness. Finally, we demonstrate the usability of our resilience validation approach with the aid of an Autonomous Vehicle System. It further helped us increase our confidence in the soundness of our Event-B LTL extension.10.1109/TSE.2022.3168672https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016Code synthesis;Event-B;formal methods;resilience;security;testing;verificationIEEE Inglês CI1 Incluído
A Model-Checking Framework for the Verification of Move Smart ContractsE. Keilty; K. Nelaturu; B. Wu; A. Veneris2022 As the popularity of distributed ledger technology and smart contracts continues to grow, so does the number of decentralized applications and their potential exposure to expensive exploits. The need for strong vulnerability detection tools is critical. Move is a recently developed smart contract language with safety and security at the core of its design containing formal verification tools embedded into the language. Currently, these tools can only verify local properties within a single Move function. They cannot verify global properties that result from multiple function executions. In this paper, we introduce VeriMove, an extension of the VeriSolid correct-by-design model checking framework that supports the Move language. We show that model checking is a feasible method to formally verify global properties in Move smart contracts.10.1109/ICSESS54813.2022.9930214https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214Smart Contract;Verification;Solidity;Move IEEE Inglês CI1 Incluído
Formalization and Verification of Cyclic GroupY. Tang; Y. Xu; P. Liu; G. Zeng2021 At present, the formal method is an important system design verification method, which effectively compensates the “incomplete” problem of the traditional methods such as simulation and testing in the system design verification. Since the logical method as a typical formal method is our research direction, we naturally choose the first-order logic language in the logical method to formalize Group theory in the field of mathematics. Based on some formalized conclusions of Group theory in TPTP, this paper completes the formal description of missing definitions about the Group in TPTP, namely the order of element in group, nth-order cyclic group and Klein four-group. Some propositions and theorems related to these definitions are further formal described, and the correctness of these descriptions is verified by the theorem tool Prover9.10.1109/ISKE54062.2021.9755331https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331cyclic group;first-order logic;formalization;Prover9;verificationIEEE Inglês CI1 Incluído

https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331

Formal verification of deadlock avoidance rules for AGV systemsS. Riazi; J. Falk; A. Greger; A. Pettersson; M. Fabian2022 Automated Guided Vehicles (AGVs) are increasingly popular and bring many industrial benefits. However, when a number of AGVs autonomously execute their itineraries, it is possible for two or more AGVs to prevent each other from completing their tasks and cause a deadlock from where the system cannot progress. One way that companies try to avoid this is to, based on simulations, generate deadlock avoidance rules (DA-rules) that determine for different scenarios how the AGVs should behave. This paper presents an application of translating such DA-rules to extended finite-state automata and then to formally verify if the rules actually do avoid deadlocks. This is done by using information of an existing system setup where there are two major types of DA-rules. Both of these can be modelled as automata with guards and actions that prevent a transition from occurring if associated conditions are not fulfilled. These guards are generated automatically for all the DA-rules corresponding to the current itineraries. For a chosen itinerary a complete automaton is generated, as well as automata representing the DA-rules. Using the supervisor synthesis tool SUPREMICA, it is shown that the existing DA-rules do not manage to remove all deadlocks in all cases. Even worse, the DA-rules can lead to a fully blocking system, even though a deadlock-free solution does exist, as can be shown by computing a supervisor for the system without the DA-rules.10.1109/MED54222.2022.9837154https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154- IEEE Inglês CI1 Incluído
Space-time Constraint Resources Modeling and Safety Verification Method for Automated VehiclesY. Zhu; X. Chen; Y. Zhao 2022 Automated vehicle combines physics and computation on the basis of environment perception. It can realize intelligent interaction with the environment. Automated vehicle is a typical CPS. However, the continuous changes of driving physical space bring certain challenges to the safety of CPS resources. Therefore, how to solve this kind of CPS resource safety problems caused by space and time changes becomes the key. We propose a space-time constraint resource modeling and safety verification method for automated vehicle to solve this problem. Firstly, the physical topology model is proposed to model the physical topology space of CPS, which is able to describe the topology space. Secondly, the Resource-Space Time Communicating Sequential Process (RS- TCSP) is proposed by extending the resource vector on the basis of Time Communicating Sequential Process(TCSP) to describe the resources in CPS topology. Thirdly, the physical topology model and RS- TCSP are mapped to bigraphs and bigraphs reactive system, respectively. The safety of CPS resources is verified by BigMC, the verification tool of bigraphs, and the counterexample path is modified. Finally, a driving scene is given to verify the effectiveness of the proposes method.10.1109/DSA56465.2022.00112https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482cyber physical system;formal verification;process algebra;space-time constraint;resource safetyIEEE Inglês CI1 Incluído
Artifact of Bounded Exhaustive Search of Alloy Specification RepairsS. Gutiérrez Brida; G. Regis; G. Zheng; H. Bagheri; T. Nguyen; N. Aguirre; M. Frias2021 BeAFix is a tool and technique for automated repair of faulty models written in Alloy, a declarative formal specification language based on first-order relational logic. BeAFix takes a faulty Alloy model, i.e., an Alloy model with at least one analysis command whose result is contrary to the developer's expectation, and a set of suspicious specification locations, and explores the space of fix candidates consisting of all alternative expressions for the indicated locations, that can be constructed by bounded application of a family of mutation operations. BeAFix can work with any kind of specification oracle, from Alloy test cases to standard predicates and assertions typically found in Alloy specifications, and is backed with a number of sound pruning strategies, for efficient exploration of fix candidate search spaces.10.1109/ICSE-Companion52605.2021.00093https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585- IEEE Inglês CI1 Incluído
Explaining Boolean-Logic Driven Markov Processes using GSPNsS. Khan; J. -P. Katoen; M. Bouissou2020 Boolean-logic driven Markov processes (BDMPs) is a graphical language for reliability analysis of dynamic repairable systems. BDMPs are capable of defining complex interdependencies among failure modes such as functional dependencies and state-dependent failures. The interpretation of BDMPs is non-trivial due to the many possible complex interactions of activation and failure mechanisms. This paper presents a formal semantics of repairable BDMPs by using generalized stochastic Petri nets (GSPNs). Our semantics is modular and thus easily extendable to other elements, e.g., leaves dedicated to security applications. Priorities on GSPN transitions are used to impose a partial order on various possible interleaving of activation and failure mechanisms. The semantics is realized by the prototypical tool BDMP2GSPN that converts a Figaro description of a BDMP into a GSPN. The reliability and availability metrics of BDMPs are obtained using the probabilistic model-checking capability of the existing GreatSPN tool. Experiments show that our GSPN semantics corresponds to the BDMP interpretation by the tool yet another Monte Carlo simulator (YAMS).10.1109/EDCC51268.2020.00028https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784Dependability, formal methods, probabilistic model checking, Monte Carlo simulation, Petri netsIEEE Inglês CI1 Incluído
Towards Formal Verification of Program ObfuscationW. Lu; B. Sistany; A. Felty; P. Scott2020 Code obfuscation involves transforming a program to a new version that performs the same computation but hides the functionality of the original code. An important property of such a transformation is that it preserves the behavior of the original program. In this paper, we lay the foundation for studying and reasoning about code obfuscating transformations, and show how the preservation of certain behaviours may be formally verified. To this end, we apply techniques of formal specification and verification using the Coq Proof Assistant. We use and extend an existing encoding of a simple imperative language in Coq along with an encoding of Hoare logic for reasoning about this language. We formulate what it means for a program's semantics to be preserved by an obfuscating transformation, and give formal machine-checked proofs that these behaviours or properties hold. We also define a lower-level block-structured language which is "wrapped around" our imperative language, allowing us to model certain flattening transformations and treat blocks of codes as objects in their own right.10.1109/EuroSPW51379.2020.00091https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802obfuscation;verification;security;correctness;Coq;proofIEEE Inglês CI1 Incluído
Pattern Based Model Reuse Using Colored Petri NetsS. H. Askari; S. A. Khan; M. Haris; M. Shoaib2019 Colored Petri Net (CPN) is a graphical modeling language for simulation and modeling and for verification of discrete event systems. CPN allows developers to define a model in the form of reusable components. A model component is an independent element, which is specified using a formalized description, can conform to a certain component standard, has a well-defined interface, and encapsulates certain behavior. Modern components can help the developer reuse existing models according to their requirement as it reduces the cost and time of development. Composability is the capability to select and integrate various components to fulfill user requirements. Composability provides the means to achieve reusability where "reuse" is the ability of a simulation component to be reclaimed for various applications. We propose a verification framework for developers to select and assemble CPN-based components and verify their composability. The goal of this paper is to provide a pattern which helps developer in making models of concurrent systems. We present a case study of a restaurant model as proof of concept. A verified composition affirms reuse of model components in a meaningful manner by satisfying given requirement specifications.10.1109/ICCSA.2019.000-7https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585Patterns, Pattern Reuse, Colored Petri nets, Composability VerificationIEEE Inglês CI1 Incluído
Adversary Safety by Construction in a Language of Cryptographic ProtocolsT. M. Braje; A. R. Lee; A. Wagner; B. Kaiser; D. Park; M. Kalke; R. K. Cunningham; A. Chlipala2022 Compared to ordinary concurrent and distributed systems, cryptographic protocols are distinguished by the need to reason about interference by adversaries. We suggest a new layered approach to tame that complexity, via an executable protocol language whose semantics does not reveal an adversary directly, instead enforcing a set of intuitive hygiene rules. By virtue of those rules, protocols written in this language provably behave identically with or without interference by active Dolev-Yao-style adversaries. As a result, formal reasoning about protocols can be simplified enough that even naïve model checking can establish correctness of a multiparty protocol, through analysis of a state space with no adversary. We present the design and implementation of SPICY, short for Secure Protocols Implemented CorrectlY, including the semantics of its input languages; the essential safety proofs, formalized in the Coq theorem prover; and the automation techniques. We provide a preliminary evaluation of the tool's performance and capabilities via a handful of case studies.10.1109/CSF54842.2022.9919638https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638formal verification;coq;cryptography;protocol analysisIEEE Inglês CI1 Incluído
CCSpec: A Correctness Condition Specification ToolC. Peterson; P. LaBorde; D. Dechev2019 Concurrent libraries provide data structures whose operations appear to execute atomically when invoked individually. Although these libraries guarantee safety for the data structure operations, the composition of operations may be vulnerable to undefined behavior. The difficulty of reasoning about safety properties in a concurrent environment has led to the development of tools to verify that a concurrent data structure meets a correctness condition. The disadvantage of these tools is that they cannot verify that the composition of concurrent data structure operations respects the intended semantics of the algorithm. Formal logic has been proposed to enable the verification of correctness specifications for a concurrent algorithm. However, a large amount of manual labor is required to fully mechanize the correctness proofs of the concurrent algorithm and each concurrent data structure invoked in the algorithm. In this research, we propose Correctness Condition Specification (CCSpec), the first tool that automatically checks the correctness of a composition of concurrent multi-container operations performed in a non-atomic manner. In addition to checking the correctness of a composition of data structure operations in a concurrent algorithm, CCSpec also checks the correctness of each concurrent data structure utilized in the algorithm. A reference to a container is associated with each method called in a concurrent history to enable the evaluation of correctness for a composition of multiple containers. We develop a lightweight custom specification language that allows the user to define a correctness condition associated with the concurrent algorithm and a correctness condition associated with the concurrent data structures. We demonstrate the practical application of CCSpec by checking the correctness of a concurrent depth-first search utilizing a non-blocking stack, a concurrent breadth-first search utilizing a non-blocking queue, a concurrent shortest path algorithm utilizing a non-blocking priority queue, and a concurrent adjacency list utilizing non-blocking sets.10.1109/ICPC.2019.00041https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298concurrency;verification;correctness conditionIEEE Inglês CI1 Incluído
CIM-CSS: A Formal Modeling Approach to Context Identification and Management for Intelligent Context-Sensitive SystemsA. M. Baddour; J. Sang; H. Hu; M. A. Akbar; H. Loulou; A. Ali; K. Gulzar2019 Context modeling is often used to relate the context in which a system will operate to the entities of interest in the problem domain. It remains the case that context models are inadequate in emerging computing paradigms (e.g., smart spaces and the Internet of Things), in which the relevance of context is shaped dynamically by the changing needs of users. Formal models are required to fuse and interpret contextual information obtained from the heterogeneous sources. In this paper, we propose an integrated and formal context modeling approach for intelligent systems operating in the context-sensitive environments. We introduce a goal-driven, entity-centered identification method for determining which context elements are influential in adapting the system behavior. We then describe a four-layered framework for metamodeling the identification and management of context. First, the framework presents a formal metamodel of context. A formalization of context using the first-order logic with relational operators is then presented to specify formally the context information at different abstraction levels. The metamodel, therefore, prepares the ground for building a formal modeling language and automated support tool (https://github.com/metamodeler/CIM-CSS/). The proposed model is then evaluated using an application scenario in the smart meeting rooms domain, and the results are analyzed qualitatively.10.1109/ACCESS.2019.2931001https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087Context modeling;context aware systems;unified modeling language;computational modeling;object recognition;data models;complexity theoryIEEE Inglês CI1 Incluído
Model-Based Systems Engineering to Design An Onboard Surround Vision System for Cooperative Automated VehiclesN. Kemsaram; A. Das; G. Dubbelman2021 Cooperative automated vehicles have various electronic control units with multiple sensors running complex software algorithms to perceive and navigate their environment. Hence, there is a need to use advanced software engineering design methodology to reduce the software complexity and increase modularity. In this paper, we applied the SysCARS model-based systems engineering methodology to design an onboard surround vision system with a SysML modeling language using the IBM Rational Rhapsody modeling tool. The modeling methodology is described through various phases and steps with a modeling language to overcome the challenges. The modeling tool takes the information from the design model of the system and generates a skeletal code. The algorithm is written for each generated skeletal code, compiled with a C++ compiler on the host Desktop PC (Ubuntu 16.04 LTS), and deployed on the target Nvidia Drive PX2 embedded hardware platform. The designed solution fulfills the requirements of the onboard surround vision system.10.1109/IISEC54230.2021.9672396https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396Cooperative automated vehicle;deep neural networks;model-based systems engineering;surround vision system;system modeling language;unified modeling languageIEEE Inglês CI1 Incluído
Smart Bound Selection for the Verification of UML/OCL Class DiagramsR. Clarisó; C. A. González; J. Cabot2019 Correctness of UML class diagrams annotated with OCL constraints can be checked using bounded verification techniques, e.g., SAT or constraint programming (CP) solvers. Bounded verification detects faults efficiently but, on the other hand, the absence of faults does not guarantee a correct behavior outside the bounded domain. Hence, choosing suitable bounds is a non-trivial process as there is a trade-off between the verification time (faster for smaller domains) and the confidence in the result (better for larger domains). Unfortunately, bounded verification tools provide little support in the bound selection process. In this paper, we present a technique that can be used to (i) automatically infer verification bounds whenever possible, (ii) tighten a set of bounds proposed by the user and (iii) guide the user in the bound selection process. This approach may increase the usability of UML/OCL bounded verification tools and improve the efficiency of the verification process.10.1109/TSE.2017.2777830https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996Formal verification;UML;class diagram;OCL;constraint propagation;SATIEEE Inglês CI1 Incluído
Design Ontology in a Case Study for Cosimulation in a Model-Based Systems Engineering Tool-ChainJ. Lu; G. Wang; M. Törngren2020 Cosimulation is an important system-level verification approach aimed at integrating multidomain and multi-physics models during complex system development. Currently, the lack of integrating system development process with cosimulations leads to gaps between them, decreasing the effectiveness and efficiency of system development. Model-based systems engineering (MBSE) tool-chains have been proposed to facilitate the integration of complex system development and automated verification using a model-based approach. However, due to the lack of formal and structured specifications, development information sharing is difficult for supporting MBSE facilitating automated cosimulations. In order to formalize cosimulation in an MBSE tool-chain, a scenario-based ontology is developed in this paper, using formal web ontology language (OWL). Ontology refers to a specification expressing the cosimulation implementations as well as the development information represented in the models supporting the MBSE. It is illustrated by a case study of a cosimulation based on Simulink. Protocol and resource description framework (RDF) query language (SPARQL) and semantic query-enhanced web rule language queries are proposed for evaluating the ontology's completeness and logic for supporting cosimulations. The result demonstrates that the scenario-based ontology formalizes the information related to automated cosimulation development and configurations while using the proposed MBSE tool-chain.10.1109/JSYST.2019.2911418https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748Cosimulation;model-based systems engineering (MBSE);ontology design;simulation automation;tool-chainIEEE Inglês CI1 Incluído
The Notion of Cross Coverage in AMS Design VerificationS. Sanyal; A. Hazra; P. Dasgupta; S. Morrison; S. Surendran; L. Balasubramanian2020 Coverage monitoring is fundamental to design verification. Coverage artifacts are well developed for digital integrated circuits and these aim to cover the discrete state space and logical behaviors of the design. Analog designers are similarly concerned with the operating regions of the design and its response to an infinite and dense input space. Analog variables can influence each other in far more complex ways as compared to digital variables, consequently, the notion of cross coverage, as introduced in the analog context for the first time in this paper, is of high importance in analog design verification. This paper presents the formal syntax and semantics of analog cross coverage artifacts, the methods for evaluating them using our tool kit, and most importantly, the insights that can be gained from such cross coverage analysis.10.1109/ASP-DAC47756.2020.9045131https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131- IEEE Inglês CI1 Incluído
Verifying Cross-Layer Interactions Through Formal Model-Based Assertion GenerationA. Salehi Fathabadi; M. Dalvandi; M. Butler; B. M. Al-Hashimi2020 Cross-layer runtime management (RTM) frameworks for embedded systems provide a set of standard application programming interfaces (APIs) for communication between different system layers (i.e., RTM, applications, and device) and simplify the development process by abstracting these layers. Integration of independently developed components of the system is an error-prone process that requires careful verification. In this letter, we propose a formal approach to integration testing through automatic generation of runtime assertions in order to test the implementation of the APIs. Our approach involves a formal model of the APIs developed using the Event-B formal method, which is automatically translated to a set of assertions and embedded in the existing implementation of APIs. The embedded assertions are used at runtime to check the correctness of the integration.10.1109/LES.2019.2955316https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436Embedded systems;Event-B;formal methods;formal verification;runtime managementIEEE Inglês CI1 Incluído
Integration of a formal specification approach into CPPS engineering workflow for machinery validationB. Vogel-Heuser; C. Huber; S. Cha; B. Beckert2021 Cyber Physical Production Systems (CPPS) operate for a long time and face continuous and incremental changes to follow up varying requirements. Interdisciplinary engineering of CPPS is often subject to delay and cost overrun; and quality control may even fail due to the lack of efficient information exchange between multiple involved actors. We propose to integrate a formal requirement specification approach, namely Generalized Test Tables including tool support, into industrial workflows and present the approach through extended notations of Business Process Model and Notation (BPMN), namely BPMN++*, with the tool-coupling aspect. The suggested tooling enables automation engineers to follow the defined workflow systematically and communicate easier through the formally represented change requirement. The approach is demonstrated by two typical use cases of changing a CPPS’ control software and showing the result by means of an extended BPMN++ model exemplarily.10.1109/INDIN45523.2021.9557505https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505Engineering workflow;CSCW (Computer Supported Cooperative Work);Software development management;PLC programming;Control code;Formal specification;Information management;Test tablesIEEE Inglês CI1 Incluído
SMT-Based Consistency Checking of Configuration-Based Components SpecificationsL. Pandolfo; L. Pulina; S. Vuotto2021 Cyber-Physical Systems (CPSs) are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. CPSs are widely used in many safety-critical domains, making it crucial to ensure that they operate safely without causing harm to people and the environment. Therefore, their design should be robust enough to deal with unexpected conditions and flexible to answer to the high scalability and complexity of systems. Nowadays, it is well-established that formal verification has a great potential in reinforcing safety of critical systems, but nevertheless its application in the development of industrial products may still be a challenging activity. In this paper, we describe an approach based on Satisfiability Modulo Theories (SMT) to formally verify, at the design stage, the consistency of the system design - expressed in a given domain-specific language, called QRML, which is specifically designed for CPSs - with respect to some given property constraints, with the purpose to reduce inconsistencies during the system development process. To this end, we propose an SMT-based approach for checking the consistency of configuration based-components specifications and we report the results of the experimental analysis using three different state-of-the-art SMT solvers. The main goal of the experimental analysis is to test the scalability of the selected SMT solvers and thus to determine which SMT solver is the best in checking the satisfiability of the properties.10.1109/ACCESS.2021.3085911https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129Design verification;application of formal methods;satisfiability modulo theoriesIEEE Inglês CI1 Incluído
Trace-Checking CPS Properties: Bridging the Cyber-Physical GapC. Menghi; E. Viganò; D. Bianculli; L. C. Briand2021 Cyber-physical systems combine software and physical components. Specification-driven trace-checking tools for CPS usually provide users with a specification language to express the requirements of interest, and an automatic procedure to check whether these requirements hold on the execution traces of a CPS. Although there exist several specification languages for CPS, they are often not sufficiently expressive to allow the specification of complex CPS properties related to the software and the physical components and their interactions. In this paper, we propose (i) the Hybrid Logic of Signals (HLS), a logic-based language that allows the specification of complex CPS requirements, and (ii) ThEodorE, an efficient SMT-based trace-checking procedure. This procedure reduces the problem of checking a CPS requirement over an execution trace, to checking the satisfiability of an SMT formula. We evaluated our contributions by using a representative industrial case study in the satellite domain. We assessed the expressiveness of HLS by considering 212 requirements of our case study. HLS could express all the 212 requirements. We also assessed the applicability of ThEodorE by running the trace-checking procedure for 747 trace-requirement combinations. ThEodorE was able to produce a verdict in 74.5% of the cases. Finally, we compared HLS and ThEodorE with other specification languages and trace-checking tools from the literature. Our results show that, from a practical standpoint, our approach offers a better trade-off between expressiveness and performance.10.1109/ICSE43902.2021.00082https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030Monitors;Languages;Specification;Validation;Formal methods;SemanticsIEEE Inglês CI1 Incluído
SecML: A Proposed Modeling Language for CyberSecurityC. Easttom 2019 Cybersecurity is a comparatively new discipline, related to computer science, electrical engineering, and similar subjects. As a newer discipline it lacks some of the tools found in more established subject areas. As one example, many engineering disciplines have modeling languages specific for that engineering discipline. As two examples, software engineering utilizes Unified Modeling Language (UML) and systems engineering uses System Modeling Language (SysML). Cybersecurity engineering lacks such a generalized modeling language. Cybersecurity as a profession would be enhanced with a security specific modeling language. This paper describes such a modeling language. The model is described in sufficient detail to be actionable and applicable. However, suggestions for future work are also provided.10.1109/UEMCON47517.2019.8993105https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105Cybersecurity;Modeling languages;Engineering;Cybersecurity engineering;SysML;Systems EngineeringIEEE Inglês CI1 Incluído
Applying B and ProB to a Real-world Data Validation ProjectC. Peng; W. Keming 2021 Data validation is a constraint satisfaction problem that can be modelled rigorously by formal methods like B. This paper presents our experiences on validating a real-world section topology of tram lines using the B language and ProB tool. Based on the section topology, validation rules are designed and implemented by using the ASSERTIONS Clause of B. The Epsilon Generation Language Script is used to build a data conversion schema under automatically deriving the topology data into the B model. Furthermore, the ProB is used to validate whether the data satisfy the rules. In this way, the validated topology improves the functional correctness of the tram control system.10.1109/ISKE54062.2021.9755408https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408B method;rule programming;section topology IEEE Inglês CI1 Incluído
Salty-A Domain Specific Language for GR(1) Specifications and DesignsT. Elliott; M. Alshiekh; L. R. Humphrey; L. Pike; U. Topcu2019 Designing robot controllers that correctly react to changes in the environment is a time-consuming and error-prone process. An alternative is to use “correct-by-construction” synthesis approaches to automatically generate controller designs from high-level specifications. In particular, Generalized Reactivity(l) or GR(1) specifications are well-suited to express specifications for robots that must act in dynamic environments, and approaches to generate controller designs from GR(1) specifications are highly computationally efficient. Toward that end, this paper presents Salty, a domain-specific language for GR(1) specifications. While tools exist to synthesize system designs from GR(1) specifications, Salty makes such specifications easier to write and debug by supporting features such as richer input and output types, user-defined macros, common specification patterns, and specification optimization and sanity checking. Salty interfaces with the separately developed synthesis tool Slugs to produce a system or controller design, and Salty translates this design to a software implementation in a variety of languages. We demonstrate Salty on an application involving coordination of multiple unmanned air vehicles (UAVs) and provide a workflow for connecting synthesized UAV controllers to freely available UAV planning and simulation software suites UxAS and AMASE.10.1109/ICRA.2019.8793722https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722- IEEE Inglês CI1 Incluído
Building Devs Models with the Cadmium ToolL. Belloli; D. Vicino; C. Ruiz-Martin; G. Wainer2019 Discrete Event System Specification (DEVS) is a mathematical formalism to model and simulate discrete-event dynamic systems. The advantages of DEVS include a rigorous formal definition of models and a well-defined mechanism for modular composition. In this tutorial, we introduce Cadmium, a new DEVS simulator. Cadmium is a C++17 header only DEVS simulator easy to include and to integrate into different projects. We discuss the tool's Application Programming Interface, the simulation algorithms used and its implementation. We present a case study as an example to explain how to implement DEVS models in Cadmium.10.1109/WSC40007.2019.9004917https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917- IEEE Inglês CI1 Incluído
Translating Process Interaction World View Models to DEVS: GPSS to (Python(P))DEVSR. Paredis; S. Van Mierlo; H. Vangheluwe2020 Discrete-event modelling and simulation languages can be classified based on their world view: event scheduling, activity scanning, or process interaction. To study the semantics of these languages one may investigate the relationship between them, and in particular translate models between languages in different world views. A translation approach also lets one re-use all the simulation tooling available for the target language. We describe a translation of the classic process interaction language GPSS developed by Gordon in the early 1960s onto DEVS, a modular discrete-event modelling and simulation language with precise semantics developed by Zeigler in the late 1970s. We specify and implement a translation that produces, for each GPSS model, a behaviourally equivalent DEVS model. As GPSS has no formal semantics, there is no proof of equivalence. Rather, we describe the structure of the translation, starting from Gordon's informal description, centered around the main data structures called chains and the scanning algorithm. We build a working prototype for a representative subset of GPSS blocks found in most tools implementing the language. Finally, we exhaustively test the translation by comparing simulation results of the generated DEVS model with a those obtained by the GPSS World simulator. GPSS World is a popular GPSS variant. We also demonstrate our approach on a small but representative example from the manufacturing domain.10.1109/WSC48552.2020.9383952https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952- IEEE Inglês CI1 Incluído
Modeling and Verifying Storm Using CSPH. Zhao; H. Zhu; Y. Fang; L. Xiao2019 Due to the higher pursuit of information timeliness, a number of distributed stream processing computation frameworks have emerged, among which the most successful and widely used at present is Storm. Storm is a stream-only processing computation framework which can deal with continuous streaming data. This paper applies Communicating Sequential Processes (CSP), a formal language in process algebra, to analyze and model the communication behaviors in the workflow of Storm. Then, we transform the established model and use the refinement checking tool Failures-Divergences Refinement (FDR) to verify whether it satisfies deadlock-free and sequential consistency properties.10.1109/HASE.2019.00037https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039Storm, CSP, FDR, Formal modeling, VerificationIEEE Inglês CI1 Incluído
Better Development of Safety Critical Systems: Chinese High Speed Railway System Development Experience ReportZ. Wu; J. Liu; X. Chen 2019 Ensure the correctness of safety critical systems play a key role in the worldwide software engineering. Over the past years we have been helping CASCO Signal Ltd which is the Chinese biggest high speed railway company to develop high speed railway safety critical software. We have also contributed specific methods for developing better safety critical software, including a search-based model-driven software development approach which uses SysML diagram refinement method to construct SysML model and SAT solver to check the model. This talk aims at sharing the challenge of developing high speed railway safety critical system, what we learn from develop a safety critical software with a Chinese high speed railway company, and we use ZC subsystem as a case study to show the systematic model-driven safety critical software development method.10.1109/ASE.2019.00143https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294SysML;Formal Method;Model-Driven;SAT IEEE Inglês CI1 Incluído
Work-in-Progress: Formal Analysis of Hybrid-Dynamic Timing Behaviors in Cyber-Physical SystemsL. Huang; E. Y. Kang 2019 Ensuring correctness of timed behaviors in cyber-physical systems (CPS) using closed-loop verification is challenging due to the hybrid dynamics in both systems and environments. Simulink and Stateflow are tools for model-based design that support a variety of mechanisms for modeling and analyzing hybrid dynamics of real-time embedded systems. In this paper, we present an SMT-based approach for formal analysis of the hybrid-dynamic timing behaviors of CPS modeled in Simulink blocks and Stateflow states (S/S). The hierarchically interconnected S/S are flattened and translated into the input language of SMT solver for formal verification. A translation algorithm is provided to facilitate the translation. Formal verification of timing constraints against the S/S models is reduced to the validity checking of the resulting SMT encodings. The applicability of our approach is demonstrated on an unmanned surface vessel case study.10.1109/RTSS46320.2019.00069https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141Cyber physical system;Simulink/Stateflow;dReal;Timing Constraints;Formal verificationIEEE Inglês CI1 Incluído
Hierarchical Formal Modeling of Internet of Things System Oriented to User BehaviorL. Yu; Y. Lu; B. Zhang; L. Shi; F. Huang; Y. Li; Y. Shen2020 Ensuring the correctness and reliability of the Internet of Things system is the key to the advancement of the Internet of Things project. It is very necessary to fully inspect the Internet of Things system before it is actually deployed, so as to find the errors and defects in the system design as soon as possible and make improvements. Compared with conventional simulation and testing, the formal method has the advantages of low cost, short cycle and simple steps, which provides efficient support for the inspection and analysis of the Internet of Things system before deployment. Based on the stateful timed communication sequence process (STCSP), we consider the formal modeling framework for the Internet of things system from the perspective of external environment input and system architecture. We then propose a hierarchical formal modeling method for the Internet of things system oriented to user behavior. Taking the elderly home monitoring application scene as an example, as the input of the external environment, the user behavior and its implementation object are combined into a whole for modeling, so as to keep the two states in sync, restrict each other, and avoid unrealistic sequence of activities. From the perspectives of perception mode, communication mode, predefined rules and application services, we have completed the hierarchical modeling of the three-layer architecture of the Internet of Things system, that is, perception layer, middle layer and application layer. Finally, the model verification tool PAT analyzes and verifies the above model from the aspects of security, accessibility, and system consistency. This method provides scientific basis for the correctness inspection and reliability analysis of the Internet of Things system before deployment in the Internet of Things project.10.1109/SmartIoT49966.2020.00050https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003Internet of things system;Formal modeling;User behavior;STCSP;PAT;Home monitoring for the elderlyIEEE Inglês CI1 Incluído
SOLOMON: An Automated Framework for Detecting Fault Attack Vulnerabilities in HardwareM. Srivastava; P. SLPSK; I. Roy; C. Rebeiro; A. Hazra; S. Bhunia2020 Fault attacks are potent physical attacks on crypto-devices. A single fault injected during encryption can reveal the cipher's secret key. In a hardware realization of an encryption algorithm, only a tiny fraction of the gates is exploitable by such an attack. Finding these vulnerable gates has been a manual and tedious task requiring considerable expertise. In this paper, we propose SOLOMON, the first automatic fault attack vulnerability detection framework for hardware designs. Given a cipher implementation, either at RTL or gate-level, SOLOMON uses formal methods to map vulnerable regions in the cipher algorithm to specific locations in the hardware thus enabling targeted countermeasures to be deployed with much lesser overheads. We demonstrate the efficacy of the SOLOMON framework using three ciphers: AES, CLEFIA, and Simon.10.23919/DATE48585.2020.9116380https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380fault attack;fault evaluation tools;formal verificationIEEE Inglês CI1 Incluído
Qualification of Hardware Description Language Designs for Safety Critical Applications in Nuclear Power PlantsA. K. John; A. K. Bhattacharjee2020 Field-programmable gate-array (FPGA)-based intelligent hardware modules are increasingly being used in safety systems of nuclear power plants. Qualification of these modules as per safety standards such as IEC 62566/60880 and IEEE-7.4.3.2-2010 needs considerable effort. Many of the safety standards demand high rigor in verifying that the designs of these modules meet the design intent. Use of hardware description languages such as VHDL or Verilog makes the process of code review and verification difficult due to the complex nonsequential semantics of these languages. It is now recognized that formal verification offers a complementary approach to conventional verification. Formal verification tools perform analysis of designs based on language semantics to prove/refute their functional correctness. In this article, we present the architecture of a formal verification tool for VHDL designs and our experience of using this tool on VHDL designs in nuclear applications.10.1109/TNS.2020.2972903https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153Bounded model checking;formal verification;field-programmable gate-array (FPGA) qualification;VHDLIEEE Inglês CI1 Incluído
Using tabular notation to support model based testing: A practical experience using STTSpec and Spec ExplorerR. Kherrazi 2020 Finite state machines are a widely used concept for specifying the behavior of reactive systems for development as well as for testing purpose. Numerous graphical notations based on finite state machines have been developed and are commonly used today, such as state transition diagrams, state charts, and Unified Modeling Language (UML) state machine diagrams. While not as widely used, tabular notations for state machine-based specifications offer complementary advantages to diagrammatic notations. In this article, we describe an approach using tabular notations for state machine-based specifications in Model Based Testing and we evaluate these approaches using Spec Explorer from Microsoft. We developed a tool, called STTSpec, to convert tabular notation from an Excel sheet to the C# input models of Spec Explorer, allowing us to do functional testing with the benefit of simplicity of tabular notation. We demonstrate this by applying our approach to an industrial-size case study.10.1109/ICSTW50294.2020.00021https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719State Machine Diagrams;Tabular Notation;State Transition Table (STT);Excel Sheet;Model Based Testing (MBT);Spec Explorer;STTSpecIEEE Inglês CI1 Incluído
Formal verification of Fischer’s real-time mutual exclusion protocol by the OTS/CafeOBJ methodM. Nakamura; S. Higashi; K. Sakakibara; a. Ogata2020 Fischer's protocol is a well-known real-time mutual exclusion protocol for multiple processes. The mutual exclusiveness is guaranteed by treating time aspects of transitions. In such a multitask real-time system, since processes run concurrently, the size of the state space grows exponentially. It is not easy to verify time constraints of a give system. Formal descriptions of multitask real-time systems may help us to verify time constraints formally with computer supports. In this paper, as a case study of the OTS/CafeOBJ method, we model Fischer's protocol as an observational transition system, describe it in CafeOBJ algebraic specification language, and verify that different processes do not enter the critical section at the same time by the proof score method based on equational reasoning implemented in CafeOBJ interpreter.10.23919/SICE48898.2020.9240272https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272Multitask real-time system;Fischer’s real-time mutual exclusion protocol;Algebraic specification;Observational transition system;Proof score methodIEEE Inglês CI1 Incluído
Model-checking infinite-state nuclear safety I&C systems with nuXmvA. Pakonen 2021 For over a decade, model checking has been successfully used to formally verify the instrumentation and control (I&C) logic design in Finnish nuclear power plant projects. One of the practical challenges is that the model checker NuSMV forces the user to abstract the way analog signals are processed in the model, which causes extra manual work, and could mask actual design issues. In this paper, we experiment with the newer tool nuXmv, which supports infinite-state modelling. Using actual models from practical industrial projects, we show that after changing the analog signal processing to be based on real number math, the analysis times are still manageable. The disadvantage is that certain useful types of formal properties are not supported by the infinite-state algorithms. We also discuss the nuclear industry specific features of I&C programming languages, which cause significant constraints on domain-specific formal verification method and tool development.10.1109/INDIN45523.2021.9557445https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445formal verification;model checking;control engineering;software safetyIEEE Inglês CI1 Incluído
Formal Verification of Dynamic and Stochastic Behaviors for Automotive SystemsL. Huang; T. Liang; E. -Y. Kang2019 Formal analysis of functional and non-functional requirements is crucial in automotive systems. The behaviors of those systems often rely on complex dynamics as well as on stochastic behaviors. We have proposed a probabilistic extension of Clock Constraint Specification Language, called PrCCSL, for specification of (non)-functional requirements and proved the correctness of requirements by mapping the semantics of the specifications into UPPAAL models. Previous work is extended in this paper by including an extension of PrCCSL, called PrCCSL*, for specification of stochastic and dynamic system behaviors, as well as complex requirements related to multiple events. To formally analyze the system behaviors/requirements specified in PrCCSL*, the PrCCSL* specifications are translated into stochastic UPPAAL models for formal verification. We implement an automatic translation tool, namely ProTL, which can also perform formal analysis on PrCCSL* specifications using UPPAAL-SMC as an analysis backend. Our approach is demonstrated on two automotive systems case studies.10.1109/ICECCS.2019.00009https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750Automotive Systems;PrCCSL*;UPPAAL-SMC;ProTLIEEE Inglês CI1 Incluído
Tool-Supported Analysis of Dynamic and Stochastic Behaviors in Cyber-Physical SystemsL. Huang; T. Liang; E. -Y. Kang2019 Formal analysis of functional and non-functional requirements is crucial in cyber-physical systems (CPS), in which controllers interact with physical environments. The continuous time behaviors of CPS often rely on complex dynamics as well as on stochastic behaviors. We have previously proposed a probabilistic extension of Clock Constraint Specification Language, called PrCCSL, for specification of (non)-functional requirements of CPS and proved the correctness of requirements by mapping the semantics of the specifications into verifiable UPPAAL models. Previous work is extended in this paper by including an extension of PrCCSL, i.e., PrCCSL*, which incorporates annotations of continuous behaviors and stochastic characteristics of CPS. The CPS behaviors are specified in PrCCSL* and translated into stochastic UPPAAL models for formal verification. The translation algorithm from PrCCSL* into UPPAAL models is provided and implemented in an automatic translation tool, namely ProTL. Formal verification of CPS against (non)-functional requirements is performed by ProTL using UPPAAL-SMC as an analysis backend. Our approach is demonstrated on a series of CPS case studies.10.1109/QRS.2019.00039https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706CPS;PrCCSL*;UPPAAL-SMC;ProTL IEEE Inglês CI1 Incluído
Systematic Evaluation and Usability Analysis of Formal Methods Tools for Railway Signaling System DesignA. Ferrari; F. Mazzanti; D. Basile; M. H. ter Beek2022 Formal methods and supporting tools have a long record of success in the development of safety-critical systems. However, no single tool has emerged as the dominant solution for system design. Each tool differs from the others in terms of the modeling language used, its verification capabilities and other complementary features, and each development context has peculiar needs that require different tools. This is particularly problematic for the railway industry, in which formal methods are highly recommended by the norms, but no actual guidance is provided for the selection of tools. To guide companies in the selection of the most appropriate formal methods tools to adopt in their contexts, a clear assessment of the features of the currently available tools is required. To address this goal, this paper considers a set of 13 formal methods tools that have been used for the early design of railway systems, and it presents a systematic evaluation of such tools and a preliminary usability analysis of a subset of 7 tools, involving railway practitioners. The results are discussed considering the most desired aspects by industry and earlier related studies. While the focus is on the railway signaling domain, the overall methodology can be applied to similar contexts. Our study thus contributes with a systematic evaluation of formal methods tools and it shows that despite the poor graphical interfaces, usability and maturity of the tools are not major problems, as claimed by contributions from the literature. Instead, support for process integration is the most relevant obstacle for the adoption of most of the tools. Our contribution can be useful to R&D engineers from railway signaling companies and infrastructure managers, but also to tool developers and academic researchers alike.10.1109/TSE.2021.3124677https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463- IEEE Inglês CI1 Incluído
DeepSTL - From English Requirements to Signal Temporal LogicJ. He; E. Bartocci; D. Ničković; H. Isakovic; R. Grosu2022 Formal methods provide very powerful tools and techniques for the design and analysis of complex systems. Their practical application remains however limited, due to the widely accepted belief that formal methods require extensive expertise and a steep learning curve. Writing correct formal specifications in form of logical formulas is still considered to be a difficult and error prone task. In this paper we propose DeepSTL, a tool and technique for the translation of informal requirements, given as free English sentences, into Signal Temporal Logic (STL), a formal specification language for cyber-physical systems, used both by academia and advanced research labs in industry. A major challenge to devise such a translator is the lack of publicly available informal requirements and formal specifications. We propose a two-step workflow to address this challenge. We first design a grammar-based generation technique of synthetic data, where each output is a random STL formula and its associated set of possible English translations. In the second step, we use a state-of-the-art transformer-based neural translation technique, to train an accurate attentional translator of English to STL. The experimental results show high translation quality for patterns of English requirements that have been well trained, making this workflow promising to be extended for processing more complex translation tasks.10.1145/3510003.3510171https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051Requirements Engineering;Formal Specification;Signal Temporal Logic (STL);Machine TranslationIEEE Inglês CI1 Incluído
SAT-Based Arithmetic Support for AlloyC. Cornejo 2020 Formal specifications in Alloy are organized around user-defined data domains, associated with signatures, with almost no support for built-in datatypes. This minimality in the built-in datatypes provided by the language is one of its main features, as it contributes to the automated analyzability of models. One of the few built-in datatypes available in Alloy specifications are integers, whose SAT-based treatment allows only for small bit-widths. In many contexts, where relational datatypes dominate, the use of integers may be auxiliary, e.g., in the use of cardinality constraints and other features. However, as the applications of Alloy are increased, e.g., with the use of the language and its tool support as backend engine for different analysis tasks, the provision of efficient support for numerical datatypes becomes a need. In this work, we present our current preliminary approach to providing an efficient, scalable and user-friendly extension to Alloy, with arithmetic support for numerical datatypes. Our implementation allows for arithmetic with varying precisions, and is implemented via standard Alloy constructions, thus resorting to SAT solving for resolving arithmetic constraints in models.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654alloy;sat solving IEEE Inglês CI1 Incluído
Speed up the validation process by formal veerification methodR. M. Sarikhada; P. K Shah2020 Formal verification (FV) has been widely accepted as a verification approach for catching corner logic design issues, it also fastens the verification process of any subsystem. Usage of formal verification for any RTL verification is an easy task compared to the traditional simulation method. In this paper, we discuss the approaches of verifying a DUT by formal verification method, and how it will reduce the time of the overall verification cycle. In addition to that, I'll also discuss the flow of verification to test any DUT under the formal verification method. In this test case, I used an assertion-based verification methodology to test the DUT and compare it with traditional simulation-based verification methodology.10.1109/INOCON50539.2020.9298384https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384Formal Verification;Assertion based verification;system verilog assertionIEEE Inglês CI1 Incluído
ARF: Automatic Requirements Formalisation ToolA. Zaki-Ismail; M. Osama; M. Abdelrazek; J. Grundy; A. Ibrahim2021 Formal verification techniques enable the detection of complex quality issues within system specifications. However, the majority of system requirements are usually specified in natural language (NL). Manual formalisation of NL requirements is an error-prone and labour-intensive process requiring strong mathematical expertise, and can be infeasible for large numbers of requirements. Existing automatic formalisation techniques usually support heavily constrained natural language relying on requirement boilerplates or templates. In this paper, we introduce ARF: Automatic Requirements Formalisation Tool. ARF can automatically transform free-format natural language requirements into temporal logic based formal notations. This is achieved through two steps: 1) extraction of key requirement attributes into an intermediate representation (RCM: Requirement Capturing Model), and 2) transformation rules that convert requirements from the RCM format to formal notations.10.1109/RE51729.2021.00060https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679Requirements engineering;Requirements Formalisation;Requirements ExtractionIEEE Inglês CI1 Incluído
A Survey on Formal Specification of Security RequirementsA. D. Mishra; K. Mustafa 2021 Formalization of security requirements ensures the correctness of any safety-critical system, software system, and web applications through specification and verification. Although there is a gap between security requirements expressed in natural language and formal language. Formal language is a more powerful tool based on higher-order mathematics to express unambiguous and concise security requirements.it remains an active research challenge to express precise, concrete, and correct security requirements. Identification of security requirements is also a challenging task because requirement inherent in the software changes frequently. Specification through formal methods is possible only after fixing the security requirements. In this study, we propose a formal specification software process model (FSSPM). The proposed model indicates the use of formal specification at the early phase of software development is cost-effective, time saving, and reduces the possibility of error at the later phase of software development.10.1109/ICAC3N53548.2021.9725779https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779Security Requirements;Formal Specification;Formal Verification;Security PropertyIEEE Inglês CI1 Incluído
Diversity-Driven Automated Formal VerificationE. First; Y. Brun 2022 Formally verified correctness is one of the most desirable properties of software systems. But despite great progress made via interactive theorem provers, such as Coq, writing proof scripts for verification remains one of the most effort-intensive (and often prohibitively difficult) software development activities. Recent work has created tools that automatically synthesize proofs or proof scripts. For example, CoqHammer can prove 26.6% of theorems completely automatically by reasoning using precomputed facts, while TacTok and ASTactic, which use machine learning to model proof scripts and then perform biased search through the proof-script space, can prove 12.9% and 12.3% of the theorems, respectively. Further, these three tools are highly complementary; together, they can prove 30.4% of the theorems fully automatically. Our key insight is that control over the learning process can produce a diverse set of models, and that, due to the unique nature of proof synthesis (the existence of the theorem prover, an oracle that infallibly judges a proof's correctness), this diversity can significantly improve these tools' proving power. Accordingly, we develop Diva, which uses a diverse set of models with TacTok's and ASTactic's search mech-anism to prove 21.7% of the theorems. That is, Diva proves 68% more theorems than TacTok and 77% more than ASTactic. Complementary to CoqHammer, Diva proves 781 theorems (27% added value) that CoqHammer does not, and 364 theorems no existing tool has proved automatically. Together with CoqHammer, Diva proves 33.8% of the theorems, the largest fraction to date. We explore nine dimensions for learning diverse models, and identify which dimensions lead to the most useful diversity. Further, we develop an optimization to speed up Diva's execution by 40×. Our study introduces a completely new idea for using diversity in machine learning to improve the power of state-of-the-art proof-script synthesis techniques, and empirically demonstrates that the improvement is significant on a dataset of 68K theorems from 122 open-source software projects.10.1145/3510003.3510138https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984Automated formal verification;language models;Coq;interactive proof assistants;proof synthesisIEEE Inglês CI1 incluído
Scalable Translation Validation of Unverified Legacy OS CodeA. Tahat; S. Joshi; P. Goswami; B. Ravindran2019 Formally verifying functional and security properties of a large-scale production operating system is highly desirable. However, it is challenging as such OSes are often written in multiple source languages that have no formal semantics - a prerequisite for formal reasoning. To avoid expensive formalization of the semantics of multiple high-level source languages, we present a lightweight and rigorous verification toolchain that verifies OS code at the binary level, targeting ARM machines. To reason about ARM instructions, we first translate the ARM Specification Language that describes the semantics of the ARMv8 ISA into the PVS7 theorem prover and verify the translation. We leverage the radare2 reverse engineering tool to decode ARM binaries into PVS7 and verify the translation. Our translation verification methodology is a lightweight formal validation technique that generates large-scale instruction emulation test lemmas whose proof obligations are automatically discharged. To demonstrate our verification methodology, we apply the technique on two OSes: Google's Zircon and a subset of Linux. We extract a set of 370 functions from these OSes, translate them into PVS7, and verify the correctness of the translation by automatically discharging hundreds of thousands of proof obligations and tests. This took 27.5 person-months to develop.10.23919/FMCAD.2019.8894252https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252Formal Verification;Linux OS;Google Zircon IEEE Inglês CI1 incluído
KAIROS: Incremental Verification in High-Level Synthesis through Latency-Insensitive DesignL. Piccolboni; G. D. Guglielmo; L. P. Carloni2019 High-level synthesis (HLS) improves design productivity by replacing cycle-accurate specifications with untimed or transaction-based specifications. Obtaining high-quality RTL implementations requires significant manual effort from designers, who must manipulate the code and evaluate different HLS-knob settings. These modifications can introduce bugs in the RTL implementations. We present KAIROS, a methodology for incremental formal verification in HLS. KAIROS verifies the equivalence of the RTL implementations the designer subsequently derives from the same specification by applying code manipulations and knobs.10.23919/FMCAD.2019.8894295https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295- IEEE Inglês CI1 incluído
Efficient Memory Arbitration in High-Level Synthesis From Multi-Threaded CodeJ. Cheng; S. T. Fleming; Y. T. Chen; J. Anderson; J. Wickerson; G. A. Constantinides2022 High-level synthesis (HLS) is an increasingly popular method for generating hardware from a description written in a software language like C/C++. Traditionally, HLS tools have operated on sequential code, however in recent years there has been a drive to synthesise multi-threaded code. In this context, a major challenge facing HLS tools is how to automatically partition memory among parallel threads to fully exploit the bandwidth available on an FPGA device and minimise memory contention. Existing partitioning approaches require inefficient arbitration circuitry to serialise accesses to each bank because they make conservative assumptions about which threads might access which memory banks. In this article, we design a static analysis that can prove certain memory banks are only accessed by certain threads, and use this analysis to simplify or even remove the arbiters while preserving correctness. We show how this analysis can be implemented using the Microsoft Boogie verifier on top of satisfiability modulo theories (SMT) solver, and propose a tool named EASY using automatic formal verification. Our work supports arbitrary input code with any irregular memory access patterns and indirect array addressing forms. We implement our approach in LLVM and integrate it into the LegUp HLS tool. For a set of typical application benchmarks our results have shown that EASY can achieve 0.13× (avg. 0.43×) of area and 1.64× (avg. 1.28×) of performance compared to the baseline, with little additional compilation time relative to the long time in hardware synthesis.10.1109/TC.2021.3066466https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343High-level synthesis;HLS;formal methods;multi-threaded code;FPGAIEEE Inglês CI1 incluído
Formalizing Loop-Carried Dependencies in Coq for High-Level SynthesisF. Faissole; G. A. Constantinides; D. Thomas2019 High-level synthesis (HLS) tools such as VivadoHLS interpret C/C++ code supplemented by proprietary optimization directives called pragmas. In order to perform loop pipelining, HLS compilers have to deal with non-trivial loop-carried data dependencies. In VivadoHLS, the dependence pragma could be used to enforce or to eliminate such dependencies, but, the behavior of this directive is only informally specified through examples. Most of the time programmers and the compiler seem to agree on what the directive means, but the accidental misuse of this pragma can lead to the silent generation of an erroneous register-transfer level (RTL) design, meaning code that previously worked may break with newer more aggressively optimised releases of the compiler. We use the Coq proof assistant to formally specify and verify the behavior of the VivadoHLS dependence pragma. We first embed the syntax and the semantics of a tiny imperative language Imp in Coq and specify a conformance relation between an Imp program and a dependence pragma based on data-flow transformations. We then implement semi-automated methods to formally verify such conformance relations for non-nested loop bodies.10.1109/FCCM.2019.00056https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537High level synthesis;Formal proofs;Loop dependenciesIEEE Inglês CI1 incluído
Formalization of Requirements for Correct SystemsI. Sayar; J. Souquieres 2020 Improving the quality of a system begins by their requirements elicitation: the challenge is to bridge the gap between the requirements of the client and their formal specification defined by the scientist. A first step consists on understanding and rewriting the existing requirements. Along the development process, we introduce formal terms in the requirements coming the formal specification and make explicit the interactions between them by a glossary. The trace of the requirements and their corresponding specification is managed and serves to simplify the activities of validation and verification. The validation is studied since the understanding of the first requirements and all along the development of their formal specification. The verification may detect imperfections like incoherences and ambiguities in both the formal specification and their corresponding requirements.10.1109/FORMREQ51202.2020.00012https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522- IEEE Inglês CI1 incluído
Coverage of Meta-Stability Using Formal Verification in Asynchronous Gray Code FIFOShivali; M. Khosla 2022 In Formal Verification Environment, setup time and hold time are not honored by formal verification tool. To analyze the impact of metastability on functionality of the design in formal verification environment, buffer has been designed. Buffer induces the delay of either ‘0’, ‘1’ or ‘2’ clock cycles leading to metastability in the pointers of Asynchronous Gray Code FIFO in formal verification environment. Reference code has been written which describe the functionality of Asynchronous Gray Code FIFO in ideal case. Using formal equivalence checking, output of FIFO obtained from design provided by the designer, is compared with the output obtained from the reference code of FIFO. Formal verification properties are written to do the verification of the design and check if the design is working as predicted specifications. Coverage written ensures no corner case is skipped which may lead to escapism of potential design bugs. The command language script containing the verification program has been run to invoke the JasperGold Tool. Comparative analysis has been done between the waveforms obtained from the design including a buffer and the design without including a buffer. If both the waveforms are not same which means metastability has influenced the functionality of the design. So, to overcome the effect of metastability on functionality of the design, there is need to add more synchronizers in the design. While if the waveforms obtained from the design with and without buffer are same, it means synchronizers / Meta flops already present in the design are enough to deal with the metastability which may arise during functioning of the design.10.1109/CONIT55038.2022.9848195https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195Meta-stability;Formal Verification;Formal Environment;Asynchronous Gray Code FIFOIEEE Inglês CI1 incluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195

Formal Specification and Validation of a Gas Detection System in the Industrial SectorA. Choquehuanca; D. Rondon; K. Quiñones; R. León2020 In gas concentrations greater than the allowable amounts, these become an imminent danger. It is true that there are devices that already read information, but are intended exclusively for the mining sector and are very expensive. That is why we propose to model and validate a new system for other industrial sectors. Our proposal, The Gas Detection System is based on The Explosive Discussion Triangle method developed by Coward and Jones. We use this method to develop a control system that will allow gas concentrations to be detected in a given environment and send an alarm if a risk situation arises. Formal Specifications allows the use of mathematical notations that help in the process of implementing critical systems and helps to reduce the potential ambiguities that occur in the interpretation of traditional graphic models. This work uses the VDM ++ formal specification language to describe system properties for its subsequent modeling and validation through the VDMToolBox tool. The System architecture is based on sensors, a control module and a set of alarms. Our proposal makes use of formal specifications in order to validate the main properties of the functional requirements.10.23919/CISTI49556.2020.9141056https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056Formal specification;validation;VDM++;gas detection;triangle CowardIEEE Inglês CI1 incluído
VrFy: Verification of Formal Requirements using Generic TracesJ. J. Olthuis; R. Jordão; F. Robino; S. Borrami2021 In order to fulfil standards governing the development of safety-critical systems, requirements are often shown to be satisfied by means of traditional techniques such as system analysis and testing activities. While these techniques have been used for many years, issues can still arise due to weak tests, not fully covering all requirement scenarios; and due to misinterpretation of requirements, leading to futile test activities. Having simpler techniques to show that requirements are properly fulfilled and that depend less on thoroughness of the tester is beneficial. To tackle these issues, we present an analysis method together with an accompanying toolset, VrFy, implementing a novel technique to automate the detection of violations of require-ments. Monitors are generated automatically, and the risk due to misinterpretation of requirements is reduced by using a formal notation (LTL3). Compared to related work, the proposed technique is programming language agnostic and can identify the exact time when requirements are violated, supporting the end user to quickly spot the root cause. By means of a real-world use case in the railway domain, we show how the tool can be used to augment traditional verification techniques.10.1109/QRS-C55045.2021.00034https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213Trace Validation;LTL3;NBA;Programming Language Agnostic;Railway Domain;Trace CompassIEEE Inglês CI1 incluído
Automated analysis of e-learning web applicationsF. Škopljanac-Mačina; B. Blašković; i. I. Zakarija2019 In our paper we are exploring the use of formal methods for testing and verification of interactive e-learning web applications. These programs can be highly interactive and are often used for knowledge assessment and on-line tutoring purposes. They are written in web standard languages and executed in client browsers. Even simpler web applications can have various different interaction scenarios which makes them hard to test reliably. Therefore, we are using formal methods tools such as SPIN model checker and its Promela language to improve web application testing process. We create semi-automatically Promela process models from web application source code, and run their simulations, as well as verification using SPIN. Using these techniques, we want to identify flaws in web application design, and find and visualize all interaction scenarios using finite state automata. We will present use case example based on tutoring web application from our e-learning system used on our course Fundamentals of Electrical Engineering.10.23919/MIPRO.2019.8756749https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749e-learning web applications;testing;verification;SPIN;PromelaIEEE Inglês CI1 incluído
Auditing a Software-Defined Cross Domain Solution ArchitectureN. Daughety; M. Pendleton; R. Perez; S. Xu; J. Franco2022 In the context of cybersecurity systems, trust is the firm belief that a system will behave as expected. Trustworthiness is the proven property of a system that is worthy of trust. Therefore, trust is ephemeral, i.e. trust can be broken; trustworthiness is perpetual, i.e. trustworthiness is verified and cannot be broken. The gap between these two concepts is one which is, alarmingly, often overlooked. In fact, the pressure to meet with the pace of operations for mission critical cross domain solution (CDS) development has resulted in a status quo of high-risk, ad hoc solutions. Trustworthiness, proven through formal verification, should be an essential property in any hardware and/or software security system. We have shown, in "vCDS: A Virtualized Cross Domain Solution Architecture", that developing a formally verified CDS is possible. virtual CDS (vCDS) additionally comes with security guarantees, i.e. confidentiality, integrity, and availability, through the use of a formally verified trusted computing base (TCB). In order for a system, defined by an architecture description language (ADL), to be considered trustworthy, the implemented security configuration, i.e. access control and data protection models, must be verified correct. In this paper we present the first and only security auditing tool which seeks to verify the security configuration of a CDS architecture defined through ADL description. This tool is useful in mitigating the risk of existing solutions by ensuring proper security enforcement. Furthermore, when coupled with the agile nature of vCDS, this tool significantly increases the pace of system delivery.10.1109/CSR54599.2022.9850321https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321Cross Domain Solution;Architecture Description Language;Trustworthiness;Configuration Security;Data Protection;Access Control;Trusted Systems;Security AnalysisIEEE Inglês CI1 incluído
Poster: Automatic Consistency Checking of Requirements with ReqVS. Vuotto; M. Narizzano; L. Pulina; A. Tacchella2019 In the context of Requirements Engineering, checking the consistency of functional requirements is an important and still mostly open problem. In case of requirements written in natural language, the corresponding manual review is time consuming and error prone. On the other hand, automated consistency checking most often requires overburdening formalizations. In this paper we introduce ReqV, a tool for formal consistency checking of requirements. The main goal of the tool is to provide an easy-to-use environment for the verification of requirements in Cyber-Physical Systems (CPS). ReqV takes as input a set of requirements expressed in a structured natural language, translates them in a formal language and it checks their inner consistency. In case of failure, ReqV can also extracts a minimal set of conflicting requirements to help designers in correcting the specification.10.1109/ICST.2019.00043https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195Requirements Engineering;Verification;Consistency;CPSIEEE Inglês CI1 incluído
Using the SCADE Toolchain to Generate Requirements-Based Test Cases for an Adaptive Cruise Control SystemA. Aniculaesei; A. Vorwald; A. Rausch2019 In the last years, model-driven engineering has gained a lot of traction, especially in industrial domains, such as automotive or avionics. Various tools which support model-driven engineering, e.g. SCADE or MATLAB/Simulink, have developed over the years in fully fledged integrated development environments, with strong capabilities for the modeling of complex software systems. Model-driven engineering tools are mature enough so that the model created with them are amenable to formal analysis for the purpose of verification and validation. Acceptance testing is a validation method by which a system is tested extensively against legal and customer requirements, before it is allowed in series production. Due to the inherent complexity of automotive systems, large requirements catalogues have become usual in this domain. Checking that a complex automotive software system conforms to an extensive requirements catalogue is a task which cannot be managed manually anymore. In this paper, we design a workflow for test engineers to construct test cases from formalized requirements and examine the quality of tests via mutant testing within the SCADE toolchain. We construct an academic case study based on a prototypical adaptive cruise control system and evaluate our workflow on it. We report on results and lessons learned.10.1109/MODELS-C.2019.00079https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521requirements-based testing; model-driven engineering; automated test case generation; model checking; adaptive cruise control; SCADE toolchainIEEE Inglês CI1 Incluído
Visualization of Promela with NS-ChartA. Chawanothai; W. Vatanawood2019 In the paradigm of model checking, a formal model is considered as one of the crucial sources that tends to be verified with the desired properties. The definition of the formal model should be understandable and clear in order to express the structure and behaviors of the system visually using diagrammatic tools. In this paper, we focused on the formal model which is written in Promela language that supports the non-determinism of the concurrent system. From our study, we found that the Promela syntax could probably be drawn by using NS-chart visual symbols. The classic NS-chart symbols represents the control flow of the system that was written in Promela. As a main purpose of this paper, we aim to propose a set of mapping rules for generating the NS-chart drawing from Promela source codes. The result of the drawing with the proposed NS-Chart syntax showed that the Promela control flow structure could be represented succinctly and the chart could be practically used for tracing the counterexample of the verification.10.1109/ICTS.2019.8850971https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971Promela;NS-chart;Control Flow Graph;Validation;SPIN toolIEEE Inglês CI1 Incluído
Notice of Violation of IEEE Publication Principles: Mobile Application Development: Automated Test Input Generation Via Model Inference based on User Story and Acceptance CriteriaH. Iqbal 2019 In the past few years, there has been observed explosive growth in the development of Mobile Applications across Android and iOS operating system which has led to the direct impact towards mobile app development. In order to design and propose quality-oriented apps, it is the primary responsibility of the developers to devote time and sufficient efforts towards testing to make the Apps bug free and operational in the hands of end users without any hiccup. In order to test the mobile apps, manual testing procedures takes prolonged amount of time in writing test cases and even the full testing requirements are not met. In addition to this, lack of sufficient knowledge by the tester also impacts overall quality and assurance that app is bug free. To overcome all the issues of testing, and to assure that apps designed by developers are almost bug free, we propose a new testing methodology cum tool “AgileUATM” which works primarily towards white-box and black-box testing. With this tool, all the test cases are generated automatically based on user stories and acceptance criteria by using formal specification and Z3 SMT solvers. To test the validity of the proposed tool, we applied the tool in real-time operational environment with regard to test Mobile apps. Using this tool, all the acceptance criteria is determined via user stories. The testers/developers specify requirements with formal specifications based on programs properties, predicates, invariants, and constraints. From the results, it is observed that the proposed tool i.e. AgileUATM generated effective and accurate test cases, test input, and expected output was generated in a unified fashion from the user stories to meet acceptance criteria. In addition to this, the tool also reduced the development time to identify test data as compared to manual Behavior Driven Development (BDD) methodologies. With this tool, the developers got better idea with regard to required tests and able to translate the customers natural languages to the computer language as well.;Notice of Violation of IEEE Publication Principles

 “Mobile Application Development: Automated Test Input Generation Via Model Inference based on User Story and Acceptance Criteria”
 by Hena Iqbal
 in the Proceedings of the International Conference on Digitization (ICD), November 2019, pp. 92-103

 After careful and considered review of the content and authorship of this paper by a duly constituted expert committee, this paper has been found to be in violation of IEEE’s Publication Principles.

 This paper is a near duplication of the original text from the paper cited below. The original text was copied without attribution (including appropriate references to the original author(s) and/or paper title) and without permission.

 Due to the nature of this violation, reasonable effort should be made to remove all past references to this paper, and future references should be made to the following article:

 “Automated Test Input Generation via Model Inference Based on User Story and Acceptance Criteria for Mobile Application Development”
 by Duc-Man Nguyen, Quyet-Thang Huynh, Nhu-Hang Ha and Thanh-Hung Nguyen
 in the International Journal of Software Engineering and Knowledge Engineering, Vol. 30, No. 3 2020, pp. 399-425

10.1109/ICD47981.2019.9105761https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761- IEEE Inglês CI1 Incluído
Formal Verification and Performance Analysis of a New Data Exchange Protocol for Connected VehiclesS. Chouali; A. Boukerche; A. Mostefaoui; M. A. Merzoug2020 In this article, we focus on the usage of MQTT (Message Queuing Telemetry Transport) within Connected Vehicles (CVs). Indeed, in the original version of MQTT protocol, the broker is responsible “only” for sending received data to subscribers; abstracting then the underlying mechanism of data exchange. However, within CVs context, subscribers (i.e., the processing infrastructure) may be overloaded with irrelevant data, in particular when the requirement is real or near real-time processing. To overcome this issue, we propose MQTT-CV; a new variant of MQTT protocol, in which the broker is able to perform local processing in order to reduce the workload at the infrastructure; i.e., filtering data before sending them. In this article, we first validate formally the correctness of MQTT-CV protocol (i.e., the three components of the proposed protocol are correctly interacting), through the use of Promela language and its system verification tool; the model checker SPIN. Secondly, using real-world data provided by our car manufacturer partner, we have conducted real implementation and experiments. The obtained results show the effectiveness of our approach in term of data workload reduction at the processing infrastructure. The mean improvement, besides the fact that it is dependent of the target application, was in general about 10 times less in comparison to native MQTT protocol.10.1109/TVT.2020.3040817https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870Connected vehicles;data filtration;formal analysis;formal verification;MQTT;promela;SPINIEEE Inglês CI1 Incluído
Sampling of Shape Expressions with ShapExN. Basset; T. Dang; F. Gigler; C. Mateis; D. Ničković2021 In this paper we present SHAPEx, a tool that generates random behaviors from shape expressions, a formal specification language for describing sophisticated temporal behaviors of CPS. The tool samples a random behavior in two steps: (1) it first explores the space of qualitative parameterized shapes and then (2) instantiates parameters by sampling a possibly non-linear constraint. We implement several sampling strategies in the tool that we present in the paper and demonstrate its applicability on two use scenarios.10.1145/3487212.3487350https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952shape expressions;sampling;hit-and-run;testingIEEE Inglês CI1 Incluído
Formalization of Robot Skills with Descriptive and Operational ModelsC. Lesire; D. Doose; C. Grand2020 In this paper, we propose a formal language to specify robot skills, i.e. the elementary behaviours or functions provided by the robot platform in order to perform an autonomous mission. The advantage of the language we propose is that it integrates a wide range of elements that allows to define and provide automatic translation both to operational models, used online to control the skill execution, and descriptive models, allowing to reason about the expected skill execution, and then apply automated planning or model-checking taking skill models into account.10.1109/IROS45743.2020.9340698https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698- IEEE Inglês CI1 Incluído
Structure Preserving Transformations for Practical Model-based Systems EngineeringS. Ji; M. Wilkinson; C. E. Dickerson2022 In this third decade of systems engineering in the twenty-first century, it is important to develop and demonstrate practical methods to exploit machine-readable models in the engineering of systems. Substantial investment has been made in languages and modelling tools for developing models. A key problem is that system architects and engineers work in a multidisciplinary environment in which models are not the product of any one individual. This paper provides preliminary results of a formal approach to specify models and structure preserving transformations between them that support model synchronization. This is an important area of research and practice in software engineering. However, it is limited to synchronization at the code level of systems. This paper leverages previous research of the authors to define a core fractal for interpretation of concepts into model specifications and transformation between models. This fractal is used to extend the concept of synchronization of models to the system level and is demonstrated through a practical engineering example for an advanced driver assistance system.10.1109/ISSE54508.2022.10005437https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437Model-based Systems Engineering;Model Synchronization;Model Transformation;SysMLIEEE Inglês CI1 Incluído
Efficient Algorithms for Finding Differences between Process ModelsA. Skobtsov; A. Kalenkova2019 Information systems from various domains record their behavior in a form of event logs. These event logs can be further analyzed and formal process models describing hidden processes can be discovered. In order to relate real and expected process behavior, discovered (constructed from event logs) and reference (manually created by analysts) process models can be compared. The result of comparison should clearly present commonalities and differences between these models. Since most process models are represented by graph-based languages, a graph comparison technique can be applied. It is worth known that graph comparison techniques are computationally expensive. In this paper, we adapt different heuristic graph comparison algorithms to compare BPMN (Business Process Model and Notation) models. These algorithms are implemented and tested on large BPMN models discovered from event logs. We show that some of the heuristic algorithms allow to find nearly optimal solutions in a reasonable amount of time.10.1109/ISPRAS47671.2019.00015https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151process comparison;process mining;BPMN (Business Process Model and Notation);heuristic algorithms;graph edit distanceIEEE Inglês CI1 Incluído
Instrumenting Microservices for Concurrent Audit Logging: Beyond Horn ClausesN. D. Ahn; S. Amir–Mohammadian2022 Instrumenting legacy code is an effective approach to enforce security policies. Formal correctness of this approach in the realm of audit logging relies on semantic frameworks that leverage information algebra to model and compare the information content of the generated audit logs and the program at runtime. Previous work has demonstrated the applicability of instrumentation techniques in the enforcement of audit logging policies for systems with microservices architecture. However, the specified policies suffer from the limited expressivity power as they are confined to Horn clauses being directly used in logic programming engines. In this paper, we explore audit logging specifications that go beyond Horn clauses in certain aspects, and the ways in which these specifications are automatically enforced in microservices. In particular, we explore an instrumentation tool that rewrites Java-based microservices according to a JSON specification of audit logging requirements, where these logging requirements are not limited to Horn clauses. The rewritten set of microservices are then automatically enabled to generate audit logs that are shown to be formally correct.10.1109/COMPSAC54236.2022.00280https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470Audit logs;concurrent systems;microservices;programming languages;securityIEEE Inglês CI1 Incluído
Context-Aware IoT Device Functionality Extraction from Specifications for Ensuring Consumer SecurityU. Paudel; A. Dolan; S. Majumdar; I. Ray2021 Internet of Thing (IoT) devices are being widely used in smart homes and organizations. An IoT device has some intended purposes, but may also have hidden functionalities. Typically, the device is installed in a home or an organization and the network traffic associated with the device is captured and analyzed to infer high-level functionality to the extent possible. However, such analysis is dynamic in nature, and requires the installation of the device and access to network data which is often hard to get for privacy and confidentiality reasons. We propose an alternative static approach which can infer the functionality of a device from vendor materials using Natural Language Processing (NLP) techniques. Information about IoT device functionality can be used in various applications, one of which is ensuring security in a smart home. We demonstrate how security policies associated with device functionality in a smart home can be formally represented using the NIST Next Generation Access Control (NGAC) model and automatically analyzed using Alloy, which is a formal verification tool. This will provide assurance to the consumer that these devices will be compliant to the home or organizational policy even before they have been purchased.10.1109/CNS53000.2021.9705050https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050IoT;Smart Home;Device Functionality;NLP IEEE Inglês CI1 Incluído
Scalable and Robust Algorithms for Task-Based Coordination From High-Level Specifications (ScRATCHeS)K. Leahy; Z. Serlin; C. -I. Vasile; A. Schoer; A. M. Jones; R. Tron; C. Belta2022 Many existing approaches for coordinating heterogeneous teams of robots either consider small numbers of agents, are application-specific, or do not adequately address common real-world requirements, e.g., strict deadlines or intertask dependencies. We introduce scalable and robust algorithms for task-based coordination from high-level specifications (ScRATCHeS) to coordinate such teams. We define a specification language, capability temporal logic, to describe rich, temporal properties involving tasks requiring the participation of multiple agents with multiple capabilities, e.g., sensors or end effectors. Arbitrary missions and team dynamics are jointly encoded as constraints in a mixed integer linear program, and solved efficiently using commercial off-the-shelf solvers. ScRATCHeS optionally allows optimization for maximal robustness to agent attrition at the penalty of increased computation time. We include an online replanning algorithm that adjusts the plan after an agent has dropped out. The flexible specification language, fast solution time, and optional robustness of ScRATCHeS provide a first step toward a multipurpose on-the-fly planning tool for tasking large teams of agents with multiple capabilities enacting missions with multiple tasks. We present randomized computational experiments to characterize scalability and hardware demonstrations to illustrate the applicability of our methods.10.1109/TRO.2021.3130794https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414Formal methods;multiagent systems;planning;roboticsIEEE Inglês CI1 Incluído
Monitoring Data Management Services on the Edge Using Enhanced TSDBsW. Zeng; S. Zhang; I. -L. Yen; F. B. Bastani; S. -Y. Hwang2019 Many IoT systems are data intensive and are for the purpose of monitoring of critical systems. In these monitoring systems, a large volume of data steadily flow out of a large number of sensors which monitor the physical systems and environments. Thus, first of all, we need to consider how to store and manage these IoT data. Also, data sharing can greatly enhance the quality of data analytics and help with cold start of similar systems. Thus, the data storage and management solutions should consider how to help discover useful data in order to facilitate data sharing. Time series databases (TSDBs) have been developed in recent years for storing IoT data, but they have some deficiencies. One problem is that they are not very effective in supporting data sharing due to the lack of a good semantic model for proper data specifications, which is critical in data discovery. To resolve this problem, we develop a monitoring data annotation (MDA) model to guide the systematic specification of monitoring data streams. To support the realization of the MDA model, we also develop an external tool suite, which stores the additional MDA-based specifications for the data streams and interfaces with queries to perform preliminary processing to allow effective monitoring data discovery based on the MDA specifications. Another problem with current TSDBs is their focus on storing time series data that arrive at a fixed rate, but not on storing and retrieval of event data, which may come sporadically with irregular timing patterns. When storing such event data in existing TSDBs, the retrieval may have performance problems. Also, existing TSDBs do not have specific query language defined for event analysis. We develop a model for event specifications and use it to specify abnormal system states to be captured to allow timely mitigation. The event model is integrated into the TSDB by translating them to continuous queries defined in some TSDBs. Also, we develop an event storage scheme and incorporate it in TSDBs to facilitate efficient event retrieval. Experimental results show that our event solution for the TSDB is effective and efficient.10.1109/SOCA.2019.00010https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028Monitoring data management;time series databases;edge computing;Internet of Things;data discovery;time series event storageIEEE Inglês CI1 Incluído
Specification Patterns for Robotic MissionsC. Menghi; C. Tsigkanos; P. Pelliccione; C. Ghezzi; T. Berger2021 Mobile and general-purpose robots increasingly support everyday life, requiring dependable robotics control software. Creating such software mainly amounts to implementing complex behaviors known as missions. Recognizing this need, a large number of domain-specific specification languages has been proposed. These, in addition to traditional logical languages, allow the use of formally specified missions for synthesis, verification, simulation or guiding implementation. For instance, the logical language LTL is commonly used by experts to specify missions as an input for planners, which synthesize a robot's required behavior. Unfortunately, domain-specific languages are usually tied to specific robot models, while logical languages such as LTL are difficult to use by non-experts. We present a catalog of 22 mission specification patterns for mobile robots, together with tooling for instantiating, composing, and compiling the patterns to create mission specifications. The patterns provide solutions for recurrent specification problems; each pattern details the usage intent, known uses, relationships to other patterns, and—most importantly—a template mission specification in temporal logic. Our tooling produces specifications expressed in the temporal logics LTL and CTL to be used by planners, simulators or model checkers. The patterns originate from 245 mission requirements extracted from the robotics literature, and they are evaluated upon a total of 441 real-world mission requirements and 1251 mission specifications. Five of these reflect scenarios defined with two well-known industrial partners developing human-size robots. We further validate our patterns’ correctness with simulators and two different types of real robots.10.1109/TSE.2019.2945329https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226Mission specification;pattern catalog;robotic mission;model driven engineeringIEEE Inglês CI1 Incluído
Formal Analysis of Language-Based Android Security Using Theorem Proving ApproachW. Khan; M. Kamran; A. Ahmad; F. A. Khan; A. Derhab2019 Mobile devices are an indispensable part of modern-day lives to support portable computations and context-aware communication. Android applications within a mobile device share data to support application operations and better user experience, which also increases security risks to device's data integrity and confidentiality. To analyze the security provided by the Android permissions, modern security techniques, based on the programming languages, have been used to enforce best practices for developing the secure Android applications. Android security assessment, based on the language-based techniques in an informal setting without formal tool support, is tedious and error-prone. Furthermore, the lack of proof of the soundness of the language-based techniques raises questions about the validity of the analysis. To enable computer-aided formal verification in Android security domain, we have developed a mathematical model of language-based Android security using computer-based proof assistant Coq. One of the main challenges for mechanizing the language-based security in theorem prover relates to the complexity of variable bindings in language-based security techniques. As the main contributions of the paper: 1) the language-based security, including variable binding, is formalized in theorem prover Coq; 2) a formal type checker is built to type check (capture safe data flows within) Android applications using computer; and 3) the soundness of the language-based security technique (type system) is mechanically verified. The formal model of the Android type system and their proof of soundness are machine-readable, and their correctness can be checked in the computer using Coq proof and type checkers.10.1109/ACCESS.2019.2895261https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096Android security;formal verification;language-based security;locally nameless representation;machine-readable proofs;theorem provingIEEE Inglês CI1 Incluído
Model Checking Software in Cyberphysical SystemsM. Sirjani; E. A. Lee; E. Khamespanah2020 Model checking a software system is about verifying that the state trajectory of every execution of the software satisfies formally specified properties. The set of possible executions is modeled as a transition system. Each "state" in the transition system represents an assignment of values to variables, and a state trajectory (a path through the transition system) is a sequence of such assignments. For cyberphysical systems (CPSs), however, we are more interested in the state of the physical system than the values of the software variables. The value of model checking the software therefore depends on the relationship between the state of the software and the state of the physical system. This relationship can be complex because of the real-time nature of the physical plant, the sensors and actuators, and the software that is almost always concurrent and distributed. In this paper, we study different ways to construct a transition system model for the distributed and concurrent software components of a CPS. We describe a logical-time based transition system model, which is commonly used for verifying programs written in synchronous languages, and derive the conditions under which such a model faithfully reflects physical states. When these conditions are not met (a common situation), a finer-grained event-based transition system model may be required. Even this finer-grained model, however, may not be sufficiently faithful, and the transition system model needs to be refined further to express not only the properties of the software, but also the properties of the hardware on which it runs. We illustrate these tradeoffs using a coordination language called Lingua Franca that is well-suited to extracting transition system models at these various levels of granularity, and we extend the Timed Rebeca language and its tool Afra to perform this extraction and then to perform model checking.10.1109/COMPSAC48688.2020.0-138https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762Cyberphysical systems, Lingua Franca, Model checking, Rebeca, VerificationIEEE Inglês CI1 Incluído
Transformation of non-standard nuclear I&C logic drawings to formal verification modelsA. Pakonen; P. Biswas; N. Papakonstantinou2020 Model checking methods have been proven to be a valuable asset for identifying undesired behaviour of safety-critical Instrumentation and Control (I&C) logics. Their application in the nuclear domain has been very successful and has triggered significant interest from the safety community. Creating formal models from the diagrams found on paper or from digital formats without the needed semantics is one bottleneck that hinders the adoption of model checking due to costs in time and may introduce errors. This paper proposes a methodology for the creation of formal models from I&C diagrams drawn in generic modelling tools (lacking specific I&C semantics). The generic I&C logic diagram is transformed into an intermediate UML model that in turn can be transformed to other target formats like IEC 61131 PLCopen XML I&C software or NuSMV formal model code. This methodology is demonstrated with a typical example of a trip signal generator application logic. This application logic is drawn in MS Visio, it is transformed to an I&C model in UML with the needed properties for model checking, then to IEC 61131 PLCopen XML and to an input file for the NuSMV model checker.10.1109/IECON43393.2020.9255176https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176I&C;function block diagram;nuclear energy;IEC61131;PLCOpen XML;Model-Based System EngineeringIEEE Inglês CI1 Incluído
Formalizing Cyber–Physical System Model Transformation Via Abstract InterpretationN. Jarus; S. S. Sarvestani; A. Hurson2019 Model transformation tools assist system designers by reducing the labor-intensive task of creating and updating models of various aspects of systems, ensuring that modeling assumptions remain consistent across every model of a system, and identifying constraints on system design imposed by these modeling assumptions. We have proposed a model transformation approach based on abstract interpretation, a static program analysis technique. Abstract interpretation allows us to define transformations that are provably correct and specific. This work develops the foundations of this approach to model transformation. We define model transformation in terms of abstract interpretation and prove the soundness of our approach. Furthermore, we develop formalisms useful for encoding model properties. This work provides a methodology for relating models of different aspects of a system and for applying modeling techniques from one system domain, such as smart power grids, to other domains, such as water distribution networks.10.1109/HASE.2019.00025https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032Modeling, Model transformation, Formal methods, Abstract interpretationIEEE Inglês CI1 Incluído
Design Ontology Supporting Model-Based Systems Engineering FormalismsJ. Lu; J. Ma; X. Zheng; G. Wang; H. Li; D. Kiritsis2022 Model-based systems engineering (MBSE) provides an important capability for managing the complexities of system development. MBSE empowers the formalism of system architectures for supporting model-based requirement elicitation, specification, design, development, testing, fielding, etc. However, the modeling languages and techniques are heterogeneous, even within the same enterprise system, which leads to difficulties for data interoperability. The discrepancies among data structures and language syntaxes make information exchange among MBSE models more difficult, resulting in considerable information deviations when connecting data flows across the enterprise. Therefore, this article presents an ontology based upon graphs, objects, points, properties, roles, and relationships with extensions (GOPPRRE), providing metamodels that support the various MBSE formalisms across lifecycle stages. In particular, knowledge graph models are developed to support unified model representations to further implement ontological data integration based on GOPPRRE throughout the entire lifecycle. The applicability of the MBSE formalism is verified using quantitative and qualitative approaches. Moreover, the GOPPRRE ontologies are used to create the MBSE formalisms in a domain-specific modeling tool, MetaGraph, for evaluating its availability. The results demonstrate that the proposed ontology supports the formal structures and descriptive logic of the systems engineering lifecycle.10.1109/JSYST.2021.3106195https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721Formalism;interoperability;knowledge graph;model-based systems engineering;ontologyIEEE Inglês CI1 Incluído
Perceptions and the extent of Model-Based Systems Engineering (MBSE) use – An industry surveyA. Akundi; W. Ankobiah; O. Mondragon; S. Luna2022 Model-Based Systems Engineering (MBSE) supports the development of complex systems through capturing, communicating, and managing system specifications with an emphasis on the use of modeling languages, tools, and methods. It is a well-known fact that varying levels of effort are required to implement MBSE in industries based on the complexity of the systems a given industry is associated with. This paper shares the results of a survey to industry professionals from Defense, Aerospace, Automotive, Consultancy, Software, and IT industry clusters. The research goal is to understand the current state of perception on what MBSE is and the use of MBSE among different industry clusters. The survey analysis includes a comparison of how MBSE is defined, advantages on the use of MBSE, project types, specific life cycle stage when MBSE is applied, and adoption challenges, as reported by the survey participants. The researchers also aim to trigger discussions in the MBSE community for identifying strategies to address MBSE related challenges tailored to a specific industry type.10.1109/SysCon53536.2022.9773894https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894Model-based System Engineering;MBSE;survey;industry;systems engineering;industry-specific;system complexity;adoption challengesIEEE Inglês CI1 Incluído
Combining Model-Based Testing and Automated Analysis of Behavioural Models using GraphWalker and UPPAALS. Tiwari; K. Iyer; E. P. Enoiu2022 Model-based Testing (MBT) has been proposed to create test cases more efficiently and effectively. In contrast, analysis techniques (e.g., model checking) have been used separately from testing and have shown great potential when applied early in the development process. Still, these are confronted by applicability and scalability issues and work on specific modeling languages. The combined use of MBT and analysis techniques can support engineers in using both dynamic and static techniques. This paper proposes a hybrid approach by combining MBT using GraphWalker (GW) with Model-Based Analysis using UPPAAL by transforming the GW model into UPPAAL timed automata and supporting a combined analysis and testing process. The approach enables the automatic verification of both reachability and deadlock freedom properties to exploit the results obtained from this analysis step to improve the test model before generating and executing test cases on the system under test. The proposed approach can improve the combination of analysis and testing using a promising open-source MBT tool and is currently being evaluated in the context of actual use cases.10.1109/APSEC57359.2022.00061https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283Model-Based Testing;analysis;behavioural models;model checking;GraphWalker;UPPAALIEEE Inglês CI1 Incluído
A multi-view and programming language agnostic framework for model-driven engineeringR. Jordão; F. Bahrami; R. Chen; I. Sander2022 Model-driven engineering (MDE) addresses the complexity of modern-day embedded system design. Multiple MDE frameworks are often integrated into a design process to use each MDE framework’s state-of-the-art tools for increased productivity. However, this integration requires substantial development effort.In this paper, we propose an MDE framework based on a formalism of system graphs and trait hierarchies for programming-language-agnostic integration between tools within our frame-work and with tools of other MDE frameworks. Implementing our framework for each programming language is a one-time development effort.We evaluate our proposal in an MDE design process by developing a Java supporting library and an AMALTHEA connector. Then we perform an MDE industrial avionics case study with both. The evaluation shows that our framework facilitates the integration of different tools and the independent development of different system parts. Therefore, our framework is a reliable MDE framework that lowers the effort of integrating tools to benefit from their combined state-of-the-art.10.1109/FDL56239.2022.9925666https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666Model-driven Engineering;System Modelling;Collaborative ToolsIEEE Inglês CI1 Incluído
Static Profiling of Alloy ModelsE. Eid; N. A. Day 2023 Modeling of software-intensive systems using formal declarative modeling languages offers a means of managing software complexity through the use of abstraction and early identification of correctness issues by formal analysis. Alloy is one such language used for modeling systems early in the development process. Little work has been done to study the styles and techniques commonly used in Alloy models. We present the first static analysis study of Alloy models. We investigate research questions that examine a large corpus of 1,652 Alloy models. To evaluate these research questions, we create a methodology that leverages the power of ANTLR pattern matching and the query language XPath. Our research questions are split into two categories depending on their purpose. The Model Characteristics category aims to identify what language constructs are used commonly. Modeling Practices questions are considerably more complex and identify how modelers are using Alloy's constructs. We also evaluate our research questions on a subset of models from our corpus written by expert modelers. We compare the results of the expert corpus to the results obtained from the general corpus to gain insight into how expert modelers use the Alloy language. We draw conclusions from the findings of our research questions and present actionable items for educators, language and environment designers, and tool developers. Actionable items for educators are intended to highlight underutilized language constructs and features, and help student modelers avoid discouraged practices. Actionable items aimed at language designers present ways to improve the Alloy language by adding constructs or removing unused ones based on trends identified in our corpus of models. The actionable items aimed at environment designers address features to facilitate model creation. Actionable items for tool developers provide suggestions for back-end optimizations.10.1109/TSE.2022.3162985https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446Declarative modeling;Alloy;static analysis IEEE Inglês CI1 Incluído
AutoSVA: Democratizing Formal Verification of RTL Module InteractionsM. Orenes-Vera; A. Manocha; D. Wentzlaff; M. Martonosi2021 Modern SoC design relies on the ability to separately verify IP blocks relative to their own specifications. Formal verification (FV) using SystemVerilog Assertions (SVA) is an effective method to exhaustively verify blocks at unit-level. Unfortunately, FV has a steep learning curve and requires engineering effort that discourages hardware designers from using it during RTL module development. We propose AutoSVA, a framework to automatically generate FV testbenches that verify liveness and safety of control logic involved in module interactions. We demonstrate AutoSVA’s effectiveness and efficiency on deadlock-critical modules of widely-used open-source hardware projects.10.1109/DAC18074.2021.9586118https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118automatic;modular;formal;verification;SVA IEEE Inglês CI1 Incluído
Model driven programming of autonomous floats for multidisciplinary monitoring of the oceansS. Bonnieux; S. Mosser; M. Blay-Fornarino; Y. Hello; G. Nolet2019 Monitoring of the oceans with autonomous floats is of great interest for many disciplines. Monitoring on a global scale needs a multidisciplinary approach to be affordable. For this purpose, we propose an approach that allows oceanographers from different specialities to develop applications for autonomous floats. However, developing such applications usually requires expertise in embedded systems, and they must be reliable and efficient with regards to the limited resources of the floats (e.g., energy, processing power). We have followed a Model Driven Engineering approach composed of i) a Domain Specific Language to allow oceanographers to develop applications, ii) analysis tools to ensure that applications are efficient and reliable, iii) a composition tool to allow the deployment of different applications on a same float, and iv) a code generator that produce efficient and reliable code for the float. We present our approach with a biological and a seismological application. We validate it with technical metrics and an experiment.10.1109/OCEANSE.2019.8867453https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453Model Driven Engineering;Domain Specific Language;embedded system;constrained resourcesIEEE Inglês CI1 Incluído
A Framework for Verification-Oriented User-Friendly Network Function ModelingG. Marchetto; R. Sisto; F. Valenza; J. Yusupov2019 Network virtualization and softwarization will serve as a new way to implement new services, increases network functionality and flexibility. However, the increasing complexity of the services and the management of very large scale environments drastically complicate detecting alerts and configuration errors of the network components. Nowadays, misconfigurations can be identified using formal analysis of network components for compliance with network requirements. Unfortunately, formal specification of network services requires familiarity with discrete mathematical modeling languages of verification tools, which requires extensive training for network engineers to have the essential knowledge. This paper addresses the above-mentioned problem by presenting a framework designed for automatically extracting verification models starting from an abstract representation of a given network function. Using guidelines provided in this paper, vendors can describe the forwarding behavior of their network function in developer-friendly, high-level languages, which can be then translated into formal verification models of different verification tools.10.1109/ACCESS.2019.2929325https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301Network function modeling;model extraction;NFVIEEE Inglês CI1 Incluído
A Survey on Network Verification and Testing With Formal Methods: Approaches and ChallengesY. Li; X. Yin; Z. Wang; J. Yao; X. Shi; J. Wu; H. Zhang; Q. Wang2019 Networks have grown increasingly complicated. Violations of intended policies can compromise network availability and network reliability. Network operators need to ensure that their policies are correctly implemented. This has inspired a research field, network verification and testing, that enables users to automatically detect bugs and systematically reason their network. Furthermore, techniques ranging from formal modeling to verification and testing have been applied to help operators build reliable systems in electronic design automation and software. Inspired by its success, network verification has recently seen increased attention in the academic and industrial communities. As an area of current interest, it is an interdisciplinary subject (with fields including formal methods, mathematical logic, programming languages, and networks), making it daunting for a nonprofessional. We perform a comprehensive survey on well-developed methodologies and tools for data plane verification, control plane verification, data plane testing and control plane testing. This survey also provides lessons gained from existing solutions and a perspective of future research developments.10.1109/COMST.2018.2868050https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007Network verification;network testing;formal methods;network reliability;software-defined networkIEEE Inglês CI1 Incluído
A Research Landscape on Formal Verification of Software Architecture DescriptionsC. Araújo; E. Cavalcante; T. Batista; M. Oliveira; F. Oquendo2019 One of the many different purposes of software architecture descriptions is contributing to an early analysis of the architecture with respect to quality attributes. The critical nature of many software systems calls for formal approaches aiming at precisely verifying if their designed architectures can meet important properties such as consistency, completeness, and correctness. In this context, it is worthwhile investigating the role of architecture descriptions to support the formal verification of software architectures to ensure their quality, as well as how such a process happens and is supported by existing languages and verification tools. To evaluate the research landscape on this subject, we have carried out a systematic mapping study in which we collected and analyzed studies available at the literature on formal verification of architecture descriptions. This work contributes with (i) a structured overview and taxonomy of the current state of the art on this topic and (ii) the elicitation of important issues to be addressed in future research.10.1109/ACCESS.2019.2953858https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988Architecture description;formal verification;property specification;software architectures;systematic mappingIEEE Inglês CI1 Incluído
Analyzing the Validation Flaws of Online Shopping Systems Based on Coloured Petri NetsW. Yu; L. Liu; Y. An; X. Zhai2019 Online shopping systems integrating multiple participants have rapidly developed worldwide. The complex business interactions among the multiple participants introduce new security problems, and the validation flaw is one of the main issues. A legal user can utilize the validation flaws, by some special behaviours, to obtain illegal interests. To deal with above issue, we propose the process to analyze validation flaws by formal methods based on CPN (Coloured Petri nets). The modeling method is based on CPN Modeling Language, and the analyzing process utilizes the transaction properties of online shopping systems. CPN tools can provide the basic support to the analyzing process. A case study throughout this work is used to illustrate the proposed methodology.10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00304https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216formal model;Petri net;online shopping;validation;securityIEEE Inglês CI1 Incluído
Automated Generation of LTL Specifications For Smart Home IoT Using Natural LanguageS. Zhang; J. Zhai; L. Bu; M. Chen; L. Wang; X. Li2020 Ordinary users can build their smart home automation system easily nowadays, but such user-customized systems could be error-prone. Using formal verification to prove the correctness of such systems is necessary. However, to conduct formal proof, formal specifications such as Linear Temporal Logic (LTL) formulas have to be provided, but ordinary users cannot author LTL formulas but only natural language.To address this problem, this paper presents a novel approach that can automatically generate formal LTL specifications from natural language requirements based on domain knowledge and our proposed ambiguity refining techniques. Experimental results show that our approach can achieve a high correctness rate of 95.4% in converting natural language sentences into LTL formulas from 481 requirements of real examples.10.23919/DATE48585.2020.9116374https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374- IEEE Inglês CI1 Incluído
PUF-G: A CAD Framework for Automated Assessment of Provable Learnability from Formal PUF RepresentationsD. Chatterjee; D. Mukhopadhyay; A. Hazra2020 Physically Unclonable Functions (PUFs) are widely adopted in various lightweight authenticating devices due to their unique fingerprints - providing uniform, unpredictable and reliable nature of responses. However, with the growth of machine learning (ML) attacks in recent times, it is imperative that the PUFs need to be resilient to such modeling attacks as well. Consequently, analyzing the learnability of PUFs has initiated a new branch of study leading to establishing provable guarantees (and PAC-learnability) of various PUF designs. However, these derivations are often carried out manually while implementing the design and thereby cannot automatically adjust the changes in PUF designs or its various compositions. In this paper, for the first time, we present an automated framework, called PUF-G, to reason about the PAC-learnability of PUF designs from an architectural level. To enable this, we propose a formal PUF representation language by which any architectural PUF design and its compositions can be specified upfront. This PUF specification can be automatically analyzed through a CAD framework by translating the same to an interim model and then deriving the PAC-learnability bounds from the model. Such a tool will help the designer to explore various compositional architectures of PUFs and its resilience to ML attacks automatically before converging on a strong PUF design for implementation. We also show the efficacy of our proposed framework over a wide range of PUF architectures while automatically deriving their learnability guarantees. As a matter of independent interest, the framework presents the first reported proofs to show that Interpose-PUF (newly proposed), MUX-PUF, FF-APUF, FF-XOR APUF and DA-PUF, are all PAC-learnable.https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782- IEEE Inglês CI1 Incluído
Domain Specific Program SynthesisP. Archana; P. B. Harish; N. Rajan; S. P; N. S. Kumar2021 Program Synthesis refers to the task of constructing a program in a specific programming language, given its intent in a particular format. This emerging field can be applied in diverse domains and is currently being investigated with different techniques. A program synthesizer would simplify the efforts of programmers and help them focus on the program's core logic, without worrying about language syntax and other domain specifics. We applied the concepts of program synthesis in the context of solving a propositional logic word problem. We have developed a tool that is capable of understanding, parsing and evaluating a propositional logic word problem. With the user's natural language input, this tool processes the query and evaluates truth values of the question expressions. The working of the tool can be explained in three major phases: natural language processing, machine learning to obtain postfix notations of the Boolean expressions involved, and further evaluation of the postfix notations to determine the answers. Our goal was to explore the domain agnostic capabilities of our program-synthesis-based techniques of learning used in the implementation of this tool.10.1109/ASIANCON51346.2021.9544738https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738propositional logic;program synthesis;boolean;natural language processing;sequence-to-sequence modelIEEE Inglês CI1 Incluído
Prioritizing Scenarios based on STAMP/STPA Using Statistical Model CheckingM. Tsuji; T. Takai; K. Kakimoto; N. Ishihama; M. Katahira; H. Iida2020 Recently, a hazard analysis technique STAMP/STPA has been widely accepted since it is recognized as being suitable for software-intensive systems. Using STAMP/STPA, we can find hazardous scenarios of the target system that cannot be obtained by other traditional hazard analysis methods and those scenarios can be used for validation testing. However, generally the number of obtained scenarios can be huge and the validation testing involves a considerable cost. In this study, we propose a method to prioritize hazardous scenarios identified by STAMP/STPA with the help of a statistical model-checking technique. We give a procedure for systematically transforming the model defined by STAMP/STPA to a formal model for a statistical model-checking tool. We also show the usefulness of the proposed method using an example of train gate control system.10.1109/ICSTW50294.2020.00032https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811STAMP/STPA;statistical model checking;risk analysisIEEE Inglês CI1 Incluído
A Lightweight Framework for Regular Expression VerificationX. Liu; Y. Jiang; D. Wu 2019 Regular expressions and finite state automata have been widely used in programs for pattern searching and string matching. Unfortunately, despite the popularity, regular expressions are difficult to understand and verify even for experienced programmers. Conventional testing techniques remain a challenge as large regular expressions are constantly used for security purposes such as input validation and network intrusion detection. In this paper, we present a lightweight verification framework for regular expressions. In this framework, instead of a large number of test cases, it takes in requirements in natural language descriptions to automatically synthesize formal specifications. By checking the equivalence between the synthesized specifications and target regular expressions, errors will be detected and counterexamples will be reported. We have built a web application prototype and demonstrated its usability with two case studies.10.1109/HASE.2019.00011https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038regular expression;verification;natural language;formal specification;domain-specific languageIEEE Inglês CI1 Incluído
Generating Test Cases from Requirements: A Case Study in Railway Control System DomainH. Zheng; J. Feng; W. Miao; G. Pu2021 Requirements-based testing is one of the most commonly used ways to ensure the correctness of software, especially for embedded control software in safety-critical domains such as spacecraft and railway systems. Many industrial standards such as the DO-333 and EN50128 also request rigorous requirements-based software testing. To test embedded control software effectively and efficiently, generating high-quality test cases automatically is extremely important. However, existing methods for generating test cases from requirements require intensive manual efforts and expertise. To address this problem, we proposed an automatic requirements-based software testing method for embedded control software. To obtain automatic test case generation and precise test oracles derivation, requirements specification should be precise and readable for the industrial practitioners. Therefore, we use the light-weight domain-specific formal description language, CASDL (Casco Accurate Specification Description Language) for the industrial practitioners to define software requirements into formal specifications at the first step. Based on the formal specification, we propose an algorithm to automatically generate test inputs that satisfy the MC/DC criteria suggested by typical industrial standards and precise test oracles can be derived by “running” the specification with such test inputs. To this end, we proposed an algorithm for simulating the formal specification to generate the test oracles, i.e., the expected outputs corresponding to the test inputs. To facilitate the application of this method in the industry, we have built a tool that can automatically perform the overall testing process. To validate and evaluate its effectiveness in real industrial projects, we have applied it in testing a real Automatic Train Protection (ATP) system provided by our industrial partner, the Casco Signal Co., Ltd (one of the largest railway control system companies in China). In the case study on ATP requirements, our approach generated test cases for 129 requirement items following MC/DC criteria and caught 40 inconsistencies between Casco’s requirements and implementation.10.1109/TASE52547.2021.00029https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822Test cases;software testing;requirements validation and verification;requirements modelingIEEE Inglês CI1 Incluído
Automated Model-Based Test Case Generation for Web User Interfaces (WUI) From Interaction Flow Modeling Language (IFML) ModelsN. Yousaf; F. Azam; W. H. Butt; M. W. Anwar; M. Rashid2019 Since the emergence of web 2.0, the architecture of web applications has been transformed significantly and its complexity has grown enormously. In such web applications, the user interface (UI) is an important ingredient and with the increased complexity, its testing is getting increasingly complex and cost/time-consuming process. Recently introduced, interaction flow modeling language (IFML) is an object management group (OMG) standard. IFML is gaining popularity for developing web applications, primarily, because of its excellent features for modeling UI elements, their content, and their interaction capturing capabilities. However, despite its superior UI modeling features, its UI testing is accomplished through traditional time-consuming techniques, which are employed after implementing the UI code. Hence, to overcome these limitations, this paper introduces a novel model-based testing approach for IFML UI elements. The proposed approach provides complete navigation testing using formal models. Moreover, the approach transforms the IFML models to all necessary UI testing artifacts by generating state transition matrix plus detailed UI test case document. As a part of a research, model-based user interface test case (MBUITC) generator tool is implemented to automatically generate navigation model for formal verification, test case document, and transition matrices from IFML models. The applicability of the proposed approach is validated through two benchmark case studies. The results have shown that the proposed approach provides test cases at the early stages of development, i.e., specification and analysis, which eventually helps in building a right product at the right time at a comparatively lower cost.10.1109/ACCESS.2019.2917674https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593Formal verification;IFML;MBT;model-based testing;UI;web applications;WUIIEEE Inglês CI1 Incluído
A Formal Verification Method for Smart ContractX. Wang; X. Yang; C. Li 2020 Smart contract is a computer protocol running on the blockchain, which is widely used in various fields. However, its security problems continue to emerge. Therefore, it is necessary to audit the security of smart contract before it is deployed on the blockchain. Traditional testing methods cannot guarantee a high reliability and correctness required by the smart contract. This paper shows a method for using modeling, simulation and verification language (MSVL) and propositional projection temporal logic (PPTL) to model and verify the smart contract. First, a converter tool SOL2M which can convert Solidity program to MSVL program is developed. Then, the security properties of the smart contract are described by PPTL and a standardized process to verify the contract is designed through UMC4M (Unified Model Checker for MSVL). Finally, an example is given to illustrate the feasibility and practicability of this method in smart contract verification.10.1109/DSA51864.2020.00011https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049blockchains;Smart Contract;formal methods;MSVLIEEE Inglês CI1 Incluído
Formal Simulation and Verification of Solidity contracts in Event-BJ. Zhu; K. Hu; M. Filali; J. -P. Bodeveix; J. -P. Talpin; H. Cao2021 Smart contracts are the artifact of the blockchain that provides immutable and verifiable specifications of physical transactions. Solidity is a domain-specific programming language with the purpose of defining smart contracts. It aims at reducing the transaction costs occasioned by the execution of contracts on the distributed ledgers such as Ethereum. However, Solidity contracts need to adhere to safety and security requirements that require formal verification and certification. This paper proposes a method to meet such requirements by translating Solidity contracts to Event-B models, supporting certification. To that purpose, we define a restrained Solidity subset and a transfer function that translates Solidity contracts to Event-B models. Besides, we have implemented a translator to improve the conversion efficiency. As a case study, we take advantage of Event-B method capabilities to simulate models at different levels of abstraction and to express the properties of a typical smart contract: Honeypot contract. Lastly, we verify the generated proof obligations of the Event-B model with the help of the Rodin platform.10.1109/COMPSAC51774.2021.00183https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594Blockchain;Smart contract;Solidity;Event-B model;formal verification for securityIEEE Inglês CI1 Incluído
Formal Methods for the Security Analysis of Smart ContractsM. Maffei 2021 Smart contracts consist of distributed programs built over a blockchain and they are emerging as a disruptive paradigm to perform distributed computations in a secure and efficient way. Given their nature, however, program flaws may lead to dramatic financial losses and can be hard to fix. This motivates the need for formal methods that can provide smart contract developers with correctness and security guarantees, ideally automating the verification task. This tutorial introduces the semantic foundations of smart contracts and reviews the state-of-the-art in the field, focusing in particular on the automated, sound, static analysis of Ethereum smart contracts. We will highlight the strengths and drawbacks of different methods, suggesting open challenges that can stimulate new research strands. Finally, we will overview eThor, an automated static analysis tool that we recently developed based on rigorous semantic foundations.10.34727/2021/isbn.978-3-85448-046-4_3https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687- IEEE Inglês CI1 Incluído
Tooled approach for formal verification of components interactions modeled in SysMLM. S. GHITRI; M. MESSABIHI; A. BENAMAR2019 Software systems are becoming more complex and their implementation requires more rigorous modeling approaches, for this reason the OMG (Object Management Group) has implemented the SysML standard to model complex systems. Sequence diagram is one of the fundamental diagrams of SysML because it allows behavioral specification of systems. However, SysML still has a lack of formal semantics following his semi-formal definition, which makes it impossible to directly apply the simulation and verification methods to these diagrams. The model transformation community offers several solutions to transform the SysML specification into formal methods in order to bridge the gap between them, this community is divided into two principal's axes, the first ones working on the formalization of structural diagrams, and the others have worked on behavioral diagrams. Our work contributes to behavioral modeling and aims to combine all the highlights of the other approaches in a single framework for formal verification of SDs, using TAN and Uppaal model checker. The proposed approach has been tested through a case study of an interaction between ATM and Bank to prove their reliability.10.1109/ICTAACS48474.2019.8988134https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134SysML;ATL;Formal Verification;Timed Automata Network;Model Checking;Acceleo;UppaalIEEE Inglês CI1 Incluído
On Complementing an Undergraduate Software Engineering Course with Formal MethodsB. Westphal 2020 Software systems continue to pervade day-to-day life and so it becomes increasingly important to ensure the dependability, safety, and security of software. One approach to this end can be summarised under the broad term of formal methods, i.e., the formal analysis of requirements, software models, or programs. Formal methods in this sense are today used in many branches of the software industry, such as the huge internet companies, aerospace, automotive, etc. and even made their way into small to medium sized enterprises. In this article, we argue the opinion that today's students (and tomorrow's engineers) need to be provided with a basic understanding of formal methods in the broad sense (what is it, how does it feel to use it, what are advantages and limitations) already in undergraduate introductions to software engineering. We propose a generic course design that complements (otherwise completely ordinary) undergraduate introductions to software engineering with formal semantics and analyses of (visual) software description languages. We report on five years of teaching an implementation of the course design that indicate the feasibility of teaching without sacrificing classical software engineering topics and without over-straining students wrt. level or workload.10.1109/CSEET49119.2020.9206234https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234Teaching;Formal Methods;Software EngineeringIEEE Inglês CI1 Incluído
Formal Verification of SDN-Based Firewalls by Using TLA+Y. -M. Kim; M. Kang 2020 Software-defined networking (SDN) has generated increased interest due to the rapid growth in the amount of data generated by the development of the Internet and communications, the commercialization of 5G, and increasingly complex networks. While SDN is more advantageous than traditional networks in terms of efficient network management, rapid deployment, and dynamic scalability, the correctness of a network configuration must be ensured in advance. In other words, SDN components such as network devices, SDN controllers, and applications need to be deployed correctly and must be free of rule conflicts, particularly between various application policies; otherwise, it may result in network paralysis in the worst case. This paper assumes that the SDN network is free of rule conflicts when the rules in the SDN switches correctly obey firewall application or policies. To solve this problem, this paper proposes a verification framework for SDN using TLA+. We show that the firewall rule behavior of switches can be formalized using TLA+, and this is verified with the TLC model checker that uses TLA+ as the model description language. We check two different types of topology models through our verification framework to ensure that the same firewall rules are maintained even if the topology changes. The findings show that the firewall rules may be inconsistent as the topology changes.10.1109/ACCESS.2020.2979894https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323Firewall;formal methods;software-defined networking;TLA+IEEE Inglês CI1 Incluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323

A Systematic Identification of Formal and Semi-Formal Languages and Techniques for Software-Intensive Systems-of-Systems Requirements ModelingC. A. Lana; M. Guessi; P. O. Antonino; D. Rombach; E. Y. Nakagawa2019 Software-intensive systems-of-systems (SoS) refer to an arrangement of managerially and operationally independent systems (i.e., constituent systems), which work collaboratively toward the achievement of global missions. Because some SoS are being developed for critical domains, such as healthcare and transportation, there is an increasing need to attain higher quality levels, which often justifies the additional costs that can be incurred by adopting formal and semi-formal approaches (i.e., languages and techniques) for modeling requirements. Various approaches have been employed, but a detailed landscape is still missing, and it is not well known whether these approaches are appropriate for addressing the inherent characteristics of SoS. The main contribution of this paper is to present this landscape by reporting on the state of the art in SoS requirements modeling. This landscape was built by means of a systematic mapping and shows formal and semi-formal approaches grouped from model-based to property-oriented ones. Most of them have been tested in safety-critical domains, where formal approaches such as finite-state machines are aimed at critical system parts, whereas semi-formal approaches (e.g., unified modeling language and i*) address non-critical parts. Although formal and semi-formal modeling is an essential activity, the quality of SoS requirements does not rely solely on the formalism that is used, but also on the availability of supporting tools/mechanisms that enable, for instance, requirements verification along the SoS life cycle.10.1109/JSYST.2018.2874061https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059Formal languages;requirements modeling;semi-formal languages;systematic mapping;systems-of-systems (SoS)IEEE Inglês CI1 Incluído
Reactive Synthesis with Spectra: A TutorialS. Maoz; J. O. Ringert 2021 Spectra is a formal specification language specifically tailored for use in the context of reactive synthesis, an automated procedure to obtain a correct-by-construction reactive system from its temporal logic specification. Spectra comes with the Spectra Tools, a set of analyses, including a synthesizer to obtain a correct-by-construction implementation, several means for executing the resulting controller, and additional analyses aimed at helping engineers write higher-quality specifications. This hands-on tutorial will introduce participants to the language and the tool set, using examples and exercises, covering an end-to-end process from specification writing to synthesis to execution. The tutorial may be of interest to software engineers and researchers who are interested in the potential applications of formal methods to software engineering.10.1109/ICSE-Companion52605.2021.00136https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598Reactive synthesis IEEE Inglês CI1 Incluído
Tutorial: A Practical Introduction to Formal Development and Verification of High-Assurance Software with SPARKB. M. Brosgol; C. Dross; Y. Moy2019 Summary form only given, as follows. The complete presentation was not made available for publication as part of the conference proceedings. This hands-on tutorial will show attendees how to use formal methods in developing and verifying high-assurance software. It will cover the benefits and costs of formal methods technology, describe its capabilities and limits, summarize how to adopt formal methods at varying levels depending on assurance requirements, show how to combine formal methods with traditional testing-based techniques, and highlight industrial experience. The SPARK language (a subset of Ada 2012) will be used as the vehicle for explaining formal methods. The techniques presented can be applied to other language technologies, and the tutorial will compare the SPARK and Frama-C approaches. Demonstrations will use the GNATprove toolset, and hands-on exercises will be drawn from the SPARK section of the learn.adacore.com site.10.1109/SecDev.2019.00012https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601formal methods, high-assurance software, safety critical software, high-security software, software verification, SPARK languageIEEE Inglês CI1 Incluído
Combining STPA with SysML ModelingF. G. R. de Souza; J. de Melo Bezerra; C. M. Hirata; P. de Saqui-Sannes; L. Apvrille2020 System-Theoretic Process Analysis (STPA) is a technique, based on System-Theoretic Accident Model and Process (STAMP), to identify hazardous control actions, loss scenarios, and safety requirements. STPA is considered a rather complex technique and lacks formalism, but there exists a growing interest in using STPA in certifications of safety-critical systems development. SysML is a modeling language for systems engineering. It enables representing models for analysis, design, verification, and validation of systems. In particular, the free software TTool and the model-checker UPPAAL enable formal verification of SysML models. This paper proposes a method that combines STPA and SysML modeling activities in order to allow simulation and formal verification of systems' models. An automatic door system serves as example to illustrate the effectiveness of the proposed approach.10.1109/SysCon47679.2020.9275867https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867STPA;SysML;method;safety analysis;formal verificationIEEE Inglês CI1 Incluído
Towards Formal Modeling and Analysis of SystemJ GALS Systems using Coloured Petri NetsW. Zhang; Z. Salcic; A. Malik2019 SystemJ is a programming language developed for implementing safety critical cyber-physical systems, including industrial automation systems. However, the current tools do not support an efficient mechanism to verify SystemJ programs formally. This paper presents a semantics-preserving translation of the synchronous subset of SystemJ to Coloured Petri Net (CPN), which in turn enables leveraging the plethora of analysis and verification tools for CPN to verify SystemJ programs. The translation and verification approach is illustrated on a pedagogical industrial automation example of a SystemJ program.10.1109/INDIN41052.2019.8972025https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025Petri Nets;Coloured Petri Nets;GALS;formal modeling;formal analysisIEEE Inglês CI1 Incluído
A Categorical Framework for Collaborative Design of Safety Critical Mechatronic SystemsN. Abdeljabbar; F. Mhenni; J. -Y. Choley2021 Systems engineering relies on a diversity of views of the same mechatronic system built by different design teams from several domains at different abstraction levels and using different modeling languages and tools. These views must be and remain consistent throughout the engineering process. To this end, a collaboration methodology based on a unique and formal collaborative framework is needed to connect these views while ensuring their consistency. The aim of this paper is to introduce such collaborative methodology. The category theory is chosen as formal basis to enhance collaboration between different design teams and help them maintain consistency between their corresponding models. The main objective of applying category theory in the current research is to model collaboration and consistency via interaction, transformation and synchronization, considering that all these model management scenarios can be implemented by the category theory. Moreover, our proposed methodology is mainly focused on the construction of a model that merges the different model elements according to three systems engineering aspects: requirements and constraints, behavior, and structure. To this purpose, a category based Meta-Model is established for the collaboration between systems engineering (SE) and safety assessment (SA). In this categorical framework, each model is represented by a category and, in order to link and maintain connection between these models, functors will be used. The proposed methodology was applied to a case study from the aeronautics domain, namely an Electro-Mechanical Actuator (EMA) modeled using SysML, Modelica and AltaRica languages. Therefore, the proposed collaborative methodology implemented in a categorical framework may be generalized and enhanced to take into account any other model involved in systems engineering, such as a 3D model for geometrical modeling.10.1109/ISSE51541.2021.9582486https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486- IEEE Inglês CI1 Incluído
Mining Specifications from Documentation using a CrowdP. Sun; C. Brown; I. Beschastnikh; K. T. Stolee2019 Temporal API specifications are useful for many software engineering tasks, such as test case generation. In practice, however, APIs are rarely formally specified, inspiring researchers to develop tools that infer or mine specifications automatically.Traditional specification miners infer likely temporal properties by statically analyzing the source code or by analyzing program runtime traces. These approaches are frequently confounded by the complexity of modern software and by the unavailability of representative and correct traces. Formally specifying software is traditionally an expert task. We hypothesize that human crowd intelligence provides a scalable and high-quality alternative to experts, without compromising on quality. In this work we present CrowdSpec, an approach to use collective intelligence of crowds to generate or improve automatically mined specifications. CrowdSpec uses the observation that APIs are often accompanied by natural language documentation, which is a more appropriate resource for humans to interpret and is a complementary source of information to what is used by most automated specification miners.10.1109/SANER.2019.8668025https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025Specification mining;crowdsourcing;Java APIsIEEE Inglês CI1 Incluído
PyFoReL: A Domain-Specific Language for Formal Requirements in Temporal LogicJ. Anderson; M. Hekmatnejad; G. Fainekos2022 Temporal Logic (TL) bridges the gap between natural language and formal reasoning in the field of complex systems verification. However, in order to leverage the expressivity entailed by TL, the syntax and semantics must first be understood—a large task in itself. This significant knowledge gap leads to several issues: (1) the likelihood of adopting a TL-based verification method is decreased, and (2) the chance of poorly written and inaccurate requirements is increased. In this ongoing work, we present the Pythonic Formal Requirements Language (PyFoReL) tool: a Domain-Specific Language inspired by the programming language Python to simplify the elicitation of TL-based requirements for engineers and non-experts.10.1109/RE54965.2022.00037https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080domain-specific language;temporal logic;formal requirements;requirements-based testingIEEE Inglês CI1 Incluído
From BPMN2 to Event B: A Specification and Verification Approach of Workflow ApplicationsA. Ben Younes; Y. Ben Daly Hlaoui; L. Ben Ayed; M. Bessifi2019 The BPMN2 language suffers from the absence of a precise formal semantics of the various notations used, which often leads to ambiguities. In addition, this language does not have a proof system that validates a BPMN2 specification. Consequently, the use of a formal method, such as Event B, is a solution for dealing with the shortcomings found in the BPMN2 language. We propose in this paper a model-driven approach based on meta-model and meta-model transformation implemented in KerMeta to specify and formally verify workflows.10.1109/COMPSAC.2019.10266https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325Workflow Meta-model Transformation BPMN EventB KerMetaIEEE Inglês CI1 Incluído
Business Process Modeling and Simulation with DPMN: Processing ActivitiesG. Wagner 2021 The Business Process Modeling Notation (BPMN) has been established as a modeling standard in Business Process (BP) Management. However, BPMN lacks several important elements needed for BP simulation and is not well-aligned with the Queueing Network paradigm of Operations Research and the related BP simulation paradigm pioneered by the Discrete Event Simulation (DES) languages/tools GPSS and SIMAN/Arena. The Discrete Event Process Modeling Notation (DPMN) proposed by Wagner (2018) is based on Event Graphs (Schruben 1983), which capture the DES paradigm of Event-Based Simulation. By allowing to make flowchart models of queueing/processing networks with a precise semantics, DPMN reconciles (the flowchart approach of) BPMN with DES. DPMN is the first visual modeling language that supports all important DES approaches: event-based simulation, activity-based DES and Processing Network models, providing a foundation for harmonizing and unifying the many different terminologies/concepts and diagram languages of established DES tools.10.1109/WSC52266.2021.9715457https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457- IEEE Inglês CI1 Incluído
Enumeration and Deduction Driven Co-Synthesis of CCSL Specifications using Reinforcement LearningM. Hu; J. Ding; M. Zhang; F. Mallet; M. Chen2021 The Clock Constraint Specification Language (CCSL) has become popular for modeling and analyzing timing behaviors of real-time embedded systems. However, it is difficult for requirement engineers to accurately figure out CCSL specifications from natural language-based requirement descriptions. This is mainly because: i) most requirement engineers lack expertise in formal modeling; and ii) few existing tools can be used to facilitate the generation of CCSL specifications. To address these issues, this paper presents a novel approach that combines the merits of both Reinforcement Learning (RL) and deductive techniques in logical reasoning for efficient co-synthesis of CCSL specifications. Specifically, our method leverages RL to enumerate all the feasible solutions to fill the holes of incomplete specifications and deductive techniques to judge the quality of each trial. Our proposed deductive mechanisms are useful for not only pruning enumeration space, but also guiding the enumeration process to reach an optimal solution quickly. Comprehensive experimental results on both well-known benchmarks and complex industrial examples demonstrate the performance and scalability of our method. Compared with the state-of-the-art, our approach can drastically reduce the synthesis time by several orders of magnitude while the accuracy of synthesis can be guaranteed.10.1109/RTSS52674.2021.00030https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334Specification synthesis;reinforcement learning;logical clocks;deduction;enumerationIEEE Inglês CI1 Incluído
Towards a Simplified Evaluation of Graphical DSL WorkbenchesA. Dembri; M. Redjimi 2022 The design and development of graphical tools for new domain-specific languages is still a challenge for designers; the Model-Driven Architecture (MDA) makes a qualitative difference in the creation of Domain Specific Language (DSL). We aim in this paper to analyze and evaluate the performance of some language workbenches that makes the development of domain-specific language simpler and more specialised. To evaluate these tools, a formal specification of a Petri net called Agent Petri Net is selected. We analyze criteria related to abstraction level, facilities to tailor DSL to specific domains, simplicity of development and the productivity guarantee with these tools. Practical experience highlights the real capabilities of each tool and considers as an evaluation support to select the adequate solution to design DSL that responds to user requirements.10.1109/ISIA55826.2022.9993580https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580MDA;DSL;Language workbenches;evaluation;graphical modelling framework;Cinco;SiriusIEEE Inglês CI1 Incluído
QualiBD: A Tool for Modelling Quality Requirements for Big Data ApplicationsD. Arruda; N. H. Madhavji 2019 The development of Big Data applications is not well-explored, to our knowledge. Embracing Big Data in system building, questions arise as to how to elicit, specify, analyse, model, and document Big Data quality requirements. In our ongoing research, we explore a requirements modelling language for Big Data software applications. In this paper, we introduce QualiBD, a modelling tool that implements the proposed goal-oriented requirements language that facilitates the modelling of Big Data quality requirements.10.1109/BigData47090.2019.9006294https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294Big Data Applications;Quality Requirements;Big Data Goal-oriented Requirements Language;Requirements Modelling ToolIEEE Inglês CI1 Incluído
SSpinJa: Facilitating Schedulers in Model CheckingT. Nhat-Hoa; T. Aoki 2021 The execution of a software system that runs on top of an Operating System (OS) is usually controlled by the scheduler. Therefore, to accurately verify the system, the scheduling policy needs to be taken into account in the verification. In model checking techniques, the scheduling policy affects the search algorithm to explore the state space to check the behaviors of the system. Existing works try to specify/implement the scheduler(s) along with the set of processes in the specification language(s) used by the model checking tool(s). In reality, many kinds of scheduling policies are used by the OS(s), e.g. round-robin, priority, and first-in-first-out. There are also many variations of these policies, which are usually different from the 'textbook’ ones. That means dealing with the variations of the scheduling policies in model checking is necessary and important. However, because the implementation of the scheduler always starts from scratch, it is error-prone and time-consuming. Therefore, the existing works are difficult to deal with the different scheduling policies. To address this problem, we propose a method that introduces a domain-specific language (DSL) to facilitate the variation of the policies. All necessary information to perform the scheduling tasks is generated automatically from the description of the scheduler. We also introduce a search algorithm using this information to explore the states of the system to verify the behaviors of the system. In this paper, we introduce SSpinJa, a tool in which we implemented this approach. Our tool supports an environment for editing the scheduling policy (in the DSL) and the model checker for verifying the system. The results of our experiments show that a) we can handle different scheduling policies easily, b) we can accurately verify the behaviors of the systems, and c) our approach is also practical.10.1109/QRS54544.2021.00073https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957scheduling policy;model checking;domain-specific languageIEEE Inglês CI1 Incluído
Towards a Formal Specification of Multi-paradigm ModellingM. Amrani; D. Blouin; R. Heinrich; A. Rensink; H. Vangheluwe; A. Wortmann2019 The notion of a programming paradigm is used to classify programming languages and their accompanying workflows based on their salient features. Similarly, the notion of a modelling paradigm can be used to characterise the plethora of modelling approaches used to engineer complex Cyber-Physical Systems (CPS). Modelling paradigms encompass formalisms, abstractions, workflows and supporting tool(chain) s. A precise definition of this modelling paradigm notion is lacking however. Such a definition will increase insight, will allow for formal reasoning about the consistency of modelling frameworks and may serve as the basis for the construction of new modelling, simulation, verification, synthesis, ...environments to support design of CPS . We present a formal framework aimed at capturing the notion of modelling paradigm, as a first step towards a comprehensive formalisation of multi-paradigm modelling. Our formalisation is illustrated by CookieCAD, a simple Computer-Aided Design paradigm used in the development of cookie stencils.10.1109/MODELS-C.2019.00067https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740Model Driven Engineering;Multi Paradigm;Cyber Physical Systems;FormalisationIEEE Inglês CI1 Incluído
An Approach to Validation of Combined Natural Language and Formal Requirements for Control SystemsM. Trakhtenbrot 2019 The paper presents a novel approach to validation of behavioral requirements for control systems. A requirement is specified by a natural language pattern and its expression in Linear Temporal Logic (LTL). This way flexibility and understandability of natural language is combined with advantages of formalization that is a basis for various stages of system development, testing and verification. Still, validity of the requirements remains a major challenge. The paper considers application of mutation analysis for capturing of correct behavioral requirements. Generation and exploration of mutants supports a better understanding of requirements, The novelty of the approach is that the suggested mutations are semantic-based, as opposed to the more common syntax-based mutation analysis. A significant advantage of the approach is that it allows to focus only on plausible potential faults in understanding of the required system behavior, and to avoid generation of a vast amount of mutants that are irrelevant to the intended meaning of the requirements. Moreover, in many cases the effect of semantic-based mutations just can not be achieved by usual syntax-based mutations of LTL formulas associated with requirements. The approach is illustrated using a rail cross control example.10.1109/REW.2019.00025https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687control systems, behavior requirements validation, mutation analysisIEEE Inglês CI1 Incluído
Score-Based Automatic Detection and Resolution of Syntactic Ambiguity in Natural Language RequirementsM. Osama; A. Zaki-Ismail; M. Abdelrazek; J. Grundy; A. Ibrahim2020 The quality of a delivered product relies heavily upon the quality of its requirements. Across many disciplines and domains, system and software requirements are mostly specified in natural language (NL). However, natural language is inherently ambiguous and inconsistent. Such intrinsic challenges can lead to misinterpretations and errors that propagate to the subsequent phases of the system development. Pattern-based natural language processing (NLP) techniques have been proposed to detect the ambiguity in requirements specifications. However, such approaches typically address specific cases or patterns and lack the versatility essential to detecting different cases and forms of ambiguity. In this paper, we propose an efficient and versatile automatic syntactic ambiguity detection technique for NL requirements. The proposed technique relies on filtering the possible scored interpretations of a given sentence obtained via Stanford CoreNLP library. In addition, it provides feedback to the user with the possible correct interpretations to resolve the ambiguity. Our approach incorporates four filtering pipelines on the input NL-requirements working in conjunction with the CoreNLP library to provide the most likely possible correct interpretations of a requirement. We evaluated our approach on a suite of datasets of 126 requirements and achieved 65% precision and 99% recall on average.10.1109/ICSME46990.2020.00067https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680Requirements specification;Requirements analysis;Quality checking;AmbiguityIEEE Inglês CI1 Incluído
Modeling of Natural Language Requirements based on States and ModesY. Liu; J. -M. Bruel 2022 The relationship between states (status of a system) and modes (capabilities of a system) used to describe system requirements is often poorly defined. The unclear relationship could make systems of interest out of control because of the out of boundaries of the systems caused by the newly added modes. Formally modeling requirements can clarify the relationship between states and modes, making the system safe.To this end, the MoSt language (a Domain Specific Language implemented on the Xtext framework) is proposed to modeling requirements based on states and modes. In this article, the relationship between states and modes is firstly provided. The metamodel and grammar of the language are then proposed. Finally, a validator is implemented to realise static checks of the MoSt model. The grammar and the validator are integrated into a publicly available Eclipse-based tool. A case study on requirements for designing cars has been conducted to illustrate the feasibility of the MoSt language. In this case study, we injected 9 errors. The results show that all the errors were detected in the static analysis.10.1109/REW56159.2022.00043https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159States and Modes;Requirements Modeling;Domain Specific LanguageIEEE Inglês CI1 Incluído
A Temporal Requirements Language for Deductive Verification of Process-Oriented ProgramsI. Chernenko; I. S. Anureev; N. O. Garanina; S. M. Staroletov2022 The requirements engineering process is primarily useful for complex software that controls industrial processes. Requirements for control software suppose a description of the change in input and output signals over time, which encourages the elaborations of temporal requirements. A verification method that allows one to obtain a certified proof of system operation correctness against given requirements is the theorem proving or deductive verification. At the same time, the process of deductive verification should take into account both the specifics of models of control programs and the requirements for them. While models of control programs can be obtained from domain-oriented languages, it is also expedient to develop a language for requirements. The present paper introduces a predicative domain-specific language for definition of temporal requirements intended to be used with deductive verification tools. It focuses on specification of requirements for control software written in process-oriented languages. Moreover, we propose to use special patterns to describe a wide range of such requirements. We discuss a benchmark of ten case studies and the requirements for them which are linked to these patterns. The results can be used for building automatic verification systems for industrial control software.10.1109/EDM55285.2022.9855145https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145deductive verification;temporal requirements;formal methods;control software;process-oriented programsIEEE Inglês CI1 Incluído
Integrated Automotive Requirements Engineering with a SysML-Based Domain-Specific LanguageR. Maschotta; A. Wichmann; A. Zimmermann; K. Gruber2019 The rising overall complexity of modern cars as a special case of mechatronic systems leads to an increasing number of functions implemented by electric and electronic (E/E-) systems. Well-known design problems of complex modular systems arise out of this. To achieve high-quality standards along the whole product life cycle, modern systems and software engineering methods and techniques are necessary. Model-based approaches are widely used in the automotive domain, based on different types of models used in development phases at different abstraction levels. The Unified Modeling Language and the Systems Modeling Language are general-propose modeling languages that are widely used in the automotive domain. However, there are several domain-specific languages that support the automotive domain more specifically. A domain-specific SysML profile for functional and nonfunctional requirements in automotive technical systems has been proposed in our previous work. This paper describes our model-driven approach to specify domain-specific languages and corresponding domain-specific tools. The specifications are based on UML extensions using profiles only, which is a lightweight approach compared to other proposals. This allows the reuse and extension of existing UML or SysML models. A domain-specific graphical editor is presented in this paper based on the specified extensions. The resulting graphical editor is used to model an automotive technical system as an example.10.1109/ICMECH.2019.8722951https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951Automotive system design;integrated mechatronic design;model analysis;model queries;UML;SysML;validation;model-driven engineering;Eclipse SiriusIEEE Inglês CI1 Incluído
Translation Validation of Code Generation from the SIGNAL Data-Flow Language to VerilogH. M. Amjad; K. Hu; J. Niu; N. Khan; L. Besnard; J. -P. Talpin2019 The SIGNAL is a high-level synchronous data-flow language for the design and implementation of safety-critical embedded systems. It provides a unified framework for specification, modeling, formal analysis, and automatic code generation for different general-purpose languages like Java, C, and C++. However, fully implemented and verified open source tool for code generation from SIGNAL to Hardware Description Language (HDL) is not available. This paper describes the formal verification of the generated Verilog code from the SIGNAL language. Proving the correctness of generated code is very important when it is for safety-critical embedded systems. We use the translation validation technique for verifying the correctness of the generated code. In this approach, the Polychrony Toolset builds the models of source SIGNALprograms with its associated model checker SIGALI. The open source tool Yosys generates models for target Verilog programs in the SMT-LIB standard format. We transform the model generated by Yosys to the model accepted by the SIGALI model checker. Finally, we use the SIGALI model checker to validate the translation by symbolic simulation between both source and target program models. The target program may have fewer behaviors than the source program therefore if the model of the target program implies the model of the source program, it means the target program preserves the semantics of the source program, and the translation is correct.10.1109/SKG49510.2019.00034https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129translation validation, embedded systems, Verilog, SIGNAL, SIGALI, Yosys, semanticsIEEE Inglês CI1 Incluído
NFA Based Formal Modeling of Smart Parking System Using TLA +S. Latif; A. Rehman; N. A. Zafar2019 The smart objects are used to sense, communicate, send and to share information within a network. Everything which is connected directly or indirectly within a network for the sake of getting, analyze or interpreting data known as IoT. There are many proposed applications of IoT infrastructure in smart city. We have proposed model of smart parking system in this paper which is based on UML, automata-based model and formal methods. The depiction of real-world parking system is done in UML based models to indicate the flow and working of the system. Automata models are used to convert UML diagram into automated system which provides smart mechanism of parking system. Automated model of automata is represented in terms of states and transitions. Every state has unique identity and defined functionality. There are many operations of parking system which are modeled in this paper including find free spaces, search shortest path towards empty slot, car entrance and exit with in a region. A region is an area of parking system which is automated and use to sense a vehicle, car entrance, exit or to find a location. The formal method techniques are used to formally verify system properties using available facilities available in formal method tools. We have used Temporal Logic of Actions (TLA+) formal language to validate and verify system properties using formal techniques. TLA+ is mathematical based notation to describe a system using discrete mathematics concepts. We have integrated these three approaches to model parking system from depiction side, automation side and from the angle of verification and validation of the model.10.1109/CISCT.2019.8777445https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445Parking;UML;Formal methods;Verification and validation;TLCIEEE Inglês CI1 Incluído
A Formal Methods Approach to Security Requirements Specification and VerificationQ. Rouland; B. Hamid; J. -P. Bodeveix; M. Filali2019 The specification and the verification of security requirements is one of the major computer-based systems challenges. Security requirements need to be precisely specified before a tool can manipulate them, and though several approaches to security requirements specification have been proposed, they do not provide the scalability and flexibility required in practice. We take this problem towards an integrated approach for security requirement specification and treatment during the software architecture design time. The general idea of the approach is to: (1) specify security requirements as properties of a modeled system in a technology-independent specification language; (2) implement the developed model in a suitable language with tool support for requirement satisfaction through model verification; and (3) suggest a set of security policies to constrain the operation of the system and to guarantee the security properties. In the scope of this paper, we use first-order logic as a formalism that is abstract and technology-independent and Alloy as a tooled language used in modeling and software development. To validate our work, we explore a set of representative security properties from categories based on CIA classification in the context of secure component-based software architecture development.10.1109/ICECCS.2019.00033https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749Engineering secure systems;Security properties;Formal methods;MetamodelIEEE Inglês CI1 Incluído
Conception of a formal model-based methodology to support railway engineers in the specification and verification of interlocking systemsG. Lukács; T. Bartha 2022 The use of formal modeling is gaining popularity in the development of safety-critical transport applications, in particular railway interlocking systems, due to its ability to specify the functionality of systems using mathematically precise logical rules. The goal of the research described here is to con-ceptualize a methodology that provides a specification/verification environment supporting the developers (domain engineers) in the construction and verification of formal specifications. The aim of the methodology is to decrease the need for mathematical-computer science background/knowledge at the system engineering level. The proposed approach includes a set of well-known and widely used methods, techniques, and tools to specify and verify the functionality related to the development of railway interlocking systems, such as structured and object-oriented formalisms (e.g., the Unified Modeling Language), model-driven development, model checking, etc. The application of the methodology facilitates the construction of correct, complete, consistent, and verifiable functional specifications of a given component. This in turn brings a significant improvement of quality, and distributes the development costs more evenly among the related life-cycle phases.10.1109/SACI55618.2022.9919532https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532railway applications;functionality;specification;model checking;computation tree logicIEEE Inglês CI1 Incluído
CyberGSN: A Semi-formal Language for Specifying Safety CasesT. A. Beyene; C. Carlan 2021 The use of safety cases to explicitly present safety considerations and decisions is a common practice in the safety-critical domain. A safety case can be used to scrutinize the safety assessment approach used by practitioners internally, or as an input for the certification process for an external certifying authority. However, safety cases are still created manually to explicate the followed safety assessment and assurance measures. In addition, although safety cases may be created in a modular way by multiple entities, and it may be critical for each entity to digitally sign its part of the assurance for accountability, the common notations are not expressive enough to include the notion of entity. Especially in cyber-security applications, the notion of entity is very critical. In this paper, we propose a formal logic based language called CyberGSN, with an explicit notion of entity, that can be used for specifying safety cases and safety case patterns, enabling the automated creation and maintenance of safety cases.10.1109/DSN-W52860.2021.00021https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448Safety Case;Pattern;Entity;Decentralization IEEE Inglês CI1 Incluído
Formal Modeling and Verification of Autonomous Driving ScenarioB. Chen; T. Li 2021 There are abundant spatio-temporal data and dynamic stochastic behaviors in the autonomous driving scenario, which makes it full of challenges for the modeling and verification of the scenario. In this paper, we propose a Scenario Modeling Language (SCML) for autonomous driving. SCML can not only express the stochastic dynamic behaviors of autonomous driving but also abstract the primary objects and state transitions to model the autonomous driving scenario. Firstly, we propose the syntax and semantics of SCML. Then, we construct a metamodel of SCML and propose mapping rules to transform the SCML model into the Network of Stochastic Hybrid Automata (NSHA) model. According to the NSHA model, we use UPPAAL-SMC to verify the autonomous driving scenario. Finally, we use the forward-collision warning system to illustrate that the proposed approach can effectively model and verify the driving scenario.10.1109/ICICSE52190.2021.9404128https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128autonomous driving scenario modeling;SCML;NSHA;UPPAAL-SMC;formal verificationIEEE Inglês CI1 Incluído
An Educational Case Study of Using SysML and TTool for Unmanned Aerial Vehicles DesignL. Apvrille; P. de Saqui-Sannes; R. Vingerhoeds2020 This article shares an experience in using the systems modeling language (SysML) for the design and formal verification of unmanned aerial vehicles (UAVs). In particular, this article shows how our approach helps detecting early design errors. A UAV in charge of taking pictures serves as an educational and running example throughout this article. The SysML model of the UAV is simulated and formally verified using the free and open-source tool named TTool. This educational case study gives the authors of this article an opportunity to draw lessons from teaching SysML.10.1109/JMASS.2020.3013325https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801Educational case study;model formal verification;model simulation;systems modeling language (SysML);unmanned aerial vehicle (UAV)IEEE Inglês CI1 Incluído
Towards Facilitating the Exploration of Informal Concepts in Formal Modeling ToolsM. Gogolla; R. Clarisó; B. Selic; J. Cabot2021 This contribution proposes to apply informal ideas for model development within a formal tool. The basic idea is to relax the requirements expressed with particular modeling language elements and allow developers to dynamically customize the level of formality in a visual and intuitive way. For UML and OCL class models, the requirements for usual object typing, role typing, role multiplicity, attribute typing and constraint satisfaction are relaxed in order to achieve flexible object models. The long-term aim is to support flexible, iterative model development with qualified tool feedback.10.1109/MODELS-C53483.2021.00044https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627UML class model;UML object model;OCL constraint;flexible development processIEEE Inglês CI1 Incluído
Automatic Formal Model Generation from UML Diagrams – An Implementation ExperienceK. KH; S. Mansoor; S. G 2022 This paper discusses the implementation of a formal method integrated Unified Modeling Language (UML) modelling methodology for the verification of embedded software specifications. The methodology generates mathematically verifiable models, synergising UML visual models with formal methods. The implementation is carried out using Umbrello UML Modeller and Qt. It provides a Graphical User Interface-based tool and a model checking engine, integrated into Umbrello UML Modeller, which can interpret UML diagrams and generate a formal model automatically. The tool architecture has three distinct layers: the UML, Interface, and Formal layers; the Interface layer is the innovative one. GUI is developed for this layer, and all the actions associated with the Interface layer are made available through interactive menus and toolbars.10.1109/DELCON54057.2022.9753518https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518Computational Tree Logic;Formal Verification;Linear Temporal Logic;Property Specification;State Chart Diagram;State Transition Matrix;UML ModellingIEEE Inglês CI1 Incluído
The Post Language: Process-Oriented Extension for IEC 61131-3 Structured TextV. Bashev; I. Anureev; V. Zyubin2020 This paper introduces a new programming language for control software specification. The language called poST is a process-oriented extension of the IEC 61131-3 Structured Text language widely used in the PLC domain. The poST language enables control software specification as a set of interacting FSM-based processes that have event-driven behaviour and operate with time intervals. The language is intended to provide a possibility to use the process-oriented approach for IEC 61131-3 users and comparing to the other process-oriented languages poST is easy to learn for the IEC 61131-3 community. An IDE for poST was developed with Eclipse (Xtext) toolset. Paper illustrates the poST language using for a hand dryer control software: we provide the source poST code and the generated C code for Arduino (ATmega 168) platform.10.1109/RusAutoCon49822.2020.9208049https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049process-oriented programming;PLC languages;IEC 61131-3;Structured TextIEEE Inglês CI1 Incluído
The Formal Mechanism of the UML Model Based on SBOPNY. Xiaoling 2019 This paper introduces the State-Based Object Petri net, gives the definition, firing rule and analysis methods of the net. Based on aforementioned, state-based object petri net is chosen to formalize the UML and give the mechanism and corresponding algorithms that can be used to map state chart diagrams and the collaboration diagram of UML specification into state-based object petri net model in the early phase of UML modeling. The state-based object petri net model gotten by these algorithms not only is object-oriented but also can be analyzed and validated to find out deadlock with powerful Petri tools, thus the verification of the model in the early phase is can be realized.10.1109/ICSAI48974.2019.9010446https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446component;Object-Oriented;Petri Net;UML;State- Based Object Petri Net;formal mechanismIEEE Inglês CI1 Incluído
From Prose to Prototype: Synthesising Executable UML Models from Natural LanguageG. J. Ramackers; P. P. Griffioen; M. B. J. Schouten; M. R. V. Chaudron2021 This paper presents a vision for a development tool that provides automated support for synthesising UML models from requirements text expressed in natural language. This approach aims to simplify the process of analysis - i.e. moving from written (and spoken) descriptions of the functionality of a system and a domain to an executable specification of that system. The contribution focuses on the AI techniques used to transform natural language into structural and dynamic UML models. Moreover, we envision a ‘human-in-the-loop’ approach where an interactive conversational component is used based on machine learning of the system under construction and corpora of external natural language texts and UML models. To illustrate the approach, we present a tool prototype. As a scoping, this approach targets data-intensive systems rather than control-intensive (embedded) systems.10.1109/MODELS-C53483.2021.00061https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623UML;MDA;requirement text;natural language processing;model driven engineering;executable specification;transformer architectureIEEE Inglês CI1 Incluído
A Tool to Assist the Compiler Construction Instructor in Checking the Equivalence of Specifications Based on Regular ExpressionsR. Benito-Montoro; X. Chen; J. L. Sierra2021 This paper presents CheRegES (CHEcking REGular Expression-based Specifications), a tool that assists the Compiler Construction instructor in checking the equivalence of computer language lexical specifications based on regular expressions. The tool allows the comparison of a reference specification, provided by the instructor, with the specification proposed by the student. As a result, the tool can report that: (i) both specifications are equivalent (and, therefore, the specification proposed by the student can be considered correct); (ii) there are discrepancies between the specification proposed by the student and the one provided by the instructor (and, therefore, the specification proposed by the student can be considered incorrect); or (iii) the result of the comparison is inconclusive. Also, in case discrepancies are discovered, the tool provides sentences that allow differentiation between the two specifications, and that help the instructor to diagnose the problems underlying the student’s specification. The paper motivates the need for the tool, describes its functionality, briefly summarizes its internals, and presents a preliminary evaluation of the tool that makes the usefulness of CheRegES as a tool to support assessment in Compiler Construction courses apparent.10.1109/SIIE53363.2021.9583625https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625Assessment Tool;Lexical Specifications;Compiler Construction;Regular Expressions;Computer Science EducationIEEE Inglês CI1 Incluído
XML-Based Video Game Description LanguageJ. R. Quiñones; A. J. Fernández-Leiva2020 This paper presents the XML-based Video Game Description Language (XVGDL), a new language for specifying Video games which is based on the Extensible Markup Language (XML). The proposal is portable and extensible, and allows games to not only be defined at engine level but also includes specific features that can lead the game design process whilst simultaneously reducing the gap between game specification and its corresponding game implementation. XVGDL is as generic as possible, making it possible to describe different genres of games. This paper focuses on presenting the basis of the language. The paper describes the syntax as well as the components of XVGDL, and provides examples of their use. Defining games via XML structures provides all the advantages of the management of XML files and opens up interesting lines of research. Our proposal provides a number of novel features. So, XVGDL game definitions can be managed as any other XML file, which means that it can be automatically handled by any XML file management software. Another interesting feature is that XVGDL can specify game components (e.g., game Artificial), in-game processes (e.g., the procedural generation of maps) or in-game events (e.g., the checking of the conditions to end a game match) via the association with external (possibly non-XML) files. Moreover, XVGDL files can be easily validated as any XML file what means that validations against a particular Document Type Definition (DTD) or XML Schema Definition (XSD) are possible. In addition, the paper presents a first prototype implementation of a (text-based) interpreter that allows XVGDL game specifications as a playable game to be executed. This tool not only validates our proposal but also represents a first step towards smoothing the path to obtaining an executable version of a game from its game specification.10.1109/ACCESS.2019.2962969https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249Video game description language;extensible markup language;XML;game design;game toolsIEEE Inglês CI1 Incluído
Symbolic Execution based Verification of Compliance with the ISO 26262 Functional Safety StandardM. Ahmed; M. Safar 2019 This paper proposes a new technique for verifying the compliance of AUTOSAR software with the ISO26262 functional safety standard. A framework is presented which formally verifies that a given implemented AUTOSAR software fulfils high risk Automotive Safety Integrity Level (ASIL) C and D requirements. The framework exploits the power of symbolic execution to uncover defects early in the design stage. The efficacy of the framework is demonstrated on the AUTOSAR watchdog manager and watchdog interface modules.10.1109/DTIS.2019.8735046https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046Symbolic Execution;ISO-26262;Automotive Functional Safety;Formal Verification;AUTOSAR Watchdog ModulesIEEE Inglês CI1 Incluído
On How Bit-Vector Logic Can Help Verify LTL-Based SpecificationsM. M. P. Kallehbasti; M. Rossi; L. Baresi2022 This paper studies how bit-vector logic (bv logic) can help improve the efficiency of verifying specifications expressed in Linear Temporal Logic (LTL). First, it exploits the notion of Bounded Satisfiability Checking to propose an improved encoding of LTL formulae into formulae of bv logic, which can be formally verified by means of Satisfiability Modulo Theories (SMT) solvers. To assess the gain in efficiency, we compare the proposed encoding, implemented in our tool $\mathbb {Z}$Zot, against three well-known encodings available in the literature: the classic bounded encoding and the optimized, incremental one, as implemented in both NuSMV and nuXmv, and the encoding optimized for metric temporal logic, which was the “standard” implementation provided by $\mathbb {Z}$Zot. We also compared the newly proposed solution against five additional efficient algorithms proposed by nuXmv, which is the state-of-the-art tool for verifying LTL specifications. The experiments show that the new encoding provides significant benefits with respect to existing tools. Since the first set of experiments only used Z3 as SMT solver, we also wanted to assess whether the benefits were induced by the specific solver or were more general. This is why we also embedded different SMT solvers in $\mathbb {Z}$Zot. Besides Z3, we also carried out experiments with CVC4, Mathsat, Yices2, and Boolector, and compared the results against the first and second best solutions provided by either NuSMV or nuXmv. Obtained results witness that the benefits of the bv logic encoding are independent of the specific solver. Bv logic-based solutions are better than traditional ones with only a few exceptions. It is also true that there is no particular SMT solver that outperformed the others. Boolector is often the best as for memory usage, while Yices2 and Z3 are often the fastest ones.10.1109/TSE.2020.3014394https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928Formal methods;linear temporal logic;bounded satisfiability checking;bit-vector logicIEEE Inglês CI1 Incluído
Assertion Based Design of Timed Finite State MachineA. Shkil; A. Miroshnyk; G. Kulak; K. Pshenychnyi2021 This work is dedicated to assertion-based verification of real time logic control systems that are specified by a state diagram with state looping and implemented by hardware description language. The proposed method is based on the assertion apparatus that is used to describe the temporal nature of the timed FSM properties.10.1109/EWDTS52692.2021.9581046https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046timed finite state machine;HDL-model;assertion-based design;SystemVerilog;formal verification;SystemVerilog AssertionsIEEE Inglês CI1 Incluído
A Rule-Based Language for Configurable N-way Model MatchingM. -S. Kasaei; M. Sharbaf; B. Zamani2022 To build complex software-intensive systems, different stakeholders from diverse domains must collaborate to create and modify models. Model matching is a fundamental precondition of collaborative development, which is concerned with identifying common elements in input models. When stakeholders work on multiple models, they need to simultaneously compare all models to better understand differences and similarities. However, the literature shows no consensus on how to specify comparison criteria for matching multiple models, especially in a form that is independent of modeling language, which hampers their reuse and adoption. In this paper, we present a rule-based formalism that enables the user to specify their comparison criteria for multiple models at a high level of abstraction. We also introduce an N-way matching algorithm for comparing both homogeneous and heterogeneous models. As the tool support, we implemented a syntax-aware editor and a parser for specifying comparison rules for EMF-based models. The evaluation of our formalism shows that it is applicable in real modeling scenarios.10.1109/ICCKE57176.2022.9960014https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014Model Comparison;N-way Matching;Formal Specification Language;Model-Driven EngineeringIEEE Inglês CI1 Incluído
Certified Embedding of B Models in an Integrated Verification FrameworkA. Halchin; Y. Ait-Ameur; N. K. Singh; A. Feliachi; J. Ordioni2019 To check the correctness of heterogeneous models of a complex critical system is challenging to meet the certification standard. Such guarantee can be provided by embedding the heterogeneous models into an integrated modelling framework. This work is proposed in the B-PERFect project of RATP (Parisian Public Transport Operator and Maintainer), it aims to apply formal verification using the PERF approach on the integrated safety-critical software related to railway domain expressed in a single modelling language: HLL. This paper presents a certified translation from B formal language to HLL. The proposed approach uses HOL as a unified logical framework to describe the formal semantics and to formalize the translation relation of both languages. The developed Isabelle/HOL models are proved in order to guarantee the correctness of our translation process. Moreover, we have also used weak-bisimulation relation to check the correctness of translation steps. The overall approach is illustrated through a case study issued from a railway software system: onboard localization function. Furthermore, it discusses the integrated verification at system level.10.1109/TASE.2019.000-4https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050Formal Semantics, B to HLL Translation Validation, Theorem Proving, Model AnimationIEEE Inglês CI1 Incluído
Formally Verifying Sequence Diagrams for Safety Critical SystemsX. Chen; F. Mallet; X. Liu 2020 UML interactions, aka sequence diagrams, are frequently used by engineers to describe expected scenarios of good or bad behaviors of systems under design, as they provide allegedly a simple enough syntax to express a quite large variety of behaviors. This paper uses them to express formal safety requirements for safety critical systems in an incremental way, where the scenarios are progressively refined after checking the consistency of the requirements. As before, the semantics of these scenarios are expressed by transforming them into an intermediate semantic model amenable to formal verification. We rely on the Clock Constraint Specification Language (CCSL) as the intermediate semantic language. An SMT-based analysis tool called MyCCSL is used to check consistency of the sequence diagrams. We compare these requirements against actual execution traces to prove the validity of our transformation. In some sense, sequence diagrams and CCSL constraints both express a family of acceptable infinite traces that must include the behaviors given by the finite set of finite execution traces against which we validate. Finally, the whole process is illustrated on partial requirements for a railway transit system.10.1109/TASE49443.2020.00037https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319Safety Critical Systems;Sequence Diagram;Clock Constraint Specification Language;Formal Verification;Safety RequirementsIEEE Inglês CI1 Incluído
Automated Goal Model Extraction from User Stories Using NLPT. Güneş; F. B. Aydemir 2020 User stories are commonly used to capture user needs in agile methods due to their ease of learning and understanding. Yet, the simple structure of user stories prevents us from capturing relations among them. Such relations help the developers to better understand and structure the backlog items derived from the user stories. One solution to this problem is to build goal models that provide explicit relations among goals but require time and effort to build. This paper presents a pipeline to automatically generate a goal model from a set of user stories by applying natural language processing (NLP) techniques and our initial heuristics to build realistic goal models. We first parse and identify the dependencies in the user stories, and store the results in a graph database to maintain the relations among the roles, actions, and objects mentioned in the set of user stories. By applying NLP techniques and several heuristics, we generate goal models that resemble human-built models. Automatically generating models significantly decreases the time spent on this tedious task. Our research agenda includes calculating the similarity between the automatically generated models and the expert-built models. Our overarching research goals are to provide i. an NLP-powered framework that generates goal models from a set of user stories, ii. several heuristics to generate goal models that resemble human-built models, and iii. a repository that includes sets of user stories, with corresponding human-built and automatically generated goal models.10.1109/RE48521.2020.00052https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185natural language processing;requirements engineering;model driven development;user stories;agile development;goal modelsIEEE Inglês CI1 Incluído
ArTu: A Tool for Generating Goal Models from User StoriesT. Günes; C. A. Öz; F. B. Aydemir2021 User stories are widely used to capture the desires of the users in agile development. A set of user stories is easy to read and write but incapable of representing the hierarchical relations and synergies among the user stories. By contrast, goal models are uncommon in industrial projects however they can express the structure and other relations among requirements captured as goals. This paper presents ArTu, a tool for generating goal models from user stories to effortlessly benefit from both. Given a set of user stories, our tool generates goal models with different structures depending on the heuristic selected by the user. Users can import, edit, and export model data in different formats.10.1109/RE51729.2021.00058https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615requirements engineering;model–driven development;user stories;agile development;goal models;natural language processingIEEE Inglês CI1 Incluído
Scenario-based Requirements Engineering for Complex Smart City ProjectsC. Wiecher; P. Tendyra; C. Wolff2022 Various stakeholders with different backgrounds are involved in Smart City projects. These stake-holders define the project goals, e.g., based on participative approaches, market research or innovation management processes. To realize these goals often complex technical solutions must be designed and implemented. In practice, however, it is difficult to synchronize the technical design and implementation phase with the definition of moving Smart City goals. We hypothesize that this is due to a lack of a “common language” for the different stakeholder groups and the technical disciplines. We address this problem with scenario-based requirements engineering techniques. In particular, we use scenarios at different levels of abstraction and formalization that are connected end-to-end by appropriate methods and tools. This enables fast feedback loops to iteratively align technical requirements, stakeholder expectations, and Smart City goals. We demonstrate the applicability of our approach in a case study with different industry partners.10.1109/E-TEMS53558.2022.9944441https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441Systems Engineering;Requirements Engineering;Project Management;Innovation ManagementIEEE Inglês CI1 Incluído
Verification of a Rule-Based Expert System by Using SAL Model CheckerM. U. Siregar; S. Abriani 2019 Verification of a rule-based expert system ensures that the knowledge base of the expert system is logically correct and consistent. Application of verification into a rule-based expert system is one approach to integrate software engineering methodology and knowledge base system. The expert system, which we has built, is a rule-based system developed by using forward chaining method and Dempster-Shafer theory of belief functions or evidence. We use Z language as the modelling language for this expert system and SAL model checker as the verification tool. To be able to use SAL model checker, Z2SAL will translate the Z specification, which models the system. In this paper, we present some parts of our Z specification that represent some parts of our rule-based expert system. We also present some parts of our SAL specification and theorems that we added to this SAL specification. At the last, we present the usage of SAL model checker over these theorems. Based on these model-checking processes, we argue that the results are expected. This means that each of theorems can be model checked and the outputs of those model checking are the same as the outputs that we obtain from manual investigation; either it is VALID or INVALID. Other interpretation of the model check's results is some parts of our rule-based expert system have been verified.10.1109/ICICoS48119.2019.8982426https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426verification;expert system;rule-based system;Z2SAL;SAL model checkerIEEE Inglês CI1 Incluído
A Methodology for Developing a Verifiable Aircraft Engine Controller from Formal RequirementsM. Luckcuck; M. Farrell; O. Sheridan; R. Monahan2022 Verification of complex, safety-critical systems is a significant challenge. Manual testing and simulations are often used, but are only capable of exploring a subset of the system's reachable states. Formal methods are mathematically-based techniques for the specification and development of software, which can provide proofs of properties and exhaustive checks over a system's state space. In this paper, we present a formal requirements-driven methodology, applied to a model of an aircraft engine controller that has been provided by our industrial partner. Our methodology begins by formalising the controller's natural-language requirements using the (pre-existing) Formal Requirements Elicitation Tool (FRET), iteratively, in consultation with our industry partner. Once formalised, FRET can automatically translate the requirements to enable their verification alongside a Simulink model of the aircraft engine controller; the requirements can also guide formal verification using other approaches. These two parallel streams in our methodology seek to combine the results from formal requirements elicitation, classical verification approaches, and runtime verification; to support the verification of aerospace systems modelled in Simulink, from the requirements phase through to execution. Our methodology harnesses the power of formal methods in a way that complements existing verification techniques, and supports the traceability of requirements throughout the verification process. This methodology streamlines the process of developing verifiable aircraft engine controllers, by ensuring that the requirements are formalised up-front and useable during development. In this paper we give an overview of FRET, describe our methodology and work to-date on the formalisation and verification of the requirements, and outline future work using our methodology.10.1109/AERO53065.2022.9843589https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589- IEEE Inglês CI1 Incluído
CROME: Contract-Based Robotic Mission SpecificationP. Mallozzi; P. Nuzzo; P. Pelliccione; G. Schneider2020 We address the problem of automatically constructing a formal robotic mission specification in a logic language with precise semantics starting from an informal description of the mission requirements. We present CROME (Contract-based RObotic Mission spEcification), a framework that allows capturing mission requirements in terms of goals by using specification patterns, and automatically building linear temporal logic mission specifications conforming with the requirements. CROME leverages a new formal model, termed Contract-based Goal Graph (CGG), which enables organizing the requirements in a modular way with a rigorous compositional semantics. By relying on the CGG, it is then possible to automatically: i) check the feasibility of the overall mission, ii) further refine it from a library of pre-defined goals, and iii) synthesize multiple controllers that implement different parts of the mission at different abstraction levels, when the specification is realizable. If the overall mission is not realizable, CROME identifies mission scenarios, i.e., sub-missions that can be realizable. We illustrate the effectiveness of our methodology and supporting tool on a case study.10.1109/MEMOCODE51338.2020.9315065https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065- IEEE Inglês CI1 Incluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065

Automated Assertion Generation from Natural Language SpecificationsS. J. Frederiksen; J. Aromando; M. S. Hsiao2020 We explore contemporary natural language processing (NLP) techniques for converting NL specifications found in design documents directly to an temporal logic-like intermediate representation (IR). Generally, attempts to use NLP for assertion generation have relied on restrictive sentence formats and grammars as well as being difficult to handle new sentence formats. We tackle these issues by first implementing a system that uses commonsense mappings to process input sentences into a normalized form. Then we use frame semantics to convert the normalized sentences into an IR based on the information and context contained in the Frames. Through this we are able to handle a large number of sentences from real datasheets allowing for complex formats using temporal conditions, property statements, and compound statements; all order agnostic. Our system can also be easy extended by modifying an external, rather than internal, commonsense knowledge-base to handle new sentence formats without requiring code changes or intimate knowledge of the algorithms used.10.1109/ITC44778.2020.9325264https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264NLP;Verification;Specification IEEE Inglês CI1 Incluído
Formal UML-based Modeling and Analysis for Securing Location-based IoT ApplicationsH. Cardenas; R. Zimmerman; A. R. Viesca; M. Al Lail; A. J. Perez2022 We present a process and a tool to apply formal methods in Internet of Things (IoT) applications using the Unified Modeling Language (UML). As there are no best practices to develop secured IoT systems, we have developed a plug-in tool that integrates a framework to validate UML software models and we present the design of a location-based IoT application as a use case for the validation tool.10.1109/MASS56207.2022.00109https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521UML;Formal methods;Security;Internet of ThingsIEEE Inglês CI1 Incluído
Fvil: Intermediate language based on formal verification virtual machineZeng, Weiru (57192409388); Liao, Yong (55213715800); Qian, Weizhong (55710445300); Yan, Zehui (57219163124); Yang, Zheng (57198347264); Li, Ang (57219158755)2020 As the software scale continues to increase, the software development cycle becomes more and more compact, which takes more time to the software test. How to test the software and ensure its safety efficiently and accurately is an urgent problem to be solved. The formal verification virtual machine (FSPVM) [1] developed by Coq [2] assistant verification tool can effectively verify programs with formal method. However, its widespread application is heavily restricted by the compliant syntax of the formal specification language Lolisa [3] and the mechanism of generalized algebraic types GADTs [4]. This paper proposes a more user-friendly intermediate language (FVIL) based on FSPVM, which changes the hierarchical structure of Lolisa and expands the type of Lolisa, makes the formal verification of software easier to be applied in practice. The experiments show that the intermediate language can make the formal method easier to understand, apply and expand. © Springer Nature Singapore Pte Ltd 2020.10.1007/978-981-15-8101-4_59https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414aCoq; Formal verification; Intermediate language; Software securityScopus Inglês CI1 Incluído
Formal Verification for VRM Requirement ModelsZhang, Yang (55506039300); Hu, Jun (57198193833); Wang, Lisong (36968141200); Gu, Qingfan (56204861600); Rong, Hao (56603776800)2022 At the requirements level, formal verification and analysis are the focus of task’s attention which is developing complex systems by formal methods. Model checking is a technique for analysis and automated verification of complex safety-critical software systems. In this paper, a requirement model verification method based on formal technology is proposed to practice the model checking activity into the development process. Firstly, this essay analyzes syntax and semantics of models, which are defined by tabular expressions in VRM (variables relationship model). Then we preprocess the VRM model to classify into events tables, conditions tables and model class tables, and transform the VRM model into the automaton state transfer diagram with the help of semantic complementary work. Finally, we design an automatic model transformation framework from the VRM model to the model verification tool (nuXmv) and implement a translator between the formal specification language VRM and the symbolic model checker nuXmv. In this paper, we discuss our translation and abstraction approach in some depth and illustrate its feasibility with some preliminary examples. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.10.1007/978-981-19-0390-8_121https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1Model checking; Model translation; nuXmv; Safety verification; VRM modelScopus Inglês CI1 Incluído
Open and Branching Behavioral Synthesis with Scenario ClausesAsteasuain, Fernando (15076943400); Calonge, Federico (57216952638); Dubinsky, Manuel (57222081187); Gamboa, Pablo Daniel (57216948794)2021 The Software Engineering community has identified behavioral specification as one of the main challenges to be addressed for the transference of formal verification techniques such as model checking. In particular, expressivity of the specification language is a key factor, especially when dealing with Open Systems and controllability of events and branching time behavior reasoning. In this work, we propose the Feather Weight Visual Scenarios (FVS) language as an appealing declarative and formal verification tool to specify and synthesize the expected behavior of systems. FVS can express linear and branching properties in closed and Open systems. The validity of our approach is proved by employing FVS in complex, complete, and industrial relevant case studies, showing the flexibility and expressive power of FVS, which constitute the crucial features that distinguish our approach. © 2021 Latin American Center for Informatics Studies. All Rights Reserved.10.19153/CLEIEJ.24.3.1https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07bBehavioral specifications; Branching reasoning; Open systems; SynthesisScopus Inglês CI1 Incluído
A tool for proving Michelson Smart Contracts in WHY3Arrojado Da Horta, Luis Pedro (57219764980); Santos Reis, Joao (57221474614); De Sousa, Simao Melo (15135137100); Pereira, Mario (57190032035)2020 This paper introduces a deductive verification tool for smart contracts written in Michelson, which is the low-level language of the Tezos blockchain. Our tool accepts a formally specified Michelson contract and automatically translates it to an equivalent program written in WhyML, the programming and specification language of the Why3 framework. Smart contract instructions are mapped into a corresponding WhyML shallow-embedding of the their axiomatic semantics, which we also developed in the context of this work. One major advantage of this approach is that it allows an out-of-the-box integration with the Why3 framework, namely its VCGen and the backend support for several automated theorem provers. We also discuss the use of our tool to automatically prove the correctness of diverse annotated smart contracts. © 2020 IEEE.10.1109/Blockchain50366.2020.00059https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63Formal Verification; Michelson; Smart Contracts; Tezos; Why3Scopus Inglês CI1 Incluído
A DSL for Integer Range Reasoning: Partition, Interval and Mapping DiagramsEriksson, Johannes; Parsa, Masoumeh2020 Continuous verification of network security compliance is an accepted need. Especially, the analysis of stateful packet filters plays a central role for network security in practice. But the few existing tools which support the analysis of stateful packet filters are based on general applicable formal methods like Satifiability Modulo Theories (SMT) or theorem prover and show runtimes in the order of minutes to hours making them unsuitable for continuous compliance verification. In this work, we address these challenges and present the concept of state shell interweaving to transform a stateful firewall rule set into a stateless rule set. This allows us to reuse any fast domain specific engine from the field of data plane verification tools leveraging smart, very fast, and domain specialized data structures and algorithms including Header Space Analysis (HSA). First, we introduce the formal language FPL that enables a high-level human-understandable specification of the desired state of network security. Second, we demonstrate the instantiation of a compliance process using a verification framework that analyzes the configuration of complex networks and devices-including stateful firewalls-for compliance with FPL policies. Our evaluation results show the scalability of the presented approach for the well known Internet2 and Stanford benchmarks as well as for large firewall rule sets where it outscales state-of-the-art tools by a factor of over 41. 10.1007/978-3-030-39197-3_13- - Web of science Inglês CI1 Incluído
FASTEN: An Open Extensible Framework to Experiment with Formal Specification ApproachesRatiu, Daniel; Gario, Marco; Schoenhaar, Hannes2019 Formal specification approaches have been successfully used to specify and verify complex systems. Verification engineers so far either directly use formal specification languages which can be consumed by verification tools (e.g. SMV, Promela) or main stream modeling languages which are then translated into formal languages and verified (e.g. SysML, AADL). The first approach is expressive and effective but difficult to use by non-experts. The second approach lowers the entry barrier for novices but users are limited to the constructs of the chosen modeling languages and thereby end up abusing the language to encode behaviors of interest.In this paper, we introduce a third approach that we call FASTEN, in which modular and extensible Domain Specific Languages (DSLs) are used to raise the abstraction level of specification languages towards the domain of interest. The approach aims to help novice users to use formal specification, enable experts to use multi-paradigm modeling, and provide tools for the developers of verification technologies to easily experiment with various types of specification approaches. To show the feasibility of the approach, we release an open-source tool based on Jetbrains' MPS language workbench that provides an extensible stack of more than ten DSLs, situated at different levels of abstraction, built on top of the SMV language. We use the NuSMV model checker to perform verification, to simulate the models and lift the traces at the abstraction level of the DSLs. We detail on the experience with designing and developing the DSLs stack and briefly report on using the DSLs in practice for the study of a communication protocol of a safety critical system.10.1109/FormaliSE.2019.00013- - Web of science Inglês CI1 Incluído
Work-In-Progress: a DSL for the safe deployment of Runtime Monitors in Cyber-Physical SystemsNandi, Giann Spilere; Pereira, David; Proenca, Jose; Tovar, Eduardo2020 Guaranteeing that safety-critical Cyber-Physical Systems (CPS) do not fail upon deployment is becoming an even more complicated task with the increased use of complex software solutions. To aid in this matter, formal methods (rigorous mathematical and logical techniques) can be used to obtain proofs about the correctness of CPS. In such a context, Runtime Verification has emerged as a promising solution that combines the formal specification of properties to be validated and monitors that perform these validations during runtime. Although helpful, runtime verification solutions introduce an inevitable overhead in the system, which can disrupt its correct functioning if not safely employed. We propose the creation of a Domain Specific Language (DSL) that, given a generic CPS, 1) verifies if its real-time scheduling is guaranteed, even in the presence of coupled monitors, and 2) implements several verification conditions for the correct-by-construction generation of monitoring architectures. To achieve it, we plan to perform statical verifications, derived from the available literature on schedulability analysis, and powered by a set of semi-automatic formal verification tools.10.1109/RTSS49844.2020.00047- - Web of science Inglês CI1 Incluído
Multiple Analyses, Requirements Once: Simplifying Testing and Verification in Automotive Model-Based DevelopmentBerger, Philipp; Nellen, Johanna; Katoen, Joost-Pieter; Abraham, Erika Prime; Bin Waez, Tawhid; Rambow, Thomas2019 In industrial model-based development (MBD) frameworks, requirements are typically specified informally using textual descriptions. To enable the application of formal methods, these specifications need to be formalized in the input languages of all formal tools that should be applied to analyse the models at different development levels. In this paper we propose a unified approach for the computer-assisted formal specification of requirements and their fully automated translation into the specification languages of different verification tools. We consider a two-stage MBD scenario where first Simulink models are developed from which executable code is generated automatically. We (i) propose a specification language and a prototypical tool for the formal but still textual specification of requirements, (ii) show how these requirements can be translated automatically into the input languages of Simulink Design Verifier for verification of Simulink models and BTC Embedded-Validator for source code verification, and (iii) show how our unified framework enables besides automated formal verification also the automated generation of test cases.10.1007/978-3-030-27008-7_4- - Web of science Inglês CI1 Incluído
A Formally Verified Monitor for Metric First-Order Temporal LogicSchneider, Joshua; Basin, David; Krstic, Srdan; Traytel, Dmitriy2019 Runtime verification tools must correctly establish a specification's validity or detect violations. This task is difficult, especially when the specification is given in an expressive declarative language that demands a non-trivial monitoring algorithm. We use a proof assistant to not only solve this task, but also to gain confidence in our solution. We formally verify the correctness of a monitor for metric first-order temporal logic specifications using the Isabelle/HOL proof assistant. From our formalization, we extract an executable algorithm with correctness guarantees and use differential testing to find discrepancies in the outputs of two unverified monitors for first-order specification languages.10.1007/978-3-030-32079-9_18- - Web of science Inglês CI1 Incluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63

TÍTULO AUTORES ANO RESUMO DOI PDF LINK PALAVRAS-CHAVE FONTE DE BUSCA IDIOMA CRITÉRIOS STATUS
The Dogged Pursuit of Bug-Free C Programs: The Frama-C Software Analysis PlatformBaudin P,Bobot F,Bühler D,Correnson L,Kirchner F,Kosmatov N,Maroneze A,Perrelle V,Prevosto V,Signoles J,Williams N2021 A panoramic view of a popular platform for C program analysis and verification.10.1145/3470569 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3470569;http://dx.doi.org/10.1145/3470569- ACM Inglês CE1 Excluído
Structural Embeddings Revisited (Invited Talk)Muñoz C 2022 A semantic embedding is a logical encoding of a formal language, namely the object language, into the specification language of a logical framework. In their seminal paper “Experience with embedding hardware description languages in HOL”, Boulton et al. coined the terms deep and shallow embeddings depending on whether or not the syntax of terms of the target language is represented by a data type in the specification language. Thus, a deep embedding enables reasoning about classes of terms, while a shallow embedding limits reasoning to concrete terms. Embeddings of programming languages are well-known applications of interactive theorem provers, specially of those based on higher-order logic. These embeddings are often intended to support the study of a programming language semantics or to enhance a programming language with the deductive capabilities of the logical framework. A different type of embeddings, here referred to as structural embeddings, are intended to augment specification languages with structural elements of the object language. In a structural embedding, the outermost elements of the object language, i.e., the structural parts, are encoded, either deeply or shallowly, but the internal elements, i.e., the basic expressions, are those of the specification language. Advances in automated reasoning and user interfaces have enabled structural embeddings to enhance usability of interactive theorem provers and to reduce the gap between verification tools and modeling tools used by practitioners. This talk presents an overview of several years of research on theorem proving in safety-critical aerospace systems through the lens of embeddings and, more particularly, structural embeddings. The talk focuses on lessons learned and provides examples of successful applications to automated reasoning, termination analysis, floating-point analysis, and verification of cyber-physical systems. Our main point, which is hardly original, is that interactive theorem provers will serve as intermediate systems that connect a cluster of components. Structural embeddings could then provide the frontend capabilities to access this cluster of components.10.1145/3497775.3503949https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3497775.3503949;http://dx.doi.org/10.1145/3497775.3503949Formal Verification, Embeddings, Prototype Verification System (PVS), Interactive Theorem ProvingACM Inglês CE1 Excluído
A Survey of Smart Contract Formal Specification and VerificationTolmach P,Li Y,Lin SW,Liu Y,Li Z2021 A smart contract is a computer program that allows users to automate their actions on the blockchain platform. Given the significance of smart contracts in supporting important activities across industry sectors including supply chain, finance, legal, and medical services, there is a strong demand for verification and validation techniques. Yet, the vast majority of smart contracts lack any kind of formal specification, which is essential for establishing their correctness. In this survey, we investigate formal models and specifications of smart contracts presented in the literature and present a systematic overview to understand the common trends. We also discuss the current approaches used in verifying such property specifications and identify gaps with the hope to recognize promising directions for future work.10.1145/3464421 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3464421;http://dx.doi.org/10.1145/3464421formal specification, Smart contract, formal verification, propertiesACM Inglês CE1 Excluído
SIGLOG Monthly 233: January 2023Purser D 2023 An annual award, called the Alonzo Church Award for Outstanding Contributions to Logic and Computation, was established in 2015 by the ACM Special Interest Group for Logic and Computation (SIGLOG), the European Association for Theoretical Computer Science (EATCS), the European Association for Computer Science Logic (EACSL), and the Kurt Goedel Society (KGS). The award is for an outstanding contribution represented by a paper or by a small group of papers published within the past 25 years. This time span allows the lasting impact and depth of the contribution to have been established. The award can be given to an individual, or to a group of individuals who have collaborated on the research. For the rules governing this award, see https://siglog.org/alonzo-church-award/, https://www.eatcs.org/index.php/church-award/, and https://www.eacsl.org/alonzo-church-award/.10.1145/3584676.3584683https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3584676.3584683;http://dx.doi.org/10.1145/3584676.3584683- ACM Inglês CE1 Excluído
Soundness of a Dataflow Analysis for Memory MonitoringLy D,Kosmatov N,Signoles J,Loulergue F2019 An important concern addressed by runtime verification tools for C code is related to detecting memory errors. It requires to monitor some properties of memory locations (e.g., their validity and initialization) along the whole program execution. Static analysis based optimizations have been shown to significantly improve the performances of such tools by reducing the monitoring of irrelevant locations. However, soundness of the verdict of the whole tool strongly depends on the soundness of the underlying static analysis technique. This paper tackles this issue for the dataflow analysis used to optimize the E-ACSL runtime assertion checking tool.We formally define the core dataflow analysis used by E-ACSL and prove its soundness.10.1145/3375408.3375416https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375416;http://dx.doi.org/10.1145/3375408.3375416- ACM Inglês CE4 Excluído
How Testing Helps to Diagnose Proof FailuresPetiot G,Kosmatov N,Botella B,Giorgetti A,Julliand J2018 Applying deductive verification to formally prove that a program respects its formal specification is a very complex and time-consuming task due in particular to the lack of feedback in case of proof failures. Along with a non-compliance between the code and its specification (due to an error in at least one of them), possible reasons of a proof failure include a missing or too weak specification for a called function or a loop, and lack of time or simply incapacity of the prover to finish a particular proof. This work proposes a methodology where test generation helps to identify the reason of a proof failure and to exhibit a counterexample clearly illustrating the issue. We define the categories of proof failures, introduce two subcategories of contract weaknesses (single and global ones), and examine their properties. We describe how to transform a C program formally specified in an executable specification language into C code suitable for testing, and illustrate the benefits of the method on comprehensive examples. The method has been implemented in StaDy, a plugin of the software analysis platform Frama-C. Initial experiments show that detecting non-compliances and contract weaknesses allows to precisely diagnose most proof failures.10.1007/s00165-018-0456-4https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0456-4;http://dx.doi.org/10.1007/s00165-018-0456-4Test generation, Deductive verification, Proof debugging, Specification, Frama-CACM Inglês CE1 Excluído
Formal Specification and Verification of Autonomous Robotic Systems: A SurveyLuckcuck M,Farrell M,Dennis LA,Dixon C,Fisher M2019 Autonomous robotic systems are complex, hybrid, and often safety critical; this makes their formal specification and verification uniquely challenging. Though commonly used, testing and simulation alone are insufficient to ensure the correctness of, or provide sufficient evidence for the certification of, autonomous robotics. Formal methods for autonomous robotics have received some attention in the literature, but no resource provides a current overview. This article systematically surveys the state of the art in formal specification and verification for autonomous robotics. Specially, it identifies and categorizes the challenges posed by, the formalisms aimed at, and the formal approaches for the specification and verification of autonomous robotics.10.1145/3342355 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3342355;http://dx.doi.org/10.1145/3342355autonomous robotics, Formal verification, formal specification, formal methodsACM Inglês CE1 Excluído
FASTEN: An Open Extensible Framework to Experiment with Formal Specification Approaches: Using Language Engineering to Develop a Multi-Paradigm Specification Environment for NuSMVRatiu D,Gario M,Schoenhaar H 2019 Formal specification approaches have been successfully used to specify and verify complex systems. Verification engineers so far either directly use formal specification languages which can be consumed by verification tools (e.g. SMV, Promela) or main stream modeling languages which are then translated into formal languages and verified (e.g. SysML, AADL). The first approach is expressive and effective but difficult to use by non-experts. The second approach lowers the entry barrier for novices but users are limited to the constructs of the chosen modeling languages and thereby end up abusing the language to encode behaviors of interest.In this paper, we introduce a third approach that we call FASTEN, in which modular and extensible Domain Specific Languages (DSLs) are used to raise the abstraction level of specification languages towards the domain of interest. The approach aims to help novice users to use formal specification, enable experts to use multi-paradigm modeling, and provide tools for the developers of verification technologies to easily experiment with various types of specification approaches. To show the feasibility of the approach, we release an open-source tool based on Jetbrains' MPS language workbench that provides an extensible stack of more than ten DSLs, situated at different levels of abstraction, built on top of the SMV language. We use the NuSMV model checker to perform verification, to simulate the models and lift the traces at the abstraction level of the DSLs. We detail on the experience with designing and developing the DSLs stack and briefly report on using the DSLs in practice for the study of a communication protocol of a safety critical system.10.1109/FormaliSE.2019.00013https://doi-org.ez13.periodicos.capes.gov.br/10.1109/FormaliSE.2019.00013;http://dx.doi.org/10.1109/FormaliSE.2019.00013domain specific languages, formal methodsACM Inglês CE3 Excluído
Reasoning about Human-Friendly Strategies in Repeated Keyword AuctionsBelardinelli F,Jamroga W,Malvone V,Mittelmann M,Murano A,Perrussel L2022 In online advertising, search engines sell ad placements for keywords continuously through auctions. This problem can be seen as an infinitely repeated game since the auction is executed whenever a user performs a query with the keyword. As advertisers may frequently change their bids, the game will have a large set of equilibria with potentially complex strategies. In this paper, we propose the use of natural strategies for reasoning in such setting as they are processable by artificial agents with limited memory and/or computational power as well as understandable by human users. To reach this goal, we introduce a quantitative version of Strategy Logic with natural strategies in the setting of imperfect information. In a first step, we show how to model strategies for repeated keyword auctions and take advantage of the model for proving properties evaluating this game. In a second step, we study the logic in relation to the distinguishing power, expressivity, and model-checking complexity for strategies with and without recall.- strategic reasoning, mechanism design, auctionsACM Inglês CE1 Excluído
Social Machines for All Papapanagiotou P,Davoust A,Murray-Rust D,Manataki A,Van Kleek M,Shadbolt N,Robertson D2018 In today's interconnected world, people interact to a unprecedented degree through the use of digital platforms and services, forming complex 'social machines'. These are now homes to autonomous agents as well as people, providing an open space where human and computational intelligence can mingle---a new frontier for distributed agent systems. However, participants typically have limited autonomy to define and shape the machines they are part of. In this paper, we envision a future where individuals are able to develop their own Social Machines, enabling them to interact in a trustworthy, decentralized way. To make this possible, development methods and tools must see their barriers-to-entry dramatically lowered. People should be able to specify the agent roles and interaction patterns in an intuitive, visual way, analyse and test their designs and deploy them as easy to use systems. We argue that this is a challenging but realistic goal, which should be tackled by navigating the trade-off between the accessibility of the design methods --primarily the modelling formalisms-- and their expressive power. We support our arguments by drawing ideas from different research areas including electronic institutions, agent-based simulation, process modelling, formal verification, and model-driven engineering.- model-driven development, social machines, design, analysis, modellingACM Inglês CE1 Excluído
A Survey of Practical Formal Methods for SecurityKulik T,Dongol B,Larsen PG,Macedo HD,Schneider S,Tran-Jørgensen PW,Woodcock J2022 In today’s world, critical infrastructure is often controlled by computing systems. This introduces new risks for cyber attacks, which can compromise the security and disrupt the functionality of these systems. It is therefore necessary to build such systems with strong guarantees of resiliency against cyber attacks. One way to achieve this level of assurance is using formal verification, which provides proofs of system compliance with desired cyber security properties. The use of Formal Methods (FM) in aspects of cyber security and safety-critical systems are reviewed in this article. We split FM into the three main classes: theorem proving, model checking, and lightweight FM. To allow the different uses of FM to be compared, we define a common set of terms. We further develop categories based on the type of computing system FM are applied in. Solutions in each class and category are presented, discussed, compared, and summarised. We describe historical highlights and developments and present a state-of-the-art review in the area of FM in cyber security. This review is presented from the point of view of FM practitioners and researchers, commenting on the trends in each of the classes and categories. This is achieved by considering all types of FM, several types of security and safety-critical systems, and by structuring the taxonomy accordingly. The article hence provides a comprehensive overview of FM and techniques available to system designers of security-critical systems, simplifying the process of choosing the right tool for the task. The article concludes by summarising the discussion of the review, focusing on best practices, challenges, general future trends, and directions of research within this field.10.1145/3522582 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3522582;http://dx.doi.org/10.1145/3522582Formal Methods, model checking, theorem proving, cyber securityACM Inglês CE1 Excluído
A Lightweight Formalism for Reference Lifetimes and Borrowing in RustPearce DJ 2022 Rust is a relatively new programming language that has gained significant traction since its v1.0 release in 2015. Rust aims to be a systems language that competes with C/C++. A claimed advantage of Rust is a strong focus on memory safety without garbage collection. This is primarily achieved through two concepts, namely, reference lifetimes and borrowing. Both of these are well-known ideas stemming from the literature on region-based memory management and linearity/uniqueness. Rust brings both of these ideas together to form a coherent programming model. Furthermore, Rust has a strong focus on stack-allocated data and, like C/C++ but unlike Java, permits references to local variables.Type checking in Rust can be viewed as a two-phase process: First, a traditional type checker operates in a flow-insensitive fashion; second, a borrow checker enforces an ownership invariant using a flow-sensitive analysis. In this article, we present a lightweight formalism that captures these two phases using a flow-sensitive type system that enforces “type and borrow safety.” In particular, programs that are type and borrow safe will not attempt to dereference dangling pointers. Our calculus core captures many aspects of Rust, including copy- and move-semantics, mutable borrowing, reborrowing, partial moves, and lifetimes. In particular, it remains sufficiently lightweight to be easily digested and understood and, we argue, still captures the salient aspects of reference lifetimes and borrowing. Furthermore, extensions to the core can easily add more complex features (e.g., control-flow, tuples, method invocation). We provide a soundness proof to verify our key claims of the calculus. We also provide a reference implementation in Java with which we have model checked our calculus using over 500B input programs. We have also fuzz tested the Rust compiler using our calculus against 2B programs and, to date, found one confirmed compiler bug and several other possible issues.10.1145/3443420 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3443420;http://dx.doi.org/10.1145/3443420ownership, model checking, type theory, RustACM Inglês CE1 Excluído
Sound Regular Expression Semantics for Dynamic Symbolic Execution of JavaScriptLoring B,Mitchell D,Kinder J 2019 Support for regular expressions in symbolic execution-based tools for test generation and bug finding is insufficient. Common aspects of mainstream regular expression engines, such as backreferences or greedy matching, are ignored or imprecisely approximated, leading to poor test coverage or missed bugs. In this paper, we present a model for the complete regular expression language of ECMAScript 2015 (ES6), which is sound for dynamic symbolic execution of the test and exec functions. We model regular expression operations using string constraints and classical regular expressions and use a refinement scheme to address the problem of matching precedence and greediness. We implemented our model in ExpoSE, a dynamic symbolic execution engine for JavaScript, and evaluated it on over 1,000 Node.js packages containing regular expressions, demonstrating that the strategy is effective and can significantly increase the number of successful regular expression queries and therefore boost coverage.10.1145/3314221.3314645https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3314221.3314645;http://dx.doi.org/10.1145/3314221.3314645SMT, regular expressions, Dynamic symbolic execution, JavaScriptACM Inglês CE1 Excluído
Test-Based Security Certification of Composite ServicesAnisetti M,Ardagna C,Damiani E,Polegri G2018 The diffusion of service-based and cloud-based systems has created a scenario where software is often made available as services, offered as commodities over corporate networks or the global net. This scenario supports the definition of business processes as composite services, which are implemented via either static or runtime composition of offerings provided by different suppliers. Fast and accurate evaluation of services’ security properties becomes then a fundamental requirement and is nowadays part of the software development process. In this article, we show how the verification of security properties of composite services can be handled by test-based security certification and built to be effective and efficient in dynamic composition scenarios. Our approach builds on existing security certification schemes for monolithic services and extends them towards service compositions. It virtually certifies composite services, starting from certificates awarded to the component services. We describe three heuristic algorithms for generating runtime test-based evidence of the composite service holding the properties. These algorithms are compared with the corresponding exhaustive algorithm to evaluate their quality and performance. We also evaluate the proposed approach in a real-world industrial scenario, which considers ENGpay online payment system of Engineering Ingegneria Informatica S.p.A. The proposed industrial evaluation presents the utility and generality of the proposed approach by showing how certification results can be used as a basis to establish compliance to Payment Card Industry Data Security Standard.10.1145/3267468 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3267468;http://dx.doi.org/10.1145/3267468service composition, Cloud, model-based testing, security certification, service-oriented architecture, software-as-a-service, web servicesACM Inglês CE1 Excluído
Research on Security Evaluation of Space Used Very Large Scale Integration (VLSI)Qu R,Zhang W,Lv Q,Zhang M 2021 The hardware security of space VLSI is an important issue of the reliable operation of spacecraft system in orbit. This paper focuses on the security evaluation method of VLSI design front-end based on formal verification theory. This method is adopted in the security check of a space Application Specific Integrated Circuit (ASIC). Using assertions of key registers, the potential design vulnerability of ASIC is found, which can lead to tampering of configuration data tampering under lock-in mode, and resulting in abnormal reset and even downtime of the whole chip. Finally, the security design improvement suggestions are given against the tampering.10.1145/3448734.3450457https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3448734.3450457;http://dx.doi.org/10.1145/3448734.3450457front-end security evaluation, formal verification, Space VLSIACM Inglês CE1 Excluído
High-Level Cryptographic AbstractionsKane C,Lin B,Chand S,Stoller SD,Liu YA2019 The interfaces exposed by commonly used cryptographic libraries are clumsy, complicated, and assume an understanding of cryptographic algorithms. The challenge is to design high-level abstractions that require minimum knowledge and effort to use while also allowing maximum control when needed.This paper proposes such high-level abstractions consisting of simple cryptographic primitives and full declarative configuration. These abstractions can be implemented on top of any cryptographic library in any language. We have implemented these abstractions in Python, and used them to write a wide variety of well-known security protocols, including Signal, Kerberos, and TLS.We show that programs using our abstractions are much smaller and easier to write than using low-level libraries, where size of security protocols implemented is reduced by about a third on average. We show our implementation incurs a small overhead, less than 5 microseconds for shared key operations and less than 341 microseconds (< 1%) for public key operations. We also show our abstractions are safe against main types of cryptographic misuse reported in the literature.10.1145/3338504.3357343https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3338504.3357343;http://dx.doi.org/10.1145/3338504.3357343declarative configuration, cryptographic api, high-level abstractionACM Inglês CE1 Excluído
Morbig: A Static Parser for POSIX ShellRégis-Gianas Y,Jeannerod N,Treinen R2018 The POSIX shell language defies conventional wisdom of compiler construction on several levels: The shell language was not designed for static parsing, but with an intertwining of syntactic analysis and execution by expansion in mind. Token recognition cannot be specified by regular expressions, lexical analysis depends on the parsing context and the evaluation context, and the shell grammar given in the specification is ambiguous. Besides, the unorthodox design choices of the shell language fit badly in the usual specification languages used to describe other programming languages. This makes the standard usage of LEX and YACC as a pipeline inadequate for the implementation of a parser for POSIX shell. The existing implementations of shell parsers are complex and use low-level character-level parsing code which is difficult to relate to the POSIX specification. We find it hard to trust such parsers, especially when using them for writing automatic verification tools for shell scripts. This paper offers an overview of the technical difficulties related to the syntactic analysis of the POSIX shell language. It also describes how we have resolved these difficulties using advanced parsing techniques (namely speculative parsing, parser state introspection, context-dependent lexical analysis and longest-prefix parsing) while keeping the implementation at a sufficiently high level of abstraction so that experts can check that the POSIX standard is respected. The resulting tool, called MORBIG, is an open-source static parser for a well-defined and realistic subset of the POSIX shell language. Its implementation crucially relies on the purity and incrementality of LR(1) parsers generated by MENHIR, a parser generator for OCaml.10.1145/3276604.3276615https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3276604.3276615;http://dx.doi.org/10.1145/3276604.3276615functional programming, Parsing, POSIX shellACM Inglês CE1 Excluído
Generating Counterexamples in the Form of Unit Tests from Hoare-Style Verification AttemptsNilizadeh A,Calvo M,Leavens GT,Cok DR2022 Unit tests that demonstrate why a program is incorrect have many potential uses, including localizing bugs (i.e., showing where code is wrong), improving test suites, and better code synthesis. However, counterexamples produced by failed attempts at Hoare-style verification (e.g., by SMT solvers) are difficult to translate into unit tests. We explain how to generate unit tests from counterexamples generated by an SMT solver and how this process could be embodied in a prototype tool. This process combines static verification techniques and runtime assertion checking.10.1145/3524482.3527656https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3524482.3527656;http://dx.doi.org/10.1145/3524482.3527656- ACM Inglês CE1 Excluído
Bayesian Statistical Parametric Verification and Synthesis by Machine LearningBortolussi L,Sanguinetti G,Silvetti S2018 We consider the problem of parametric verification, presenting a recent statistical method to perform parametric verification of linear time properties of stochastic models, estimating the satisfaction probability as a function of model or property parameters. The approach leverages Bayesian Machine Learning based on Gaussian Processes. Under mild conditions on continuity of parameters of the satisfaction probability, it can be shown that property satisfaction is a smooth function of such parameters. Gaussian Processes can effectively capture this smoothness and obtain more-accurate estimates of satisfaction probabilities by transferring information across the parameter space. We leveraged this approach to efficiently solve several tasks, like parameter synthesis, system design, counterexample generation, and requirement synthesis. In this tutorial, we will introduce the basic ideas of the approach and give an overview of the different applications.- ACM Inglês CE1 Excluído
A Proof-Producing Translator for Verilog Development in HOLLööw A,Myreen MO 2019 We present an automatic proof-producing translator targeting the hardware description language Verilog. The tool takes a circuit represented as a HOL function as input, translates the input function to a Verilog program and automatically proves a correspondence theorem between the input function and the output Verilog program ensuring that the translation is correct. As illustrated in the paper, the generated correspondence theorems furthermore enable transporting circuit reasoning from the HOL level to the Verilog level. We also present a formal semantics for the subset of Verilog targeted by the translator, which we have developed in parallel with the translator. The semantics is based on the official Verilog standard and is, unlike previous formalization efforts, designed to be usable for automated and interactive reasoning without sacrificing a clear correspondence to the standard. To illustrate the translator's applicability, we describe case studies of a simple verified processor and verified regexp matchers and synthesize them for two FPGA boards. The development has been carried out in the HOL4 theorem prover.10.1109/FormaliSE.2019.00020https://doi-org.ez13.periodicos.capes.gov.br/10.1109/FormaliSE.2019.00020;http://dx.doi.org/10.1109/FormaliSE.2019.00020- ACM Inglês CE1 Excluído
Automatic Verification of Database-Centric SystemsDeutsch A,Hull R,Li Y,Vianu V 2018 We present an overview of results on verification of temporal properties of infinite-state transition systems arising from processes that carry and manipulate unbounded data. The techniques bring into play tools from logic, database theory, and model checking. The theoretical results establish the boundaries of decidability and the complexity of verification for various models. We also describe verifier implementations with surprisingly good performance, suggesting that this line of research has real potential for practical impact.10.1145/3212019.3212025https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3212019.3212025;http://dx.doi.org/10.1145/3212019.3212025- ACM Inglês CE1 Excluído
Leapfrog: Certified Equivalence for Protocol ParsersDoenges R,Kappé T,Sarracino J,Foster N,Morrisett G2022 We present Leapfrog, a Coq-based framework for verifying equivalence of network protocol parsers. Our approach is based on an automata model of P4 parsers, and an algorithm for symbolically computing a compact representation of a bisimulation, using leaps. Proofs are powered by a certified compilation chain from first-order entailments to low-level bitvector verification conditions, which are discharged using off-the-shelf SMT solvers. As a result, parser equivalence proofs in Leapfrog are fully automatic and push-button. We mechanically prove the core metatheory that underpins our approach, including the key transformations and several optimizations. We evaluate Leapfrog on a range of practical case studies, all of which require minimal configuration and no manual proof. Our largest case study uses Leapfrog to perform translation validation for a third-party compiler from automata to hardware pipelines. Overall, Leapfrog represents a step towards a world where all parsers for critical network infrastructure are verified. It also suggests directions for follow-on efforts, such as verifying relational properties involving security.10.1145/3519939.3523715https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3519939.3523715;http://dx.doi.org/10.1145/3519939.3523715automata, network protocol parsers, P4, foundational verification, Coq, certified parsers, equivalenceACM Inglês CE1 Excluído
Bisimulation Finiteness of Pushdown Systems Is ElementaryGöller S,Parys P 2020 We show that in case a pushdown system is bisimulation equivalent to a finite system, there is already a bisimulation equivalent finite system whose size is elementarily bounded in the description size of the pushdown system. As a consequence we obtain that it is elementarily decidable if a given pushdown system is bisimulation equivalent to some finite system. This improves a previously best-known ACKERMANN upper bound for this problem.10.1145/3373718.3394827https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3373718.3394827;http://dx.doi.org/10.1145/3373718.3394827Bisimulation equivalence K@pushdown automata, bisimulation finiteness, elementaryACM Inglês CE1 Excluído
CPP 2023: Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs2023 Welcome to the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2023)! CPP covers the practical and theoretical topics in all areas that consider formal verification and certification as essential paradigms for their work. CPP spans topics in computer science, mathematics, logic, and education. CPP 2023 will be held on 16-17 January 2023 in Boston, Massachusetts, United States. The conference is co-located with POPL 2023, and is sponsored by ACM SIGPLAN in cooperation with ACM SIGLOG- ACM Inglês CE4 Excluído
SIGLOG Monthly 203 Petrişan D 2019 10.1145/3373394.3373399https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3373394.3373399;http://dx.doi.org/10.1145/3373394.3373399- ACM Inglês CE4 Excluído
The Verified Software Initiative: A ManifestoHoare T,Misra J,Leavens GT,Shankar N2021 https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3477355.3477361- ACM Inglês CE4 Excluído
Graphical Modeling VS. Textual Modeling: An Experimental Comparison Based on iStar ModelsW. Liu; Y. Wang; Q. Zhou; T. Li 2021 [Context] Establishing requirements models is an effective way to analyze them, which is typically dealt with in a graphical manner (i.e., the drag-and-draw fashion). However, as the size of models increases, the scalability issue has become an unignorable challenge, hindering the practical adoption of requirements modeling approach. Some researchers have recently proposed and promoted textual modeling approaches, mitigating these issues of requirements modeling. [Objective] In this paper, we aim at evaluating the two modeling methods, i.e., a graphical modeling method VS. a textual modeling method. In particular, we apply these two methods to iStar modeling language, which has been widely recognized as an effective means to model and analyze requirements. [Methods] We have systematically designed and conducted a controlled experiment with 38 participants to compare two iStar modeling methods (graphical and textual) using two corresponding modeling tools (piStar and T-Star). The experimental results reveal that the numbers of iStar model nodes and relationships built by the participants had no significant difference, regardless of the modeling method adopted. [Conclusions] First, the results show that the textual modeling method is as usable as the graphical modeling method when creating iStar models. Second, we have identified a number of issues that contribute to improving the utility and practicality of the iStar modeling method.10.1109/COMPSAC51774.2021.00117https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529492Requirements modeling;iStar modeling framework;Controlled experiment;ScalabilityIEEE Inglês CE1 Excluído
High Coverage Concolic Equivalence CheckingP. Roy; S. Chaki; P. Chauhan 2019 A concolic approach, called Slec-Cf, to check sequential equivalence between a high-level (e.g., C++/SystemC) hardware description and an RTL (e.g., Verilog) is presented. Slec-Cf searches for counterexamples over the possible values of a set of "control signals" in a depth-first lexicographic manner, avoiding values that are unrealizable by any concrete input. In addition, Slec-Cf respects user-specified design constraints during search, thus only producing stimuli that are of relevance to users. It is a superior alternative to random simulations, which produce an overwhelming number of irrelevant stimuli for user-constrained designs, and are therefore of limited effectiveness. To handle complex designs, we present an incremental version of Slec-Cf, which iteratively increases the search depth, and set of control signals, and uses a cache to reuse prior results. We implemented Slec-Cf on top an existing industrial tool for sequential equivalence checking. Experimental results indicate that Slec-Cf clearly outperforms random simulation in terms of coverage achieved. On complex designs, incremental Slec-Cf demonstrates superior ability to achieve good coverage in almost all cases, compared to non-incremental Slec-Cf.10.23919/DATE.2019.8715131https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715131- IEEE Inglês CE1 Excluído
Breaking Type Safety in Go: An Empirical Study on the Usage of the unsafe PackageD. E. Costa; S. Mujahid; R. Abdalkareem; E. Shihab2022 A decade after its first release, the Go language has become a major programming language in the development landscape. While praised for its clean syntax and C-like performance, Go also contains a strong static type-system that prevents arbitrary type casting and memory access, making the language type-safe by design. However, to give developers the possibility of implementing low-level code, Go ships with a special package called unsafe that offers developers a way around the type safety of Go programs. The package gives greater flexibility to developers but comes at a higher risk of runtime errors, chances of non-portability, and the loss of compatibility guarantees for future versions of Go. In this paper, we present the first large-scale study on the usage of the unsafe package in 2,438 popular Go projects. Our investigation shows that unsafe is used in 24 percent of Go projects, motivated primarily by communicating with operating systems and C code, but is also commonly used as a means of performance optimization. Developers are willing to use unsafe to break language specifications (e.g., string immutability) for better performance and 6 percent of the analyzed projects that use unsafe perform risky pointer conversions that can lead to program crashes and unexpected behavior. Furthermore, we report a series of real issues faced by projects that use unsafe, from crashing errors and non-deterministic behavior to having their deployment restricted from certain popular environments. Our findings can be used to understand how and why developers break type safety in Go, and help motivate further tools and language development that could make the usage of unsafe in Go even safer.10.1109/TSE.2021.3057720https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9350178Go language;unsafe;type safety;software packages;Empirical StudyIEEE Inglês CE1 Excluído
Transformation of the UML Deployment Model into a Distributed Ledger Network ConfigurationT. GÓrski; J. Bednarski 2020 A distributed ledger is a decentralized database spread across many participants. Various models describe software architecture and represent different architectural views. The paper concentrates on the deployment view. Model-Driven Development (MDD) is a software engineering approach that leverages models and transformations. The paper describes the UML2Deployment transformation of the distributed ledger’s deployment model into its deployment script. The deployment model, expressed in Unified Modeling Language (UML), is augmented with stereotypes and tagged values from UML Profile for Distributed Ledger Deployment. The target of the transformation is Gradle Groovy Domain Specific Language (DSL) deployment script for DLT network configuration. The transformation has been designed for R3 Corda framework. The authors propose the complete solution. The transformation has been incorporated into Visual Paradigm modeling tool.10.1109/SoSE50414.2020.9130492https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9130492Distributed Ledger;Model-Driven Development;Deployment view;Unified Modeling Language extensibility mechanisms;Gradle Groovy Domain Specific Language.IEEE Inglês CE1 Excluído
Continuous Verification of Network Security ComplianceC. Lorenz; V. Clemens; M. Schrötter; B. Schnor2022 Continuous verification of network security compliance is an accepted need. Especially, the analysis of stateful packet filters plays a central role for network security in practice. But the few existing tools which support the analysis of stateful packet filters are based on general applicable formal methods like Satifiability Modulo Theories (SMT) or theorem prover and show runtimes in the order of minutes to hours making them unsuitable for continuous compliance verification. In this work, we address these challenges and present the concept of state shell interweaving to transform a stateful firewall rule set into a stateless rule set. This allows us to reuse any fast domain specific engine from the field of data plane verification tools leveraging smart, very fast, and domain specialized data structures and algorithms including Header Space Analysis (HSA). First, we introduce the formal language FPL that enables a high-level human-understandable specification of the desired state of network security. Second, we demonstrate the instantiation of a compliance process using a verification framework that analyzes the configuration of complex networks and devices - including stateful firewalls - for compliance with FPL policies. Our evaluation results show the scalability of the presented approach for the well known Internet2 and Stanford benchmarks as well as for large firewall rule sets where it outscales state-of-the-art tools by a factor of over 41.10.1109/TNSM.2021.3130290https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9626142Network;security;compliance;formal verificationIEEE Inglês CE3 Excluído
FASTEN: An Open Extensible Framework to Experiment with Formal Specification ApproachesD. Ratiu; M. Gario; H. Schoenhaar2019 Formal specification approaches have been successfully used to specify and verify complex systems. Verification engineers so far either directly use formal specification languages which can be consumed by verification tools (e.g. SMV, Promela) or main stream modeling languages which are then translated into formal languages and verified (e.g. SysML, AADL). The first approach is expressive and effective but difficult to use by non-experts. The second approach lowers the entry barrier for novices but users are limited to the constructs of the chosen modeling languages and thereby end up abusing the language to encode behaviors of interest. In this paper, we introduce a third approach that we call FASTEN, in which modular and extensible Domain Specific Languages (DSLs) are used to raise the abstraction level of specification languages towards the domain of interest. The approach aims to help novice users to use formal specification, enable experts to use multi-paradigm modeling, and provide tools for the developers of verification technologies to easily experiment with various types of specification approaches. To show the feasibility of the approach, we release an open-source tool based on Jetbrains' MPS language workbench that provides an extensible stack of more than ten DSLs, situated at different levels of abstraction, built on top of the SMV language. We use the NuSMV model checker to perform verification, to simulate the models and lift the traces at the abstraction level of the DSLs. We detail on the experience with designing and developing the DSLs stack and briefly report on using the DSLs in practice for the study of a communication protocol of a safety critical system.10.1109/FormaliSE.2019.00013https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8807686formal methods;language engineering;specification environmentsIEEE Inglês CE3 Excluído
Work-In-Progress: a DSL for the safe deployment of Runtime Monitors in Cyber-Physical SystemsG. S. Nandi; D. Pereira; J. Proença; E. Tovar2020 Guaranteeing that safety-critical Cyber-Physical Systems (CPS) do not fail upon deployment is becoming an even more complicated task with the increased use of complex software solutions. To aid in this matter, formal methods (rigorous mathematical and logical techniques) can be used to obtain proofs about the correctness of CPS. In such a context, Runtime Verification has emerged as a promising solution that combines the formal specification of properties to be validated and monitors that perform these validations during runtime. Although helpful, runtime verification solutions introduce an inevitable overhead in the system, which can disrupt its correct functioning if not safely employed. We propose the creation of a Domain Specific Language (DSL) that, given a generic CPS, 1) verifies if its real- time scheduling is guaranteed, even in the presence of coupled monitors, and 2) implements several verification conditions for the correct-by-construction generation of monitoring architectures. To achieve it, we plan to perform statical verifications, derived from the available literature on schedulability analysis, and powered by a set of semi-automatic formal verification tools.10.1109/RTSS49844.2020.00047https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9355502runtime verification;cyber-physical systems;DSL;safety;mode changeIEEE Inglês CE3 Excluído
Performing Security Proofs of Stateful ProtocolsA. V. Hess; S. Mödersheim; A. D. Brucker; A. Schlichtkrull2021 In protocol verification we observe a wide spectrum from fully automated methods to interactive theorem proving with proof assistants like Isabelle/HOL. The latter provide overwhelmingly high assurance of the correctness, which automated methods often cannot: due to their complexity, bugs in such automated verification tools are likely and thus the risk of erroneously verifying a flawed protocol is non-negligible. There are a few works that try to combine advantages from both ends of the spectrum: a high degree of automation and assurance. We present here a first step towards achieving this for a more challenging class of protocols, namely those that work with a mutable long-term state. To our knowledge this is the first approach that achieves fully automated verification of stateful protocols in an LCF-style theorem prover. The approach also includes a simple user-friendly transaction-based protocol specification language embedded into Isabelle, and can also leverage a number of existing results such as soundness of a typed model10.1109/CSF51468.2021.00006https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505200stateful-security-protocols;interactive-theorem-proving;automated-verificationIEEE Inglês CE3 Excluído
A Study of Modeling Perception in a First-Time Modeling ClassH. Ergin; I. L. Walling; K. P. Rader; D. J. Dobbs2019 In this paper, we have studied the modeling perception change of first-time learners in a heavily undergraduate research institute. The new course has covered a lot of aspects that are a part of a regular modeling course, including domain-specific languages, modeling, metamodeling, code-generation, and model transformation. We have run the study by distributing three surveys to all students: one at the beginning of the course, one in the middle, and one at the end. The results are mixed. Even though there are changes in terms of what modeling is, the primary obstacle seems to be related to the tools and support available (or not) in the modeling community.10.1109/MODELS-C.2019.00104https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904829modeling class;perception;first time classIEEE Inglês CE1 Excluído
An Algebraic Approach to Modeling and Verifying Policy-Driven Smart Devices in IoT SystemsX. Chi; M. Zhang; X. Xu 2019 Internet of Things (IoT) is being widely adopted to facilitate living environments such as cities and homes to become smart. Devices in IoT systems are capable of automatically adjusting their behaviors according to the change of environments. The capability is usually driven by the policies which are predefined inside devices. Policies can be customized by end users. Inconsistencies or conflicts among policies may cause malfunction of systems and therefore must be eliminated before deployment. In this paper, we propose a novel algebraic approach to modeling and verifying policy-driven smart devices in IoT systems on the basis of a domain-specific modeling language called PobSAM (Policy-based Self-Adaptive Model) and an efficient rewriting system called Maude. We formalize the operational semantics of PobSAM using Maude, which is an executable specification as well as a formal verification tool. The Maude formalization can be used to verify smart devices that are specified in PobSAM. We conduct a case study on a smart home setting to evaluate the effectiveness and efficiency of our approach.10.1109/APSEC48747.2019.00034https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945619IoT system, Verification, PobSAM, Maude, Smart homeIEEE Inglês CE3 Excluído
A tool for proving Michelson Smart Contracts in WHY3L. P. Arrojado da Horta; J. Santos Reis; S. M. de Sousa; M. Pereira2020 This paper introduces a deductive verification tool for smart contracts written in Michelson, which is the low-level language of the Tezos blockchain. Our tool accepts a formally specified Michelson contract and automatically translates it to an equivalent program written in WhyML, the programming and specification language of the Why3 framework. Smart contract instructions are mapped into a corresponding WhyML shallow-embedding of the their axiomatic semantics, which we also developed in the context of this work. One major advantage of this approach is that it allows an out-of-the-box integration with the Why3 framework, namely its VCGen and the backend support for several automated theorem provers. We also discuss the use of our tool to automatically prove the correctness of diverse annotated smart contracts.10.1109/Blockchain50366.2020.00059https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284726Formal Verification;Michelson;Smart Contracts;Why3;TezosIEEE Inglês CE3 Excluído
Simulation-based Equivalence Checking between IEEE 1687 ICL and RTLA. Damljanovic; A. Jutman; M. Portolan; E. Sanchez; G. Squillero; A. Tsertov2019 A fundamental part of the new IEEE Std 1687 is the Instrument Connectivity Language (ICL), which allows for abstract description of the scan network. The big novelty if compared to legacy solutions like BSDL is the possibility of describing new topology-enabling elements such as the Scan-Muxes in a behavioural way which can be easily and efficiently exploited by Test Generation Tools to retarget instrument-level operations to top-level patterns. This means that for a given design, the Developer will have to write both the RTL and the ICL descriptions: to the author's best knowledge there is no automated tool to make the translation RTL to ICL. This methodology is error-prone due to the human factor, the difference in intent in the two descriptions and the syntactic and semantic complexity of the languages. Incoherence between ICL and RTL will result in retargeting errors, so it is fundamental to validate the equivalence between the two descriptions. This paper presents an automated methodology that starting from the ICL description is able to generate a set of RTL testbenches that can be simulated against the original RTL model to detect discrepancies and incoherence, and provides quantitative metrics in terms of code and functional coverage. Experimental results are reported on the set of ITC2016 set of benchmark networks.10.1109/ITC44170.2019.9000181https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9000181Simulation;RTL;ICL;Code-coverage;Pattern Generation;Reconfigurable Scan Networks;IEEE 1687IEEE Inglês CE1 Excluído
AWSCPM: A Framework For Automation Of Web Services Composition ProcessesN. Adadi; M. Berrada; D. Chenouni; M. Halim2019 A growing number of companies are using web services to make their expertise and data available through the network. The current problem is the integration of these services in order to implement inter-company collaboration. Research organizations and industrialists are trying to find an adequate solution to achieve this task called services composition. The development of composite services using the Models Driven Approach (MDA) principles is as follows: The developer specifies the composition scenario using a modeling language. Once the specification is complete, it is usually formally validated before proceeding with the implementation of the new composite service. In this paper we present a summary of our developed approach of web services composition based on MDA, and using different languages and systems, like Multi-Agent Reactive Decisional system (MARDS) for the modeling task, LOTOS language for formal verification, and BPEL language for implementation. In order to automate these processes of web services composition approach, we have developed as part of this research the framework AWSCPM "Automatic Web Services Composition Process based on MARDS".10.1109/CMT.2019.8931389https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8931389Web services composition;framework AWSCPM;MARDS;BPEL languageIEEE Inglês CE1 Excluído
A Sanitizer-centric Analysis to Detect Cross-Site Scripting in PHP ProgramsH. Su; L. Xu; H. Chao; F. Li; Z. Yuan; J. Zhou; W. Huo2022 A large number of PHP applications suffer from Cross-Site Scripting (XSS) attacks every year. Static taint analysis is a prevalent way to detect taint-style vulnerabilities like XSS. However, the precision of current tools suffers severely due to dynamic features of PHP programs and the incomplete recognition of user-defined sanitizers, which lead to false negatives and a large number of false positives. In this paper, we present PAT, a PHP static Analysis Tool for effective XSS vulnerability detection. A new concept of “inner” source and sink is introduced for the first time to shorten the taint paths needed to be traced statically, which therefore mitigates the broken path problem induced by dynamic language features to a certain extent. A sanitizer-centric approach is proposed to automatically identify them. Moreover, PAT leverages both data flow analysis and NLP technique to accurately identify user-defined sanitizers with a precision 82.8%. Lastly, PAT performs a classical taint analysis with the enhanced taint specifications (i.e., sources, sinks and sanitizers). Evaluations on 5 large, real-world PHP web applications and 5 popular WordPress plugins show that PAT performs better in XSS detection compared with 3 existing tools. Besides, 8 zero-day bugs are detected and confirmed by the developers.10.1109/ISSRE55969.2022.00042https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9978990XSS;static taint analysis;specification inferenceIEEE Inglês CE1 Excluído
Inferring Metamodel Relaxations Based on Structural Patterns to Support Model FamiliesS. Alwidian; D. Amyot 2019 A model family is a set of related models in a given language that results from the evolution of models over time and/or variations over the space (product) dimension. To enable a more efficient analysis of family members, all at once, we have already proposed union models to capture the union of all elements in all family members, in a compact and exact manner. However, despite having each model in a model family conforming to the same metamodel, there is still no guarantee that their union model will conform to the original metamodel of the family members. This paper aims to support the representation of union models (as valid instances of a metamodel) by inferring, from the structure of the original metamodel, a relaxed metamodel to which a union model conforms. In particular, instead of relaxing all metamodel constraints, the paper contributes a heuristic method that relaxes particular constraints (related only to multiplicities of attributes and association ends) by inferring where such relaxations are needed in the metamodel. To infer relaxation points, structural patterns are first identified in metamodels, then an evidence-based or an anticipation-based approach is applied to get the actual inference. The purpose behind inferring particular metamodel relaxation points is to be able to adapt the existing tools and analysis techniques once and minimally for all potential model families of a given modeling language.10.1109/MODELS-C.2019.00046https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904566Model family;model;Metamodel;Metamodel relaxation;Union model;Relaxation point;Structural patternIEEE Inglês CE1 Excluído
SpeCS — SPARQL Query Containment SolverM. Spasić; M. V. Janičić 2020 With increasing popularity and importance of Semantic Web and its application, SPARQL, as a standard language for querying RDF data, gains more importance and receives additional attention from both practitioners and researchers coming from various domains. In database world, the query containment problem is a fundamental problem, crucially important in verification and optimization of queries. In this paper, we present our work on developing SPECS, an efficient solver for this problem in SPARQL query language. Our approach reduces query containment problem to the satisfiability problem in theories of the first order logic, and exploits SMT solver Z3 for checking the constructed formula. We present an evaluation that shows that our solver is much faster and covers more language features than the other available state-of-the-art solvers.10.1109/ZINC50678.2020.9161435https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9161435semantic web;SPARQL;query containment;query modeling;SMT solving;SPECSIEEE Inglês CE1 Excluído
Leveraging Model-Driven Technologies for JSON Artefacts: The Shipyard Case StudyA. Colantoni; A. Garmendia; L. Berardinelli; M. Wimmer; J. Bräuer2021 With JSON's increasing adoption, the need for structural constraints and validation capabilities led to JSON Schema, a dedicated meta-language to specify languages which are in turn used to validate JSON documents. Currently, the standardisation process of JSON Schema and the implementation of adequate tool support (e.g., validators and editors) are work in progress. However, the periodic issuing of newer JSON Schema drafts makes tool development challenging. Nevertheless, many JSON Schemas as language definitions exist, but JSON documents are still mostly edited in basic text-based editors. To tackle this challenge, we investigate in this paper how Model-Driven Engineering (MDE) methods for language engineering can help in this area. Instead of re-inventing the wheel of building up particular technologies directly for JSON, we study how the existing MDE infrastructures may be utilized for JSON. In particular, we present a bridge between the JSONware and Modelware technical spaces to exchange languages and documents. Based on this bridge, our approach supports language engineers, domain experts, and tool providers in editing, validating, and generating tool support with enhanced capabilities for JSON schemas and their documents. We evaluate our approach with Shipyard, a JSON Schema-based language for the workflow specification for Keptn, an open-source tool for DevOps automation of cloud-native applications. The results of the case study show that proper editors and language evolution support from MDE can be reused and, at the same time, the surface syntax of JSON is maintained.10.1109/MODELS50736.2021.00033https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592494JSON;JSON Schema;MDE;DevOps;Tool InteroperabilityIEEE Inglês CE1 Excluído
A Forwarding Secrecy Based Lightweight Authentication Scheme for Intelligent LogisticsX. Zhu; Y. Li; Y. Lei 2020 With the continuous evolution of the Internet of Things, RFID technology has developed rapidly. Due to the rapid application of RFID technology in various scenarios of intelligent logistics, many security issues and privacy threats have gradually coming to the fore. RFID in an open environment not only brings new security challenges to the two-way authentication of information systems, but also greatly increases the need for identity anonymization. Therefore, a lightweight key protocol for smart logistics is proposed in this paper. The protocol uses a hash function and XOR operation to authenticate the sensor nodes, ensuring the security of wireless communication. It protects against eavesdropping, impersonation, replay, server spoofing, sensor node capture, forward/backward secrecy, interference/desynchronization attacks. Forward confidentiality can be ensured without the use of asymmetric encryption. Finally, we successfully verified the security of our scheme using the automated security verification tool ProVerif. The theoretical analysis and experimental results show that the scheme in this paper not only significantly reduces the computational cost, but also has a lower security risk and higher computational efficiency compared to other lightweight schemes.10.1109/AEECA49918.2020.9213520https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9213520Smart Logistics;Lightweight Authentication;Formal Analysis;ProverifIEEE Inglês CE1 Excluído
Verification Approach for Refactoring Transformation Rules of State-Based ModelsN. Almasri; B. Korel; L. Tahat 2022 With the increased adoption of Model-Driven Engineering (MDE), where models are being used as the primary artifact of software, it is apparent that greater attention to the quality of the models is necessary. Traditionally, refactoring is used to enhance the quality of software systems at the source-code level; however, applying refactoring at the model level will have a more significant improvement on the system. After refactoring a model, proving that it still preserves its original behavior is crucial. In this paper, we present a process for applying refactoring transformations to the Extended Finite State Machine (EFSM) models using verified transformation rules that have been proven to preserve the model's original behavior. We provide a simplified three-step verification approach that can be used to prove that a transformation rule will generate a transformed model that is semantically equivalent to the original model. To do this, we formally define semantical equivalence at three different levels of granularity: models, sub-models, and transitions. Additionally, we introduce five model transformation rules and we demonstrate how our verification approach is used to prove the correctness of these rules. Finally, we present two case studies where we apply the proposed transformation process which adopts the five verified transformation rules. Using model testing, we show that applying a sequence of transformations using the verified transformation rules will keep both the original and the transformed model semantically equivalent. Additionally, the case studies show that model transformation can be used to enhance certain pre-defined model characteristics.10.1109/TSE.2021.3106589https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9520285Extended finite state machine;model refactoring;refactoring transformation rules;verification of transformations;observable behavior;semantic equivalence of modelsIEEE Inglês CE1 Excluído

https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3470569;http://dx.doi.org/10.1145/3470569
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3497775.3503949;http://dx.doi.org/10.1145/3497775.3503949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3464421;http://dx.doi.org/10.1145/3464421
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3584676.3584683;http://dx.doi.org/10.1145/3584676.3584683
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375416;http://dx.doi.org/10.1145/3375408.3375416
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0456-4;http://dx.doi.org/10.1007/s00165-018-0456-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3342355;http://dx.doi.org/10.1145/3342355
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/FormaliSE.2019.00013;http://dx.doi.org/10.1109/FormaliSE.2019.00013
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3522582;http://dx.doi.org/10.1145/3522582
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3443420;http://dx.doi.org/10.1145/3443420
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3314221.3314645;http://dx.doi.org/10.1145/3314221.3314645
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3267468;http://dx.doi.org/10.1145/3267468
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3448734.3450457;http://dx.doi.org/10.1145/3448734.3450457
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3338504.3357343;http://dx.doi.org/10.1145/3338504.3357343
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3276604.3276615;http://dx.doi.org/10.1145/3276604.3276615
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3524482.3527656;http://dx.doi.org/10.1145/3524482.3527656
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/FormaliSE.2019.00020;http://dx.doi.org/10.1109/FormaliSE.2019.00020
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3212019.3212025;http://dx.doi.org/10.1145/3212019.3212025
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3519939.3523715;http://dx.doi.org/10.1145/3519939.3523715
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3373718.3394827;http://dx.doi.org/10.1145/3373718.3394827
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3373394.3373399;http://dx.doi.org/10.1145/3373394.3373399
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3477355.3477361
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529492
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9350178
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9130492
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9626142
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8807686
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9355502
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505200
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904829
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945619
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284726
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9000181
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8931389
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9978990
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904566
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9161435
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592494
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9213520
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9520285

Decentralized Application Infrastructures as Smart Contract CodesR. Karanjai; K. Kasichainula; N. Diallo; M. Kaleem; L. Xu; L. Chen; W. Shi2022 With the recent advance in concepts like decentralized "cloud" and blockchain-enabled decentralized computing environments, the legacy modeling and orchestration tools developed to support centrally managed cloud-based ICT infrastructures are challenged by such a new paradigm built on top of decentralization. On the other hand, decentralized "cloud" and computing infrastructures need to support many Dapp use cases. As the complexity of these targeted application scenarios increases, there is an urgent need for developing automation and modeling tools for deploying and managing decentralized infrastructures. Instead of creating such tools from scratch, a natural approach is extending mature infrastructure modeling tools for Dapps and decentralized computing environments. To this end, in this work, we have developed extensions to the TOSCA domain-specific language to support smart contract specification of decentralized computing infrastructures for supporting Dapps, where smart contracts or chain codes manage a decentralized computing environment. The result is blockchain-based orchestration and automation for decentralized "cloud" and computing environments, which is a step forward for achieving full decentralization in general-purpose computing.10.1109/ICBC54727.2022.9805493https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9805493TOSCA;Smart Contracts;Blockchain;InfrastructuresIEEE Inglês CE1 Excluído
Unified FFL model based reliability, safety and testability integrated analysis methodW. Peng; J. Li 2021 With the widely and deeply application of intelligent Integrated Logistics Support, PHM and other technologies in the field of aviation equipment, the importance of reliability, safety and testability (RST) has become increasingly prominent. This paper proposed the RST integrated analysis method based on the functional fault logic(FFL) model in MBSE. This paper first analyzes the main work content and general idea of RST. The RST work focus on “functional architecture fault logic “of the products, and the common functional fault logic model for RST is established, it realizes model reuse in RST analysis process. Then the modeling language, tools steps in the modeling process are discussed. Based on the functional model, the fault logic relationship could be reflected, and it is more closer to the real situation of the fault, more effectively solves the “two skin” problem in reliability engineering. Based on the common model, by collecting and analyzing the information of the special part of the Reliability, Safety and Testability, RST model could be supplemented and improved, the RST metrics could be evaluated respectively. Finally, a case study of the fuel system with frequent failures is carried out, and the advantages are analyzed.10.1109/PHM-Nanjing52125.2021.9612806https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9612806component;functional fault logic;Reliability;Safety;Testability;Modeling evaluation;MBSEIEEE Inglês CE1 Excluído
Towards Automated Input Generation for Sketching Alloy ModelsA. Jovanovic; A. Sullivan 2022 Writing declarative models has numerous benefits, ranging from automated reasoning and correction of design-level properties before systems are built, to automated testing and debugging of their implementations after they are built. Alloy is a declarative modeling language that is well suited for verifying system designs. While Alloy comes deployed in the Analyzer, an automated scenario-finding tool set, writing correct models remains a difficult and error-prone task. ASketch is a synthesis framework that helps users build their Alloy models. ASketch takes as an input a partial Alloy models with holes and an A Unit test suite. As output, ASketch returns a completed model that passes all tests. ASketch’s initial evaluation reveals ASketch to be a promising approach to synthesize Alloy models. In this paper, we present and explore SketchGen2, an approach that looks to broaden the adoption of ASketch by increasing the automation of the inputs needed for the sketching process. Experimental results show SketchGen2 is effective at producing both expressions and test suites for synthesis.10.1145/3524482.3527651https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796453• Software and its engineering → Formal software verificationIEEE Inglês CE1 Excluído
Feasibility Analysis of a Rule-Based Ontology Framework (ROF) for Auto-Generation of Requirements SpecificationA. P. Yanuarifiani; F. -F. Chua; G. -Y. Chan2020 Writing requirements specification documents plays an important role in determining the success of information system development. To compile documents that are consistent, complete and in accordance with standards, both from a technical and business perspective require enough knowledge. Some previous approaches, such as GUI-F framework, propose automated requirements specification document creation with a variety of different methods. However, most of them do not provide detailed guidance on how stakeholders can identify their needs to support the company's business needs. In addition, some methods only focus on documenting high level requirements specification, such as use case diagram. As for the code development process, this only represents very basic information and lack of technical aspects. In our previous work, we proposed a Rule-Based Ontology Framework (ROF) for Auto-Generating Requirements Specification. ROF covers 2 processes in requirements engineering, namely: elicitation and documentation. The output of the elicitation process is a list of final requirements that are stored in an ontology structure, called Requirements Ontology (RO). Using RO, the documentation process automatically generates 2 outputs: process model in the Business Process Model and Notation (BPMN) standard and Software Requirements Specification (SRS) documents in the IEEE standard. The aim of this paper is to conduct a feasibility analysis to prove that ROF is feasible to be implemented in an Information System (IS) projects. ROF is implemented in a case study, an IS project that calculates lecturer workload activity at a university in Indonesia. The feasibility analysis is carried out in stages for each output using qualitative and quantitative methods. The results of the analysis show that that the framework is feasible to be implemented in the IS project to minimize effort in generating requirements specification.10.1109/IICAIET49801.2020.9257838https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9257838Auto-Generate BPMN;Auto-Generate SRS;Feasibility analysis;ROF Framework;Requirements OntologyIEEE Inglês CE1 Excluído
MCP: A Security Testing Tool Driven by RequirementsP. X. Mai; F. Pastore; A. Goknil; L. C. Briand2019 We present MCP, a tool for automatically generating executable security test cases from misuse case specifications in natural language (i.e., use case specifications capturing the behavior of malicious users). MCP relies on Natural Language Processing (NLP), a restricted form of misuse case specifications, and a test driver API implementing basic utility functions for security testing. NLP is used to identify the activities performed by the malicious user and the control flow of misuse case specifications. MCP matches the malicious user's activities to the methods of the provided test driver API in order to generate executable security test cases that perform the activities described in the misuse case specifications. MCP has been successfully evaluated on an industrial case study.10.1109/ICSE-Companion.2019.00037https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8802766Natural Language Requirements;System Security Testing;Natural Language ProcessingIEEE Inglês CE1 Excluído
Formal Verification of a State-of-the-Art Integer Square RootG. Melquiond; R. Rieu-Helft 2019 We present the automatic formal verification of a state-of-the-art algorithm from the GMP library that computes the square root of a 64-bit integer. Although it uses only integer operations, the best way to understand the program is to view it as a fixed-point arithmetic algorithm that implements Newton's method. The C code is short but intricate, involving magic constants and intentional arithmetic overflows. We have verified the algorithm using the Why3 tool and automated solvers such as Gappa.10.1109/ARITH.2019.00041https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877419Formal verification;Fixed-point arithmeticIEEE Inglês CE1 Excluído
Design and Formal Verification of a Copland-Based Attestation ProtocolA. Petz; G. Jurgensen; P. Alexander2021 We present the design and formal analysis of a remote attestation protocol and accompanying security architecture that generate evidence of trustworthy execution for legacy software. For formal guarantees of measurement ordering and cryptographic evidence strength, we leverage the Copland language and Copland Virtual Machine execution semantics. For isolation of attestation mechanisms we design a layered attestation architecture that leverages the seL4 microkernel. The formal properties of the protocol and architecture together serve to discharge assumptions made by an existing higher-level model-finding tool to characterize all ways an active adversary can corrupt a target and go undetected. As a proof of concept, we instantiate this analysis framework with a specific Copland protocol and security architecture to measure a legacy flight planning application. By leveraging components that are amenable to formal analysis, we demonstrate a principled way to design an attestation protocol and argue for its end-to-end correctness.10.1145/3487212.3487340https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814959remote attestation;formal methods;verificationIEEE Inglês CE1 Excluído
Transforming Natural Language Specifications to Logical Forms for Hardware VerificationR. Krishnamurthy; M. S. Hsiao 2020 We propose a framework for extracting natural language assertions from hardware design specification documents. The entire parse tree of each input sentence in a design spec is viewed as a network of words connected to facilitate the creation of semantic frames. We employ a lexicalized grammar that associates words with both semantic and syntactic relations that assist in filling the slots in the semantic frames. At the same time, the accuracy of the extracted semantics is ensured by the incremental understanding algorithm that is guided by both syntactic and semantic rules of the hardware verification domain. We evaluated the framework by writing assertions taken from specification documents of the Memory controller, UART, and the AMBA ACE protocol. System Verilog Assertions (SVA) were automatically generated from logical expressions. Since accuracy is of paramount importance, whenever a complex sentence cannot be understood. we identify and report to the user.10.1109/ICCD50377.2020.00072https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283590Hardware verification;Natural Language specifications;Natural language ProcessingIEEE Inglês CE1 Excluído
ABAC Requirements Engineering for Database ApplicationsJ. Longstaff; M. He 2019 We show how complex privacy requirements can be represented and processed by an extended model of Attribute Based Access Control (ABAC), working with a simple database applications pattern. During application model development, most likely based on UML (e.g. Use Case, Class Diagrams), the analyst and possibly the end user specifies ABAC permissions, and then verifies their effect by running queries on the target data. The ABAC model supports positive and negative permissions, "break glass" overrides of negative permissions, and message/alert generation. The permissions combining algorithms are based on relational database optimisation, and permissions processing is implemented by query modification, producing structurally-optimised queries in an SQL-like language; the queries can then be processed by many database and big data systems. The method and models have been implemented in a prototype Privacy Preferences Tool in collaboration with a large medical records development, and we discuss experiences with focus group evaluations of this tool.10.1109/TASE.2019.00-22https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914135Attribute Based Access Control, Database, Medical RecordsIEEE Inglês CE1 Excluído
Bounded Verification of Sparse Matrix ComputationsT. Dyer; A. Altuntas; J. Baugh 2019 We show how to model and reason about the structure and behavior of sparse matrices, which are central to many applications in scientific computation. Our approach is state-based, relying on a formalism called Alloy to show that one model is a refinement of another. We present examples of sparse matrix-vector multiplication, transpose, and translation between formats using ELLPACK and compressed sparse row formats to demonstrate the approach. To model matrix computations in a declarative language like Alloy, a new idiom is presented for bounded iteration with incremental updates. Mechanical verification is performed using SAT solvers built into the tool.10.1109/Correctness49594.2019.00010https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8951032sparse matrix formats;state-based formal methods;mechanical verificationIEEE Inglês CE1 Excluído
Development and Verification of Smart-Contracts for the ScientificCoin PlatformE. Zhdarkin; I. Anureev 2021 We study the process of creating and testing models of programs in the Solidity language (smart-contracts) for the ScientificCoin crowdfunding platform. This platform is an Internet portal for investing in high-tech projects using blockchain technology. We examine the security of the blockchain-based method of conducting money transactions implemented on this platform and the approach to test and to verify used program code. We analyze the tools and algorithms which allow us to formalize the life cycle of the code in the blockchain system. An example of creating a smart-contract model and the way of checking the feasibility of its functional properties and the truth of invariants using the SMT solver are considered.10.1109/EDM52169.2021.9507717https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507717smart-contract;solidity;blockchain;formal verificationIEEE Inglês CE1 Excluído
Global Analysis of C Concurrency in High-Level SynthesisN. Ramanathan; G. A. Constantinides; J. Wickerson2021 When mapping C programs to hardware, highlevel synthesis (HLS) tools reorder independent instructions, aiming to obtain a schedule that requires as few clock cycles as possible. However, when synthesizing multithreaded C programs, reordering opportunities are limited by the presence of atomic operations (“atomics”), the fundamental concurrency primitives in C. Existing HLS tools analyze and schedule each thread in isolation. In this article, we argue that thread-local analysis is conservative, especially since HLS compilers have access to the entire program. Hence, we propose a global analysis that exploits information about memory accesses by all threads when scheduling each thread. Implemented in the LegUp HLS tool, our analysis is sensitive to sequentially consistent (SC) and weak atomics and supports loop pipelining. Since the semantics of C atomics is complicated, we formally verify that our analysis correctly implements the C memory model using the Alloy model checker. Compared with thread-local analysis, our global analysis achieves a 2.3× average speedup on a set of lock-free data structures and data-flow patterns. We also apply our analysis to a larger application: a lock-free, streamed, and load-balanced implementation of Google's PageRank, where we see a 1.3× average speedup compared with the thread-local analysis.10.1109/TVLSI.2020.3026112https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9234113Field programmable gate arrays;formal verification;high level synthesis;memory architecture;multithreading;parallel programmingIEEE Inglês CE1 Excluído
Personalized and Automatic Model Repairing using Reinforcement LearningA. Barriga; A. Rutle; R. Heldal 2019 When performing modeling activities, the chances of breaking a model increase together with the size of development teams and number of changes in software specifications. Model repair research mostly proposes two different solutions to this issue: fully automatic, non-interactive model repairing tools or support systems where the repairing choice is left to the developer's criteria. In this paper, we propose the use of reinforcement learning algorithms to achieve the repair of broken models allowing both automation and personalization. We validate our proposal by repairing a large set of broken models randomly generated with a mutation tool.10.1109/MODELS-C.2019.00030https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904758Model repair;Reinforcement learning;PersonalizationIEEE Inglês CE1 Excluído
Generating and Employing Witness Automata for ACTLW FormulaeR. Vogrin; R. Meolic; T. Kapus 2022 When verifying the validity of a formula in a system model by a model checker, a common feature is the generation of a linear witness or counterexample, which is a computation path usually showing a single reason why the formula is valid or, respectively, not. For systems represented with Labeled Transition Systems (LTS) and a subset of ACTLW (Action-based Computation Tree Logic with Unless operator) formulae, a procedure exists for the generation of witness automata, which contain all the interesting finite linear witnesses, thus revealing all the reasons of the validity of a formula. Although this procedure uses a symbolic representation of LTSs, transitions of a given LTS are traversed one by one. In this paper, we propose a procedure which exploits the symbolic representation efficiently to traverse several transitions at once. We evaluate the procedure on models of a communication protocol from industry and a biological system. The results show it to be at least several times faster than the former one. Witness automata were first introduced to allow for compositional generation of test sequences. We propose two more possible uses. One is for the detection of multiple errors in a model by exploring the witness automaton for a formula, instead of only one, which is usually the case with a single witness. The other one is for the detection of previously unknown system properties. As witness automata can be rather large, we show how some existing tools could help in examining them through visualization and simulation.10.1109/ACCESS.2022.3143478https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9681848Automata;formal verification;logic;model checkingIEEE Inglês CE1 Excluído
RL-GRIT: Reinforcement Learning for Grammar InferenceW. Woods 2021 When working to understand usage of a data format, examples of the data format are often more representative than the format’s specification. For example, two different applications might use very different JSON representations, or two PDF-writing applications might make use of very different areas of the PDF specification to realize the same rendered content. The complexity arising from these distinct origins can lead to large, difficult-to-understand attack surfaces, presenting a security concern when considering both exfiltration and data schizophrenia. Grammar inference can aid in describing the practical language generator behind examples of a data format. However, most grammar inference research focuses on natural language, not data formats, and fails to support crucial features such as type recursion. We propose a novel set of mechanisms for grammar inference, RL-GRIT1, and apply them to understanding de facto data formats. After reviewing existing grammar inference solutions, it was determined that a new, more flexible scaffold could be found in Reinforcement Learning (RL). Within this work, we lay out the many algorithmic changes required to adapt RL from its traditional, sequential-time environment to the highly interdependent environment of parsing. The result is an algorithm which can demonstrably learn recursive control structures in simple data formats, and can extract meaningful structure from fragments of the PDF format. Whereas prior work in grammar inference focused on either regular languages or constituency parsing, we show that RL can be used to surpass the expressiveness of both classes, and offers a clear path to learning context-sensitive languages. The proposed algorithm can serve as a building block for understanding the ecosystems of de facto data formats.1RL-GRIT may be pronounced as “Real Grit.”10.1109/SPW53761.2021.00031https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474312grammar inference;reinforcement learning;convolutional reinforcement learning;deterministic policy gradient;embeddings;parsing;constituency parsingIEEE Inglês CE1 Excluído
Differential coverage: : automating coverage analysisH. Cox 2021 While it is easy to automate coverage data collection, it is a time consuming/difficult/expensive manual process to analyze the data so that it can be acted upon. The goal of the approaches discussed in here is to reduce the cost and barrier to entry of using coverage data analysis in large-scale projects by categorizing and prioritizing coverage changes to avoid the need for manual review at every release or on every build.Differential coverage and date binning are methods of combining coverage data and project/file history to determine if goals have been met and to identify areas of unexercised code which should be reviewed. These methods can be applied to any coverage metric which can be associated with a location - statement, function, expression, toggle, etc. - and to any language, including both software (C++, Python, etc.) and hardware description languages (SystemVerilog, VHDL).The approach is realized in diffcov1, a recently released open-source tool.10.1109/ICST49551.2021.00054https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9438597code coverage;automation;software development;continuous integrationIEEE Inglês CE1 Excluído
Formalization and analysis of quantitative attributes of distributed systemsA. E. M. Suñé 2020 While there is not much discussion on the importance of formally describing and analyzing quantitative requirements in the process of software construction; in the paradigm of API-based software systems, it could be vital. Quantitative attributes can be thought of as attributes determining the Quality of Service - QoS provided by a software component published as a service. In this sense, they play a determinant role in classifying software artifacts according to specific needs stated as requirements. In this work, we present a research program consisting of the development of formal languages and tools to characterize and analyze the Quality of Service attributes of software components in the context of distributed systems. More specifically, our main motivational scenario lays on the execution of a service-oriented architecture.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270314service oriented computing;distributed systems;quality of service;formal verification;non functional requirements;quantitative attributes;qos ranking;service level agreementIEEE Inglês CE1 Excluído
Web-based Editor for Signal Interpretation ModelsD. Gomes; R. Campos-Rebelo; F. Moutinho2019 A web-based editor for Signal Interpretation Models (SIM) is presented in this paper. SIM is a modeling formalism specifically created to specify the occurrence of events based on signals variation. This formalism goal is not only to specify but also to support the validation and implementation of signals interpreters. These signals can be system input signals (environment signals) or system internal signals. The created web-based editor uses Asynchronous JavaScript and XML (AJAX) principles and runs at standard browsers. It supports the creation/edition of graphical SIM models, which are saved in XML files. The XML format and the well defined execution semantics of the SIM formalism, enable the integration of SIM with other tools. This means that the created models can be used as inputs in tools, such as automatic code generators, to create simulation or execution code (namely JavaScript, C, and VHDL). To illustrate the application of the developed editor, the model of a system that detects temperature sensor faults is presented. The created edition tool prototype is currently available at http://gres.uninova.pt/SIM-Tools/.10.1109/IECON.2019.8927437https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8927437Web-based Editor;Graphical Modeling Formalism;Signal Interpretation Model;Events;Model-Driven DevelopmentIEEE Inglês CE1 Excluído
Clams: A Cloud Application Modeling SolutionO. Bibartiu; F. Dürr; K. Rothermel2021 A wide range of new modeling languages with a specific focus on cloud computing, also known as cloud modeling languages (CMLs), have been introduced to help developers describe, evaluate, and deploy cloud applications. In general, CMLs define applications as interconnected cloud components within an architectural topology. However, in agile software development, developers describe system-level functionalities using user stories or epics to define end-user scenarios. So far, a CML bridging the gap between formal architectural descriptions and the informal scenario descriptions from agile development is missing. We present Clams (Cloud application modeling solution), a scenario-based CML. Clams uses cloud computing patterns as architectural placeholders in combination with message sequence charts. We introduce standard tooling to handle Clams models and show how one can refine patterns to concrete service offerings. Additionally, we also provide a development framework to support the creation of custom tools to evaluate, analyze, or translate Clams models efficiently.10.1109/SCC53864.2021.00013https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592516Cloud Modeling Language;Scenarios;Cloud Computing PatternsIEEE Inglês CE1 Excluído
An Automatic Transformation Method from AADL Reliability Model to CTMCC. Yuan; K. Wu; G. Chen; Y. Mo 2021 AADL is a semi-formal architecture modeling language for the embedded field. Continuous Time Markov Chain (CTMC) is a formal model for reliability evaluation. In the process of quantitatively evaluating the reliability of embedded software, the AADL model needs to be transformed to the CTMC model, but the semantic gap between AADL and CTMC is too large to be directly transformed. This paper proposes a transformation method, which transforms AADL into PRISM- CTMC, a CTMC model described in PRISM language. This method uses PRISM as an intermediate language to reduce the difficulty of transformation between AADL and CTMC. This paper implements a transformation tool based on this method and evaluates the reliability of the flight control system (FCS) with the aid of the PRISM model checking tool, which verifies the effectiveness of the transformation method.10.1109/ICICSE52190.2021.9404135https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404135AADL;CTMC;PRISM;model transformation;reliabilityIEEE Inglês CE1 Excluído
Teaching and learning Modelling and Specification based on gamificationF. Moreira; M. J. Ferreira; D. F. Escudero; C. S. Pereira; N. Durão2020 Video games are understood by society, particularly young people, and young adults, as a form of entertainment. However, given the transformation of society towards the digital, in recent years the games have crossed the barriers of entertainment, and have been used in more ambitious environments and purposes, especially in business and education. In this context, this practice is called gamification, being used at education and aims to make the teaching and learning more attractive and motivating. Gamification, as noted, has the principles of video games, i.e., leverage the elements of the games, which underpin its enormous success, to make learning more engaging, customizable and relevant. Its use in the teaching- learning process has been carried out in parallel with active methodologies, and in the use of learning management systems that include various elements of the game to be integrated into teaching, learning and evaluation activities. In this paper, the gamified programmatic contents idea is presented, and it specifies a level-based programmatic contents structure as well as other gamification elements used, such as points and different types of rewards, the progress bar, the leaderboard, content locking and trading. The gamified programmatic contents will be implemented on the Moodle platform.10.23919/CISTI49556.2020.9140829https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9140829gamification;higher education;learning;students engagement;students motivation;educational innovation;Requirement Engineering;Modeling and SpecificationIEEE Inglês CE1 Excluído
A Flight Rule Checker for the LADEE Lunar SpacecraftKurklu, Elif (6507367449); Havelund, Klaus (6603400981)2020 As part of the design of a space mission, an important part is the design of so-called flight rules. Flight rules express constraints on various parts and processes of the mission, that if followed, will reduce the risk of failure. One such set of flight rules constrain the format of command sequences regularly (e.g. daily) sent to the spacecraft to control its next near term behavior. We present a high-level view of the automated flight rule checker Frc for checking command sequences sent to NASA’s LADEE Lunar mission spacecraft, used throughout its entire mission. A command sequence is in this case essentially a program (a sequence of commands) with no loops or conditionals, and it can therefore be verified with a trace analysis tool. Frc is implemented using the TraceContract runtime verification tool, an internal Scala DSL for checking event sequences against “formal specifications”. The paper illustrates this untraditional use of runtime verification in a real context, with strong demands on the expressiveness and flexibility of the specification language, illustrating the advantages of an internal DSL. © 2020, Springer Nature Switzerland AG.10.1007/978-3-030-64276-1_1https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097572555&doi=10.1007%2f978-3-030-64276-1_1&partnerID=40&md5=5a9272586222f85dcb64f3be6434a14e- Scopus Inglês CE1 Excluído
Continuous Verification of Network Security ComplianceLorenz, Claas (57189054134); Clemens, Vera (57221191959); Schrotter, Max (57211227069); Schnor, Bettina (9040625200)2022 Continuous verification of network security compliance is an accepted need. Especially, the analysis of stateful packet filters plays a central role for network security in practice. But the few existing tools which support the analysis of stateful packet filters are based on general applicable formal methods like Satifiability Modulo Theories (SMT) or theorem prover and show runtimes in the order of minutes to hours making them unsuitable for continuous compliance verification. In this work, we address these challenges and present the concept of state shell interweaving to transform a stateful firewall rule set into a stateless rule set. This allows us to reuse any fast domain specific engine from the field of data plane verification tools leveraging smart, very fast, and domain specialized data structures and algorithms including Header Space Analysis (HSA). First, we introduce the formal language FPL that enables a high-level human-understandable specification of the desired state of network security. Second, we demonstrate the instantiation of a compliance process using a verification framework that analyzes the configuration of complex networks and devices-including stateful firewalls-for compliance with FPL policies. Our evaluation results show the scalability of the presented approach for the well known Internet2 and Stanford benchmarks as well as for large firewall rule sets where it outscales state-of-the-art tools by a factor of over 41. 10.1109/TNSM.2021.3130290https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120091286&doi=10.1109%2fTNSM.2021.3130290&partnerID=40&md5=511407ae381b7055ef1cddc2f4cfffc0Compliance; Formal verification; Network; SecurityScopus Inglês CE1 Excluído
Formalizing Spark Applications with MSVLWang, Meng (56287466000); Li, Shushan (57226314342)2021 Distributed computing framework Spark is widely used to deal with big data sets efficiently. However, it is more demanding implementing in Spark than coming up with sequential implementations. Thus, formal verification is needed to guarantee the correctness of Spark applications. In order to verify Spark applications using verification tool UMC4M, this paper presents an approach to formalizing Spark applications with Modeling Simulation and Verification Language (MSVL). We first implement Spark operations with MSVL functions, then formalize a Spark application with MSVL based on its directed acyclic graphs (DAGs). As a case study, the word count application is used to show the process. © 2021, Springer Nature Switzerland AG.10.1007/978-3-030-77474-5_13https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111157717&doi=10.1007%2f978-3-030-77474-5_13&partnerID=40&md5=12905b79ee7a395ee4abe62cb914ec8eBig data; DAG; Formal verification; SparkScopus Inglês CE1 Excluído
Teaching practical realistic verification of distributed algorithms in Erlang with TLA+Zeller, Peter (56208935400); Bieniusa, Annette (26321313600); Ferreira, Carla (22733423900)2020 Distributed systems are inherently complex as they need to address the interplay between features like communication, concurrency, and failure. Due to the inherent complexity of these interacting features, it is typically not possible to systematically test these kind of systems; yet, unexpected and unlikely combinations of events might cause corner cases that are hard to find. But since these systems are running typically for long durations, these events are likely to materialize eventually and must be handled correctly. Caught in such a dilemma, students are able to experience the benefits of applying verification tools to check their own algorithms and implementations. Having executable models with automatically generated executions allows them to experiment with different solutions by iteratively adapting and refining their algorithms. In this experience report, we report on our experience of teaching verification in a (hands-on) distributed systems course. We argue that broadcast algorithms provide a sweet spot in design and verification complexity. To this end, we give an implementation of these algorithms in Erlang and derive a TLA+ specification. TLA+ is a formal language for describing and reasoning about distributed and concurrent systems and provides a model checker, TLC, among other things. Our study reveals interesting parallels between the Erlang and TLA+ code, while exposing the challenges of formally modeling communication and parallelism in distributed systems. Presenting selected aspects of our course design, we aim to motivate the feasibility and need for introducing verification in close correspondence to programming tasks. © 2020 ACM.10.1145/3406085.3409009https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096125213&doi=10.1145%2f3406085.3409009&partnerID=40&md5=5e30039eef53859603a9350cfcc2694bBroadcast algorithms; Distributed algorithms; Formal verification; TLA+Scopus Inglês CE1 Excluído
FASTEN: An Open Extensible Framework to Experiment with Formal Specification ApproachesRatiu, Daniel (22235269100); Gario, Marco (55521618800); Schoenhaar, Hannes (57210957804)2019 Formal specification approaches have been successfully used to specify and verify complex systems. Verification engineers so far either directly use formal specification languages which can be consumed by verification tools (e.g. SMV, Promela) or main stream modeling languages which are then translated into formal languages and verified (e.g. SysML, AADL). The first approach is expressive and effective but difficult to use by non-experts. The second approach lowers the entry barrier for novices but users are limited to the constructs of the chosen modeling languages and thereby end up abusing the language to encode behaviors of interest. In this paper, we introduce a third approach that we call FASTEN, in which modular and extensible Domain Specific Languages (DSLs) are used to raise the abstraction level of specification languages towards the domain of interest. The approach aims to help novice users to use formal specification, enable experts to use multi-paradigm modeling, and provide tools for the developers of verification technologies to easily experiment with various types of specification approaches. To show the feasibility of the approach, we release an open-source tool based on Jetbrains' MPS language workbench that provides an extensible stack of more than ten DSLs, situated at different levels of abstraction, built on top of the SMV language. We use the NuSMV model checker to perform verification, to simulate the models and lift the traces at the abstraction level of the DSLs. We detail on the experience with designing and developing the DSLs stack and briefly report on using the DSLs in practice for the study of a communication protocol of a safety critical system. © 2019 IEEE.10.1109/FormaliSE.2019.00013https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072012346&doi=10.1109%2fFormaliSE.2019.00013&partnerID=40&md5=fe889fa7b75d1e70732a3cdbcccc18dfformal methods; language engineering; specification environmentsScopus Inglês CE3 Excluído
Dunuen: A user-friendly formal verification toolCapobianco, Giovanni (16644730200); Giacomo, Umberto Di (57207581495); Mercaldo, Francesco (55842609700); Santone, Antonella (6603700255)2019 Formal verification allows checking the design and the behaviour of a system. One of the main limitations to the adoption of formal verification techniques is the process of model creation using specification languages. For this reason a tool supporting this activity is necessary. Actually, there are several tools allowing analysts to verify models expressed into specification languages. These tools provide support for automatically checking whether a system satisfies a property. However, to use such tools it is important to deeply know a precise notation for defining a system, i.e., the Calculus of Communicating Systems. Since systems are often expressed as time-series, to overcome this problem, we provide an user-friendly tool able to automatically generate a system model starting from the CSV - Comma-Separated Values format (the most widespread format considered to release dataset). In this way we hide the details about the model construction form the analyst, which can only focus immediately on the properties to verify. We introduce Dunuen, a tool allowing the user to firstly perform a kind of pre-processing operation starting from a CSV file, as discretization or removing attributes; subsequently it automatically creates a formal model from the pre-processed CSV file and, by invoking the model checker we embedded in Dunuen, it finally verifies whether the generated model satisfies a property expressed in temporal logic through a graphic interface, proposing formal methods as an alternative to machine learning for classification tasks. © 2019 The Author(s). Published by Elsevier B.V.10.1016/j.procs.2019.09.313https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076261943&doi=10.1016%2fj.procs.2019.09.313&partnerID=40&md5=31f6967e72f52a0172d631b2aaad90f9Automatic Tool; Formal verification; Model CheckingScopus Inglês CE1 Excluído
Multiple Analyses, Requirements Once:: Simplifying Testing and Verification in Automotive Model-Based DevelopmentBerger, Philipp (57203038692); Nellen, Johanna (54956533900); Katoen, Joost-Pieter (7003679176); Ábrahám, Erika (8730197200); Waez, Md Tawhid Bin (55775485700); Rambow, Thomas (6504314037)2019 In industrial model-based development (MBD) frameworks, requirements are typically specified informally using textual descriptions. To enable the application of formal methods, these specifications need to be formalized in the input languages of all formal tools that should be applied to analyse the models at different development levels. In this paper we propose a unified approach for the computer-assisted formal specification of requirements and their fully automated translation into the specification languages of different verification tools. We consider a two-stage MBD scenario where first Simulink models are developed from which executable code is generated automatically. We (i) propose a specification language and a prototypical tool for the formal but still textual specification of requirements, (ii) show how these requirements can be translated automatically into the input languages of Simulink Design Verifier for verification of Simulink models and BTC EmbeddedValidator for source code verification, and (iii) show how our unified framework enables besides automated formal verification also the automated generation of test cases. © Springer Nature Switzerland AG 2019.10.1007/978-3-030-27008-7_4https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072873577&doi=10.1007%2f978-3-030-27008-7_4&partnerID=40&md5=19d935eecb53f5ef5147f49db9699a0a- Scopus Inglês CE3 Excluído
An Algebraic Approach to Modeling and Verifying Policy-Driven Smart Devices in IoT SystemsChi, Xiaotong (57214082983); Zhang, Min (57131645400); Xu, Xiao (57214088972)2019 Internet of Things (IoT) is being widely adopted to facilitate living environments such as cities and homes to become smart. Devices in IoT systems are capable of automatically adjusting their behaviors according to the change of environments. The capability is usually driven by the policies which are predefined inside devices. Policies can be customized by end users. Inconsistencies or conflicts among policies may cause malfunction of systems and therefore must be eliminated before deployment. In this paper, we propose a novel algebraic approach to modeling and verifying policy-driven smart devices in IoT systems on the basis of a domain-specific modeling language called PobSAM (Policy-based Self-Adaptive Model) and an efficient rewriting system called Maude. We formalize the operational semantics of PobSAM using Maude, which is an executable specification as well as a formal verification tool. The Maude formalization can be used to verify smart devices that are specified in PobSAM. We conduct a case study on a smart home setting to evaluate the effectiveness and efficiency of our approach. © 2019 IEEE.10.1109/APSEC48747.2019.00034https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078209325&doi=10.1109%2fAPSEC48747.2019.00034&partnerID=40&md5=8ac7361e3c6f121653edb7706de490a8IoT system; Maude; PobSAM; Smart home; VerificationScopus Inglês CE1 Excluído
A VNF modeling approach for verification purposesMarchetto, Guido (17346106000); Sisto, Riccardo (56262800500); Virgilio, Matteo (55850134900); Yusupov, Jalolliddin (57196119190)2019 Network Function Virtualization (NFV) architectures are emerging to increase networks flexibility. However, this renewed scenario poses new challenges, because virtualized networks, need to be carefully verified before being actually deployed in production environments in order to preserve network coherency (e.g., absence of forwarding loops, preservation of security on network traffic, etc.). Nowadays, model checking tools, SAT solvers, and Theorem Provers are available for formal verification of such properties in virtualized networks. Unfortunately, most of those verification tools accept input descriptions written in specification languages that are difficult to use for people not experienced in formal methods. Also, in order to enable the use of formal verification tools in real scenarios, vendors of Virtual Network Functions (VNFs) should provide abstract mathematical models of their functions, coded in the specific input languages of the verification tools. This process is error-prone, time-consuming, and often outside the VNF developers' expertise. This paper presents a framework that we designed for automatically extracting verification models starting from a Java-based representation of a given VNF. It comprises a Java library of classes to define VNFs in a more developer-friendly way, and a tool to translate VNF definitions into formal verification models of different verification tools. © 2019 Institute of Advanced Engineering and Science.10.11591/ijece.v9i4.pp2627-2636https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066271238&doi=10.11591%2fijece.v9i4.pp2627-2636&partnerID=40&md5=9789127c70b70c8c363f2b4e0384617aFormal verification; Model extraction; Modeling; Network functions; ParserScopus Inglês CE1 Excluído
Cryptographic protocols implementation security verification of the electronic voting system based on blind intermediariesBabenko, Liudmila (55834381100); Pisarev, Ilya (57200647806); Popova, Elena (57212462728)2019 The development of electronic voting systems is a complex and urgent task in today's time. At the heart of the security of any system using network interaction are cryptographic protocols. Their quality is verified by means of formal verification. However, formal verification tools work with protocols in an abstract form of Alice-Bob format, which does not allow to completely check the protocol for all sorts of attacks. In addition, when implementing the protocol in practice using any programming language, it is possible to change this protocol relative to its original form. As a result, the abstract initial form of the protocol, which was verified by means of formal verification, is considered safe, but a modified implemented protocol that has a different type can no longer be recognized as safe. Thus, verification of the cryptographic protocol of the electronic voting system using source codes is relevant. The paper described an electronic voting system based on blind intermediaries. A parser is described to extract the structure of the cryptographic protocol with which the structure of the voting protocol was obtained. The cryptographic e-voting protocol was translated into the CAS+ specification language for the Avispa automated verifier for protocol security verification. © 2019 Association for Computing Machinery.10.1145/3357613.3357641https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076741385&doi=10.1145%2f3357613.3357641&partnerID=40&md5=732b60bc6d743284a770f331bb6c035bAnalysis; Avispa; Cryptographic protocols; E-voting; Parser; VerificationScopus Inglês CE1 Excluído
11th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, ISoLA 2022- 2022 The proceedings contain 111 papers. The special focus in this conference is on Leveraging Applications of Formal Methods, Verification and Validation. The topics include: A Consolidated View on Specification Languages for Data Analysis Workflows; a Systematic Approach for Interfacing Component-Based Software with an Active Automata Learning Tool; Verified Software Units for Simple DFA Modules and Objects in C; a Notion of Equivalence for Refactorings with Abstract Execution; towards a Usable and Sustainable Deductive Verification Tool; on Technical Debt in Software Testing - Observations from Industry; refactoring Solidity Smart Contracts to Protect Against Reentrancy Exploits; a Refactoring for Data Minimisation Using Formal Verification; software System Documentation: Coherent Description of Software System Properties; DIME Days (ISoLA 2022 Track Introduction); Evaluation of Graphical Modeling of CI/CD Workflows with Rig; towards Continuous Quality Control in the Context of Language-Driven Engineering; cinco Cloud: A Holistic Approach for Web-Based Language-Driven Engineering; models as Documents, Documents as Models; using Supplementary Properties to Reduce the Need for Documentation; pragmatics Twelve Years Later: A Report on Lingua Franca; assurance Provenance: The Next Challenge in Software Documentation; Formalization of the AADL Run-Time Services; executable Documentation: Test-First in Action; runtime Verification as Documentation; introduction.- https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142732686&partnerID=40&md5=9d0b4728918fdd8bc7e195b0ca5ea16b- Scopus Inglês CE4 Excluído
11th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, ISoLA 20222022 The proceedings contain 111 papers. The special focus in this conference is on Leveraging Applications of Formal Methods, Verification and Validation. The topics include: A Consolidated View on Specification Languages for Data Analysis Workflows; a Systematic Approach for Interfacing Component-Based Software with an Active Automata Learning Tool; Verified Software Units for Simple DFA Modules and Objects in C; a Notion of Equivalence for Refactorings with Abstract Execution; towards a Usable and Sustainable Deductive Verification Tool; on Technical Debt in Software Testing - Observations from Industry; refactoring Solidity Smart Contracts to Protect Against Reentrancy Exploits; a Refactoring for Data Minimisation Using Formal Verification; software System Documentation: Coherent Description of Software System Properties; DIME Days (ISoLA 2022 Track Introduction); Evaluation of Graphical Modeling of CI/CD Workflows with Rig; towards Continuous Quality Control in the Context of Language-Driven Engineering; cinco Cloud: A Holistic Approach for Web-Based Language-Driven Engineering; models as Documents, Documents as Models; using Supplementary Properties to Reduce the Need for Documentation; pragmatics Twelve Years Later: A Report on Lingua Franca; assurance Provenance: The Next Challenge in Software Documentation; Formalization of the AADL Run-Time Services; executable Documentation: Test-First in Action; runtime Verification as Documentation; introduction.- https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142759479&partnerID=40&md5=4e0eaffccb7fc98f89db3bc9bc480b55- Scopus Inglês CE4 Excluído
11th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, ISoLA 2022- 2022 The proceedings contain 111 papers. The special focus in this conference is on Leveraging Applications of Formal Methods, Verification and Validation. The topics include: A Consolidated View on Specification Languages for Data Analysis Workflows; a Systematic Approach for Interfacing Component-Based Software with an Active Automata Learning Tool; Verified Software Units for Simple DFA Modules and Objects in C; a Notion of Equivalence for Refactorings with Abstract Execution; towards a Usable and Sustainable Deductive Verification Tool; on Technical Debt in Software Testing - Observations from Industry; refactoring Solidity Smart Contracts to Protect Against Reentrancy Exploits; a Refactoring for Data Minimisation Using Formal Verification; software System Documentation: Coherent Description of Software System Properties; DIME Days (ISoLA 2022 Track Introduction); Evaluation of Graphical Modeling of CI/CD Workflows with Rig; towards Continuous Quality Control in the Context of Language-Driven Engineering; cinco Cloud: A Holistic Approach for Web-Based Language-Driven Engineering; models as Documents, Documents as Models; using Supplementary Properties to Reduce the Need for Documentation; pragmatics Twelve Years Later: A Report on Lingua Franca; assurance Provenance: The Next Challenge in Software Documentation; Formalization of the AADL Run-Time Services; executable Documentation: Test-First in Action; runtime Verification as Documentation; introduction.- https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142681894&partnerID=40&md5=54a22568b9d9bb1275754196a807ce1c- Scopus Inglês CE4 Excluído
9th International Workshop on Structured Object-Oriented Formal Language and Method, SOFL+MSVL 2019- 2020 The proceedings contain 23 papers. The special focus in this conference is on Structured Object-Oriented Formal Language and Method. The topics include: Solving constraint optimization problems based on mathematica and abstraction; a forward chaining heuristic search with spatio-temporal control knowledge; Formal development and verification of reusable component in PAR platform; a new mutant generation algorithm based on basic path coverage for mutant reduction; formal specification and model checking of a ride-sharing system in maude; Model checking python programs with MSVL; prediction of function removal propagation in linux evolution; regression models for performance ranking of configurable systems: a comparative study; combining model learning and model checking to analyze java libraries; data provenance based system for classification and linear regression in distributed machine learning; A formal technique for concurrent generation of software’s functional and security requirements in SOFL specifications; metamorphic testing in fault localization of model transformations; a fault localization method based on dynamic failed execution blocks; adaptive random testing by bisection and comprehensive distance; CMM: A combination-based mutation method for SQL injection; distortion and faults in machine learning software; A divide & conquer approach to testing concurrent java programs with JPF and maude; An approach to modeling and verifying multi-level interrupt systems with TMSVL; towards formal verification of neural networks: a temporal logic based framework; UMC4M: A verification tool via program execution; parallel runtime verification approach for alternate execution of multiple threads.- https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081580292&partnerID=40&md5=7d77d6bb6064b90f676f0eacbdbd4a0d- Scopus Inglês CE4 Excluído
Verification of the ROS NavFn planner using executable specification languagesMartin-Martin, Enrique (35956389400); Montenegro, Manuel (7102666158); Riesco, Adrián (23089591800); Rodríguez-Hortalá, Juan (23991527000); Rubio, Rubén (57209537089)2023 The Robot Operating System (ROS) is a framework for building robust software for complex robot systems in several domains. The Navigation Stack stands out among the different libraries available in ROS, providing a set of components that can be reused to build robots with autonomous navigation capabilities. This library is a critical component, as navigation failures could have catastrophic consequences for applications like self-driving cars where safety is crucial. Here we devise a general methodology for verifying this kind of complex systems by specifying them in different executable specification languages with verification support and validating the equivalence between the specifications and the original system using differential testing techniques. The complex system can then be indirectly analyzed using the verification tools of the specification languages like model checking, semi-automated functional verification based on Hoare logic, and other formal techniques. In this paper we apply this verification methodology to the NavFn planner, which is the main planner component of the Navigation Stack of ROS, using Maude and Dafny as specification languages. We have formally proved several desirable properties of this planner algorithm like the absence of obstacles in the planned path. Moreover, we have found counterexamples for other concerns like the optimality of the path cost. © 2023 The Author(s)10.1016/j.jlamp.2023.100860https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148539053&doi=10.1016%2fj.jlamp.2023.100860&partnerID=40&md5=eb79652612662c9dec708415baec5265Dafny; Formal verification; Maude; Model checking; Navigation; ROSScopus Inglês CE4 Excluído
Simple Framework for Efficient Development of the Functional Requirement Verification-Specific LanguagePopic, Srdjan (57190747962); Teslic, Nikola (8370658100); Bjelica, Milan Z. (56605577600)2021 This paper presents the framework for the creation of various domain-specific languages for verification of the functional requirements. When it comes to Requirement Engineering and the process of Validation and Verification of the requirements, there are plenty of tools for modeling, analyzing, and validating the requirements. It comes as a fullblown set of applications for validation of the requirements. But the set of the verification tools is either too complex or usable in a narrow domain. From the customers’ point of view, there is a need for another independent requirement verification. This tool enables the creation of the custom verification in a way that allows users (either clients or developers) to verify requirements. It follows the IEEE guides, standards, and best practices to check all aspects of the software requirements that are neither implemented nor checked by the validation process: correctness, completeness, traceability, dependency, importance, and uniqueness. Tool implements design patterns specific to the verification process, thus enabling the faster implementation of the language. The concept can be used for development of the verification-specific language with any type of requirement representation, which will be shown by a few examples. © 202110.4316/AECE.2021.03002https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115213462&doi=10.4316%2fAECE.2021.03002&partnerID=40&md5=f714f11044abbc8ab000d22d0387a021computer languages; formal languages; formal verification; programming environments; requirement engineeringScopus Inglês CE3 Excluído
A GRAPH TRANSFORMATION APPROACH FOR MODELING AND VERIFICATION OF UML 2.0 SEQUENCE DIAGRAMSHamrouche, Houda (58111246300); Chaoui, Allaoua (35101659400); Mazouzi, Smaine (23393267500)2022 Unified Modeling Language (UML) 2.0 Sequence Diagrams (UML 2.0 SD) are used to describe interactions in software systems. These diagrams must be verified in the early stages of software development process to guarantee the production of a reliable system. However, UML 2.0 SD lack formal semantics as all UML specifications, which makes their verification difficult, especially if we are modeling a critical system where the automation of verification is necessary. Communicating Sequential Processes (CSP) is a formal specification language that is suited for analysis and has many automatic verification tools. Thus, UML and CSP have complementary aspects, which are modeling and analysis. Recently, a formalization of UML 2.0 SD using CSP has been proposed in the literature; however, no automation of that formalization exists. In this paper, we propose an approach on the basis of the above formalization and a visual modeling tool to model and automatically transform UML 2.0 SD to CSP ones; thus, the existing CSP model checker can verify them. This approach aims to use UML 2.0 SD for modeling and CSP and its tools for verification. This approach is based on graph transformation, which uses AToM3 tool and proposes a metamodel of UML 2.0 SD and a graph grammar to perform the mapping of the latter into CSP. Failures-Divergence Refinement (FDR) is the model checking tool used to verify the behavioral properties of the source model transformation such as deadlock, livelock and determinism. The proposed approach and tool are illustrated through a case study. © 2022 Slovak Academy of Sciences. All rights reserved.10.31577/cai_2022_5_1284https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148546611&doi=10.31577%2fcai_2022_5_1284&partnerID=40&md5=77083a544d1e2b5b99ace36ec7baafbcAToM³ tool; graph grammar; Hoare's communicating sequential processes; meta-modeling; model checker; Unified Modeling Language 2.0Scopus Inglês CE1 Excluído
Performing Security Proofs of Stateful ProtocolsHess, Andreas, V; Modersheim, Sebastian; Brucker, Achim D.; Schlichtkrull, Anders2021 In protocol verification we observe a wide spectrum from fully automated methods to interactive theorem proving with proof assistants like Isabelle/HOL. The latter provide overwhelmingly high assurance of the correctness, which automated methods often cannot: due to their complexity, bugs in such automated verification tools are likely and thus the risk of erroneously verifying a flawed protocol is non-negligible. There are a few works that try to combine advantages from both ends of the spectrum: a high degree of automation and assurance. We present here a first step towards achieving this for a more challenging class of protocols, namely those that work with a mutable long-term state. To our knowledge this is the first approach that achieves fully automated verification of stateful protocols in an LCF-style theorem prover. The approach also includes a simple user-friendly transaction-based protocol specification language embedded into Isabelle, and can also leverage a number of existing results such as soundness of a typed model.10.1109/CSF51468.2021.00006- - Web of science Inglês CE1 Excluído
Chaining Model Transformations to Develop a System Model Verification Tool : Application to Capella State Machines and Data Flows ModelsDuhil, Christophe; Babau, Jean-Philippe; Lepicier, Eric; Voirin, Jean-Luc; Navas, Juan2020 In the context of model-based system engineering (MBSE), the need emerges for model verification tools aiming at detecting inconsistencies in the dynamic behavioral aspect of the design. In this paper, a model-based approach is proposed to develop model verification tools. The approach allows targeting different semantics and facilitates the reuse of legacy semantics. The idea is to enforce separation of concerns, by progressively defining a behavioral semantic through a chain of five model transformation steps. The approach ensures traceability between source models and target models, facilitating the interpretation of the verification results. We apply the approach to develop a tool to verify Capella models, allowing simulation of the data flow and state machines diagrams in order to verify their coherency. An experimentation on a clock-radio case study demonstrates the ability of the generated tool to catch design inconsistencies.10.1145/3341105.3374093- - Web of science Inglês CE1 Excluído
Simple Framework for Efficient Development of the Functional Requirement Verification- Specific LanguagePopic, Srdjan; Teslic, Nikola; Bjelica, Milan Z.2021 This paper presents the framework for the creation of various domain-specific languages for verification of the functional requirements. When it comes to Requirement Engineering and the process of Validation and Verification of the requirements, there are plenty of tools for modeling, analyzing, and validating the requirements. It comes as a full-blown set of applications for validation of the requirements. But the set of the verification tools is either too complex or usable in a narrow domain. From the customers' point of view, there is a need for another independent requirement verification. This tool enables the creation of the custom verification in a way that allows users (either clients or developers) to verify requirements. It follows the IEEE guides, standards, and best practices to check all aspects of the software requirements that arc neither implemented nor checked by the validation process: correctness, completeness, traceability, dependency, importance, and uniqueness. Tool implements design patterns specific to the verification process, thus enabling the faster implementation of the language. The concept can be used for development of the verification-specific language with any type of requirement representation, which will be shown by a few examples.- - - Web of science Inglês CE1 Excluído
LTL Under Reductions with Weaker Conditions Than Stutter InvariancePaviot-Adet, Emmanuel; Poitrenaud, Denis; Renault, Etienne; Thierry-Mieg, Yann2022 Verification of properties expressed as co-regular languages such as LTL can benefit hugely from stutter insensitivity, using a diverse set of reduction strategies. However properties that are not stutter invariant, for instance due to the use of the neXt operator of LTL or to some form of counting in the logic, are not covered by these techniques in general.We propose in this paper to study a weaker property than stutter insensitivity. In a stutter insensitive language both adding and removing stutter to a word does not change its acceptance, any stuttering can be abstracted away; by decomposing this equivalence relation into two implications we obtain weaker conditions. We define a shortening insensitive language where any word that stutters less than a word in the language must also belong to the language. A lengthening insensitive language has the dual property. A semi-decision procedure is then introduced to reliably prove shortening insensitive properties or deny lengthening insensitive properties while working with a reduction of a system. A reduction has the property that it can only shorten runs. Lipton's transaction reductions or Petri net agglomerations are examples of eligible structural reduction strategies.An implementation and experimental evidence is provided showing most non-random properties sensitive to stutter are actually shortening or lengthening insensitive. Performance of experiments on a large (random) benchmark from the model-checking competition indicate that despite being a semi-decision procedure, the approach can still improve state of the art verification tools.10.1007/978-3-031-08679-3_11- - Web of science Inglês CE1 Excluído
Pointer Life Cycle Types for Lock-Free Data Structures with Memory ReclamationMeyer, Roland; Wolff, Sebastian2020 We consider the verification of lock-free data structures that manually manage their memory with the help of a safe memory reclamation (SMR) algorithm. Our first contribution is a type system that checks whether a program properly manages its memory. If the type check succeeds, it is safe to ignore the SMR algorithm and consider the program under garbage collection. Intuitively, our types track the protection of pointers as guaranteed by the SMR algorithm. There are two design decisions. The type system does not track any shape information, which makes it extremely lightweight. Instead, we rely on invariant annotations that postulate a protection by the SMR. To this end, we introduce angels, ghost variables with an angelic semantics. Moreover, the SMR algorithm is not hard-coded but a parameter of the type system definition. To achieve this, we rely on a recent specification language for SMR algorithms. Our second contribution is to automate the type inference and the invariant check. For the type inference, we show a quadratic-time algorithm. For the invariant check, we give a source-to-source translation that links our programs to off-the-shelf verification tools. It compiles away the angelic semantics. This allows us to infer appropriate annotations automatically in a guess-and-check manner. To demonstrate the effectiveness of our type-based verification approach, we check linearizability for various list and set implementations from the literature with both hazard pointers and epoch-based memory reclamation. For many of the examples, this is the first time they are verified automatically. For the ones where there is a competitor, we obtain a speed-up of up to two orders of magnitude.10.1145/3371136 - - Web of science Inglês CE1 Excluído
Milestones from the Pure Lisp theorem prover to ACL2Moore, J. Strother 2019 We discuss the evolutionary path from the Edinburgh Pure Lisp Theorem Prover of the early 1970s to its modern counterpart, AComputational Logic for Applicative Common Lisp, aka ACL2, which is in regular industrial use. Among the milestones in this evolution are the adoption of a first-order subset of a programming language as a logic; the analysis of recursive definitions to guess appropriate mathematical induction schemes; the use of simplification in inductive proofs; the incorporation of rewrite rules derived from user-suggested lemmas; the generalization of that idea to allow the user to affect other proof techniques soundly; the recognition that evaluation efficiency is paramount so that formal models can serve as prototypes and the logic can be used to reprogram the system; use of the system to prove extensions correct; the incorporation of decision procedures; the provision of hierarchically structured libraries of previously certified results to configure the prover; the provision of system programming features to allow verification tools to be built and verified within the system; the release of many verified collections of lemmas supporting floating point, programming languages, and hardware platforms; a verified bit-bashing tool exploiting verified BDD and checked external SAT procedures; and the provision of certain higher-order features within the first-order setting. As will become apparent, some of these milestones were suggested or even prototyped by users. Some additional non-technical aspects of the project are also critical. Among these are a devotion to soundness, good documentation, freely available source code, production of a system usable by industry, responsiveness to user needs, and a dedicated, passionate, and brilliant user community.10.1007/s00165-019-00490-3- - Web of science Inglês CE1 Excluído
Contingent Payments on a Public Ledger: Models and Reductions for Automated VerificationBursuc, Sergiu; Kremer, Steve 2019 We study protocols that rely on a public ledger infrastructure, concentrating on protocols for zero-knowledge contingent payment, whose security properties combine diverse notions of fairness and privacy. We argue that rigorous models are required for capturing the ledger semantics, the protocol-ledger interaction, the cryptographic primitives and, ultimately, the security properties one would like to achieve.Our focus is on a particular level of abstraction, where network messages are represented by a term algebra, protocol execution by state transition systems (e.g. multiset rewrite rules) and where the properties of interest can be analyzed with automated verification tools.We propose models for: (1) the rules guiding the ledger execution, taking the coin functionality of public ledgers such as Bitcoin as an example; (2) the security properties expected from ledger-based zero-knowledge contingent payment protocols; (3) two different security protocols that aim at achieving these properties relying on different ledger infrastructures; (4) reductions that allow simpler term algebras for homomorphic cryptographic schemes.Altogether, these models allow us to derive a first automated verification for ledger-based zero-knowledge contingent payment using the Tamarin prover. Furthermore, our models help in clarifying certain underlying assumptions, security and efficiency tradeoffs that should be taken into account when deploying protocols on the blockchain.10.1007/978-3-030-29959-0_18- - Web of science Inglês CE1 Excluído
A Rigorous Framework for Specification, Analysis and Enforcement of Access Control PoliciesA. Margheri; M. Masi; R. Pugliese; F. Tiezzi2019 Access control systems are widely used means for the protection of computing systems. They are defined in terms of access control policies regulating the access to system resources. In this paper, we introduce a formally-defined, fully-implemented framework for specification, analysis and enforcement of attribute-based access control policies. The framework rests on FACPL, a language with a compact, yet expressive, syntax for specification of real-world access control policies and with a rigorously defined denotational semantics. The framework enables the automated verification of properties regarding both the authorisations enforced by single policies and the relationships among multiple policies. Effectiveness and performance of the analysis rely on a semantic-preserving representation of FACPL policies in terms of SMT formulae and on the use of efficient SMT solvers. Our analysis approach explicitly addresses some crucial aspects of policy evaluation, such as missing attributes, erroneous values and obligations, which are instead overlooked in other proposals. The framework is supported by Java-based tools, among which an Eclipse-based IDE offering a tailored development and analysis environment for FACPL policies and a Java library for policy enforcement. We illustrate the framework and its formal ingredients by means of an e-Health case study, while its effectiveness is assessed by means of performance stress tests and experiments on a well-established benchmark.10.1109/TSE.2017.2765640https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8081817Attribute-based access control;policy languages;policy analysis;SMTIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9805493
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9612806
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9257838
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8802766
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877419
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814959
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283590
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914135
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8951032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507717
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9234113
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904758
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9681848
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474312
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9438597
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270314
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8927437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592516
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404135
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9140829
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097572555&doi=10.1007%2f978-3-030-64276-1_1&partnerID=40&md5=5a9272586222f85dcb64f3be6434a14e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120091286&doi=10.1109%2fTNSM.2021.3130290&partnerID=40&md5=511407ae381b7055ef1cddc2f4cfffc0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111157717&doi=10.1007%2f978-3-030-77474-5_13&partnerID=40&md5=12905b79ee7a395ee4abe62cb914ec8e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096125213&doi=10.1145%2f3406085.3409009&partnerID=40&md5=5e30039eef53859603a9350cfcc2694b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072012346&doi=10.1109%2fFormaliSE.2019.00013&partnerID=40&md5=fe889fa7b75d1e70732a3cdbcccc18df
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076261943&doi=10.1016%2fj.procs.2019.09.313&partnerID=40&md5=31f6967e72f52a0172d631b2aaad90f9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072873577&doi=10.1007%2f978-3-030-27008-7_4&partnerID=40&md5=19d935eecb53f5ef5147f49db9699a0a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078209325&doi=10.1109%2fAPSEC48747.2019.00034&partnerID=40&md5=8ac7361e3c6f121653edb7706de490a8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066271238&doi=10.11591%2fijece.v9i4.pp2627-2636&partnerID=40&md5=9789127c70b70c8c363f2b4e0384617a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076741385&doi=10.1145%2f3357613.3357641&partnerID=40&md5=732b60bc6d743284a770f331bb6c035b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142732686&partnerID=40&md5=9d0b4728918fdd8bc7e195b0ca5ea16b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142759479&partnerID=40&md5=4e0eaffccb7fc98f89db3bc9bc480b55
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142681894&partnerID=40&md5=54a22568b9d9bb1275754196a807ce1c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081580292&partnerID=40&md5=7d77d6bb6064b90f676f0eacbdbd4a0d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148539053&doi=10.1016%2fj.jlamp.2023.100860&partnerID=40&md5=eb79652612662c9dec708415baec5265
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115213462&doi=10.4316%2fAECE.2021.03002&partnerID=40&md5=f714f11044abbc8ab000d22d0387a021
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148546611&doi=10.31577%2fcai_2022_5_1284&partnerID=40&md5=77083a544d1e2b5b99ace36ec7baafbc
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8081817

Using the SOCIO Chatbot for UML Modeling: A Second Family of Experiments on Usability in Academic SettingsR. Ren; S. Pérez-soler; J. W. Castro; O. Dieste; S. T. Acuña2022 After improving the SOCIO chatbot prototype model, we wanted to know how/if its usability has changed. An evidence-based empirical evaluation of the usability of SOCIO V1 (updated version) requires an extensive verification of the experimental results. A family of experiments is a method of verification whereby we can check if the experimental results are reproducible. Through comparison with the updated control tool Creately, we aimed to gain a better understanding of the usability of the collaborative modeling chatbot and how it could be improved based on experimental evidence of changes in terms of efficiency, effectiveness, satisfaction, and quality. A total of 87 students from three countries were recruited. We conducted a family of three experiments to compare the usability of SOCIO V1 and updated Creately in academic settings. Students appeared to be more satisfied with SOCIO V1, and SOCIO V1 scored better on completeness. There were no significant differences between the two tools regarding efficiency and quality. This study provides evidence on how to employ a family of experiments to improve chatbot usability and enrich knowledge on chatbot usability experimentation.10.1109/ACCESS.2022.3228772https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9982595Chatbot;usability;family of experimentsIEEE Inglês CE1 Excluído
Modeling and Formal Verification of Interlocking System Based on UML and HCPNM. Maofei; Z. Yong 2020 Aiming at the difficulties of modeling and verification of interlocking system and the easy explosion problem of interlocking system state space, a modeling method of interlocking system is proposed based on UML and Hierarchical Colored Petri Nets (HCPN). Firstly, UML is used to realize the semi-formal modeling of the interlocking system, which can reduce the difficulties of modeling interlocking system. Secondly, the UML-CPN transformational rules are used to establish the HCPN layered model of the interlocking system to alleviate the explosion problem of the system state space. Finally, the formal verification of the HCPN model is realized by using CPN Tools. The interlocking modeling method based on UML and HCPN can provide a new idea for the formal modeling and verification of computer interlocking system.10.1109/WCCCT49810.2020.9170006https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9170006interlocking system;UML;HCPN;formal model verificationIEEE Inglês CE1 Excluído
Online Signal Monitoring With Bounded LagK. Mamouras; Z. Wang 2020 An essential approach for guaranteeing the safety of a cyber-physical system is to monitor its execution in real time. The execution trace of such a system typically consists of one or more signals, and a key computational task for safety monitoring is the online processing of these signals in order to identify events that need to be acted upon in a timely manner. There are several existing proposals for the specification of signal monitors: temporal logics, reactive languages, and dataflow formalisms. A shared feature of most of these proposals is that they describe online signal transformations that are causal. The causality requirement enables a real-time implementation, where the input and output signals are perfectly synchronized. We propose a new specification formalism for signal monitors that relaxes the causality restriction and allows the output to depend on a bounded amount of future input. It follows that an online implementation of such a monitor must have a certain amount of lag in the computation. We introduce a formal framework for signal transformations that allow bounded lag (the output has fallen behind the input) and bounded lead (the output is running ahead of the input), and we propose a type discipline for classifying these transformations according to their lead/lag. We show that this typed framework provides a modular approach for succinctly specifying: 1) monitors for temporal properties that involve both past and bounded-future connectives and 2) complex signal processing computations, such as those arising in the monitoring of physiological signals in medical devices. We have implemented the proposed specification formalism and we have compared it against state-of-the-art tools for the online monitoring of temporal properties: MonPoly, StreamLAB, Aerial, and Reelay.10.1109/TCAD.2020.3013053https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9211570Automata;cyber-physical systems;data streams;metric temporal logic (MTL);online monitoring;quantitative properties;runtime verification;signal temporal logic (STL);transducersIEEE Inglês CE1 Excluído
Integrating Interobject Scenarios with Intraobject Statecharts for Developing Reactive SystemsD. Harel; R. Marelly; A. Marron; S. Szekely2021 An important role of cross-layer design is to reconcile model-implementation differences, often stemming from how the two layers are specified. This article shows how a single method and tool can support both the specification and implementation stages, resulting in better closing the “model-implementation10.1109/MDAT.2020.3006805https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9133113- IEEE Inglês CE1 Excluído
Feature Extraction from Japanese Natural Language Requirements Documents for Software Product Line EngineeringK. Hisazumi; Y. Xiao; A. Fukuda 2019 Analyzing and extracting features from requirement specifications is an indispensable activity to support Software Product Line Engineering. However, performing features extraction is a time-consuming and inefficient task, since massive textual requirements need to be analyzed and classified. Most of the current approaches exhibited limitations: hindered applicability with requirements in Japanese; the support tools proposed were not made available publicly and thus making it hard for practitioners' adoption. This paper proposes a feature extraction approach from requirement specifications in Japanese using natural language processing techniques. Also, we propose a ranking method for extracted features to reduce efforts reviewing feature candidates. A case study was conducted to evaluate the performance of the proposed approach. Initial results show that 90.7% features were extracted correctly, and the top 40% features extracted contained 79.1% true features.10.1109/QRS-C.2019.00067https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859423Software Product Line, Feature Extraction, Natural Language ProcessingIEEE Inglês CE1 Excluído
Proving the Correctness of Multicopter Rotor Fault Detection and Identification SoftwareA. Bhaumik; A. Dutta; F. Kopsaftopoulos; C. A. Varela2021 Applications for data-driven systems are expected to be correct implementations of the system specifications, but developers usually test against a few indicative scenarios to verify them. In the absence of exhaustive testing, errors may occur in real time scenarios, especially when dealing with large data streams from moving objects like multicopters, vehicles, etc. Model checking techniques also lack scalability and completeness. We present a novel approach based on some existing tools which enables a developer to write high level code directly as system specifications and simultaneously be able to prove the correctness of the generated code. We present a fault detection and identification (FDI) software development approach using declarative programming language: PILOTS. The grammar of PILOTS has been updated to enable easier syntax for threshold validation techniques. The failure detection model is described as high level specifications that the generated code has to adhere to. The complete FDI problem is formally specified using Hoare logic and proven correct using an automated proof assistant: Dafny. A case study of rotor failures in a hexacopter has been used to illustrate the approach and visualize the results.10.1109/DASC52595.2021.9594350https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9594350fault detection;formal verification;multicopter;declarative programming;DafnyIEEE Inglês CE1 Excluído
Formalizing Architectural Rules with Ontologies - An Industrial EvaluationS. Schröder; G. Buchgeher 2019 Architecture conformance checking is an important means for quality control to assess that the system implementation adheres to its defined software architecture. Ideally, this process is automated to support continuous quality control. Many different approaches exist for automated conformance checking. However, these approaches are often limited in terms of supported concepts for describing and analyzing software architectures. We have developed an ontology-based approach that seeks to overcome the limited expressiveness of existing approaches. As a frontend of the formalism, we provide a Controlled Natural Language. In this paper, we present an industrial validation of the approach. For this, we collected architectural rules from three industrial projects. In total, we discovered 56 architectural rules in the projects. We successfully formalized 80% of those architectural rules. Additionally, we discussed the formalization with the corresponding software architect of each project. We found that the original intention of each architectural rule is properly reflected in the formalization. The results of the study show that projects could greatly benefit from applying an ontology-based approach, since it helps to precisely define and preserve concepts throughout the development process.10.1109/APSEC48747.2019.00017https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946096software architecture;architecture conformance checking;industrial study;ontologiesIEEE Inglês CE1 Excluído
Engineering with Full-scale Formal Architecture: Morello, CHERI, Armv8-A, and RISC-VP. Sewell 2021 Architecture specifications define the fundamental interface between hardware and software. Historically, mainstream architecture specifications have been informal prose-and-pseudocode documents. This talk will describe our work to establish and use mechanised semantics for full-scale instruction-set architectures (ISAs): the mainstream Armv8-A architecture, the emerging RISC-V architecture, the CHERI-MIPS and CHERI-RISC-V research architectures that use hardware capabilities for improved security, and Arm’s prototype Morello architecture – an industrial demonstrator incorporating the CHERI ideas.We use a variety of tools, especially our Sail ISA definition language and Isla symbolic evaluation engine, to build semantic definitions that are readable, executable as test oracles, support reasoning within the Coq, HOL4, and Isabelle proof assistants, support SMT-based symbolic evaluation, support model-based test generation, and can be integrated with operational and axiomatic concurrency models. These models are all complete enough to boot operating systems and hypervisors, covering the full sequential ISA (though not other SoC components, such as the Arm Generic Interrupt Controller). They range from 5000 to 60000 lines of specification.For CHERI-MIPS and CHERI-RISC-V, we have used Sail models (and previously L3 models) as the golden reference during design, working with our systems and computer architecture colleagues in the CHERI team to use lightweight formal specification routinely in documentation, testing, and test generation. We have stated and proved (in Isabelle) some of the fundamental intended security properties of the full CHERI-MIPS ISA.For Armv8-A, building on Arm’s internal shift to an executable model in their ASL language, we have the complete sequential ISA semantics automatically translated from the Arm ASL to Sail, and for RISC-V, we have hand-written what is now the offically adopted model. For their concurrent semantics, the “user” semantics, partly as a result of our collaborations with Arm and within the RISC-V concurrency task group, have become simplified and well-defined, with multiple models proved equivalent, and we are currently working on the “system” semantics. Our symbolic execution tool for Sail specifications, Isla, supports axiomatic concurrency models over the full ISA.Morello, supported by the UKRI Digital Security by Design programme, offers a path to hardware enforcement of fine-grained memory safety and/or secure encapsulation in the production Armv8-A architecture, potentially excluding or mitigating a large fraction of today’s security vulnerabilities for existing C/C++ code with little modification. During the ISA design process, we have proved (in Isabelle) fundamental security properties for the complete Morello ISA definition, and generated tests from the definition which were used during hardware development and for QEMU bring-up.All these tools and models are (or will soon be) available under open-source licences, providing well-validated models for others to use and build on.This is joint work by many people, including especially, for Sail and Isla: Alasdair Armstrong, Brian Campbell, Kathryn E. Gray, Mark Wassell, Jon French, Neel Krishnaswami; for Morello verification and ASL-to-Sail translation: Thomas Bauereiss, Thomas Sewell, Brian Campbell, Alasdair Armstrong, Alastair Reid; for Morello and CHERI-MIPS test generation: Brian Campbell; for CHERI-MIPS verification: Kyndylan Nienhuis; for RISC-V and CHERI-RISC-V specifications: Robert M. Norton, Prashanth Mundkur, Jessica Clark; for MIPS and CHERI-MIPS specifications: Alexandre Joannou, Anthony Fox, Michael Roe, Matthew Naylor; and for Concurrency semantics: Christopher Pulte, Shaked Flur, Will Deacon, Ben Simner, Luc Maranget, Susmit Sarkar, Jean Pichon-Pharabod, Ohad Kammar, Jeehoon Kang, Sung-Hwan Lee, Chung-Kil Hur. All this is in collaboration with the rest of the CHERI team and others in Arm (especially Richard Grisenthwaite, Graeme Barnes, and the Morello team) and in the RISC-V community, with the CHERI team jointly led by Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann, and Ian Stark.10.34727/2021/isbn.978-3-85448-046-4_7https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617665- IEEE Inglês CE1 Excluído
RBML: A Refined Behavior Modeling Language for Safety-Critical Hybrid SystemsZ. Chen; J. Liu; X. Ding; M. Zhang2019 As a widely used modeling language, AADL (Architecture Analysis and Design Language) plays an important role in designing safety-critical systems. It provides abundant components for describing system architecture and supports the early prediction and repetitive analysis of performance-critical attributes. However, the approach used by AADL to describe the system behavior is based mainly on automata theory; thus, encountering the state space explosion problem when modeling and verifying large and complex systems is inevitable. Furthermore, due to the lack of means to describe the behavior details, it is also difficult for AADL to support the accurate analysis and verification of functional and non-functional requirements. In this paper, we propose a language called RBML that supports refined behavior modeling to compensate for the behavior modeling and verification deficiencies of AADL. This new language is based on AADL but extends the ability to detail various behaviors and allows SMT (Satisfiability Modulo Theories) solvers to verify the constructed refined behavior model, thus alleviating the state space explosion problem to some extent. Experiments on Baidu Apollo are presented to demonstrate the feasibility of our proposed approach.10.1109/APSEC48747.2019.00053https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945618AADL, Behavior Modeling, Verification, SMT solver, Safety critical Hybrid SystemIEEE Inglês CE1 Excluído
RiverGame - a game testing tool using artificial intelligenceC. Paduraru; M. Paduraru; A. Stefanescu2022 As is the case with any very complex and interactive software, many video games are released with various minor or major issues that can potentially affect the user experience, cause security issues for players, or exploit the companies that deliver the products. To test their games, companies invest important resources in quality assurance personnel who usually perform the testing mostly manually. The main goal of our work is to automate various parts of the testing process that involve human users (testers) and thus to reduce costs and run more tests in less time. The secondary goal is to provide mechanisms to make test specification writing easier and more efficient. We focus on solving initial real-world problems that have emerged from several discussions with industry partners. In this paper, we present RiverGame, a tool that allows game developers to automatically test their products from different points of view: the rendered output, the sound played by the game, the animation and movement of the entities, the performance and various statistical analyses. We also address the problem of input priorities, scheduling, and directing the testing effort towards custom and dynamic directions. At the core of our methods, we use state-of-the-art artificial intelligence methods for analysis and a behavior-driven development (BDD) methodology for test specifications. Our technical solution is open-source, independent of game engine, platform, and programming language.10.1109/ICST53961.2022.00048https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787838game testing;automated testing;BDD;deep learning;reinforcement learning;computer visionIEEE Inglês CE1 Excluído
An executable framework for modeling and validating cooperative capability requirements in emergency response systemC. Lei; W. Zhixue; H. Ming; H. Hongyue; Y. Minggang2021 As the scale of current systems become larger and larger and their complexity is increasing gradually, research on executable models in the design phase becomes significantly important as it is helpful to simulate the execution process and capture defects of a system in advance. Meanwhile, the capability of a system becomes so important that stakeholders tend to emphasize their capability requirements when developing a system. To deal with the lack of official specifications and the fundamental theory basis for capability requirement, we propose a cooperative capability requirements (CCR) meta-model as a theory basis for researchers to refer to in this research domain, in which we provide detailed definition of the CCR concepts, associations and rules. Moreover, we also propose an executable framework, which may enable modelers to simulate the execution process of a system in advance and do well in filling the inconsistency and semantic gaps between stakeholders' requirements and their models. The primary working mechanism of the framework is to transform the Alf activity meta-model into the communicating sequential process (CSP) process meta-model based on some mapping rules, after which the internal communication mechanism between process nodes is designed to smooth the execution of behaviors in a CSP system. Moreover, a validation method is utilized to check the correctness and consistency of the models, and a self-fixing mechanism is used to fix the errors and warnings captured during the validation process automatically. Finally, a validation report is generated and fed back to the modelers for system optimization.10.23919/JSEE.2021.000077https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9574649executable model;capability requirement;consistency validation;Alf;epsilonIEEE Inglês CE1 Excluído
Formal Verification of a Database Management SystemD. Medina-Martínez; E. Bárcenas; G. Molero-Castillo; A. Velázquez-Mena; R. Aldeco-Pérez2020 Assertion based program verification is a well-known formal approach to (dis)prove correctness of algorithms associated to software systems. Assertions are input and output properties a correct program must satisfy. These properties are traditionally written in a specification language based on classical logic. Associated classical reasoning (inference) systems are then used to (dis)prove program correctness. However, when programs manipulate mutable data structures such as pointers, classical logical operators have been unable to successfully model syntactically unrelated expressions. In this article, we study separation logics, which are equipped with specially-purposed operators to model mutable data structures. We describe the use of this logic as a specification language in the verification of a database management system (DMS). In particular, we detect several bugs in two DMS libraries regarding heap manipulation. We describe these bugs in detail and propose solutions.10.1109/CONISOFT50191.2020.00024https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9307818Program Verification;Separation logic;Database Management SystemsIEEE Inglês CE1 Excluído
Do Comments follow Commenting Conventions? A Case Study in Java and PythonP. Rani; S. Abukar; N. Stulova; A. Bergel; O. Nierstrasz2021 Assessing code comment quality is known to be a difficult problem. A number of coding style guidelines have been created with the aim to encourage writing of informative, readable, and consistent comments. However, it is not clear from the research to date which specific aspects of comments the guidelines cover (e.g., syntax, content, structure). Furthermore, the extent to which developers follow these guidelines while writing code comments is unknown.We analyze various style guidelines in Java and Python and uncover that the majority of them address more the content aspect of the comments rather than syntax or formatting. However, when considering the different types of information developers embed in comments and the concerns they raise on various online platforms about the commenting practices, existing comment conventions are not yet specified clearly enough, nor do they adequately cover important concerns. We find that developers of both languages follow the writing style and content-related comment conventions more often than syntax and structure types of conventions. Our results highlight the mismatch between developer commenting practices and style guidelines, and provide several focal points for the design and improvement of comment quality checking tools.10.1109/SCAM52516.2021.00028https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9610657Comment analysis;Software documentation;Coding Style Guidelines;Coding StandardsIEEE Inglês CE1 Excluído
Object-oriented Representation of Mechanical Systems for the Automated DesignV. Lavrik; H. Alieksieieva; I. Bardus; O. Shchetynina2021 At the decision of practical task in the technique of presentation of 2-D and 3-D objects there is a problem of choice of optimum calculation chart which is based on a number of concrete methods of formal design. We developed authoring system of computer-aided design, that is based on special language of presentation of geometrical primitives, that allows a design engineer to create reliable models in his subject domain, and it differs from the traditional methods of presentation of objects in mechanics and construction. The modeling language was presented as a formal system, that allows to formulate and formally prove its qualities.10.1109/CONIT51480.2021.9498445https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9498445graphical models;object oriented modeling;systems simulation;model checkingIEEE Inglês CE1 Excluído
Automatic Extraction of Analysis Class Diagrams from Use CasesM. -H. Chu; D. -H. Dang 2020 At the early phase of software development, functional requirements of the software often need to be represented in the developer's language, resulting in a so-called analysis model. Current works in literature aim to increase automation in software development by either generating automatically the analysis model from a use case specification or transforming the analysis model to a design model. However, up to now, to precisely specify use cases is still a challenge, preventing us from realizing this aim. This paper proposes a method to extract analysis classes from a use case specification. Within our method, use cases are represented using our domain-specific modeling language named USL. We then define algorithms with transformation rules as a representation of analysis patterns in order to extract analysis classes from the USL use case model. We develop a support tool for our method in which transformation rules are realized using the ATL model-to-model transformation technique.10.1109/KSE50997.2020.9287702https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9287702Use Case Specification;Model Transformation;Analysis Model;UML/OCLIEEE Inglês CE1 Excluído
Type inhabitation of atomic polymorphism is undecidableM. C. Protin 2020 Atomic polymorphism $\mathbf{F_{at}}$ is a restriction of Girard and Reynold’s system $\mathbf{F} $(or $\lambda 2$) which was first introduced in Ferreira [2] in the context of a philosophical commentary on predicativism. $\lambda 2$ is a well-known and powerful formal tool for studying polymorphic functional programming languages and formal methods in program specification and development, but its computational power far exceeds the recursive level of interest in applications. Hence, the interest of studying subsystems of $\lambda 2$ with weaker computational power. $\mathbf{F_{at}}$ is defined by restricting instantiation to atomic variables only. It turns out that the type system is still sufficiently powerful to possess embeddings of full intuitionistic propositional calculus [3, 4], and since the calculus has fewer connectives and strong normalizability is simple to prove [3], this result allows us to circumvent many of the extra computational complexities present when dealing with the proof theory of IPC. It is natural to inquire whether type inhabitation, i.e. provability in the corresponding fragment of second-order intuitionistic propositional logic, is decidable or not and in general to see whether the negative results involving the undecidability of type inhabitation, typability and type-checking for \mathbf{F} still hold in this fragment. A further theme would be to study the result of adding type constructors, recursors or even dependent types to $\mathbf{F_{at}}$. In this paper, we show that type inhabitation for $\mathbf{F_{at}}$ is undecidable by codifying within it an undecidable fragment of first-order intuitionistic predicate calculus, adapting and modifying the technique of Urzyczyn’s [1, 7] purely syntactic proof of the undecidability of type inhabitation for \mathbf{F}.10.1093/logcom/exaa090https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9426547polymorphism;second-order intuitionistic propositional logic;Curry–Howard correspondence;lambda-calculus;functional programmingIEEE Inglês CE1 Excluído
Automated Attack Synthesis by Extracting Finite State Machines from Protocol Specification DocumentsM. L. Pacheco; M. v. Hippel; B. Weintraub; D. Goldwasser; C. Nita-Rotaru2022 Automated attack discovery techniques, such as attacker synthesis or model-based fuzzing, provide powerful ways to ensure network protocols operate correctly and securely. Such techniques, in general, require a formal representation of the protocol, often in the form of a finite state machine (FSM). Unfortunately, many protocols are only described in English prose, and implementing even a simple network protocol as an FSM is time-consuming and prone to subtle logical errors. Automatically extracting protocol FSMs from documentation can significantly contribute to increased use of these techniques and result in more robust and secure protocol implementations.In this work we focus on attacker synthesis as a representative technique for protocol security, and on RFCs as a representative format for protocol prose description. Unlike other works that rely on rule-based approaches or use off-the-shelf NLP tools directly, we suggest a data-driven approach for extracting FSMs from RFC documents. Specifically, we use a hybrid approach consisting of three key steps: (1) large-scale word-representation learning for technical language, (2) focused zero-shot learning for mapping protocol text to a protocol-independent information language, and (3) rule-based mapping from protocol-independent information to a specific protocol FSM. We show the generalizability of our FSM extraction by using the RFCs for six different protocols: BGPv4, DCCP, LTP, PPTP, SCTP and TCP. We demonstrate how automated extraction of an FSM from an RFC can be applied to the synthesis of attacks, with TCP and DCCP as case-studies. Our approach shows that it is possible to automate attacker synthesis against protocols by using textual specifications such as RFCs.10.1109/SP46214.2022.9833673https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833673attack-synthesis;network-security;NLPIEEE Inglês CE1 Excluído
RM2Doc: A Tool for Automatic Generation of Requirements Documents from Requirements ModelsT. Bao; J. Yang; Y. Yang; Y. Yin 2022 Automatic generation of requirements documents is an essential feature of the model-driven CASE tools such as UML and SysML designers. However, the quality of the generated documents from the current tools highly depends on the attached descriptions of models but not the quality of the model itself. Besides, if the stockholders ask to generate ISO/IEC/IEEE 29148-2018 conformed documents, extra templates are required. In this paper, we propose a CASE tool named RM2Doc, which can automatically generate ISO/IEC/IEEE 29148-2018 conformed requirements documents from UML models without any templates. In addition, the flow description can be generated from a use case without additional information. Moreover, it can automatically generate the semantic description of system operations only based on the formal expression of OCL. We have conducted four case studies with over 50 use cases. Overall, the result is satisfactory. The 95% requirements documents can be generated from the requirements model without any human interactions in 1 second. The proposed tools can be further developed for the industry of software engineering.The tool can be downloaded at http://rm2pt.com/rm2doc, and a demo video casting its features is at https://youtu.be/4z0Z5mrLfBc10.1145/3510454.3516850https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793770Automatic Documentation;Requirements;Requirements Model;Requirements DocumentsIEEE Inglês CE1 Excluído
High-Quality Automated Program RepairM. Motwani 2021 Automatic program repair (APR) has recently gained attention because it proposes to fix software defects with no human intervention. To automatically fix defects, most APR tools use the developer-written tests to (a) localize the defect, and (b) generate and validate the automatically produced candidate patches based on the constraints imposed by the tests. While APR tools can produce patches that appear to fix the defect for 11-19% of the defects in real-world software, most of the patches produced are not correct or acceptable to developers because they overfit to the tests used during the repair process. This problem is known as the patch overfitting problem. To address this problem, I propose to equip APR tools with additional constraints derived from natural-language software artifacts such as bug reports and requirements specifications that describe the bug and intended software behavior but are not typically used by the APR tools. I hypothesize that patches produced by APR tools while using such additional constraints would be of higher quality. To test this hypothesis, I propose an automated and objective approach to evaluate the quality of patches, and propose two novel methods to improve the fault localization and developer-written test suites using natural-language software artifacts. Finally, I propose to use my patch evaluation methodology to analyze the effect of the improved fault localization and test suites on the quality of patches produced by APR tools for real-world defects.10.1109/ICSE-Companion52605.2021.00134https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402293program repair;fault localization;test generation;patch qualityIEEE Inglês CE1 Excluído
Automated Generation and Integration of AUTOSAR RTE ConfigurationsS. Smith; M. A. S. Khalid 2022 Automotive Open System Architecture (AUTOSAR) is a system-level standard that is used worldwide by automotive companies and their suppliers to develop the standardized software development framework for automobiles. A Runtime Environment (RTE) is essential for any AUTOSAR software architecture. The information to conFigure the Runtime Environment (RTE), for any embedded Electronic Control Unit (ECU) design, is given in an AUTOSAR Extensible Markup Language (ARXML) file. Currently, these ARXML files are interpreted by the developer to manually create each configuration. That is a huge bottleneck in the design flow of software because of the drawbacks such as the cost and time spent having to manually write code. Also, manual code entry is not scalable for larger projects. Every time manual code is created it needs to be tested and verified to ensure ISO 26262 compliance. Creating an ISO 26262 compliant, RTE code generator is essential in the process of automating integration of AUTOSAR methodology in the design of ECUs. This paper describes the design of a Computer-Aided Design (CAD) tool that automatically interprets the given AUTOSAR XML files and then generates the corresponding optimized C code (*.h and *.c files). The CAD tool is optimized for run time and memory usage and is ready to use for generating any portion of the RTE automatically, while being AUTOSAR compliant.10.1109/CCECE49351.2022.9918435https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9918435CAD tool;Automation;AUTOSAR;Automotive Embedded SystemIEEE Inglês CE1 Excluído
Formal Software Requirement Elicitation based on Semantic Algebra and Cognitive ComputingJ. Y. Xu; Y. Wang 2020 Autonomous software requirement analysis and generation are a persistent challenge to theories and technologies of software engineering. A cognitive system is demanded to automatically elicit and rigorously refine informal software requirements in natural language descriptions into formal specifications. This paper presents a novel software requirements elicitation methodology based on latest advances in software science and denotational mathematics such as semantic algebra and concept algebra. It is found that user requirements for a software system in natural language may be either expressed in to-be sentences for software structures or to-do sentences for software behaviors. Thus, formal software requirements may be elicited by two sets of structural and functional models. This approach is implemented by a tool for Formal Requirement Elicitation and Analysis (FREA). Experimental results demonstrate that the FREA tool may rigorously elicit and generate formal requirements for arbitrary software systems specified in real-time process algebra (RTPA) or equivalent notations. This technology paves a way towards autonomous code generation in software engineering.10.1109/ICCICC50026.2020.9450275https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9450275Software science;software engineering;formal requirement analysis;rigorous requirement generation;RTPA;concept algebra;semantic algebra;cognitive algorithmsIEEE Inglês CE1 Excluído
Requirements-Driven Test Generation for Autonomous Vehicles With Machine Learning ComponentsC. E. Tuncali; G. Fainekos; D. Prokhorov; H. Ito; J. Kapinski2020 Autonomous vehicles are complex systems that are challenging to test and debug. A requirements-driven approach to the development process can decrease the resources required to design and test these systems, while simultaneously increasing the reliability. We present a testing framework that uses signal temporal logic (STL), which is a precise and unambiguous requirements language. Our framework evaluates test cases against the STL formulae and additionally uses the requirements to automatically identify test cases that fail to satisfy the requirements. One of the key features of our tool is the support for machine learning (ML) components in the system design, such as deep neural networks. The framework allows evaluation of the control algorithms, including the ML components, and it also includes models of CCD camera, lidar, and radar sensors, as well as the vehicle environment. We use multiple methods to generate test cases, including covering arrays, which is an efficient method to search discrete variable spaces. The resulting test cases can be used to debug the controller design by identifying controller behaviors that do not satisfy requirements. The test cases can also enhance the testing phase of development by identifying critical corner cases that correspond to the limits of the system's allowed behaviors. We present STL requirements for an autonomous vehicle system, which capture both component-level and system-level behaviors. Additionally, we present three driving scenarios and demonstrate how our requirements-driven testing framework can be used to identify critical system behaviors, which can be used to support the development process.10.1109/TIV.2019.2955903https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8911483Autonomous vehicles;cyber-physical systems;system validation;system verificationIEEE Inglês CE1 Excluído
Hierarchical Activity-Based Models for Control Flows in Parallel Discrete Event System Specification Simulation ModelsA. Alshareef; H. S. Sarjoughian 2021 Behavior modeling grounded in the Discrete-Event System Specification (DEVS) and Unified Modeling Language (UML) activity specifications is crucial for simulating dynamical systems. The Model-Driven Architecture (MDA) design approach provides flexible yet rigorous layered metamodels for the UML activity diagrams. Our approach for behavior modeling is focused on the action and control concepts in the UML activity metamodels and realizing them as artifacts according to the DEVS formalism. The syntax and semantics for the artifacts conform to the parallel DEVS model specification and execution protocol. We use the system-theoretic state, component, and hierarchy concepts as the foundation for formulating the DEVS Activity models and supported with a prototype graphical tool developed in Sirius. This research also proposes the Parallel DEVS as a formal approach for examining the semantics of the UML Activities. We develop, simulate, and analyze a set of prototypical multi-processor architecture systems demonstrating different synchronization and selection schemes using the DEVS-Suite and MS4 Me simulators.10.1109/ACCESS.2021.3084940https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9444417Activity diagrams;behavior modeling;DEVS;parallelism;model-based design;modeling & simulation;software modelingIEEE Inglês CE1 Excluído
Behaviour-Driven Formal Model Development of the ETCS Hybrid Level 3M. Butler; D. Dghaym; T. S. Hoang; T. Omitola; C. Snook; A. Fellner; R. Schlick; T. Tarrach; T. Fischer; P. Tummeltshammer2019 Behaviour driven formal model development (BDFMD) enables domain engineers to influence and validate mathematically precise and verified specifications. In previous work we proposed a process where manually authored scenarios are used initially to support the requirements and help the modeller. The same scenarios are used to verify behavioural properties of the model. The model is then mutated to automatically generate scenarios that have a more complete coverage than the manual ones. These automatically generated scenarios are used to animate the model in a final acceptance stage. In this paper, we discuss lessons learned from applying this BDFMD process to a real-life specification: The European Train Control Systems (ETCS) Hybrid Level 3. During the case study, we have developed our understanding of the process, modifying the way we do some stages and developing improved tool support to make the process more efficient. We discuss (1) the need for abstract scenarios during incremental model development and verification, (2) tools and techniques developed to make the running of scenarios more efficient, and (3) improvements to tools that generate new test cases to improve coverage.10.1109/ICECCS.2019.00018https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882769Event-B, UML-B, MoMuT, BDFMD, Scenario, ETCS Hybrid Level 3IEEE Inglês CE1 Excluído
Towards a System Monitoring Modeling Language (SyMoLa)A. García; P. Cedillo 2020 Best practices in software development suggest that systems include monitoring functionalities, allowing verification, auditing, traceability of operations, and quick response to incidents. On the other hand, domain-specific modeling languages (DSML) have shown great utility by allowing them to portray knowledge at a high level of abstraction. Even the application of DSML transformation tools towards specific implementations considerably reduces development time and effort, optimizing resources to take advantage of them in improving the design of systems, without worrying about low-level details.In this paper, a domain-specific modeling language oriented to systems monitoring specification is proposed, with a focus on the generation of cloud platforms for monitoring services. For this, the monitoring needs of different areas and applications were considered, the relevant concepts were synthesized, everyday needs were unified and consolidated, allowing to generalize and provide the modeling language with sufficient expression capabilities for monitoring the most domains. The syntax and semantics modeling language was provided, defining the graphical components that allow expressing each of the monitoring needs, and specifying restrictions, contexts, and notations, respectively. This study aims to contribute to Industry 4.0, with a design tool to facilitate the development processes of system monitoring solutions. This language is oriented to the integration of data in system of systems, extending the scope of the monitoring towards the perspective of a third party (regulatory entity, audit or monitoring services in the cloud).10.1109/Incodtrin51881.2020.00033https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9516661DSML;systems monitoring;Industry 4.0;modeling language;cloud services;system of systemsIEEE Inglês CE1 Excluído
Cinnamon: A Domain-Specific Language for Binary Profiling and MonitoringM. Arif; R. Zhou; H. -M. Ho; T. M. Jones2021 Binary instrumentation and rewriting frameworks provide a powerful way of implementing custom analysis and transformation techniques for applications ranging from performance profiling to security monitoring. However, using these frameworks to write even simple analyses and transformations is non-trivial. Developers often need to write framework-specific boilerplate code and work with low-level and complex programming details. This not only results in hundreds (or thousands) of lines of code, but also leaves significant room for error. To address this, we introduce Cinnamon, a domain-specific language designed to write programs for binary profiling and monitoring. Cinnamon's abstractions allow the programmer to focus on implementing their technique in a platform-independent way, without worrying about complex lower-level details. Programmers can use these abstractions to perform analysis and instrumentation at different locations and granularity levels in the binary. The flexibility of Cinnamon also enables its programs to be mapped to static, dynamic or hybrid analysis and instrumentation approaches. As a proof of concept, we target Cinnamon to three different binary frameworks by implementing a custom Cinnamon to C/C++ compiler and integrating the generated code within these frameworks. We further demonstrate the ability of Cinnamon to express a range of profiling and monitoring tools through different use-cases.10.1109/CGO51591.2021.9370313https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9370313Domain-Specific language;Profiling;Binary analysis and instrumentationIEEE Inglês CE1 Excluído
Approximation-Refinement Testing of Compute-Intensive Cyber-Physical Models: An Approach Based on System IdentificationC. Menghi; S. Nejati; L. Briand; Y. I. Parache2020 Black-box testing has been extensively applied to test models of Cyber-Physical systems (CPS) since these models are not often amenable to static and symbolic testing and verification. Black-box testing, however, requires to execute the model under test for a large number of candidate test inputs. This poses a challenge for a large and practically-important category of CPS models, known as compute-intensive CPS (CI-CPS) models, where a single simulation may take hours to complete. We propose a novel approach, namely ARIsTEO, to enable effective and efficient testing of CI-CPS models. Our approach embeds black-box testing into an iterative approximation-refinement loop. At the start, some sampled inputs and outputs of the CI-CPS model under test are used to generate a surrogate model that is faster to execute and can be subjected to black-box testing. Any failure-revealing test identified for the surrogate model is checked on the original model. If spurious, the test results are used to refine the surrogate model to be tested again. Otherwise, the test reveals a valid failure. We evaluated ARIsTEO by comparing it with S-Taliro, an open-source and industry-strength tool for testing CPS models. Our results, obtained based on five publicly-available CPS models, show that, on average, ARIsTEO is able to find 24% more requirements violations than S-Taliro and is 31% faster than S-Taliro in finding those violations. We further assessed the effectiveness and efficiency of ARIsTEO on a large industrial case study from the satellite domain. In contrast to S-Taliro, ARIsTEO successfully tested two different versions of this model and could identify three requirements violations, requiring four hours, on average, for each violation.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283957Cyber-Physical Systems;Model Testing;Search-Based Testing;Robustness;FalsificationIEEE Inglês CE1 Excluído
Automated Regression Tests: A No-Code Approach for BPMN-based Process-Driven ApplicationsK. Schneid; L. Stapper; S. Thöne; H. Kuchen2021 BPMN-based Process-Driven Applications (PDA) require less coding since they are not only based on source code, but also on executable process models. Automated testing of such model-driven applications gains growing relevance, and it becomes a key enabler if we want to found their development on continuous integration (CI) techniques.While process analysts are typically responsible for test case specifications from a business perspective, technically skilled process engineers take the responsibility for implementing the required test code. This is time-consuming and, due to their often different skills and backgrounds, might result in communication problems such as information losses and misunderstandings. This paper presents a new approach which enables an analyst to generate executable tests for PDAs without the need for manual coding. It consists of a sophisticated model analysis, a wizard-based specification of test cases, and a subsequent code generation. The resulting tests can easily be integrated into CI pipelines.The concept is underpinned by a user-friendly tool which has been evaluated in case studies and in real-world implementation projects from different industry sectors. During the evaluation, the prototype proved a more efficient test creation process and a higher test quality.10.1109/EDOC52215.2021.00014https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9626192Model-Based Testing;BPMN;No-Code;Process-Driven ApplicationIEEE Inglês CE1 Excluído
Requirements-based Code Model CheckingU. Schöpp; A. Schweiger; M. Reich; T. Chuprina; L. Lúcio; H. Brüning2020 Building the system right is the objective of quality assurance methods. Though testing is the most prominent and widely-adopted means, it cannot prove the absence of software's defects. Therefore, static measures such as formal proofs can complement dynamic methods. However, these techniques require the formal statement of requirements, which is still a challenge in industry development. This paper suggests a way of formalizing requirements in controlled natural language in a way that applies directly to C program code. By mapping natural language terms to conditional breakpoints, requirements can be translated to formal language expressed in observer automata. The creation of a mapping between natural language terms and code is supported by natural language processing methods. Finally, the observer automata are model checked against the code. In our approach we demonstrate the described steps using a set of realistically shaped requirements, which are common in the avionics domain. We implemented a simple tool hiding the abstract and mathematical details, which performs the proofs automatically. The paper is presented as an approach towards the seamless verification of code against requirements typically found in the avionics domain.10.1109/FORMREQ51202.2020.00011https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224538- IEEE Inglês CE1 Excluído
Continuous Process Model Refinement from Business Vision to Event Simulation and Software Automation : Bridging Gaps between Stakeholder Communities, Practices, Notations, and ToolsO. Zimmermann; K. Luban; M. Stocker; G. Bernard2022 Business consultants and software engineers produce and consume process models capturing analysis and design results on different levels of abstraction and at different stages of refinement. Model types commonly found in practice include vision models (current, future), simulation models, and automation models. In this paper, we propose to align and map the terminologies and concepts of these model types to improve stakeholder collaboration. We support this concept mapping with two model transformations to and from discrete event simulation models. We implemented these transformations prototypically (MDSL2JaamSim, JaamSim2MDSL). Our work originates from an industrial case in the FinTech domain. An experimental validation suggests benefits such as effort savings. CCS CONCEPTS • Software and its engineering $^{\rightarrow}$ System description languages; Integration frameworks; System modeling languages; Orchestration languages.10.1145/3524614.3528631https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9808807Business process modeling;discrete event simulation;domain-specific languages;model-driven software engineering;software architecture;API design;enterprise application integrationIEEE Inglês CE1 Excluído
Generating and Analyzing Program Call Graphs using OntologyE. Dorta; Y. Yan; C. Liao 2022 Call graph or caller-callee relationships have been used for various kinds of static program analysis, performance analysis and profiling, and for program safety or security analysis such as detecting anomalies of program execution or code injection attacks. However, different tools generate call graphs in different formats, which prevents efficient reuse of call graph results. In this paper, we present an approach of using ontology and resource description framework (RDF) to create knowledge graphs for specifying call graphs to facilitate the construction of full-fledged and complex call graphs of computer programs, realizing more interoperable and scalable program analyses than conventional approaches. We create a formal ontology-based specification of call graph information to capture concepts and properties of both static and dynamic call graphs so different tools can collaboratively contribute to more comprehensive analysis results. Our experiments show that ontology enables merging of call graphs generated from different tools and flexible queries using a standard query interface.10.1109/ProTools56701.2022.00008https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10027487Callgraph;ontology;knowledge graph;resource description framework;program analysisIEEE Inglês CE1 Excluído
The Ten Lockheed Martin Cyber-Physical Challenges: Formalized, Analyzed, and ExplainedA. Mavridou; H. Bourbouh; D. Giannakopoulou; T. Pressburger; M. Hejase; P. -L. Garoche; J. Schumann2020 Capturing and analyzing requirements of Cyber-Physical Systems (CPS) can be challenging, since CPS models typically involve time-varying and real-valued variables, physical system dynamics, or even adaptive behavior. MATLAB/Simulink is a development and simulation framework that is widely used in industry to capture such systems. In this paper, we report on the application of NASA Ames tools to perform end-to-end analysis of the Ten Lockheed Martin Challenge Problems (LMCPS). LMCPS is a set of industrial Simulink model benchmarks and natural language requirements developed by domain experts. Our framework, which integrates the tools FRET and COCOSIM, is used to: 1) elicit, explain, and formalize the semantics of the given natural language requirements; 2) generate verification code and monitors that can be automatically attached to the Simulink models; 3) perform verification by using SMT-based model checkers. FRET and COCOS1M are open source, and can be used by other researchers and practitioners to replicate our case study. We provide a categorization of recurring patterns in the formalization of the requirements and discuss the strengths and weaknesses of our automated verification approach.10.1109/RE48521.2020.00040https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218211- IEEE Inglês CE1 Excluído
Keywords-based test categorization for Extra-Functional PropertiesM. Abbas; A. Rauf; M. Saadatmand; E. P. Enoiu; D. Sundmark2020 Categorizing existing test specifications can provide insights on coverage of the test suite to extra-functional properties. Manual approaches for test categorization can be time-consuming and prone to error. In this short paper, we propose a semi-automated approach for semantic keywords-based textual test categorization for extra-functional properties. The approach is the first step towards coverage-based test case selection based on extra-functional properties. We report a preliminary evaluation of industrial data for test categorization for safety aspects. Results show that keyword-based approaches can be used to categorize tests for extra-functional properties and can be improved by considering contextual information of keywords.10.1109/ICSTW50294.2020.00035https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9156019test categorization;topic model;keyword extractionIEEE Inglês CE1 Excluído
CATE: CAusality Tree Extractor from Natural Language RequirementsN. Jadallah; J. Fischbach; J. Frattini; A. Vogelsang2021 Causal relations (If A, then B) are prevalent in requirements artifacts. Automatically extracting causal relations from requirements holds great potential for various RE activities (e.g., automatic derivation of suitable test cases). However, we lack an approach capable of extracting causal relations from natural language with reasonable performance. In this paper, we present our tool CATE (CAusality Tree Extractor), which is able to parse the composition of a causal relation as a tree structure. CATE does not only provide an overview of causes and effects in a sentence, but also reveals their semantic coherence by translating the causal relation into a binary tree. We encourage fellow researchers and practitioners to use CATE at https://causalitytreeextractor.com/10.1109/REW53955.2021.00018https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582405Tool;Natural Language Processing;Causality ExtractionIEEE Inglês CE1 Excluído
Verification of CTCS-3 using TMSVLY. Wang; C. Li; X. Wang 2021 Chinese Train Control System 3 (CTCS-3) is a complex real-time and safety critical system. In order to check the real-time and safety property of CTCS-3 protocol, this paper presents an approach using Timed Modeling, Simulation and Verification Language (TMSVL) to model and verify the requirement specification. Firstly, the language TMSVL and its running tool, Timed Modeling, Simulation and Verification platform (TMSV), are briefly introduced. Then, TMSVL is used to model the simplified CTCS-3 system, and typical scenarios are selected for analysis. Some properties that the system needs to meet are extracted and expressed by Timed Propositional Projection Temporal Logic (TPPTL) formula. Finally, TMSV platform is used to verify whether the properties satisfy the real-time requirement.10.1109/DSA52907.2021.00105https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622990CTCS-3;TMSVL;model checking IEEE Inglês CE1 Excluído
Managing Security Policies within Cloud Environments Using Aspect-Oriented State MachinesM. Ayache; A. Khoumsi; M. Erradi2019 Cloud Computing is the most suitable environment for the collaboration of multiple organizations via its multi-tenancy architecture. However, due to the distributed management of policies within these collaborations, they may contain several anomalies, such as conflicts and redundancies, which may lead to both safety and availability problems. On the other hand, current cloud computing solutions do not offer verification tools to manage access control policies. In this paper, we propose a cloud policy verification service (CPVS), that facilitates to users the management of there own security policies within Openstack cloud environment. Specifically, the proposed cloud service offers a policy verification approach to dynamically choose the adequate policy using Aspect-Oriented Finite State Machines (AO-FSM), where pointcuts and advices are used to adopt Domain-Specific Language (DSL) state machine artifacts. The pointcuts define states' patterns representing anomalies (e.g., conflicts) that may occur in a security policy, while the advices define the actions applied at the selected pointcuts to remove the anomalies. In order to demonstrate the efficiency of our approach, we provide time and space complexities. The approach was implemented as middleware service within Openstack cloud environment. The implementation results show that the middleware can detect and resolve different policy anomalies in an efficient manner.10.1109/COMMNET.2019.8742348https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8742348XACML policies;security policies anomalies;anomaly detection and resolution;aspect-oriented finite state machines;Cloud ComputingIEEE Inglês CE1 Excluído
Design and Application of a Domain Specific Modeling Language for Distributed Co-SimulationM. Krammer; M. Benedikt 2019 Co-simulation is considered as a state-of-the-art methodology in many industrial domains. It enables virtual system development in distributed, multi-tiered environments, like the automotive industry. The Distributed Co-Simulation Protocol (DCP) is a novel specification of an application layer communication protocol. It is standardized next to the well-established Functional Mock-Up Interface (FMI). The DCP specification addresses design and behaviour of single DCP slaves, as main components of larger, possibly distributed, co-simulation scenarios. At this point in time, no tailor-made solution for convenient description of distributed co-simulation scenarios is available. This paper presents a first version of DCPML, a domain specific modeling language for distributed co-simulation scenarios. It is based on three layers of integration and contributes to development efficiency by following a front-loading approach. It is designed as a UML profile, extending existing visual notation languages like UML and SysML. The language can be used for design, communication, and preparation for execution, of distributed co-simulation scenarios. For demonstration purposes, it is implemented in an industry relevant systems engineering tool. DCPML models can be used to import and export XML data, representing DCP slave and scenario descriptions. A typical demonstrator from the automotive domain is shown. It highlights a tool implementation and the capabilities of DCPML.10.1109/INDIN41052.2019.8972116https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972116co-simulation;dcp;modeling;languageIEEE Inglês CE1 Excluído
Towards Web Collaborative Modelling for the User Requirements Notation Using Eclipse Che and Theia IDER. Saini; S. Bali; G. Mussbacher2019 Collaborative modelling has become a necessity when developing a complex system or in a team of modellers with a diverse set of expertise. Textual notations have a long history in software engineering because of their fast editing style, simple usage, and scalability. Therefore, we propose a novel collaborative modelling framework for the graphical User Requirements Notation (URN) which we call tColab. It uses the text-based TGRL (Textual Goal-oriented Requirement Language) to build URN goal models and then automatically generates corresponding graphical models. This framework is based on the architecture of Eclipse Che and Theia. On one side, Theia provides support for LSP (Language Server Protocol) so that textual models can be built and their corresponding graphical models can be generated in a browser IDE (Integrated Development Environment). On the other hand, Eclipse Che adds support for collaboration where multiple modellers can contribute to building the textual models in an online collaborative manner. This initiative aims to replace the jUCMNAV tool, which is the most comprehensive URN modelling tool to date but only supports a single user.10.1109/MiSE.2019.00010https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877072User Requirements Notation, URN, jUCMNav, Eclipse Che, Theia, Sprotty, LSP, ELK, TURN, TGRLIEEE Inglês CE1 Excluído
Verification of Cloud Security PoliciesL. Miller; P. Mérindol; A. Gallais; C. Pelsser2021 Companies like Netflix increasingly use the cloud to deploy their business processes. Those processes often involve partnerships with other companies, and can be modeled as workflows where the owner of the data at risk interacts with contractors to realize a sequence of tasks on the data to be secured.In practice, access control is an essential building block to deploy these secured workflows. This component is generally managed by administrators using high-level policies meant to represent the requirements and restrictions put on the workflow. Handling access control with a high-level scheme comes with the benefit of separating the problem of specification, i.e. defining the desired behavior of the system, from the problem of implementation, i.e. enforcing this desired behavior. However, translating such high-level policies into a deployed implementation can be error-prone.Even though semi-automatic and automatic tools have been proposed to assist this translation, policy verification remains highly challenging in practice. In this paper, our aim is to define and propose structures assisting the checking and correction of potential errors introduced on the ground due to a faulty translation or corrupted deployments. In particular, we investigate structures with formal foundations able to naturally model policies. Metagraphs, a generalized graph theoretic structure, fulfill those requirements: their usage enables to compare high-level policies to their implementation. In practice, we consider Rego, a language used by companies like Netflix and Plex for their release process, as a valuable representative of most common policy languages. We propose a suite of tools transforming and checking policies as metagraphs, and use them in a global framework to show how policy verification can be achieved with such structures. Finally, we evaluate the performance of our verification method.10.1109/HPSR52026.2021.9481870https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9481870policy verification;metagraphs;policy modeling;rego;access control;authorizationIEEE Inglês CE1 Excluído
Requirements for a dynamic interface model of IEC 61499 Function BlocksB. Wiesmayr; A. Zoitl 2020 Component-based software engineering has emerged as a principle of software design to facilitate reuse and improve the software quality. This principle is supported by the domain-specific language IEC 61499, where Function Blocks are fully encapsulated software components. For a Function Block definition, a static interface description and an internal implementation are required. Service sequences describe the event flow at a component interface and are an optional dynamic interface model in IEC 61499. In general, dynamic interface models are a powerful tool for various use cases, yet service sequences are rarely used in practice due to their low expressiveness. Therefore, we identify the domain-specific requirements for a comprehensive dynamic interface model and use them for our analysis of service sequences, where several issues are identified.10.1109/ETFA46521.2020.9212107https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9212107IEC 61499;behavior modeling;service sequenceIEEE Inglês CE1 Excluído
Research Report: Building a Wide Reach Corpus for Secure Parser DevelopmentT. Allison; W. Burke; V. Constantinou; E. Goh; C. Mattmann; A. Mensikova; P. Southam; R. Stonebraker; V. Timmaraju2020 Computer software that parses electronic files is often vulnerable to maliciously crafted input data. Rather than relying on developers to implement ad hoc defenses against such data, the Language-theoretic security (LangSec) philosophy offers formally correct and verifiable input handling throughout the software development lifecycle. Whether developing from a specification or deriving parsers from samples, LangSec parser developers require wide-reach corpora of their target file format in order to identify key edge cases or common deviations from the format's specification. In this research report, we provide the details of several methods we have used to gather approximately 30 million files, extract features and make these features amenable to search and use in analytics. Additionally, we provide documentation on opportunities and limitations of some popular open-source datasets and annotation tools that will benefit researchers which need to efficiently gather a large file corpus for the purposes of LangSec parser development.10.1109/SPW50608.2020.00066https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283855LangSec;language-theoretic security;file corpus creation;file forensics;text extraction;parser resourcesIEEE Inglês CE4 Excluído
Preserving Multi-level Semantics in Conventional Two-Level Modeling TechniquesJ. P. A. Almeida; F. A. Musso; V. A. Carvalho; C. M. Fonseca; G. Guizzardi2019 Conceptual models are often built with techniques that propose a strict stratification of entities into two classification levels: a level of types (or classes) and a level of instances. Multi-level conceptual modeling extends the conventional two-level scheme by admitting that types can be instances of other types, giving rise to multiple levels of classification (individuals, classes, metaclasses, metametaclasses, and so on). As a result, multi-level models capture not only invariants about individuals, but also invariants about types themselves, which become regular elements of the domain of inquiry (first-class citizens). Despite the benefits of the multi-level approach, the vast majority of tools for conceptual modeling are still confined to the two-level scheme, and hence cannot accommodate multi-level entities. This paper proposes a transformation of multi-level to two-level models that preserves the semantics of the original multi-level model. We employ the systematic reification of the instance facet of a class and its linking to the type facet. The feasibility of the approach is demonstrated by a transformation of ML2 (multi-level) models to Alloy (two-level) specifications.10.1109/MODELS-C.2019.00025https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904769multi-level modeling, model transformation, multi-level theory, multi-level modeling languageIEEE Inglês CE1 Excluído
Designing a Conversational Requirements Elicitation System for End-UsersT. Rietz 2019 Context: Digital transformation impacts an ever-increasing degree of everyone's business and private life. It is imperative to incorporate a wide audience of user requirements in the development process to design successful information systems (IS). Hence, requirements elicitation (RE) is increasingly performed by end-users that are novices at contributing requirements to IS development projects. Objective: We need to develop RE systems that are capable of assisting a wide audience of end-users in communicating their needs and requirements. Prominent methods, such as elicitation interviews, are challenging to apply in such a context, as time and location constraints limit potential audiences. Research Method: The presented dissertation project utilizes design science research to develop a requirements self-elicitation system, LadderBot. A conversational agent (CA) enables end-users to articulate needs and requirements on the grounds of the laddering method. The CA mimics a human interviewer's capability to rephrase questions and provide assistance in the process and allows users to converse in their natural language. Furthermore, the tool will assist requirements analysts with the subsequent aggregation and analysis of collected data. Contribution: The dissertation project makes a practical contribution in the form of a ready-to-use system for wide audience end-user RE and subsequent analysis utilizing laddering as cognitive elicitation technique. A theoretical contribution is provided by developing a design theory for the application of conversational agents for RE, including the laboratory and field evaluation of design principles.10.1109/RE.2019.00061https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920648End user;Wide Audience;Requirements Elicitation;Conversational Agent;Design Science;LadderingIEEE Inglês CE1 Excluído
Dealing with Non-Functional Requirements in Model-Driven Development: A SurveyD. Ameller; X. Franch; C. Gómez; S. Martínez-Fernández; J. Araújo; S. Biffl; J. Cabot; V. Cortellessa; D. M. Fernández; A. Moreira; H. Muccini; A. Vallecillo; M. Wimmer; V. Amaral; W. Böhm; H. Bruneliere; L. Burgueño; M. Goulão; S. Teufl; L. Berardinelli2021 Context: Managing Non-Functional Requirements (NFRs) in software projects is challenging, and projects that adopt Model-Driven Development (MDD) are no exception. Although several methods and techniques have been proposed to face this challenge, there is still little evidence on how NFRs are handled in MDD by practitioners. Knowing more about the state of the practice may help researchers to steer their research and practitioners to improve their daily work. Objective: In this paper, we present our findings from an interview-based survey conducted with practitioners working in 18 different companies from 6 European countries. From a practitioner's point of view, the paper shows what barriers and benefits the management of NFRs as part of the MDD process can bring to companies, how NFRs are supported by MDD approaches, and which strategies are followed when (some) types of NFRs are not supported by MDD approaches. Results: Our study shows that practitioners perceive MDD adoption as a complex process with little to no tool support for NFRs, reporting productivity and maintainability as the types of NFRs expected to be supported when MDD is adopted. But in general, companies adapt MDD to deal with NFRs. When NFRs are not supported, the generated code is sometimes changed manually, thus compromising the maintainability of the software developed. However, the interviewed practitioners claim that the benefits of using MDD outweight the extra effort required by these manual adaptations. Conclusion: Overall, the results indicate that it is important for practitioners to handle `NFRs in MDD, but further research is necessary in order to lower the barrier for supporting a broad spectrum of NFRs with MDD. Still, much conceptual and tool implementation work seems to be necessary to lower the barrier of integrating the broad spectrum of NFRs in practice.10.1109/TSE.2019.2904476https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8665968Model-driven development;non-functional requirements;quality requirements;requirements engineering;surveyIEEE Inglês CE1 Excluído
On the Influence of UML Class Diagrams Refactoring on Code Debt: A Family of Replicated Empirical StudiesS. Freire; A. Passos; M. Mendonça; C. Sant’Anna; R. O. Spínola2020 Context: System modeling usually precedes coding activities during software development. Addressing model smells in the upfront can avoid their propagation to the source code. Technical debt (TD) affects several software development phases, including design, but little is still known about it at the modeling level. Goal: Investigate whether applying refactoring procedures in UML class diagrams improves the quality of the automatically generated code in terms of TD (code debt) reduction. Method: We perform three replications of an empirical study following the same protocol used in the original study, but with variations on the: (1) round- trip engineering tool, (2) code issue identification tool, and (3) analyzed class diagram. Each study considered two sets of refactoring tasks. The first applied successive model refactoring sessions in a class diagram and analyzed their resulting automatically generated code. The second applied successive code refactoring sessions and analyzed their resulting automatically generated model. Results: There is a weak relationship between the analyzed model smells and code issues. Round-trip engineering tools influence the presence of code issues. Lastly, code issues identification tools mostly consider code formatting problems, in detriment of design issues smells. Conclusion: Results confirm the findings of the original study and motivate further investigation on the correspondence between model smells and code issues to prevent code debt at the model level.10.1109/SEAA51224.2020.00064https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9226337model smell;code issues;technical debt;family of studiesIEEE Inglês CE1 Excluído
An Ontology-based Approach for Automatic Specification, Verification, and Validation of Software Security Requirements: Preliminary ResultsD. Tsoukalas; M. Siavvas; M. Mathioudaki; D. Kehagias2021 Critical software vulnerabilities are often caused by incorrect, vague, or missing security requirements. Hence, there is a strong need in the software engineering community for tools that facilitate software engineers in eliciting and evaluating security requirements. Although several methods have been proposed for specifying, verifying, and validating security requirements, they require a lot of manual effort by requirement engineers, which hinders their practicality. To this end, we introduce a software security requirements specification mechanism, able to automatically identify the main concepts of a given set of security requirements expressed in natural language. Our mechanism applies syntactic and semantic analysis in order to transform requirements into appropriately structured ontology objects. We also propose a software security requirements verification and validation mechanism, which compares a given security requirement to a curated list of well-defined security requirements based on similarity checks, identifies inconsistencies, and proposes refinements. Both of the proposed mechanisms comprise standalone tools, implemented in the form of web services. The capabilities of the proposed mechanisms are demonstrated through a set of test cases.10.1109/QRS-C55045.2021.00022https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742019software security;software security requirements;requirements engineeringIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9982595
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9170006
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9211570
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9133113
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859423
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9594350
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617665
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945618
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787838
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9574649
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9307818
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9610657
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9498445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9287702
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9426547
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833673
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793770
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402293
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9918435
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9450275
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8911483
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9444417
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882769
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9516661
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9370313
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9626192
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224538
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9808807
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10027487
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218211
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9156019
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582405
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622990
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8742348
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972116
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877072
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9481870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9212107
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283855
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904769
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920648
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8665968
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9226337
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742019

ATLaS: A Framework for Traceability Links Recovery Combining Information Retrieval and Semi-Supervised TechniquesE. Effa Bella; S. Creff; M. -P. Gervais; R. Bendraou2019 Current Model-Based Systems Engineering (MBSE) practices to design and implement complex systems require modeling and analysis based on many representations: structure, dynamics, safety, security, etc. This induces a large volume of overlapping heterogeneous artefacts which are subject to frequent changes during the project life cycle. In order to verify and validate systems requirements and ensure that models meet user's needs, MBSE techniques shall rely on consistent traceability management. In this paper, we investigate the benefits of Information Retrieval (IR) techniques and the latest advances in Natural Language Processing (NLP) approaches to suggest stakeholders with candidate semantic links generated from the processing of structured and unstructured contents. We illustrate our approach called ATLaS (Aggregation Trace Links Support) through an application on the design and analysis of a mobility service gathering several industrial partners. We provide an empirical evaluation regarding its limitations as part of an industrial MBSE process. Most importantly, we highlight how our method drastically reduces the false positive links generated compared to current IR techniques. The results obtained suggest a good synergy between the presented approach and MBSE techniques.10.1109/EDOC.2019.00028https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8944976Model-Based Systems Engineering, Requirements, Traceability, Information Retrieval, Natural Language Processing, Semi-supervised techniquesIEEE Inglês CE1 Excluído
Security Analysis of a System-on-Chip Using Assertion-Based VerificationP. Bhamidipati; S. M. Achyutha; R. Vemuri2021 Current systems-on-chip designs contain multiple cores which perform a variety of processing, storage, and communication functions. Complexity of interactions among the cores and of the cores themselves introduce potential security vulnerabilities which can be exploited by malicious actors to mount a variety of attacks. Hence, it is essential to develop appropriate security policies to mitigate the vulnerabilities. In addition, these security policies should be formally specified and the design should be statically verified for security assurance prior to fabrication. In this paper, we show how a catalog of vulnerabilities can be used to develop mitigating security policies for a set of cores in a system-on-chip. We show how temporal logic assertions can be used to formally specify the security policies, parameterized using formal signal names. Given a specific target architecture, these parameterized assertions can be instantiated with actual signal names and verified using a formal verification tool. We demonstrate the application of this process to an OpenRISC-1200 based system-on-chip design written in Verilog. Security policies are specified as SystemVerilog Assertions and verified using Cadence JasperGold™. Three design errors ad-versely effecting the security policies are uncovered in the design.10.1109/MWSCAS47672.2021.9531916https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9531916System-on-Chip;SoC Vulnerabilities;Security analysis;Assertion-Based Verification;OpenRISC-1200 SoC;Sys-temVerilog AssertionsIEEE Inglês CE1 Excluído
Demo Abstract: AutoPCT: An Agile Protocol Conformance Automatic Test Platform Based on Editable EFSMZ. Tang; S. Li; P. Xun; C. Wang; W. Deng; B. Wang2020 Currently, the biggest barrier to adopt the model-based test (MBT) is modeling itself. To simplify the protocol modeling process, an agile protocol conformance automatic test platform (AutoPCT) is proposed in this paper. With our platform, the protocol test state machine can be easily designed and modified in graphical mode, and the conformance test scripts can be automatically generated and executed through integrating enhanced formal modeling tool EFM and TTCN-3 test tool Titan. Meanwhile, editable EFSM (Enhanced Finite State Machine) user interface and flexible input/output packet structure design tool are introduced in our platform to improve the development efficiency of protocol conformance test. Finally, the effectiveness of our proposed platform is analyzed through practical protocol test cases.10.1109/INFOCOMWKSHPS50562.2020.9162718https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9162718Network protocols;Protocol conformance test;Testcase generation;Automatic testIEEE Inglês CE1 Excluído
Seamless Variability Management with the Virtual PlatformW. Mahmood; D. Strüber; T. Berger; R. Lämmel; M. Mukelabai2021 Customization is a general trend in software engineering, demanding systems that support variable stakeholder requirements. Two opposing strategies are commonly used to create variants: software clone&own and software configuration with an integrated platform. Organizations often start with the former, which is cheap, agile, and supports quick innovation, but does not scale. The latter scales by establishing an integrated platform that shares software assets between variants, but requires high up-front investments or risky migration processes. So, could we have a method that allows an easy transition or even combine the benefits of both strategies? We propose a method and tool that supports a truly incremental development of variant rich systems, exploiting a spectrum between both opposing strategies. We design, formalize, and prototype the variability management framework virtualplatform. It bridges clone&own and platform-oriented development. Relying on programming language independent conceptual structures representing software assets, it offers operators for engineering and evolving a system, comprising: traditional, asset-oriented operators and novel, feature-oriented operators for incrementally adopting concepts of an integrated platform. The operators record meta-data that is exploited by other operators to support the transition. Among others, they eliminate expensive feature-location effort or the need to trace clones. Our evaluation simulates the evolution of a real-world, clone-based system, measuring its costs and benefits.10.1109/ICSE43902.2021.00147https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9401953variability management, variant rich systems, feature location, change propagation, clone&ownIEEE Inglês CE1 Excluído
SHML: Stochastic Hybrid Modeling Language for CPS BehaviorD. Du; T. Guo; Y. Wang 2019 Cyber-Physical Systems (CPS) connect the cyberworld with physical world with a network of interrelated el-ements, such as sensors and actuators. It is always runningin an open environment and the main characteristics of CPSis hybrid and stochastic. Domain-Specific Modeling Language(DSML) offers a tailor-made solution for modeling a specific field. However, there still lacks of DSML to model hybrid and stochasticbehavior in CPS. To address these issues, we propose a StochasticHybrid Modeling Language (SHML) based on domain modellanguage engineering, which supports modeling stochastic andhybrid behaviors in CPS. The abstract syntax, concrete syntax, and operational semantics of SHML are presented. The SHMLis implemented based on the GEMOC studio. With the help ofthe GEMOC execution engine and the Scilab plugin, the SHMLmodels can be executed to generate simulation traces of thesystem. These traces are fed into a statistical model checker whichsupports simulation-based verification to enable the qualitativeand quantitative analysis. The novelty of our work is that aDSML is proposed to model the behavior of CPS. Moreover, the tool prototype is implemented based on the model-drivenarchitecture. We illustrate the feasibility of our approach withan energy-aware building.10.1109/APSEC48747.2019.00038https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945607Cyber physical Systems, Model-driven engineering, Domain modeling language, GEMOC studio, Statisticalmodel checkingIIEEE Inglês CE1 Excluído
Security & Safety by Model-based Requirements EngineeringS. Japs 2020 Cyber-physical systems (CPS), like autonomous vehicles, are intelligent and networked. The development of such systems requires interdisciplinary cooperation between different stakeholders. A lack of system understanding between stakeholders can lead to unidentified security threats & safety hazards in requirements engineering, resulting in high costs in product development. In particular, a lack of an integrative consideration of security threats & safety hazards can compromise safety compliance for CPS. Model-based requirements engineering (MBRE) improves the understanding of systems between stakeholders by additionally creating supporting models to system requirements. However, MBRE approaches only partially address security threats & safety hazards. In particular, their integrative consideration is not taken into account. Established security & safety approaches are either only applicable to specific disciplines or only partially consider security threats & safety hazards. Overall, existing approaches do not fully cover the MBRE process. In the context of this paper, the results of three scientific papers are consolidated with the aim to create a basis for a holistic MBRE approach, which considers security threats & safety hazards integratively. In each of the papers, sub-criteria of the holistic MBRE approach are presented. Furthermore, elaborated and planned tools for the individual process steps are presented.10.1109/RE48521.2020.00062https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218133Security;Safety;Requirements engineering;Cyber-physical systems;Systems engineering and theory - Systems Modeling LanguageIEEE Inglês CE1 Excluído
Model-Based Systems Engineering Tool-Chain for Automated Parameter Value SelectionJ. Lu; D. Chen; G. Wang; D. Kiritsis; M. Törngren2022 Cyber-physical systems (CPSs) integrate heterogeneous systems and process sensor data using digital services. As the complexity of CPS increases, it becomes more challenging to efficiently formalize the integrated multidomain views with flexible automated verification across the entire lifecycle. This article illustrates a model-based systems engineering tool-chain to support CPS development with an emphasis on automated parameter value selection for co-simulation. First, a domain-specific modeling approach is introduced to support the formalizations of CPS artifacts, development processes, and simulation configurations. The domain-specific models are used as the basis to generate a Web-based process management system for automated parameter value selections, which coordinates Open Services for Lifecycle Collaboration services of development information and technical resources (models, data, and tools) in order to support automated co-simulation. The services are deployed by a service orchestrator based on a decision-making algorithm for parameter value selection. Finally, developers make use of the WPMS to implement simulations and to select system parameter values for co-simulation automatically. The approach is illustrated by a case study on auto-braking system development and we evaluate the efficiency of this tool-chain by both qualitative and quantitative methods. The results show that parameter values are selected more efficiently and effectively when implementing co-simulations using our tool-chain.10.1109/TSMC.2020.3048821https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9328223Automated parameter value selection;cyber-physical systems (CPSs);model-based systems engineering (MBSE)IEEE Inglês CE1 Excluído
Synthesizing Verified Components for Cyber Assured Systems EngineeringE. Mercer; K. Slind; I. Amundson; D. Cofer; J. Babar; D. Hardin2021 Cyber-physical systems, such as avionics, must be tolerant to cyber-attacks in the same way they are tolerant to random faults: they either gracefully recover or safely shut down as requirements dictate. The DARPA Cyber Assured Systems Engineering program is developing tools for design, analysis, and verification that enable systems engineers to design-in cyber-resiliency in a Model-Based Systems Engineering environment. This paper describes automated model transformations that introduce high-assurance cyber-resiliency components into a system, in particular filters and monitors that prevent malicious input and detect supply chain attacks, respectively. A formal specification defines each high-assurance component, and is used to verify that the component addresses system level cyber requirements. Implementations for these high-assurance components are directly synthesized from their specifications, and are automatically proven to preserve the exact meaning of the specifications all the way down to the binary code level. The model transformations are integrated into the Open Source AADL Tool Environment (OSATE). The paper further reports on a case study applying security-enhancing model transformations to a UAV system that uses the Air Force Research Laboratory's OpenUxAS services for route planning. In the case study, the model transformations add filters to guard against malformed input, as well as monitors to guard against ground station spoofing and malicious flight plans from OpenUxAS.10.1109/MODELS50736.2021.00029https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592420cyber physical systems;cyber assured systems;cyber resiliency;automated code synthesis;code synthesis correctness;AADL;AGREE;SPLATIEEE Inglês CE1 Excluído
Control-Flow Modeling with Declare: Behavioral Properties, Computational Complexity, and ToolsV. Fionda; A. Guzzo 2020 Declarative approaches to control-flow modeling use logic-based languages to formalize a number of constraints that valid traces must satisfy. The most noticeable example is the DECLARE framework based on linear temporal logic. Despite the interest that DECLARE has been attracting, the current knowledge about its formal properties was rather limited. The goal of this paper is to fill this gap by: (i) analyzing the behavioral properties of DECLARE by comparing it with the modeling capabilities of traditional procedural design approaches, in particular, block-structured processes; (ii) analyzing DECLARE from the computational point of view. As for the former point, we identify both the block-structured processes constructs that can be simulated in DECLARE and the features of DECLARE that can be encoded in block-structured processes. As for the latter point, we show that checking whether a given set of DECLARE patterns admits a satisfying trace is an NP-hard problem. In particular, we identify some DECLARE specifications whose satisfying traces are all of exponential length and some useful DECLARE fragments where a satisfying trace whose length is polynomially bounded is guaranteed to exist. The paper also discusses the declare2sat prototype system and the results of a thorough experimental validation.10.1109/TKDE.2019.2897309https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8633413Declarative process modelling;linear temporal logic;declare;process miningIEEE Inglês CE1 Excluído
Distinguishing Similar Design Pattern Instances through Temporal Behavior AnalysisR. Xiong; D. Lo; B. Li 2020 Design patterns (DPs) encapsulate valuable design knowledge of object-oriented systems. Detecting DP instances helps to reveal the underlying rationale, thus facilitates the maintenance of legacy code. Resulting from the internal similarity of DPs, implementation variants, and missing roles, approaches based on static analysis are unable to well identify structurally similar instances. Existing approaches further employ dynamic techniques to test the runtime behaviors of candidate instances. Automatically verifying the runtime behaviors of DP instances is a challenging task in multiple aspects. This paper presents an approach to improve the verification process of existing approaches. To exercise the runtime behaviors of DP instances in cases that test cases of legacy systems are often unavailable, we propose a markup language, TSML (Test Script Markup Language), to direct the generation of test cases by putting a DP instance into use. The execution of test cases is monitored based on a trace method that enables us to specify runtime events of interest using regular expressions. To characterize runtime behaviors, we introduce a modeling and specification method employing Allen's interval-based temporal relations, which supports variant behaviors in a flexible way without hard-coded algorithms. A prototype tool has been implemented and evaluated on six open source systems to verify 466 instances reported by five existing approaches with respect to five DPs. The results show that the dynamic analysis increases the F1-score by 53.6% in distinguishing similar DP instances.10.1109/SANER48275.2020.9054804https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054804Design Pattern Detection;Temporal Analysis;Reverse Engineering;Software Comprehension;Knowledge RepresentationIEEE Inglês CE1 Excluído
Value Expression in Design Science ResearchH. H. Weigand 2019 Design science research has grown into a major research approach in Information System (IS). Most current DSR approaches take a positivist approach that downplays human agency. An alternative framework is transformational design research (TDR), inspired by pragmatism and Rosenstock-Huessy's view on language. This paper's aim is to contribute to TDR by focusing on the expression of values, with a particular interest in values that are embodied in the technology. After a critical review of the traditional Requirement Engineering methods and of the so-called value-sensitive design approaches, we propose a new value expression approach that builds on and extends traditional value modelling. The method is illustrated with a literature example of process mining.10.1109/RCIS.2019.8877079https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877079Design science research;value-sensitive design;value modelingIEEE Inglês CE1 Excluído
Sonar: Writing Testbenches through PythonV. Sharma; N. Tarafdar; P. Chow2019 Design verification is an important though time-consumingaspect of hardware design. A good testbench should supportperforming functional coverage of a design by making it easy to implement tests and determine which tests are being performed. However, for complex designs, creating and main-taining effective testbenches can take increasing amounts of time away from actual design. A further complication is there may be two development flows: conventional hardware written in a hardware description language (HDL) such as Verilog orVHDL and high-level synthesis (HLS). In the HLS approach, the hardware is specified in a higher-level language (HLL) and then converted to an HDL through HLS tools. In this flow, testbenches for the design are written in the same HLLand cosimulation is used to verify the generated HDL. Due totool restrictions, cosimulation may not always work. In VivadoHLS [1] for example, the design must contain control signals to define when to start and stop the module or the initiation interval for new data must be one cycle. Without cosimulation, the user must write an HDL testbench manually in addition to a testbench in the HLL for preliminary verification. To simplify writing testbenches, we present Sonar: an open-source Python library to write cross-language testbenches. From a common source script, Sonar can generate testbenches written in SystemVerilog (SV) and C++. These files can then be imported into standard simulation tools such as ModelSim[2] or Vivado HLS and run. The use of Python makes it easy to extend Sonar with higher layers of abstraction for testbenches and integrate it with other software platforms.Sonar is available at https://github.com/UofT-HPRC/sonar.10.1109/FCCM.2019.00052https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735555Testbenches;design verification;simulationIEEE Inglês CE1 Excluído
An Automatic VHDL Testbench Generator for Medium Complexity DesignK. T. Kai Xian; N. Kumar Thulasiraman2021 Design verification is one of the most time-consuming and labor-intensive process in semi-conductor industry. With every growing complexity of electronics designs, verification process become more time consuming so is the time needed to market the product. Furthermore, commercially available automatic testbench tools are either too costly or not being open source particularly for academic purpose. Hence, automatic testbench generator has been developed with intention to reduce the amount time and effort to generate testbench. This paper presents a method of developing automatic testbench tool that is able to develop VHDL testbenches for asynchronous, synchronous, and finite state machine VHDL design files by incorporating the user input parameters. Furthermore, with addition of GUI, the tool is simple and user friendly that develops VHDL testbench rapidly. The tool also incorporates the testbench coverage feature to indicate effectiveness of the developed testbench by indicating the activity of the design nodes, number of times the nodes are tested and percentage of the code coverage. The tool is tested on a few medium complexity designs and the results shows that the developed testbenches provide more than 90% code coverage.10.1109/SCOReD53546.2021.9652717https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9652717Test Bench Generator;Testbench;Verification;VHDLIEEE Inglês CE1 Excluído
How much Specification is Enough? Mutation Analysis for Software ContractsA. Knüppel; L. Schaer; I. Schaefer2021 Design-by-contract is a light-weight formal development paradigm, in which object-oriented software is specified with so-called software contracts. Contracts are annotations in the source code that explicitly document intended functional behavior and can be used for verifying correctness of a particular implementation or as test oracles during automatic test case generation. As writing strong specifications is an expensive and error-prone activity due to lack of expertise and tool support, developers are often only willing to write simpler specifications, covering only a fraction of all functional properties. As a consequence, software quality is lowered, or even worse, potential bugs remain undetected during software verification. To give developers a sense of specification coverage, we propose a methodology that considers the degree of incomplete specifications by means of mutation analysis. We consider Java programs annotated with JML and employ the deductive program verifier KEY-2.6.3 to show that this approach is applicable to numerous open-source JML projects from the literature.10.1109/FormaliSE52586.2021.00011https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9460939Mutation Analysis;Design by Contract;Software Quality MetricsIEEE Inglês CE1 Excluído
Verification at RTL Using Separation of Design ConcernsM. H. Safieddine; F. A. Zaraket; R. Kanj; A. El-Zein; W. Roesner2019 Design-for-test, logic built-in self-test, memory technology mapping, and clocking concerns require team-months of verification time as they traditionally happen at gate-level. We present a novel concern-oriented methodology that enables automatic insertion of these concerns at the register-transfer-level where verification is easier. The methodology involves three main phases: 1) flipflop inference and instantiation algorithms that handle parametric register transfer level (RTL) modules; 2) transformations that take entry RTL and produce RTL modules where memory elements are separated from functionality; and 3) a concern weaving tool that automatically inserts memory related design concerns implemented in recipe files into the RTL modules. The transformation is sound as proven and validated by equivalence checking using formal verification. We implemented the methodology in a tool that is currently used in an industrial setting wherein it reduced design verification time by more than 40%. The methodology is also effective with open source embedded system frameworks.10.1109/TCAD.2018.2848589https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8387447Concern insertion;design-for-test (DFT);register-transfer level (RTL);verificationIEEE Inglês CE1 Excluído
Counting Bugs in Behavioural Models using Counterexample AnalysisI. Faqrizal; G. Salaün 2022 Designing and developing distributed software has always been a tedious and error-prone task, and the ever increasing software complexity is making matters even worse. Model checking automatically verifies that a model, e.g., a Labelled Transition System (LTS), obtained from higher-level specification languages satisfies a given temporal property. When the model violates the property, the model checker returns a counterexample, but this counterexample does not precisely identify the source of the bug. In this work, we propose some techniques for simplifying the debugging of these models. These techniques first extract from the whole behavioural model the part which does not satisfy the given property. In that model, we then detect specific states (called faulty states) where a choice is possible between executing a correct behaviour or falling into an erroneous part of the model. By using this model, we propose in this paper some techniques to count the number of bugs in the original specification. The core idea of the approach is to change the specification for some specific actions that may cause the property violation, and compare the model before and after modification to detect whether this potential bug is one real bug or not. Beyond introducing in details the solution, this paper also presents tool support and experiments.10.1145/3524482.3527647https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796450Behavioural Models;Model Checking;Debugging;Counterexample;Bug CountingIEEE Inglês CE1 Excluído
Quality Improvement for UML and OCL Models Through Bad Smell and Metrics DefinitionK. -H. Doan; M. Gogolla 2019 Detecting and fixing software quality issues early in the design phase is indispensable for a successful project applying model-based techniques. This paper presents an extension of the tool USE (UML-based Specification Environment) with features for (a) reflective model queries and model exploration, (b) metric measurement, (c) smell detection, and (d) quality assessment with metrics. The newly added functionalities can be fine-tuned by designers, are closely related and can be applied together interactively in order to help designers to achieve better models.10.1109/MODELS-C.2019.00121https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904872UML and OCL Model;Metrics;Metamodel;Smell detection;Model quality assessmentIEEE Inglês CE1 Excluído
An Ontology-Based Approach to the Domain Specific Languages DesignL. N. Lyadova; A. O. Sukhov; M. R. Nureev2021 Developing software systems for various domains is a complex task. The quality of the system, corresponding to the domain requirements, can only be achieved via involving the model development of experts in the relevant fields. Traditional design methods based on the using professional tools and modeling languages are difficult for subject matter experts. Using Domain Specific Languages (DSL) have been increasingly gaining attention of developers because DSLs are created to cope with specific domain particularities. However, DSL development consists of several steps to be performed can be hard. Identifying the correct set of elements and constructions of DSL, defining their constraints can be very error-prone. Automation of the new DSLs development is relevant task. The designing of new DSLs should be based on the knowledge of experts, which can be represented using an ontology. An approach to DSM platform development based on using multifaceted ontology to DSL design is proposed. Examples of DSLs and models illustrating the applicability of the proposed methodology are described.10.1109/AICT52784.2021.9620493https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9620493domain specific modeling;DSM;domain specific language;DSL;visual language;metamodeling;DSM platform;language toolkits;metamodel generation;multifaceted ontologyIEEE Inglês CE1 Excluído
Towards Continuous Consistency Checking of DevOps ArtefactsA. Colantoni; B. Horváth; Á. Horváth; L. Berardinelli; M. Wimmer2021 DevOps tools are often scattered over a multitude of technologies, and thus, their integration is a challenging endeavour. The existing DevOps integration platforms, e.g., Keptn, often employ a family of languages for this purpose. However, as we have learnt from UML, SysML, and many others, a family of languages requires inter-model constraints to be checked in order to guarantee a high consistency between the different artefacts.In this work-in-progress paper, we propose a Model-Driven Engineering (MDE) approach for the continuous consistency checking of DevOps artefacts. First, we explicitly represent each artefact as a model, second, we establish links across them to set a navigable network of model elements; and third, we enable MDE services on top of this network.We envision the possibility of using GitOps to pull the DevOps artefacts, executing services for checking consistency and performing model repairs, uploading the changes to the DevOps tools, and finally pushing the artefacts to Git, thus resulting in a continuous consistency checking process in practice.10.1109/MODELS-C53483.2021.00069https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643713DevOps;MDE;consistency managementIEEE Inglês CE1 Excluído
Evaluation of visual syntax specification techniques: a study of OWLA. Thomas 2021 Diagrams are an integral part of our communication and thus automated processing of diagrams becomes increasingly relevant. One way to realise automated processing is by using declarative specifications of diagrams. These declarative specifications have similarities to domain knowledge modelled in ontologies. The Web Ontology Language (OWL), an open standard of W3C, is a prominent ontology language to model domain knowledge. In this paper, OWL is evaluated for its suitability to specify visual syntax of diagrams. Specifically, reviews of literature are conducted to establish relevant evaluation criteria and to obtain evidence about OWL for the established criteria. The evaluation indicates that OWL is used widely, which could be attributed to its standardisation and expressiveness, and consequently, it has extensive tool support, including reasoners and editors, with noticeable presence of open source tools. The evaluation also indicates that although OWL has been used successfully for diagram specifications, further research is required to understand entirely its strengths and limitations as a visual syntax specification technique.10.1109/icABCD51485.2021.9519313https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9519313Criteria-Based Evaluation;Diagrams;Visual Syntax Specification;OWLIEEE Inglês CE1 Excluído
DDUO: General-Purpose Dynamic Analysis for Differential PrivacyC. Abuah; A. Silence; D. Darais; J. P. Near2021 Differential privacy enables general statistical analysis of data with formal guarantees of privacy protection at the individual level. Tools that assist data analysts with utilizing differential privacy have frequently taken the form of programming languages and libraries. However, many existing programming languages designed for compositional verification of differential privacy impose significant burden on the programmer (in the form of complex type annotations). Supplementary library support for privacy analysis built on top of existing general-purpose languages has been more usable, but incapable of pervasive end-to-end enforcement of sensitivity analysis and privacy composition. We introduce DDuo, a dynamic analysis for enforcing differential privacy. DDuo is usable by non-experts: its analysis is automatic and it requires no additional type annotations. DDuo can be implemented as a library for existing programming languages; we present a reference implementation in Python which features moderate runtime overheads on realistic workloads. We include support for several data types, distance metrics and operations which are commonly used in modern machine learning programs. We also provide initial support for tracking the sensitivity of data transformations in popular Python libraries for data analysis. We formalize the novel core of the DDuo system and prove it sound for sensitivity analysis via a logical relation for metric preservation. We also illustrate DDuo's usability and flexibility through various case studies which implement state-of-the-art machine learning algorithms.10.1109/CSF51468.2021.00043https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505231language-based-security;privacy;security-and-privacy-aspects-of-machine-learningIEEE Inglês CE1 Excluído
Using UML and OCL Models to Realize High-Level Digital TwinsP. Muñoz; J. Troya; A. Vallecillo 2021 Digital twins constitute virtual representations of physically existing systems. However, their inherent complexity makes them difficult to develop and prove correct. In this paper we explore the use of UML and OCL, complemented with an executable language, SOIL, to build and test digital twins at a high level of abstraction. We also show how to realize the bidirectional connection between the UML models of the digital twin in the USE tool with the physical twin, using an architectural framework centered on a data lake. We have built a prototype of the framework to demonstrate our ideas, and validated it by developing a digital twin of a Lego Mindstorms car. The results allow us to show some interesting advantages of using high-level UML models to specify virtual twins, such as simulation, property checking and some other types of tests.10.1109/MODELS-C53483.2021.00037https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643725Model-based Software Engineering;Model-based Testing;Digital Twins;UML;OCL;USEIEEE Inglês CE1 Excluído
RASAECO: Requirements Analysis of Software for the AECO IndustryM. Ristin; D. F. Edvardsen; H. W. van de Venn2021 Digitalization is forging its path in the architecture, engineering, construction, operation (AECO) industry. This trend demands not only solutions for data governance but also sophisticated cyber-physical systems with a high variety of stakeholder background and very complex requirements. Existing approaches to general requirements engineering ignore the context of the AECO industry. This makes it harder for the software engineers usually lacking the knowledge of the industry context to elicit, analyze and structure the requirements and to effectively communicate with AECO professionals. To live up to that task, we present an approach and a tool for collecting AECO-specific software requirements with the aim to foster reuse and leverage domain knowledge. We introduce a common scenario space, propose a novel choice of an ubiquitous language well-suited for this particular industry and develop a systematic way to refine the scenario ontologies based on the exploration of the scenario space. The viability of our approach is demonstrated on an ontology of 20 practical scenarios from a large project aiming to develop a digital twin of a construction site.10.1109/RE51729.2021.00032https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604691Requirements Engineering;Architecture;Construction;AECO;Building Information Model;BIMIEEE Inglês CE1 Excluído
Metamodeling NATO Operation Orders: a proof-of-concept to deal with digitalization of the battlefieldN. Belloir; J. Buisson; O. Bartheye2019 Digitalization of the whole society changes the way Systems-of-Systems have to be considered. Remaining independently operated and managed, SoS increase their collaboration skills using shared or cooperated information systems. People can be seen as particular digital sub-systems due to smart equipments they can use. Military operations, which are considered as typical SoS, are no exception to this fact. New operational doctrines have to be created to take advantage of those new capabilities. In this paper, we propose to develop methods and tools inspired by software engineering to create new automated capabilities in battlefield engineering. More precisely, we explain the direction which should be considered in the area of battlefield engineering in order to deal with those new capabilities. Inspired from Model-Based Engineering, we realized a proof-of-concept showing how to change textual operation orders with graphical ones. The latter can be exported in a common standardized format, that enables digital interpretation. We present the OPORD-ML language which is based on a metamodel inspired from a NATO operation order standard. It is supported by an automatically generated tool.10.1109/SYSOSE.2019.8753885https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753885Military SoS;Battlefield Engineering;Model-Based Engineering;Operation OrdersIEEE Inglês CE1 Excluído
Applying Model-Driven Engineering to Distributed Ledger DeploymentT. Górski; J. Bednarski 2020 Distributed Ledger Technology (DLT) enables data storage in a decentralized manner among collaborating parties. The software architecture of such solutions encompasses models placed in the relevant architectural views. A lot of research is devoted to smart contracts and consensus algorithms, which are realized by distributed applications and can be positioned within the Logical view. However, we see the need to provide modeling support for the Deployment view of distributed ledger solutions. Especially since the chosen DLT framework has a significant impact on implementation and deployment. Besides, consistency between models and configuration deployment scripts should be ensured. So, we have applied Model-Driven Engineering (MDE) that allows on the transformation of models into more detailed models, source code, or tests. We have proposed Unified Modeling Language (UML) stereotypes and tagged values for distributed ledger deployment modeling and placed them in the UML Profile for Distributed Ledger Deployment. We have also designed the UML2Deployment model-to-code transformation for the R3 Corda DLT framework. A UML Deployment model is the source whereas a Gradle Groovy deployment script is the target of the transformation. We have provided the complete solution by incorporating the transformation into the Visual Paradigm modeling tool. Furthermore, we have designed a dedicated plug-in to validate generated deployment scripts. In the paper, we have shown how to design transformation for generating deployment scripts for the R3 Corda DLT framework with the ability to switch to another one.10.1109/ACCESS.2020.3005519https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9127413Distributed ledger;model-driven engineering;architectural views model 1+5;deployment view;unified modeling language extensibility mechanismsIEEE Inglês CE1 Excluído
Automatic Generation Method of Airborne Display and Control System Requirement Domain Model Based on NLPY. Mengyuan; W. Lisong; K. Jiexiang; G. Zhongjie; H. Wang; W. Yin; C. Buzhan2021 Domain modeling is a crucial step from natural language requirements to precise specifications, and an essential support for the development of automation system design tools. The existing domain model extraction methods are not accurate enough to be applied into specific fields. In this paper, we present a method for extracting the requirement domain model of airborne display and control system based on Natural Language Processing (NLP). Firstly, the domain model template is defined on the basis of the detailed study of the existing rules. Then in the requirement statement, the parse tree generated from Stanford Parser is utilized to preprocess the requirements for special symbols and conjunctions. Finally, we conduct the comparative experiment and the results indicate that the precision of domain model extraction is 20.01% higher than the existing approaches without preprocessing.10.1109/ICCCS52626.2021.9449277https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9449277NLP;airborne display and control system;requirement;domain model;parse treeIEEE Inglês CE1 Excluído
Automated Traceability for Domain Modelling Decisions Empowered by Artificial IntelligenceR. Saini; G. Mussbacher; J. L. C. Guo; J. Kienzle2021 Domain modelling abstracts real-world entities and their relationships in the form of class diagrams for a given domain problem space. Modellers often perform domain modelling to reduce the gap between understanding the problem description which expresses requirements in natural language and the concise interpretation of these requirements. However, the manual practice of domain modelling is both time-consuming and error-prone. These issues are further aggravated when problem descriptions are long, which makes it hard to trace modelling decisions from domain models to problem descriptions or vice-versa leading to completeness and conciseness issues. Automated support for tracing domain modelling decisions in both directions is thus advantageous. In this paper, we propose an automated approach that uses artificial intelligence techniques to extract domain models along with their trace links. We present a traceability information model to enable traceability of modelling decisions in both directions and provide its proof-of-concept in the form of a tool. The evaluation on a set of unseen problem descriptions shows that our approach is promising with an overall median F2 score of 82.04%. We conduct an exploratory user study to assess the benefits and limitations of our approach and present the lessons learned from this study.10.1109/RE51729.2021.00023https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604719Domain Models;Traceability;Natural Language (NL);Machine Learning (ML);Traceability Knowledge Graph (TKG);Traceability Information Model (TIM)IEEE Inglês CE1 Excluído
DoMoBOT: An AI-Empowered Bot for Automated and Interactive Domain ModellingR. Saini; G. Mussbacher; J. L. C. Guo; J. Kienzle2021 Domain modelling transforms informal requirements written in natural language in the form of problem descriptions into concise and analyzable domain models. As the manual construction of these domain models is often time-consuming, error-prone, and labor-intensive, several approaches already exist to automate domain modelling. However, the current approaches suffer from lower accuracy of extracted domain models and the lack of support for system-modeller interactions. To better assist modellers, we introduce DoMoBOT, a web-based Domain Modelling BOT. Our proposed bot combines artificial intelligence techniques such as natural language processing and machine learning to extract domain models with higher accuracy. More importantly, our bot incorporates a set of features to bring synergy between automated model extraction and bot-modeller interactions. During these interactions, the bot presents multiple possible solutions to a modeller for modelling scenarios present in a given problem description. The bot further enables modellers to switch to a particular solution and updates the other parts of the domain model proactively. In this tool demo paper, we demonstrate how the implementation and architecture of DoMoBOT support the paradigm of automated and interactive domain modelling for assisting modellers.10.1109/MODELS-C53483.2021.00090https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643722Domain Models;Natural Language (NL);Machine Learning (ML);Bot;Model Extraction;Recommendation;Bot-Modeller Interactions;Traceablity Knowledge GraphIEEE Inglês CE1 Excluído
On Designing Applied DSLs for Non-Programming Experts in Evolving DomainsH. S. Borum; H. Niss; P. Sestoft 2021 Domain-specific languages (DSLs) have emerged as a plausible way for non-programming experts to efficiently express their domain knowledge. Recent DSL research has taken a technical perspective on how and why to create DSLs, resulting in a wealth of innovative tools, frameworks and technical approaches. Less attention has been paid to the design process. Namely, how can it ensure that the created DSL realises the expected benefits? This paper seeks to answer this question when designing DSLs for highly specialised domains subject to resource constraints, an evolving application domain, and scarce user participation. We propose an iteration of alternating activities in a human-centred design method that seeks to minimise the need for expensive implementation and user involvement. The method moves from a low-validity exploration of highly diverse language designs towards a higher-validity exploration of more homogeneous designs. We give an in-depth case study of designing an actuarial DSL called MAL, or Management Action Language, which allows actuaries to model so-called future management actions in asset/liability projections in life insurance and pension companies. The proposed human-centred design method was synthesised from this case study, where we found it useful for iteratively identifying and removing usability problems during the design.10.1109/MODELS50736.2021.00031https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592498Model-driven engineering;Domain-specific language;Human-centred designIEEE Inglês CE1 Excluído
Open Source Domain-specific Model Interface and Tool Frameworks for a Digital Avionics Systems Development ProcessB. Annighoefer; M. Brunner 2021 Domain-specific tools and models are used in many avionics development processes, and allow us to capture knowledge about a certain activity in the most appropriate format by providing an unambiguous language for the engineers involved. Domain-specific modeling environments are used to create custom models, and auxiliary tools are then applied for automatic validation, processing, and data transformation, thus providing a good baseline for a digital (model-based) development process. Practical experience, however, shows that existing domain-specific environments are often inappropriate for the avionics domain: the user interface is overloaded, the editors cannot reflect the complexity required by the system, and concurrent and role-based development is not possible. We propose two open source frameworks to alleviate this problem. Firstly, Essential Object Query (EOQ) is a generic interface that decouples a domain-specific model from the applications using it. It is programming-language-independent and allows for complex model modifications by multiple users on multiple computers. Secondly, the eXtensible Graphical EMOF Editor (XGEE) uses EOQ to configure customized graphical editors for models within a browser. EOQ and XGEE are used to build an exemplary web-based, multi-user, and domain-specific editor for the Open Avionics Architecture Model (OAAM). This application demonstrates the way in which EOQ and XGEE form the foundation of a model-based real-time collaboration in a digital development process, and highlights the challenges that remain in terms of building a real digital development process.10.1109/DASC52595.2021.9594380https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9594380digitalization;development process;avionics architecture;systems modeling;MBSE;model-based;model-driven;domain-specific;collaborative modeling;XGEE;EOQIEEE Inglês CE1 Excluído
Automatic Decomposition of a Sequential Algorithm for MapReduce FrameworksV. S. Simonov; M. S. Khairetdinov2022 Effective programming of parallel architectures has always been a difficult t ask. T o d ate, programming languages and technologies have been developed that simplify the programmer’s work, but do not make parallelization automatic. MapReduce is a model of programming for the development of large-scale computations with intensive use of data. There are many frameworks where the implementation of this paradigm has been recently developed. There is a need to rewrite existing serial code to use the frameworks listed. The researcher must be familiar with the problems of parallelization, the API of the framework, and also have considerable experience. This prompted us to develop a new tool that automatically translates sequential programs into ready-made versions suitable for execution in the MapReduce paradigm. The code fragment from the serial version is converted in two stages. At the first stage, the synthesis of the program, the functional specification, was made. It was necessary to find information about the calculation structure for each block of code. The result was stored as a high-level intermediate language, reminiscent of the program format for MapReduce frameworks. Checking for semantic equivalence to the original has done using the proof of the theorem. At the second stage, executable code is created, which was the result of generation from a sequential program using the Hadoop or Spark instruction set. Creating a parallelizing compiler is one way to solve this problem. This will allow you to translate code written in a different paradigm (for example, imperative code) into a parallel version for the framework. Classical compilers, such as logical plan-to-physical compilers, use pattern matching rules. The compiler contains a set of rules that identify different patterns of code input (for example, list-sequential looping) and transform consistent code.10.1109/SIBIRCON56155.2022.10017034https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10017034mapreduce;formal languages;compiler;distributed computing;parallel programmingIEEE Inglês CE1 Excluído
Enhancing CREeLS the Crowdsourcing based Requirements Elicitation approach for eLearning Systems Using Bi-Gram EvaluationN. M. Rizk; E. S. Nasr; M. H. Gheith2019 eLearning is gaining more ranking nowadays; eLearning systems (eLS) are in continuous need for improvements to meet its stakeholders' requirements. Traditional requirements elicitation techniques can't satisfy the continuous requirements of eLearning stakeholders. Crowdsourcing is an emerging concept in the requirements elicitation, an approach of requirements elicitation based on the crowdsourcing concept for eLS is discussed. In this paper the approach is further evaluated using bi-gram topic modeling. This will assess the approach validity to better extract eLearning stakeholders' requirements and help in the requirements elicitation and evolution of eLS. The bi-gram evaluation was applied on three LMS products and the results were compared with the results of LDA algorithm extraction and with the manual extraction of the requirements. The average results of bigram model were 0.68 f-measure, 0.76 precision, and 0.61 recall. The extracted keywords using bi-gram were better than normal LDA algorithm, relevant and can help in requirements evolution of the eLS.10.1109/ICENCO48310.2019.9027371https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9027371Requirements elicitation;eLearning;Crowdsourcing;Topic ModellingIEEE Inglês CE1 Excluído
Modelling, Simulation and Code Generation for Electronic Railway Interlocking SystemsR. A. Ghignone; C. F. Falco; F. S. Larosa; H. P. Mendes Gouveia; L. A. Chang; M. N. Menéndez; A. Lutenberg2021 Electronic railway interlockings are critical embedded systems which control the safe operation of train signals. Due to the broad variety of railway network topologies and the high functional safety level required, a flexible solution is needed, capable of taking formal requirements and implementing them accordingly to the required application. The scope of this work is to present an approach in which an automatic code generator transforms the control tables which describe the interlocking logic into functional units written in different programming languages like C or VHDL. The generated code allows its implementation in an embedded system based in a FPGA or a microcontroller. In addition, the project contains a graphical user interface to draw and simulate the behavior of the generated model for verification purposes. The developed tool comprises the entire design flow for interlocking systems and presentes several advantages when compared to previous works.10.1109/TLA.2021.9423859https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9423859Automatic Code Generation;Critical Systems;FPGA;Functional Safety;Object Oriented Programming;Railway InterlockingIEEE Inglês CE1 Excluído
Bidirectional Text-to-Model Element Requirement TransformationM. Ballard; R. Peak; S. Cimtalay; D. Mavris2020 Elicitation, representation, and analysis of requirements are important tasks performed early in the systems engineering process. This remains true with the adoption of Model-Based Systems Engineering (MBSE) methodologies. Existing SysML-based methodologies often choose between (i) using external requirements documents and/or databases as the authoritative source for requirements truth versus (ii) generating requirements directly, as elements in the system model. In either case, there is often need for the systems engineer to manually develop a model-based requirements representation, as this faculty is not automatic in the commonly-used SysML feature set. Additionally, once the system model has been completed, systems engineers typically must prepare traditional “shall-statement” requirements for external review purposes, as not all stakeholders can be expected to be trained in system model interpretation. This paper details a novel effort to address both problems, by automatically transforming text-based requirements (TBR) into SysML model-based requirement (MBR) representations, and vice versa. The text-to-model based transformation direction uses requirement templates and natural language processing techniques, expanding on work from the field of requirements engineering. This paper also presents an aerospace-domain case study application of the developed tool. In the case study, a selected set of requirements were analyzed, and a system model was constructed. Then, the intermediate output system model was updated with additional elements, to represent the progression of the project's systems engineering process. The modified system model was then analyzed, constructing text-based requirements from the structure. The resulting text-based requirements were compared to the initial set of input requirements to assess consistency in both directions of analysis. The methodology developed in this paper improves the systems engineering process by saving the systems engineer time constructing potentially repetitive model elements, and by enabling model-based requirement analyses to methodologies previously only capable of processing text-based requirements. Further, the methodology eases the responsibility of the systems engineer to maintain a copy of the model-based requirements in text-based format.10.1109/AERO47225.2020.9172306https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172306- IEEE Inglês CE1 Excluído
Blended Modelling - What, Why and HowF. Ciccozzi; M. Tichy; H. Vangheluwe; D. Weyns2019 Empirical studies indicate that user experience can significantly be improved in model-driven engineering. Blended modelling aims at mitigating this by enabling users to interact with a single model through different notations. Blended modelling contributes to various modelling qualities, including comprehensibility, analysability, and acceptability. In this paper, we define the notion of blended modelling and propose a set of dimensions that characterise blended modelling. The dimensions are grouped in two classes: user-oriented dimensions and realisation-oriented dimensions. Each dimension describes a facet that is relevant to blended modelling together with its domain (i.e., the range of values for that dimension). The dimensions offer a basic vocabulary to support tool developers with making well-informed design decisions as well as users to select appropriate tools and configure them according to the needs at hand. We illustrate how the dimensions apply to different cases relying on our experience with blended modelling. We discuss the impact of blended modelling on usability and user experience and sketch metrics to measure it. Finally, we outline a number of core research directions in this increasingly important modelling area.10.1109/MODELS-C.2019.00068https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904858modelling, user experience, blended modelling, abstract syntax, concrete syntax, notations, toolsIEEE Inglês CE1 Excluído
Towards Platform Specific Energy Estimation for Executable Domain-Specific Modeling LanguagesT. Beziers la Fosse; M. Tisi; E. Bousse; J. -M. Mottu; G. Sunye2019 Energy consumption is becoming a major subject when designing, developing and running programs. Most developers code and run their applications in an energy oblivious manner, mostly because of a lack of energy-related knowledge about their system. This problem also exists in the realm of executable domain-specific modeling languages, where end-users create models conforming to a given meta-model and execute them with little knowledge about their operational semantic and related energy consumption. In this work, we propose a domain-specific language for decorating meta-models of executable languages with platform-specific energy estimation formulas. We also extend the GEMOC execution engine to dynamically perform energy estimations on any executable model conforming to the decorated meta-model. The energy estimation model defined can then be easily adapted to other models and platforms, without requiring any measurement tooling or knowledge from the end-user.10.1109/MODELS-C.2019.00048https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904596Model-Driven Engineering;xDSMLs;Energy EstimationIEEE Inglês CE1 Excluído
Towards Pulverised Architectures for Collective Adaptive Systems through Multi-Tier ProgrammingG. Aguzzi; R. Casadei; D. Pianini; G. Salvaneschi; M. Viroli2021 Engineering large-scale Cyber-Physical Systems - like robot swarms, augmented crowds, and smart cities - is challenging, for many issues have to be addressed, including specifying their collective adaptive behaviour and managing the connection of the digital and physical parts. In particular, some approaches propose self-organising mechanisms to actually program global behaviour while fostering decentralised, asynchronous execution. However, most of these approaches couple behavioural specifications to specific network architectures (e.g., peer-to-peer), and therefore do not promote flexible exploitation of the underlying infrastructure. Conversely, pulverisation is a recent approach that enables self-organising behaviour to be defined independently of the available infrastructure while retaining functional correctness. However, there are currently no tools to formally specify and verify concrete architectures for pulverised applications. Therefore, we propose to combine pulverisation with multi-tier programming, a paradigm that supports the specification of the architecture of distributed systems in a single code base, and enables static checks for the correctness of actual deployments. The approach can be implemented by combining the ScaFi aggregate computing toolchain with the ScalaLoci multi-tier programming language, paving the path to support the development of self-organising cyber-physical systems, addressing both functional (behaviour) and non-functional concerns (deployment) in a single code base and modular fashion.10.1109/ACSOS-C52956.2021.00033https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599177Pulverisation;Aggregate Computing;Multi-tier programmingIEEE Inglês CE1 Excluído
Petri Nets Based Verification of Epistemic Logic and Its Application on Protocols of Privacy and SecurityL. He; G. Liu 2020 Epistemic logic can specify many design requirements of privacy and security of multi-agent systems (MAS). The existing model checkers of epistemic logic use some programming languages to describe MAS, induce Kripke models as the behavioral representation of MAS, apply Ordered Binary Decision Diagrams (OBDD) to encode Kripke models to solve their state explosion problem and verify epistemic logic based on the encoded Kripke models. However, these programming languages are usually non-intuitive. More seriously, their OBDD-based model checking processes are often time-consuming due to their dynamic variable ordering for OBDD. Therefore, we define Knowledge-oriented Petri Nets (KPN) to intuitively describe MAS, induce similar reachability graphs as the behavioral representation of KPN, apply OBDD to encode all reachable states, and finally verify epistemic logic. Although we also use OBDD, we adopt a heuristic method for the computation of a static variable order instead of dynamic variable ordering. More importantly, while verifying an epistemic formula, we dynamically generate its needed similar relations, which makes our model checking process much more efficient. In this paper, we introduce our work.10.1109/SERVICES48979.2020.00019https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284162model checking;epistemic logic;CTLK;Petri nets;OBDDIEEE Inglês CE1 Excluído
EqBench: A Dataset of Equivalent and Non-equivalent Program PairsS. Badihi; Y. Li; J. Rubin 2021 Equivalence checking techniques help establish whether two versions of a program exhibit the same behavior. The majority of popular techniques for formally proving/refuting equivalence are evaluated on small and simplistic benchmarks, omitting "difficult" programming constructs, such as non-linear arithmetic, loops, floating-point arithmetic, and string and array manipulation. This hinders efficient evaluation of these techniques and the ability to establish their practical applicability in real scenarios. This paper addresses this gap by contributing EqBench - the largest and most comprehensive benchmark for equivalence checking analysis, which contains 147 equivalent and 125 non-equivalent cases, in both C and Java languages. We believe EqBench can facilitate a more realistic evaluation of equivalence checking techniques, assessing their individual strength and weaknesses. EqBench is publicly available at: https://osf.io/93s5b/.10.1109/MSR52588.2021.00084https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9463140Equivalence checking;benchmark;Java;C.IEEE Inglês CE1 Excluído
More Than Two Decades of Research on Verification of UML Class Models: A Systematic Literature ReviewA. Shaikh; A. Hafeez; A. A. Wagan; M. Alrizq; A. Alghamdi; M. S. A. Reshan2021 Error checking is easy and inexpensive in the initial stages as compared to later stages due to when the development cycle precedes the development cost and efforts also increase. UML class model is a key element of modern software methodologies and creates in the initial stage of software development. Therefore, error detection and rectification of the UML class model may save software development costs and time. This paper presents an overview of UML Class model verification approaches and identifies open issues, current research trends, and other improvement areas. This study uses a systematic literature review as an investigation method with six research questions and assesses 65 papers dated January 1997 to December 2020. From 2124 published research papers, 65 papers are selected and distributed into 7 studies. This work provides an analysis of verification approaches and the automation level of proposed approaches. As a result, it is found that the existing UML class model verification methods provide great efforts to check correctness. However, in some situations (when dealing with large and complex models), they consume a significant amount of time and do not support many important features of the UML class model.10.1109/ACCESS.2021.3121222https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9579419Class model;UML;model formalisation;model verification;UML-OCL modelsIEEE Inglês CE1 Excluído
SPrune: A Code Pruning Tool for Ethereum Solidity Contract Static AnalysisZ. Zhou; Y. Xiong; W. Huang; L. Ma2020 Ethereum is a cryptographic currency system built on top of blockchain. It allows anyone to write smart contracts in high-level programming languages, solidity is the most popular and mature one. In the last few years, the use of smart contracts across domains has increased a lot, security analysis to detect the potential issues in contracts thus becomes crucial. Theorem proving is a formal method technique which mathematically prove the correctness of a design with respect to a mathematical formal specification, that can be applied to smart contracts’ secure analysis. The successful implementation of a deduction calculs of theorem proving in an automated reasoning program requires the integration of search strategies that reduce the search space by pruning unnecessary deduction paths.This paper desribes SPrune, a code pruning tool designed to simplify static analysis for solidity contracts. It works by unfolding derived contracts based on the inheritance between contracts in one smart contract, and execute code pruning on the unfolded contract. Our tool allows for the application of static code pruning and provides facility for solidity contract developers and testers to trace and localize bugs in contracts.10.1109/BigCom51056.2020.00015https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9160448Ethereum;Solidity;smart contracts;static analysisIEEE Inglês CE1 Excluído
Enabling Coverage-Based Verification in ChiselA. Dobis; H. J. Damsgaard; E. Tolotto; K. Hesse; T. Petersen; M. Schoeberl2022 Ever-increasing performance demands are pushing hardware designers towards designing domain-specific accelerators. This has created a demand for improving the overall efficiency of the hardware design and verification cycles. The design efficiency was improved with the introduction of Chisel. However, verification efficiency has yet to be tackled. One method that can increase verification efficiency is the use of various types of coverage measures. In this paper, we present our open-source, coverage-related verification tools targeting digital designs described in Chisel. Specifically, we have created a new method allowing for statement coverage at an intermediate representation of Chisel, and several methods for gathering functional coverage directly on a Chisel description.10.1109/ETS54262.2022.9810435https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9810435Hardware Verification;Statement Coverage;Functional Coverage;Chisel;ScalaIEEE Inglês CE1 Excluído
Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time ConstraintsB. Lima; J. P. Faria; R. Hierons 2020 Evermore end-to-end digital services depend on the proper interoperation of multiple products, forming a distributed system, often subject to timing requirements. To ensure interoperability and the timely behavior of such systems, it is important to conduct integration tests that verify the interactions with the environment and between the system components in key scenarios. The automation of such integration tests requires that test components are also distributed, with local testers deployed close to the system components, coordinated by a central tester. Test coordination in such a test architecture is a big challenge. To address it, in this article we propose an approach based on the pre-processing of the test scenarios. We first analyze the test scenarios in order to check if conformance errors can be detected locally (local observability) and test inputs can be decided locally (local controllability) by the local testers for the test scenario under consideration, without the need for exchanging coordination messages between the test components during test execution. If such properties do not hold, we next try to determine a minimum set of coordination messages or time constraints to be attached to the given test scenario to enforce those properties and effectively solve the test coordination problem with minimal overhead. The analysis and enforcement procedures were implemented in the DCO Analyzer tool for test scenarios described by means of UML sequence diagrams. Since many local observability and controllability problems may be caused by design flaws or incomplete specifications, and multiple ways may exist to enforce local observability and controllability, the tool was designed as a static analysis assistant to be used before test execution. DCO Analyzer was able to correctly identify local observability and controllability problems in real-world scenarios and help the users fix the detected problems.10.1109/ACCESS.2020.3021858https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9186641Test scenarios;observability;controllability;distributed systems;time constraintsIEEE Inglês CE1 Excluído
Blackbird: Object-Oriented Planning, Simulation, and Sequencing Framework Used by Multiple MissionsC. R. Lawler; F. L. Ridenhour; S. A. Khan; N. M. Rossomando; A. Rothstein-Dowden2020 Every JPL flight mission relies on activity planning and sequence generation software to perform operations. Most such tools in use at JPL and elsewhere use attribute-based schemas or domain-specific languages (DSLs) to define activities. This reliance poses user training, software maintenance, performance, and other challenges. To solve this problem for future missions, a new software called Blackbird was developed which allows engineers to specify behavior in standard Java. The new code base has over an order of magnitude fewer lines of code than other JPL planning software, since no DSL or schema interpreter is needed. The use of Java for defining activities also allows mission adapters to debug their code in an integrated development environment, seamlessly call external libraries, and set up truly multi-mission models. These efficiency gains have significantly reduced the amount of development effort required to support the software. This paper discusses Blackbird's design, principles, and use cases. Within a year of its completion, six projects have begun using Blackbird. The Mars 2020 mission is using Blackbird to generate command sequences for cruise and Mars approach. By using multi-mission models, the Mars 2020 cruise adaptation was created in fewer than three months by three engineers at less than half time each. Work has begun to use Blackbird for communications planning during Mars 2020 surface operations. The Psyche mission uses Blackbird to generate its reference mission plans in development. Full simulations with 123,000 activities and 4.7 million resource value changes complete in about one minute. Psyche is also working towards using Blackbird in operations to support integrated activity planning and generate sequences. The InSight project is using Blackbird for mission planning in operations, replacing error-prone manual processes. For the NISAR mission, Blackbird evaluates threats to the commissioning phase timeline. The Europa Lander pre-project used Blackbird to perform a trade study. The ASTERIA mission is automating sequence generation in Blackbird. Going forward, more interested projects are likely to begin using Blackbird, and the capabilities of the core and multi-mission models will keep growing.10.1109/AERO47225.2020.9172680https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172680- IEEE Inglês CE1 Excluído
Towards Sketching Interfaces for Multi-paradigm ModelingS. Van Mierlo; J. Deantoni; L. Burgueño; C. Verbrugge; H. Vangheluwe2019 Existing design processes typically begin with informal ideation by sketching out a basic approach that can be further developed into a more complete design. Although intuitively simple, and seemingly informal, the sketching process is actually a structured activity that strongly influences the design of the system; hence, it has an important role in the design success. In this work, we develop a well defined specification of the sketching activity. We consider sketching as a process of achieving agreement, based on stakeholders communicating ideas about a design and its properties, with the side-effect of incrementally developing a (set of) common language(s) specific to the idea domain. Our perspective on sketching further differs from more common notions of ideation by noting the roles of requirements and system properties, and offering a general perspective on sketching as a modular activity within design.We validate our approach by analyzing the sketches of a research group at the CAMPaM 2019 workshop. By recognizing sketching as a fundamental activity in design, we enhance the formalization of the design process, and suggest improvements to the tool support for sketching beyond the basic drawing features.10.1109/MODELS-C.2019.00070https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904846sketching, multi-paradigm, ideation, interfaceIEEE Inglês CE1 Excluído
Stately: An FSM Design ToolJ. Pope; J. Saget; C. -J. H. Seger2020 Finite state machines (FSMs) are at the heart of many digital circuits, in particular microprocessors such as the IoT-oriented Cephalopode processor we are implementing as part of the Octopi project.We frequently encounter two practical difficulties with FSM design: first, in the case of Mealy machines state transitions and output logic can have complex and overlapping conditions, which are difficult to maintain and comprehend if separated; and second, there is a tension between clarity and clock cycles with respect to the insertion of intermediate states.To address these in the context of the Cephalopode processor we developed the open-source tool Stately, a visual environment for designing finite state machines. States are organized spatially, individually programmed in a simple domain-specific language, and the resulting machine can be compiled to HFL code for the VossII hardware design and simulation platform.In addition to allowing the intermingling of transitions and output declarations, Stately introduces a mechanism by which chosen states can be merged during compilation. While only a modest semantic extension, it resolves several clarity-efficiency tradeoffs while retaining a clear visual interpretation. Other features include lightweight simulation for rudimentary testing, and extensive error-checking.10.1109/MEMOCODE51338.2020.9315130https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315130Finite state machines;Hardware design;Development toolIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8944976
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9531916
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9162718
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9401953
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945607
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218133
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9328223
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592420
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8633413
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054804
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877079
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735555
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9652717
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9460939
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8387447
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796450
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904872
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9620493
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643713
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9519313
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505231
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643725
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604691
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753885
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9127413
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9449277
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592498
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9594380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10017034
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9027371
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9423859
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172306
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904858
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904596
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599177
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284162
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9463140
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9579419
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9160448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9810435
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9186641
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904846
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315130

Explainable symptom detection in telemetry of ISS with Random Forest and SpecTRMS. Iino; H. Nomoto; Y. Michiura; T. Hirose; M. Sasaki; S. Ishizawa; T. Fukui; Y. Ishitsuka; Y. Itabashi; H. Shibayama; M. Wada2022 Flight controllers of the JEM (Japanese Experiment Module), one element of the International Space Station (ISS), are continuously monitoring ISS status, and it is important for them to detect signs of anomaly of its equipment as early as possible. Automatic symptom detection, in this context, can help flight controllers to assess unusual telemetry trends. To assess the trends efficiently, it is essential to provide the reason of detections. In this paper, we propose a new systemic symptom detection method combining three methodologies: the Functional Resonance Analysis Method (FRAM), the Random Forest Regression (RF), and the Specification Tools and Requirement Methodology-Requirement Language (SpecTRM-RL). The method was verified with data of Low Temperature loop (LTL) of JEM; an actual failure event of pump inverter in LTL was selected as a case study. In this case study, a selected objective variable was successfully predicted based on explanatory variables in normal period, whereas the predicted values showed larger deviation from the actual measured values in off-nominal period. The information for explaining the cause of anomaly was eventually identified with the proposed methods and validated by engineering knowledge. These results show the effectiveness of the new methods as the explainable machine learning-based predictive failure detection. The proposed method can be applied to fields where a single mishap of a system could lead to catastrophic hazard or instantaneous loss of human life due to impossibility of physical access (e.g., deep space explorations and remote medicine).10.1109/AERO53065.2022.9843739https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843739- IEEE Inglês CE1 Excluído
Anomaly Detection in Scratch AssignmentsN. Körber 2021 For teachers, automated tool support for debugging and assessing their students' programming assignments is a great help in their everyday business. For block-based programming languages which are commonly used to introduce younger learners to programming, testing frameworks and other software analysis tools exist, but require manual work such as writing test suites or formal specifications. However, most of the teachers using languages like Scratch are not trained for or experienced in this kind of task. Linters do not require manual work but are limited to generic bugs and therefore miss potential task-specific bugs in student solutions. In prior work, we proposed the use of anomaly detection to find project-specific bugs in sets of student programming assignments automatically, without any additional manual labour required from the teachers' side. Evaluation on student solutions for typical programming assignments showed that anomaly detection is a reliable way to locate bugs in a data set of student programs. In this paper, we enhance our initial approach by lowering the abstraction level. The results suggest that the lower abstraction level can focus anomaly detection on the relevant parts of the programs.10.1109/ICSE-Companion52605.2021.00050https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402627Anomaly Detection;Scratch;Program Analysis;Teaching;Block-Based-ProgrammingIEEE Inglês CE1 Excluído
Survey and Consistency Checking of Formal Requirements AnimationsC. Ponsard; J. -C. Deprez 2021 Formal requirements are written in mathematical language enabling powerful verification but are complex to validate by domain end-users or stakeholders. Requirements animations answer this problem by providing techniques to explore system traces and interact with them using domain specific graphical views and controls. Most formal tools include features to ease the development of such animations for different formal notations. However, to be sound, animations require to be carefully designed. This paper analyses major animation frameworks for system design in order to clearly identify their validation scope and purpose. Based on this, it identifies and discusses a number of checks to make sure an animation is well-designed. Different case studies are used as illustrative support.10.1109/REW53955.2021.00064https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582284Requirements engineering;validation;animation;formal requirements;Event-B;KAOS;LTS;VDMIEEE Inglês CE1 Excluído
Reusable Security Requirements Repository Implementation Based on Application/System ComponentsF. Özdemir Sönmez; B. G. Kiliç 2021 Forming high quality requirements has a direct impact on project success. Gathering security requirements could be challenging, since it demands a multidisciplinary approach and security expertise. Security requirements repository enables an effective alternative for addressing this challenge. The main objective of this paper is to present the design of a practical repository model for reusable security requirements, which is easy to use and understand for even non-security experts. The paper also portrays an approach and a software tool for using this model to determine subtle security requirements for improved coverage. Proposed repository consists of attributes determined by examining common security problems covered in state-of-the-art publications. A test repository was prepared using specification files and Common Criteria documents. The outcomes of applying the proposed model were compared with the sample requirement sets included in the state-of-the-art publications. The results reveal that in the absence of a security requirements repository, key security points can be missed. Repository improves the completeness of the security terms with reasonable effort.10.1109/ACCESS.2021.3133020https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9638498Computer security;information security;requirement’s engineering;software reusabilityIEEE Inglês CE1 Excluído
From IEC 61131-3 Function Block Diagrams to Sequentially Constructive StatechartsM. C. Werner; K. Schneider 2022 Function Block Diagrams (FBDs) are widely used for implementing the software of IEC 61131-3 based systems. In general, there is a risk that FBDs used in industry will become more and more complex during their life cycle, while at the same time strict specifications have to be met. On the other hand, a trend towards model-based design with standardized modeling tools can be observed in software engineering. While previous research focuses on translating existing FBDs to formal models for verification purposes, this paper presents two translations from existing FBDs to sequentially constructive statecharts, thus enabling an intuitive functional reuse for a model-based design. Besides a basic translation in the first approach, it is shown in the second approach that it is possible to improve the readability through code refactoring within the synchronous paradigm.10.1109/FDL56239.2022.9925656https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925656model-driven development;programmable logic devices;software reusability;synchronous languages;system analysis and designIEEE Inglês CE1 Excluído
Semi-Automated Classification of Arabic User Requirements into Functional and Non-Functional Requirements using NLP ToolsK. Shehadeh; N. Arman; F. Khamayseh2021 Functional and non-functional requirements are equally important in software engineering. Both of them are mixed together within the same software requirement document. Usually, they are expressed in natural languages. So, a lot of human effort is required to classify them. Software requirements classification is a challenging task. Requirements classification can help developers to deliver quality software that meets users' expectations completely. In this paper, we present a Semi-Automated classification approach of Arabic functional and non-functional requirements using a natural language processing (NLP) tool. We propose a set of heuristics based on basic constructs of Arabic sentences in order to extract information from Arabic software requirements to classify the requirements into functional and non-functional requirements. This research aims to help software engineers by reducing the cost and time required in performing manual classification of software requirements.10.1109/ICIT52682.2021.9491698https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9491698Requirements Classification;Automated Software Engineering;NLP Tools;Functional Requirements;Non-Functional RequirementsIEEE Inglês CE1 Excluído
GDF: A Gamification Design Framework Powered by Model-Driven EngineeringA. Bucchiarone; A. Cicchetti; A. Marconi2019 Gamification refers to the exploitation of gaming mechanisms for serious purposes, like promoting behavioural changes, soliciting participation and engagement in activities, and so forth. In this demo paper we present the Gamification Design Framework (GDF), a tool for designing gamified applications through model-driven engineering mechanisms. In particular, the framework is based on a set of well-defined modelling layers that start from the definition of the main gamification elements, followed by the specification on how those elements are composed to design games, and then progressively refined to reach concrete game implementation and execution. The layers are interconnected through specialization/generalization relationships such that to realize a multi-level modelling approach. The approach is implemented by means of JetBrains MPS, a language workbench based on projectional editing, and has been validated through two gameful systems in the Education and Mobility domains. A prototype implementation of GDF and related artefacts are available at the demo GitHub repository: https://github.com/antbucc/GDF.git, while an illustrative demo of the framework features and their exploitation for the case studies are shown in the following video: https://youtu.be/wxCe6CTeHXk.10.1109/MODELS-C.2019.00117https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904523Gamification Design Framework;Multi-Level Modelling;Model-Driven Engineering;JetBrains MPSIEEE Inglês CE1 Excluído
Modeling with Thinging for Intelligent Monitoring SystemS. S. Al-Fedaghi; Y. Atiyah 2019 Global positioning technology combined with a satellite navigation system has many advantages and reduces the negative effects of many problems; nevertheless, the technology is still relatively new and raises many issues regarding its specification and design levels. More progress is needed to build the involved system's foundation. This paper focuses on conceptual modeling of tracking systems where object-oriented methods and languages are typically used to produce a description of the system. Such a description serves such purposes as documentation and management and as a guide for the subsequent system design phase. The paper applies a new model, Thinging Machine (TM), as a diagrammatic tool to describe notions and concepts of tracking systems. To substantiate TM's applicability in this area, the model is utilized to set up a tracking and management system for a public transportation fleet through the installation of a tracking device on each bus in the fleet. The results point to the viability of applying the TM model in this type of application.10.1109/VTCSpring.2019.8746526https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8746526- IEEE Inglês CE1 Excluído
BHDL: A Lucid, Expressive, and Embedded Programming Language and System for PCB DesignsH. Li; Y. He; Q. Xiao; J. Tian; F. S. Bao2021 Graphical PCB design tools like KiCAD lack support for high-level abstraction such as functions and loops. To improve PCB design productivity, we hereby present BHDL, a programming framework for PCB designs. In its compact and declarative syntax, schematics and layouts can be modeled effectively and expressed concisely. Treating all circuits, even a resistor, as functions, BHDL naturally supports modularized development that builds a complex design up from smaller designs hierarchically. As an embedded Domain Specific Language (eDSL), BHDL allows users to leverage the full feature of the host language for customization and extension. Our Jupyter kernel supports web-based, REPL-style development and generates auto-placed PCBs.10.1109/DAC18074.2021.9586086https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586086Electronic Design Automation (EDA);Computer-Aided Design (CAD);Printed Circuit Board (PCB);Hardware Description Language (HDL);Programming Language (PL);Automatic PlacementIEEE Inglês CE1 Excluído
Estimating Task Efforts in Hardware Development Projects in a Scrum ContextS. Briatore; A. Golkar 2021 Hardware developers started experimenting with Scrum to accelerate their product development. However, it is not possible to implement Scrum in the same way as it was done for software systems, where the approach is already well established. One of the processes required in Scrum is the estimate of task efforts when creating a backlog for an Agile Sprint. This article presents a pilot validation experiment of a novel Agile framework for the development of hardware systems, including a parametric tool to estimate task effort in a more rigorous way than traditional confidence votes. This article presents the validation of electronic hardware design task estimation and overall project performance. The validation is performed through experimental work with teams of junior engineering students. The validation experiment showed an improvement from a minimum of eight to a maximum of eighteen percent when employing the presented tool during planning phases of the development.10.1109/JSYST.2021.3049737https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9336669Agile;costs;electronics;hardware design;time estimatesIEEE Inglês CE1 Excluído
EvoSpex: An Evolutionary Algorithm for Learning Postconditions (artifact)F. Molina; P. Ponzio; N. Aguirre; M. Frias2021 Having the expected behavior of software specified in a formal language can greatly improve the automation of software verification activities, since these need to contrast the intended behavior with the actual software implementation. Unfortunately, software many times lacks such specifications, and thus providing tools and techniques that can assist developers in the construction of software specifications are relevant in software engineering. As an aid in this context, we present EvoSpex, a tool that given a Java method, automatically produces a specification of the method's current behavior, in the form of postcondition assertions. EvoSpex is based on generating software runs from the implementation (valid runs), making modifications to the runs to build divergent behaviors (invalid runs), and executing a genetic algorithm that tries to evolve a specification to satisfy the valid runs, and leave out the invalid ones. Our tool supports a rich JML-like assertion language, that can capture complex specifications, including sophisticated object structural properties.10.1109/ICSE-Companion52605.2021.00080https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402303- IEEE Inglês CE1 Excluído
A New Modeling Framework For Cyber-Physical And Human SystemsM. Poursoltan; N. Pinède; B. Vallespir; M. K. Traore2022 Health, manufacturing, and transport systems are in the midst of the rapid emergence of intelligent systems. In this regard, Cyber-Physical and Human Systems open a new window on intelligent systems in which the role of humans is prominent. Modeling and simulation (M&S) are recognized as practical tools playing a role in promoting the design, analysis, and development of CPHS. However, from a conceptual and technical point of view, CPHS modeling is challenging for modelers since they face some concepts and processes regarding human beings and intelligent artifacts which were not pervasive in M&S before. Thus, the aim of this study is twofold. The first is to shine new lights on the CPHS understanding regardless of application domains by providing an ontological model. The next is to propose an agent-based modeling framework according to the High-Level Language for Systems Specification (HiLLS) to convert conceptual models into executable ones.10.23919/ANNSIM55834.2022.9859402https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9859402Cyber-Physical and Human Systems;High-Level Language for Systems Specification;Ontology;Meta-model;Agent-Based ModellingIEEE Inglês CE1 Excluído
Exploiting the Correlation between Dependence Distance and Latency in Loop Pipelining for HLSJ. Cheng; J. Wickerson; G. A. Constantinides2021 High-level synthesis (HLS) automatically transforms high-level programs in a language such as C/C++ into a low-level hardware description. In this context, loop pipelining is a key optimisation method for improving hardware performance. The main performance bottleneck of a pipelined loop is the ratio between two values: the latency of each iteration and the dependence distance of the operations in the loop. These two values are usually not known exactly, so existing HLS schedulers model them independently, which can cause sub-optimal performance. This paper extends state-of-the-art static schedulers with a fully automated pass that exposes and takes advantage of potential correlation between these two values, enabling smaller initiation intervals (II). We use the Microsoft Boogie software verifier to prove the existence of these correlations, which allows HLS tools to automatically find a high-performance hardware solution while maintaining correctness. Our results show that for a certain class of programs, our approach achieves, on average, an $11.1\times$ performance gain at the cost of a 95% area overhead.10.1109/FPL53798.2021.00066https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9556337High-Level Synthesis;Loop Pipelining;Formal MethodsIEEE Inglês CE1 Excluído
Verification of Scheduling of Conditional Behaviors in High-Level SynthesisR. Chouksey; C. Karfa 2020 High-level synthesis (HLS) technique translates the behaviors written in high-level languages like C/C++ into register transfer level (RTL) design. Due to its complexity, proving the correctness of an HLS tool is prohibitively expensive. Translation validation is the process of proving that the target code is a correct translation of the source program being compiled. The path-based equivalence checking (PBEC) method is a widely used translation validation method for verification of the scheduling phase of HLS. The existing PBEC methods cannot handle significant control structure modification that occurs in the efficient scheduling of conditional behaviors. Hence, they produce a false-negative result. In this article, we identify some scenarios involving path merge/split where the state-of-the-art PBEC approaches fail to show the equivalence even though behaviors are equivalent. We propose a value propagation-based PBEC method along with a new cutpoint selection scheme to overcome this limitation. Our method can also handle the scenario where adjacent conditional blocks (CBs) having an equivalent conditional expression are combined into one CB. Experimental results demonstrate the usefulness of our method over the existing methods.10.1109/TVLSI.2020.2978242https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9042864Equivalence checking;finite state machine with datapaths (FSMDs) model;formal verification;high-level synthesis (HLS);scheduling verification;translation validationIEEE Inglês CE1 Excluído
Extending HLS with High-Level Descriptive Language for Configurable Algorithm-Level Spatial Structure DesignC. Wang; S. Huang; W. -M. Hwu; D. Chen2021 High-level synthesis (HLS) tools have greatly improved the development efficiency of FPGA accelerators in many application areas. With the HLS tools, FPGA designers can focus more on algorithm specifications using software languages such as C/C++, OpenCL, and Python. However, due to the fact that CPU-oriented software languages are designed to describe sequential execution, the repurposing of these languages yields insufficient support for describing parallel data execution and flexible spatial structures on FPGA architecture. To strengthen HLS’s ability to describe configurable algorithmlevel spatial structures, we propose fusing hardware-friendly design patterns, namely high-level descriptive language, into imperative programming model on Python.10.1109/FCCM51124.2021.00048https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9443656FPGA;HLS IEEE Inglês CE1 Excluído
An iStar 2.0 Syntax Validation Formal Rules and Its Implementation on a New TranslatorF. K. Cahyono; B. Hendradjaya; H. Purnama2019 i * framework is a socio-technical goal-based modeling framework and models the actors in the project/system environment. In 2016 iStar 2.0 was proposed to further evolve i* basic concepts to be more acceptable for wider users. Therefore, it motivates us to propose a formal rule for validating iStar 2.0 in XML-based modelling standard similar to iStarML, called iStarML 2.0. In addition to validation process, this paper proposes formal methods for translating i* to iStar 2.0 model and iStar 2.0 to class diagram. iStarService is a tool developed for iStar 2.0 modelling based on iStarML 2.0 with functionalities such as iStar 2.0 model validation, i* to iStar 2.0 model translation, and iStar 2.0 model to class diagram translation. It is implemented in form of web API using Java and had been tested with various models from multiple iStar proceedings.10.1109/ICoDSE48700.2019.9092607https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9092607i*;iStar 2.0;class diagram;iStarML;validation;translation;toolIEEE Inglês CE1 Excluído
Analysing Real-time Distributed Systems using Timed ActorsM. Sirjani 2019 I will introduce timed actors for modeling distributed systems and will explain our theories, techniques and tools for model checking and performance evaluation of such models. Timed Rebeca can be used to model asynchronous event-based components in systems, and real time constraints can be captured in the language. I will explain how floating-time transition system can be used for model checking of such models when we are interested in event-based properties, and how it helps in state space reduction. I will show different applications of our approach including analysing a wireless sensor network application, mobile ad-hoc network protocols, network-on-chip designs, and a macroscopic agent-based simulation of urban planning.10.1109/DS-RT47707.2019.8958670https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958670- IEEE Inglês CE1 Excluído
Empirical Evaluation of IC3-Based Model Checking Techniques on Verilog RTL DesignsA. Goel; K. Sakallah 2019 IC3-based algorithms have emerged as effective scalable approaches for hardware model checking. In this paper we evaluate six implementations of IC3-based model checkers on a diverse set of publicly-available and proprietary industrial Verilog RTL designs. Four of the six verifiers we examined operate at the bit level and two employ abstraction to take advantage of word-level RTL semantics. Overall, the word-level verifier employing data abstraction outperformed the others, especially on the large industrial designs. The analysis helped us identify several key insights on the techniques underlying these tools, their strengths and weaknesses, differences and commonalities, and opportunities for improvement.10.23919/DATE.2019.8715289https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715289- IEEE Inglês CE1 Excluído
Capturing the iccMAX calculatorElement: A Case Study on Format DesignV. H. Kothari; P. Anantharaman; S. W. Smith; B. Hitaj; P. Mundkur; N. Shankar; L. W. Li; I. Diatchki; W. Harris2022 ICC profiles are widely used to provide faithful digital color reproduction across a variety of devices, such as monitors, printers, and cameras. In this paper, we document our efforts on reviewing and identifying security issues with the calculatorElement description from the recent iccMAX specification (ICC.2:2019), which expands upon the ICC v4 specification (ICC.1:2010). The iccMAX calculatorElement, which captures a calculator function through a stack-based computational approach, was designed with security in mind. We analyzed the iccMAX calculatorElement using a variety of approaches that utilized: the proof assistant PVS, the theorem-proving language ACL2, the data description language DaeDaLus, and tools tied to the data description language Parsley. Bringing the tools of formal data description, theorem proving, and static analysis to a non-trivial real-world specification has shed light on both the tools and the specification. This exercise has led us to discover numerous bugs within the specification, to identify specification improvements, to identify flaws with a demo implementation, and to recognize ways that we can improve our own tools. Additionally, this particular case study has broader implications for those who work with specification, data description languages, and parsers. In this paper, we document our work on this exercise and relay our key findings.10.1109/SPW54247.2022.9833859https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833859LangSec;data description languages;formal methods;static analysis;parser;specification;iccMAXIEEE Inglês CE1 Excluído
Power and Energy Communication Services for Control-software ModelsR. C. Mendez; D. Dresscher; J. Broenink2021 Implementing energy-based controllers in software represents a challenge for software engineers, as additional expertise is required to abide by the physics-domain constraints of energy exchange in the design and structure of the control software. Our paper bridges the gap between software engineering and the physics domain by conveying energy exchange to control-software modelling. We use principles of physical systems and the bond -graph modelling language to identify the mechanisms and constraints of energy exchange and represent them as data-communication services for software models. This work resulted in metamodels and models for power and energy communication that can facilitate the first-time-right implementation of robot-control software.10.1109/RoSE52553.2021.00016https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474544domain-specific ontologies;domain-specific constraints;energy exchange;software modelling;real-time systems;bond graphIEEE Inglês CE1 Excluído
Demystifying Attestation in Intel Trust Domain Extensions via Formal VerificationM. U. Sardar; S. Musaev; C. Fetzer2021 In August 2020, Intel asked the research community for feedback on the newly offered architecture extensions, called Intel Trust Domain Extensions (TDX), which give more control to Trust Domains (TDs) over processor resources. One of the key features of these extensions is the remote attestation mechanism, which provides a unified report verification mechanism for TDX and its predecessor Software Guard Extensions (SGX). Based on our experience and intuition, we respond to the request for feedback by formally specifying the attestation mechanism in the TDX using ProVerif's specification language. Although the TDX technology seems very promising, the process of formal specification reveals a number of subtle discrepancies in Intel's specifications that could potentially lead to design and implementation flaws. After resolving these discrepancies, we also present fully automated proofs that our specification of TD attestation preserves the confidentiality of the secret and authentication of the report by considering the state-of-the-art Dolev-Yao adversary in the symbolic model using ProVerif. We have submitted the draft to Intel, and Intel is in the process of making the changes.10.1109/ACCESS.2021.3087421https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9448036Formal verification;symbolic security analysis;ProVerif;trusted execution environment;trust domains;Intel TDX;remote attestationIEEE Inglês CE1 Excluído
A Meta-Model for Representing Consistency as Extension to the Formal Process DescriptionL. Kathrein; K. Meixner; D. Winkler; A. Lüder; S. Biffl2019 In discrete manufacturing, basic and detail engineering workgroups need to collaborate to design highly automated cyber-physical production systems. Product/ion-awareness describes views and requirements coming from product and production process design, which are relevant to engineer production resources. These requirements imply strong dependencies between the product, the production process, and production resources (PPR). The Formal Process Description (FPD) provides basic concepts for modeling PPR knowledge, which support discrete manufacturing to some extent. In this paper, we introduce a meta-model that describes the structure of the FPD including a set of proposed extensions, focusing on expressing consistency dependencies on PPR relations, as a foundation for making design decisions traceable in the engineering process. In addition, the meta-model provides a clear description of how to model parallel or alternative process flows, a common use case in discrete manufacturing. The meta-model provides stakeholders with a clear description of the PPR modeling language (PPR-ML) and a rule set to check the validity of a model.10.1109/ETFA.2019.8869071https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8869071Formal Process Description (VDI/VDE 3682);Product-Process-Resource Modeling;Meta-ModelIEEE Inglês CE1 Excluído
Towards Testing the UML PSSM Test SuiteM. Elekes; Z. Micskei 2021 In model-based engineering approaches, models are executable artefacts used for simulation, generation and verification. The Executable UML specifications enriched the well-known UML language with precisely defined semantics. The Precise Semantics of UML State Machines (PSSM) specification defined an operational semantics for state machines. Moreover, the specification contains a detailed test suite that illustrates the semantics and can be used to check the conformance of model execution tools. However, as the test suite itself is a complex engineering effort, it could contain errors. To the best of our knowledge, this is the first paper to test and verify the PSSM test suite. We report on typical errors and issues found by reviewing the specification and executing it in one of the supporting tools. Finally, we collect recommendations for such test suites that could enhance future modelling language specifications.10.1109/LADC53747.2021.9672570https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672570UML;model-based;state machine;testingIEEE Inglês CE1 Excluído
A Proposal of Features to Support Analysis and Debugging of Declarative Model Transformations with Graphical Syntax by Embedded VisualizationsF. Ege; M. Tichy 2019 In model-driven software engineering (MDSE), chains of model transformations are used to turn a source model via a series of intermediate models into a target artifact. At times such a transformation chain does not deliver the expected result, either because a particular transformation step fails due to unmet preconditions, or the produced target artifact is not the desired one. To better understand the transformation process, and to locate and correct defects in the models or transformations involved, developers need appropriate tool support for analysis and debugging. MDSE tools provide a spectrum of techniques for analysis. These range from model checking approaches for proving logical properties of transformations to low-level stepwise de-bugging functionality that exposes how particular algorithms, e.g., graph matching, are implemented. However, these existing analysis features often do not present concrete suggestions directed at locating and fixing defects, or require developers to reason about their models and transformations in a procedural way. We focus on declarative model-to-model transformations with graphical syntax and consider defects located in source models or transformation specifications. For each of those defects, we sketch how a specific approach based on visualizing information integrated in the graphical syntax could support identifying and fixing that defect. These techniques aim towards enabling developers to analyze models and transformations on the same level of abstraction and with representations in the same syntax they normally work with.10.1109/MODELS-C.2019.00051https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904583declarative model transformations, graphical syntax, analysis, debuggingIEEE Inglês CE1 Excluído
Integration of ROS communication interfaces in a model-based tool for the description of AUTOSAR-compliant electrical/electronic architectures (E/E-A) in vehicle developmentH. Stoll; E. Koch; E. Sax 2020 In modern cars, software functions and services account for a large part of value creation and competitive differentiation. Several tools exist to address the development of such electrical/electronic architectures (E/E-A). In industry, the proprietary tool PREEvision developed by Vector Informatik GmbH is widely used to support the development for AUTOSAR, while in science and research, tools and ecosystems such as the Robot Operating System (ROS) are preferred because of their open-source nature. This leads to a multitude of freely available ROS components whose reusability in industrial AUTOSAR-based projects is desirable. Therefore, in this paper we present an approach to transform models between both worlds and thus to link them. This enables the further use of already existing components.10.1109/ITSC45102.2020.9294319https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9294319- IEEE Inglês CE1 Excluído
Multifaceted Consistency Checking of Collaborative Engineering ArtifactsM. A. Tröls; A. Mashkoor; A. Egyed2019 In modern day engineering projects, different engineers collaborate on creating a vast multitude of different artifacts such as requirements, design specifications and code. While these artifacts are strongly interdependent, they are often treated in isolation and with little regard to their semantical overlappings. Automatic consistency checking approaches between these artifacts are rare and often not feasible. Therefore, artifacts become inconsistent and the consequences are costly errors. This work proposes a multifaceted consistency checking approach for different kinds of engineering artifacts, with the help of a collaborative engineering platform. The proposed approach enables engineers to automatically check the consistency of their individual artifacts against the work results of other engineers, without using different tools than the established ones of their fields and without merging their artifacts with those of others.10.1109/MODELS-C.2019.00044https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904636collaborative engineering;engineering artifacts;consistency checkingIEEE Inglês CE1 Excluído
An empirical study on the impact of introducing a modeling tool in a Requirement Engineering courseL. Burgueño; J. L. C. Izquierdo; E. Planas2021 In numerous Programming and Software Engineering courses, students are asked to program on paper. This has supporters and detractors. Among its advantages, supporters claim that programming on paper allows students to focus on functionality, avoiding the distractions caused by syntax and without limiting their thinking to a specific programming language or paradigm. Detractors claim that this method lacks advanced capabilities provided by IDEs such as syntax check and auto-completion. More importantly, it does not give the opportunity to execute and test the code, which prevents students from discovering bugs.The state of the art has studied the benefits and disadvantages of programming on paper versus computer for general-purpose languages like Java and C with students of initial courses. Nevertheless, to the best of our knowledge, no study has been done targeting formal languages like OCL, which are taught in advanced courses.In this paper, we present our experience after introducing a modeling tool for the specification of OCL constraints in a Requirements Engineering course. This course is optional and is offered in the third and fourth years of the Computer Engineering degree. Our study covers two academic years, 2019 and 2020, in which there were 136 and 161 students enrolled, respectively. We present the context and design of our experiment, the results obtained from the empirical study we have performed and our conclusions, which support the suitability of the use of tools.10.1109/MODELS-C53483.2021.00115https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643678Requirement engineering;modeling tools;OCL;teaching;empirical studyIEEE Inglês CE1 Excluído
Automatic Classification of Apps Reviews for Requirement Engineering: Exploring the Customers Need from Healthcare ApplicationsN. Al Kilani; R. Tailakh; A. Hanani2019 In one year, more than 6.5 million mobile applications have been listed for download on the application stores. That is, they are used by millions (or billions) of users across the world. Users express their daily experience of applications as reviews on those stores. This experience may include reporting bugs, demanding new features, posting feedback with regards to performance, reporting security issues, demanding user interface enhancements, and other needs. Interestingly, reviews could contain valuable information for the interest of application vendors and developers. However, the volume of such data is as huge, that is, traditional searching algorithms may not be efficient in extracting such useful information. Machine learning and data mining techniques are one of the popularly used algorithms to efficiently extracting significant information for Software Requirement Engineering; a key phase in the Software Engineering Life Cycle. In this paper, we experience machine learning algorithms and natural language processing techniques to classify a set of reviews about healthcare-domain applications into multiple types of categories such as bug reports, new feature requests, application performance, and user interface. For this purpose, we could extract more than 7500 reviews of ten different health-related mobile applications. More importantly, those reviews were annotated manually by software experts. In our experiments, we use the Weka tool employing different machine learning algorithms. We will also show what algorithms and features will perform better; in terms of accuracy using different evaluation metrics, when classifying reviews about mobile apps into various classes; bugs, new features, sentimental, general bug, usability, security, and performance. Moreover, the conducted experiments show that the overall performance improves when we use the data subset with highly confident labeling; when two experts agree on the same class. For the imbalanced-data problem, this research will show the effect of applying resampling techniques on improving classification accuracy as well.10.1109/SNAMS.2019.8931820https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8931820Requirements Engineering;User's Reviews;Data Annotation;Supervised Machine Learning;Text ClassificationIEEE Inglês CE1 Excluído
Proof of Properties of a Syntax Analyzer of Robotic Mission PlansL. NANA; F. MONIN; S. GIRE 2019 In order to enhance the dependability of robotic missions designed with the help of the language PILOT, an incremental syntactic analyzer has been built. We have shown, with the help of the SWI-Prolog tool, that the analyzer allows to build all and only all the plans which are syntactically correct under some size. This proof has been done only for plans whose size is less than a threshold, because of a combinatory explosion problem inherent to the working of Prolog and to the used approach. In order to show the validity of the incremental syntactic analyzer for all plans, without any size constraint, we turned to the use of proof-based approaches, and particularly towards PVS tool. This paper deals with the modeling and verification of PILOT plans and their properties with the help of PVS, in order to prove the above properties of the incremental syntactic analyzer of PILOT.10.1109/ICRAIE47735.2019.9037782https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9037782Missions programming;robotics;modeling;verification;proofIEEE Inglês CE1 Excluído
The Heterogeneous Deployment Tool for Hardware and Software Co-designB. Zhao; Z. Li; T. Zhang 2020 In order to solve the shortcomings of manually writing code that cannot meet the requirements of rapid development and product verification, we designed a heterogeneous deployment tool based on Simulink model development. This heterogeneous deployment tool can deploy the algorithm designed by Simulink model to the CPU and FPGA platforms and can communicate between CPU and FPGA via PCI Express. Users do not need to concern the underlying hardware and drivers and but only need to build an algorithm, they can quickly deploy the algorithm on a heterogeneous hardware platform to verify the performance of the algorithm.10.1109/CITS49457.2020.9232649https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9232649heterogeneous deployment tool;FPGA;partial reconfiguration;CPU;PCI Express;Simulink modelIEEE Inglês CE1 Excluído
LAMEME Use Case: The Example of Apache Tomcat Complex SystemE. H. B. Toure; I. Fall; A. Bah; M. S. Camara; M. Ba; A. Fall2019 In previous works, we have proposed the use of a megamodel which is a language-based system for the maintenance of complex systems through a modeling perspective. We have called such a language LAMEME (a LAnguage for the Management and Evolution of MEgamodels and its Semantics). It is about a Domain Specific Language (DSL) which exclusively makes use of Higher-Order Functions (HOF) called Global Operation Models (GOMs) to update the megamodel content by adding or removing Component Models (CMs). The LAMEME semantics is given by specifying requires/ensures predicates that are checked at runtime. The paper presents a case study aiming to highlight how LAMEME can be used to describe a simple evolution of a complex software system such as Apache Tomcat.10.1109/ICoCS.2019.8930710https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8930710Complex Systems;MDE;Megamodeling;DSML;DBCIEEE Inglês CE1 Excluído
Finding Anomalies in Scratch AssignmentsN. Körber; K. Geldreich; A. Stahlbauer; G. Fraser2021 In programming education, teachers need to monitor and assess the progress of their students by investigating the code they write. Code quality of programs written in traditional programming languages can be automatically assessed with automated tests, verification tools, or linters. In many cases these approaches rely on some form of manually written formal specification to analyze the given programs. Writing such specifications, however, is hard for teachers, who are often not adequately trained for this task. Furthermore, similar support for popular block-based introductory programming languages like Scratch is lacking. Anomaly detection is an approach to automatically identify deviations of common behavior in datasets without any need for writing a specification. In this paper, we use anomaly detection to automatically find deviations of Scratch code in a classroom setting, where anomalies can represent erroneous code, alternative solutions, or distinguished work. Evaluation on solutions of different programming tasks demonstrates that anomaly detection can successfully be applied to tightly specified as well as open-ended programming tasks.10.1109/ICSE-SEET52601.2021.00027https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402175Anomaly Detection, Scratch, Block-Based Programming, Program Analysis, TeachingIEEE Inglês CE1 Excluído
A Lean Approach to Building Valid Model-Based Safety ArgumentsT. Viger; L. Murphy; A. Di Sandro; R. Shahin; M. Chechik2021 In recent decades, cyber-physical systems developed using Model-Driven Engineering (MDE) techniques have become ubiquitous in safety-critical domains. Safety assurance cases (ACs) are structured arguments designed to comprehensively show that such systems are safe; however, the reasoning steps, or strategies, used in AC arguments are often informal and difficult to rigorously evaluate. Consequently, AC arguments are prone to fallacies, and unsafe systems have been deployed as a result of fallacious ACs. To mitigate this problem, prior work [32] created a set of provably valid AC strategy templates to guide developers in building rigorous ACs. Yet instantiations of these templates remain error-prone and still need to be reviewed manually. In this paper, we report on using the interactive theorem prover Lean to bridge the gap between safety arguments and rigorous model-based reasoning. We generate formal, modelbased machine-checked AC arguments, taking advantage of the traceability between model and safety artifacts, and mitigating errors that could arise from manual argument assessment. The approach is implemented in an extended version of the MMINT-A model management tool [10]. Implementation includes a conversion of informal claims into formal Lean properties, decomposition into formal sub-properties and generation of correctness proofs. We demonstrate the applicability of the approach on two safety case studies from the literature.10.1109/MODELS50736.2021.00028https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592441Assurance;safety cases;strategies;theorem proving;LeanIEEE Inglês CE1 Excluído
A Modeling Method for Model-based Analysis and Design of a System-of-SystemsY. -M. Baek; Z. Mihret; Y. -J. Shin; D. -H. Bae2020 In recent years, a domain of Systems-of-Systems (SoS) has emerged due to the needs of utilizing collective and collaborative system capabilities. As interest in SoS engineering has grown, this study focuses on the model-based analysis and design of an SoS, and we propose a general-purpose modeling method for the model-based SoS engineering (MBSoSE). Based on requirements that modeling methods of MBSoSE approaches should fulfill, required model types are identified (19 model types) and they are classified on their different modeling purposes and concerns (6 model categories). Model types are meta-modeled using the ADOxx Metamodeling Platform and they are implemented as modeling languages in a tool, called SIMVA-SoS Modeler. Using the modeling tool developed, we designed two different SoS cases and their scenarios that can be utilized as inputs of simulation and verification tools. Through the case studies, overall applicability of our modeling method for MBSoSE is evaluated and specific modeling results are provided as base reference models.10.1109/APSEC51365.2020.00042https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9359318Software System Modeling;Software Modeling Tool;Model-based Systems-of-Systems Engineering (MBSoSE);Simulation ModelIEEE Inglês CE1 Excluído
A verification method for array-based vision chip using a fixed-point neural network simulation toolM. Zhao; X. Zheng; K. Ning; C. Yao; Q. Luo; S. Yu; L. Liu; N. Wu2020 In recent years, customized chips for accelerating deep learning algorithms have been continuously developed with some emerging challenges in the field of deep-learning-based vision chips. Considering the lack of algorithm-level verification tools, poor reusability of simulation code and low development efficiency in deep learning vision chip verification, a novel verification method, which is based on the fixed-point simulation tool, is proposed and utilized in the development of an array-based deep learning vision chip. This simulation tool, implemented by combination of Matlab and CUDA C, enables efficient and accurate verification of the vision chip by taking the classical MobileNet V1 as the benchmark. This method, integrated with the RTL and FPGA co-verification seamlessly, provides the golden reference and reliable verification during the entire development period of the vision chip.10.1109/LASCAS45839.2020.9069000https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9069000fixed-point simulation;algorithm level verification;vision chipIEEE Inglês CE1 Excluído
An Evaluation of General-Purpose Static Analysis Tools on C/C++ Test CodeJ. Malm; E. Enoiu; M. A. Naser; B. Lisper; Z. Porkoláb; S. Eldh2022 In recent years, maintaining test code quality has gained more attention due to increased automation and the growing focus on issues caused during this process.Test code may become long and complex, but maintaining its quality is mostly a manual process, that may not scale in big software projects. Moreover, bugs in test code may give a false impression about the correctness or performance of the production code. Static program analysis (SPA) tools are being used to maintain the quality of software projects nowadays. However, these tools are either not used to analyse test code, or any analysis results on the test code are suppressed.This is especially true since SPA tools are not tailored to generate precise warnings on test code. This paper investigates the use of SPA on test code by employing three state-of-the-art general-purpose static analysers on a curated set of projects used in the industry and a random sample of relatively popular and large open-source C/C++ projects. We have found a number of built-in code checking modules that can detect quality issues in the test code. However, these checkers need some tailoring to obtain relevant results. We observed design choices in test frameworks that raise noisy warnings in analysers and propose a set of augmentations to the checkers or the analysis framework to obtain precise warnings from static analysers.10.1109/SEAA56994.2022.00029https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10011514testing;static analysis;test maintenance;fault detection;code qualityIEEE Inglês CE1 Excluído
Integrating Provenance Capture and UML With UML2PROV: Principles and ExperienceC. Sáenz-Adán; B. Pérez; F. J. García-Izquierdo; L. Moreau2022 In response to the increasing calls for algorithmic accountability, UML2PROV is a novel approach to address the existing gap between application design, where models are described by UML diagrams, and provenance design, where generated provenance is meant to describe an application's flows of data, processes and responsibility, enabling greater accountability of this application. The originality of UML2PROV is that designers are allowed to follow their preferred software engineering methodology to create the UML Diagrams for their application, while UML2PROV takes the UML diagrams as a starting point to automatically generate: (1) the design of the provenance to be generated (expressed as PROV templates); and (2) the software library for collecting runtime values of interest (encoded as variable-value associations known as bindings), which can be deployed in the application without developer intervention. At runtime, the PROV templates combined with the bindings are used to generate high-quality provenance suitable for subsequent consumption. UML2PROV is rigorously defined by an extensive set of 17 patterns mapping UML diagrams to provenance templates, and is accompanied by a reference implementation based on Model Driven Development techniques. A systematic evaluation of UML2PROV uses quantitative data and qualitative arguments to show the benefits and trade-offs of applying UML2PROV for software engineers seeking to make applications provenance-aware. In particular, as the UML design drives both the design and capture of provenance, we discuss how the levels of detail in UML designs affect aspects such as provenance design generation, application instrumentation, provenance capability maintenance, storage and run-time overhead, and quality of the generated provenance. Some key lessons are learned such as: starting from a non-tailored UML design leads to the capture of more provenance than required to satisfy provenance requirements and therefore, increases the overhead unnecessarily; alternatively, if the UML design is tailored to focus on addressing provenance requirements, only relevant provenance gets to be collected, resulting in lower overheads.10.1109/TSE.2020.2977016https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9018139Provenance;PROV;provenance generation;templateIEEE Inglês CE1 Excluído
SPECMATE: Automated Creation of Test Cases from Acceptance CriteriaJ. Fischbach; A. Vogelsang; D. Spies; A. Wehrle; M. Junker; D. Freudenstein2020 In the agile domain, test cases are derived from acceptance criteria to verify the expected system behavior. However, the design of test cases is laborious and has to be done manually due to missing tool support. Existing approaches for automatically deriving tests require semi-formal or even formal notations of acceptance criteria, though informal descriptions are mostly employed in practice. In this paper, we make three contributions: (1) a case study of 961 user stories providing an insight into how user stories are formulated and used in practice, (2) an approach for the automatic extraction of test cases from informal acceptance criteria and (3) a study demonstrating the feasibility of our approach in cooperation with our industry partner. In our study, out of 604 manually created test cases, 56 % can be generated automatically and missing negative test cases are added.10.1109/ICST46399.2020.00040https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159056test case creation;natural language processing;model-based testing;user stories;agile software developmentIEEE Inglês CE1 Excluído
Towards Simulation of CubeSat Operational Scenarios under a Cyber-Physical Systems ViewD. P. de Almeida; B. Graics; R. A. J. Chagas; F. L. de Sousa; F. Mattiello-Francisco2021 In the development of academic CubeSat-based space missions, it is common to skip or rush many practices of the Systems Engineering Process due to time and cost constraints, which may lead to issues later on in the mission and failures. Mission concept analyses are often in these practices, including the analysis of the in-orbit behavior of the satellite with respects to power consumption and data generation. With the purpose of supporting these analyses, this article introduces a workflow based on a Cyber-Physical abstraction of CubeSat mission operation scenarios, which uses architectural models based on SysML Class Diagrams and automatic model transformation to support the simulation of these operational scenarios in an open source Model-Based System Engineering (MBSE) tool. These simulations can be used in mission concept analyses in Phase-0 studies to verify initial operations requirements and drive further design implementations.10.1109/LADC53747.2021.9672594https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672594CubeSat-based space mission;MBSE;code generation;simulationIEEE Inglês CE1 Excluído
Model-based Development of a System of Systems Using Unified Architecture Framework (UAF): A Case StudyO. C. Eichmann; S. Melzer; R. God2019 In the development of safety- and security-relevant systems the V-model is established providing verification possibilities at each development stage. Usually, methods and tools of Model-based Systems Engineering (MBSE) are used in combination with the V-model for the development of single and self-contained complex systems. Nowadays, ubiquitous connectivity leads to a high degree of communication between systems enabling their cooperation for the provision of new services in a so-called System of Systems (SoS). In contrast to conventional systems engineering new methods and tools are required for service enabling SoS. In order to fulfill requirements of System of Systems Engineering (SoSE) the Object Management Group (OMG) developed the Unified Architecture Framework (UAF) for representation of enterprise architecture. This paper presents an approach for model-based development of SoS using UAF according to the V-model. In addition, an application of this new method shows differences between single system and SoS development methods.10.1109/SYSCON.2019.8836749https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836749Cyber-Physical Systems;System of Systems;Hardware Integration;V-model;Message BrokerIEEE Inglês CE1 Excluído
Model-based Systems Engineering Supporting Cost Analysis of Aircraft Development ProcessH. Wang; S. Zhu; J. Tang; J. Lu; J. Wu; D. Kiritsis2021 In the fact of increasing complexity of aircraft development programs, development processes of aircraft and their subsystems are continuously becoming complicated which leads to the growing risks of development cost across the entire lifecycle. In this paper, we propose a model-based systems engineering approach to support process modeling of aircraft development using a multi-architecture modeling language KARMA. At the same time, property verification and hybrid automata simulation are used implement the static cost analysis of each work task and dynamic cost analysis of the entire development process. Finally through one case study, a system-level aircraft development process ”V model” is created which cost analysis is implemented by the KARMA language. From the result, we find the KARMA language enables to integrate process modeling with static analysis and dynamic analysis of development process in a multi-architecture modeling tool MetaGraph.10.1109/ISSE51541.2021.9582507https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582507Model-based Systems Engineering;Cost analysis;Development process;KARMA lanaguageIEEE Inglês CE1 Excluído
DoMoBOT: A Modelling Bot for Automated and Traceable Domain ModellingR. Saini; G. Mussbacher; J. L. C. Guo; J. Kienzle2021 In the initial phases of the software development cycle, domain modelling is typically performed to transform informal requirements expressed in natural language into concise and analyzable domain models. These models capture the key concepts of an application domain and their relationships in the form of class diagrams. Building domain models manually is often a time-consuming and labor-intensive task. The current approaches which aim to extract domain models automatically, are inadequate in providing insights into the modelling decisions taken by extractor systems. This inhibits modellers to quickly confirm the completeness and conciseness of extracted domain models. To address these challenges, we present DoMoBOT, a domain modelling bot that uses a traceability knowledge graph to enable traceability of modelling decisions from extracted domain model elements to requirements and vice-versa. In this tool demo paper, we showcase how the implementation and architecture of DoMoBOT facilitate modellers to extract domain models and gain insights into the modelling decisions taken by our bot.10.1109/RE51729.2021.00054https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604742Domain Models;Traceability;Natural Language (NL);Machine Learning (ML);Traceability Knowledge GraphIEEE Inglês CE1 Excluído
Generating UML Class Diagram from Natural Language Requirements: A Survey of Approaches and TechniquesE. A. Abdelnabi; A. M. Maatuk; M. Hagal2021 In the last years, many methods and tools for generating Unified Modeling Language (UML) class diagrams from natural language (NL) software requirements. These methods and tools deal with the transformation of NL textual requirements to UML diagrams. The transformation process involves analyzing NL requirements and extracting relevant information from the text to generate UML class models. This paper aims to survey the existing works of transforming textual requirements into UML class models to indicate their strengths and limitations. The paper provides a comprehensive explanation and evaluation of the existing approaches and tools. The automation degree, efficiency, and completeness, as well as the used techniques, are studied and analyzed. The study demonstrated the necessity of automating the process, in addition to combining artificial intelligence with engineering requirements and using Natural Language Processing (NLP) techniques to extract class diagrams from NL requirements.10.1109/MI-STA52233.2021.9464433https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9464433System Development;Requirement Engineering;NLP;UML class diagramsIEEE Inglês CE1 Excluído
Model-based Engineering of modern Automation Structures with the Interdisciplinary Modeling Language (IML)J. Flender; S. Storms; W. Herfs; M. Witte2019 In the recent past, automation technologies have experienced significant structural and technological development. Especially Production Machines profit from this evolution, as new production paradigms are integrated into control architectures. In order to incorporate this into superior systems engineering methodologies, we have carried out a comprehensive technology review to derive requirements towards the specification of such new automation structures. Based on the Interdisciplinary Modeling Language (IML), which has been specifically developed for the system design of production machines, we integrated appropriate modeling assets into IML for engineering modern automation structures. With the intention to support a holistic engineering process of production machines, this approach shows - along the automation domain - the integration of the presented methodology into a data-consistent toolchain using IML. Based on this, we enable generating program structures in common automation development tools, derived directly from IML system models. Therefore, a data-consistent engineering toolchain will ideally support the development of the actual procedural sequence implementation based on IML system models.10.1109/SYSCON.2019.8836772https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836772Data-Consistent Engineering;Automation Structure;Production MachinesIEEE Inglês CE1 Excluído
Model Transformation for Asset Administration ShellsT. Miny; M. Thies; U. Epple; C. Diedrich2020 In the scope of Industry 4.0 (I40), one goal is the standardized access to asset information and asset services using standardized submodels (submodel templates) in the Asset Administration Shell. Since submodel templates are modeled by different groups of people, the same asset information will be contained in several submodel templates. For automatic generation of new submodels based on existing information from other submodels, model transformation can be a solution. Therefore, in this contribution, we present a guideline on how to develop a new model transformation language for a given use case and apply this guideline to the concrete use case (model transformation for Asset Administration Shells). As a result, we define of the abstract syntax of a customized model transformation language called AASMTL.10.1109/IECON43393.2020.9254649https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9254649Modell transformation;Industry 4.0;Asset Ad-ministration ShellIEEE Inglês CE1 Excluído
Identity-Based Encryption in UAV Assisted HetNets: A SurveyA. Rashid; D. Sharma; T. A. Lone; S. Gupta; S. K. Gupta2019 In this modern technological world, the Unmanned Ariel Vehicle (UAV) assisted Heterogeneous Networks (HetNets) is almost being used by every developing/developed country for its serving civilian, military missions and natural disasters, etc. The military using UAV aided HetNets in their battlefields and nuclear war conditions and gathering reconnaissance information from hostile areas and neighboring military zones. However, the untypical nature of UAV assisted network requests security inspection at the time of establishing the network. So the UAV assisted HetNets is in need of trusted and secure communication among military users using the same network. The term trusted is being widely used for authorized users within the network. This research work confers the word trusted on the standardization of the cryptographic scheme known Identity-Based Encryption (IBE). Hence, the IBE helps the users to use the UAV aided HetNets securely in getting the reconnaissance information from enemy areas. Also, the IBE prevents the same network from the intrusion attacks of intruders. The security protocols have been formulated with the AVISPA supported language HLPSL and then validated with the same AVISPA TOOL.10.1109/ICCCNT45670.2019.8944826https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8944826UAV;HetNet;IBE;secure communication;network performanceIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843739
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582284
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9638498
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925656
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9491698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904523
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8746526
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586086
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9336669
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402303
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9859402
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9556337
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9042864
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9443656
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9092607
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958670
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715289
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833859
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474544
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9448036
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8869071
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672570
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904583
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9294319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904636
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643678
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8931820
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9037782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9232649
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8930710
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402175
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9359318
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9069000
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10011514
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9018139
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582507
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604742
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9464433
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836772
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9254649
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8944826

Topological Functioning Model for Structural Design of Predictive Expert AdvisorsY. E. Midilli; S. Parsutins 2019 In this paper, structural view of predictive expert advisors, one of the most commonly used algorithmic trading tool, has been designed. In this context, topological functioning of the domain has been modeled with topological and logical relationships between functional features. Functional and nonfunctional features are identified derived from informal business description. Stepwise approach is given to transform the topological functioning model into communication diagram, topological class diagram and object diagram of predictive expert advisors.10.1109/ITMS47855.2019.8940740https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8940740Neural networks;architecture;expert advisors;algorithmic tradingIEEE Inglês CE1 Excluído
Model Based JUnit Testing M. L. Gromov; S. A. Prokopenko; N. V. Shabaldina; A. V. Laputenko2019 In this paper, tools that automate tests conversion are presented. Tests for Java implementations are derived based on formal models. To apply these tests to Java implementations tests should be converted into an appropriate form for the Java programs. In this paper, JUnit is used. The experiments confirm the feasibility of developed tools.10.1109/EDM.2019.8823472https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8823472Finite State Machine;Timed Finite State Machine;JUnut;test;UMLIEEE Inglês CE1 Excluído
Applying Model-Based Systems Engineering to the Development of a Test and Evaluation Tool for Unmanned Autonomous SystemsS. Gebreyohannes; A. Karimoddini; A. Homaifar2020 In this paper, we apply the Model-Based Systems Engineering (MBSE) concepts and approaches to the early phases of the development of a Test & Evaluation (T&E) tool for Unmanned Autonomous Systems (UASs). This helps meet the design requirements and maintain traceability (of design requirements and decisions for satisfying stakeholder's needs). UAS development is driving toward increasing levels of autonomy for unmanned systems. The dynamic, non-deterministic behavior of intelligent autonomous systems presents the testers with a significant challenge. The ability to predict the behavior and evaluate performance of increasingly intelligent systems, especially those that employ vision-based behaviors, is seen as a critical T&E shortfall. To address this challenge, we propose, in this paper, to use a high-fidelity simulation environment. This can significantly aid in the evaluation of UAS behaviors and their perception mechanisms. Such a high-fidelity simulator enables the testes to safely conduct a wide variety of mission scenarios to test an autonomous system by providing truth data to compare with the UAS's perceptions. A major challenge here is to manage the system modeling complexity and maintain traceability of design decisions made at each level of the development to meet stakeholder's needs. In this paper, we follow MBSE methodology and use Systems Modeling Language (SysML - a domain-specific modeling language for systems engineering used to specify, analyze, design, optimize, and verify systems) to establish a systematic framework for designing a T&E tool for UASs and to transform stakeholder's needs into design requirements to maintain traceability.10.1109/SysCon47679.2020.9275894https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275894Test & Evaluation;Model-Based Systems Engineering;Unmanned Autonomous SystemsIEEE Inglês CE1 Excluído
Developing Reflex IDE Kernel with Xtext FrameworkA. Bastrykina; V. Zyubin; A. Rozov2021 In this paper, we describe the technology of the process-oriented language Reflex IDE kernel development. The Reflex language, which is being maintained at the Institute of Automation and Electrometry, is a language for cyber-physical systems software specification. In the paper, we assume that the cyber-physical system is a computational core that interacts with the physical world. In the case of Reflex, the computation platform is an industrial PC. Reflex IDE (RIDE) includes a language-based editor, syntax and semantics analyzers as well as an abstract syntax tree (AST) generator, and a class library for working with the generated AST. In this work, we explain our motivation for the research, formulate the requirements for the development, and present the RIDE architecture. We describe the RIDE development process using Eclipse/Xtext tools and its user interface. We also provide an example of extending the Reflex IDE kernel with a code generator for the AVR platform. In the conclusion, we discuss the possibility of using the obtained result to create a web-version of RIDE.10.1109/EDM52169.2021.9507663https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507663process-oriented programming;Reflex;Xtext;parser;translator;DSLIEEE Inglês CE1 Excluído
ESSENCE Kernel in Overcoming Challenges of Agile Software DevelopmentD. Jana; P. Pal 2020 In this paper, we discuss the benefits and challenges of agile programming when used in large-scale software development. We enumerate the myths and ground realities of prevalent agile practice. Agile programming has promises and potentials with small delivery cycles. But at the same time, in practice, individual excellence or infrastructural building blocks as essential components are often prioritized less. Thus, the entire quality may suffer with staggered timelines and compromises. In this context, ESSENCE, a SEMAT kernel is proposed to be used in conjunction with suitably adapted and customized Agile process in order to help mitigating the risks and challenges. We propose to use ESSENCE Alpha cards and competency for health-check of process, tools, procedures and resources in a timely manner. OMG has adopted SEMAT and its kernel, ESSENCE, as an official OMG standard. Essential ESSENCE use with agile practice is a definite way forward for timely saving of catastrophes.10.1109/INDICON49873.2020.9342375https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9342375Agile Programming;Alpha State Cards;Competency Cards;ESSENCE;Iterative development;Object Oriented Methodology;Scrum;SEMAT;Software Engineering;Sprint;Structured methodology;UMLIEEE Inglês CE1 Excluído
An Actor-Based Design Platform for System of SystemsM. Sirjani; G. Forcina; A. Jafari; S. Baumgart; E. Khamespanah; A. Sedaghatbaf2019 In this paper, we present AdaptiveFlow as a platform for designing system of systems. A model-based development approach is proposed and tools are provided for formal verification and performance evaluation. The actor-based language, Timed Rebeca, is used for modelling, and the model checking tool Afra is used for checking the safety properties and also for performance evaluation. We investigate the efficiency of our approach and the applicability of the developed platform by conducting experiments on a case study based on the Electric Site Research Project of Volvo Construction Equipment. In this project, a fleet of autonomous haulers is utilised to transport materials in a quarry site. We used three adaptive policies as plugins to our platform and examined these policies in different scenarios.10.1109/COMPSAC.2019.00089https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754117System-of-systems;Actor model;Track-based flow management;Model checking;Performance evaluationIEEE Inglês CE1 Excluído
A Model-driven Approach to Continuous Practices for Modern Cloud-based Web ApplicationsT. Tegeler; F. Gossen; B. Steffen2019 In this paper, we propose a model-driven approach to Continuous Software Integration and Deployment (CI/CD) for modern cloud-based applications. Key to our approach is a formal graphical modelling language for the specification of the processes and tasks involved. Based on these specifications the complete CI/CD configurations are generated fully and automatically guaranteeing their correctness with regard to the specification by construction. This way typical sources of critical errors can be avoided lowering the hurdle to introduce CI/CD especially in mature projects. We demonstrate the power of our model-driven approach with the help of an industrial web application - a prime example for cloud-based applications.10.1109/CONFLUENCE.2019.8776962https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776962Continuous Integration;Continuous Deployment;Model-driven;Cloud-based ApplicationsIEEE Inglês CE1 Excluído
Applying Model-based Requirements Engineering in Three Large European Collaborative Projects: An Experience ReportA. Sadovykh; D. Truscan; H. Bruneliere2021 In this paper, we report on our 5-year’s practical experience of designing, developing and then deploying a Model-based Requirements Engineering (MBRE) approach and language in the context of three different large European collaborative projects providing complex software solutions. Based on data collected both during projects execution and via a survey realized afterwards, we intend to show that such an approach can bring interesting benefits in terms of scalability (e.g., large number of handled requirements), heterogeneity (e.g., partners with different types of RE background), traceability (e.g. from the requirements to the software components), automation (e.g., requirement documentation generation), usefulness or usability. To illustrate our contribution, we exemplify the application of our MBRE approach and language with concrete elements coming from one of these European research projects. We also discuss further the general benefits and current limitations of using this MBRE approach and corresponding language.10.1109/RE51729.2021.00040https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604736Requirements Engineering;Model-based Engineering;Collaborative Projects;Experience Report;Scalability;Heterogeneity;Traceability;AutomationIEEE Inglês CE1 Excluído
Work-in-Progress: Automatically Generated Response-Time Proofs as Evidence of TimelinessM. Maida; S. Bozhko; B. Brandenburg2021 In this paper, we report on the ongoing development of POET, the first foundational and automated response-time analysis tool. The certificates produced by POET are short, readable, and fully commented Coq files that can be machine-checked in (usually) minutes.10.1109/RTSS52674.2021.00053https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622378Prosa;aRTA;Coq;POET IEEE Inglês CE1 Excluído
PCIe Transaction and Data link Layers Verification IP Development using UVMS. P. Jagtap; V. Ingale; A. Gokhale2022 In this publication, PCI Express Transaction Layer and Data Link Layer verification is carried out. The author provided detailed information regarding the Transaction Layer and Data Link Layer of PCI Express. The study developed the verification IP for Transaction Layer and Data Link Layer, wrote the testbench environment using UVM (Universal Verification Methodology) to validate the design module's accuracy for function simulation. Using Mentor Graphics Questasim 10.7c tool, the code was simulated. Achieved results demonstrates that the designed verification IP meets the required of the protocol of PCI Express. The testbench in UVM validate its correctness and supports the function of PCI Express Transaction Layer and Data Link Layer.10.1109/GCAT55367.2022.9971829https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9971829Data Link Layer;DLLP;PCIe;TLP;Transaction layer;UVM;Verification IPIEEE Inglês CE1 Excluído
What’s up with Requirements Engineering for Artificial Intelligence Systems?K. Ahmad; M. Bano; M. Abdelrazek; C. Arora; J. Grundy2021 In traditional approaches to building software systems (that do not include an Artificial Intelligent (AI) or Machine Learning (ML) component), Requirements Engineering (RE) activities are well-established and researched. However, building software systems with one or more AI components may depend heavily on data with limited or no insight into the system’s workings. Therefore, engineering such systems poses significant new challenges to RE. Our search showed that literature has focused on using AI to manage RE activities, with limited research on RE for AI (RE4AI). Our study’s main objective was to investigate current approaches in writing requirements for AI/ML systems, identify available tools and techniques used to model requirements, and find existing challenges and limitations. We performed a Systematic Literature Review (SLR) of current RE4AI methods and identified 27 primary studies. Using these studies, we analysed the key tools and techniques used to specify and model requirements and found several challenges and limitations of existing RE4AI practices. We further provide recommendations for future research, based on our analysis of the primary studies and mapping to industry guidelines in Google PAIR). The SLR findings highlighted that present RE applications were not adaptive to manage most AI/ML systems and emphasised the need to provide new techniques and tools to support RE4AI.10.1109/RE51729.2021.00008https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604729Requirements Engineering;Artificial Intelligence;Machine Learning;Systematic Literature ReviewIEEE Inglês CE1 Excluído
OpenErrorPro: A New Tool for Stochastic Model-Based Reliability and Resilience AnalysisA. Morozov; K. Ding; M. Steurer; K. Janschek2019 Increasing complexity and heterogeneity of modern safety-critical systems require advanced tools for quantitative reliability analysis. Most of the available analytical software exploits classical methods such as event trees, static and dynamic fault trees, reliability block diagrams, simple Bayesian networks, and Markov chains. First, these methods fail to adequately model complex interaction of software, hardware, physical components, dynamic feedback loops, propagation of data errors, nontrivial failure scenarios, sophisticated fault tolerance, and resilience mechanisms. Second, these methods are limited to the evaluation of the fixed set of traditional reliability metrics such as the probability of generic system failure, failure rate, MTTF, MTBF, and MTTR. More flexible models, such as the Dual-graph Error Propagation Model (DEPM) can overcome these limitations but have no available tools. This paper introduces the first open-source DEPM-based analytical software tool OpenErrorPro. The DEPM is a formal stochastic model that captures control and data flow structures and reliability-related properties of executable system components. The numerical analysis in OpenErrorPro is based on the automatic generation of Markov chain models and the utilization of modern Probabilistic Model Checking (PMC) techniques. The PMC enables the analysis of highly-customizable resilience metrics, e.g. "the probability of system recovery after a specified system failure during the defined time interval", in addition to the traditional reliability metrics. DEPMs can be automatically generated from Simulink/Stateflow, UML/SysML, and AADL models, as well as source code of software components using LLVM. This allows not only the automated model-based evaluation but also the analysis of systems developed using the combination of several modeling paradigms. The key purpose of the tool is to close the gap between the conventional system design models and advanced analytical methods in order to give system reliability engineers easy and automated access to the full potential of PMC techniques. Finally, OpenErrorPro enables the application of several effective optimizations against the state space explosion of underlying Markov models already in the DEPM level where the system semantics such as control and data flow structures are accessible.10.1109/ISSRE.2019.00038https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8987451Reliability;Resilience;Markov chain model;Probabilistic model checking;Model-based analysisIEEE Inglês CE1 Excluído
Finding Substitutable Binary Code By Synthesizing AdaptersV. Sharma; K. Hietala; S. McCamant2021 Independently developed codebases typically contain many segments of code that perform same or closely related operations (semantic clones). Finding functionally equivalent segments enables applications like replacing a segment by a more efficient or more secure alternative. Such related segments often have different interfaces, so some glue code (an adapter) is needed to replace one with the other. In previous work, we presented an algorithm that searches for replaceable code segments by attempting to synthesize an adapter between them from some finite family of adapters; it terminates if it finds no possible adapter. In this work, we compare binary symbolic execution-based adapter search with concrete adapter enumeration based on Intel's Pin framework, and explore the relation between size of adapter search space and total search time. We present examples of applying adapter synthesis for improving security of binary functions and switching between binary implementations of RC4. We present two large-scale evaluations: (1) we run adapter synthesis on more than 13,000 function pairs from the Linux C library, and (2) we reverse engineer fragments of ARM binary code by running more than a million adapter synthesis tasks. Our results confirm that several instances of adaptably equivalent binary functions exist in real-world code, and suggest that adapter synthesis can be applied for automatically replacing binary code with its adaptably equivalent variants.10.1109/TSE.2019.2931000https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776650Symbolic execution;equivalence checking;program synthesis;binary analysisIEEE Inglês CE1 Excluído
Detection of Variable Misuse Using Static Analysis Combined with Machine LearningG. Morgachev; V. Ignatyev; A. Belevantsev2019 Industrial static analyzers are able to detect only several narrow classes of algorithmic errors, for example actual arguments order swapped with formal parameters, forgotten renaming of variable after copy-paste. However, even for these categories essential part of errors is lost because of heuristical design of a checker. We propose the generalization of specified errors in the form of variable misuse problem and deal with it using machine learning. The proposed method uses message propagation through the program model represented as a graph, combining data from multiple analysis levels, including AST, dataflow. We introduce several error criteria, which were evaluated on the set of open source projects with millions of LoC. Testing in close to industrial conditions shows good false positive and missed errors ratio comparable with remaining detectors and allows to include developed checker (after a minor rework) into a general purpose production static analyzer for error detection.10.1109/ISPRAS47671.2019.00009https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991157static analysis;algorithmic error detection;graph neural networksIEEE Inglês CE1 Excluído
Concept-Level Model of Integrated Syntax and Semantic Validation for Internet of Medical Things DataA. Koren; M. Jurčević 2021 Integrating personal health data into a central medical information system is met with various challenges. Medical data is a critical and highly sensitive resource. Data quality problems can occur at various phases, such as collection of sensor data or its processing. Thus, in order to remedy threats to persons' health and security due to faulty data, syntax verification and semantic validation of medical data is a vital step. Furthermore, the communication must be in line with international standards and regulations and data structure definition (DSD) must be ensured. In order to operate with vastly diverse personal health data, semantic constraints specification is needed. To achieve this, a schematron-based validation tool will be integrated as a module into a larger data cleaning and processing system which ensures the quality of data and its compliance to the existing standards and regulations.10.1109/ICSC50631.2021.00044https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9364404Central Health Information System;Electronic Health Record;EHR;eHealth Services;Healthcare Standards;Medical Data;FHIR;HL7IEEE Inglês CE1 Excluído
Security Analysis for Distributed IoT-Based Industrial AutomationV. Lesi; Z. Jakovljevic; M. Pajic 2022 Internet of Things (IoT) technologies enable development of reconfigurable manufacturing systems—a new generation of modularized industrial equipment suitable for highly customized manufacturing. Sequential control in these systems is largely based on discrete events, whereas their formal execution semantics is specified as control interpreted Petri nets (CIPN). Despite industry-wide use of programming languages based on the CIPN formalism, formal verification of such control applications in the presence of adversarial activity is not supported. Consequently, in this article, we introduce security-aware modeling and verification techniques for CIPN-based sequential control applications. Specifically, we show how CIPN models of networked industrial IoT controllers can be transformed into time Petri net (TPN)-based models and composed with plant and security-aware channel models in order to enable system-level verification of safety properties in the presence of network-based attacks. Additionally, we introduce realistic channel-specific attack models that capture adversarial behavior using nondeterminism. Moreover, we show how verification results can be utilized to introduce security patches and facilitate design of attack detectors that improve system resiliency and enable satisfaction of critical safety properties. Finally, we evaluate our framework on an industrial case study. Note to Practitioners—Our main goal is to provide formal security guarantees for distributed sequential controllers. Specifically, we target smart automation controllers geared toward Industrial IoT applications that are typically programed in C/C++ and are running applications originally designed in, for example, GRAFCET (IEC 60848)/SFC (IEC 61131-3) automation programming languages. Since existing tools for the design of distributed automation do not support system-level verification of relevant safety properties, we show how security-aware transceiver and communication models can be developed and composed with distributed controller models. Then, we show how existing tools for verification of time Petri nets can be used to verify relevant properties including safety and liveness of the distributed automation system in the presence of network-based attacks. To provide an end-to-end analysis as well as security patching, results of our analysis can be used to deploy suitable firmware updates during the stage when executable code for target controllers (e.g., in C/C++) is generated based on GRAFCET/SFC control models. We also show that security guarantees can be improved as the relevant safety/liveness properties can be verified after corresponding security patches are deployed. Finally, we show applicability of our framework on a realistic distributed pneumatic manipulator.10.1109/TASE.2021.3106335https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9528498Industrial Internet of Things (IIoT);nondeterministic analysis;Petri nets (PNs);secure distributed automation;sequential control systemsIEEE Inglês CE1 Excluído
Block Level SoC Verification Using SystemverilogK. K. Yadu; R. Bhakthavatchalu 2019 Introducing a new strategy for verification of System On Chip (SoC) using system Verilog. System Verilog provides a great platform for verification. The OOPs concept in System Verilog make it more reliable. There are many existing SoC verification methods are available. But most of them are not that much efficient. So here we are planning to introduce a new verification strategy that takes many of the positive characteristics of the existing strategies and mixes them together to have an efficient and perfect strategy by using the advantages of System Verilog.10.1109/ICECA.2019.8821909https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8821909System-Verilog (SV);Test-Bench (TB);Register Transfer Level (RTL);Object Oriented Programming (OOP);Design Under Test (DUT)IEEE Inglês CE1 Excluído
Integrated modeling tool for indexing and analyzing state machine traceS. Delisle; N. Ezzati-Jivan; M. R. Dagenais2021 It is important to model and understand an application or system runtime behavior to identify potential performance problems. Execution tracing, the basis of various dynamic analysis methods includes the collection of events, metrics, and statistics about the runtime behaviors of systems and applications. However, comprehensive execution tracing can result in very large trace files, most of which are irrelevant to the problem at hand. This is compounded by the inflexibility and complexity of common tools in how the user specifies what to capture, making the collection of relevant statistics difficult. While existing solutions allow for an adaptive collection of metrics and statistics, they often require users to write large and complex scripts in a domain-specific language. In this paper, we propose a state machine based modeling tool that simplifies the creation of user-defined and data-driven trace-based analyses. The proposed method combines advanced kernel-space and user-space execution trace events with powerful and adaptable modeling in order to automatically generating event-based analysis based on users’ specific requirements and problems. The difficulty and complexity of user-defined event tracing is drastically reduced. We demonstrate the efficiency, effectiveness, and simplicity of our proposed tool through real use cases of multi-level dynamic execution tracing in the Linux kernel.10.1109/ISNCC52172.2021.9615814https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9615814Performance Analysis;Big Data Analysis;Data-driven Model;Software modeling;Model-driven.IEEE Inglês CE1 Excluído
JSTAR: JavaScript Specification Type Analyzer using RefinementJ. Park; S. An; W. Shin; Y. Sim; S. Ryu2021 JavaScript is one of the mainstream programming languages for client-side programming, server-side programming, and even embedded systems. Various JavaScript engines developed and maintained in diverse fields must conform to the syntax and semantics described in ECMAScript, the standard specification of JavaScript. Since an incorrect description in ECMAScript can lead to wrong JavaScript engine implementations, checking the correctness of ECMAScript is critical and essential. However, all the specification updates are currently manually reviewed by the Ecma Technical Committee 39 (TC39) without any automated tools. Moreover, in late 2014, the committee announced the yearly release cadence and open development process of ECMAScript to quickly adapt to evolving development environments. Because of such frequent updates, checking the correctness of ECMAScript becomes more labor-intensive and error-prone.To alleviate the problem, we propose JSTAR, a JavaScript Specification Type Analyzer using Refinement. It is the first tool that performs type analysis on JavaScript specifications and detects specification bugs using a bug detector. For a given specification, JSTAR first compiles each abstract algorithm written in a structured natural language to a corresponding function in IRES, an untyped intermediate representation for ECMAScript. Then, it performs type analysis for compiled functions with specification types defined in ECMAScript. Based on the result of type analysis, JSTAR detects specification bugs using a bug detector consisting of four checkers. To increase the precision of the type analysis, we present condition-based refinement for type analysis, which prunes out infeasible abstract states using conditions of assertions and branches. We evaluated JSTAR with all 864 versions in the official ECMAScript repository for the recent three years from 2018 to 2021. JSTAR took 137.3 seconds on average to perform type analysis for each version, and detected 157 type-related specification bugs with 59.2% precision; 93 out of 157 bugs are true bugs. Among them, 14 bugs are newly detected by JSTAR, and the committee confirmed them all.10.1109/ASE51524.2021.9678781https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9678781JavaScript;mechanized specification;type analysis;refinement;bug detectionIEEE Inglês CE1 Excluído
JISET: JavaScript IR-based Semantics Extraction ToolchainJ. Park; J. Park; S. An; S. Ryu 2020 JavaScript was initially designed for client-side programming in web browsers, but its engine is now embedded in various kinds of host software. Despite the popularity, since the JavaScript semantics is complex especially due to its dynamic nature, understanding and reasoning about JavaScript programs are challenging tasks. Thus, researchers have proposed several attempts to define the formal semantics of JavaScript based on ECMAScript, the official JavaScript specification. However, the existing approaches are manual, labor-intensive, and error-prone and all of their formal semantics target ECMAScript 5.1 (ES5.1, 2011) or its former versions. Therefore, they are not suitable for understanding modern JavaScript language features introduced since ECMAScript 6 (ES6, 2015). Moreover, ECMAScript has been annually updated since ES6, which already made five releases after ES5.1. To alleviate the problem, we propose JISET, a JavaScript IR-based Semantics Extraction Toolchain. It is the first tool that automatically synthesizes parsers and AST-IR translators directly from a given language specification, ECMAScript. For syntax, we develop a parser generation technique with lookahead parsing for BNFES, a variant of the extended BNF used in ECMAScript. For semantics, JISET synthesizes AST-IR translators using forward compatible rule-based compilation. Compile rules describe how to convert each step of abstract algorithms written in a structured natural language into IRES, an Intermediate Representation that we designed for ECMAScript. For the four most recent ECMAScript versions, JISET automatically synthesized parsers for all versions, and compiled 95.03% of the algorithm steps on average. After we complete the missing parts manually, the extracted core semantics of the latest ECMAScript (ES10, 2019) passed all 18,064 applicable tests. Using this first formal semantics of modern JavaScript, we found nine specification errors in ES10, which were all confirmed by the Ecma Technical Committee 39. Furthermore, we showed that JISET is forward compatible by applying it to nine feature proposals ready for inclusion in the next ECMAScript, which let us find three errors in the BigInt proposal.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9286074JavaScript;mechanized formal semantics;program synthesisIEEE Inglês CE1 Excluído
A Tool for Modeling JsonLogic based Business Process RulesK. Soleymanzadeh; Y. Bul; S. Bağcı; G. Kardas2019 JsonLogic structures, based on JavaScript Object Notation (JSON), are used in software applications in order to create business process rules. However, JsonLogic's textual syntax is different from the general purpose programming languages and it causes difficulties on the formalization of complex business rules. This unfamiliar way of rule creation may also lead to a time-consuming and error-prone development process. In this paper, we introduce a web based visual modeling tool which facilitates the construction of such business rules by following a model-driven engineering methodology. Inside this tool, the developers can visually design business rules with the block programming approach and corresponding JsonLogic codes are automatically generated. Moreover, changes made in these auto-generated codes can be reflected automatically to the related models inside the tool without any human intervention. Hence the synchronization between JsonLogic models and codes is provided. It has also been found that JsonLogic business rules can be created with significantly fewer visual components and hence with simpler models in comparison with the unique editor currently available for the similar purpose. The modeling tool is now used by Hermes Iletisim company during the development of various commercial software products.10.1109/UBMYK48245.2019.8965462https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8965462JsonLogic;Business Process Rule;Model-driven Software Development;Domain-specific Modeling LanguageIEEE Inglês CE1 Excluído
A Modeling Tool for Reconfigurable Skills in ROSD. Bozhinoski; E. Aguado; M. G. Oviedo; C. Hernandez; R. Sanz; A. Wąsowski2021 Known attempts to build autonomous robots rely on complex control architectures, often implemented with the Robot Operating System platform (ROS). The implementation of adaptable architectures is very often ad hoc, quickly gets cumbersome and expensive. Reusable solutions that support complex, runtime reasoning for robot adaptation have been seen in the adoption of ontologies. While the usage of ontologies significantly increases system reuse and maintainability, it requires additional effort from the application developers to translate requirements into formal rules that can be used by an ontological reasoner. In this paper, we present a design tool that facilitates the specification of reconfigurable robot skills. Based on the specified skills, we generate corresponding runtime models for self-adaptation that can be directly deployed to a running robot that uses a reasoning approach based on ontologies. We demonstrate the applicability of the tool in a real robot performing a patrolling mission at a university campus.10.1109/RoSE52553.2021.00011https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474550self adaptive systems;autonomous robots;domain specific language;ontologies;ROS2 toolIEEE Inglês CE1 Excluído
Jigsaw: Large Language Models meet Program SynthesisN. Jain; S. Vaidyanath; A. Iyer; N. Natarajan; S. Parthasarathy; S. Rajamani; R. Sharma2022 Large pre-trained language models such as GPT-3 [10], Codex [11], and Coogle's language model [7] are now capable of generating code from natural language specifications of programmer intent. We view these developments with a mixture of optimism and caution. On the optimistic side, such large language models have the potential to improve productivity by providing an automated AI pair programmer for every programmer in the world. On the cautionary side, since these large language models do not understand program semantics, they offer no guarantees about quality of the suggested code. In this paper, we present an approach to augment these large language models with post-processing steps based on program analysis and synthesis techniques, that understand the syntax and semantics of programs. Further, we show that such techniques can make use of user feedback and improve with usage. We present our experiences from building and evaluating such a tool Jigsaw, targeted at synthesizing code for using Python Pandas API using multi-modal inputs. Our experience suggests that as these large language models evolve for synthesizing code from intent, Jigsaw has an important role to play in improving the accuracy of the systems.10.1145/3510003.3510203https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793546Program Synthesis;Machine LearningIEEE Inglês CE1 Excluído
Debugging and Verification Tools for Lingua Franca in Gemoc StudioJ. Deantoni; J. Cambeiro; S. Bateni; S. Lin; M. Lohstroh2021 LINGUA Franca (lf) is a polyglot coordination language designed for the composition of concurrent, time-sensitive, and potentially distributed reactive components called reactors. The LF coordination layer facilitates the use of target languages (e.g., C, C++, Python, TypeScript) to realize the program logic, where each target language requires a separate runtime implementation that must correctly implement the reactor semantics. Verifying the correctness of runtime implementations is not a trivial task, and is currently done on the basis of regression testing. To provide a more formal verification tool for existing and future target runtimes, as well as to help verify properties of LF programs, we recruit the use of GemocStudio-an Eclipse-based workbench for the development, integration, and use of heterogeneous executable modeling languages. We present an operational model for LF, realized in GEmocStudio, that is primed to interact with a rich set of analysis and verification tools. Our instrumentation provides the ability to navigate the execution of LF programs using an omniscient debugger with graphical model animation; to check assertions in particular execution runs, or exhaustively, using a model checker; and to validate or debug traces obtained from arbitrary LF runtime environments.10.1109/FDL53530.2021.9568383https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9568383- IEEE Inglês CE1 Excluído
The Role of Linguistic Relativity on the Identification of Sustainability Requirements: An Empirical StudyY. D. Pham; A. Bouraffa; M. Hillen; W. Maalej2021 Linguistic-Relativity-Theory states that language and its structure influence people’s world view and cognition. We investigate how this theory impacts the identification of requirements in practice. To this end, we conducted two controlled experiments with 101 participants. We randomly showed participants a set of requirements dimensions (i.e. a language structure) either with a focus on software quality or on sustainability and asked them to identify the requirements for a grocery shopping app according to these dimensions. Participants of the control group were not given any dimensions. The results show that the use of requirements dimensions significantly increases the number of identified requirements in comparison to the control group. Furthermore, participants who were given the sustainability dimensions identified more sustainability requirements. In follow up interviews with 16 practitioners, the interviewees reported benefits of the dimensions such as a holistic guidance but were also concerned about the customers acceptance. Furthermore, they stated challenges of implementing sustainability dimensions in the daily business but also suggested solutions like establishing sustainability as a common standard. Our study indicates that carefully structuring requirements engineering along sustainability dimensions can guide development teams towards considering and ensuring software sustainability.10.1109/RE51729.2021.00018https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604723software sustainability;requirements engineering;requirements dimension;interdisciplinary designIEEE Inglês CE1 Excluído
Web-Based Tracing for Model-Driven ApplicationsJ. C. Kirchhof; L. Malcher; J. Michael; B. Rumpe; A. Wortmann2022 Logging still is a core functionality used to understand the behavior of programs and executable models. Yet, modeling languages rarely consider logging as a first-level activity that is manifested in the language through modeling elements or their behavior. When logging is part of the code generated for the respective models or the corresponding runtime environment only, it must be generic, as the modeler cannot influence, through the models, what and when logging takes place. To enable modelers to log model behavior, we devised a method based on language extension and smart code generation that can integrate logging into arbitrary textual modeling languages. Based on this method, log entries can be produced, traced, and presented through a web application. This method and its infrastructure can facilitate lifting logging to the model level and, hence, improve the understanding of executable models.10.1109/SEAA56994.2022.00066https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10011502Software Engineering;Model-Driven Development;Internet of ThingsIEEE Inglês CE1 Excluído
MAANA: An Automated Tool for DoMAin-Specific HANdling of AmbiguityS. Ezzini; S. Abualhaija; C. Arora; M. Sabetzadeh; L. Briand2021 MAANA (in Arabic: "meaning") is a tool for performingdomain-specific handling of ambiguity in requirements. Given a requirements document as input, MAANA detectsthe requirements that are potentially ambiguous. The focus ofMAANA is on coordination ambiguity and prepositional-phraseattachment ambiguity; these are two common ambiguity typesthat have been studied in the requirements engineering literature. To detect ambiguity, MAANA utilizes structural patterns anda set of heuristics derived from a domain-specific corpus. Thegenerated analysis file after running the tool can be reviewed byrequirements analysts. Through combining different knowledgesources, MAANA highlights also the requirements that mightcontain unacknowledged ambiguity. That is when the analystsunderstand different interpretations for the same requirement, without explicitly discussing it with the other analysts due to timeconstraints. This artifact paper presents the details of MAANA. MAANA is associated with the ICSE 2021 technical papertitled "Using Domain-specific Corpora for Improved Handlingof Ambiguity in Requirements". The tool is publicly available onGitHub and Zenodo.10.1109/ICSE-Companion52605.2021.00082https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402505Requirements Engineering, Natural-language Requirements, Ambiguity, Natural Language Processing, Corpus Generation, WikipediaIEEE Inglês CE1 Excluído
Dealing with Requirement Inconsistencies Based on ReqDL LanguageH. Bencharqui; S. Haidrar; A. Anwar2019 Managing requirement for complex systems requires a rigorous methodology practice in all requirement engineering process. Poorly written requirements result in wasted effort and rework [1]. Requirements inconsistencies could occur at all levels of abstraction. Therefore, detecting inconsistencies between requirements is important; particularly in requirements statements. Finding precisely this inconsistency in the textual description requirement is a difficult task. In this paper, we introduce DSL-base approach for managing inconsistent requirements which aims to improve the requirement text description with very fine granularity. Then we use those pieces of grains to detect possible inconsistencies among them.10.1109/WITS.2019.8723726https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8723726requirement engineering;Sysml;MBSE;DSL;ReqDL;Complex SystemIEEE Inglês CE1 Excluído
Co-Evolving Code with Evolving MetamodelsD. E. Khelladi; B. Combemale; M. Acher; O. Barais; J. -M. Jézéquel2020 Metamodels play a significant role to describe and analyze the relations between domain concepts. They are also cornerstone to build a software language (SL) for a domain and its associated tooling. Metamodel definition generally drives code generation of a core API. The latter is further enriched by developers with additional code implementing advanced functionalities, e.g., checkers, recommenders, etc. When a SL is evolved to the next version, the metamodels are evolved as well before to re-generate the core API code. As a result, the developers added code both in the core API and the SL toolings may be impacted and thus may need to be co-evolved accordingly. Many approaches support the co-evolution of various artifacts when metamodels evolve. However, not the co-evolution of code. This paper fills this gap. We propose a semi-automatic co-evolution approach based on change propagation. The premise is that knowledge of the metamodel evolution changes can be propagated by means of resolutions to drive the code co-evolution. Our approach leverages on the abstraction level of metamodels where a given metamodel element has often different usages in the code. It supports alternative co-evaluations to meet different developers needs. Our work is evaluated on three Eclipse SL implementations, namely OCL, Modisco, and Papyrus over several evolved versions of metamodels and code. In response to five different evolved metamodels, we co-evolved 976 impacts over 18 projects. A comparison of our co-evolved code with the versioned ones shows the usefulness of our approach. Our approach was able to reach a weighted average of 87.4% and 88.9% respectively of precision and recall while supporting useful alternative co-evolution that developers have manually performed.https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283913- IEEE Inglês CE1 Excluído
Analysis of System Requirements by Aspects-J MethodologyS. Mohite; A. Sarda; S. D. Joshi 2021 Methodology of aspects is a combination of multiple concerns. Multiple types of concerns are facts, logic, area of interest, security, properties of systems. In the Development phase of the aspect model Aspect considers different systems concerns, aspects divide these system concerns into software modules, Different aspects modules use as a way for analysis of systems requirements. In some aspects, methodology use UML design modeling for understanding system requirements, in aspects Methodology UML class is for knowing the system necessities in modeling phases. a UML class structure is used in the Aspects process model for requirement analysis of the system. Class design in UML design consists of various types of attributes, classes, objects, methods, Join of points & Point of cut, various approaches to defining various concerns of the system. Few tools for crafting graph grammar rules for analysis system concerns, crafting G-graph grammar rules start from pre-condition G-grammar rules after that crafting post condition G-graph grammar rules, after crafting G-graph pre and post condition grammar rules G-graph transformation process done on rules in tools, next step is a method of creating a matrix, a matrix is basically cross applying rules to each other and find output, Two types of the matrix created first is a matrix of dependency and matrix of conflicts, this matrix for analysis conflict and dependency in crafted G-graph grammar rules, these G-rules apply as input to aspect methodology Tool. Next step transformation G-graph grammar, G-graph rules shows pre and post transformations of G-graph grammar rules when applying matrix of dependencies with a matrix of conflict, the conflict shows clash in G-graph rules, dependencies show requirement among the G-graph rules.10.1109/CCGE50943.2021.9776384https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9776384Requirement;J-Aspect;join-point;cut-point;matrix;view-point;Dependencies;concern;Transformation;Conflicts;G-Graph;Rule;Methodology;Aspects;around;graph;before;aroundIEEE Inglês CE1 Excluído
A simple, lightweight framework for testing RESTful services with TTCN-3T. Vassiliou-Gioles 2020 Micro-service architecture has become a standard software architecture style, with loosely coupled, specified, and implemented services, owned by small teams and independently deployable. TTCN-3, as test specification and implementation language, allows an easy and efficient description of complex distributed test behavior and seems to be a natural fit to test micro-services. TTCN-3 is independent of the underlying communication and data technology, which is strength and weakness at the same time. While tools and frameworks are supporting micro-service developers to abstract from the underlying data, implementation, and communication technology, this support has to be modeled in a TTCN-3 based test system, manually. This paper discusses the concepts of a TTCN-3 framework on the four different levels of the Richardson-Maturity Model, introducing support for testing hypermedia controls, HATEOAS, proposes a TTCN-3 framework and open-source implementation to realize them and demonstrates its application by a concrete example.10.1109/QRS-C51114.2020.00089https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9282686TTCN-3;Software testing;test automation;micro service;RESTful API;web serviceIEEE Inglês CE1 Excluído
Addressing Expressiveness for a UML Microservices-Based Modeling within the Life Cycle of the Ubiquitous System DevelopmentF. Carranza-García; C. Rodríguez-Domínguez; J. L. Garrido2021 Microservices architectures are presented as the next evolution of the software design. They are particularly applied to scalable and distributed systems, such as IoT (Internet of Things). However, in order to take advantage of the microservices-based design for ubiquitous systems and manage its implications in other phases of the development life cycle there is still a need to address expressiveness in the modelling languages, such as UML. This paper identifies some of the main UML language elements to be extended and/or specialized in order to facilitate the design of microservices-based software for ubiquitous systems. The case study case of an intelligent system to check attendance in a ubiquitous learning environment is used as a way of identifying those UML elements. As a result, this work lays the ground to model affinity between microservices at the design level and generate code and other software artifacts. In the next future, it can also contribute to better automatize software development for microservice-based systems by applying a Model-Driven Engineering (MDE) methodology.10.1109/IE51775.2021.9486517https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9486517microservices;design;ubiquitous;model-driven engineering;umlIEEE Inglês CE1 Excluído
Mining User Reviews for Software Requirements of A New Mobile Banking ApplicationA. E. Amalia; M. Z. Naf'an2021 Migration to the new system or application is very challenging, especially if the users have to adapt to a new application that is implemented with direct conversion technique. It triggers many user reactions, one of them is their opinions and rate about the application in play store (Google Play Store for example). Application reviews can be used to elicit user requirements or to verify requirements. This paper demonstrated the result of mining application reviews to support software requirements elicitation. It motivated by research area natural language processing (NLP) for requirement engineering (RE). Training and testing conducted to a dataset contains about 1200 application reviews of a new mobile banking application by classifying them into two classes (req and other) using Multinomial Naïve Bayes algorithm. Req is for opinions that contain requirement such as feature addition or user interface (UI) request while other is label for opinions/reviews contain non-requirements. The classification performance measured are accuracy score 0,8220 and one of class that has higher classifier performance is “other” class with value precision 0.83, recall 0.94 and F1 0.99. Even though, the result is not optimal yet, especially for “req” class, this research already implemented all categories of NLP technologies such as NLP techniques, NLP tools, and NLP resources.10.1109/ISRITI54043.2021.9702813https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9702813mining;requirement;classification;software;reviewsIEEE Inglês CE1 Excluído
A Model Based Safety Analysis Framework for SysML and A Case StudyJ. Hu; H. Tang; J. Kang; H. Wang2019 Model Based Safety Analysis (MBSA) techniques can improve our modeling and analysis capabilities for today's complex safety-critical system designs. SysML is a kind of informal system functional modeling language widely used in industry and AltaRica is a formal modeling language for system safety analysis. This paper provides a MBSA framework and a prototype tool for SysML oriented system design and safety ananlysis, which including: we firstly extend SysML model elements to describe system fault events and behaviors by using profile definition mechanism, then some mapping rules between SysML design models and AltaRica analysis models are established based on the consideration of model semantics. Therefore, we can design a framework and algorithms to implement an automatic conversion of those two modeling languages Finally, a case study shows how to modeling and analyze a typical wheel brake system which included in the SAE-AIR6110 standard by using a prototype tool.10.1109/EITCE47263.2019.9094927https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9094927Model Based Safety Analysis;SysML;AltaRica;prototype tool;wheel brake systemIEEE Inglês CE1 Excluído
Translating SysML Activity Diagrams for nuXmv Verification of an Autonomous PancreasO. Staskal; J. Simac; L. Swayne; K. Y. Rozier2022 Model Based Systems Engineering (MBSE) provides a single platform capable of defining complex, multidisciplinary systems, but commonly-used tools such as Systems Modeling Language (SysML) lack the ability to formally validate and verify these systems. Symbolic model checking operates on system models of similar levels of abstraction to SysML, providing a push-button technique for ensuring the possible behavior set always obeys temporal requirements, e.g., for safe operation. We propose a translation method from SysML activity diagrams to the popular symbolic model checker nuXmv to enable their formal verification in four main steps: main module definition, submodule definition, activity diagram organization, and activity diagram translation. We apply this process to the Autonomous Artificial Pancreas System (AAPS) as a trade study. We then verify and validate the AAPS nuXmv model against a set of specifications derived from the AAPS safety requirements.10.1109/COMPSAC54236.2022.00260https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842664MBSE;SysML;nuXmv;Cameo;Activity Dia-gram;Model CheckingIEEE Inglês CE1 Excluído
Real-Time System Modeling and Verification Through Labeled Transition System AnalyzerY. Yang; Q. Zu; W. Ke; M. Zhang; X. Li2019 Model checking as a computer-assisted verification method is widely used in many fields to verify whether a design model satisfies the requirements specifications of the target system. In practice, it is difficult to design a system without the sophisticated requirements analysis. Unlike other model checking tools, the labeled transition system analyzer (LTSA) not only can specify the property specifications of the target system but also provides a structure diagram to specify the system architecture of the requirements model, which can be further used to design the target system. In this paper, we demonstrate the abilities of LTSA shipped with the classic case study of the steam boiler system. In the requirements analysis, the LTSA can specify the cyber and physical components of the target system and interactions between the components and the safety properties of the target system. In system design, the LTSA can automatically generate a start-up design model as the finite state process from the requirements model, and then a design model can be further accomplished by system architects and developers. Finally, the LTSA can automatically verify whether the design model meets the requirements specifications. Our work demonstrates the potential power of model checking tools can be applied and useful in software engineering for requirements analysis, system design, and verification.10.1109/ACCESS.2019.2899761https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8642885LTSA;model checking;steam boiler;UMLIEEE Inglês CE1 Excluído
Towards the Mechanized Semantics and Refinement of UML Class DiagramsF. Sheng; H. Zhu; Z. Yang 2019 Model Driven Engineering (MDE) uses models to represent the core part of the software systems. The Unified Model Language (UML) is a widely accepted standard for modeling software systems. Although UML provides numbers of concepts and diagrams to describe the system, there is still an unsolved problem that the semantics and refinement relations of models are not formally defined. In this paper, we apply the constructive type theory to formalize the class diagrams and object diagrams. A suitable subset of UML static models is identified and formally defined. The theorem assistant Coq is applied to encode the semantics of class diagrams. Moreover the refinement relations are also formalized in Coq. The whole approach is supported by tools that do not constrain the semantic definition's expressiveness and flexibility while making it machine-checkable. Our approach offers a novel way for giving a precise foundation in UML and contributes to the goal of improving the overall trustworthy software systems by combining theoretical and practical techniques.10.1109/APSEC48747.2019.00016https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945762Unified Modeling Language, Mechanized Semantics, Refinement, Coq, Constructive Type TheoryIEEE Inglês CE1 Excluído
A Model Query Language for Domain-Specific ModelsJ. Guo; J. Lu; J. Ding; G. Wang 2020 Model queries play a crucial role in the Model-driven development processes, particularly for Domain-Specific Modeling (DSM) and Model-based Systems Engineering (MBSE). The model queries are also regarded as the cornerstone for model-driven development activities, such as code generation, model transformation, and model constraints checking. The GOPPRR metamodeling approach is widely used to formalize the domain-specific models. Based on this approach, the KARMA language has been proposed to formalize models, metamodels, and code generation but lacks support for the model querying. This paper proposed one query language based on the GOPPRR metamodeling approach extended from the KARMA language to realize the unified query formalisms for multi-domain models. Finally, a case in a vehicle tracking system development is used to verify the availability of model query language, which is implemented in a domain modeling tool, MetaGraph. Keywords-Domain-Specific Language; model query language; model-driven development; Model-based Systems Engineering.10.1109/ICMCCE51767.2020.00266https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9421869Domain-Specific Language;model query language;model-driven development;Model-based Systems EngineeringIEEE Inglês CE1 Excluído
REAFFIRM: Model-Based Repair of Hybrid Systems for Improving ResiliencyL. Viet Nguyen; G. Mohan; J. Weimer; O. Sokolsky; I. Lee; R. Alur2020 Model-based design offers a promising approach for assisting developers to build reliable and secure cyber-physical systems in a systematic manner. In this methodology, a designer first constructs a model, with mathematically precise semantics, of the system under design, and performs extensive analysis with respect to correctness requirements before generating the implementation from the model. However, as new vulnerabilities are discovered, requirements evolve aimed at ensuring resiliency. There is currently a shortage of an inexpensive, automated software that can effectively repair the initial design, and a model-based system developer regularly needs to redesign and reimplement the system from scratch. In this paper, we propose a new methodology along with a MATLAB software called REAFFIRM to facilitate the model-based repair for improving the resiliency of cyber-physical systems. REAFFIRM takes as inputs 1) an original hybrid system modeled as a Simulink/Stateflow diagram, 2) a given resiliency pattern specified as a model transformation script, and 3) a safety requirement expressed as a Signal Temporal Logic formula, and outputs a repaired model which satisfies the requirement. The tool consists of two main modules, model transformation followed by model synthesis. While the latter component is built on top of the falsification tool Breach, to implement the former, we introduce a new model transformation language for hybrid systems, which we call HATL, to allow a designer to specify resiliency patterns. To evaluate the proposed approach, we use REAFFIRM to automatically synthesize the repaired models of four different case studies.10.1109/MEMOCODE51338.2020.9315153https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315153Model-based repair;resiliency;transformation language;hybrid systemsIEEE Inglês CE1 Excluído
Repository Mining for Changes in Simulink ModelsM. Jaskolka; V. Pantelic; A. Wassyng; M. Lawford; R. Paige2021 Model-Based Development (MBD) is widely used for embedded controls development, with MATLAB/Simulink being one of the most used environments in the automotive industry. Simulink models are the primary design artifact and as with all software, must be constantly maintained and evolved over their lifetime. It is necessary to develop models that support likely changes in order to assist with evolution/maintenance processes. In order to do so, the types of frequently performed changes must be understood and appropriate language mechanisms must be available to support these changes. However, Simulink model changes are currently not well understood. We analyze a real industrial software repository of our industrial partner and its version control system to provide insights into the likely changes for Simulink. The intent with this analysis includes providing guidance on how Simulink is used in industrial practice and how particular model changes can impact system evolution.10.1109/MODELS50736.2021.00014https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592466Simulink;model-based development;model change;repository mining;software evolution;version control systemIEEE Inglês CE1 Excluído
Conformance Testing in UPPAAL: A diabolic approachE. J. Njor; F. Lorber; N. I. Schmidt; S. R. Petersen2020 Model-based mutation testing is a fault-based method in the model-based testing area of research. It has been applied to several modeling formalisms, including timed automata. We propose a model transformation termed “diabolic completion” that allows for conformance testing directly in the UPPAAL tool. We have also developed a system to automate most of the process, which include taking a model, and performing diabolic completion, with the additions of allowing creation of mutants, conformance checking using the UPPAAL verification engine, and test case generation. We then set up a case study using a car alarm system model, which has been used several times in this area of research, and compare the efficiency with two existing tools, Ecdar 2.2 and MoMuT::TA, observing a significant speedup.10.1109/ICSTW50294.2020.00023https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9156025- IEEE Inglês CE1 Excluído
Verification and Validation Approaches for Model-Based Software EngineeringJ. Schumann; K. Goseva-Popstojanova2019 Model-based Software Engineering (MBSwE) and the use of automatic code generation has become popular for safety-critical aerospace applications. For these applications, verification and validation (V&V) is of utmost importance. With models as another layer of artifacts, however, V&V can become more complex in general, as V&V tasks can be carried out at the model level or at the code level. In this short paper, we present a V&V architecture specifically designed for MBSwE, which reflects the interrelationships between the different levels, tasks and tools, and which aims to provide a clear picture on the V&V approaches for MBSwE. We illustrate the architecture with a detailed analysis of two NASA missions and discuss their approaches to model use and understanding, automatic code generation, V&V, and model synchronization.10.1109/MODELS-C.2019.00080https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904785Model-based Software Engineering, V&V, automatic code generationIEEE Inglês CE1 Excluído
Generating Test Scenarios using SysML Activity DiagramX. Yang; J. Zhang; S. Zhou; B. Wang; R. Wang2021 Model-Based System Engineering (MBSE) applies the modeling method to system engineering and is gaining acceptance to software practitioners. SysML is an auxiliary language for MBSE, SysML activity diagram is treated as a useful design artifact to model the behavior of the system under development and identify all possible scenarios. However, it is a challenging task to identify all scenarios. In this paper, we propose an approach to generate test scenarios for systems modeled by the SysML activity diagram. The approach transforms an activity diagram into a testable composite structure, from which it then generates test scenarios. We further implemented a tool to automate the proposed approach and studied its feasibility using a case study. Experiments results show that the generated test scenarios can satisfy the given coverage criterion.10.1109/DSA52907.2021.00039https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9623050Model-Based System Engineering;Model-Based Testing;SysML activity diagram;test scenarios generationIEEE Inglês CE1 Excluído
Software and Methodological Toolkit for the Design and Development of Technical Devices in the Model-Based Systems Engineering ParadigmD. Shpotya; A. Romanov 2021 Model-based systems engineering (MBSE) and its' tool the Systems Modelling Language (SysML) are recognized to serve as the fundament for design and development (D&D) of system models and digital twins. But the existing MBSE software (SW) tools based on SysML are complex and expensive. The paper raises the question: “Is it possible to make usage of MBSE software and methodological tools during space instruments design and development (SIDD) available to a wide audience of potential users?” To answer this question, for SIDD lifecycle phases (LPs) were developed methodological tools (MTs) based on improvements of such MBSE tools as Quality Function Deployment (QFD), House of Quality (HoQ); SysML, and their synthesis with systems engineering (SE) tools. MTs were implemented in the widely available SW tools. Proposed MTs allow to reduce time required for SysML requirements diagram development and update from several days to minutes; for LPs realization from 5 to 10%.10.1109/EnT50460.2021.9681800https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9681800systems engineering;MBSE;paradigm;SysML;QFD;HoQ;design;development;methodological toolkitIEEE Inglês CE1 Excluído
Model-Driven Engineering EcosystemsV. V. Graciano Neto; F. Basso; R. Pereira dos Santos; N. H. Bakar; M. Kassab; C. Werner; T. Oliveira; E. Y. Nakagawa2019 Model-Driven Engineering (MDE) comprises the practice of systematically using models during software development. The high diversity of MDE assets (e.g., metamodels, models, model transformation engines, and design tools) has raised a rich, diverse, and complex software ecosystem (SECO), where a collection of assets is governed by underlying rules and surrounded by a community of players. The lack of a deeper understanding on those relations has: (i) hampered the adoption of such paradigm by newcomers; (ii) increased the learning curve; (iii) prevented the community from exploiting their full potential; and (iv) inhibited the more essential bene?ts promoted by MDE, such as automation, reuse, productivity, maintainability, and time to market. In this context, this paper presents preliminary results of an investigation on MDE as a SECO. We compiled existing knowledge from literature joining independent research ?ndings to provide an exploratory characterization of the technical dimension of such ecosystem. We also identi?ed research gaps that motivate further investigation considering the relevance and potential of this topic for the forthcoming years.10.1109/SESoS/WDES.2019.00016https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882850Model-Driven Engineering;Model Driven Development;Software Repository;Toolchain;AssetIEEE Inglês CE1 Excluído
Automated Requirements Formalisation for Agile MDEK. Lano; S. Yassipour-Tehrani; M. A. Umar2021 Model-driven engineering (MDE) of software systems from precise specifications has become established as an important approach for rigorous software development. However, the use of MDE requires specialised skills and tools, which has limited its adoption.In this paper we describe techniques for automating the derivation of software specifications from requirements statements, in order to reduce the effort required in creating MDE specifications, and hence to improve the usability and agility of MDE. Natural language processing (NLP) and Machine learning (ML) are used to recognise the required data and behaviour elements of systems from textual and graphical documents, and formal specification models of the systems are created. These specifications can then be used as the basis of manual software development, or as the starting point for automated software production using MDE.10.1109/MODELS-C53483.2021.00030https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643614Requirements formalisation;Model-driven engineering;Agile developmentIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8940740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8823472
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507663
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9342375
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754117
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776962
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604736
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622378
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9971829
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604729
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8987451
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776650
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991157
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9364404
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9528498
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8821909
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9615814
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9678781
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9286074
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8965462
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474550
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793546
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9568383
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604723
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10011502
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8723726
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283913
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9776384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9282686
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9486517
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9702813
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9094927
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842664
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8642885
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9421869
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592466
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9156025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904785
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9623050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9681800
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882850
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643614

Flexible Production Systems: Automated Generation of Operations Plans Based on ISA-95 and PDDLB. Wally; J. Vyskočil; P. Novák; C. Huemer; R. Šindelar; P. Kadera; A. Mazak; M. Wimmer2019 Model-driven engineering (MDE) provides tools and methods for the manipulation of formal models. In this letter, we leverage MDE for the transformation of production system models into flat files that are understood by general purpose planning tools and that enable the computation of “plans”, i.e., sequences of production steps that are required to reach certain production goals. These plans are then merged back into the production system model, thus enriching the formalized production system knowledge.10.1109/LRA.2019.2929991https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8767927AI-based methods;factory automation;intelligent and flexible manufacturingIEEE Inglês CE1 Excluído
Generating Sequence Diagram from Natural Language RequirementsM. Jahan; Z. S. H. Abad; B. Far 2021 Model-driven requirements engineering is gaining enormous popularity in recent years. Unified Modeling Language (UML) is widely used in the software industry for specifying, visualizing, constructing, and documenting the software systems artifacts. UML models are helpful tools for portraying the structure and behavior of a software system. However, generating UML models like Sequence Diagrams from requirements documents often expressed in unstructured natural language, is time consuming and tedious. In this paper, we present an automated approach towards generating behavioral models as UML sequence diagrams from textual use cases written in natural language. The approach uses different Natural Language Processing (NLP) techniques combined with some rule based decision approaches to identify problem level objects and interactions. Additionally, different quality metrics are defined to assess the validity of generated sequence diagrams in terms of expected behaviour from a given use case. The criteria we established to assess the quality of analysis sequence diagrams can be applied to similar experiments. We evaluate our approach using different case studies concerning correctness and completeness of the generated sequence diagrams using those metrics. In most situations, we attained an average accuracy factor of over 85% and average completeness of over 90%, which is encouraging.10.1109/REW53955.2021.00012https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582297Sequence Diagram;Use Case Scenario;Natural Language Processing;Requirement Engineering;UML model.IEEE Inglês CE1 Excluído
Towards Queryable and Traceable Domain ModelsR. Saini; G. Mussbacher; J. L. C. Guo; J. Kienzle2020 Model-Driven Software Engineering encompasses various modelling formalisms for supporting software development. One such formalism is domain modelling which bridges the gap between requirements expressed in natural language and analyzable and more concise domain models expressed in class diagrams. Due to the lack of modelling skills among novice modellers and time constraints in industrial projects, it is often not possible to build an accurate domain model manually. To address this challenge, we aim to develop an approach to extract domain models from problem descriptions written in natural language by combining rules based on natural language processing with machine learning. As a first step, we report on an automated and tool-supported approach with an accuracy of extracted domain models higher than existing approaches. In addition, the approach generates trace links for each model element of a domain model. The trace links enable novice modellers to execute queries on the extracted domain models to gain insights into the modelling decisions taken for improving their modelling skills. Furthermore, to evaluate our approach, we propose a novel comparison metric and discuss our experimental design. Finally, we present a research agenda detailing research directions and discuss corresponding challenges.10.1109/RE48521.2020.00044https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218176NLP;Machine Learning;Domain Model;Modelling Bot;Requirements Engineering;Trace LinksIEEE Inglês CE1 Excluído
Consistency Control for Model Versions in Evolving Model-Driven Software Product LinesJ. Schröpfer; F. Schwägerl; B. Westfechtel2019 Model-driven software product lines evolve in both time and space. Consistency control for model versions constitutes a key challenge. We propose a novel approach to consistency control called well-formedness analysis and repair: Instead of attempting to guarantee consistency of each configurable version a priori (which is hard and restrictive), consistency is controlled only when a product version is actually configured. Conflicts, i.e., violation of well-formedness constraints, are detected and repaired, driven by configurable strategies. This approach is generic; it is instantiated for feature models (for the variability model) and EMF models (as domain artifacts).10.1109/MODELS-C.2019.00043https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904527model;software product line;version;evolution;consistency controlIEEE Inglês CE1 Excluído
Definition Of A Transparent Constraint-Based Modeling And Simulation Layer For The Management Of Complex SystemsK. Henares; J. L. Risco-Martín; M. Zapater2019 Modeling and Simulation (M&S) is one of the most multifaceted topics present today in both industry and academia. However, we are involved in a new M&S paradigm. Systems are becoming more complex and new simulation needs arise and have to be studied. As a consequence, the way in which we perform M&S must be adapted, providing new ideas and tools. In this paper, we propose a rule-based constraints evaluator, which facilitate the validation and verification of complex models in a transparent manner. For this, constraints are defined. The constraints definition process is completely independent of the model development process because (a) the set of constraints is defined once the model has been developed, and (b) constraints are validated at simulation time. The proposed Constraint M&S architecture has been built using the Discrete Event System Specification (DEVS) formalism and has been tested on a validated data center simulation model.10.23919/SpringSim.2019.8732847https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8732847model checking;constraint modeling and simulation;discrete events;verification;data centersIEEE Inglês CE1 Excluído
Modeling and Verification of Web Services Composition Using CWB-NC ToolN. Pal; M. P. Yadav; D. K. Yadav2021 Modeling and verification of web services composition determines the execution flow of various web services used in conjunction. Existing techniques, such as, UML and testing are used successfully to describe the behavior of the web service system and find the bugs during the communication of the components. However, it is not always possible to identify bugs at all the stages. Formal specification and verification is an emerging technique for specifying the structural and functional property of the web service composition. Calculus of Communicating Systems (CCS) is a process-algebra used as a language for formal specification. In this article, we have utilized CCS for describing the behavioral specification of the web service system. The requirement of the system is captured through formulas or properties utilizing mu-calculus, and formally verified through Concurrency Work Bench of the New Century (CWB-NC) model checker tool.10.1109/INCET51464.2021.9456275https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9456275Web Services;Formal Methods;Formal verification;Model Checking;CWB-NC ToolIEEE Inglês CE1 Excluído
Using Metamodeling for Requirements Engineering: A Best-Practice with ADOxxD. Karagiannis; M. Lee; R. A. Buchmann2019 Modeling tools, as an instrument in support of the Requirements Engineering (RE) process, usually focus on a particular aspect, in a domain-agnostic manner. The tutorial discusses meta-modeling as an approach to over-come such shortcomings, enabling more holistic and specific semantic coverage of requirements models. The meta-modeling platform ADOxx is introduced as an experimentation environment for researchers and practitioners to realize their individual modeling languages and functionality in support of RE. Specific emphasis is given to the practical nature of the tutorial: participants are encouraged to build their individual modeling tool in a hands-on setting and experiment with the capabilities of ADOxx to implement meta-models and model processing mechanisms, to specialize them or to integrate available assets provided by the ADOxx.org community.10.1109/RE.2019.00073https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920408Requirements modeling, Metamodeling, Agile Modeling Method Engineering, Modeling method requirementsIEEE Inglês CE1 Excluído
Positioning-Based Domain-Specific Modelling through Mobile DevicesA. Sebastián-Lombraña; E. Guerra; J. d. Lara2020 Modelling is a central activity in many disciplines. It is typically performed with the support of modelling tools that run on desktop computers or laptops, i.e., in static settings. How-ever, some modelling scenarios require a faithful representation of the position of the model elements in the physical world. Such scenarios would benefit from the ability to model in mobility and exploit the data obtained from the sensors embedded in mobile devices. For this purpose, we propose a conceptual approach to positioning-based modelling based on the combination of a physical dimension (as provided by the sensors of mobile devices) and an ontological one (as provided by domain meta-models). We showcase different scenarios for these ideas, and present a prototype app - called METAPHORE - that runs on iOS devices and realizes these concepts.10.1109/SEAA51224.2020.00033https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9226290Model-driven engineering;domain-specific modelling;positioning-based modelling;mobile appsIEEE Inglês CE1 Excluído
Towards Continuous Delivery for Domain Experts: Using MDE to Integrate Non-Programmers into a Software Delivery PipelineH. Nehls; D. Ratiu 2019 Modern computed tomography (CT) scanners are complex, software-intensive systems whose correct functioning is governed by over 100 parameters which depend on the concrete hardware configurations and on the addressed clinical use-cases. To tame the intrinsic complexity of the parameters configurations, over the last four years, Siemens Healthineers (SHS) have been developing and deploying a set of domain specific languages and tooling based on Jetbrains' Meta-Programming System. In this paper, we report on the challenges and experiences we made while building two delivery pipelines. At meta-level, we built a continuous delivery pipeline such that new versions of our domain specific modeling tool can be deployed continuously based on the feedback of domain experts. At model-level we have integrated the developed domain-specific tool in the continuous delivery pipeline for the computed tomography software and thereby bring the Continuous Delivery mind-set with advantages and challenges to domain experts who are working traditionally "outside" of the software development.10.1109/MODELS-C.2019.00091https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904815model-driven engineering;continuous delivery;Jetbrains' MPSIEEE Inglês CE1 Excluído
EC.LANG – A Language for Specifying Response Time Analyses of Event ChainsM. J. Friese; J. Traub; D. Nowotka2020 Modern cyber-physical systems pose great challenges for system engineers to keep track of the system's behavior when it comes to functions distributed all over the system. To check whether response time constraints are met, measurement data from different development stages is analyzed to track down the worst-case behavior observed.Several complex, signal dependencies have to be examined over long time periods. Therefore, computer aided approaches to support this task are strongly demanded. In this paper, we present EC.LANG, a formal language designed to specify evaluations over measurement data. It is particularly fitted to model event chains representing the data flow of system functions. To validate event chains against timing requirements, we implemented a compiler and an evaluation engine based on EC.LANG.10.1109/ICST46399.2020.00042https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159108- IEEE Inglês CE1 Excluído
How to Live with Inconsistencies in Industrial Model-Based Development PracticeR. Jongeling 2019 Modern development of complex embedded systems utilizes models to describe multiple different views on the same system. Consistency between these models is essential to successful development but ensuring it is in current practice often a manual effort. In this research project, we aim to develop a methodology that helps developers to maintain consistency in industrial model-based development projects by identifying inconsistencies throughout the development and maintenance of the system. For such support to be applicable in industrial practice, it should fit in with current development, i.e., should be able to identify inconsistencies between models expressed in different modeling languages and created in different modeling tools. Furthermore, the required user interaction to defining consistency checks should be minimal. This paper sketches an approach meeting these requirements, initial results towards it and discusses future research plans towards a doctoral dissertation.10.1109/MODELS-C.2019.00098https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904865model-based development;consistency checking`IEEE Inglês CE1 Excluído
ChiselVerify: An Open-Source Hardware Verification Library for Chisel and ScalaA. Dobis; T. Petersen; H. J. Damsgaard; K. J. Hesse Rasmussen; E. Tolotto; S. T. Andersen; R. Lin; M. Schoeberl2021 Modern digital hardware is becoming ever more complex. The development of different application-specific accelerators rather than traditional general purpose processors calls for advanced development methods not only for design, but equally so for subsequent verification. Recently, this has made engineers propose an agile hardware development flow. However, one of the main obstacles when proposing such a method is the lack of efficient tools. Chisel, a high-level hardware construction language, was introduced in order to combat this lack. Since this already enables agile hardware design, we instead focus our attention on the verification flow. Thus, this paper proposes ChiselVerify, an open-source library for verifying circuits described in Chisel. It builds on top of Chisel and uses Scala to drive the verification process. The solution is well integrated into the existing Chisel universe, making it an extension of currently existing testing libraries.10.1109/NorCAS53631.2021.9599869https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599869digital design;verification;Chisel;ScalaIEEE Inglês CE1 Excluído
Flexible Software to Hardware Migration Methodology for FPGA Design and VerificationM. Trapaglia; R. Cayssials; L. De Pasquale; E. Ferro2019 Modern FPGA developments require flexible and Agile methodologies to support complex designs meeting the current highly demanding time-to-market metrics. Traditional hardware development processes based on waterfall flows are not adequate to get the most of the new reconfigurable FPGA technologies. Co-design and co-verification techniques allow handling both software and hardware development in a highly integrated process. However, such integration requires a deep knowledge of both hardware and software development. DUTILS is a Python/Cocotb-based environment for concurrent development suitable for modern software development technologies. This paper proposes software to hardware migration methodology for the DUTILS environment that allows a seamless integration between software and hardware design and the verification process flow of the whole system.10.1109/SPL.2019.8714377https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714377Co-simulation;Cocotb;FPGA developmentIEEE Inglês CE1 Excluído
SoC Trust Validation Using Assertion-Based Security MonitorsK. Alatoun; B. Shankaranarayanan; S. M. Achyutha; R. Vemuri2021 Modern SoC applications include a variety of sensitive modules in which data must be protected against malicious access. Security vulnerabilities, when exercised during the SoC operation, lead to denial of service or disclosure of protected data. Hence, it is essential to undertake security validation before and after SoC fabrication and make provisions for continuous security assessment during operation. This paper presents a methodology for optimized post-deployment monitoring of SoC's security properties by migrating pre-fab design security assertions to post-fab run-time security monitors. We show that the method is scalable for large systems and complex properties by optimizing the hardware monitors and applying it to a large SoC design based on a OpenRISC-1200 SoC. About 40 security assertions were specified in System Verilog Assertions (SVA). Following formal verification, the assertions were synthesized into finite state machines and cross optimized. Following code generation in Verilog, commercial logic and layout synthesis tools were used to generate hardware monitors which were then integrated with the SoC design ready for fabrication.10.1109/ISQED51717.2021.9424363https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9424363System-on-Chip;Assertion Based Verification;System Verilog Assertions;Property Specification Language;Security and Hardware MonitorsIEEE Inglês CE1 Excluído
Enabling Reactive Streams in HLA-based Simulations through a Model-Driven SolutionA. D’Ambrogio; A. Falcone; A. Garro; A. Giglio2019 Modern systems are exposing an ever increasing degree of complexity also due to the heterogeneity of the involved components. Distributed simulation is widely recognized as an effective tool to carry out verification and validation activities for heterogeneous and complex systems. Unfortunately, the use of distributed simulation frameworks and related implementation technologies require a proper modeling and simulation know-how, as well as a significant effort and software development skills. As a result, distributed simulation is not typically addressed by systems engineers who do not have the required expertise or background. The MONADS model-driven method has been introduced to overcome such limitations and provide systems engineers with the ability to properly carry out simulation-based verification and validation activities. The method specifically addresses the HLA (High Level Architecture) distributed simulation framework and introduces an automated approach to generate a significant portion of the HLA code from system models specified in SysML, the standard modeling language in the systems engineering field. The automatically obtained code is then to be finalized by a manual programming activity. This paper contributes to make easier and further reduce the effort of such a manual activity by integrating the reactive features of the RxHLA framework into the MONADS method. This integration enables the use of streams to effectively manage HLA-based asynchronous interactions. The paper describes the technical details of the various strategies that can be used to integrate RxHLA into the MONADS method, thus providing a significant degree of flexibility to MONADS users.10.1109/DS-RT47707.2019.8958697https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958697Distributed Simulation;High Level Architecture (HLA);Model-Driven Systems Engineering;Reactive ProgrammingIEEE Inglês CE1 Excluído
Agile Requirements Engineering: From User Stories to Software ArchitecturesF. Dalpiaz; S. Brinkkemper 2021 Most agile practitioners employ user stories for capturing requirements, also thanks to the embedding of this notation within development and project management tools. Among user story users, circa 70% follow a simple template: As a role, I want to action, so that benefit. User stories’ popularity among practitioners and their template-based structure make them ideal candidates for the application of natural language processing techniques. In our research, we have found that circa 50% of real-world user stories contain easily preventable linguistic defects. To mitigate this problem, we have created tool-supported methods that facilitate the creation of better user stories. This tutorial combines previous work of the RE-Lab@UU into a pipeline for working with user stories: (1) The basics of creating user stories and their use in requirements engineering; (2) How to improve user story quality with the Quality User Story Framework and the AQUSA tool; (3) How to generate conceptual models from user stories using the Visual Narrator tool and analyze them for possible ambiguity and inconsistency; and (4) How to link requirements to architectures via the RE4SA model. Our approach is demonstrated with results obtained from 20+ software companies employing user stories.10.1109/RE51729.2021.00076https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604656Agile requirements engineering;user stories;NLP;AQUSA;Visual Narrator;REVV-Light;RE4SAIEEE Inglês CE1 Excluído
Use Case Extraction through Knowledge AcquisitionD. G. Vasques; G. S. Santos; F. D. Gomes; J. F. Galindo; P. S. Martins2019 Most challenges in requirements analysis and use case extraction are related to the correct comprehension of clients' core processes and activities, as well as their needs. This information is usually available in documents, such as the business vision, written in natural language. This kind of language may lead to interpretation bias and information loss, thus causing project delays and escalation of costs. In order to overcome natural language interpretation challenges in Requirements Engineering, we propose the use of Verbka, a knowledge acquisition process based on verbal semantics, as a complement to traditional requirements analysis. This process extracts the causal relationships among the actors mentioned in the business vision document. We used this process as a use case pre-modeling tool, aiming to minimize subjectivity in the identification of actors and use cases. We tested Verbka using a business vision from a classical textbook. The results show that this process is able to obtain a list containing all requirements defined by the client, all actors involved in the business vision, and how they interact with each other. This process is systematic and provides a textual and visual representation of user requirements and use cases consistently. Its application reduced interpretation bias, thus allowing a more detailed and structured requirements analysis.10.1109/IEMCON.2019.8936279https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936279Business Modeling;Concept Maps;Natural Language Processing;Requirements Analysis;Semantics;UMLIEEE Inglês CE1 Excluído
Integration of Constraint Programming and Model-Based Approach for System SynthesisY. Pierre-Alain; Z. Laurent 2021 Most of the work in the field of Model-Based System Engineering for the design of technical systems consists of implementing solution-oriented approaches. Several system modeling languages are available to represent fully defined systems from several points of view. It is also possible to link these descriptions with simulation or analysis tools to evaluate the solutions thus described. After having studied the limits of this way of designing system, we propose in this paper an approach oriented to the description of the design problem to be solved, through an adapted formalism called DEPS. This formalism allows a model-based approach for architecture and system synthesis. DEPS (Design Problem Specification) addresses problems of sizing, configuration, resource allocation and more generally of architecture generation or synthesis encountered in system design. The systems considered can be physical systems, software-intensive systems or mixed systems (embedded, mechatronical, cyber-physical). This language combines structural modeling features specific to object-oriented languages with problem specification features from constraint programming. We also present an integrated approach through the DEPS Studio environment, allowing DEPS modeling, model compilation and solving using an integrated constraint programming solver. This integration allows, among other things, the development and the debugging of models directly in DEPS rather than in the language of an external solver. The approach is illustrated on a simple case of electrical system synthesis.10.1109/SysCon48628.2021.9447096https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447096constraint programming;model based system synthesis;problem modeling;problem solvingIEEE Inglês CE1 Excluído
SoCeR: A New Source Code Recommendation Technique for Code ReuseM. M. Islam; R. Iqbal 2020 Motivated by the idea of reusing existing source code from previous projects within a software company, in this paper, we present a new source code recommendation technique called "SoCeR" to help programmers find relevant implementations or sample code based on software requirement specifications. SoCeR assists programmers to search existing code repositories using natural language query. Our proposed approach summarizes Python code into sentences or phrases to match them against user queries. SoCeR extracts and analyzes the content of the code (such as variables, functions, docstrings, and comments) to generate code summary for each function which is then mapped to the respective functions. For evaluation purposes, we developed a web-based tool for users to enter a textual search query and get the relevant code search results that were most relevant to the query. In SoCeR, users can also upload new code to enrich the code base with tested code. If adopted, then SoCeR will benefit a software company to build a trusted code base enabling large-scale software code reuse.10.1109/COMPSAC48688.2020.00-34https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202820Code recommendation;Code reuse;Code search;Software code;Query reformulationIEEE Inglês CE1 Excluído
A Pattern-Oriented Design Framework for Self-Adaptive Software SystemsP. Arcaini; R. Mirandola; E. Riccobene; P. Scandurra2019 Multiple interacting MAPE-K loops, structured according to specific interaction patterns, have been introduced to design the adaptation logic in case of decentralized self-adaptive software systems. Designing such complex systems requires the availability of tools where MAPE patterns can be easily instantiated to provide fast architectural solutions, and the encoding towards specific domains is facilitated by automatic mapping of such pattern instantiations in domain-specific languages; validation and verification must be also supported to assure correct development of reliable systems. In this paper, we present a pattern-oriented framework, based on the MSL (MAPE Specification Language) modeling language, for the design of self-adaptive systems. The framework supports: (i) explicit modeling of the adaptation logic in terms of patterns of interactive MAPE-K loops; (ii) ability to tailor MSL models for a specific application domain and synthesize from them other modeling artifacts/code according to a target implementation context and scope (e.g., OpenHAB); (iii) ability to perform validation and verification of MSL models by means of the ASMETA formal framework.10.1109/ICSA-C.2019.00037https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8712366Pattern-oriented design;self-adaptation;MAPE-K loops;MAPE patterns;ASMETA;OpenHABIEEE Inglês CE1 Excluído
Boba: Authoring and Visualizing Multiverse AnalysesY. Liu; A. Kale; T. Althoff; J. Heer2021 Multiverse analysis is an approach to data analysis in which all “reasonable” analytic decisions are evaluated in parallel and interpreted collectively, in order to foster robustness and transparency. However, specifying a multiverse is demanding because analysts must manage myriad variants from a cross-product of analytic decisions, and the results require nuanced interpretation. We contribute Baba: an integrated domain-specific language (DSL) and visual analysis system for authoring and reviewing multiverse analyses. With the Boba DSL, analysts write the shared portion of analysis code only once, alongside local variations defining alternative decisions, from which the compiler generates a multiplex of scripts representing all possible analysis paths. The Boba Visualizer provides linked views of model results and the multiverse decision space to enable rapid, systematic assessment of consequential decisions and robustness, including sampling uncertainty and model fit. We demonstrate Boba's utility through two data analysis case studies, and reflect on challenges and design opportunities for multiverse analysis software.10.1109/TVCG.2020.3028985https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9216579Multiverse Analysis;Statistical Analysis;Analytic Decisions;ReproducibilityIEEE Inglês CE1 Excluído
Mutation Analysis for Coq A. Celik; K. Palmskog; M. Parovic; E. Jesús Gallego Arias; M. Gligoric2019 Mutation analysis, which introduces artificial defects into software systems, is the basis of mutation testing, a technique widely applied to evaluate and enhance the quality of test suites. However, despite the deep analogy between tests and formal proofs, mutation analysis has seldom been considered in the context of deductive verification. We propose mutation proving, a technique for analyzing verification projects that use proof assistants. We implemented our technique for the Coq proof assistant in a tool dubbed mCoq. mCoq applies a set of mutation operators to Coq definitions of functions and datatypes, inspired by operators previously proposed for functional programming languages. mCoq then checks proofs of lemmas affected by operator application. To make our technique feasible in practice, we implemented several optimizations in mCoq such as parallel proof checking. We applied mCoq to several medium and large scale Coq projects, and recorded whether proofs passed or failed when applying different mutation operators. We then qualitatively analyzed the mutants, finding many instances of incomplete specifications. For our evaluation, we made several improvements to serialization of Coq files and even discovered a notable bug in Coq itself, all acknowledged by developers. We believe mCoq can be useful both to proof engineers for improving the quality of their verification projects and to researchers for evaluating proof engineering techniques.10.1109/ASE.2019.00057https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952421mutation proving;Coq;prof assistants;mutation testingIEEE Inglês CE1 Excluído
A Layered Reference Architecture for Metamodels to Tailor Quality Modeling and AnalysisR. Heinrich; M. Strittmatter; R. Reussner2021 Nearly all facets of our everyday life strongly depend on software-intensive systems. Besides correctness, highly relevant quality properties of these systems include performance, as directly perceived by the user, and maintainability, as an important decision factor for evolution. These quality properties strongly depend on architectural design decisions. Hence, to ensure high quality, research and practice is interested in approaches to analyze the system architecture for quality properties. Therefore, models of the system architecture are created and used for analysis. Many different languages (often defined by metamodels) exist to model the systems and reason on their quality. Such languages are mostly specific to quality properties, tools or development paradigms. Unfortunately, the creation of a specific model for any quality property of interest and any different tool used is simply infeasible. Current metamodels for quality modeling and analysis are often not designed to be extensible and reusable. Experience from generalizing and extending metamodels result in hard to evolve and overly complex metamodels. A systematic way of creating, extending and reusing metamodels for quality modeling and analysis, or parts of them, does not exist yet. When comparing metamodels for different quality properties, however, substantial parts show quite similar language features. This leads to our approach to define the first reference architecture for metamodels for quality modeling and analysis. A reference architecture in software engineering provides a general architecture for a given application domain. In this paper, we investigate the applicability of modularization concepts from object-oriented design and the idea of a reference architecture to metamodels for quality modeling and analysis to systematically create, extend and reuse metamodel parts. Thus, the reference architecture allows to tailor metamodels. Requirements on the reference architecture are gathered from a historically grown metamodel. We specify modularization concepts as a foundation of the reference architecture. Detailed application guidelines are described. We argue the reference architecture supports instance compatibility and non-intrusive, independent extension of metamodels. In four case studies, we refactor historically grown metamodels and compare them to the original metamodels. The study results show the reference architecture significantly improves evolvability as well as need-specific use and reuse of metamodels.10.1109/TSE.2019.2903797https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8662719Domain-specific modeling language;reference architecture;metamodel;quality analysisIEEE Inglês CE1 Excluído
Dynamic Property Enforcement in Programmable Data PlanesM. Neves; B. Huffaker; K. Levchenko; M. Barcellos2021 Network programmers can currently deploy an arbitrary set of protocols in forwarding devices through data plane programming languages such as P4. However, as any other type of software, P4 programs are subject to bugs and misconfigurations. Network verification tools have been proposed as a means of ensuring that the network behaves as expected, but these tools frequently face severe scalability issues. In this paper, we argue for a novel approach to this problem. Rather than statically inspecting a network configuration looking for bugs, we propose to enforce networking properties at runtime. To this end, we developed P4box, a system for deploying runtime monitors in programmable data planes. P4box allows programmers to easily express a broad range of properties (both program-specific and network-wide). Moreover, we provide an automated framework based on assertions and symbolic execution for ensuring monitor correctness. Our experiments on a SmartNIC show that P4box monitors represent a small overhead to network devices in terms of latency, throughput and power consumption.10.1109/TNET.2021.3068339https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9393490P4;SDN;programmable networks;network debugging;monitoringIEEE Inglês CE1 Excluído
Generating Heterogeneous Codes for IoT Systems Based on CAPSM. Sharaf; M. Abusair; H. Muccini; R. Eleiwi; Y. Shana’a; I. Saleh2019 Nowadays most systems are relying in their development and evolution on reusing and customizing opensource components, services and frameworks. In this poster, we present our architecture driven code generation methodology that benefits from CAPS and ThingML frameworks. CAPS is an architecture-driven modeling framework for the development of IoT Systems. ThingML includes a modeling language and tool designed for supporting code generation for heterogeneous platforms. The suggested methodology enables IoT designers and architects who are using CAPS environment to generate ThingML models and produce executable codes.10.1109/MODELS-C.2019.00113https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904524- IEEE Inglês CE1 Excluído
State Machines Consistency between Model Based System Engineering and Safety Assessment ModelsJ. Vidalie; M. -S. Kendel; F. Mhenni; M. Batteux; J. -Y. Choley2021 Nowadays with the development of industrial systems, engineers are having more difficulties to design complex systems, meaning that they have to conduct several simulations to design system models. In the case of safety assessment, this creates a need for the safety model to be consistent with the system engineering model, since both models are supposed to represent the same architecture. In this work we present a methodology for synchronisation of two kinds of state machines, Harel’s Statecharts and Guarded Transition Systems. These formalisms are used to model system behavior respectively in MBSE (Model Based System Engineering) and MBSA (Model Based Safety Assessment) tools. This methodology, based on the SmartSync framework [1] that aims at asserting structural consistency between MBSE and MBSA, is composed of 3 steps: abstraction to a pivot formalism, comparison and concretization. We compare two mappings of concepts used for translation from our state machines to the S2ML language.10.1109/ISSE51541.2021.9582470https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582470MBSA;MBSE;AltaRica;SysML;S2ML;Abstraction;Comparison;Concretization;State Machine;Harel StateChart;Guarded Transition SystemIEEE Inglês CE1 Excluído
Test Case Generation Algorithms and Tools for Specifications in Natural LanguageY. Aoyama; T. Kuroiwa; N. Kushiro2020 Nowadays, most consumer products are equipped with methods of network communications, and nondeterministic tests, which are originated from random message exchanges via the network, should be carried out. Therefore, the tests of the consumer products with network have obliged us to consume much time to design and conduct. For reducing the labor of designing test cases, algorithms and tools, which help test engineers to convert specifications written in a natural language into semiformal descriptions, and to generate test cases including deterministic and nondeterministic test cases as decision tables, are proposed in the paper. The algorithms and tools were applied to a tiny example for evaluation and confirmed that they have succeeded in generating test cases from documents in a natural language.10.1109/ICCE46568.2020.9043022https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9043022Consumer products with software product line engineering;Automatic test case generation for specification in natural languageIEEE Inglês CE1 Excluído
Automated High-Level Generation of Low-Power Approximate Computing CircuitsK. Nepal; S. Hashemi; H. Tann; R. I. Bahar; S. Reda2019 Numerous application domains (e.g., signal and image processing, computer graphics, computer vision, and machine learning) are inherently error tolerant, which can be exploited to produce approximate ASIC implementations with low power consumption at the expense of negligible or small reductions in application quality. A major challenge is the need for approximate and high-level design generation tools that can automatically work on arbitrary designs. In this article, we provide an expanded and improved treatment of our ABACUS methodology, which aims to automatically generate approximate designs directly from their behavioral register-transfer level (RTL) descriptions, enabling a wider range of possible approximations. ABACUS starts by creating an abstract syntax tree (AST) from the input behavioral RTL description of a circuit, and then applies variant operators to the AST to create acceptable approximate designs. The devised variant operators include data type simplifications, arithmetic operation approximations, arithmetic expressions transformations, variable-to-constant substitutions, and loop transformations. A design space exploration technique is devised to explore the space of possible variant approximate designs and to identify the designs along the Pareto frontier that represents the trade-off between accuracy and power consumption. In addition, ABACUS prioritizes generating approximate designs that, when synthesized, lead to circuits with simplified critical paths, which are exploited to realize complementary power savings through standard voltage scaling. We integrate ABACUS with a standard ASIC design flow, and evaluate it on four realistic benchmarks from three different domains-machine learning, signal processing, and computer vision. Our tool automatically generates many approximate design variants with large power savings, while maintaining good accuracy. We demonstrate the scalability of ABACUS by parallelizing the flow and use of recent standard synthesis tools. Compared to our previous efforts, the new ABACUS tool provides up to 20.5× speed-up in runtime, while able to generate approximate circuits that lead to additional power savings reaching up to 40 percent.10.1109/TETC.2016.2598283https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7533498Approximate computing;design space exploration;low power circuits;low area circuits;voltage scaling;critical path optimizationIEEE Inglês CE1 Excluído
Automatically Curated Data SetsM. Kessel; C. Atkinson 2019 o validate hypotheses and tools that depend on the semantics of software, it is necessary to assemble, prepare and maintain (i.e. curate) large, high-quality corpora of executable software systems exhibiting certain desired behavior and/or properties. Today this is a highly tedious and laborious activity requiring significant human time and effort. In this paper we therefore present a prototype platform that supports the notion of “live data sets” where almost all aspects of the data set curation process are automated. Instead of curating data sets by hand, or writing dedicated tools to select and check software samples on a case-by-case basis, a live data set allows users to simply describe their requirements as abstract scripts written in a declarative domain specific language. After explaining the approach and the key ideas behind its implementation, in this paper we present two examples of executable corpora generated automatically from a live data set populated from Maven Central. The first illustrates a “semantics agnostic” use case where the actual behavior of the software is unimportant, while the second illustrates a “semantics specific” use case where software implementing a specific functional abstraction is selected.10.1109/SCAM.2019.00015https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8930881data-set;corpus;executable;behavior;automation;curationIEEE Inglês CE1 Excluído
Towards Concrete Syntax Based Find for Graphical Domain Specific LanguagesE. Kalnina; A. Sostaks 2019 One of the main reasons why Model-Driven Engineering (MDE) technologies including Domain-specific modelling languages (DSML) have not reached the expected acceptance in the industry is a poor tool support. One of the features with a limited support even in commercial modelling tools is search (find). Typically, MDE tools support only a simple keyword-based textual search functionality. The same is true for the tools built using Domain-specific language (DSL) tool definition frameworks. It is proposed to provide the concrete syntax-based find functionality as a service of a DSL tool definition framework. The find diagrams are defined in a concrete syntax of a DSL. A definition of a DSL is used to provide a language-specific find functionality in the DSL tool.10.1109/MODELS-C.2019.00038https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904770graphical domain-specific languages;DSL tool definition frameworks;findIEEE Inglês CE1 Excluído
Automating Test Oracle Generation in DevOps for Industrial ElevatorsA. Arrieta; M. Otaegi; L. Han; G. Sagardui; S. Ali; M. Arratibel2022 Orona is a world-renowned elevators developer. During elevators' lives, their software continues to evolve, e.g., due to hardware obsolescence, requirements changes, vulnerabilities, and bug corrections. Such continuous evolution demands the continuous testing of industrial elevators with the minimum manual effort possible. To this end, we present a tool, whose core component is a domain-specific language (DSL) with which a user can specify test oracles at a higher level of abstraction and independent of a testing level. The DSL also supports specifying uncertainty-aware test oracles to test elevators under various uncertainties inherent in them. Finally, the DSL is also equipped with test oracle generation that generates test oracle code automatically at the different DevOps testing levels (i.e., Software and Hardware-in-the-Loop test levels, and in operation) to enable reuse of test oracles across these levels. We evaluated this DSL with an industrial elevators case study at Orona's site to specify and generate test oracles. The evaluation showed that the high expressiveness of the DSL permits the high-level definition of test oracles in our industrial context. Based on the industrial application, we discuss our experiences and lessons learned.10.1109/SANER53432.2022.00044https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9825900Domain Specific Language;Test Oracle Gener-ation;Cyber-Physical Systems;EvolutionIEEE Inglês CE1 Excluído
Using OWL Ontologies as a Domain-Specific Language for Capturing Requirements for Formal Analysis and Test Case GenerationA. W. Crapo; A. Moitra 2019 Our experience at GE Research suggests that the use of a controlled-English grammar and a rich authoring environment can greatly facilitate subject matter experts' ability to understand, create, and collaboratively employ models. A domain ontology is an ideal foundation for many advanced capabilities. An example is extending our controlled-English grammar and authoring environment for OWL model generation to allow the capture of high-level requirements, assumptions, and assertions, enabling requirement engineers to create models of system capability and behavior amenable to formal methods analysis to detect incompleteness, conflict, and a variety of other issues. The same domain models and formal requirements can be used to automatically generate test cases and test procedures. Automated test generation represents a huge reduction in the time and effort required to create and validate critical software. In this paper we illustrate how ontologies enable the ASSERT™ tool suite to support the above capabilities through a small grounding use case.10.1109/ICOSC.2019.8665630https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8665630ontology;requirements;formal methods;automated test generationIEEE Inglês CE1 Excluído
Populating MBSE Models from MDAO AnalysisO. Aïello; D. S. D. R. Kandel; J. -C. Chaudemar; O. Poitou; P. d. Saqui-Sannes2021 Over the past decade, Systems Engineering has switched from document-centric approaches to model-based ones. In this context, Model Based System Engineering (MBSE) and Multidisciplinary Design Analysis and Optimization (MDAO) have emerged as two complementary disciplines. How to combine MBSE and MDAO approaches for the benefits of systems engineers is still an open issue. This paper discusses a case study of coupling MBSE and MDAO. The MBSE part relies on SysML and timed automata, two modeling languages that are supported by the TTool and UPPAAL-SMC tools, respectively. The MDAO part is developed in the context of Open MDAO. The paper uses a drone as a case study and focuses discussion on battery usage. The SysML model of the drone is enhanced with a timed automata model of the battery. The SysML model of the battery is populated with results from MDAO analysis. In this context, combining SysML, UPPAAL-SMC and Open-MDAO offers to improve self-confidence in some values lying in the model, improve self-confidence in the requirements satisfaction, as well as to refine some requirements values with better accuracy.10.1109/ISSE51541.2021.9582519https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582519MBSE;MDAO;SysML;timed automata;droneIEEE Inglês CE1 Excluído
From non-autonomous Petri net models to executable state machinesJ. P. Barros; L. Gomes 2019 Petri nets have long been known as a readable and powerful graphical modelling language. In particular, Petri nets also allow the creation of high-level models of embedded controllers. These models can be translated to executable code. This possibility is already available in some tools including the IOPT Tools. Another possibility is to translate the Petri net model into a state machine, which can then be easily executed by an even larger number of platforms for cyber-physical systems. In that sense, this paper presents a tool that is able to generate a state machine from a non-autonomous class of Petri supported by the IOPT Tools framework (which is publicly available). These state machines would be too large to be manually generated, but can now be automatically created, simulated, and verified using an higher-level modelling language. The state machines can then be used for execution or even as input for additional verification tools. This paper presents the translation algorithm and an illustrative example.10.1109/ISIE.2019.8781246https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8781246model-driven development;cyber-physical systems;Petri nets;design tools;embedded systemsIEEE Inglês CE1 Excluído
UCAnDoModels: A Context-Based Model Editor for Editing and Debugging UML Class and State-Machine DiagramsP. Pourali; J. M. Atlee 2019 Practitioners face cognitive challenges when using model editors to edit and debug UML models, which make them reluctant to adopt modelling. To assist practitioners in their modelling tasks, we have developed effective and easy-to-use tooling techniques and interfaces that address some of these challenges. The principle philosophy behind our tool is to employ cognitive-based techniques such as Focus+Context interfaces and increased automation of modelling tasks, in order to provide the users with valid, relevant and meaningful contextual information that are essential to fulfil a focus task (e.g., writing a transition expression). This paper presents our approach, which we call User-Centric and Artefact-centric Development of Models (UCAnDoModels), and discusses two use-case scenarios to demonstrate how our tooling techniques can enhance the user experience with modelling tools.10.1109/MODELS-C.2019.00122https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904513User-Centric Software Development, UML Modelling Tools, Modelling Challenges, Focus+Context User InterfacesIEEE Inglês CE1 Excluído
Back to the Roots: Linking User Stories to Requirements Elicitation ConversationsT. Spijkman; F. Dalpiaz; S. Brinkkemper2022 Pre-requirements specification (pre-RS) traceability focuses on tracing requirements back to their sources. In comparison with post-RS traceability, pre-RS traceability is an under-explored area of research. Likely reasons for the limited studies are the scarcity of pre-RS resources, e.g., recorded requirements elicitation conversations such as interviews or workshops, and the challenges of linking requirements to informal, unstructured text. Building on the increasing use of digital communication tools that allow the recording and transcription of conversations, we explore the opportunity of linking requirements to the transcript of a requirements elicitation conversation. We introduce TRACE2CoNV, a prototype tool that aims at tracing user story requirements back to the relevant speaker turns in a conversation. TRACE2CoNV makes use of NLP techniques to determine the relevant speaker turns. As an initial validation, we take automatically generated transcripts from real-world requirements conversations, and we assess the effectiveness of TRACE2CoNV in supporting the process of identifying additional context for the requirements. The validation serves as a formative evaluation that guides the evolution of TRACE2CoNV and as a inspiration for future research in the field of conversational RE.10.1109/RE54965.2022.00042https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920091Requirements Elicitation;User Stories;Natural Language Processing;Conversational REIEEE Inglês CE1 Excluído
Speculative Analysis for Quality Assessment of Code CommentsP. Rani 2021 Previous studies have shown that high-quality code comments assist developers in program comprehension and maintenance tasks. However, the semi-structured nature of comments, unclear conventions for writing good comments, and the lack of quality assessment tools for all aspects of comments make their evaluation and maintenance a non-trivial problem. To achieve high-quality comments, we need a deeper understanding of code comment characteristics and the practices developers follow. In this thesis, we approach the problem of assessing comment quality from three different perspectives: what developers ask about commenting practices, what they write in comments, and how researchers support them in assessing comment quality. Our preliminary findings show that developers embed various kinds of information in class comments across programming languages. Still, they face problems in locating relevant guidelines to write consistent and informative comments, verifying the adherence of their comments to the guidelines, and evaluating the overall state of comment quality. To help developers and researchers in building comment quality assessment tools, we provide: (i) an empirically validated taxonomy of comment convention-related questions from various community forums, (ii) an empirically validated taxonomy of comment information types from various programming languages, (iii) a language-independent approach to automatically identify the information types, and (iv) a comment quality taxonomy prepared from a systematic literature review.10.1109/ICSE-Companion52605.2021.00132https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402522code comments, mining developer sources, developer information needs, comment quality assessmentIEEE Inglês CE1 Excluído
An Empirical Study of Code Smells in Transformer-based Code Generation TechniquesM. L. Siddiq; S. H. Majumder; M. R. Mim; S. Jajodia; J. C. S. Santos2022 Prior works have developed transformer-based language learning models to automatically generate source code for a task without compilation errors. The datasets used to train these techniques include samples from open source projects which may not be free of security flaws, code smells, and violations of standard coding practices. Therefore, we investigate to what extent code smells are present in the datasets of coding generation techniques and verify whether they leak into the output of these techniques. To conduct this study, we used Pylint and Bandit to detect code smells and security smells in three widely used training sets (CodeXGlue, APPS, and Code Clippy). We observed that Pylint caught 264 code smell types, whereas Bandit located 44 security smell types in these three datasets used for training code generation techniques. By analyzing the output from ten different configurations of the open-source fine-tuned transformer-based GPT-Neo 125M parameters model, we observed that this model leaked the smells and non-standard practices to the generated source code. When analyzing GitHub Copilot's suggestions, a closed source code generation tool, we observed that it contained 18 types of code smells, including substandard coding patterns and 2 security smell types.10.1109/SCAM55253.2022.00014https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10006873code generation;code smell;security smell;transformer;pre-trained model;GitHub copilotIEEE Inglês CE1 Excluído
PrivacyStory: Tool Support for Extracting Privacy Requirements from User StoriesG. B. Herwanto; G. Quirchmayr; A. M. Tjoa2022 Privacy by design requires that developers address privacy concerns from the early stage of software development life cycle. It encourages them to take a proactive approach to privacy engineering by identifying personal data, creating conceptual data flow diagrams, and identifying privacy threats. We argue that by providing a tool that automates some of the steps can reduce the burden on development teams. We develop a tool called PrivacyStory, including an end-to-end privacy requirement generation from a set of user stories. The tool provides some automation, utilizing a current state-of-the art natural language processing model. The core aim of our tool is to assist development teams in becoming more agile in their approach to privacy requirements engineering.10.1109/RE54965.2022.00036https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920066privacy requirements engineering;user story;natural language processingIEEE Inglês CE1 Excluído
Ambiguity and Generality in Natural Language Privacy PoliciesM. B. Hosseini; J. Heaps; R. Slavin; J. Niu; T. Breaux2021 Privacy policies are legal documents containing application data practices. These documents are well-established sources of requirements in software engineering. However, privacy policies are written in natural language, thus subject to ambiguity and abstraction. Eliciting requirements from privacy policies is a challenging task as these ambiguities can result in more than one interpretation of a given information type (e.g., ambiguous information type "device information" in the statement "we collect your device information"). To address this challenge, we propose an automated approach to infer semantic relations among information types and construct an ontology to guide requirements authors in the selection of the most appropriate information type terms. Our solution utilizes word embeddings and Convolutional Neural Networks (CNN) to classify information type pairs as either hypernymy, synonymy, or unknown. We evaluate our model on a manually-built ontology, yielding predictions that identify hypernymy relations in information type pairs with 0.904 F-1 score, suggesting a large reduction in effort required for ontology construction.10.1109/RE51729.2021.00014https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604600Privacy Policy;Privacy Requirement;Ambiguity;Generality;Semantic Relation;Neural Network;OntologyIEEE Inglês CE1 Excluído
Work in Progress paper: Experiment Planning for Heterogeneous Programmable NetworksN. Sultana 2022 Private and publicly-funded cloud infrastructure and testbeds increasingly feature programmable network hardware. Programmable network cards and switches support the execution of increasingly-complex in-network programs that can operate independently of end-hosts to improve the network’s performance, resilience and utilisation. Reasoning about in-network programs, their placement, and workloads is needed to plan jobs on programmable networks. On programmable testbed networks, this reasoning feeds into resource allocation, fairness and reproducible research. But this reasoning is made challenging by the performance and resource diversity of hardware and by the failure modes that can arise in a distributed system.Flightplanner is currently the most comprehensive reasoning system for distributed and heterogeneous in-network programs but it uses a custom formalism and tool implementation, making it difficult to understand, extend, and scale.This paper describes Lightplanner, a generalisation of Flight-planner’s reasoning system that has been implemented on Prolog. It provides an executable formalisation in a well-understood logic. By relying on Prolog’s proof search, Lightplanner is 10 smaller than Flightplanner’s implementation in C++, making×it better suited for others to understand, extend, and scale. A benchmark of publicly-available in-network programs is used to evaluate Lightplanner against Flightplanner. Though the time overhead is slightly larger, Lightplanner can find better allocations than the original, more complex C++ implementation.Lightplanner is being incubated to plan experiments in a local programmable network testbed at Illinois Tech, and as a future step it will be extended to work across federated networks such as FABRIC.10.1109/DCOSS54816.2022.00079https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9881621Programmable Networking;Resource Allocation;Program AnalysisIEEE Inglês CE1 Excluído
Zoom4PF: A Tool for Refining Static and Dynamic Domain Descriptions in Problem FramesS. Wei; Z. Li; Y. Yang; H. Xiao 2021 Problem analysis has long been considered the key to requirements engineering, and the Problem Frames (PF) approach provides a structured method by deploying a common model for analyzing various types of problems. Problem decomposition is an important technique in structuring the software solution and also the key to reducing problem size and complexity. However, there has not been a suite of flexible and effective tools to describe details of problem domains in PF models. In this paper, we combine model-driven engineering and PF to provide a tool that can refine domain descriptions. In order to support modeling between domain stakeholders and software designers, we provide a technique and tool to allow the modeller to zoom in the details of a problem diagram, by adding UML State Machine Diagrams and SysML Block Definition Diagrams to domain descriptions.A demo video of this tool is available at https://youtu.be/BcQPlDYiOa8. More details of this tool and the appendix to this article are available at https://github.com/Wsfff-lf/ZOOM4PF/tree/main.10.1109/RE51729.2021.00047https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604545Problem Frames approach;Meta-model;Model-driven engineering;State machine;Block diagramIEEE Inglês CE1 Excluído
Verifying Reflex-software with SPIN: Hand Dryer Case StudyT. V. Liakh; N. O. Garanina; I. S. Anureev; V. E. Zyubin2020 Process-oriented programming is a natural way to describe control software as a set of communicating processes with executable states, that allows to speed up its development. The Reflex language is one of the representatives of the family of process-oriented languages. The paper justifies the possibility of applying the model checking method for verification of Reflex programs using the hand dryer case study. The case study includes specification of requirements for the hand dryer, control software in Reflex for it, the result of translation of the Reflex program and the requirements into the input language Promela of the model checker SPIN and LTL formulas, respectively, as well as verification of these formulas in SPIN.10.1109/EDM49804.2020.9153545https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153545Model checking;control software;process-oriented software;formal methods;temporal requirementsIEEE Inglês CE1 Excluído
Foundations and Tools in HOL4 for Analysis of Microarchitectural Out-of-Order ExecutionK. Palmskog; X. Yao; N. Dong; R. Guanciale; M. Dam2022 Program analyses based on Instruction Set Architecture (ISA) abstractions can be circumvented using microarchitectural vulnerabilities, permitting unwanted program information flows even when proven ISA-level properties ostensibly rule them out. However, the low abstraction levels found below ISAs, e.g., in microarchitectures defined in hardware description languages, may obscure information flow and hinder analysis tool development. We present a machine-checked formalization in the HOL4 theorem prover of a language, MIL, that abstractly describes microarchitectural in-order and out-of-order program execution and enables reasoning about low-level program information flows. In particular, MIL programs can exhibit information flow side channels when executed out-of-order, as compared to a reference in-order execution. We prove memory consistency between MIL's out-of-order and in-order dynamic semantics in HOL4, and define a notion of conditional noninterference for MIL programs which rules out trace-driven cache side channels. We then demonstrate how to establish conditional noninterference for programs via a novel semi-automated bisimulation based verification strategy inside HOL4 that we apply to several examples. Based on our results, we believe MIL is suitable as a translation target for ISA code to enable information flow analyses.10.34727/2022/isbn.978-3-85448-053-2_19https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026589information flow;interactive theorem proving;HOL4;microarchitectures;out-of-order executionIEEE Inglês CE1 Excluído
A Semantics Modeling Approach Supporting Property Verification based on Satisfiability Modulo TheoriesJ. Chen; J. Lu; G. Wang; L. Feng; D. Kiritsis2022 Property verification in Model-based systems engineering (MBSE) supports the formalization of model properties and evaluates the constraints of model properties to select an optimal system architecture from alternatives for tradeoff optimization. However, there is a lack of an integrated method that property verification enables to be applied in multi domain specific modeling languages, which is not conductive to the reuse of property verification for different architecture and may increase the learning and use cost. To solve the problem, a semantic approach combining a unified modeling method GOPPRRE modeling method with Satisfiability Modulo Theories (SMT) is proposed to realize property verification. The syntax of the multi-architecture modeling language KARMA based on the GOPPRRE modeling method is extended to realize property verification based on Satisfiability Modulo Theories, which enables the KARMA language to verify the models by evaluating the constraints which are defined based on the model properties. The proposed approach supports the evaluation of property constraints defined by different modeling languages for trade-off optimization in a unified language. The approach is evaluated by a case of optimizing the matching between workers and processes in a multi-architecture modeling tool MetaGraph which is developed based on KARMA. From the result, such approach enables to evaluate constraints consisting of properties and select an optimal scheme from the alternatives.10.1109/SysCon53536.2022.9773841https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773841Property verification;KARMA;GOPPRRE;SMT;MBSEIEEE Inglês CE1 Excluído
RM2PT: A Tool for Automated Prototype Generation from Requirements ModelY. Yang; X. Li; Z. Liu; W. Ke 2019 Prototyping is an effective and efficient way of requirement validation to avoid introducing errors in the early stage of software development. However, manually developing a prototype of a software system requires additional efforts, which would increase the overall cost of software development. Based on our proposed approach, we develop RM2PT: a tool for generating prototypes from requirements models automatically. A requirements model consists of a use case diagram, a conceptual class diagram, system sequence diagrams for use cases, and the formal contracts of their system operations in OCL (Object Constraint Language). RM2PT can generate executable MVC (Model View Controller) prototypes from requirements models automatically. We evaluate the tool with four case studies. 93.65% of requirement specifications can be generated to the executable Java source code successfully, and only 6.35% are non-executable for our current provided generation algorithm such as sorting and event-call, which can be implemented by developers manually or invoking the APIs of advanced algorithms in Java library. The tool is efficient that the one second generated prototype of a case study requires approximate nine hours manual implementation by skilled programmers.10.1109/ICSE-Companion.2019.00038https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8802733Prototype;Code Generation;Requirements Model;Requirements Validation;UML;OCLIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8767927
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582297
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904527
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8732847
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9456275
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9226290
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904815
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159108
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904865
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599869
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714377
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9424363
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958697
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604656
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936279
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202820
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8712366
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9216579
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952421
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8662719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9393490
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904524
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9043022
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7533498
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8930881
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904770
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9825900
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8665630
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582519
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8781246
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904513
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920091
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10006873
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920066
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604600
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9881621
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604545
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153545
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773841
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8802733

Automated Prototype Generation From Formal Requirements ModelY. Yang; X. Li; W. Ke; Z. Liu 2020 Prototyping is an effective and efficient way of requirements validation to avoid introducing errors in the early stage of software development. However, manually developing a prototype of a software system requires additional efforts, which would increase the overall cost of software development. In this article, we present an approach with a developed tool RM2PT to automated prototype generation from formal requirements models for requirements validation. A requirements model consists of a use case diagram, a conceptual class diagram, use case definitions specified by system sequence diagrams, and the contracts of their system operations. A system operation contract is formally specified by a pair of pre and postconditions in object constraint language. We propose a method with a set of transformation rules to decompose a contract into executable parts and nonexecutable parts. An executable part can be automatically transformed into a sequence of primitive operations by applying their corresponding rules, and a nonexecutable part is not transformable with the rules. The tool RM2PT provides a mechanism for developers to develop a piece of program for each nonexecutable part manually, which can be plugged into the generated prototype source code automatically. We have conducted four case studies with over 50 use cases. The experimental result shows that the 93.65% system operations are executable, and only 6.35% are nonexecutable, which can be implemented by developers manually or invoking the third-party application programming interface (APIs). Overall, the result is satisfactory. Each 1 s generated prototype of four case studies requires approximate one day's manual implementation by a skilled programmer. The proposed approach with the developed computer-aided software engineering tool can be applied to the software industry for requirements engineering.10.1109/TR.2019.2934348https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8822502Formal requirements model;object constraint language (OCL);prototype;requirements;requirements model;requirements validation;unified modeling language (UML)IEEE Inglês CE1 Excluído
The Python/C API: Evolution, Usage Statistics, and Bug PatternsM. Hu; Y. Zhang 2020 Python has become one of the most popular programming languages in the era of data science and machine learning, especially for its diverse libraries and extension modules. Python front-end with C/C++ native implementation achieves both productivity and performance, almost becoming the standard structure for many mainstream software systems. However, feature discrepancies between two languages can pose many security hazards in the interface layer using the Python/C API. In this paper, we applied static analysis to reveal the evolution and usage statistics of the Python/C API, and provided a summary and classification of its 10 bug patterns with empirical bug instances from Pillow, a widely used Python imaging library. Our toolchain can be easily extended to access different types of syntactic bug-finding checkers. And our systematical taxonomy to classify bugs can guide the construction of more highly automated and high-precision bug-finding tools.10.1109/SANER48275.2020.9054835https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054835Python/C API;Static analysis;Evolution analysis;Fact extraction;Bug patternIEEE Inglês CE1 Excluído
On Analyzing Rule-Dependencies to Generate Test Cases for Model TransformationsT. -H. Nguyen; D. -H. Dang; Q. -T. Nguyen2019 Quality model transformations play a key role in the successful realization of Model Driven Engineering in practice. In the relational model transformations, rule dependency relations directly impact quality properties such as correctness, completeness, and information preservation. The analysis of rule dependencies from the declarative specification is expected to bring advantages for testing transformation properties.In this paper, we proposed a black-box approach for testing relational model transformations based on the analysis of the declarative specification using Triple Graph Grammar (TGG) rules. We exploit declarative TGG rules to capture the rule dependencies. Then, rule dependencies are combined together using the t-way testing technique to create test case descriptions. We transform patterns representing the input test condition and the oracle function of a test case description into OCL (Object Constraint Language) constraints to facilitate automatically generating input test models by solving constraints and querying interesting properties on the output models.10.1109/KSE.2019.8919486https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8919486Model Transformation;Triple Graph GrammarIEEE Inglês CE1 Excluído
Data2Vis: Automatic Generation of Data Visualizations Using Sequence-to-Sequence Recurrent Neural NetworksV. Dibia; Ç. Demiralp 2019 Rapidly creating effective visualizations using expressive grammars is challenging for users who have limited time and limited skills in statistics and data visualization. Even high-level, dedicated visualization tools often require users to manually select among data attributes, decide which transformations to apply, and specify mappings between visual encoding variables and raw or transformed attributes. In this paper we introduce Data2Vis, an end-to-end trainable neural translation model for automatically generating visualizations from given datasets. We formulate visualization generation as a language translation problem, where data specifications are mapped to visualization specifications in a declarative language (Vega-Lite). To this end, we train a multilayered attention-based encoder–decoder network with long short-term memory (LSTM) units on a corpus of visualization specifications. Qualitative results show that our model learns the vocabulary and syntax for a valid visualization specification, appropriate transformations (count, bins, mean), and how to use common data selection patterns that occur within data visualizations. We introduce two metrics for evaluating the task of automated visualization generation (language syntax validity, visualization grammar syntax validity) and demonstrate the efficacy of bidirectional models with attention mechanisms for this task. Data2Vis generates visualizations that are comparable to manually created visualizations in a fraction of the time, with potential to learn more complex visualization strategies at scale.10.1109/MCG.2019.2924636https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8744242Automated Visualization;Data Visualization;Deep Learning;Machine LearningIEEE Inglês CE1 Excluído
TalkSQL: A Tool for the Synthesis of SQL Queries from Verbal SpecificationsG. Obaido; A. Ade-Ibijola; H. Vadapalli2020 Recent advances in the field of Natural Language Processing (NLP) have led to many robust user interfaces (UIs) designed as intelligent tutoring systems (ITS) that help students learn, query and access data in relational databases. Such tools are generally referred to as Natural Language Interfaces to Databases (NLIDBs). Many of these UIs rely on voice or typewritten for further processing. Research has shown that typewritten remains the preferred input method used by database UIs designers for querying relational databases due to its flexibility. Still, there is a dearth of tools that require voice-based inputs for querying relational databases. Despite the scarcity of these tools, many of them fail to provide a comprehensive feedback to a user. In this paper, we introduce a voice-based query system named TalkSQL that takes voice inputs from a user, converts these words into SQL queries and returns a feedback to the user. Automatic feedback generation is of immense importance. To achieve this, we have used regular expressions, a representation of regular languages for the recognition of the Create, Read, Update, Delete (CRUD) operations in SQL and automatically generate a feedback using pre-defined templates. A survey on 53 participants showed that 91.2% agreed that they were able to understand the CRUD command using TalkSQL. The expected contributions are in two-fold: this work may assist a special (e.g. visually impaired) learner to understand SQL queries, and show that a voice-based interface can assist users in understanding SQL queries.10.1109/IMITEC50163.2020.9334088https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9334088Verbal Specification;Speech recognition;Relational database;SQL tutoringIEEE Inglês CE1 Excluído
Toward Dependable Model-Driven Design of Low-Level Industrial Automation Control SystemsN. Zhou; D. Li; V. Vyatkin; V. Dubinin; C. Liu2022 Recent technological advances and manufacturing paradigm evolutions in industrial settings will dramatically increase the complexity of automation control systems. Traditional solutions to the software development of low-level control kernels (e.g., numerical control kernel, motion control kernel, and real-time communication tasks) are unable to cope effectively with such complexity due to an inadequate level of abstraction and challenges for dependability. This article presents a formal semantics integrated model-driven design approach as a holistic solution. A domain-specific modeling language (DSML) is specified based on the adaption of IEC 61 499 architecture, along with the extensions of task model, task-to-resource allocation, and nonfunctional specification. Both formal structural and behavioral semantics of the proposed DSML are then explicitly defined. Design-time formal verification is also achieved by automated model transformations. A metaprogrammable environment is adopted to facilitate flexible modeling, verification, and code generation. A case study is demonstrated on implementing a prototype computer numerical control (CNC) system using the proposed solution. Note to Practitioners—The low-level automation control system in the modern manufacturing scenarios require more agility while respecting strict timing constraints. Handling such complexity with manual coding is getting harder and less efficient. The DSML and the supporting development environment presented in this article aim to enhance the level of automation, flexibility, and dependability of the whole design process. For the proposed DSML, its syntax is formalized and defined as metamodels, while the semantics is integrated through model annotation and transformation. These definitions are implemented as external rules for a metaprogrammable environment to establish our proposed development tool. The finding and insight from this article can enhance efficiency and dependability during the development of common control kernels, such as CNC kernel and motion controller.10.1109/TASE.2020.3038034https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272668Domain-specific modeling language (DSML);formal verification;IEC 61499;industrial automation control system;model-driven engineering (MDE)IEEE Inglês CE1 Excluído
iContractBot: A Chatbot for Smart Contracts’ Specification and Code GenerationI. Qasse; S. Mishra; M. Hamdaqa2021 Recently, Blockchain technology adoption has expanded to many application areas due to the evolution of smart contracts. However, developing smart contracts is non-trivial and challenging due to the lack of tools and expertise in this field. A promising solution to overcome this issue is to use Model-Driven Engineering (MDE), however, using models still involves a learning curve and might not be suitable for non-technical users. To tackle this challenge, chatbot or conversational interfaces can be used to assess the non-technical users to specify a smart contract in gradual and interactive manner. In this paper, we propose iContractBot, a chatbot for modeling and developing smart contracts. Moreover, we investigate how to integrate iContractBot with iContractML, a domainspecific modeling language for developing smart contracts, and instantiate intention models from the chatbot. The iContractBot framework provides a domain-specific language (DSL) based on the user intention and performs model-to-text transformation to generate the smart contract code. A smart contract use case is presented to demonstrate how iContractBot can be utilized for creating models and generating the deployment artifacts for smart contracts based on a simple conversation.10.1109/BotSE52550.2021.00015https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474392Chatbot;Smart Contracts;Blockchain;Model-Driven Engineering;Domain Specific Language;Ethereum;Hyperledger ComposerIEEE Inglês CE1 Excluído
Exploring Tools and Strategies Used During Regular Expression Composition TasksG. R. Bai; B. Clee; N. Shrestha; C. Chapman; C. Wright; K. T. Stolee2019 Regular expressions are frequently found in programming projects. Studies have found that developers can accurately determine whether a string matches a regular expression. However, we still do not know the challenges associated with composing regular expressions. We conduct an exploratory case study to reveal the tools and strategies developers use during regular expression composition. In this study, 29 students are tasked with composing regular expressions that pass unit tests illustrating the intended behavior. The tasks are in Java and the Eclipse IDE was set up with JUnit tests. Participants had one hour to work and could use any Eclipse tools, web search, or web-based tools they desired. Screen-capture software recorded all interactions with browsers and the IDE. We analyzed the videos quantitatively by transcribing logs and extracting personas. Our results show that participants were 30% successful (28 of 94 attempts) at achieving a 100% pass rate on the unit tests. When participants used tools frequently, as in the case of the novice tester and the knowledgeable tester personas, or when they guess at a solution prior to searching, they are more likely to pass all the unit tests. We also found that compile errors often arise when participants searched for a result and copy/pasted the regular expression from another language into their Java files. These results point to future research into making regular expression composition easier for programmers, such as integrating visualization into the IDE to reduce context switching or providing language migration support when reusing regular expressions written in another language to reduce compile errors.10.1109/ICPC.2019.00039https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813286Exploratory study;regular expressions;problem solving strategies;personasIEEE Inglês CE1 Excluído
AI4U: A Tool for Game Reinforcement Learning ExperimentsG. Gomes; C. A. Vidal; J. B. Cavalcante-Neto; Y. L. B. Nogueira2020 Reinforcement Learning is a promising approach to the design of Non-Player Characters (NPCs). It is challenging, however, to design games enabled to support reinforcement learning because, in addition to specifying the environment and the agent that controls the character, there is the challenge of modeling a significant reward function for the expected behavior from a virtual character. To alleviate the challenges of this problem, we have developed a tool that allows one to specify, in an integrated way, the environment, the agent, and the reward functions. The tool provides a visual and declarative specification of the environment, providing a graphic language consistent with game events. Besides, it supports the specification of non-Markovian reward functions and is integrated with a game development platform that makes it possible to specify complex and interesting environments. An environment modeled with this tool supports the implementation of most current state-of-the-art reinforcement learning algorithms, such as Proximal Policy Optimization and Soft Actor-Critic algorithms. The objective of the developed tool is to facilitate the experimentation of learning in games, taking advantage of the existing ecosystem around modern game development platforms. Applications developed with the support of this tool show the potential for specifying game environments to experiment with reinforcement learning algorithms.10.1109/SBGames51465.2020.00014https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9291598Games;Reinforcement Learning;Autonomous Non-Player CharactersIEEE Inglês CE1 Excluído
DizSpec: Digitalization of Requirements Specification Documents to Automate Traceability and Impact AnalysisA. Rajbhoj; P. Nistala; V. Kulkarni; S. Soni; A. Pathan2022 Requirement engineering in many IT services industries continues to be a document-centric and heavily manual activity, relying on the expertise of business analysts. Requirement specification documents contain details of product features, process flows, activities, rules, parameters, etc. Intricate knowledge of dependencies between these specification elements is necessary for carrying out the effective evolution of the product over time. Today, Business Analysts (BA) are forced to recourse to keyword-based search across multiple requirement specification documents which is a time-, effort-and intellect-intensive endeavor, and vulnerable to the errors of omission and commission. To overcome these lacunae, we propose DizSpec, an automated approach for digitalizing the requirement specification documents into a model form through automatic extraction of specification model elements and the various dependencies between them. The proposed approach creates a digital thread providing machine-processable traceability from product features to its specification elements. It also provides an easy natural language querying mechanism to generate traceability and impact analysis reports of interest. In this paper, we describe the application of this approach to two real-world products thus bringing out its efficacy as well as lessons learned from this transformation journey of the document-centric process to a model-centric and automated process. Though the findings are shared in the specific context of two industry products, we believe, researchers, practitioners, and tool vendors will find the takeaways from this approach and experience applicable in other contexts too.10.1109/RE54965.2022.00030https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920016MDE;Meta-Modeling;Model Extraction;Dependency Extraction;AI in SDLC;NLP4RE;Traceability;Requirements Specification;Feature DependencyIEEE Inglês CE1 Excluído
Modeling Class Diagram using NLP in Object-Oriented DesigningN. Bashir; M. Bilal; M. Liaqat; M. Marjani; N. Malik; M. Ali2021 Requirement's analysis and design is a multifaceted and time-consuming process. The success of software projects critically relies on careful & timely analysis and modeling of system requirements. Mostly, the requirements gathered from the stakeholders are written in some language (probably English). In this regard, significant manual efforts are required for the formation of good class model which unfortunately results in time delays in the software industry. The problems associated with the requirement analysis and class modeling can be overcome by the appropriate employment of machine learning. In this paper, we propose a system, requirement engineering analysis & design (READ) to generate unified modeling language (UML) class diagram using natural language processing (NLP) and domain ontology techniques. We have implemented the READ system in Python and it successfully generates the UML class diagram i.e., class name, attributes methods, and relationships from the textual requirements written in English. To assess the performance of the proposed system, we have evaluated it on publicly available standards and the experimental results show that it outperforms the existing techniques for object-oriented based software designing.10.1109/NCCC49330.2021.9428817https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9428817Machine learning;natural language processing;object-oriented designing;unified modeling language;software designingIEEE Inglês CE1 Excluído
Efficient Parallel Wikipedia Internal Link Extraction for NLP-Assisted Requirements UnderstandingJ. Allen; S. Reddivari 2022 Requirements engineering (RE) is a critical set of activities in the software development life cycle (SDLC). Without effective requirements elicitation, organization, communication, and understanding software engineers cannot build quality soft-ware. Thus, it is necessary for software stakeholders to facilitate the SDLC by following best practices and utilizing software tools as needed to ensure requirements are well understood. One area where RE still faces issues, despite stakeholders' best efforts, is the communication of requirements amongst the various stakeholders. Software stakeholders consist of the customers, developers, managers, end users, and others with a vested interest in the software, and they typically all have different skillsets, backgrounds, vernaculars, and understanding of the requirements. These differences naturally lead to miscommunications which can lead to redundant, missing, or conflicting requirements, especially when customer and end user domains include complex vocabularies developers may not be accustomed to, and vice versa, e.g., biology, physics, and medicine. One approach in recent works to address this challenge has been to bridge the communication gap between stakeholders by constructing domain-specific ontologies using natural language processing (NLP) and Wikipedia [1]. With these ontologies, stakeholders have a convenient tool they can use to translate and understand specific requirements in the terminologies they're accustomed to. These techniques have shown promising potential, however there are computational challenges associated with efficiently handling a large dataset like Wikipedia. In particular, parsing internal links from Wikipedia article metadata can be a bottleneck in such ontology-construction systems. In this work we address this issue by implementing a program for memory-efficient parallel internal link extraction from Wikipedia articles. This builds on the work of Rodriguez et al. [2] by optimizing additional phases in the knowledge acquisition process.10.1109/COMPSAC54236.2022.00077https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842544wikipedia;regular expressions;NLP;parallel computingIEEE Inglês CE1 Excluído
NLP for Requirements Engineering: Tasks, Techniques, Tools, and TechnologiesA. Ferrari; L. Zhao; W. Alhoshan2021 Requirements engineering (RE) is one of the most natural language-intensive fields within the software engineering area. Therefore, several works have been developed across the years to automate the analysis of natural language artifacts that are relevant for RE, including requirements documents, but also app reviews, privacy policies, and social media content related to software products. Furthermore, the recent diffusion of game-changing natural language processing (NLP) techniques and plat-forms has also boosted the interest of RE researchers. However, a reference framework to provide a holistic understanding of the field of NLP for RE is currently missing. Based on the results of a recent systematic mapping study, and stemming from a previous ICSE tutorial by one of the authors, this technical briefing gives an overview of NLP for RE tasks, available techniques, supporting tools and NLP technologies. It is oriented to both researchers and practitioners, and will gently guide the audience towards a clearer view of how NLP can empower RE, providing pointers to representative works and specialised tools.10.1109/ICSE-Companion52605.2021.00137https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402628NLP;Requirements Engineering;Software Engineering;Transfer Learning;Survey;Mapping Study;Empirical Studies;TutorialIEEE Inglês CE1 Excluído
Automatic Detection of Ambiguous Software Requirements: An InsightM. Q. Riaz; W. H. Butt; S. Rehman2019 Requirements Engineering is one of the most important phases of the software development lifecycle. The success of the whole software project depends upon the quality of the requirements. But as we know that mostly the software requirements are stated and documented in the natural language. The requirements written in natural language can be ambiguous and inconsistent. These ambiguities and inconsistencies can lead to misinterpretations and wrong implementations in design and development phase. To address these issues a number of approaches, tools and techniques have been proposed for the automatic detection of natural language ambiguities form software requirement documents. However, to the best of our knowledge, there is very little work done to compare and analyze the differences between these tools and techniques. In this paper, we presented a state of art survey of the currently available tools and techniques for the automatic detection of natural language ambiguities from software requirements. We also focused on figuring out the popularity of different tools and techniques on the basis of citations. This research \mathbf{will} help the practitioners and researchers to get the latest insights in the above-mentioned context.10.1109/INFOMAN.2019.8714682https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714682natural language requirement;requirement engineering;ambiguity;natural language ambiguity;ambiguous software requirements;natural language processingIEEE Inglês CE1 Excluído
Efficient Extraction of Technical Requirements Applying Data AugmentationI. Gräßler; D. Preuß; L. Brandt; M. Mohr2022 Requirements for complex technical systems are documented in natural language sources. Manually extracting requirements from these documents – e.g., to transfer them to a requirements management tool – is time-consuming and error-prone. Today, machine learning approaches are used to classify natural language requirements and thus enable extraction of these requirements. However, in practice there is often not enough labeled domain-specific data available to train such models. For this reason, this work investigates the performance in artificially generating requirements through data augmentation. First, success criteria for a method for extracting and augmenting requirements are elicited in cooperation with industry experts. Second, the performance in the augmentation of requirements data is investigated. The results show that GPT-J is suitable for generating artificial requirements: weighted average F1-score: 62.74 %. Third, a method is developed to extract requirements from specifications, augment requirements data, and then classify the requirements. As a final step, the method is evaluated with requirements data from three industry case examples of the engineering service provider EDAG Engineering GmbH: assembly latch hood, adjustable stopper hood and trunk curtain roller blind. Evaluation shows that especially the transferability of models is improved when they are trained with augmented data. The developed method facilitates eliciting complete requirements sets. Performance of artificial intelligence models in requirements extraction is improved applying augmented data and therefore the method leads to efficient product development.10.1109/ISSE54508.2022.10005452https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005452requirements engineering;artificial intelligence;natural language processing;machine learning;data augmentationIEEE Inglês CE1 Excluído
MBRP: Model-Based Requirements Prioritization Using PageRank AlgorithmM. Abbas; I. Inayat; N. Jan; M. Saadatmand; E. Paul Enoiu; D. Sundmark2019 Requirements prioritization plays an important role in driving project success during software development. Literature reveals that existing requirements prioritization approaches ignore vital factors such as interdependency between requirements. Existing requirements prioritization approaches are also generally time-consuming and involve substantial manual effort. Besides, these approaches show substantial limitations in terms of the number of requirements under consideration. There is some evidence suggesting that models could have a useful role in the analysis of requirements interdependency and their visualization, contributing towards the improvement of the overall requirements prioritization process. However, to date, just a handful of studies are focused on model-based strategies for requirements prioritization, considering only conflict-free functional requirements. This paper uses a meta-model-based approach to help the requirements analyst to model the requirements, stakeholders, and inter-dependencies between requirements. The model instance is then processed by our modified PageRank algorithm to prioritize the given requirements. An experiment was conducted, comparing our modified PageRank algorithm's efficiency and accuracy with five existing requirements prioritization methods. Besides, we also compared our results with a baseline prioritized list of 104 requirements prepared by 28 graduate students. Our results show that our modified PageRank algorithm was able to prioritize the requirements more effectively and efficiently than the other prioritization methods.10.1109/APSEC48747.2019.00014https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945656requirement prioritization;requirements interdependencies;meta model;page-rankIEEE Inglês CE1 Excluído
DBRG: Description-Based Non-Quality Requirements GeneratorM. Osama; A. Zaki-Ismail; M. Abdelrazek; J. Grundy; A. Ibrahim2021 Requirements quality checking is a key process in requirements engineering. For complex and large scale systems, it is recommended to use automated requirements quality checking tools because of the size and complexity of requirements. However, such tools are typically evaluated on a small set of manually curated requirements. This limitation affects the comprehensiveness and reliability of the evaluation and leaves several possible quality issues undetected. In this paper, we de-scribe a novel quality-checking-oriented synthesised requirements generator. We provide an input description language so that several quality checking issues and scenarios can be defined. The generator utilises an input dictionary of nouns and verb frames, and generates requirements sentences complying to a user-defined description of a quality affected requirement.10.1109/RE51729.2021.00052https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604619Requirements Generation;Requirements EngineeringIEEE Inglês CE1 Excluído
Evaluation of Natural Language Processing for Requirements TraceabilityC. D. Laliberte; R. E. Giachetti; M. Kolsch2022 Requirements traceability remains a challenge, especially in multi-level system of systems being developed by many different organizations. This paper develops and tests automated tracing methods based on Natural Language Processing (NLP) techniques to help ensure links between parent and child requirements are correct while preventing common requirements traceability issues. Using publicly available requirements documentation from the National Aeronautics and Space Administration (NASA), the developed software tool analyzed 215 requirements, generated a Term Frequency – Inverse Document Frequency (TF-IDF) matrix of the document collection, and classified parent-child requirement pairs using the histogram distance and cosine similarity measures under eighteen different similarity measure thresholds. Precision, recall, and F-scores were calculated, yielding maximum F-scores for each similarity measure with the objective of understanding the performance and utility of histogram distance for automated requirements tracing. The results indicate natural language processing is likely not a practical approach to requirements traceability.10.1109/SOSE55472.2022.9812649https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9812649Systems engineering;requirements management;requirements traceability;automated requirements tracing;information retrieval;natural language processingIEEE Inglês CE1 Excluído
Parametric Analyses of Attack-Fault TreesÉ. André; D. Lime; M. Ramparison; M. Stoelinga2019 Risk assessment of cyber-physical systems, such as power plants, connected devices and IT-infrastructures has always been challenging: safety (i.e., absence of unintentional failures) and security (i. e., no disruptions due to attackers) are conditions that must be guaranteed. One of the traditional tools used to help considering these problems is attack trees, a tree-based formalism inspired by fault trees, a well-known formalism used in safety engineering. In this paper we define and implement the translation of attack-fault trees (AFTs) to a new extension of timed automata, called parametric weighted timed automata. This allows us to parametrize constants such as time and discrete costs in an AFT and then, using the model-checker IMITATOR, to compute the set of parameter values such that a successful attack is possible. Using the different sets of parameter values computed, different attack and fault scenarios can be deduced depending on the budget, time or computation power of the attacker, providing helpful data to select the most efficient counter-measure.10.1109/ACSD.2019.00008https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8843643security;attack-fault trees;parametric timed automata;imitatorIEEE Inglês CE1 Excluído
Assertion and Coverage Driven Test Generation Tool for RTL DesignsN. Muhammed; N. Hussein; K. Salah; A. Khan2020 RTL verification is still one the most challenging activities in digital system development as it is still the bottleneck in the time-to-market for an integrated circuit development cycle. Thus reducing verification time is one of the most important targets. In this paper, a tool is developed to generate automatic tests from SystemVerilog assertions or SystemVerilog Coverage. The proposed tool is tested using different memory modules starting from single port RAM through Multiple ports RAM, FIFO and the DDRx families. The performance, regarding the runtime, has been compared with the handcrafted test case generation process. Moreover, the performance has been compared with other automatic test generation tools. Results shows the effectiveness of the proposed design. The proposed tool excelled in terms of its run-time, complexity, and coverage percentage.10.1109/UEMCON51285.2020.9298118https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298118Coverage;Assertions;Tests;Generation;RTL;VerificationIEEE Inglês CE1 Excluído
Unified Rational Process: Document Manager Case StudyB. I. P. Cadena; F. J. Bazán; C. O. del Carmen; V. E. Mena; J. Pérez; C. Santiago; G. Rubín2021 RUP captures the best practices of modern software development, applies to a wide range of software projects and organizations, provides us with guidance on how to use UML effectively, and provides access to a knowledge base with guides, templates, and tools. for all critical development activities. Requirements management is done through use case diagrams and visual modeling, which allows for product quality verification. In accordance with the above, it is implemented in the case study of the document version management system to generate a robust architecture through UML modeling.10.1109/ENC53357.2021.9534792https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534792Software Engineering;RUP Methodology;Document Manager System;UML modeling;Projects;RequirementsIEEE Inglês CE1 Excluído
Verifying Dynamic Trait Objects in RustA. VanHattum; D. Schwartz-Narbonne; N. Chong; A. Sampson2022 Rust has risen in prominence as a systems programming language in large part due to its focus on reliability. The language's advanced type system and borrow checker eliminate certain classes of memory safety violations. But for critical pieces of code, teams need assurance beyond what the type checker alone can provide. Verification tools for Rust can check other properties, from memory faults in unsafe Rust code to user-defined correctness assertions. This paper particularly focuses on the challenges in reasoning about Rust's dynamic trait objects, a feature that provides dynamic dispatch for function abstractions. While the explicit dyn keyword that denotes dynamic dispatch is used in 37% of the 500 most-downloaded Rust libraries (crates), dynamic dispatch is implicitly linked into 70%. To our knowledge, our open-source Kani Rust Verifier is the first symbolic modeling checking tool for Rust that can verify correctness while supporting the breadth of dynamic trait objects, including dynamically dispatched closures. We show how our system uses semantic trait information from Rust's Mid-level Intermediate Representation (an advantage over targeting a language-agnostic level such as LLVM) to improve verification performance by 5%–15× for examples from open-source virtualization software. Finally, we share an open-source suite of verification test cases for dynamic trait objects.10.1145/3510457.3513031https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794041Rust;verification;model checking;dynamic dispatchIEEE Inglês CE1 Excluído
Formal Synthesis of Filter Components for Use in Security-Enhancing Architectural TransformationsD. S. Hardin; K. L. Slind 2021 Safety- and security-critical developers have long recognized the importance of applying a high degree of scrutiny to a system’s (or subsystem’s) I/O messages. However, lack of care in the development of message-handling components can lead to an increase, rather than a decrease, in the attack surface. On the DARPA Cyber-Assured Systems Engineering (CASE) program, we have focused our research effort on identifying cyber vulnerabilities early in system development, in particular at the Architecture development phase, and then automatically synthesizing components that mitigate against the identified vulnerabilities from high-level specifications. This approach is highly compatible with the goals of the LangSec community. Advances in formal methods have allowed us to produce hardware/software implementations that are both performant and guaranteed correct. With these tools, we can synthesize high-assurance “building blocks” that can be composed automatically with high confidence to create trustworthy systems, using a method we call Security-Enhancing Architectural Transformations. Our synthesis-focused approach provides a higherleverage insertion point for formal methods than is possible with post facto analytic methods, as the formal methods tools directly contribute to the implementation of the system, without requiring developers to become formal methods experts. Our techniques encompass Systems, Hardware, and Software Development, as well as Hardware/Software Co-Design/CoAssurance. We illustrate our method and tools with an example that implements security-improving transformations on system architectures expressed using the Architecture Analysis and Design Language (AADL). We show how message-handling components can be synthesized from high-level regular or context-free language specifications, as well as a novel specification language for self-describing messages called Contiguity Types, and verified to meet arithmetic constraints extracted from the AADL model. Finally, we guarantee that the intent of the message processing logic is accurately reflected in the application binary code through the use of the verified CakeML compiler, in the case of software, or the Restricted Algorithmic C toolchain with ACL2-based formal verification, in the case of hardware/software co-design.10.1109/SPW53761.2021.00024https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474316Language theoretic security;Formal verification;Formal synthesis;Architecture modelingIEEE Inglês CE1 Excluído
checsdm: A Method for Ensuring Consistency in Heterogeneous Safety-Critical System DesignA. Paz; G. E. Boussaidi; H. Mili 2021 Safety-critical systems are highly heterogeneous, combining different characteristics. Effectively designing such systems requires a complex modelling approach that deals with diverse components (e.g., mechanical, electronic, software)—each having its own underlying domain theories and vocabularies—as well as with various aspects of the same component (e.g., function, structure, behaviour). Furthermore, the regulated nature of such systems prescribes the objectives for their design verification and validation. This paper proposes checsdm, a systematic approach, based on Model-Driven Engineering (MDE), for assisting engineering teams in ensuring consistency of heterogeneous design of safety-critical systems. The approach is developed as a generic methodology and a tool framework, that can be applied to various design scenarios involving different modelling languages and different design guidelines. The methodology comprises an iterative three-phased process. The first phase, elicitation, aims at specifying requirements of the heterogeneous design scenario. Using the proposed tool framework, the second phase, codification, consists in building a particular tool set that supports the heterogeneous design scenario and helps engineers in flagging consistency errors for review and eventual correction. The third phase, operation, applies the tool set to actual system designs. Empirical evaluation of the work is presented through two executions of the checsdm approach for the specific cases of a design scenario involving a mix of UML, Simulink and Stateflow, and a design scenario involving a mix of AADL, Simulink and Stateflow. The operation phase of the first case was performed over three avionics systems and the identified inconsistencies in the design models of these systems were compared to the results of a fully manual verification carried out by professional engineers. The evaluation also includes an assessment workshop with industrial practitioners to examine their perceptions about the approach. The empirical validation indicates the feasibility and “cost-effectiveness” of the approach. Inconsistencies were identified in the three avionics systems with a greater recall rate over the manual verification. The assessment workshop shows the practitioners found the approach easy to understand and gave an overall likelihood of adoption within the context of their work.10.1109/TSE.2020.2966994https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8960313Model-driven engineering;safety-critical systems;heterogeneous design;consistency;design guidelines;DO-178CIEEE Inglês CE1 Excluído
Kirigami, the Verifiable Art of Network CuttingT. A. Thijm; R. Beckett; A. Gupta; D. Walker2022 Satisfiability Modulo Theories (SMT)-based analysis allows exhaustive reasoning over complex distributed control plane routing behaviors, enabling verification of routing under arbitrary conditions. To improve scalability of SMT solving, we introduce a modular verification approach to network control plane verification, where we cut a network into smaller fragments. Users specify an annotated cut which describes how to generate these fragments from the monolithic network, and we verify each fragment independently, using these annotations to define assumptions and guarantees over fragments akin to assume-guarantee reasoning. We prove this modular network verification procedure is sound and complete with respect to verification over the monolithic network. We implement this procedure as Kirigami, an extension of NV [25] - a network verification language and tool - and evaluate it on industrial topologies with synthesized policies. We observe a 10x improvement in end-to-end NV verification time, with SMT solve time improving by up to 6 orders of magnitude.10.1109/ICNP55882.2022.9940333https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9940333modular verification;network control plane;control plane verification;routing protocolsIEEE Inglês CE1 Excluído
An Edge Assisted Secure Lightweight Authentication Technique for Safe Communication on the Internet of Drones NetworkM. Yahuza; M. Y. I. Idris; A. W. A. Wahab; T. Nandy; I. B. Ahmedy; R. Ramli2021 Security and privacy are among the most critical challenges on the internet of drones (IoD) network. The communication entities of the IoD network can communicate securely with the use of authenticated key agreement (AKA) based techniques. However, the design of such techniques must balance the tradeoff between security and lightweight features. Recently, Chen et al. proposed an authentication and key sharing scheme for IoD deployment. It is, however, realized after scrutiny that the proposed technique is vulnerable to security attacks under the well-accepted Canetti-Krawczyk (CK) adversary model. Moreover, the scheme applies to the IoD network with only one drones' flying zone. To solve these challenges, this paper proposed a secure lightweight proven authenticated key agreement (SLPAKA) technique for IoD deployment. The technique is free from all the problems identified in the scheme of Chen et al. To ensure the reliability of the SLPAKA, the security of the technique has been assessed from a theoretical method and formal way using the ProVerif cryptographic protocol verification tool. Apart from comparing the performance of SLPAKA with the benchmarking schemes in terms of security, computational cost, and communication cost, the SLPAKA and the technique proposed by Chen et al. are implemented using a python programming language to evaluate and compare their performance in terms of energy consumption and computational time metrics. The results show that the SLPAKA outperforms the technique of Chen et al. and all the other benchmarking techniques in terms of security and lightweight features.10.1109/ACCESS.2021.3060420https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9358189Authenticated key agreement;CK adversarial model;certificateless AKA;elliptic curve cryptography;Internet of Drones;mobile edge computing;ProVerif;UAS;UAVIEEE Inglês CE1 Excluído
Analyzing Hardware Security Properties of Processors through Model CheckingB. Kumar; A. K. Jaiswal; V. S. Vineesh; R. Shinde2020 Security concerns are growing rapidly in the modern age of the widespread use of electronic products. Due to the increasing dependability on integrated circuits like processors, a security attack can lead to massive damages in different forms. Apart from software-based attacks, design errors in the hardware are also potential sources of security vulnerability. These kinds of vulnerabilities can be unlawfully utilized by attackers and malicious entities for causing damage to the users in different domains. However, discovering such threats is not trivial since simulation-based verification may fail to reveal such corner cases. In this paper, we investigate a formal approach for detecting hardware design errors which can lead to security vulnerabilities. By applying property checking with an industrial strength model checker (JasperGold), we investigate the design of different units of or1200 processor (5-stage pipeline design) for security threats. By an iterative refinement of properties, we were able to successfully write the security-critical properties of the processor through an understanding of the processor design manuals and specification documents. These properties are written in System Verilog Assertions (SVA) format and provided to the tool for model checking. When the properties fail, we obtain counter-examples that can be analyzed and studied for understanding the issues related to the secure operation of the processor. Model checking experiments were done for a total of thirteen security-critical properties. During our experiments, we also observed some security bugs related to the functionality of or 1200 processor design.10.1109/VLSID49098.2020.00036https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105390Hardware Security;Design Vulnerabilities;Property extraction;Counterexamples;Model CheckingIEEE Inglês CE1 Excluído
IFCIL: An Information Flow Configuration Language for SELinuxL. Ceragioli; L. Galletta; P. Degano; D. Basin2022 Security Enhanced Linux (SELinux) is a security architecture for Linux implementing mandatory access control. It has been used in numerous security-critical contexts ranging from servers to mobile devices. But this is challenging as SELinux security policies are difficult to write, understand, and maintain. Recently, the intermediate language CIL was introduced to foster the development of high-level policy languages and to write structured configurations. However, CIL lacks mechanisms for ensuring that the resulting configurations obey desired information flow policies. To remedy this, we propose IFCIL, a backward compatible extension of CIL for specifying fine-grained information flow requirements for CIL configurations. Using IFCIL, administrators can express, e.g., confidentiality, integrity, and non-interference properties. We also provide a tool to statically verify these requirements.10.1109/CSF54842.2022.9919690https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919690access control;formal methods and verification;information flow control;language based security;SELinuxIEEE Inglês CE1 Excluído
Pattern-Based Approach to Modelling and Verifying System SecurityX. Zheng; D. Liu; H. Zhu; I. Bayley2020 Security is one of the most important problems in the engineering of online service-oriented systems. The current best practice in security design is a pattern-oriented approach. A large number of security design patterns have been identified, categorised and documented in the literature. The design of a security solution for a system starts with identification of security requirements and selection of appropriate security design patterns; these are then composed together. It is crucial to verify that the composition of security design patterns is valid in the sense that it preserves the features, semantics and soundness of the patterns and correct in the sense that the security requirements are met by the design. This paper proposes a methodology that employs the algebraic specification language SOFIA to specify security design patterns and their compositions. The specifications are then translated into the Alloy formalism and their validity and correctness are verified using the Alloy model checker. A tool that translates SOFIA into Alloy is presented. A case study with the method and the tool is also reported.10.1109/SOSE49046.2020.00018https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9183499Security;Design patterns;Algebraic specifications;Formal verification;Model checkingIEEE Inglês CE1 Excluído
Automating Cryptographic Protocol Language Generation from Structured SpecificationsR. Metere; L. Arnaboldi 2022 Security of cryptographic protocols can be analysed by creating a model in a formal language and verifying the model in a tool. All such tools focus on the last part of the analysis, verification, and the interpretation of the specification is only explained in papers. Rather, we focus on the interpretation and modelling part by presenting a tool to aid the cryptographer throughout the process and automatically generating code in a target language. We adopt a data-centric approach where the protocol design is stored in a structured way rather than as textual specifications. Previous work shows how this approach facilitates the interpretation to a single language (for Tamarin) which required aftermath modifications. By improving the expressiveness of the specification data structure we extend the tool to export to an additional formal language, ProVerif, as well as a C++ fully running implementation. Furthermore, we extend the plugins to verify correctness in ProVerif and executability lemmas in Tamarin. In this paper we model the Diffie-Hellman key exchange, which is traditionally used as a case study; a demo is also provided for other commonly studied protocols, Needham-Schroeder and Needham-Schroeder-Lowe.10.1145/3524482.3527654https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796432• Software and its engineering→Application specific development environments;;• Security and privacy → Formal security models;;• Networks→Network protocol designIEEE Inglês CE1 Excluído
What Can the Sentiment of a Software Requirements Specification Document Tell Us?C. Werner; Z. S. Li; N. Ernst 2019 Sentiment analysis tools are becoming increasingly more prevalent in the software engineering research community. In this data showcase paper, we present a set of twenty-two software requirements specification (SRS) documents that have been preprocessed and subsequently analyzed using the Senti4SD sentiment analysis tool. As part of our preliminary research, we compared the result of the sentiment analysis of the SRS documents and other non-related documents and found that the SRS documents were 6% more neutral than other non-related documents. Finally, we also present a number of research questions that we believe the research community might be able to answer using our published data.10.1109/REW.2019.00022https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933613sentiment analysis;requirements engineering;software requirements specifications;emotionIEEE Inglês CE1 Excluído
Temporal-spatial-domanial features oriented modeling framework for Transboundary ServiceM. Li; Z. Tu; H. Xu; Z. Wang 2020 Service model is an important form to describe service functions and non-functional attributes. Many scholars have given detailed model specifications and modeling languages for various aspects such as business processes, service value delivery, service ontology description, service decision making, and case management. The state of the art of the above models and their associations shows that temporal-spatial-domanial features have received little attention, however, which have great significance on service execution and evaluation, especially in the background of Transboundary Service. There-fore, this paper proposes a Transboundary Service modeling framework oriented to temporal-spatial-domanial features. It defines the representation of service domains, and analyzes the relationship between domain and service functional/non-functional model. In addition, a tool is developed to support visual modeling and annotation work based on this framework. Finally, an actual case of Freshhema from Alibaba is used to verify this framework. Compared with the existing modeling framework (e.g. BPMN, VDML), this framework pays special attention to the description and analysis of temporal-spatial-domanial features, and clarifies the dependency relationship between it and service function/non-function attributes, pro-vides the necessary model extensions to provide more detailed support for subsequent model application and optimization.10.1109/SCC49832.2020.00063https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284634Transboundary Service;service domain;distribution characteristics;hierarchical dependence;model annotationIEEE Inglês CE1 Excluído
Towards an Effective Implementation of a Model-Driven Engineering Approach for Software DevelopmentI. Khriss; A. Jakimi; H. Abdelmalek2020 Several studies have raised the issue of the adoption of model-driven engineering (MDE) in industry. We can find there, for example, the lack of mature tools and the lack of employee training. In this paper, we present a summary of 20 years of experience in MDE and how our vision has evolved through all these years. We present our view of an effective approach for a better application of MDE which answers to some of the issues raised. This approach is supported by a set of integrated tools that facilitate not only the learning of MDE but also its implementation. We also discuss some of the results of adopting this approach in university software engineering courses and its use in real software development projects.10.1109/IRASET48871.2020.9092192https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9092192Model-driven engineering (MDE);Model-driven architecture (MDA);MDE teaching experiences;MDE industrial experiencesIEEE Inglês CE1 Excluído
Generating UML Class Diagram using NLP Techniques and Heuristic RulesE. A. Abdelnabi; A. M. Maatuk; T. M. Abdelaziz; S. M. Elakeili2020 Several tools and approaches have been proposed to generate Unified Modeling Language (UML) diagrams. Researchers focus on automating the process of extracting valuable information from Natural Language (NL) text to generate UML models. The existing approaches show less accurateness because of the ambiguity of NL. In this paper, we present a method for generation class models from software specification requirements using NL practices and a set of heuristic rules to facilitate the transformation process. The NL requirements are converted into a formal and controlled representation to increase the accuracy of the generated class diagram. A set of pre-defined rules has been developed to extract OO concepts such as classes, attributes, methods, and relationships to generate a UML class diagram from the given requirements specifications. The approach has been applied and evaluated practically, where the results show that the approach is both feasible and acceptable.10.1109/STA50679.2020.9329301https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9329301Software Engineering;Natural Language Processing;Requirement Engineering;UML;Natural languageIEEE Inglês CE1 Excluído
A Tool for the Automatic Generation of Test Cases and Oracles for Simulation Models Based on Functional RequirementsA. Arrieta; J. A. Agirre; G. Sagardui2020 Simulation models are frequently used to model, simulate and test complex systems (e.g., Cyber-Physical Systems (CPSs)). To allow full test automation, test cases and test oracles are required. Safety standards (e.g., the ISO 26262) highly recommend that the test cases of systems like CPSs are associated to requirements. As a result, typically, test cases that need to cover specific requirements are manually generated in the context of simulation models. This is, of course, a time-consuming and non-systematic process. However, the current practice lacks tools that generate test cases by considering functional requirements for simulation-based testing. In this short paper we propose a Domain-Specific Language (DSL) for specifying requirements for simulation-based testing in an easy manner. These files are later parsed by an automatic test generation algorithm, which generates test cases that follow the ASAM-XiL standard. The tool was integrated with two professional tools: (1) SYNECT from dSPACE and (2) xMOD from FEV. An initial validation was also performed with an industrial simulation model from YASA motors.10.1109/ICSTW50294.2020.00018https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155827Simulation-based Testing;Functional Requirements;Test Case GenerationIEEE Inglês CE1 Excluído
The Fundamentals of Domain-Specific Simulation Language EngineeringS. Van Mierlo; H. Vangheluwe; J. Denil2019 Simulationists use a plethora of modelling languages. General-purpose languages such as C, extended with simulation constructs, give the user access to abstractions for general-purpose computation and modularization. The learning curve for experts in domains that are far from programming, however, is steep. Languages such as Modelica and DEVS allow for a more intuitive definition of models, often through visual notations and with libraries of reusable components for various domains. The semantics of these languages is fixed. While libraries can be created, the language's syntax and semantics cannot be adapted to suit the needs of a particular domain. This tutorial provides an introduction to modelling language engineering, which allows one to explicitly model all aspects -in particular, syntax and semantics- of a (domain-specific) modelling and simulation language and to subsequently synthesize appropriate tooling. We demonstrate the discussed techniques by means of a simple railway network language using AToMPM, a (meta)modelling tool.10.1109/WSC40007.2019.9004726https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004726- IEEE Inglês CE1 Excluído
Gaps Identification for User Experience for Model Driven EngineeringP. K. Aggarwal; S. Sharma; Riya; P. Jain; Anupam2021 Since ages, Model-Driven Engineering (MDE) has been a very important part of software engineering. It focuses mainly on technical models that simplify the pattern of study and understanding of a topic. The models used in MDE are based on languages and logic. The one unknown fact is the interconnection among UX (user experience), UI (user interaction), and MDE. Feedbacks from users and different industries indicate the necessity of this interconnection in the technical industry. UX and UI are not only responsible for the development of the software industry but are also the future of the technical world due to the increasing need for fulfilling the demands of customers. The designing as well as the functions of models in software engineering can be improved with the help of user experience. UI helps MDE models to be deployed on different user platforms. It involves taking one complete MDE model as input and producing an output that is suitable for both android and web environments. So in this paper, we will see how these three terms are inter-related to each other and how they complement each other very well.10.1109/Confluence51648.2021.9377178https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9377178Software Engineering;Model Driven Engineering (MDE);User Experience;User Interface;Model;Meta model;Modelling LanguageIEEE Inglês CE1 Excluído
OpenACC Profiling Support for Clang and LLVM using Clacc and TAUC. Coti; J. E. Denny; K. Huck; S. Lee; A. D. Malony; S. Shende; J. S. Vetter2020 Since its launch in 2010, OpenACC has evolved into one of the most widely used portable programming models for accelerators on HPC systems today. Clacc is a project funded by the US Exascale Computing Project (ECP) to bring OpenACC support for C and C++ to the popular Clang and LLVM compiler infrastructure. In this paper, we describe Clacc's support for the OpenACC Profiling Interface, a critical component of the OpenACC specification that standardizes an interface that profiling tools and libraries can depend upon across OpenACC implementations. As part of Clacc's general strategy to build OpenACC support upon OpenMP, we describe how Clacc builds OpenACC Profiling Interface support upon an extended version of OMPT. We then describe how a major profiling and tracing toolkit within ECP, the TAU Performance System, takes advantage of this support. We also describe TAU's selective instrumentation support for OpenACC. Finally, using Clacc and TAU, we present example visualizations for several SPEC ACCEL OpenACC benchmarks running on an IBM AC922 node, and we show that the associated performance overhead is negligible.10.1109/HUSTProtools51951.2020.00012https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9308080OpenACC;OpenMP;Clang;LLVM;GPU;accelerators;compiler;profilingIEEE Inglês CE1 Excluído
Using a Model Based Systems Engineering Approach for Aerospace System Requirements ManagementS. Subarna; A. K. Jawale; A. S. Vidap; S. D. Sadachar; S. Fliginger; S. Myla2020 Since systems engineering encompasses the entire scope of a system, successful systems engineering should embody efficient requirements management through a collaborative and interdisciplinary approach. Model Based Systems Engineering (MBSE) is an emerging field, which applies a model-based framework to the elements of a system comprised of requirements, system functions, analysis results, validation and verification artifacts. The effective comprehension of a complex system is more easily visualized through a model-based approach than a document centric one. The representative models and the inherent traceability which one receives through visual associations provides more effective requirements traceability and analysis; and, thus leading to fewer technical risks, earlier detection and resolution of issues, and helps keep schedules and costs in check. This approach yields better, clearer, and more concise requirements and in turn aids in more effective verification and validation processes as well as more expedient impact analyses of unforeseen changes. This paper describes MBSE through SysML (System Modelling Language) by application on a complex aerospace system. The study qualitatively and quantitatively discusses the value addition of such an implementation using commercially available tools that equip SysML to achieve MBSE in systems. SysML is a domain-specific modeling language developed for systems engineering to specify, analyze, design, optimize, and verify systems. From a practitioner's standpoint, this MBSE approach can be used to engineer any complex system from satellite programs to transport networks.10.1109/DASC50938.2020.9256589https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256589MBSE;SysML;Traceability;Verification;Validation;Requirements Engineering;Requirements ManagementIEEE Inglês CE1 Excluído
Verified Development and Deployment of Multiple Interacting Smart Contracts with VeriSolidK. Nelaturu; A. Mavridoul; A. Veneris; A. Laszka2020 Smart contracts enable the creation of decentralized applications which often handle assets of large value. These decentralized applications are frequently built on multiple interacting contracts. While the underlying platform ensures the correctness of smart contract execution, today developers continue struggling to create functionally correct contracts, as evidenced by a number of security incidents in the recent past. Even though these incidents often exploit contract interaction, prior work on smart contract verification, vulnerability discovery, and secure development typically considers only individual contracts. This paper proposes an approach for the correct-by-design development and deployment of multiple interacting smart contracts by introducing a graphical notation (called deployment diagrams) for specifying possible interactions between contract types. Based on this notation, it later presents a framework for the automated verification, generation, and deployment of interacting contracts that conform to a deployment diagram. As an added benefit, the proposed framework provides a clear separation of concerns between the internal contract behavior and contract interaction, which allows one to compositionally model and analyze systems of interacting smart contracts efficiently.10.1109/ICBC48266.2020.9169428https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9169428Smart Contract;Verification;CAD;Solidity;EthereumIEEE Inglês CE1 Excluído
ESBMC-Solidity: An SMT-Based Model Checker for Solidity Smart ContractsK. Song; N. Matulevicius; E. B. de Lima Filho; L. C. Cordeiro2022 Smart contracts written in Solidity are programs used in blockchain networks, such as Etherium, for performing transactions. However, as with any piece of software, they are prone to errors and may present vulnerabilities, which malicious attackers could then use. This paper proposes a solidity frontend for the efficient SMT-based context-bounded model checker (ESBMC), named ESBMC-Solidity, which provides a way of verifying such contracts with its framework. A benchmark suite with vulnerable smart contracts was also developed for evaluation and comparison with other verification tools. The experiments performed here showed that ESBMC-Solidity detected all vulnerabilities, was the fastest tool and provided a counterexample for each benchmark. A demonstration is available at https://youtu.be/3UH8_1QAVN0.10.1145/3510454.3516855https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793786Formal Verification;Solidity IEEE Inglês CE1 Excluído
Compositional-Nominative Approach to the Client-Server Systems Properties Proofs within Different Formal Execution ModelsT. Panchenko; O. Shyshatska; L. Omelchuk; N. Rusina; S. Fabunmi2019 Software correctness is an actual topic throughout the years. Client-server systems are the substantial subclass of all software with some specific characteristics. The research is mainly concentrated on this class of program systems, showing the efficient ways for the reasoning over server side of client-server software. The compositional-nominative models and Interleaving Parallel Composition Languages (IPCL) constructs for different process spawning models, including the dynamic creation, are discussed here. The approach to automatization of reasoning over the programs is also proposed in this work. The applications are mentioned here. Conclusions and the next steps to add more formality to the whole process of functional correctness verification are discussed.10.1109/UKRCON.2019.8880029https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8880029software correctness;compositional methods;formal methods;software properties proof;shared memory concurrency;client-server systems;program functional verificationIEEE Inglês CE1 Excluído
MCoq: Mutation Analysis for Coq Verification ProjectsK. Jain; K. Palmskog; A. Celik; E. J. G. Arias; M. Gligoric2020 Software developed and verified using proof assistants, such as Coq, can provide trustworthiness beyond that of software developed using traditional programming languages and testing practices. However, guarantees from formal verification are only as good as the underlying definitions and specification properties. If properties are incomplete, flaws in definitions may not be captured during verification, which can lead to unexpected system behavior and failures. Mutation analysis is a general technique for evaluating specifications for adequacy and completeness, based on making small-scale changes to systems and observing the results. We demonstrate MCoq, the first mutation analysis tool for Coq projects. MCoq changes Coq definitions, with each change producing a modified project version, called a mutant, whose proofs are exhaustively checked. If checking succeeds, i.e., the mutant is live, this may indicate specification incompleteness. Since proof checking can take a long time, we optimized MCoq to perform incremental and parallel processing of mutants. By applying MCoq to popular Coq libraries, we found several instances of incomplete and missing specifications manifested as live mutants. We believe MCoq can be useful to proof engineers and researchers for analyzing software verification projects. The demo video for MCoq can be viewed at: https://youtu.be/QhigpfQ7dNo.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270399Mutation analysis;Coq;proof assistants;deductive verificationIEEE Inglês CE1 Excluído
Property Satisfiability Analysis for Product Lines of Modelling LanguagesE. Guerra; J. de Lara; M. Chechik; R. Salay2022 Software engineering uses models throughout most phases of the development process. Models are defined using modelling languages. To make these languages applicable to a wider set of scenarios and customizable to specific needs, researchers have proposed using product lines to specify modelling language variants. However, there is currently a lack of efficient techniques for ensuring correctness with respect to properties of the models accepted by a set of language variants. This may prevent detecting problematic combinations of language variants that produce undesired effects at the model level. To attack this problem, we first present a classification of instantiability properties for language product lines. Then, we propose a novel approach to lifting the satisfiability checking of model properties of individual language variants, to the product line level. Finally, we report on an implementation of our proposal in the Merlin tool, and demonstrate the efficiency gains of our lifted analysis method compared to an enumerative analysis of each individual language variant.10.1109/TSE.2020.2989506https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9076306Model-driven engineering;software language engineering;product lines;meta-modelling;OCL;model findingIEEE Inglês CE1 Excluído
Towards identifying and linking data silos along the software life cycleB. Martens; P. Pethő; T. Holm; J. Franke2021 Software is of increasing importance in all industries and it’s efficient creation an important factor in the success of corporations. Using the data generated during the entire software life cycle to create understanding and derive actionable insights, decisions can be made on a factual basis. One of the key requirements to making these objective decisions possible is the collection, composition, and communication of data to the correct stakeholders. To further these goals, the most complete collection of data artifacts available in the software life cycle is presented. These are abstracted to be independent of programming language, development process and toolset. As value is derived from the connection of entities, a set of possible connections is introduced as well as challenges and solutions in their creation discussed. The theoretical observations, and results are verified in the context of a large development organization with more than a thousand developers working from multiple global locations. Our results show that the combination of multiple data sources and their systematic composition are paramount to deriving value from life cycle data in large corporations.10.1109/ICCSE51940.2021.9569317https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9569317empirical software development;decision making;software life cycle;software artifacts;corporate learningIEEE Inglês CE1 Excluído
Model-Driven Engineering for Delta-Oriented Software Product LinesM. R. A. Setyautami; R. R. Rubiantoro; A. Azurat2019 Software product line engineering (SPLE) is an approach in software development that produces various products based on commonality and variability. SPLE maintains the product variations within two main phases: domain engineering and application engineering. Lack of adequate technology and tools support is one of the problems in adopting SPLE. In this research, a model-driven approach based on delta-oriented programming is proposed for SPLE. The process starts with the domain analysis phase by defining a feature diagram and Unified Modeling Language (UML) based on existing systems. While those models represent the problem domain, delta-oriented programming with abstract behavioral specification? (ABS) language is used in the solution domain. This approach is supported by automated model transformations, which transform the feature diagram and UML to ABS models. A code generator mechanism is also used to produce a running application based on ABS models. When the user selects features in this application, our tools generate the running application based on those selections. We provide a running example, a charity organization system, as a case study. Therefore, this research proposes an entire SPLE process based on a model-driven approach that covers the problem and solution domains and produces a running application.10.1109/APSEC48747.2019.00057https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945701abstract behavioral specification;delta-oriented programming;model transformation;software product line engineering;UML diagramIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8822502
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054835
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8919486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8744242
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9334088
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272668
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474392
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813286
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9291598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9428817
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842544
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402628
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714682
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005452
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945656
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604619
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9812649
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8843643
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534792
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794041
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474316
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8960313
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9940333
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9358189
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105390
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919690
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9183499
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9796432
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933613
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284634
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9092192
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9329301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155827
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004726
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9377178
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9308080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9169428
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793786
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8880029
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270399
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9076306
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9569317
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945701

A Recommendation System for Functional Features to aid Requirements ReuseS. M. Cheema; M. Adnan; A. Baqir; S. Malik; B. A. Munawar2020 Software product lines (SPL) engineering is an efficient means to enhance software quality, support requirement reuse and develop variants of products. Functional and nonfunctional features can be extracted from SRS docs of ancestry built artifacts to aid RR. In this paper we offer a recommendation web tool (prototype) to extract functional features and calculating reusability for amount of data available in the form of SRS of already developed systems. In initial-level, SRS docs are feed into system. System accesses natural language requirements automatically from SRS. Terms extraction is performed which depends on keyword occurrences from several combinations of nouns, verbs, and/or adjectives. Phrases that reflect functional features reside on SRS docs were extracted by using information retrieval (IR). FRs are then stored in knowledgebase automatically. In Secondary-level, requirement analyst inputs summary of prospective system and selects the operation to perform i.e. simple and advance search. System applies POS-tagger technique on software summary for tokenization to search functional features. These tokens are then passed to inference engine to match between knowledgebase to identify which features could be recommended to analyst to aid RR. Matched features with queried features are prioritized using collaborative filtering to assist requirement analyst in making right decision in different software engineering tasks, starting from forming the teams and specifying the requirements to subsequent projects.10.1109/iCoMET48670.2020.9073836https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9073836Software Product Lines Engineering;SPLE;Requirements Reuse;RR;Recommender Systems;Natural Language Processing;Software EngineeringIEEE Inglês CE1 Excluído
Applying Declarative Analysis to Software Product Line Models: An Industrial StudyR. Shahin; R. Hackman; R. Toledo; S. Ramesh; J. M. Atlee; M. Chechik2021 Software Product Lines (SPLs) are families of related software products developed from a common set of artifacts. Most existing analysis tools can be applied to a single product at a time, but not to an entire SPL. Some tools have been redesigned/re-implemented to support the kind of variability exhibited in SPLs, but this usually takes a lot of effort, and is error-prone. Declarative analyses written in languages like Datalog have been collectively lifted to SPLs in prior work [1], which makes the process of applying an existing declarative analysis to a product line more straightforward. In this paper, we take an existing declarative analysis (behaviour alteration) and apply it to a set of automotive software product lines from General Motors. We discuss the design of the analysis pipeline used in this process, present its scalability results, and provide a means to visualize the analysis results for a subset of products filtered by feature expression. We also reflect on some of the lessons learned throughout this project.10.1109/MODELS50736.2021.00023https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592384Software Product Lines;Lifting;Behavior alteration;automotiveIEEE Inglês CE1 Excluído
A Prediction Model for Software Requirements Change ImpactK. Zamani 2021 Software requirements Change Impact Analysis (CIA) is a pivotal process in requirements engineering (RE) since changes to requirements are inevitable. When a requirement change is requested, its impact on all software artefacts has to be investigated to accept or reject the request. Manually performed CIA in large-scale software development is time-consuming and error-prone so, automating this analysis can improve the process of requirements change management. The main goal of this research is to apply a combination of Machine Learning (ML) and Natural Language Processing (NLP) based approaches to develop a prediction model for forecasting the requirement change impact on other requirements in the specification document. The proposed prediction model will be evaluated using appropriate datasets for accuracy and performance. The resulting tool will support project managers to perform automated change impact analysis and make informed decisions on the acceptance or rejection of requirement change requests.10.1109/ASE51524.2021.9678582https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9678582Change impact analysis;Software requirements change;Machine learning;REIEEE Inglês CE1 Excluído
Software Requirements Modeling: A Systematic Literature ReviewM. Arif; C. W. Mohammad; M. Sadiq2020 Software requirements modeling (SRM) is a subprocess of requirements engineering (RE) which is used to elicit and represent the need of the stakeholders. Different systematic literature reviews (SLR) have been performed in different areas of RE like requirements elicitation, stakeholder identification, requirements prioritization, use case models, etc. Despite the availability of different SRM techniques, less attention is given to synthesize the existing SRM techniques in the context of the unified modeling language (UML) and goal oriented techniques like “Knowledge Acquisition for Automated Specifications” (KAOS), I* framework, non-functional requirements (NFR) framework, and Tropos, etc. Therefore, to address this issue, in this paper we present the SLR by analysing the existing SRM techniques based on the following formulated research questions (RQs): (a) how UML and goal oriented techniques were evolved? (b) which modeling techniques are appropriate for modeling the NFRs? (c) what are the tools available for modeling the different types of the software requirements, i.e., functional and nonfunctional requirements? Search items were extracted from the RQs to identify the primary studies from the Journals, Conferences, Workshops, and Symposium. Our SLR has identified 56 distinct studies which have been published from 2008 to 2019. Selected studies were assessed according to the formulated RQs for their quality and coverage to specific SRM technique thus identifying some gaps in the literature. We observed that there is need to develop the SRM techniques for representing the different types of the NFRs; and also to strengthen the UML by integrating the NFRs and multi-criteria decision making techniques.10.1109/GUCON48875.2020.9231058https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9231058Requirements engineering;requirements modeling;notations;systematic literature reviewIEEE Inglês CE1 Excluído
Feasibility Study of Machine Learning & AI Algorithms for Classifying Software RequirementsU. Akshatha Nayak; K. S. Swarnalatha; A. Balachandra2022 Software requirements[15] description and classification is the fundamental and most important activity in the software engineering process. Requirements are obtained through an elicitation process which generally involves interaction with stakeholders such as; exchange of information in person, on notes, by email, on phone, through meetings, etc., which involves a communication language such as English. The description of requirements (ex: functional, non-functional, related others) encompasses few properties such as; understandability, completeness, accuracy, clarity, unambiguousness, testability and related others. Classifying requirements into functional and non-functional category using Machine learning approaches have proved to be successful in the past. The goodness of software requirement properties impact’s the quality levels during the development of a software product and on the resulting product quality. The classification should address semantic details and implicit information during classification to completely satisfy a requirement. This paper presents results of applying different ML algorithms using a simple problem (and data set) for classifying software requirements. The requirements have been described in English following semantic language rules adopted to ease the writing process. The requirement may be obtained from a use case tool (for example rational unified software) or alternate sources. The purpose of this research work is for understanding the application and use of Machine Learning algorithms for the problem of requirements classification, while providing inputs for developing a “software requirements definition and description framework” using English language.10.1109/MysuruCon55714.2022.9972410https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9972410Use Case Tool;Rational Unified Natural Language;semantics;Text Normalization;Lexical analyzer;Vectorization;Machine Learning AlgorithmsIEEE Inglês CE1 Excluído
Research on test case description languageX. Yu; H. Wang; F. Yang 2021 Software testing is crucial in the development of software interfaces or web pages. In this paper, a test case description language (TCDL) is proposed. TCDL can conveniently describe the process of web UI testing with a grammar that is close to natural language and conforms to manual operation logic. In this paper, the manual UI testing process is abstracted by TCDL, and the syntax specification of TCDL is designed, and the parsing of TCDL is realized with the help of ANTLR tool. Using TCDL, testers can quickly write test scripts with manual test logic. TCDL reduces the learning cost of users and improves the testing efficiency.10.1109/ICCECE51280.2021.9342169https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9342169software testing;domain specific language;TCDL;ANTLRIEEE Inglês CE1 Excluído
Test Case Generation using Unified Modeling LanguageS. A. A. Shah; S. S. A. Bukhari; M. Humayun; N. Jhanjhi; S. F. Abbas2019 Software testing is the major phase of the software development life cycle as it ensures that the software performs according to the requirements. In order to perform testing, a lot of techniques are there that can test the software after the completion of the coding phase. Model-based testing has the capability to test the software before the coding phase. It helps in saving time, cost and budget overrun as it is conducted in the initial stages. In design models, UML diagrams are most widely used in academia and industries. UML class (structural) and sequence (behavioral) diagrams are the most common diagrams being used extensively by designers as they can cover the structural and behavioral aspects of the system respectively. A survey has been conducted in this paper to evaluate our proposed framework in which we have taken both diagrams to generate test cases and it can show the test case generation process in a sequence of steps. Some major issues spotted in test case generation process include usage of intermediate form, coverage criteria, storage of results and provision of the tool. Our study aimed to address all the above issues in the proposed framework. Expert's opinion has been taken and results have been shown in a graphical and a tabular way.10.1109/ICCISci.2019.8716480https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8716480unified modeling language;object constraint language;model-based testing;software development life cycle;object oriented programmingIEEE Inglês CE1 Excluído
Real-Time Collaborative Modeling across Language Workbenches – a Case on Jetbrains MPS and Eclipse SpoofaxS. N. Voogd; K. Aslam; L. Van Gool; B. Theelen; I. Malavolta2021 Software tools known as language workbenches are used to define and deploy custom (domain-specific) languages for the purpose of modeling (specific parts) of a system of interest. Because system modeling is a practice that stands to benefit from real-time collaboration, technologies offering real-time collaborative mechanisms for language workbenches are starting to make an appearance. However, these collaboration technologies are generally limited to providing collaboration among clients of a single designated workbench. If the collaborating engineers wish to use different workbenches to work on the model, cross-platform support for collaborative modeling becomes a necessity. In this paper we propose Parsafix, a tool-based approach for achieving real-time collaboration between different language workbenches for users collaborating on models conforming to the same domain-specific language. We propose the main components and mechanisms that make up Parsafix, as well as the implementation of a prototype tool supporting those mechanisms. The prototype tool allows for collaboration between users of JetBrains MPS and Spoofax (within the Eclipse IDE), by making use of the IDEs’ respective real-time collaboration technologies Modelix and Saros. A hands-on session is proposed to showcase the feasibility of having collaborative modeling across different language workbenches through Parsafix.10.1109/MODELS-C53483.2021.00011https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643799Model-driven development;Computer languages;CollaborationIEEE Inglês CE1 Excluído
Towards Automating a Software-Centered Development Process that considers Timing PropertiesR. Weber; N. Adler; T. Wilhelm; A. Sailer; C. Reichmann2022 Software-centered development processes take a more and more prominent place in automotive system design. Accommodating the growing complexities resulting from the increasing heterogeneity in automotive hardware, software, and their collaborative integration requires new workflows. To address this challenge, we propose an approach for system decomposition based on a behavior description integrated with an architecture description language. Additionally, we consider timing validations as a crosscutting concern during different stages of the development and describe an automation concept to support a correct-by-construction development process. Initial user feedback indicates that our concepts together with a proper tool support will help engineers during system design and speed up the process.10.1109/SOCC56010.2022.9908127https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9908127model-based development;X-by-Construction;behavior modeling;timing validation;automationIEEE Inglês CE1 Excluído
An Integrated Model-Based Tool Chain for Managing Variability in Complex System DesignD. Bilic; E. Brosse; A. Sadovykh; D. Truscan; H. Bruneliere; U. Ryssel2019 Software-intensive systems in the automotive domain are often built in different variants, notably in order to support different market segments and legislation regions. Model-based concepts are frequently applied to manage complexity in such variable systems. However, the considered approaches are often focused on single-product development. In order to support variable products in a model-based systems engineering environment, we describe a tool-supported approach that allows us to annotate SysML models with variability data. Such variability information is exchanged between the system modeling tool and variability management tools through the Variability Exchange Language. The contribution of the paper includes the introduction of the model-based product line engineering tool chain and its application on a practical case study at Volvo Construction Equipment. Initial results suggest an improved efficiency in developing such a variable system.10.1109/MODELS-C.2019.00045https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904766Product Line Engineering, Model-based Systems Engineering, Integrated Tool ChainIEEE Inglês CE1 Excluído
SIF: A Framework for Solidity Contract Instrumentation and AnalysisC. Peng; S. Akca; A. Rajan 2019 Solidity is an object-oriented and high-level language for writing smart contracts that are used to execute, verify and enforce credible transactions on permissionless blockchains. In the last few years, analysis of smart contracts has raised considerable interest and numerous techniques have been proposed to check the presence of vulnerabilities in them. Current techniques lack traceability in source code and have widely differing work flows. There is no single unifying framework for analysis, instrumentation, optimisation and code generation of Solidity contracts at the source code level. In this paper, we present SIF, a comprehensive framework for Solidity contract analysis, query, instrumentation, and code generation. SIF provides support for Solidity contract developers and testers to build source level techniques for analysis, understanding, diagnostics, optimisations and code generation. We show feasibility and applicability of the framework by building practical tools on top of it and running them on 1838 real smart contracts deployed on the Ethereum network.10.1109/APSEC48747.2019.00069https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945726high level languages;software testing;code instrumentation;program analysisIEEE Inglês CE1 Excluído
Towards a Spreadsheet-Based Language WorkbenchM. Barash 2021 Spreadsheets are widely used across industries for various purposes, including for storing and manipulating data in a structured form. Such structured forms—expressed using tabular notation—have found their way in language workbenches, which are tools to define (domain-specific modeling) languages and Integrated Development Environments (IDE) for them. There, a tabular notation is oftentimes used as a secondary way to represent concrete syntax of certain language constructs; however, it is not a primary means for (meta)model definition. We present early results on implementing a language workbench where metamodels, models, and editor services are defined only using a tabular notation. We give an overview of the desired functionality of spreadsheet-based language workbenches.10.1109/MODELS-C53483.2021.00102https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643797Spreadsheets;Microsoft Excel;language workbench;tool support;domain-specific modelingIEEE Inglês CE1 Excluído
Stainless Verification System TutorialV. Kuncak; J. Hamza 2021 Stainless (https://stainless.epfl.ch) is an open-source tool for verifying and finding errors in programs written in the Scala programming language. This tutorial will not assume any knowledge of Scala. It aims to get first-time users started with verification tasks by introducing the language, providing modelling and verification tips, and giving a glimpse of the tool’s inner workings (encoding into functional programs, function unfolding, and using theories of satisfiability modulo theory solvers Z3 and CVC4).Stainless (and its predecessor, Leon) has been developed primarily in the EPFL’s Laboratory for Automated Reasoning and Analysis in the period from 2011-2021. Its core specification and implementation language are typed recursive higher-order functional programs (imperative programs are also supported by automated translation to their functional semantics). Stainless can verify that functions are correct for all inputs with respect to provided preconditions and postconditions, it can prove that functions terminate (with optionally provided termination measure functions), and it can provide counter-examples to safety properties. Stainless enables users to write code that is both executed and verified using the same source files. Users can compile programs using the Scala compiler and run them on the JVM. For programs that adhere to certain discipline, users can generate source code in a small fragment of C and then use standard C compilers.10.34727/2021/isbn.978-3-85448-046-4_2https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617582verification;formal methods;proof;counterexample;model checking;Scala;functional programming;satisfiability modulo theoriesIEEE Inglês CE1 Excluído
Restful State Machines and SQL DatabaseJ. Kufner; R. Mařík 2019 State machines and a relational database may look like completely unrelated tools, yet they form an interesting couple. By supporting them with well-established architectural patterns and principles, we built a model layer of a web application which utilizes the formal aspects of the state machines to aid the development of the application while standing on traditional technologies. The layered approach fits well with existing frameworks and the Command-Query Separation pattern provides a horizontal separation and compatibility with various conceptually distinct storages, while the overall architecture respects RESTful principles and the features of the underlying SQL database. The integration of the explicitly specified state machines as first-class citizens provides a reliable connection between the well-separated formal model and the implementation; it enables us to use visual comprehensible formal models in a practical and effective way, and it opens new possibilities of using formal methods in application development and business process modeling.10.1109/ACCESS.2019.2944807https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853255State machine;web application;REST;MVC;multi-tier architecture;CQS;CQRS;ORM;SQLIEEE Inglês CE1 Excluído
Synergizing Reliability Modeling Languages: BDMPs without Repairs and DFTsS. Khan; J. -P. Katoen; M. Volk; M. Bouissou2019 Static Fault Trees (SFTs) are a key model in reliability and safety analysis. Various extensions have been developed to model, e.g., functional dependencies, state-dependent failures, and SPARE elements. This paper studies the expressive power of two important extensions of SFTs: Dynamic Fault Trees (DFTs) and Boolean Logic Driven Markov Processes (BDMPs). We outline a set of BDMP-to-DFT translation rules and apply them to thirty-three BDMP test cases modeling various scenarios of security, software and system reliability. The main contribution is a DFT modeling an industrial BDMP benchmark study of a Nuclear Power Plant (NPP). Although this DFT does not consider repairs, it is one of the largest industrial cases reported so far and is challenging for DFT analysis. We compare the performance and capabilities of analysis tools for BDMPs-the Monte-Carlo simulation tool YAMS, the proprietary Markovian analysis tool FigSeq-and the DFT analysis capability of the probabilistic model checker Storm. We also address how to do a system sensitivity analysis of the NPP benchmark using probabilistic model checking.10.1109/PRDC47002.2019.00057https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952129Reliability, dependability, formal methods, probabilistic model checking, Monte Carlo simulationIEEE Inglês CE1 Excluído
No Strings Attached: An Empirical Study of String-related Software BugsA. Eghbali; M. Pradel 2020 Strings play many roles in programming because they often contain complex and semantically rich information. For example, programmers use strings to filter inputs via regular expression matching, to express the names of program elements accessed through some form of reflection, to embed code written in another formal language, and to assemble textual output produced by a program. The omnipresence of strings leads to a wide range of mistakes that developers may make, yet little is currently known about these mistakes. The lack of knowledge about string-related bugs leads to developers repeating the same mistakes again and again, and to poor support for finding and fixing such bugs. This paper presents the first empirical study of the root causes, consequences, and other properties of string-related bugs. We systematically study 204 string-related bugs in a diverse set of projects written in JavaScript, a language where strings play a particularly important role. Our findings include (i) that many string-related mistakes are caused by a recurring set of root cause patterns, such as incorrect string literals and regular expressions, (ii) that string-related bugs have a diverse set of consequences, including incorrect output or silent omission of expected behavior, (iii) that fixing string-related bugs often requires changing just a single line, with many of the required repair ingredients available in the surrounding code, (iv) that string-related bugs occur across all parts of applications, including the core components, and (v) that almost none of these bugs are detected by existing static analyzers. Our findings not only show the importance and prevalence of string-related bugs, but they help developers to avoid common mistakes and tool builders to tackle the challenge of finding and fixing string-related bugs.https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9286132strings;software bugs;string-related bugs;empirical studyIEEE Inglês CE1 Excluído
Systems Engineering Modelling Diagrams as Prerequisites to Failure Mode and Effect AnalysisS. Jayatilleka 2020 Summary & Conclusions: Failure mode and effect analysis (FMEA) process starts with several key inputs. A few such traditional inputs are the older generation FMEAs, field failure reports, corrective actions and lessons learned. During the past two decades there had been several diagrams used as important FMEA inputs. The most popular diagrams of all diagrams had been the boundary diagram and the parameter diagram that were used to discover hidden functional requirements and failure modes for Design FMEAs. Similarly, the Process Flow Diagram had been used to discover process steps as input to Process FMEAs. This paper discusses several other diagrams depending on the stage of the product development process. FMEAs begin with Functional Requirements. The two main issues affecting the effectiveness of DFMEA are the (i) poorly written functional requirements and (ii) the missing functional requirements. The main connection and the contribution of this paper to DFMEA is the discovery process of functional requirements, otherwise missed. Once the functional requirements are discovered, the rest of the elements of FMEAs are derived from those functional requirements. For example, failure modes are derived as over-function, under-function, or no function, etc. Therefore, missed and poorly written requirements are going to affect the effectiveness of the all elements of FMEA, thereby the product designed level for reliability. The requirements come from different sources. They could be performance, regulatory, safety, or environmental, to mention a few. As mentioned before, if requirements are missed in a FMEA, verification and validation of that requirement is going to be missed. In addition, poorly written requirements lead to inadequate verification and validation test plans. The traditional Boundary and Parameter Diagrams have been influential as a multidimensional tool in discovering the initial requirements. To strengthen the multidimensional requirement discovery process, systems engineering modeling language (SysML) offers several other diagrams. Few examples are the activity diagrams, sequence diagrams, state machines diagrams and use case diagrams. This paper discusses such popular and useful SysML diagrams used across new product development processes to discover functional requirements that may be missed otherwise and feed the DFMEA to have a good start to an effective FMEAs. Examples are provided from automobile, wind turbine, and heating & air-conditioning industries.10.1109/RAMS48030.2020.9153649https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153649SysML;FMEA;Product Development IEEE Inglês CE1 Excluído
VeriSmart 2.0: Swarm-Based Bug-Finding for Multi-threaded Programs with Lazy-CSeqB. Fischer; S. La Torre; G. Parlato2019 Swarm-based verification methods split a verification problem into a large number of independent simpler tasks and so exploit the availability of large numbers of cores to speed up verification. Lazy-CSeq is a BMC-based bug-finding tool for C programs using POSIX threads that is based on sequentialization. Here we present the tool VeriSmart 2.0, which extends Lazy-CSeq with a swarm-based bug-finding method. The key idea of this approach is to constrain the interleaving such that context switches can only happen within selected tiles (more specifically, contiguous code segments within the individual threads). This under-approximates the program's behaviours, with the number and size of tiles as additional parameters, which allows us to vary the complexity of the tasks. Overall, this significantly improves peak memory consumption and (wall-clock) analysis time.10.1109/ASE.2019.00124https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952527program analysis;verification;concurrency;sequentialization;swarm verificationIEEE Inglês CE1 Excluído
Verification of SDRAM controller using SystemVerilogV. Vutukuri; V. B. Adusumilli; P. K. Uppu; S. Varsa; R. K. Thummala2020 Synchronous DRAM (SDRAM) has become memory of choice for desktop computers, laptops and embedded systems due to its significant features like high speed, burst access..etc. As SDRAM has many phases of operation like write phase, burst phase, active phase, precharge phase there is need for a memory controller to manage the memory. The main purpose of the SDRAM controller is to refresh the SDRAM cells periodically and control the flow of data to/from SDRAM. Efficient design and verification of the SDRAM controller is required to minimize the memory access latency and ensure the correct operation of SDRAM. In this paper we have verified the SDRAM controller using SystemVerilog test bench architecture. Our model has verified the SDRAM controller against most of the test cases provided by the specification sheet and also achieved 100 percent code coverage. The design was verified using Modelsim SE-64 10.5.10.1109/CONECCT50063.2020.9198440https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9198440SDRAM controller;verification;SystemVerilogIEEE Inglês CE1 Excluído
An MDE-Based Tool for Early Analysis of UML2.0/PSM Atomic and Composite ComponentsT. S. Rouis; M. T. Bhiri; L. Sliman; M. Kmimech2020 System analysis is a crucial activity throughout component-based architecture design. It enables detecting and correcting errors in the early stage of the system development life cycle. In this article, we consider system analysis in UML2.0 component-based architectural design phase. This is done by proposing a model-driven engineering (MDE) tool called UML2Ada. It enables the systematic translation of a UML2.0 atomic and composite component into Ada concurrent language. This, in turn, supports the validation of the source description using an Ada dynamic analysis tools such as GNATprove and ObjectAda. In addition, by using an Ada static analysis tool such as FLAVERS or INCA, the proposed tool enables the detection of the potential behavioral concurrency properties of the Ada concurrent program.10.1109/JSYST.2019.2960501https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952652Ada concurrent program;analysis;model driven engineering (MDE);translation tool;UML2.0 componentIEEE Inglês CE1 Excluído
Clustering for Traceability Managing in System SpecificationsM. Mezghani; J. Kang; E. -B. Kang; F. Sedes2019 System specifications are generally organized according to several documents hierarchies levels linked in order to represent the traceability information. Requirements engineering experts verify manually the links between each specification which allows to generate a traceability matrix. The purpose of this paper is to automatize the generation of the traceability matrix since it is a time consuming and costly task. We propose an artificial intelligence based approach to deal with this problem through a clustering approach. This latter is an unsupervised algorithm that doesn't need any prior knowledge on the language neither the domain of the specifications. Our approach generates duplicates and clusters containing linked requirements. We experiment our approach in an aeronautic domain and a space domain. We obtain better results for high level specifications especially with a pre-processing.10.1109/RE.2019.00035https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920512Requirements engineering;Traceability;Clustering;System specifications documents;Documents hierarchiesIEEE Inglês CE1 Excluído
Providing Designers with Automated Decision-Making within SysML Models to Promote Efficient Model-Based Systems DesignC. Kotronis; A. Tsadimas; M. Nikolaidou2021 Systems of Systems (SoS) design is a complex process that involves, among other activities, the specification of system structure and requirements, the analysis of behavior and performance, and the exploration of the most appropriate system design solutions. Integration of these activities is advocated by Model-Based Systems Design (MBSD), where a core system model can be enriched with additional capabilities, such as performance analysis or decision-making. The Systems Modeling Language (SysML) is a standard language to utilize model-based design of SoS and create system models, specifying requirements and system constraints. In this work, we focus on integrating decision-making capabilities into SysML to enable system designers to explore alternative solutions that fit the requirements described in SysML. The system model is transformed to a decision model, whose results are automatically incorporated back into the system model. The proposed approach runs iteratively on any typical SysML model and facilitates the designer to explore alternative design solutions, minimizing the manual effort needed to achieve them. As a case study, the approach is applied in the design of a remote patient monitoring system, namely the Remote Elderly Monitoring System (REMS), where the designer decides on a system configuration that covers the needs of the patients.10.1109/SysCon48628.2021.9447083https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447083MBSD;SysML;system model;decision-makingIEEE Inglês CE1 Excluído
Towards an UML-based SoS Analysis and Design ProcessB. Nadira; C. Bouanaka; M. Bendjaballah; A. Djarri2020 Systems of Systems or SoSs are an emerging class of systems built from large-scale constituent systems, that are often heterogeneous, with independent management, goals and resources. The heterogeneity and managerial independence of the constituent systems is both a strength and a drawback of SoS engineering. Although, the individual systems of an SoS may operate autonomously, their interactions present and usually provide important emerging properties that are constantly evolving. Therefore, coordination and interaction within the SoS constituent systems gives rise to an emerging behavior which defines the SoS overall goal. However, this may lead to unpredictable behavior (arrival/departure, failure to fulfill commitments) of the SoS constituent systems. As a result, a well-defined process for SoS engineering; where missions, capabilities and mainly the expected interactions of the constituent systems are well-established, is missing. Our objective in the present work is to propose an UML-based SoS analysis and design process (USDP). The process is iterative and incremental and will be instrumented and documented with various diagrams to ensure clarity and understandability of the USDP artifacts. Besides, a meta-model for SoS modelling will be defined, it mainly defines the SoS structure in terms of constituent systems, theirs missions, capabilities, and interactions. With the aim of reducing the abstraction of interactions and in order to ensure a high interoperability, a precise and coherent definition of the interactions among the heterogenous constituent systems of an SoS is given to make the description of the SoS more truthful. From a practical point of view, we develop a graphical editor for modeling an SoS, based on the strengths of the MDE approach.10.1109/ICAASE51408.2020.9380112https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380112System of Systems;Software engineering;UML;Design Process;USDPIEEE Inglês CE1 Excluído
A Unified Formal Model for Proving Security and Reliability PropertiesW. Hu; L. Wu; Y. Tai; J. Tan; J. Zhang2020 Taint-propagation and X-propagation analyses are important tools for enforcing circuit design properties such as security and reliability. Fundamental to these tools are effective models for accurately measuring the propagation of information and calculating metadata. In this work, we formalize a unified model for reasoning about taint- and X-propagation behaviors and verifying design properties related to these behaviors. Our model are developed from the perspective of information flow and can be described using standard hardware description language (HDL), which allows formal verification of both taint-propagation (i.e., security) and X-propagation (i.e., reliability) related properties using standard electronic design automation (EDA) verification tools. Experimental results show that our formal model can be used to prove both security and reliability properties in order to uncover unintended design flaw, timing channel and intentional malicious undocumented functionality in circuit designs.10.1109/ATS49688.2020.9301533https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9301533Taint-propagation;X-propagation;formal model;formal verification;design propertyIEEE Inglês CE1 Excluído
A System Function Verification Flow For Mixed-signal SoCY. Fu; K. Huang; L. Zhang; F. Liu2020 Taking a mixed-signal SoC project as an example, this article introduces an efficient system function verification flow applied to mixed-signal SoC. All the inherited analog IPs in this project are developed in virtuoso environment, and the digital modules are simulated in VCS environment. The system function verification platform of this project uses UVM(Universal Verification Methodology) to generate digital stimulus and Verilog-AMS to generate analog stimulus. The overall circuit is transformed into spectre-netlist and integrated into the verification platform. The project has high requirements on the development and simulation progress. The system function verification is realized by using simulation tools VCS and XA of Synopsys. The results of the project are correct, which shows the effectiveness of the flow.10.1109/IFEEA51475.2020.00157https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9356850mixed-signal SoC;system function verification;spectre-netlist;UVM;Verilog-AMSIEEE Inglês CE1 Excluído
Another Tool for Structural Operational Semantics Visualization of Simple Imperative LanguageJ. Perháč; Z. Bilanová 2020 Teaching formal methods, especially semantics of programming languages is an important aspect of theoretical informatics. The learning process often includes a lot of mathematics and learning different notations, which appears to be very difficult for students. In this paper, we present a new interactive tool for visualization of the structural operational semantics of a simple imperative program. We demonstrate our approach on the example of a simple program, where we visualize the inference process of small steps semantic method.10.1109/ICETA51985.2020.9379205https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9379205Structural operational semantics;Semantics of programming languages;Visualization tool;Teaching formal methodsIEEE Inglês CE1 Excluído
A Secure and Resilient Scheme for Telecare Medical Information Systems With Threat Modeling and Formal VerificationS. S. Ahamad; M. Al-Shehri; I. Keshta2022 Telecare Medical Information Systems (TMIS) is a highly focused and unique domain providing healthcare services remotely, the development and advancement in the realm of information and communication technologies boosted the development of TMIS. Smartphones, IoT devices, Mobile Healthcare Applications (MHA) and hospital servers are the building blocks of TMIS. Emergen Research predicts that IoT based healthcare security market will reach USD 5.52 Billion in 2028. Existing IoT based healthcare solutions are facing many security problems which includes information leakage, false authentication, key loss and are not in compliance with Health Insurance Portability and Accountability Act (HIPAA) regulations as IoT devices and sensors used are prone to Blue Borne, DoS (Denial of Service), DDoS (Distributed Denial of Service) and Reverse-engineering attacks. In addition to these healthcare applications in the IoT devices/sensors and mobile healthcare applications in the smart phone of the patient are vulnerable to repackaging attacks and lacked transport layer protection. This paper proposes a SRSTMIS (Secure and Resilient Scheme for Telecare Medical Information Systems) containing its architecture, a procedure to verify the safety and security of patients credentials and Mobile Healthcare Applications (MHA) and finally proposed a secure protocol. White-Box Cryptography (WBC) ensures the safety and security of the keys in the healthcare applications and in the SE, UICC and TPM. We have threat modeled our proposed healthcare framework using STRIDE approach and successfully verified using Microsoft Threat Modeling tool 2016. Our proposed secure and lightweight authentication scheme has been successfully verified with BAN (Burrows, Abadi, and Needham) logic and Scyther tool, and our proposed protocol overcome DoS (Denial of Service), multi-protocol attack, Blue Borne attack, DDoS (Distributed Denial of Service) attack, reverse engineering, insider, outsider and Phlashing attacks. SRSTMIS overcomes information leakage from sensors during rest and during transit, key loss from healthcare applications of the sensors and smart phone and false authentication and ensures HIPAA regulations. Proposed protocol was successfully implemented in Android Studio. We have compared our proposed work with the existing works and found to better in terms of security, resisting attacks, and in consumption of resources.10.1109/ACCESS.2022.3217230https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9950052Telecare medical information systems (TMIS);SRSTMIS (secure and resilient scheme for telecare medical information systems);mobile healthcare applications (MHA);white-box cryptography (WBC);health insurance portability and accountability act (HIPAA);BAN logic;and blue borne attack;phlashing attacks;STRIDE approach;scyther tool;microsoft threat modeling tool 2016;reverse-engineering attacks;kotlin languageIEEE Inglês CE1 Excluído
Automatic Generation of Simulink Models to Find Bugs in a Cyber-Physical System Tool Chain using Deep LearningS. L. Shrestha 2020 Testing cyber-physical system (CPS) development tools such as MathWorks' Simulink is very important as they are widely used in design, simulation, and verification of CPS data-flow models. Existing randomized differential testing frameworks such as SLforge leverages semi-formal Simulink specifications to guide random model generation which requires significant research and engineering investment along with the need to manually update the tool, whenever MathWorks updates model validity rules. To address the limitations, we propose to learn validity rules automatically by learning a language model using our framework DeepFuzzSL from existing corpus of Simulink models. In our experiments, DeepFuz-zSL consistently generate over 90% valid Simulink models and also found 2 confirmed bugs by MathWorks Support.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270395model driven software engineering;deep learning;fuzzing;compiler testing;LSTM;language models;Simulink;CPSIEEE Inglês CE1 Excluído
Model-Checking-Based Automated Test Case Generation for Z Formal Specification of an Urban Railway Interlocking SystemL. Kadakolmath; U. D. Ramu 2022 Testing safety-critical software systems like urban railway interlocking systems is crucial since a software crash may lead to a terrible loss of assets and human life. A key problem in testing safety-critical software systems is the generation of a test suite that can detect feasible faults. The reliability of safety-critical systems is based on the precise functional requirements specification. These functional requirements are made precise by formal specification languages like Z. Formal specifications have less probability of producing an implementation that does not meet the client's requirements. To confirm that the implementation that is to be deployed in the real world, meets the client's requirements, it is essential to test it. This research article exhibits a model-checking-based method to produce a test suite of \mathbf{Z} formal specifications using the ProZ model-checking tool. The model-checking-based method uses a breadth-first search method to produce test cases. Finally, as a case study, we applied this methodology to the formal model of an urban railway interlocking system to generate test cases.10.1109/ICERECT56837.2022.10060801https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10060801Formal specification;Formal testing;Model-Based testing;Model checking;Test template framework;Test case generation;Safety-critical software systems;Z notationIEEE Inglês CE1 Excluído
e-Voting Protocol Modelling To Improve Verifiability RequirementsT. N. Suharsono; Gunawan; R. N. Sukmana2021 The ability of the voting system to protect voter votes until the end of the process can increase public confidence in the voting system. The verifiability aspect allows several parties to ensure that there is no change in the vote of the voters, thereby increasing trust in voting technology. To get to the concept of the proposed system of e-voting, an analysis e-voting needs has been carried out and the stage of the protocol model design analysis for verifiability needs. Some parties involved in meeting the needs of verifiability are Voters, Officers, Witnesses or KPU (Commission of General Election), where some parties can verify the votes of voters before, during, after, and after the vote count in election. In fulfilling the verifiability needs of this e-voting system, traditional simulation modeling and voting testing have been carried out as a comparison with modeling simulations and testing of e-voting protocols. Before modeling simulation and protocol testing, formal notation writing was carried out in the form of Communicating Sequential Processes (CSP) notation. Protocol testing will be carried out with formal verification, which proves that protocol specifications are in accordance with the integrity properties that have been defined previously. The verification tool used is based on reference modeling, which can analyze the specifications logical consistency, and verified properties reports, namely SPIN (Simple Promela Interpreter). The verified system used PROMELA language (MEta LAnguage process) which is translated from CSP formal notation.10.1109/TSSA52866.2021.9768253https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9768253e-voting protocol;verifiability requirements;formal notation;formal methodIEEE Inglês CE1 Excluído
Text vs. Graphs in Argument AnalysisG. Carneiro; A. Toniolo; M. A. Ncenta; A. J. Quigley2021 The ability to understand, process and evaluate arguments made by others and ourselves is important in many personal and professional spheres, such as political debates. Analysis typically appears in written form, but a growing number of tools support analysis through diagram-based graphical representations. These UIs might support better argument analysis because arguments have non-linear structures that are difficult to convey through linear text. However, there is little empirical evidence on the advantages or mechanisms that might make graph UIs superior to traditional textual documents. We ran and analyzed a study with twenty participants who used text and graph editors to analyze political debates. Our findings demonstrate the tradeoffs between the two approaches and explain key mechanisms that support the analysis in both media.10.1109/VL/HCC51201.2021.9576493https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9576493text;visualization;video analysis;argumentationIEEE Inglês CE1 Excluído
Formal Verification of 5G EAP-AKA protocolM. Ajit; S. Sankaran; K. Jain 2021 The advent of 5G, one of the most recent and promising technologies currently under deployment, fulfills the emerging needs of mobile subscribers by introducing several new technological advancements. However, this may lead to numerous attacks in the emerging 5G networks. Thus, to guarantee the secure transmission of user data, 5G Authentication protocols such as Extensible Authentication Protocol - Authenticated Key Agreement Protocol (EAP-AKA) were developed. These protocols play an important role in ensuring security to the users as well as their data. However, there exists no guarantees about the security of the protocols. Thus formal verification is necessary to ensure that the authentication protocols are devoid of vulnerabilities or security loopholes. Towards this goal, we formally verify the security of the 5G EAP-AKA protocol using an automated verification tool called ProVerif. ProVerif identifies traces of attacks and checks for security loopholes that can be accessed by the attackers. In addition, we model the complete architecture of the 5G EAP-AKA protocol using the language called typed pi-calculus and analyze the protocol architecture through symbolic model checking. Our analysis shows that some cryptographic parameters in the architecture can be accessed by the attackers which cause the corresponding security properties to be violated.10.1109/ITNAC53136.2021.9652163https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=96521635G network;Authentication protocol;ProVerif;5G EAP-AKA;formal verification;applied Pi-CalculusIEEE Inglês CE1 Excluído
Design and Verification of AMBA AHBP. Giridhar; P. Choudhury 2019 The AHB (Advanced High-performance Bus) is a high-performance bus in AMBA (Advanced Microcontroller Bus Architecture) family. It is a standard for intercommunication of modules in a system. AHB standards are defined by ARM and supports the communication of on-chip memories processors and interfaces of off-chip external memory. In this paper we present, design and perform verification of AHB which support one master and four slaves. In this work, the design of the AHB Protocol is developed comprising of the basic blocks such as Master, Slave, decoder and multiplexers. This AMBA-AHB protocol can be used in any application provided the design should be an AHB compliant. The building blocks of the design master, slaves, decoder and multiplexers are developed in Verilog. The verification environment is developed in system Verilog (SV). QuestaSim (Advanced verification tool from Mentor Graphics) is used to simulate and verify the design and calculate code and functional coverages.10.1109/ICATIECE45860.2019.9063856https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9063856AHB;AMBA-AHB;QuestaSim;ARM IEEE Inglês CE1 Excluído
Supporting the Scale-Up of High Performance Application to Pre-Exascale Systems: The ANTAREX ApproachC. Silvano; G. Agosta; A. Bartolini; A. R. Beccari; L. Benini; L. Besnard; J. Bispo; R. Cmar; J. M. P. Cardoso; C. Cavazzoni; D. Cesarini; S. Cherubin; F. Ficarelli; D. Gadioli; M. Golasowski; I. Lasri; A. Libri; C. Manelfi; J. Martinovič; G. Palermo; P. Pinto; E. Rohou; N. Sanna; K. Slaninová; E. Vitali2019 The ANTAREX project developed an approach to the performance tuning of High Performance applications based on an Aspect-oriented Domain Specific Language (DSL), with the goal to simplify the enforcement of extra-functional properties in large scale applications. The project aims at demonstrating its tools and techniques on two relevant use cases, one in the domain of computational drug discovery, the other in the domain of online vehicle navigation. In this paper, we present an overview of the project and of its main achievements, as well as of the large scale experiments that have been planned to validate the approach.10.1109/EMPDP.2019.8671584https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8671584High Performance Computing;Autotuning;Adaptivity;DSL;Compilers;Energy EfficiencyIEEE Inglês CE1 Excluído
Evaluating the Ability of Developers to Use Metamodels in Model-Oriented DevelopmentT. Gottardi; R. T. Vaccare Braga 2019 The applicability of models has evolved throughout the history of software engineering, from documentation, development and beyond. In this context, we study how to employ models for a common language shared by humans and computers. After studying a model-oriented development method for models at run-time systems, we have identified that this method would heavily rely on metamodels. Therefore, it is important to evaluate if developers are able to use metamodels in software development. In this paper we present a controlled experiment to evaluate the ability and efforts of professional and novice developers to effectively use metamodels. Participants of the experiment had access to newly created metamodeling definition tools, as well as standard Java code and UML diagrams in order to complete their tasks. Results indicate that the definition language was easy to be learned by experienced Java developers, who were able to comprehend metamodeling development artifacts without struggling with modeling concepts. We conclude developers would be able to adapt to new modeling concepts and tools as required by different systems that handle models at run-time.10.1109/MiSE.2019.00012https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877083metamodeling;model-oriented software;experimental study;development tools;model comprehensionIEEE Inglês CE1 Excluído
Verification of a Model of the Isolated Program Environment of Subjects Using the Lamport's Temporal Logic of ActionsA. M. Kanner; T. M. Kanner 2020 The article considers a modern approach to the creation of formal computer system security models, which consists in describing a model in some formal language suitable for its verification for compliance with the expected properties. The article provides an example of such a description in the form of a specification of a formal model of the isolated program environment in the language of the Lamport's temporal logic of actions. The specification is formed as an initial state of the system, a list of possible further actions and a set of invariants and temporal properties to which the system's states must correspond. The initial state is described by some entities that must exist in each system implementation. The system's actions are given in the form of predicates of pre- and postconditions, with some model's variables changing in the latter. Invariants and temporal properties are described in the form of predicates, whose truth must be checked in each possible state of the system or depending on the conditions occurring in previous or future states. The article considers the features of forming a security model specification in TLA+ notation and verifying it using special tools. In its conclusion, the article describes the results of verifying the specification of the formal model of the isolated program environment of subjects, the existing problems and directions for further research on this topic.10.1109/EnT50437.2020.9431263https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9431263isolated program environment of subjects;security model;verification;temporal logicIEEE Inglês CE1 Excluído
Recovery of Mobile Game Design PatternsM. Khan; G. Rasool 2020 The benefits of design patterns to solve recurring and generic problems is well known for the software industry and academia. Game design patterns are being introduced to solve the particular type of problems for the development of computer games. The formal and informal specifications of game design patterns exist because of differences in implementation, design requirements and programming languages. We analyzed the state of the art related to mobile game design patterns and realized that mobile applications are developed by using mobile game design patterns for the development of quality software applications. The recovery of mobile game design patterns is helpful for the comprehension, reverse engineering, maintenance, evolution and refactoring of software applications. The contribution of this paper are specification and detection of 10 mobile game design patterns from 8 open source mobile games. A prototyping tool is developed to demonstrate the concept of the approach. We evaluate our approach by using precision, recall and F-measure metrics.10.1109/ACIT50332.2020.9299966https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9299966Reverse engineering;design patterns;mobile games;game design patternsIEEE Inglês CE1 Excluído
Domain Specific Language of Traffic Flow Factor FrameworkF. X. Habinshuti 2020 the challenge is to provide a convenient tool for modeling traffic problems. Many factors affect traffic related to the driver or human factor, weather factor, road conditions, vehicle performance and characteristics factor, etc. It is necessary to propose a model where the influence of these factors can be described uniformly. Furthermore, the factors described are loaded into the general mechanism of motion modeling. To overcome this problem we started to build a DSL language of Traffic Flow Factor Framework (TFFF). This paper introduces an Xtext grammar of weather condition model, which is part of factors. It also touches on Longitudinal Model (LM) a mathematical model used more often to capture the weather factors involved in driving vehicles and traffic flow modeling.10.1109/EnT50437.2020.9431298https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9431298TFFF;DSL;Xtext grammar;LM IEEE Inglês CE1 Excluído
Priority in Logical Time Partial Orders with Synchronous RelationsR. Gascon; J. Deantoni; J. -F. Le Tallec2019 The Clock Constraint Specification Language (CCSL) offers constructs for expressing chronological and causal relations on events of an embedded system. CCSL simulator, TimeSquare allows one to visualize executions of the specified systems by determining step by step sets of synchronously occurring events. When several different sets of events are possible at a given step, the simulator uses a global simulation policy to choose one. However, this mechanism does not consider any priority between events. Inspired by priority in Petri nets, we show how to formally define a priority system supporting possibly synchronous partial orders of events. Both formal definitions and an efficient implementation are presented.10.1109/RIVF.2019.8713697https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8713697- IEEE Inglês CE1 Excluído
A formal mapping between OPC UA and the Semantic WebR. Schiekofer; S. Grimm; M. M. Brandt; M. Weyrich2019 The communication protocol OPC UA is one of the most important IIoT enablers within the automation domain. OPC UA not only aims to provide interoperability on the transport layer, but also interoperability of the semantic layer shall be addressed based on so-called Companion Specifications. However, the lack of OPC UA formal semantics makes automatic validation of OPC UA data models impossible. Another drawback is the shortage of available tools for OPC UA, such as an implementation of the query engine for the specified OPC UA query language. In this paper we provide a formal translation of OPC UA models to the Semantic Web standard OWL, thus making OPC UA implicit semantics, that is described in the documentation, explicit, by means of OWL axioms. Moreover, we outline how this mapping can be used to offer validation and querying of OPC UA data models based on already existing Semantic Web technology.10.1109/INDIN41052.2019.8972102https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972102OPC UA;OWL;Mapping;Query;ValidationIEEE Inglês CE1 Excluído
Temporal Property-Based Testing of a Timed C Compiler using Time-Flow Graph SemanticsS. Natarajan; D. Broman 2020 The correctness of a real-time system depends both on it being logically sound and temporally correct. To guarantee temporal correctness, the development of such systems includes: (i) developing a model, (ii) formally verifying the model, and (iii) implementing the verified model using a programming language. The temporal correctness then depends on correctly implementing the model using a real-time programming language and compiling it to a hardware platform. Although the timing semantics of many real-time programming languages are well defined, there is no guarantee that the timing semantics of such programs are correctly translated by the compiler. In this paper, we propose a new method for temporal property-based testing. The general method is implemented and evaluated on the Timed C real-time programming language. We formalize the temporal core semantics of Timed C and then use this formalization to specify the properties that are tested by the new property-based testing tool. More specifically, the tool consist of two parts: (i) a generator that randomly generates Timed C programs, and (ii) a property checker that checks whether the language's timing semantics are correctly captured in its execution. We evaluate the method and tool on an embedded Raspberry Pi platform.10.1109/FDL50818.2020.9232935https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9232935- IEEE Inglês CE1 Excluído
Data flow analysis from UML/MARTE models based on binary tracesH. Posadas; J. Merino; E. Villar 2020 The design of increasingly complex embedded systems requires powerful solutions from the very beginning of the design process. Model Based Design (MBD) and early simulation have proven to be capable technologies to perform initial design space analysis to optimize system design. Traditional MBD methods and tools typically rely on fixed elements, which makes difficult the evaluation of different platform configurations, communication alternatives or models of computation. Addressing these challenges require flexible design technologies able to support, from a high-level abstract model, full design space exploration, including system specification, binary generation and performance evaluation. In this context, this paper proposes a UML/MARTE based approach able to address the challenges mentioned above by improving design flexibility and evaluation capabilities, including automatic code generation, trace execution collection and trace analysis from the initial UML models. The approach focuses on the definition and analysis of the paths data follow through the different application components, as a way to understand the behavior or the different design solutions.10.1109/DCIS51330.2020.9268671https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9268671UML;MoCs;code generation;trace analysisIEEE Inglês CE1 Excluído
A Concept for a Qualifiable (Meta)-Modeling Framework Deployable in Systems and Tools of Safety-Critical and Cyber-Physical EnvironmentsV. Tietz; J. Schoepf; A. Waldvogel; B. Annighoefer2021 The development of cyber-physical systems can significantly benefit from domain-specific modeling and requires adequate (meta)-modeling frameworks. If such systems are designed for the safety-critical area, the systems must undergo qualification processes defined and monitored by a certification authority. To use the resulting artifacts of modeling tools without further qualification activities, the modeling tool must be additionally qualified. Tool qualification has to be conducted by the tool user and can be assisted by the tool developer by providing qualification artifacts. However, state-of-the-art domain-specific modeling frameworks barely support the user in the qualification process, which results in an extensive manual effort. To reduce this effort and to avoid modeling constructs that can hardly be implemented in a qualifiable way, we propose the development of an open source (meta)-modeling framework that inherently considers qualification issues. Based on the functionality of existing frameworks, we have identified components that necessarily need to be rethought or changed. This leads to the consideration of the following six cornerstones for our framework: (1) an essential meta-language, (2) a minimal runtime, (3) deterministic transformations, (4) a qualification artifact generation, (5) a sophisticated visualization, and (6) a decoupled interaction of framework components. All these cornerstones consider the aspect of a safety-critical (meta)-modeling framework in their own manner. This combination leads to a holistic framework usable in the safety-critical system development domain.10.1109/MODELS50736.2021.00025https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592513Ada SPARK;domain specific modeling;(meta) modeling framework;model based systems engineering;model transformation language;qualifiable runtime environment;safety critical;(tool) qualification;visualizationIEEE Inglês CE1 Excluído
Approach to Construction of Common Information Space of Manufacturing EnterpriseN. S. Mikhailov; A. S. Mikhailova; V. V. Kasatkin2020 The development of methodology and support tools of the design process and practical implementation of the manufacturing enterprise common information space (CIS) is considered. The proposed methodology allows top management, analysts, developers and IT specialists to respond quickly to changing organizational and technical conditions of production and impact of the external environment, to clarify and agree on requirements to elements of the enterprise control system, to continuously improve and modernize the CIS during the operation of the enterprise. It is shown that the application of existing methodologies and notations is not enough to ensure consistency at each level of CIS design with the corresponding program documents: business development strategy, functional strategies (including information technology development strategy, digital transformation strategy, etc.), project description and technical tasks for software and hardware development, etc. The proposed methodology involves using IDEF0 notation at the top level with decomposition and business process modeling in BPMN or eEPC notations at the middle level. For modeling and software development at the lower level it is proposed to use flexible development methodologies - the agile methods based on the use of corresponding models: user stories, abstract UML models, block diagrams. The advantages and peculiarities of practical application of the proposed methodology in the design of the CIS and elements of the production executive system of the manufacturing enterprise are considered.10.1109/ITQMIS51053.2020.9322972https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9322972common information space;business process;manufacturing enterprise;industry 4.0IEEE Inglês CE1 Excluído
WOAL: A Tool to Orchestrate Workflow Using An Abstraction LayerF. H. M. Salleh; I. A. Bin; A. B. Sayuti; R. B. Omar2019 The development of systems with complex business processes needs developers who can orchestrate the system workflow accurately. Orchestrating workflow normally requires someone who has the knowledge in programming. This is because they are the ones who are able to directly link the workflow to the programming framework. Contrary to the normal practise, the business people is actually the best person to design the workflow as they are experts in their domain and therefore, can design complex workflow more accurately. However, business people have difficulty in orchestrating workflows using programming languages without having to go through a long learning process. Hence, the objective of Workflow Orchestration Abstraction Layer (WOAL) is to allow business people to design workflow on their own using an easy-to-understand language. They will be able to produce workflow diagrams for verification and workflow's automator for system development. This paper presents the architecture of WOAL, including the design of domain-specific language (DSL), lexer and parser.10.1109/IC3e47558.2019.8971783https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8971783workflow;domain-specific language;abstraction layerIEEE Inglês CE1 Excluído
Enriching UML Statecharts through a Metamodel: A Model Driven Approach for the Graphical Definition of DEVS Atomic ModelsF. Dalmasso; M. J. Blas; S. Gonnet2023 The Discrete Event System Specification (DEVS) formalism provides a set of mathematical elements for modeling time-varying systems. However, when DEVS models are implemented in an executable representation (i.e., using a general-purpose programming language), some deviation from the formalism is unavoidable. One way to bridge the gap between modeling and simulation theory and practice is to define new artifacts that support both views during the specification. When the specification is supported with a graphical representation, the formalization task is less complex and can be performed by non-expert modelers. For DEVS atomic models, most common graphical representation is through UML statecharts. In this paper, we present a theoretical and practical metamodel for the definition of atomic models structured following the Classic DEVS with Ports formalization. Such a metamodel is the core of a model-driven approach used to develop a modeling software tool that employs enriched UML statecharts for the graphical representation of the DEVS behavior. In here, the traditional UML statechart representation is enriched with a set of new components with the aim to provide a broad definition of DEVS atomic models. The final software tool is deployed as a plugin for Eclipse Platform.10.1109/TLA.2023.10015142https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10015142Discrete Event System Specification;Modeling and Simulation;Theory and Practice;State DiagramIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9073836
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9678582
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9231058
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9972410
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9342169
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8716480
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643799
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9908127
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904766
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945726
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643797
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617582
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853255
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9286132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153649
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952527
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9198440
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952652
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920512
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447083
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380112
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9301533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9356850
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9379205
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9950052
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270395
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10060801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9768253
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9576493
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9652163
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9063856
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8671584
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877083
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9431263
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9299966
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9431298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8713697
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972102
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9232935
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9268671
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9592513
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9322972
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8971783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10015142

An Introduction to Modular Modeling and Simulation with PythonPDEVS and the Building-Block Library PythonPDEVS-BBLY. Van Tendeloo; R. Paredis; H. Vangheluwe2020 The Discrete Event System Specification (DEVS) is a popular formalism devised by Bernard Zeigler in the late 1970s for modeling complex dynamical systems using a discrete event abstraction. At this abstraction level, a timed sequence of pertinent "events" input to a system (or internal timeouts) causes instantaneous changes to the state of the system. Main advantages of DEVS are its precise, implementation independent specification, and its support for modular composition. This tutorial introduces the Classic DEVS formalism in a bottom-up fashion, using a simple traffic light example. The syntax and operational semantics of Atomic (i.e., non-hierarchical) models are introduced first. Coupled (i.e., hierarchical) models are introduced to structure and couple Atomic models. We continue to actual applications of DEVS, with an example in performance analysis of queueing systems. This uses generator, queue, etc. components from our PythonPDEVS Building Block Library. All examples in the paper are presented using the language PythonPDEVS and its simulator, though this introduction is equally applicable to other DEVS implementations. We conclude with further reading on DEVS theory, variants, and tools.10.1109/WSC48552.2020.9384012https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9384012- IEEE Inglês CE1 Excluído
A New Modeling Interface for Simulators Implementing the Discrete Event System SpecificationJ. Nutaro 2019 The Discrete Event System Specification (DEVS) offers a unique modeling interface that is often perplexing to modelers more familiar with other simulation paradigms. Recent advances in the use of super dense time for discrete event simulation offer an opportunity to recast the traditional interface into a form less confounding for new users. The new interface proposed here allows a natural progression from a message oriented approach to modeling to the familiar DEVS approach. The proposed approach retains the expressive power of the DEVS formalism, and in this sense represents a simple repackaging of the DEVS approach into a more intuitively appealing form.10.23919/SpringSim.2019.8732882https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8732882agent based model;DEVS;discrete event simulationIEEE Inglês CE1 Excluído
Usability evaluation of a domain-specific language for defining aggregated processing tasksC. Nandra; D. Gorgan 2019 The effective processing of Big Data sets often requires some programming knowledge from a prospective user's part. This could prove costly to achieve, in terms of user training time and effort, depending on the level of previous experience. The premise, when dealing with large data sets, is that it should be as easy as possible for a user to prototype and test processing algorithms, in order to deal with them in an effective manner. For this reason, we have developed a domain- specific language meant to allow users to define data processing tasks as aggregates, consisting of atomic operations. Its goal is to do away with some of the complexities of traditional programming languages, by simplifying the representation model and providing a more intuitive process description tool for its users. This paper aims to evaluate the efficiency and effectiveness with which a novice user could employ our domain-specific language to define processing tasks, and then compare the results to those obtained while using the Python programming language. The experiments will be focused on task duration, description correctness and code interpretation, highlighting possible advantages and disadvantages observed during the usage of the two languages.10.1109/ICCP48234.2019.8959796https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8959796usability evaluation;domain-specific language;process description;big dataIEEE Inglês CE1 Excluído
Semantic Mapping from SysML to FRP: to Enable Executable and Verifiable Systems DesignJ. Huang; W. Khallouli; H. Holly A. H.; W. Edmonson; T. Ahmed; N. Kibret2021 The emerging Digital Engineering demands digital representation of the system of interest and sharing models and data across the boundaries of organizations and the boundaries of the engineering lifecycle. Towards this direction, it is critical to develop systems modeling languages and tools that accommodate Digital Engineering. This paper presents our research on semantic mapping from System Modeling Language (SysML) to Functional Reactive Programming (FRP) with the goal of developing computing mechanisms with functional reactive programming to support executable and verifiable SysML model specification.10.1109/SysCon48628.2021.9447075https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447075Digital Engineering;Model-Based Systems Engineering;SysML;Functional Reactive Programming;Semantic mapping;Executable & verifiable systems design;Modeling language and toolsIEEE Inglês CE1 Excluído
UCM4IoT: A Use Case Modelling Environment for IoT SystemsP. Boutot; M. R. Tabassum; S. Mustafiz2021 The engineering of IoT systems brings about various challenges due to the inherent complexities associated with such adaptive systems. Addressing the adaptive nature of IoT systems in the early stages of the development life cycle is essential for developing a complete and precise system specification. In this paper, we propose a use case modelling environment, UCM4IoT, to support requirements elicitation and specification of IoT systems. Our UCM4IoT language takes into account the heterogeneity of IoT systems and provides domain-specific language constructs to model the different facets of IoT. The language also incorporates the notion of exceptional situations and adaptive system behaviour. Our language is supported with a textual modelling environment to assist modellers in writing use cases. The environment supports syntax-directed editing, validation of use case models, and requirements analysis. The proposed language and tool is demonstrated with a smart store case study.10.1109/MODELS-C53483.2021.00123https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643786use cases;internet of things;requirements engineering;model driven engineeringIEEE Inglês CE1 Excluído
Functional Verification closure using Optimal Test scenarios for Digital designsA. Thalaimalai Vanaraj; M. Raj; L. Gopalakrishnan2020 The ever-increasing design complexity of Integrated Circuits (ICs) resulted in challenging aspects of functional/logic verification, in terms of verification platform complexity, achieving verification goals like code/functional coverage and unbounded verification time/efforts for any given digital design. Currently, Functional Verification closure depends on CAD/EDA tool Random Seed capability combined with constrained random verification methodology like Universal Verification methodology (UVM) to generate exhaustive test scenarios, thereby achieving coverage goals for test regressions. In this paper, a framework is proposed for generating optimal test scenarios by interleaving design under test (DUT), input stimuli solution space, constrained random solution space and required levels of test stimuli combinations.10.1109/ICSSIT48917.2020.9214097https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9214097Functional/Logic verification;constrained random verification;Code Coverage;Functional Coverage;Verification Closure;Verification Complexity;Test Scenario;Input StimuliIEEE Inglês CE1 Excluído
Transformation Architecture for Multi-Layered WebApp Source Code GenerationR. Tesoriero; A. Rueda; J. A. Gallud; M. D. Lozano; A. Fernando2022 The evolution of Web technologies leads to software premature obsolescence requiring technology-independent representations to increase the reuse rates during the development process. They also require integration into service-oriented architectures to exchange information with different Web systems supporting runtime interoperability. Web Applications (WebApps) run on devices with different capabilities and limitations increasing the complexity of the development process. To address these challenges, different proposals have emerged to facilitate the development of WebApps, which is still an open research field with many challenges to address. This paper presents a model transformation architecture based on software standards to automatically generate full stack multi-layered WebApps covering Persistence, Service, and Presentation layers. This transformation architecture also generates the set of test cases to test WebApp business logic. The proposed transformation architecture only requires a UML platform-independent class model as an input to generate fully functional Web applications in a three-tier architecture including the three layers, while most proposals focus on the generation of the Presentation layer. In addition, this architecture employs software industry standards to enable an easy integration into third-party tools and development environments. The transformation Architecture proposed has been empirically validated on the case study of a fully functional travel management WebApp that is generated using a UML class diagram employing a third-party tool integrated into the same integrated development environment.10.1109/ACCESS.2022.3141702https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9676609Software product lines;computer-aided software engineering;client-server systemsIEEE Inglês CE1 Excluído
Formal Specification and Verification of 5G Authentication and Key Agreement Protocol using mCRL2H. E. Hafidi; Z. Hmidi; L. Kahloul; S. Benharzallah2021 The fifth-generation (5G) standard is the last telecommunication technology, widely considered to have the most important characteristics in the future network industry. The 5G system infrastructure contains three principle interfaces, each one follows a set of protocols defined by the 3rd Generation Partnership Project group (3GPP). For the next generation network, 3GPP specified two authentication methods systematized in two protocols namely 5G Authentication and Key Agreement (5G-AKA) and Extensible Authentication Protocol (EAP). Such protocols are provided to ensure the authentication between system entities. These two protocols are critical systems, thus their reliability and correctness must be guaranteed. In this paper, we aim to formally re-examine 5G-AKA protocol using micro Common Representation Language 2 (mCRL2) language to verify such a security protocol. The mCRL2 language and its associated toolset are formal tools used for modeling, validation, and verification of concurrent systems and protocols. In this context, the authentication protocol 5G-AKA model is built using Algebra of Communication Processes (ACP), its properties are specified using Modal mu-Calculus and the properties analysis exploits Model-Checker provided with mCRL2. Indeed, we propose a new mCRL2 model of 3GPP specification considering 5G-AKA protocol and we specify some properties that describe necessary requirements to evaluate the correctness of the protocol where the parsed properties of Deadlock Freedom, Reachability, Liveness and Safety are positively assessed.10.1109/ICNAS53565.2021.9628917https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=96289175G networks;Security;5G-AKA Protocol;Formal methods;Formal verification;mCRL2 language;Process Algebra.IEEE Inglês CE1 Excluído
Enhancing NL Requirements Formalisation Using a Quality Checking ModelM. Osama; A. Zaki-Ismail; M. Abdelrazek; J. Grundy; A. Ibrahim2021 The formalisation of natural language (NL) requirements is a challenging problem because NL is inherently vague and imprecise. Existing formalisation approaches only support requirements adhering to specific boilerplates or templates, and are affected by the requirements quality issues. Several quality models are developed to assess the quality of NL requirements. However, they do not focus on the quality issues affecting the formalisability of requirements. Such issues can greatly compromise the operation of complex systems and even lead to catastrophic consequences or loss of life (in case of critical systems). In this paper, we propose a requirements quality checking approach utilising natural language processing (NLP) analysis. The approach assesses the quality of the requirements against a quality model that we developed to enhance the formalisability of NL requirements. We evaluate the effectiveness of our approach by comparing the formalisation efficiency of a recent automatic formalisation technique before and after utilising our approach. The results show an increase of approximately 15% in the F-measure (from 83.8% to 98%).10.1109/RE51729.2021.00064https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604549Requirements specification;Requirements analysis;Quality analysisIEEE Inglês CE1 Excluído
A Guideline for the Requirements Engineering Process of SMEs Regarding to the Development of CPSS. Fritz; F. Weber; J. Ovtcharova2019 The Fourth Industrial Revolution is in progress and provides a growing interconnectedness of people, machines and products. The fusion of the real and the digital world is based on so-called cyber-physical systems (CPS), which cause a change in product development processes due to their complex and dynamic requirements. In order to shape the change in product development successfully, requirements engineering (RE) plays an increasingly important part. Especially small and medium-sized enterprises (SMEs) are faced with great challenges in this case, as they are no longer able to effectively integrate the large amount of stakeholders and to manage the multitude of dynamic requirements with the commonly used Microsoft Office tools. Regardless of the company size, many companies are faced with the problem of documenting their requirements in a standardized and reusable way. For these reasons, a guideline for a lightweight RE process for SMEs has been developed in the context of this scientific paper, which makes it possible to improve the development process without cost- and time-intensive trainings. For this purpose, the focus was on easily understandable requirements templates. In the course of this, relevant requirements templates from the literature were analyzed, selected and completed with newly developed templates.10.1109/ICITM.2019.8710732https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8710732small and medium-sized enterprises (SMEs);requirements engineering (RE);cyber-physical systems (CPS);guidelineIEEE Inglês CE1 Excluído
Graphical Editor of Electrical Schemes for Rand Model DesignerY. B. Senichenkov; I. M. Kirjakov; A. E. Semencov2021 The graphical editor of electrical schemes for Rand Model Designer is presented. Rand Model Designer (RMD) is a universal visual tool for modeling and simulation of complex dynamical systems. The editor allows users to build models of electrical devises and carry out computer experiments using hidden calling of RMD. When graphical scheme of a device is completed, the editor automatically translates model description in RMD modeling language, checks, compiles it, and builds executable code in form of *.dll needed for carrying out computer experiments under RMD. The results of computer experiments are passed back to the editor for processing. The examples of using the editor in training are described.10.1109/ElConRus51938.2021.9396227https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9396227object-oriented modeling;electrical components library;graphical editor;manufacturing and training applicationsIEEE Inglês CE1 Excluído
Analysis and Perspectives of Requirements for Detector Control Systems in High- Energy Physics ExperimentsJ. C. Cabanillas-Noris; M. I. Martínez-Hernández; I. León-Monzón; J. M. Mejía-Camacho; S. Rojas-Torres2020 The high-precision measurements of detectors in a High-Energy Physics (HEP) experiment need a continuous sampling of recorded events during collisions. Therefore, significant hardware changes are required to do online data processing due to a large amount of data generated by such detectors. Because of all these changes, a new Detector Control System (DCS) design is required. This paper presents a definition of the software requirements to be considered during the design, integration, and operation of a detector's DCS into physics data-taking, for continuous and non-continuous measurement conditions in the experiments. For this, the main operating processes, elements, characteristics, and guidelines of the DCS in the most important HEP experiments around the world were analyzed. Additionally, characteristics, functional and non-functional requirements, and use-cases of the main actors involved in the different processes of this control system software are defined. A visual modeling and design tool based on Unified Modeling Language (UML) is used to obtain a description of these requirements.10.1109/CONISOFT50191.2020.00015https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9307806Detector Control System;High-Energy Physics;SCADA;UMLIEEE Inglês CE1 Excluído
Verifying and Monitoring UML Models with Observer Automata: A Transformation-Free ApproachV. Besnard; C. Teodorov; F. Jouault; M. Brun; P. Dhaussy2019 The increasing complexity of embedded systems renders verification of software programs more complex and may require applying monitoring and formal techniques, like model-checking. However, to use such techniques, system engineers usually need formal experts to express software requirements in a formal language. To facilitate the use of model-checking tools by system engineers, our approach consists of using a UML model interpreter with which the software requirements can directly be expressed as observer automata in UML as well. These observer automata are synchronously composed with the system, and can be used unchanged both for model verification and runtime monitoring. Our approach has been evaluated on the user interface model of a cruise control system. The observer verification results are in line with the verification of equivalent LTL properties. The runtime overhead of the monitoring infrastructure is 6.5%, with only 1.2% memory overhead.10.1109/MODELS.2019.000-5https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8906967Observer Automata;Monitoring;Model Interpretation;Embedded SystemsIEEE Inglês CE1 Excluído
An Automated Fact Checking System Using Deep Learning Through Word EmbeddingP. Wang; L. Deng; X. Wu 2019 The increasing concern with false information has stimulated research in joint Fact Extraction and VERification (FEVER). Now we propose a system by deep learning which can help people identify the authenticity of most claims as well as providing evidences selected from knowledge source like Wikipedia. In this paper, we examine how to use deep learning method to improve the performance of the automatic fact verification system. Firstly, the inverted index of the knowledge base is established by using a Python package named Whoosh. Secondly, the claim is regularized by the Named Entity Recognition (NER) tool, and the most relevant documents are filtered based on the relevance ranking algorithm. Thirdly, top 20 relevant sentences for each claim are filtered by word embeddings. Finally, the effectiveness of each sentence and the label of claim is judged based on the two-level pre-training model. Our approach achieved a 0.89 document.10.1109/SSCI44817.2019.9002783https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9002783fact checking;cosine similarity;word embedding;deep learningIEEE Inglês CE1 Excluído
Model-Driven Fault Injection in Java Source CodeE. Rodrigues; L. Montecchi; A. Ceccarelli2020 The injection of software faults in source code requires accurate knowledge of the programming language, both to craft faults and to identify injection locations. As such, fault injection and code mutation tools are typically tailored for a specific language and have limited extensibility. In this paper we present a model-driven approach to craft and inject software faults in source code. While its concrete application is presented for Java, the workflow we propose does not depend on a specific programming language. Following Model-Driven Engineering principles, the faults and the criteria to select injection locations are described using structured, machine-readable specifications based on a domain-specific language. Then, automated transformations craft artifacts based on OCL and Java, which represent the faults to be injected and are able to select the candidate injection locations. Finally, artifacts are executed against the target source code, performing the injection in the desired locations. We devise a supporting tool and exercise the approach injecting 13 different kinds of software faults in the Java source code of six different projects.10.1109/ISSRE5003.2020.00046https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9251070Software faults;fault libraries;metamodel;OCL;code patterns;Java.IEEE Inglês CE1 Excluído
Multi-layered Model-based Design Approach towards System Safety and Security Co-engineeringM. Quamara; G. Pedroza; B. Hamid2021 The integration of safety and security concerns in critical domains (e.g., Cyber-Physical Systems (CPSs)) is of utmost importance, and should be conducted in early design phases of system engineering process. Within a Model-Based System Engineering (MBSE) context, safety and security requirements cascade-down across models and views, thus contributing to the detailed missions, functions, and lastly, the architecture. Such enrichment process is often complex and lacks guidance to consistently breakdown high-level mission-centric system specifications into the detailed architecture. In particular, non-savvy safety and security engineers require support to facilitate integration and verification of stringent safety constraints and security exigencies. In this regard, we propose a multi-layered design approach that leverages existing techniques like Model-Driven Engineering (MDE) and formal methods, to facilitate integrated verification of high-level safety and security objectives that can be further specialized across different representations (i.e. mission, functional, and architectural) of the system. The overall approach is validated based upon a Connected Driving Vehicles (CDVs) case study, and using Eclipse Papyrus and Rodin as experimentation tools.10.1109/MODELS-C53483.2021.00048https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643661safety;security;co-engineering;design;model-driven engineering;formal methods;connected driving vehiclesIEEE Inglês CE1 Excluído
A Formal Modeling and Verification Framework for Service Oriented Intelligent Production Line DesignH. Yuan; F. Li; X. Huang 2019 The intelligent production line is a complex application with a large number of independent equipment network integration. In view of the characteristics of CPS, the existing modeling methods cannot well meet the application requirements of large scale high-performance system. a formal simulation verification framework and verification method are designed for the performance constraints such as the real-time and security of the intelligent production line based on soft bus. A model-based service-oriented integration approach is employed, which adopts a model-centric way to automate the development course of the entire software life cycle. Developing experience indicate that the proposed approach based on the formal modeling and verification framework in this paper can improve the performance of the system, which is also helpful to achieve the balance of the production line and maintain the reasonable use rate of the processing equipment.10.1109/ICIS46139.2019.8940189https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8940189Intelligent production line;model and verification;service orientedIEEE Inglês CE1 Excluído
Reliability Modeling and Verification of Communication Algorithm Flow for Intelligent Control SystemW. Ran; W. Jiajia 2021 The intelligent system controls the subsystems of each aircraft in real time to ensure the normal development of the tasks of the aircraft system. In the process of system communication, the control system is required to strictly control the correctness of the control algorithm flow and the accuracy of the control sequence in order to ensure the safety of the aircraft system. This paper uses UPPAAL, a formal model detection tool based on time automata theory, to formally model and validate the algorithm flow of an intelligent system and a subsystem. First, the algorithm flow of the intelligent system is analyzed, and then it is formally modeled using the time automaton method. Second, the properties that need to be verified are extracted from the algorithm flow and described with the formal language BNF. Finally, the function and performance correctness are automatically verified using the UPPAAL model detection tool. The experimental results verify that the intelligent system meets the security, accessibility and activity requirements.10.1109/AEMCSE51986.2021.00189https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9512884intelligent systems;communication algorithm flow;formal modeling and validation;UPPAALIEEE Inglês CE1 Excluído
Development and Application of the CubeSat System Reference ModelD. Kaslow; P. T. Cahill; B. Ayres 2020 The International Council on Systems Engineering (INCOSE) Space System Working Group (SSWG) has created the CubeSat System Reference Model (CSRM), a representation of the logical architecture of a CubeSat system, intended to be used by system architects and engineers as a starting point as they develop the logical architecture of the Space and Ground components of the CubeSat mission of interest to them. The CSRM is based on Model-Based System Engineering (MBSE) principles, is System Modeling Language (SysML) compliant, is hosted in a graphical modeling tool, and is intended to introduce quality enhancements and economies associated with reusability. The CSRM has been vetted by System Engineering professionals and has been introduced to the CubeSat mission development team community with favorable results. It has been submitted to the Object Management Group (OMG) as a CubeSat specification, and is being evaluated for that role. The SSWG has created a notional outline describing how the CSRM can be applied to a specific mission development effort; and has also identified possible future efforts to expand the applicability, value, and use of the CSRM by the satellite development community.10.1109/AERO47225.2020.9172714https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172714- IEEE Inglês CE1 Excluído
Mission Engineering and the CubeSat System Reference ModelD. Kaslow; A. Levi; P. T. Cahill; B. Ayres; D. Hurst; C. Croney2021 The International Council on Systems Engineering (INCOSE) Space System Working Group (SSWG) has created the CubeSat System Reference Model (CSRM), a representation of the logical architecture of a CubeSat system, intended to be used by system architects and engineers as a starting point as they develop the physical architecture of the Space and Ground segments of the CubeSat mission of interest to them. The CSRM is based on Model-Based System Engineering (MBSE) principles, is System Modeling Language (SysML) compliant, is hosted in a graphical modeling tool, and is intended to foster completeness and economies of scale associated with reusability. The CSRM has been vetted by System Engineering professionals and has been introduced to the CubeSat mission development team community with favorable results. The CSRM has been submitted to the Object Management Group (OMG) as a CubeSat specification, and is being evaluated for that role. Mission Engineering, a concept where the mission itself is looked at as a system is being explored as a means to maintain balance between the spacecraft system, operations (including ground systems), and the mission (the integration of needed capabilities). Now opportunities exist to extend the already-developed CSRM to enable the application of Mission Engineering to modeling a complete CubeSat mission. This paper presents the challenges and approach that the INCOSE SSWG will address, including a path for extension of the CRSM for use in exploring its applicability to the Mission Engineering concept, and capturing the Mission as a Model to create a unifying environment for universities to build on each other's successes as they learn to design for Space.10.1109/AERO50100.2021.9438168https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9438168- IEEE Inglês CE1 Excluído
A Domain-Specific Language for Modeling IoT System Architectures That Support MonitoringL. Erazo-Garzón; P. Cedillo; G. Rossi; J. Moyano2022 The Internet of Things (IoT) is a technological paradigm involved in a diversity of domains with favorable impacts on people’s daily lives and the development of industry and cities. Nowadays, one of the most critical challenges is developing software for IoT systems since the traditional Software Engineering methodologies and tools are unproductive in the face of the complex requirements resulting from the highly distributed, heterogeneous, and dynamic scenarios in which these systems operate. Model-Driven Engineering (MDE) emerges as an appropriate approach to abstract the complexity of IoT systems. However, there are no domain-specific languages (DSLs) aligned to standardized reference architectures for IoT. Furthermore, existing DSLs have an incomplete language to represent the IoT entities that may be needed at the edge, fog, and cloud layers to monitor IoT environments. Therefore, this paper proposes a domain-specific language named Monitor-IoT, which supports developers in designing multi-layer monitoring architectures for IoT systems with high abstraction, expressiveness, and flexibility. Monitor-IoT consists of a high-level visual modeling language and a metamodel aligned with the ISO/IEC 30141:2018 reference architecture. In addition, it provides a language capable of modeling architectures with a wide variety of digital entities and dataflows (synchronous and asynchronous) between them across the edge, fog, and cloud layers to support the monitoring of a diversity of IoT scenarios. The empirical evaluation of Monitor-IoT through the application of an experiment, which contemplates the use of the Technology Acceptance Model (TAM), demonstrates the intention of the participants to use this tool in the future since they consider it easy to use and useful.10.1109/ACCESS.2022.3181166https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9791260Architecture;domain-specific language (DSL);Internet of Things (IoT);metamodel;model-driven engineering (MDE);monitoringIEEE Inglês CE1 Excluído
EADSA: Energy-Aware Distributed Sink Algorithm for Hotspot Problem in Wireless Sensor and Actor NetworksU. Draz; T. Ali; S. Yasin; U. Waqas; U. Rafiq2019 The issue of hotspot occurs when the sink neighboring nodes drain more energy and become dead early. For a time being the whole network is isolated due to dying nodes and the overall lifetime of the network is decreased. Thus, the big challenge in WSANs systems is to prolong the lifetime of the network by solving the Hotspot problem. The lifetime of the network is directly based on the energy consumption of the network. Several challenges are associated with this problem like delays in the network, data packets losses, decrement of lifetime and throughput of the network. Therefore, its need to investigate the issue of Hotspot problem with the help of some energy aware technique. In this paper, the Energy-Aware Distributed Sink Algorithm is introduced to rescue the Hotspot issue in Wireless Sensors and Actors Network (WSANs). The proposed algorithm is formally analyzed with the help of Formal Methods based specification language. For the verification and validation of the proposed algorithm, the Vienna development Method Specification-Language Tool Box (VDM-SL) is used. Both the dynamic and static models are developed to ensure the correctness of the algorithm with some pre/post conditions, invariants, and attributes.10.1109/CEET1.2019.8711858https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8711858WSAN;Distributed Sink;Hotspot;Secondary Nodes;Dying Nodes;Verification & ValidationIEEE Inglês CE1 Excluído
Execution of Partial State Machine ModelsM. Bagherzadeh; N. Kahani; K. Jahed; J. Dingel2022 The iterative and incremental nature of software development using models typically makes a model of a system incomplete (i.e., partial) until a more advanced and complete stage of development is reached. Existing model execution approaches (interpretation of models or code generation) do not support the execution of partial models. Supporting the execution of partial models at early stages of software development allows early detection of defects, which can be fixed more easily and at lower cost. This paper proposes a conceptual framework for the execution of partial models, which consists of three steps: static analysis, automatic refinement, and input-driven execution. First, a static analysis that respects the execution semantics of models is applied to detect problematic elements of models that cause problems for the execution. Second, using model transformation techniques, the models are refined automatically, mainly by adding decision points where missing information can be supplied. Third, refined models are executed, and when the execution reaches the decision points, it uses inputs obtained either interactively or by a script that captures how to deal with partial elements. We created an execution engine called PMExec for the execution of partial models of UML-RT (i.e., a modeling language for the development of soft real-time systems) that embodies our proposed framework. We evaluated PMExec based on several use-cases that show that the static analysis, refinement, and application of user input can be carried out with reasonable performance, and that the overhead of approach, which is mostly due to the refinement and the increase in model complexity it causes, is manageable. We also discuss the properties of the refinement formally, and show how the refinement preserves the original behaviors of the model.10.1109/TSE.2020.3008850https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9139402MDD;model-level debugging;partial models;incomplete models;model executionIEEE Inglês CE1 Excluído
Requirement Mining in Software Product ForumsJ. Tizard 2019 The majority of software projects fail, around 71% according to recent research. A shortage of user feedback and missed requirements are cited as primary reasons for failure. There are several prominent online platforms where software users post product feedback, including: app stores, Twitter, issue trackers and product forums. I have identified the study of product forums as a gap in the current requirement mining literature, and have selected them as the focus of this research. Product forums are widely used in the software industry, supporting online discussions between a products users and owners. While their primary function is to help customers use the product, forums are also a rich source of untapped user generated requirements. However, the manual effort to extract these requirements is prohibitively time consuming due to their large volume and inconsistent quality. Analysis tools to assist in requirement mining have been applied successfully to online platforms previously, but as of yet, not in the forum domain, where current techniques may be insufficient. My preliminary research has found that forums contain feedback useful for software maintenance and evolution, including several categories of feedback not identified in the current literature. I have developed forum specific classifiers to help categorise the different feedback in forum posts. I demonstrate that these classifiers significantly outperform a leading app store tool when applied to forums. In this report I present my preliminary findings, then outline my research plan with the final goal of producing an industry evaluated, forum analysis tool.10.1109/RE.2019.00057https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920680Software product forums;Machine learning;Natural language processingIEEE Inglês CE1 Excluído
Towards Formalism of Link Failure Detection Algorithm for Wireless Sensor and Actor NetworksU. Draz; T. Ali; S. Yasin; U. Waqas; U. Rafiq2019 The merger of actors and sensors in a wireless network has evolved those opportunities that we can't think before some years. This merger has captured the interest of researchers from around the globe. In the last decade, wireless networks have become much stronger, reliable and secure but as the technology evolves, it carries their own problems. Researchers are targeting different problem according to their own interest like power consumption, network security, link failure etc., so we are also working on link failure detection that can be caused by power breakage, network delay or traffic overload. This model detects the link failure in the network through Link Failure Detection Algorithm (LFDA) and provide recovery mechanism against failure using cluster-based approach. Our purposed model detects network link failure accuratly and precisely solve the problem by creating alternative virtual route for data packets. Our technique can detect current failures also it can detect weaker links, those might be the cause for future failures. Most of the literature have their proof of correctness as simulation but no technique is there which is formally verified, therefore we have presented our idea including its formal verification and validation with the help of formal methods tool box and its formal specification language like (VDM-SL).10.1109/CEET1.2019.8711857https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8711857WSAN;Link Failure;Link Recovery;Gateways Node;Cluster head;Virtual Links;Verification & ValidationIEEE Inglês CE1 Excluído
SOG-Based Multi-Core LTL Model CheckingC. Ameur Abid; K. K. Kaïs Klai; J. Arias; H. Ouni2020 The model checking is one of the major techniques used in the formal verification. This technique builds on an automatic procedure that takes a model M of a system and a formula φ expressing a temporal property, and decides whether the system satisfies the property (denoted by M\modelsφ). The model checking technique is based on an exhaustive exploration of the state space of the system and, thus suffers from the state space explosion problem: it can happen that the verification process stops because of lack of time or space. Among the existing solutions to tackle this problem the Symbolic Observation Graph (SOG) has been proposed as a reduced representation of the reachability graph preserving linear temporal logic properties (LTL) i.e. checking an LTL property on the SOG is equivalent to check it on the original state space. The parallel construction of the SOG could increase the speedup and scalability of model checking. In this paper, we propose a new model checking algorithm built on a parallel construction of the SOG. The SOG is adapted to allow the preservation of both state and event-based LTL formulae i.e., the atomic propositions involved in the formula to be checked could be either state-based or event-based propositions. We implemented the proposed model checking algorithm within a C++ prototype and compared our preliminary results with the state of the art model checkers.10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00028https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9443795Parallel model checking;Temporal Logic;Decision DiagramsIEEE Inglês CE1 Excluído
Early Analysis of Cyber-Physical Systems using Co-simulation and Multi-level ModellingT. Nägele; T. Broenink; J. Hooman; J. Broenink2019 The multi-disciplinary nature of the design of cyber-physical systems makes it hard to gain insight in the system behaviour early in the design process. Our aim is to allow the designers to analyse the integration of system components as well as the behaviour of the complete system in an early stage. This is achieved by creating abstract component models and refining them throughout the design process. After every refinement cycle, the models can be co-simulated to analyse the behaviour of the system, supporting design decisions. The co-simulation is created based on existing standards such as HLA and FMI and uses a domain-specific language to construct a co-simulation automatically. This approach is illustrated using a case study which resembles a confidential industrial case.10.1109/ICPHYS.2019.8780355https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8780355Cyber-physical systems;System design;System analysis;Co-simulation;Multi-level modelling;Concurrent development;HLA;FMIIEEE Inglês CE1 Excluído
Towards Standardization of AV Safety: C++ Library for Responsibility Sensitive SafetyB. Gassmann; F. Oboril; C. Buerkle; S. Liu; S. Yan; M. S. Elli; I. Alvarez; N. Aerrabotu; S. Jaber; P. van Beek; D. Iyer; J. Weast2019 The need for safety in Automated Driving (AD) is becoming increasingly critical with the accelerating deployment of this technology. Beyond functional safety, industry must guarantee the operational safety of automated vehicles. Towards that end, Mobileye introduced the Responsibility Sensitive Safety (RSS), a model-based approach to Safety [1]. In this paper we expand upon this work introducing the C++ Library for Responsibility Sensitive Safety, an open source executable that implements a subset of RSS. We provide architectural details to integrate the C++ Library for Responsibility Sensitive Safety with AD Software pipelines as safety module overseeing decision making of driving policies. We illustrate this application with an example integration with the Baidu Apollo AD stack and simulator, [2] and [3], that provides safety validation of the planning module. Furthermore, we show how the C++ Library for Responsibility Sensitive Safety can be used to explore the usefulness of the RSS model through parameter exploration and analysis on minimum safe longitudinal distance, (dmin), considering different weather conditions. We also compare these results with half-of-speed rule followed in some parts of the world. We expect that the C++ Library for Responsibility Sensitive Safety becomes a critical component of future tools for formal verification, testing and validation of AD safety and that it helps bootstrap the AD research efforts towards standardization of safety.10.1109/IVS.2019.8813885https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813885- IEEE Inglês CE1 Excluído
Noise Explorer: Fully Automated Modeling and Verification for Arbitrary Noise ProtocolsN. Kobeissi; G. Nicolas; K. Bhargavan2019 The Noise Protocol Framework, introduced recently, allows for the design and construction of secure channel protocols by describing them through a simple, restricted language from which complex key derivation and local state transitions are automatically inferred. Noise "Handshake Patterns" can support mutual authentication, forward secrecy, zero round-trip encryption, identity hiding and other advanced features. Since the framework's release, Noise-based protocols have been adopted by WhatsApp, WireGuard and other high-profile applications. We present Noise Explorer, an online engine for designing, reasoning about, formally verifying and implementing arbitrary Noise Handshake Patterns. Based on our formal treatment of the Noise Protocol Framework, Noise Explorer can validate any Noise Handshake Pattern and then translate it into a model ready for automated verification and also into a production-ready software implementation written in Go or in Rust. We use Noise Explorer to analyze more than 57 handshake patterns. We confirm the stated security goals for 12 fundamental patterns and provide precise properties for the rest. We also analyze unsafe handshake patterns and document weaknesses that occur when validity rules are not followed. All of this work is consolidated into a usable online tool that presents a compendium of results and can parse formal verification results to generate detailed-but-pedagogical reports regarding the exact security goals of each message of a Noise Handshake Pattern with respect to each party, under an active attacker and including malicious principals. Noise Explorer evolves alongside the standard Noise Protocol Framework, having already contributed new security goal verification results and stronger definitions for pattern validation and security parameters.10.1109/EuroSP.2019.00034https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8806757formal verification;noise protocol framework;cryptographic protocols;secure implementation;secure channel protocolsIEEE Inglês CE1 Excluído
A Metamodeling Approach to Support the Engineering of Modeling Method RequirementsD. Karagiannis; P. Burzynski; W. Utz; R. A. Buchmann2019 The notion of "modeling method requirements" refers to a category typically neglected by RE taxonomies and frameworks - i.e., those requirements that motivate the realization of (conceptual) modeling methods and tools. They can be considered domain-specific, in the sense that all modeling methods provide a knowledge schema for some selected application domain (narrow or broad). Besides this inherent domain-specific nature, we are investigating how the characteristics of modeling methods inform the RE perspective, and how in turn RE can support the engineering of such artifacts. Thus, the work at hand aims to raise awareness about modeling method requirements in the RE community. The core contribution is the CoChaCo (Concept-Characteristic-Connector) method for the representation and management of such requirements, as well as for streamlining with subsequent engineering phases. CoChaCo is itself a modeling method - i.e., it achieves its goals through diagrammatic modeling means for which a supporting tool was prototyped and evolved. The proposal originates in required support for the initial phase of the Agile Modeling Method Engineering (AMME) methodology, which was successfully applied in developing a variety of project-specific modeling tools. From this accumulated experience, awareness of "modeling method requirements" emerged and informed the design decisions of CoChaCo.10.1109/RE.2019.00030https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920624Modeling method requirements, Requirements modeling, Metamodeling, Agile Modeling Method EngineeringIEEE Inglês CE1 Excluído
Recurrence in Dense-Time AMS AssertionsS. Sanyal; A. A. B. da Costa; P. Dasgupta2021 The notion of recurrence over continuous or dense time, as required for expressing analog and mixed-signal behaviors, is fundamentally different from what is offered by the recurrence operators of SystemVerilog assertions (SVAs). This article introduces the formal semantics of recurrence over dense time and provides a methodology for the runtime verification of such properties using interval arithmetic. Our property language extends SVA with dense real-time intervals and predicates containing real-valued signals. We provide a tool kit that interfaces with off-the-shelf EDA tools through the standard VPI.10.1109/TCAD.2020.3040259https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9268140Analog mixed-signal;assertions;recurrence;sequence expressionsIEEE Inglês CE1 Excluído
Computer-Aided Analysis of Hybrid Dynamical Systems in the ISMA EnvironmentA. V. Garder; Y. V. Shornikov 2022 The numerical analysis of complex event-continuous processes represented by the class of Cauchy problems with constraints on an event function is considered. The processes are specified in the developed unique textual-graphical language LISMA using Harel statecharts. The program models are edited, numerically analyzed, and their results are processed in the computer-aided analysis environment ISMA. The numerical analysis is performed using a collection of traditional and developed original explicit numerical integration methods of variable order and step with extended stability domains and an original algorithm detecting unilateral events in hybrid systems. The efficiency of the original methods has been tested on typical examples of hybrid systems. The chosen visual specification of program models satisfies the representation semantics of discrete-continuous processes with complex operational mode switching logic. Moreover, such a specification is understandable to an end user, who is rather interested in analyzing complex dynamic processes using simple and comprehensible tools for composing and editing models and being able to change the model structure and parameters fast.10.1109/EDM55285.2022.9855163https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855163complex event-continuous processes;hybrid dynamical systems;textual-graphical languages;Harel statecharts;computer-aided analysis environmentsIEEE Inglês CE1 Excluído
Reducing Ambiguity in Requirements Elicitation via GamificationH. S. Dar 2020 The overall quality and success of software highly depends on the involvement of stakeholders. Requirements elicitation supports RE analyst to gather requirements from the stakeholders based on their needs. There are multiple elicitation techniques present in literature and used by the practitioners. Some of them are questionnaires, interviews, prototyping, and user stories etc. However, these techniques are based on textual representation of requirements. These techniques are quite common among the requirement engineers yet problems of ambiguity, inconsistency, incompleteness still exist mostly due to their textual nature and lack of stakeholder involvement. Lack of clarity about the system increases the ambiguity of what exactly are the system requirements. Since elicitation is carried at an early stage of development the users are not sure of what they want, as requirements tend to evolve with the help of discussions and interactions among various stakeholders and technical team. Furthermore, the conventional elicitation methods are limited when it comes to stakeholders' participation and involvement, thus leaving a space for more ambiguous and incomplete requirements. In this work, Gamification, a game-based context will be used in non-gaming context for user involvement in fun ways. During elicitation, gamification would help to involve and interact with the stakeholders, with an intention to develop their interest in eliciting and finalizing system requirements. The goal of this paper is to reduce ambiguity during requirements elicitation. This would help in reducing the cost and time of development. Furthermore, we will elicit software requirements using gamification by developing a gamification tool with a focus to elicit unambiguous requirements by ensuring users' participation and maintaining interest. The validation of tool would be done using multiple confirmatory case studies from software industry.10.1109/RE48521.2020.00065https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218218ambiguity;requirements engineering;requirements elicitation;gamification;software developmentIEEE Inglês CE1 Excluído
Special Features of TLA + Temporal Logic of Actions for Verifying Access Control PoliciesA. M. Kanner; T. M. Kanner 2021 The paper considers special features of applying Lamport's temporal logic of actions when verifying access control policies for arbitrary data protection tools. It justifies the necessity of implementing verification in the process of development and certification of various software tools and algorithms, in particular, policies for controlling subjects' access to objects. It contains a general structure of notation or specification of the system being studied in a formal language suitable for verification, and its particular version in the TLA + language. The paper considers special features of using Lamport's temporal logic of actions, and gives recommendations regarding dos and don'ts when initializing the modeled system, when forming and using invariants or temporal properties, history and auxiliary variables, safety and liveness properties, as well as when accounting for the termination of the verification process. Such features and recommendations are formulated in a quite universal way and do not depend on the applied verification approach and on the system being studied. The paper lists typical errors that may be done during verification, which make its results useless, while artificially creating a feeling of confidence in the system's “rightness”, “correctness” or “security / safety”. The conclusion presents key features that can have a significant impact on verification results, as well as on feasibility of its implementation. It proposes one of the possible directions for further research on the development of a general approach to substantiating conformity of the verified system specification in some formal language with its practical implementation.10.1109/USBEREIT51232.2021.9455090https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9455090verification;temporal logic of actions;auxiliary variables;history variables;invariants;temporal properties;safety properties;liveness propertiesIEEE Inglês CE1 Excluído
Decomposition of Process Control Algorithms for Parallel Computing Systems Using Automata ModelsD. V. Pashchenko; A. I. Martyshkin; D. A. Trokoz2020 The paper considers the decomposition of process control algorithms for parallel computing systems using automata models. When designing parallel processing systems, an important problem is the formal representation of process control algorithms since they allow integrated solving the tasks of development, implementation, and analysis of complex control systems, including the control over interacting processes and resources in parallel systems. One of the control algorithm formal description techniques is based on the use of nondeterministic automaton (NDA) logic; it allows representing the data processing control algorithms as canonical equation systems describing all private events implemented in the algorithm. This language's advantage is describing all the control system transitions in not the system state terms but private event ones, the simultaneous existence of which determines all the system states and transitions, which allows avoiding a `combinatorial explosion' in the state space at the currently available verification capabilities. The paper objective is studying the process control algorithms for parallel computing systems using the NDA tool. Herein, the development and research object is the parallel decomposition of control algorithms for parallel computing systems using automata models. An automata model has been obtained that describes the synchronization of parallel processes based on the finite NDA logic, the correctness of which has been proved by simulation in the VHDL language. The experimental hardware implementation of synchronization device using FPGAs and the resulting time-charts of its operation completely confirm its correct functioning. Conclusions have been drawn on the correctness of the basic results obtained in the study.10.1109/RusAutoCon49822.2020.9208165https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208165control algorithm;verification;finite automaton;simulation;parallel system;temporal logic;formalizationIEEE Inglês CE1 Excluído
VHDL Compiler with Natural Parallel Comands ExecutionV. Zhukovskyy; D. Dmitriev; N. Zhukovska; A. Safonyk; A. Sydor2021 The paper considers the process of compilers designing and highlight parallelism in algorithmic structures. The advantages of existing solutions in the hardware and software areas are highlighted and a new approach for creating a software and hardware compiler is designed. The requirements for our language and the peculiarities of the functioning of each component of the compiler were clearly defined. The basis of the alphabet consists of Latin upper and lower case characters, numbers and delimiters. A description of the lexical analyzer, which highlights tokens and keywords in the text of the input program is provided. Syntactic rules of language (structure of constructions) in the form of diagrams of the Bekus-Naur form and semantic requirements concerning identifiers, length of names of identifiers and labels, arithmetic operations and input/output ports are described as well. The processor compiler with natural parallel execution of instructions was developed. Performance testing and comparative analysis of the efficiency of the developed compiler has shown the advantages of the created solution.10.1109/EUROCON52738.2021.9535606https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9535606compiler;analyzer;microprocessor;HDL synthesisIEEE Inglês CE1 Excluído
Static Analysis of Resource Consumption in Programs Using Rewriting RulesT. Mamedov; A. Doroshenko; R. Shevchenko2020 The paper presents a method of static analysis of resource consumption for C# programs. A software tool based on rewriting rules is proposed for that purpose for the case of opened and closed files. In order to work with C#-programs, the special plugin for TermWare, which helps to generate appropriate terms from source code, was developed. The plugin uses the Roslyn compiler to find different syntax errors and focus on the primary task of generating terms from source code. Also, an application based on TermWare system - a static analyzer that finds problems with open-close files, is described in the article.10.1109/ATIT50783.2020.9349290https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9349290analysis of resource consumption;terms;generator;analyzer;rewriting rules;TermWareIEEE Inglês CE1 Excluído
Analysis and Design Automation of Cyber-Physical System with Hippo and IOPT-ToolsR. Wiśniewski; G. Bazydło; L. Gomes; A. Costa; M. Wojnakowski2019 The paper presents a novel design methodology of cyber-physical systems supported by computer aided tools. In particular, IOPT and Hippo tools are involved in the design and analysis techniques of the system. The proposed idea combines the main advantages of both tools by offering the complex design path of the control part of the cyber-physical system, including specification, analysis and verification, decomposition, and modelling stages. Additionally, the designer is able to choose the most suitable representation of the system (graphical or formal). The presented concepts are illustrated by a case-study example.10.1109/IECON.2019.8926692https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8926692computer aided design and analysis;cyber-physical systems;Petri nets;IOPT;HippoIEEE Inglês CE1 Excluído
Parallel Specification-Based Testing for Concurrent ProgramsC. Minh Do; K. Ogata 2022 The paper proposes a new testing technique for concurrent programs. The technique is a specification-based testing. For a formal specification S and a concurrent program P, state sequences are generated from P and checked to be accepted by S. We suppose that S is specified in Maude and P is implemented in Java. Java Pathfinder (JPF) and Maude are then used to generate state sequences from P and to check if such state sequences are accepted by S, respectively. Even without checking any property violations with JPF, JPF often encounters the notorious state space explosion while only generating state sequences. Thus, we propose a technique to generate state sequences from P and check if such state sequences are accepted by S in a stratified way. A tool is developed to support the proposed technique that can be processed naturally in parallel. Some experiments demonstrate that the proposed technique mitigates the state space explosion, which cannot be achieved with the straightforward use of JPF.10.1109/ACCESS.2022.3155629https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9723036Simulation;divide & conquer approach;parallel algorithms;concurrent programs;specification-based testingIEEE Inglês CE1 Excluído
Program translation using model-driven engineeringK. Lano 2022 The porting or translation of software applications from one programming language to another is a common requirement of organisations that utilise software, and the increasing number and diversity of programming languages makes this capability as relevant today as in previous decades.Several approaches have been used to address this challenge, including machine learning and the manual definition of explicit translation rules. We define a novel approach using model-driven engineering (MDE) techniques: reverse-engineering source programs into specifications in the UML and OCL formalisms, and then forward-engineering the specifications to the required target language. This approach has the additional advantage of extracting specifications of software from code. We provide an evaluation based on a comprehensive dataset of examples, including industrial cases, and compare our results to those of other approaches and tools.10.1145/3510454.3528639https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793785Program translation;Model driven engineeringIEEE Inglês CE1 Excluído
A UML Profile for Prediction of Significant Software RequirementsA. Tariq; F. Azam; M. W. Anwar; B. Maqbool; H. A. Javaid2019 The preliminary phase of the software development life cycle is Requirements engineering that is nearest to the user's world. This phase contains tasks that are knowledge concentrated. Therefore, the practice of Bayesian Belief Network (BBN) for modelling this knowledge would be worthful assistance. Accordingly, predicting significant requirements is essential. When poorly identified, numerous problems happen, such as budget overrun, software failures and schedule overrun. However, this phase is usually not performed and skipped by assuming as an inconsequential phase. Significant requirements identification become more vital and challenging when the complexity of the software increases. Therefore, managers and developers recurrently lose confidence in software artifacts. Wavering in the developer's confidence may in return distress the decisions of which requirement is to implement first. In this paper Bayesian belief network (BBN) approach for predicting significant requirements is proposed to solve the problem by UML Profile mechanism. This probabilistic model supports in accomplishing the uncertainties and inaccuracy generally exists in the requirements engineering process. It makes the prediction more precise, intuitionistic and reasonable. The Profile is imported into a UML tool, which helps in prompt validation of meta-model concepts in practice. The approach is practicable in a realistic context and addresses uncertainties.10.1109/IEMCON.2019.8936227https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936227Bayesian Belief Network;Requirements Prediction;UML Profile;Significant Requirement;Risk Analysis;Requirements Dependency;Predictive ModelIEEE Inglês CE1 Excluído
Automatic Test Cases Generation for C Written Programs Using Model CheckingD. G. Lima; R. E. González Torres; P. M. Alvarez2021 The present work focuses on the development of a tool that automatically generates coverage criteria based test cases from a C written program. For accomplishing this, the tool translates the C code into PROMELA and generates specifications based on the wanted coverage criteria. Once the model (PROMELA code) and specifications are obtained, it uses SPIN model checker for executing the verification and generating counterexamples which can be used as test cases.10.1109/CSCI54926.2021.00361https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9799272model checking;compiler;PROMELA;SPIN;software testingIEEE Inglês CE1 Excluído
Simulation of Hybrid Reo ConnectorsE. Ardeshir-Larijani; A. Farhadi; F. Arbab2020 The prevalence of complex Cyber-Physical Systems (CPS) as an increasingly ubiquitous technology, necessitates the incorporation of component based and compositional design methods for the development and deployment of such systems. In this paper, we introduce a hybrid coordination framework to specify CPSs with components and use the resulting models to simulate, validate and verify those systems, using UPPAAL statistical model checker (SMC). We use SMC because with a level of uncertainty and unpredictability (e.g., the physical environment with which a CPS interacts), simulation-based verification approaches, where properties are guaranteed with a degree of confidence, produce more meaningful results. To demonstrate the main idea of our paper, we chose Reo as the language for the specification of hybrid components coordination, where both continuous and discrete state transitions can occur inside components. Next, we introduce a transformation that takes the specification of a connector in the language of hybrid Reo, into a network of hybrid timed automata, a commonly used semantic model in SMC. Finally, we report on the implementation of our transformation, and experimentation on two case studies.10.1109/RTEST49666.2020.9140111https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9140111Reo coordination language;component based system;cyber physical system;hybrid system;statistical model checkingIEEE Inglês CE1 Excluído
Promela and Spin Formal Verification of an M-Health Medical Social Media SystemS. M. S. Al-Gayar; N. Goga; N. A. J. Al-Habeeb2019 The process of detecting and identifying errors early in the life-cycle of any software has many challenges. The tools used for model checking are however becoming more effective and usable because they are helping the identification of errors. This has empowered users to apply model checking to large-scale problems. The process of validating the model implementation is normally harder. We created a Promela model by using a model checker called Spin in order to verify the Medical Social Media System based on Social Oriented Networks by using M-Health technology and sensors in smartphones and bracelets for medical data acquisition, in order for it to be used in the healthcare sector in Iraq. For the Promela Model, we first described the behaviors of the Medical Social Media Systems via UML timelines. After that, we combined the UML timelines in state diagrams that were finally transformed into a Promela model and verified with the Spin model checker.10.1109/ICACTM.2019.8776807https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776807UML;Verification;Validation;Promela;Spin;M-Health;Social Oriented NetworksIEEE Inglês CE1 Excluído
Proving Reflex Program Verification Conditions in Coq Proof AssistantI. Chernenko; I. Anureev; N. Garanina2021 The process-oriented paradigm is a promising approach to the development of control software based on the natural concept of the process. Many safety-critical systems use control software. This is a reason for the formal verification of such systems. Deductive verification is the formal method of proving the program's correctness (the satisfiability program requirements). Requirements are formalized as annotations added to programs. The resulting annotated programs are reduced to verification conditions - formulas in some logical language. The original program is considered to be correct if all the verification conditions are true. This paper presents the results of experiments on proving verification conditions in Coq proof assistant within the framework of the two-step method of deductive verification of process-oriented programs in Reflex language.10.1109/EDM52169.2021.9507628https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507628process-oriented programming;Reflex language;deductive verification;requirements;annotations;verification conditions;temporal properties;control softwareIEEE Inglês CE1 Excluído
Modeling Routing Protocols in ASMETALP. Campanella 2021 The proliferation of mobile computing and devices communication (e.g., cell phones, laptops, handheld digital devices, personal digital assistants or wearable computers) is driving a revolutionary change in our information society. The increasing application of formal method ASM in academic and industrial projects has caused a rapid development of tools around ASM of various complexity and goals. Today, there exist various routing protocols for this environment. The Abstract State Machines (ASM) are nowadays acknowledged as a formal method successfully employed as system engineering method that guides development of systems complex seamlessly from requirements capture to their implementation. Several tools supporting ASM have been developed in the past. ASMETA modelling toolset, which is a set of tools for ASM based on the metamodelling approach of the Model-driven Engineering (MDE). In this paper it is discuss the ASMETA framework, and how the language and the simulator have been developed exploiting the advantages offered by the metamodelling approach, is explained the AsmetaS architecture, its kernel engine, and how the simulator works within ASMETA tool set, the features currently supported by the simulator and the language AsmetaL used to write ASM specifications, and we provide the AsmetaL encoding of ASM specifications of increasing complexity.10.1109/ICETA54173.2021.9726565https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9726565asmeta;manet;modeling;protocol;ruleIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9384012
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8732882
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8959796
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447075
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643786
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9214097
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9676609
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9628917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604549
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8710732
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9396227
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9307806
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8906967
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9002783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9251070
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643661
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8940189
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9512884
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9172714
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9438168
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9791260
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8711858
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9139402
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8711857
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9443795
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8780355
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813885
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8806757
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920624
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9268140
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855163
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218218
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9455090
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208165
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9535606
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9349290
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8926692
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9723036
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793785
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936227
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9799272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9140111
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8776807
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9507628
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9726565

A Semantic Framework for the Design of Distributed Reactive Real-Time Languages and ApplicationsM. Sanabria-Ardila; L. D. B. Navarro; D. Díaz-López; W. Garzón-Alfonso2020 The proliferation of on-demand internet services delivered over a network of a heterogeneous set of computing devices has created the need for high-performing dynamic systems in real-time. Services such as audio and video streaming, self-driving cars, the Internet of things (IoT), or instant communication on social networks have forced system designers to rethink the architectures and tools for implementing computer systems. Reactive programming has been advocated as a programming paradigm suitable for implementing dynamic applications with complex and heterogeneous architectural needs. However, there is no consensus on the core set of features that a reactive framework must-have. Furthermore, the current set of features proposed in reactive tools seems very restricted to cope with the actual needs for concurrency and distribution in modern systems. In this paper, several alternative semantics for distributed reactive languages are investigated, addressing complex open issues such as glitch avoidance, explicit distribution support, and constructs for explicit time management. First, we propose a reactive event-based programming language with explicit support for distribution, concurrency, and explicit time manipulation (ReactiveXD). Second, we present a reactive event-based semantic framework called Distributed Reactive Rewriting Framework (DRRF). The framework uses rewriting logic to model the components of a distributed base application, observables, and observers, and predicates supporting explicit time manipulation. Finally, to validate the proposal, the paper discusses the specification of the semantics of ReactiveXD and a scenario describing a case of intrusion detection on IoT networks.10.1109/ACCESS.2020.3010697https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9144537Distributed computing;the Internet of Things (IoT);logical clocks;Maude;real-time languages;reactive programming;rewriting logic;cybersecurity applicationsIEEE Inglês CE1 Excluído
A Model Driven Framework for Standardizing Requirement Elicitation by Quantifying Software Quality FactorS. Khalid; U. Rasheed; M. Abbas2021 The quality monitoring of a software is ensured in every activity of software development lifecycle. Software Quality Requirements are defined in terms of Software Quality Factors and they are gathered to ensure that the software produced meets the user defined quality standards; framework activities are also performed to ensure the incorporation of quality into the developed product. However, these quality factors are qualitative in nature and are thus hard to understand, elicit and record; it also makes the analysing process of the factors hard due to natural language constraints. In order to overcome this, standards and templates are proposed by researchers and devised by organization for eliciting quality factors and then models and procedures are defined to convert the qualitative quality factors into quantitative measures. However, no standardized procedure, tool or model exist that can be applied to this process of recording qualitative software quality factors in quantifiable form for every kind of software product. This paper presents a model driven framework to standardize the procedure of eliciting quality requirements in a quantifiable manner. It uses Obeo Designer to develop the Platform Independent Metamodel (PIM) for the proposed framework. Based on the PIM, it develops a drag-and-drop tool palette and an M1 level instance model using Sirius. The validation of the proposed framework is demonstrated with the help of a case study.10.1109/ICIC53490.2021.9693054https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9693054software quality factors;ISO 9126;quality metrics;metamodel;model driven architectureIEEE Inglês CE1 Excluído
ATGP_RISC-V: Automation of Test Generator using Pluggy for RISC-V ArchitectureB. Madhavan; A. Kamerish; R. Manimegalai2020 The reduced instruction set computing (RISC) architecture is a free and open Instruction Set Architecture (ISA), which enables a new era of processor innovation through open standard collaboration. It directly challenges several well-established processor families such as intel x-86, Motorola 68k processor. To thrive an RISC-V ecosystem, the core suppliers need an independent verification solution to ensure that their designs are compliant with the ISA specification. Verification of RISC-V designs become challenging due to their optional features, implementation flexibility, and provisions for customer extensions. Hence, a thorough verification is essential to compete successfully against the established processor families. Automation is the key for reducing the time taken for the processor verification. This paper provides a way to develop an automated tool ATGP_RISC-V, which uses the same arguments to run all instruction generators. This helps in verifying the processor in an efficient way by reducing the time taken to manually compare the test results.10.1109/ICSSIT48917.2020.9214255https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9214255RISC-V;instruction;exceptions;VCS;verification;testbed;functional verification;instruction set architectureIEEE Inglês CE1 Excluído
Flip Flop Weighting: A technique for estimation of safety metrics in Automotive DesignsF. A. da Silva; A. C. Bagbaba; S. Hamdioui; C. Sauer2021 The requirements of ISO26262 for the development of safety-critical Integrated Circuits (IC) demand substantial efforts on fault analysis for safety metrics evaluation. Failing to achieve the required conditions entails modifications to the circuit, additional iterations through critical design phases, and consequently extra costs and delays. For that reason, providing accurate methods to estimate safety metrics is of great importance. This paper proposes a methodology that can efficiently and precisely estimate the safety metrics of Automotive designs. The technique is based on the characterization of a netlist to determine how hardware components contribute to fault propagation. Also, by examining the test stimuli applied during simulation, we can rank Workloads/Testbenches according to their fault detection coverage. The approach was verified running fault injection campaigns on distinct gate-level hardware designs, including an Automotive CPU. Our results show that the fault detection coverage can be estimated with an average error rate of 3% at up to 20X faster execution times when compared to the traditional campaigns. Hence the methodology provides an efficient and cost-effective mechanism to support engineers in a confident design space exploration.10.1109/IOLTS52814.2021.9486697https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9486697ISO26262;Design Space Exploration;Fault Injection;Formal Methods;Simulation;Functional Safety;VerificationIEEE Inglês CE1 Excluído
A Framework for Model-Based Dependability Analysis of Cyber-Physical SystemsM. Adedjouma; N. Yakymets 2019 The rise of complex Cyber-Physical Systems has led to many initiatives to promote automation of the assurance of their dependability. There exists mature practices and tools to perform necessary activities to provide evidence that a system satisfies dependability requirements. However, there is few harmonized an integrated framework that can support both the definition of the evidence and their collection and management from the specification to the V&V activities to testify of the assurance of those systems in compliance with standards. This paper presents Sophia, a framework that supports assurance of critical cyber physical systems using compositional model-based approaches. Sophia features a wide range of dependability analysis tools targeting all phases of system lifecycle for development of cyber physical systems. Sophia further helps trace the developed analysis outcomes to the requirements in standards for compliance support. We have validated the framework components through different case studies that indicate its usefulness and efficiency in helping prepare for certification of the systems.10.1109/HASE.2019.00022https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673028assurance evidence, dependability assessment, model-driven engineering, FMEA, FTA, hazard analysis, requirements, property verification, standard complianceIEEE Inglês CE1 Excluído
Model-Driven Development of UML-Based Domain-Specific Languages for System Architecture VariantsA. Wichmann; R. Maschotta; F. Bedini; A. Zimmermann2019 The rising overall complexity of modern complex systems leads to an increasing number of decisions made during system design. To achieve efficient, resource saving systems, modern engineering methods and techniques are necessary. Model-based approaches are widely applied in systems engineering, using several types of models in the development phases at different abstraction levels. Model-based design of complex systems benefits from the early validation of design decisions. Indirect optimization with simulation-based validation can be used to determine optimal system solutions. A method for model-driven optimization of system architectures based on the UML standard has been proposed in our earlier work and implemented in a software framework.This paper describes our approach to specify domain-specific languages and corresponding domain-specific tools. The specifications are based on UML extensions using profiles only, which is a lightweight approach compared to other proposals. This allows the reuse and extension of existing UML models. A domain-specific graphical editor for system architecture variants is presented based on the specified extensions. The resulting graphical editor is used to model system architecture variants as an example.10.1109/SYSCON.2019.8836895https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836895system architecture optimization;design space specification;model analysis;model queries;UML;model validation;model driven engineering;Eclipse SiriusIEEE Inglês CE1 Excluído
Bounded Exhaustive Search of Alloy Specification RepairsS. Gutiérrez Brida; G. Regis; G. Zheng; H. Bagheri; T. Nguyen; N. Aguirre; M. Frias2021 The rising popularity of declarative languages and the hard to debug nature thereof have motivated the need for applicable, automated repair techniques for such languages. However, despite significant advances in the program repair of imperative languages, there is a dearth of repair techniques for declarative languages. This paper presents BeAFix, an automated repair technique for faulty models written in Alloy, a declarative language based on first-order relational logic. BeAFix is backed with a novel strategy for bounded exhaustive, yet scalable, exploration of the spaces of fix candidates and a formally rigorous, sound pruning of such spaces. Moreover, different from the state-of-the-art in Alloy automated repair, that relies on the availability of unit tests, BeAFix does not require tests and can work with assertions that are naturally used in formal declarative languages. Our experience with using BeAFix to repair thousands of real-world faulty models, collected by other researchers, corroborates its ability to effectively generate correct repairs and outperform the state-of-the-art.10.1109/ICSE43902.2021.00105https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402059Alloy;Automated Repair;Formal Specification;Bounded exhaustive analysisIEEE Inglês CE1 Excluído
MBSE for Satellite Communication System ArchitectingS. Gao; W. Cao; L. Fan; J. Liu 2019 The risk of failure for aerospace missions can be reduced if architects model the product in a systematic way and make decisions for physical implementation based on stakeholder needs. Satellite communication system architecting should take one of its dominating elements, the communication satellite, into account for consistent modeling during the whole product lifecycle. Model-based system engineering (MBSE) serves as a useful tool for system modeling activities and connections with manufacturing. In this paper, satellite communication system architecting is investigated in the preliminary design stage via MBSE methodologies and the system modeling language (SysML). Application scenarios and use cases are built up aiming at satisfying stakeholder needs. System black-box analysis and white-box logical decomposition are further realized. The logical architecture is then partitioned for physical implementation and system optimization is carried out to give architecting suggestions. Requirement traceability is examined to finish the current design stage. The models realized by the MBSE method are reusable and easily extendible to detailed system design and implementation in the whole product lifecycle.10.1109/ACCESS.2019.2952889https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8895949MBSE;satellite communication system;architecting;SysML;OOSEMIEEE Inglês CE1 Excluído
ROSSi A Graphical Programming Interface for ROS 2C. Wanninger; S. Rossi; M. Schörner; A. Hoffmann; A. Poeppel; C. Eymueller; W. Reif2021 The Robot Operating System (ROS) offers developers a large number of ready-made packages for developing robot programs. The multitude of packages and the different interfaces or adapters is also the reason why ROS projects often tend to become confusing. Concepts of model-driven software development using a domain-specific modeling language could counteract this and at the same time speed up the development process of such projects. This is investigated in this paper by transferring the core concepts from ROS 2 into a graphical programming interface. Elements of established graphical programming tools are compared and approaches from modeling languages such as UML are used to create a novel approach for graphical development of ROS projects. The resulting interface is evaluated through the development of a project built on ROS, and the approach shows promise towards facilitating work with the Robot Operating System.10.23919/ICCAS52745.2021.9649736https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9649736robot operating system;ros;unmaned aerial vehicle;uav;model driven development;semantic plug and playIEEE Inglês CE1 Excluído
Automating Performance Antipattern Detection and Software Refactoring in UML ModelsD. Arcelli; V. Cortellessa; D. D. Pompeo2019 The satisfaction of ever more stringent performance requirements is one of the main reasons for software evolution. However, it is complex to determine the primary causes of performance degradation, because they may depend on the joint combination of multiple factors (e.g., workload, software deployment, hardware utilization). With the increasing complexity of software systems, classical bottleneck analysis shows limitations in capturing complex performance problems. Hence, in the last decade, the detection of performance antipatterns has gained momentum as an effective way to identify performance degradation causes. We introduce PADRE (Performance Antipattern Detection and REfactoring), that is a tool for: (i) detecting performance antipattern in UML models, and (ii) refactoring models with the aim of removing the detected antipatterns. PADRE has been implemented within Epsilon, an open-source platform for model-driven engineering. It is based on a methodology that allows performance antipattern detection and refactoring within the same implementation context.10.1109/SANER.2019.8667967https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8667967Software Performance;Model-Driven DevelopmentIEEE Inglês CE1 Excluído
AutoMap: Automated Mapping of Security Properties Between Different Levels of Abstraction in Design FlowB. Ahmed; F. Rahman; N. Hooten; F. Farahmandi; M. Tehranipoor2021 The security of system-on-chip (SoC) designs is threatened by many vulnerabilities introduced by untrusted third-party IPs, and designers and CAD tools' lack of awareness of security requirements. Ensuring the security of an SoC has become highly challenging due to the diverse threat models, high design complexity, and lack of effective security-aware verification solutions. Moreover, new security vulnerabilities are introduced during the design transformation from higher to lower abstraction levels. As a result, security verification becomes a major bottleneck that should be performed at every level of design abstraction. Reducing the verification effort by mapping the security properties at different design stages could be an efficient solution to lower the total verification time if the new vulnerabilities introduced at different abstraction levels are addressed properly. To address this challenge, we introduce AutoMap that, in addition to the mapping, extends and expands the security properties to identify new vulnerabilities introduced when the design moves from higher-to lower-level abstraction. Starting at the higher abstraction level with a defined set of security properties for the target threat models, AutoMap automatically maps the properties to the lower levels of abstraction to reduce the verification effort. Furthermore, it extends and expands the properties to cover new vulnerabilities introduced by design transformations and updates to the lower abstraction level. We demonstrate AutoMap's efficacy by applying it to AES, RSA, and SHA256 at C++, RTL, and gate-level. We show that AutoMap effectively facilitates the detection of security vulnerabilities from different sources during the design transformation.10.1109/ICCAD51958.2021.9643467https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643467Security Property Mapping;Security Property Extension;Security Property Expansion;Property-based VerificationIEEE Inglês CE1 Excluído
A Specification-Based Semi-Formal Functional Verification Method by a Stage Transition Graph ModelZ. Lv; S. Chen; T. Zhang; Y. Wang2019 The semi-formal verification method, in which the functionality is formally specified and the checking is undertaken through the formal model-based simulation, has been a promising choice for the functional verification of hardware designs. The existing methods derive the formal model from design implementation. This causes poor scalability and practicality. A more feasible solution is to derive the formal model directly from the specification. In this paper, we propose a specification-based semi-formal method for functional verification. The proposed semi-formal method uses a stage transition graph (STG) model to formally describe the function points in the specification. Meanwhile, we propose an automatic test pattern generation (ATPG) method to generate the test vectors based on the STG model. The proposed STG-based ATPG method can reach possible corner cases and ensure exhaustive exploration of functionality for both control-dominated designs and data-dominated designs. Moreover, we develop an STG-based tool for automatic verification. Our experiments show that our method can automatically verify the functional correctness from the specification while achieving similar code coverage as implementation-based semi-formal approaches.10.1109/ACCESS.2019.2892649https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8611078Functional verification;simulation;formal;semi-formal;ATPGIEEE Inglês CE1 Excluído
Executable Test Case Generation from Specifications Written in Natural Language and Test Execution EnvironmentY. Aoyama; T. Kuroiwa; N. Kushiro2021 The Software Product Line Engineering (SPLE) realizes various products, reusing software parts, whereas issues remain in test case design and execution. Test cases are conventionally designed by a manual routine from specifications written in a natural language, and the routine and redesign of the test cases caused by the defects in the specification require much human time. Also, functions of recent consumer products are invoked in non-deterministic order by messages sent over a network, and combinations of software parts and execution orders require many regression tests, which are time-consuming and often infeasible to execute manually due to limited development time. Against the above issues, we introduce a test design process for specifications written in natural language, support tools for the process, and a test execution environment that automatically executes the non-deterministic tests to reduce the human time of both test case design and execution. Case studies confirmed that the proposing process automated the manual routine, removed defects in a specification, and generated test cases. The case studies also showed that the test execution environment automatically executed the non-deterministic tests for an HVAC system developed with the SPLE. Finally, we confirmed that the proposing methods shortened the human time of design and execution of tests.10.1109/CCNC49032.2021.9369549https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9369549test case generation;semi-formal description;test execution environmentIEEE Inglês CE1 Excluído
A Method to Ensure Compliance with Attribute and Role Based Access Control Policy for Executing BPMN ModelsD. -H. Nguyen; V. -V. Le; T. -H. Nguyen; D. -H. Dang2021 The stringent control of access rights during business processes execution is an important technique to ensure systems security. Business processes are often designed and operated based on models represented by domain-specific languages, such as BPMN. Moreover, access control policies are often studied and specified based on access control models, such as Role-based Access Control (RBAC) and Attribute-based Access Control (ABAC). These security techniques have several challenges that need to be addressed, such as (1) ensuring consistency of RBAC/ABAC policy specifications and (2) ensuring compliance with RBAC/ABAC policies when executing a business process. In this paper, we propose using a metamodeling technique to take advantage of UML and OCL’s expressive power in order to facilitate validation and verification of RBAC/ABAC policies. Within our approach, the RBAC metamodel is extended so that ABAC constraints for complex business rules could be captured and checked. We build a support tool by incorporating Activiti (the support tool for specifying and implementing BPMN models) with USE (UML-based Specification Environment). The proposed method is experimented and evaluated for the process of liquidating the individual teaching contracts of a training management system.10.1109/ICSSE52999.2021.9538430https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9538430Business Rules;RBAC – Role Based Access Control;ABAC – Attribute Based Access Control;BPMN - Business Process Model and Notation;UML/OCL - Unified Modeling Language/Object Constraint LanguageIEEE Inglês CE1 Excluído
Maintaining the Consistency of SysML Model Exports to XML Metadata Interchange (XMI)H. A. H. Handley; W. Khallouli; J. Huang; W. Edmonson; N. Kibret2021 The System Modeling Language (SysML) is a visual modeling language that can be used to describe the structure and behavior of a system. Modeling tools can be used to capture the variety of diagrams and maintain the consistency of elements across the different structural and behavioral representations of the system. Current research is investigating using the XML Metadata Interchange (XMI) standard to convert the diagrammatic information captured in SysML into a format that can be used to produce software code that can then be simulated to ensure conformance with system requirements. The XMI standard can be used as an interim format to migrate the content from a diagrammatic representation, where system elements are sorted by the diagram that contains them, to an object approach, where all elements related to an entity reside in a tree structure below that element. This paper presents a method to ensure the consistency of the XMI representation regardless of whether a functional or physical system engineering approach is used for the design process. This has implications in maintaining the consistency of the XMI file when system development is initiated from a high level of abstraction, followed by iterative addition of detail. The goal is to ensure that XMI file maintains an authoritative representation of the modeled system.10.1109/SysCon48628.2021.9447105https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447105SysML;XMI;Design Methods;System PerspectivesIEEE Inglês CE1 Excluído
UVM based Verification of Read and Write Transactions in AXI4-Lite ProtocolH. Sangani; U. Mehta 2022 The System-On-Chip (SoC) designs are becoming more complex nowadays. Multiple Intellectual Property (IPs) are integrated in a single SoC and these IPs communicate with the help of various bus protocols. Verification takes almost 70 % time in design cycle hence re-usable verification environment of these commonly used protocols is very important. In this paper, AXI4-Lite protocol is verified using UVM based testbench structure. To verify all channels of AX I protocol, data is written into a 4-bit shift register and it is read back. The UVM testbench acts as a master device which will send all control information, data and address to the register through the AXI interface. To understand verification goal achievement, coverpoints are written and functional and code coverage reports are analyzed. The synopsys V CS tool is used for the simulation.10.1109/TENSYMP54529.2022.9864552https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9864552AXI;UVM;Verification;VCS;System-on-chip(SoC)IEEE Inglês CE1 Excluído
Design Structure Matrix Generation from Open-source MBSE ToolsW. Pons; S. S. Cordero; R. Vingerhoeds2021 The usage of Design Structure Matrices is widely applied to represent, cluster, and partition complex systems information for different purposes, one of them being systems design. Nevertheless, open-source software for their automatic creation is rare. This leads to manual workshop sessions for subject matter experts to fill in the design structure matrices, a practice that is very tedious and time consuming. The importance and application of Model Based System Engineering has increased over the years. Nowadays, there are several open-source MBSE software such as StarUML, Papyrus, TTool, Modelio, Capella. This paper describes a novel approach to generate design structure matrices and extract information automatically from xml and xmi formats used widely in open-source Model Based System Engineering tools. This work presents the algorithm and a tool to extract data from the output model files, in order to automatically create a Design Structure Matrix (DSM) of modeled systems.10.1109/ISSE51541.2021.9582525https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582525DSM;Model Based Systems Engineering;Open source tools;systems thinkingIEEE Inglês CE1 Excluído
Effectiveness on C Flaws Checking and RemovalJ. Inácio; I. Medeiros 2022 The use of software daily has become inevitable nowadays. Almost all everyday tools and the most different areas (e.g., medicine or telecommunications) are dependent on software. The C programming language is one of the most used languages for software development, such as operating systems, drivers, embedded systems, and industrial products. Even with the appearance of new languages, it remains one of the most used [1] . At the same time, C lacks verification mechanisms, like array boundaries, leaving the entire responsibility to the developer for the correct management of memory and resources. These weaknesses are at the root of buffer overflows (BO) vulnerabilities, which range the first place in the CWE’s top 25 of the most dangerous weaknesses [2] . The exploitation of BO when existing in critical safety systems, such as railways and autonomous cars, can have catastrophic effects for manufacturers or endanger human lives.10.1109/DSN-S54099.2022.00021https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833646Buffer Overflow Vulnerabilities;Static Analysis;Fuzzing;Code Correction;Software SecurityIEEE Inglês CE1 Excluído
Refinement-based Construction of Correct Distributed AlgorithmsD. Méry 2021 The verification of distributed algorithms is a challenge for formal techniques supported by tools, as model checkers and proof assistants. The difficulties, even for powerful tools, lie in the derivation of proofs of required properties, such as safety and eventuality, for distributed algorithms. Verification by construction can be achieved by using a formal framework in which models are constructed at different levels of abstraction; each level of abstraction is refined by the one below, and this refinement relationships is documented by an abstraction relation namely a gluing invariant. The highest levels of abstraction are used to express the required behavior in terms of the problem domain and the lowest level of abstraction corresponds to an implementation from which an efficient implementation can be derived automatically. We describe a methodology based on the general concept of refinement and used for developing distributed algorithms satisfying a given list of safety and liveness properties. We will show also how formal models can be used for producing distributed programs of a real programming language. The modelling methodology is defined in the Event-B modelling language using the Rodin Formal IDE.10.1109/ICI2ST51859.2021.00015https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447336formal method;distributed algorithm;correct by cinstruction;refinement;verificationIEEE Inglês CE1 Excluído
A Lightweight Authentication Protocol for UAV Networks Based on Security and Computational Resource OptimizationY. Lei; L. Zeng; Y. -X. Li; M. -X. Wang; H. Qin2021 The widespread use of Unmanned Aerial Vehicles (UAV) has made the security and computing resource application efficiency of UAV a hot topic in the security field of the Internet of Things. In this paper, an optimized lightweight identity security authentication protocol, Optimized Identity Authentication Protocol (ODIAP) is proposed for Internet of Drones (IoD) networks. The protocol is targeted to the security risks faced by IoD networks, and proposes the security authentication mechanism consisting of 3 phases and 7 authentication processes, which enables the protocol has both forward and backward security, and can resist mainstream network attacks. Meanwhile, this paper fully considers the computational load and proposes the identity information generation and verification method based on the Chinese residual theorem, which reduces the computational load of resource-constrained nodes and shifts the complex computational process to server nodes with abundant computational resources. Moreover, after security protocol analysis and tool verification based on the automated security verification tool Proverif, the protocol in this paper has complete security. At the same time, the performance analysis and comparison with other mainstream protocols shows that this protocol effectively optimizes the use of computing resources without compromising security.10.1109/ACCESS.2021.3070683https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9393888UAV;Internet of Drones;lightweight authentication;Proverif;securityIEEE Inglês CE1 Excluído
Model-driven development of cyber-physical systems using TheatreL. Nigro 2019 Theatre is a control-based, light-weight, reflective actor system designed to address the development of general distributed, timed (possibly probabilistic) systems and cyber-physical systems in particular. Theatre is characterized by its formal operational semantics. An abstract Theatre model, including the services of a possible deterministic network and associated protocol, can be analyzed by exhaustive model-checking or by statistical model checking or through ad-hoc simulators. Theatre is currently implemented in Java. Other languages are possible. A key point of Theatre is its volition to favoring a seamless transformation of an analyzed model into the terms of design and implementation phases. The tutorial will illustrate the modelling aspects of Theatre, its supporting analysis tools, its capability of combining discrete-time with continuous time, its maturity as a software engineering methodology, and some developed applications.10.1109/DS-RT47707.2019.8958650https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958650- IEEE Inglês CE1 Excluído
ThEodorE: a Trace Checker for CPS PropertiesC. Menghi; E. Viganò; D. Bianculli; L. C. Briand2021 ThEodorE is a trace checker for Cyber-Physical systems (CPS). It provides users with (i) a GUI editor for writing CPS requirements; (ii) an automatic procedure to check whether the requirements hold on execution traces of a CPS. ThEodorE enables writing requirements using the Hybrid Logic of Signals (HLS), a novel, logic-based specification language to express CPS requirements. The trace checking procedure of ThEodorE reduces the problem of checking if a requirement holds on an execution trace to a satisfiability problem, which can be solved using off-the-shelf Satisfiability Modulo Theories (SMT) solvers. This artifact paper presents the tool support provided by ThEodorE.10.1109/ICSE-Companion52605.2021.00079https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402530Monitors, Languages, Specification, Validation, Formal methods, SemanticsIEEE Inglês CE1 Excluído
Handling Concurrency in Behavior TreesM. Colledanchise; L. Natale 2022 This article addresses the concurrency issues affecting behavior trees (BTs), a popular tool to model the behaviors of autonomous agents in the video game and the robotics industry. BT designers can easily build complex behaviors composing simpler ones, which represents a key advantage of BTs. The parallel composition of BTs expresses a way to combine concurrent behaviors that has high potential, since composing pre-existing BTs in parallel results easier than composing in parallel classical control architectures, as finite state machines or teleo-reactive programs. However, BT designers rarely use such composition due to the underlying concurrency problems similar to the ones faced in concurrent programming. As a result, the parallel composition, despite its potential, finds application only in the composition of simple behaviors or where the designer can guarantee the absence of conflicts by design. In this article, we define two new BT nodes to tackle the concurrency problems in BTs and we show how to exploit them to create predictable behaviors. In addition, we introduce measures to assess execution performance and show how different design choices affect them. We validate our approach in both simulations and the real world. Simulated experiments provide statistically significant data, whereas real-world experiments show the applicability of our method on real robots. We provided an open-source implementation of the novel BT formulation and published all the source code to reproduce the numerical examples and experiments.10.1109/TRO.2021.3125863https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9653148Autonomous systems;behavior trees;behavior-based systemsIEEE Inglês CE1 Excluído
Toward Generation of Dependability Assessment Models for Industrial Control SystemG. BOYER; J. -F. PÉTIN; N. BRÎNZEI; J. CAMERINI; M. NDIAYE2019 This article focuses on the development of a tool-based approach for the assessment of industrial control IT systems. The originality of the approach relies in two main points. First of all, the underlying formal models for dependability assessment must cover dynamic behavior of the IT architectures to take into account reparation, reconfiguration and modes in the life cycle of the architecture. Secondly, these formal models must be automatically established and hidden to the architecture designers to reduce time consumption when dealing with a large amount of candidate architectures evaluated during the engineering phase. This work is a first step towards such an objective by defining a structured UML (Unified Modelling Language) modelling framework for identifying and structuring the key objects of an architecture with regard to dependability.10.1109/DT.2019.8813373https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813373UML diagrams;dependability assessment;industrial control system architecture;automatic generation model;Petri netsIEEE Inglês CE1 Excluído
LastLayer: Toward Hardware and Software Continuous IntegrationL. Vega; J. Roesch; J. McMahan; L. Ceze2020 This article presents LastLayer, an open-source tool that enables hardware and software continuous integration and simulation. Compared to traditional testing approaches based on the register transfer level abstraction, LastLayer provides a mechanism for testing Verilog designs with any programming language that supports the C foreign function interface. Furthermore, it supports a generic C interface that allows external programs convenient access to storage resources such as registers and memories in the design as well as control over the hardware simulation. Moreover, LastLayer achieves this software integration without requiring any hardware modification and automatically generates language bindings for these storage resources according to user specification. Using LastLayer, we evaluated two representative integration examples: a hardware adder written in Verilog operating over NumPy arrays, and a ReLu vector-accelerator written in Chisel processing tensors from PyTorch.10.1109/MM.2020.2997610https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9099634hardware simulation;hardware language interoperability;agile hardware designIEEE Inglês CE1 Excluído
Theory of Constructed Emotion Meets REK. Taveter; T. Iqbal 2021 This article proposes to employ one of the most up to date theories of emotion - the theory of constructed emotion for engineering and validating requirements. We first provide an overview of different theories of emotion and indicate where the theory of constructed emotion lies in relation to these theories. After that, we describe possible advantages in applying theory of constructed emotion to requirements engineering. Thereafter, we postulate how the theory of constructed emotion could be applied in requirements engineering. We then hypothesize how the theory of constructed could be supported by appropriate methods and tools. Finally, we draw conclusions, and sketch the research agenda in applying the theory of constructed emotion in requirements engineering.10.1109/REW53955.2021.00067https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582299Theory of constructed emotions;requirements engineering;affective computingIEEE Inglês CE1 Excluído
Artifact Abstract: Deployment of APIs on Android Mobile Devices and MicrocontrollersS. Laso; M. Linaje; J. Garcia-Alonso; J. M. Murillo; J. Berrocal2020 This artifact is a guideline for the generation of APIs through the APIGEND (API Generator for End Devices) tool. This tool is an extension of the OpenAPI Generator [1] . It originally allows developers to create both the client and server side through an OpenAPI Specification with a ServerCentric style in different languages. The extension developed also allows one to generate APIs for end devices, specifically for Android devices and ESP32 Microcontrollers, making the application of the Edge [2] and Mobile-Centric [3] paradigms easier.10.1109/PerCom45495.2020.9127353https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9127353Microservices;Android;Microcontroller;OpenAPI;Edge ComputingIEEE Inglês CE1 Excluído
The MULTI Process ChallengeJ. P. A. Almeida; A. Rutle; M. Wimmer; T. Kühne2019 This challenge is intended to allow submitters to demonstrate the use of multi-level modeling techniques and enable the comparison of submissions and hence framework/language capabilities. The multi-level modeling community is invited to respond to this challenge with papers describing solutions to the challenge. Authors should emphasize the merits of their solutions according to the aspects defined in this challenge description. The challenge follows up on the "MULTI Bicycle Challenge" which was used in MULTI 2017 and MULTI 2018, and reuses some criteria that were established in these previous editions. Despite the similar criteria, the subject domain has been changed entirely and new criteria have been added which are intended to increase opportunities for languages and tools to exercise their capabilities.10.1109/MODELS-C.2019.00027https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904775Multi-level modeling;challenge;process management;MULTI workshopIEEE Inglês CE1 Excluído
Classification Algorithms Framework (CAF) to Enable Intelligent Systems Using JetBrains MPS Domain-Specific Languages EnvironmentS. Meacham; V. Pech; D. Nauck2020 This paper describes the design and development of a Classification Algorithms Framework (CAF) using the JetBrains MPS domain-specific languages (DSLs) development environment. It is increasingly recognized that the systems of the future will contain some form of adaptivity therefore making them intelligent systems as opposed to the static systems of the past. These intelligent systems can be extremely complex and difficult to maintain. Descriptions at higher-level of abstraction (system-level) have long been identified by industry and academia to reduce complexity. This research presents a Framework of Classification Algorithms at system-level that enables quick experimentation with several different algorithms from Naive Bayes to Logistic Regression. It has been developed as a tool to address the requirements of British Telecom's (BT's) data-science team. The tool has been presented at BT and JetBrains MPS and feedback has been collected and evaluated. Beyond the reduction in complexity through the system-level description, the most prominent advantage of this research is its potential applicability to many application contexts. It has been designed to be applicable for intelligent applications in several domains from business analytics, eLearning to eHealth, etc. Its wide applicability will contribute to enabling the larger vision of Artificial Intelligence (AI) adoption in context.10.1109/ACCESS.2020.2966630https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8959196Classification algorithms;domain-specific languages;framework;intelligent systemsIEEE Inglês CE1 Excluído
SysMD: Towards “Inclusive” Systems EngineeringŠ. Dalecke; K. A. Rafique; A. Ratzke; C. Grimm; J. Koch2022 This paper gives an overview of SysMD. SysMD is a tool and a SysML v2 inspired language. It is a modeling tool specifically aimed at domain experts with little to no high level systems modeling expertise. The language is designed to use intuitive, near natural-language statements and is able to propagate constraints throughout the model by continuously solving a constraint net. Furthermore, the SysMD tool aims to use a recommender system to incentivize the users to document their work in markdown as the tool gives recommendations of existing elements and relationships applicable to the current statements. This structures the knowledge in an easy to use, highly connected, way. This paper describes the syntax and semantics of the language, as well as the reasoning why it was designed in this specific way.10.1109/ICPS51978.2022.9816856https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9816856SysMD;system modeling;knowledge representation;modeling toolIEEE Inglês CE1 Excluído
An Integrated Digital System Design Framework With On-Chip Functional Verification and Performance EvaluationG. Cano-Quiveu; P. Ruiz-De-Clavijo-Vazquez; M. J. Bellido-Diaz; D. Guerrero-Martos; J. Viejo-Cortes; J. Juan-Chico2021 This paper introduces a design and on-chip verification framework for IPCores in FPGA platforms. The methodology of the proposed framework is based on the development of a high level software model, an HDL description of the IPCore and the verification of the system under test by the Autotest Core, an on-chip verification core developed for this framework. The test pattern generation is done at the high level in software and used throughout the design and verification process. HDL simulation results can then be compared to on-chip results and get performance measurements from the Autotest Core. The Off-line testing is possible by using standard low-cost Flash storage (SD card). The proposed framework and methodology applied to PRESENT and SPONGENT cryptographic algorithms has shown over two orders of magnitude better performance than commercial tools like Xilinx’s VIO and a hardware footprint of the verification cored below 3% of the available FPGA resources.10.1109/ACCESS.2021.3132188https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9632568FPGA;framework;HDL;IoT;IPCore;on-chip;performance;verificationIEEE Inglês CE1 Excluído
Domain-specific language to design educational programs with the use of X-matrix approachA. Kuzmin; A. Dukhanov; S. Kraev2022 This paper introduces a prototype of a domain-specific language for quick and efficient preparation of educational programs. Rapid changes in technology lead to constant modification process of the current program especially in scientific-intensive areas. As a result, teachers may need a tool representing a convenient, structural and formalized approach for learning program construction. The domain-specific language is devoted to serve as such an instrument and is based on concepts of X-matrix and problem areas map. In this paper functions of the language prototype and its syntax are represented. Key entities which comprise X-matrix and problem area matrix are explained. The implementation of operations on the entities in the markup language are described.10.1109/FIE56618.2022.9962384https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9962384problem areas map;X-matrix;domain-specific languagesIEEE Inglês CE1 Excluído
Interactive Data Comics Z. Wang; H. Romat; F. Chevalier; N. H. Riche; D. Murray-Rust; B. Bach2022 This paper investigates how to make data comics interactive. Data comics are an effective and versatile means for visual communication, leveraging the power of sequential narration and combined textual and visual content, while providing an overview of the storyline through panels assembled in expressive layouts. While a powerful static storytelling medium that works well on paper support, adding interactivity to data comics can enable non-linear storytelling, personalization, levels of details, explanations, and potentially enriched user experiences. This paper introduces a set of operations tailored to support data comics narrative goals that go beyond the traditional linear, immutable storyline curated by a story author. The goals and operations include adding and removing panels into pre-defined layouts to support branching, change of perspective, or access to detail-on-demand, as well as providing and modifying data, and interacting with data representation, to support personalization and reader-defined data focus. We propose a lightweight specification language, COMICSCRIPT, for designers to add such interactivity to static comics. To assess the viability of our authoring process, we recruited six professional illustrators, designers and data comics enthusiasts and asked them to craft an interactive comic, allowing us to understand authoring workflow and potential of our approach. We present examples of interactive comics in a gallery. This initial step towards understanding the design space of interactive comics can inform the design of creation tools and experiences for interactive storytelling.10.1109/TVCG.2021.3114849https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9552591Data comics;Non-linear narrative;interactive storytellingIEEE Inglês CE1 Excluído
Better Late Than Never : Verification of Embedded Systems After DeploymentM. Ring; F. Bornebusch; C. Lüth; R. Wille; R. Drechsler2019 This paper investigates the benefits of verifying embedded systems after deployment. We argue that one reason for the huge state spaces of contemporary embedded and cyber-physical systems is the large variety of operating contexts, which are unknown during design. Once the system is deployed, these contexts become observable, confining several variables. By this, the search space is dramatically reduced, making verification possible even on the limited resources of a deployed system. In this paper, we propose a design and verification flow which exploits this observation. We show how specifications are transferred to the deployed system and verified there. Evaluations on a number of case studies demonstrate the reduction of the search space, and we sketch how the proposed approach can be employed in practice.10.23919/DATE.2019.8714967https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714967- IEEE Inglês CE1 Excluído
A Model Driven Tool for Requirements and Hardware EngineeringA. Charfi; S. Li; T. Payret; P. Tessier; C. Mraidha; S. Gérard2019 This paper presents a model driven tool for both requirements and hardware engineering. For the requirements engineering, the tool offers many functionalities such as classifying the requirements and linking them with the hardware system elements. For the Hardware engineering, the tool offers different levels of the EE architecture design: Three levels of modelling are used from the more abstract to the more detailed: Function level, Architecture level and Real Component (physical) level. The tool proposes libraries to enable the reuse of hardware components for the different design levels. The tool offers also a list of automatic generation modules such as the automatic generation of the documentation either for the Requirements or the Hardware model and the automatic generation of the BOM specification from the Hardware model. In this paper, we will present a specific use of the tool for the automotive domain. We will identify different requirements imposed by the automotive domain and show how the tool has contributed to satisfy these requirements.10.1109/MODELS-C.2019.00120https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904517Model-driven-engineering,-Hardware-engineering,-Requirements-engineeringIEEE Inglês CE1 Excluído
Enhancing Software Testing with Ontology Engineering ApproachS. Charoenreh; A. Intana 2019 This paper presents a novel hybrid framework, Software Requirement Ontologies based Test Case Generation (ReqOntoTestGen) to increase the confidence in the reliability of existing verification and validation (V&V) techniques. This framework integrates the benefits of ontology modelling with the test case generation approaches based on use case-based requirement specifications. ROO (Rabbit to OWL Ontologies Authoring) tool is used in this work to eliminate the ambiguous requirement in natural language by using Controlled Natural Language (CNL). The ontology result from this tool, then, is translated into OWL before this OWL model is mapped into the XML file of data dictionary. Test cases are generated from this XML file by using Combination of Equivalence and Classification Tree Method (CCTM). This testing technique enables the redundant test cases to be eliminated and the coverage of testing to be increased. The contribution of this work has been explored by using the real case study. The result shows how the requirement ontology enhances the testing technique as we expected.10.1109/ICSEC47112.2019.8974672https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8974672test case;requirement ontology;software requirement specification;software testing;black-box testingIEEE Inglês CE1 Excluído
Model Checking the Multi-Formalism Language FIGAROS. Khan; M. Volk; J. -P. Katoen; A. Braibant; M. Bouissou2021 This paper presents a probabilistic model-checking tool for FIGARO, a multi-formalism modelling language that includes e.g., generalised stochastic Petri nets, Boolean-logic driven Markov processes, telecommunication networks, dynamic reliability block diagrams, process diagrams, and electric circuits. FIGARO has been developed and maintained by EDF for the analysis of system dependability such as reliability, availability and maintainability. We present a probabilistic model-checking tool for FIGARO models. It combines efficient, fully automated verification algorithms with numerical analysis techniques. Whereas the existing FIGARO tools, the Monte Carlo simulator YAMS and the most-probable-sequence explorer FiGSEQ, provide respectively statistical guarantees and upper bounds for unreliability and unavailability, our tool provides hard guarantees: its results are correct up to a given numerical accuracy. The key ingredient is the tool-component FiGAROAPI that enables the state-space generation for FIGARO models thus facilitating model checking. This paper describes the details of FiGAROAPI and empirically evaluates the feasibility and merits of the proposed framework. FiGAROAPI leverages upon the state-of-the-art STORM model checker as back-end, and it can model check various types of formalism in their FIGARO representation.10.1109/DSN48987.2021.00056https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505095Model checking;Figaro;Dependability;Reliability;Formal MethodsIEEE Inglês CE1 Excluído
Model Driven Software Engineering of Power Systems Applications: Literature Review and TrendsP. Neis; M. A. Wehrmeister; M. F. Mendes2019 This paper presents a survey on Software Engineering techniques for the power systems area. Our goal is to identify tools and techniques that can improve the life cycle management of customized applications for Energy Management Systems (SCADA/EMS), by applying a Model Driven Engineering (MDE) approach. We conducted a systematic literature review of published works related to the design and development of such applications. Two main repositories of publications in the area were used as sources and four search strategies were applied. Several works found are not directed to SCADA/EMS, but are related to other power systems applications. We have collected evidence that such applications are more commonly modeled using concepts specific to the power systems' domain, like control theory, rather than traditional techniques and tools from the software industry, like UML. However, few details about the process of transforming those specifications into software artifacts could be gathered. On the other hand, a few published works mention the MDE approach for power systems related applications, although clear methodology or frameworks applicable to the production of fully functional software are still missing. We have also identified promising technologies that need to be evaluated in order to propose such a framework, like domain specific languages, transformation engines and integration interfaces. The appealing MDE concept of automatically transforming design and specification models into programs and other software artifacts has the potential to facilitate the porting and migration of EMS applications from one platform to others. Ultimately, such an approach may help improving software quality and cutting development costs.10.1109/ACCESS.2019.2958275https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8926459Model driven engineering;SCADA/EMS;software engineering;power systemsIEEE Inglês CE1 Excluído
A Model Checkable UML Soccer PlayerV. Besnard; C. Teodorov; F. Jouault; M. Brun; P. Dhaussy2019 This paper presents a UML implementation of the MDETools'19 challenge problem with EMI (our Embedded/Experimental Model Interpreter). EMI is a model interpreter that can be used to execute, simulate, and formally verify UML models on host or embedded targets. The tool's main specificity relies on a single implementation of the language semantics such that consistency is ensured between all development phases: from design to verification and execution activities. Using this approach, we have succeeded in (i) designing a UML model for the challenge problem, (ii) applying formal verification using model-checking on the design model, and (iii) executing this model in order to participate in the challenge.10.1109/MODELS-C.2019.00035https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904603UML;Model-Driven Engineering;Tool IEEE Inglês CE1 Excluído
Implementation of the simple domain-specific language for system testing in V-Model development lifecycleS. Popic; V. Komadina; R. Arsenovic; M. Stepanovic2020 This paper presents easy to use domain-specific language for system testing in V-model development lifecycle. The systematic approach offered by the domain-specific language for system testing eliminates miscommunications between testers and requirement engineers making the testing closer to the requirement engineers. This concept enables automation in the generation of the tests based on given System Requirements in the future. As many would argue on V-Model's difficulty to align system requirements and system tests, this approach enables better mapping between those two parts of the V-diagram. This will make no functional requirement missing its counterpart in testing and vice-versa.10.1109/ZINC50678.2020.9161781https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9161781domain-specific language;V-model;system testingIEEE Inglês CE1 Excluído
MIST: monitor generation from informal specifications for firmware verificationS. Germiniani; M. Bragaglio; G. Pravadelli2020 This paper presents MIST, an all-in-one tool capable of generating a complete environment to verify C/C++ firmwares starting from informal specifications. Given a set of specifications written in natural language, the tool guides the user in translating each specification into an XML formal description, capturing a temporal behavior that must hold in the design. Our XML format guarantees the same expressiveness of linear temporal logic, but it is designed to be used by designers that are not familiar with formal methods. Once each behavior is formalized, MIST automatically generates the corresponding test-bench and checker to stimulate and verify the design. In order to guide the verification process, MIST employs a clustering procedure that classifies the internal states of the firmware. Such classification aims at finding an effective ordering to check the expected behaviors and to advise for possible specification holes. MIST has been fully integrated into the IAR System Embedded Workbench. Its effectiveness and efficiency have been evaluated to formalize and check a complex test-plan for an industrial firmware.10.1109/VLSI-SOC46417.2020.9344072https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9344072assertion;verification;testing;simulation;checker;PSL;LTL;specificationIEEE Inglês CE1 Excluído
A Framework for Quantitative Modeling and Analysis of Highly (Re)configurable SystemsM. H. Ter Beek; A. Legay; A. L. Lafuente; A. Vandin2020 This paper presents our approach to the quantitative modeling and analysis of highly (re)configurable systems, such as software product lines. Different combinations of the optional features of such a system give rise to combinatorially many individual system variants. We use a formal modeling language that allows us to model systems with probabilistic behavior, possibly subject to quantitative feature constraints, and able to dynamically install, remove or replace features. More precisely, our models are defined in the probabilistic feature-oriented language QFLan, a rich domain specific language (DSL) for systems with variability defined in terms of features. QFLan specifications are automatically encoded in terms of a process algebra whose operational behavior interacts with a store of constraints, and hence allows to separate system configuration from system behavior. The resulting probabilistic configurations and behavior converge seamlessly in a semantics based on discrete-time Markov chains, thus enabling quantitative analysis. Our analysis is based on statistical model checking techniques, which allow us to scale to larger models with respect to precise probabilistic analysis techniques. The analyses we can conduct range from the likelihood of specific behavior to the expected average cost, in terms of feature attributes, of specific system variants. Our approach is supported by a novel Eclipse-based tool which includes state-of-the-art DSL utilities for QFLan based on the Xtext framework as well as analysis plug-ins to seamlessly run statistical model checking analyses. We provide a number of case studies that have driven and validated the development of our framework.10.1109/TSE.2018.2853726https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8405597Software product lines;probabilistic modeling;quantitative constraints;statistical model checking;formal methodsIEEE Inglês CE1 Excluído
PMExec: An Execution Engine of Partial UML-RT ModelsM. Bagherzadeh; K. Jahed; N. Kahani; J. Dingel2019 This paper presents PMExec, a tool that supports the execution of partial UML-RT models. To this end, the tool implements the following steps: static analysis, automatic refinement, and input-driven execution. The static analysis that respects the execution semantics of UML-RT models is used to detect problematic model elements, i.e., elements that cause problems during execution due to the partiality. Then, the models are refined automatically using model transformation techniques, which mostly add decision points where missing information can be supplied. Third, the refined models are executed, and when the execution reaches the decision points, input required to continue the execution is obtained either interactively or from a script that captures how to deal with partial elements. We have evaluated PMExec using several use-cases that show that the static analysis, refinement, and application of user input can be carried out with reasonable performance, and that the overhead of approach is manageable. https://youtu.be/BRKsselcMnc Note: Interested readers can refer to [1] for a thorough discussion and evaluation of this work.10.1109/ASE.2019.00131https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952369MDD;Partial Models;Execution;Debugging;Model level debugging;Model executionIEEE Inglês CE1 Excluído
A Noval Method of Security Verification for JTAG Protection FunctionD. Li; W. Shen; Z. Wang 2019 This paper proposed a formal verification method for JTAG security based on information flow tracking. The security property script is used to describe the security requirements. Compared with the traditional writing method of assertions, our method does not need to consider much about the design features, which not only greatly reduces the assertion writing time but also can effectively detect the security violations in the design. Based on the generated information-flow tracking model, the proposed method can generate formal constraints and System Verilog Assertions supported by formal verification tools. Experiment of JTAG security verification proves that the proposed method can effectively verify the security functions related to information flow such as access control.10.1109/QRS-C.2019.00093https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859411JTAG security;security verification;formal verification;information flowIEEE Inglês CE1 Excluído
Research on Business-oriented Smart Grid Asset Information Modeling TechnologyZ. Zhao; D. Li; J. She; L. Zhao; K. Wang2019 This paper proposes a smart grid asset information modeling language based on domain-specific modeling method, which is used to describe the data specification of smart grid asset account, and is easy for experts in the field of asset management to understand and use. In order to meet the requirements of asset life cycle management, asset objects are described from three dimensions: functional location, product and spatial location, which have the characteristics of flexibility and wide applicability. A meta-model of asset information modeling language is proposed and a modeling tool is implemented. It can be used to model and edit asset account specifications for business personnel. It can be divided into asset classification model, structural model and parameter model. The validity of the proposed modeling language is proved by the case study and large-scale application.10.1109/CIEEC47146.2019.CIEEC-2019473https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9077081smart grid;domain specific language;asset information modeling language;meta-modelIEEE Inglês CE1 Excluído
Towards an Agile Concern-Driven Development ProcessO. Alam 2019 This paper proposes an Agile Concern-Driven Development (Agile CDD) process, a software development process that uses concerns as its primary artifact and applies agile practices. Whereas classical Model-Driven Engineering (MDE) methodologies focus on models that are built from scratch with little support for reuse, Agile CDD is a reuse-focused development process in which an application is built incrementally by repeatedly reusing other existing concerns. In Agile CDD, a modeler would use a modelling language that is appropriate for the current development phase and for the problem domain. Model transformations would then be applied to produce the initial set of models for the next phase. The process will continue until an execute model is produced. In each phase, the modeller should consult a repository of reusable concerns to identify and reuse concerns. Changing requirements are welcome and incomplete implementations are moved to the next iteration by delaying design decisions.10.1109/ICSSP.2019.00028https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8812865Agile;Software Process;Software Reuse;Model Driven DevelopmentIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9144537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9693054
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9214255
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9486697
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836895
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8895949
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9649736
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8667967
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643467
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8611078
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9369549
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9538430
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9864552
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582525
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833646
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9447336
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9393888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8958650
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402530
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9653148
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813373
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9099634
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582299
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9127353
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904775
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8959196
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9816856
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9632568
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9962384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9552591
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8714967
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904517
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8974672
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505095
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8926459
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904603
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9161781
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9344072
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8405597
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952369
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859411
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9077081
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8812865

A Hybrid Formal Verification System in Coq for Ensuring the Reliability and Security of Ethereum-Based Service Smart ContractsZ. Yang; H. Lei; W. Qian 2020 This paper reports a formal symbolic process virtual machine (FSPVM) denoted as FSPVM-E for verifying the reliability and security of Ethereum-based services at the source code level of smart contracts. A Coq proof assistant is employed for programming the system and for proving its correctness. The current version of FSPVM-E adopts execution-verification isomorphism, which is an application extension of Curry-Howard isomorphism, as its fundamental theoretical framework to combine symbolic execution and higher-order logic theorem proving. The four primary components of FSPVM-E include a general, extensible, and reusable formal memory framework, an extensible and universal formal intermediate programming language denoted as Lolisa, which is a large subset of the Solidity programming language using generalized algebraic datatypes, the corresponding formally verified interpreter of Lolisa, denoted as FEther, and assistant tools and libraries. The self-correctness of all components is certified in Coq. FSPVM-E supports the ERC20 token standard, and can automatically and symbolically execute Ethereum-based smart contracts, scan their standard vulnerabilities, and verify their reliability and security properties with Hoare-style logic in Coq.10.1109/ACCESS.2020.2969437https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8970279Blockchain;theorem proving;distributed systems;security;verificationIEEE Inglês CE1 Excluído
RTL to GDSII of Harvard Structure RISC ProcessorH. V. Ravish Aradhya; G. Kanase; V. Y2021 This paper speaks about design of RISC processor and its implementation from RTL to GDSII. Verification of RISC processor Harvard structure is carried using Verilog (RTL file) and test bench for that Verilog file. Cadence NC Launch tool is used for simulation of code. Later verified Verilog file along with. sdc and .lib files, gate level net list was generated from cadence Genus tool. Till this part of gate level net list generations front end part of design will be carried out. Output of Genus tool are verified gate level net list file and. sdc constraints file. Pre-layout simulation results for power, area and timing are carried out. In backend design, cadence Innovus tool was used for floor planning, power planning and routing. Here also post layout simulations carried for power, timing and area. All these processes are carried out using 180nm technology cadence tool. The physical implementation of Harvard Structure RISC Processor is successfully implemented on Cadence Innovus tool. After carrying out pre-clock tree synthesis, post clock tree synthesis and post routing of circuit, one has obtained optimized results for timing 9.236ps, power 0.53155682W and area 17067.7584µm2.10.1109/CONECCT52877.2021.9622735https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622735RTL;Harvard Structure;GDSII;MIPS;RISC;Clock Tree Synthesis;Placement;Routing;Physical DesignIEEE Inglês CE1 Excluído
Addressing the IEEE AV Test Challenge with Scenic and VerifAIK. Viswanadha; F. Indaheng; J. Wong; E. Kim; E. Kalvan; Y. Pant; D. J. Fremont; S. A. Seshia2021 This paper summarizes our formal approach to testing autonomous vehicles (AVs) in simulation for the IEEE AV Test Challenge. We demonstrate a systematic testing framework leveraging our previous work on formally-driven simulation for intelligent cyber-physical systems. First, to model and generate interactive scenarios involving multiple agents, we used Scenic, a probabilistic programming language for specifying scenarios. A Scenic program defines an abstract scenario as a distribution over configurations of physical objects and their behaviors over time. Sampling from an abstract scenario yields many different concrete scenarios which can be run as test cases for the AV. Starting from a Scenic program encoding an abstract driving scenario, we can use the Verifai toolkit to search within the scenario for failure cases with respect to multiple AV evaluation metrics. We demonstrate the effectiveness of our testing framework by identifying concrete failure scenarios for an open-source autopilot, Apollo, starting from a variety of realistic traffic scenarios.10.1109/AITEST52744.2021.00034https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9564360- IEEE Inglês CE1 Excluído
Formal Notations of Linguistic Analysis for Monetary PolicyA. S. Sohail; M. Sameen; Q. Ahmed2019 This study proposes mathematical tools derived from topology and category theory along with computational linguistics which can be used to analyze the linguistics of the monetary policy statements and quantify its tone.10.1109/ICGHIT.2019.00035https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8866964Topology, Category theory, Computational linguisticsIEEE Inglês CE1 Excluído
Symbolic Testing for C and RustA. Tomb; S. Pernsteiner; M. Dodds2020 This tutorial will provide an introduction to Crux, Galois' new open source symbolic testing tool. Traditional testing examines only a small set of test vectors, meaning that the assurance it provides is inherently limited. In symbolic testing, we replace concrete inputs by symbolic variables, and then exhaustively validate the test for all possible input values. Symbolic testing is a type of formal verification, but the close connection to traditional testing makes it much easier to deploy than other approaches. A single symbolic test can efficiently cover billions of possible inputs or more, but an existing test suite can often be made symbolic by trivial code changes.10.1109/SecDev45635.2020.00021https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9230067verification;testing;software quality assuranceIEEE Inglês CE1 Excluído
Intelligent System for Communicating with Special Aircraft PassengersE. I. Chekmareva; I. S. Sineva; O. A. Slatina2022 This work deals with the development of translating text into sign language for communication with passengers with impaired hearing perception onboard an aircraft or vessel. A review of existing research is presented, usually aimed at establishing correspondence between different speech formats in specific languages. The analysis of the existing systems of sign language translation is carried out, their advantages and disadvantages are determined. A mathematical model is presented that describes the process of translating text into sign language, invariant with respect to the language used. The technical requirements for the system of such a translation are formulated, the optimal implementation tools are described, and the corresponding semantic analysis is carried out based on the previously presented mathematical model.10.1109/IEEECONF53456.2022.9744373https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744373sign language;computer sign language interpretation;natural language processing;mathematical model of speech translation;semantic analysisIEEE Inglês CE1 Excluído
Distributed Maintenance of a Spanning Tree of k-Connected GraphsB. Hamid; Q. Rouland; J. Jaskolka2019 This work is devoted to the problem of spanning trees maintenance in the presence of crash failures in a distributed environment using only local knowledge. Using a pre-constructed spanning tree of a k-connected graph, we present a protocol to maintain a spanning tree in the presence of k-1 consecutive failures. The contribution of this paper is threefold. First, the problem is formalized as an occurrence of Menger's theorem in a distributed setting. The second result shows an implementation of the protocol which is composed of a set of modules encoded using a graph relabeling systems model. The last contribution is the implementation of this protocol in the asynchronous message passing model. For a given graph G =(V,E), where M is the number of its edges, N is the number of its nodes, and Δ is its degree; After each failure occurrence, our algorithms need the following requirements: The first one uses O(Δ × N) steps and O(Δ) bits per node. The second one uses O(N+M) messages and O(N) time and O(Δ) bits per node. In addition, we investigate the possible specification and verification of the presented algorithm using Alloy as a tooled formal language.10.1109/PRDC47002.2019.00052https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952145Distributed computing, failure detectors, fault tolerance, graph relabeling systems, local computations, maintenance, spanning tree, vertex connectivity.IEEE Inglês CE1 Excluído
A Methodology for Validation of a Distributed Cloud Reservation ModelJ. C. Conti; E. L. Ursini; P. S. Martins2019 This work presents a methodology for planning and validation of cloud-based distributed systems, considering a number of bottlenecks. The proposed methodology considers the computational model, the data traffic model, the analytical model, and the simulation model. The validated model is specialized to process an online reservation system. The goal is to analyze the performance of three bottlenecks considering critical resources such as a server, disk-file and disk-channel system. Specifically, we aim to use validation to further determine processor utilization and message delay. The proposed model and simulation tool may be used not only to plan and dimensioning of the system but also to guide the management of the distributed system in critical situations that can be anticipated. The general results are important to the validation of such systems. They showed that the effective verification and validation may be relevant to the adequate resource usage of the system.10.1109/IEMCON.2019.8936254https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936254Distributed Reservation System;Performance Evaluation;Bottleneck Analysis;Cloud Computing;Simulation ModelIEEE Inglês CE1 Excluído
Tooling for automated testing of cyber-physical system modelsT. Broenink; B. Jansen; J. Broenink2020 This work presents a tool for automatic testing of cyber-physical systems via simulation. Cyber-physical system design can benefit from this automated testing as it allows for system-level requirements and prevents regression of the design. The tool is based on three parts: A testing language, a simulator controller, and a post processor. The testing language is a domain-specific language based on a Gherkin style syntax and can define test for multiple models and simulators. The domain specific language also defines algebraic, logical, and linear temporal logic transformations for outputs to define testing conditions. The tool can perform different sub-sets of tests based on a graphical or command line interface. The tool is demonstrated using an example where a motor is selected for a winch system. Here it is shown that the tool can verify component- and system-level requirements, and can detect regression. The tool is basis for a method supporting the design of cyber-physical systems.10.1109/ICPS48405.2020.9274794https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9274794- IEEE Inglês CE1 Excluído
Extending the CST: The Distributed Cognitive ToolkitW. Gibaut; R. Gudwin 2020 This work presents the first steps towards the development of a toolkit for aiding in the construction of Distributed Cognitive Systems, designed within the spirit of the System of Systems (SoS) paradigm. The Toolkit is language agnostic and general enough to be used in building problem-specific Cognitive Systems that can spread across several physical or virtual devices such as low-power computers, microcontrollers, and virtual containers. The Toolkit is conceived targeting to be suitable for IoT and Smart City applications.10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00088https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9291619Cognitive Systems;Artificial Intelligence;Distributed Systems;Internet of ThingsIEEE Inglês CE1 Excluído
Generating ROS-based Software for Industrial Cyber-Physical Systems from UML/MARTEM. A. Wehrmeister 2020 This work proposes an approach to generate automatically the embedded software for distributed Cyber-Physical Systems implemented using the Robotic Operating System (ROS) framework. For that, the Aspect-oriented Model Driven Engineering for Real-Time systems (AMoDE-RT) design approach has been extended in order to support the C++ code generation using the semantics and libraries available in ROS framework which is widely used in both academia and industry to implement the embedded software for robotic systems. The system architecture, behavior, requirements and constraints are specified in a UML/MARTE model. The information specified in the high-level model is used as input for a tool that generates a great part of the embedded software for all distributed computing devices. The main goal is to foster the use of Model-Driven Engineering in the context of cyber-physical systems design aiming the rapid prototyping via simulation and also the generation of the actual implementation of the system components. The proposed approach has been validated through a case study that demonstrates the feasibility to implement a ROS/C++ software for industrial systems. The results indicate that the proposed approach can be applied to complex systems comprising a larger number of interacting devices, whereas keeping the high-level of abstraction for system specification in UML/MARTE models.10.1109/ETFA46521.2020.9212077https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9212077Model-Driven Engineering;embedded software;code generation;UML;MARTE;Robot Operating SystemIEEE Inglês CE1 Excluído
Improved Bounded Model Checking of Timed AutomataR. L. Smith; M. M. Bersani; M. Rossi; P. S. Pietro2021 Timed Automata (TA) are a very popular modeling formalism for systems with time-sensitive properties. A common task is to verify if a network of TA satisfies a given property, usually expressed in Linear Temporal Logic (LTL), or in a subset of Timed Computation Tree Logic (TCTL). In this paper, we build upon the TACK bounded model checker for TA, which supports a signal-based semantics of TA and the richer Metric Interval Temporal Logic (MITL). TACK encodes both the TA network and property into a variant of LTL, Constraint LTL over clocks (CLTLoc). The produced CLTLoc formula can then be solved by tools such as Zot, which transforms CLTLoc properties into the input logics of Satisfiability Modulo Theories (SMT) solvers. We present a novel method that preserves TACK's encoding of MITL properties while encoding the TA network directly into the SMT solver language, making use of both the BitVector logic and the logic of real arithmetics. We also introduce several optimizations that allow us to significantly outperform the CLTLoc encoding in many practical scenarios.10.1109/FormaliSE52586.2021.00016https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9460955Formal Verification;Timed Automata;Bounded Model CheckingIEEE Inglês CE1 Excluído
Guaranteeing Sound Reactions to Long-Tailed Changes: A Syntax-Directed Annotation ApproachH. Cao; X. Chen; L. Zhang; T. Zhang; X. Xiao2020 To cope with the long-tailed changes, an annotation-based BPM approach has been proposed to adapts its behavior in a timely manner. It patches existing business process models rather than rebuilds models from scratch, which saves efforts and reacts to unforeseen changes quickly. However, the original annotation-based approach is at risk of improper annotations added that results in unexpected effects or leads to failure. To remedy this loophole, this paper proposes a syntax-directed annotation approach to guarantee sound reactions. we develop a scheme for designing domain specific languages based on abstract syntax trees and generating a syntax-directed editor automatically. As a result, all patched annotations on the process models are soundness guaranteed in terms of the domain specific language. Case studies demonstrate that proposed approach and tools can help domain experts to tackle long-tailed changes more easily guarantee the correct reactions.10.1109/ICSS50103.2020.00033https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283690Long-tailed Changes;Business Process Management;Syntax-Directed Editor Generator;Abstract Grammar TreeIEEE Inglês CE1 Excluído
Generic Navigation of Model-Based Development ArtefactsH. Ali; G. Mussbacher; J. Kienzle2019 To describe the characteristics of complex software systems, model-driven engineering (MDE) advocates the use of different modeling languages and multiple views. These models are typically organized in a nested structure or grouped according to some criteria. A modeller needs to navigate this structure to understand and modify the system under development. This paper introduces a navigation bar that visually indicates to the modeller the place of a model in that structure. Furthermore, a generic navigation mechanism facilitates navigation within a model and from one model to other linked models potentially expressed in a different language. We present a navigation metamodel that a language designer can use to enhance a modelling language at the metamodel level with our generic navigation capabilities.10.1109/MiSE.2019.00013https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877031navigation bar;metamodel;multi-view modelling;model-driven engineeringIEEE Inglês CE1 Excluído
An Evolutionary Tool For Requirements and Design Crosscutting ConcernsJ. Jasmis; A. A. Aziz; S. Jamel Elias; M. N. Hajar Hasrol Jono; R. Abd Razak; S. Mansor2019 To elevate a simple but important fashion to tolerate rapid changes in cross-cutting concerns in the requirements and design phases in multiple sizes of software development and maintenance tasks, Identification, Modularization, Design Composition Rule and Conflict Dissolution (IM-DeCRuD) approach was previously offered. This study delivered a tailored-design, prototype and constructed tool as a proof of concept of the proposed approach to IM-DeCRuD. The main attributes of the IMDeCRUD prototype are: requirements specification definition, requirements specification modification, requirements prioritization setting and graphics visualization of the representation generated using the Generic Modeling Environment (GME) tool. Java language was used as an interpreter to integrate the prototype functions. This research applied a library system as a simple case study to determine the importance of the IM-DeCRuD prototype. Ultimately, during the software development and evaluation activities, the prototype showed its ability for the tedious engineering process of requirements and design crosscutting concerns becoming more simpler.10.1109/ICRAIE47735.2019.9037754https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9037754Identification;Modularization;Design Composition Rule and Conflict Dissolution (IM-DeCRuD); software design; Generic Modelling Environment (GME)IEEE Inglês CE1 Excluído
A Survey on Systems Engineering Methodologies for Large Multi-Energy Cyber-Physical SystemsE. Azzouzi; A. Jardin; D. Bouskela; F. Mhenni; J. -Y. Choley2019 Today's large distributed energy cyber-physical systems such as power networks with multiple production units are becoming more and more complex due to the increasing share of renewables. They are characterized by long-lived lifecycles that can even be eternal such as electric grids where design and operational phases can overlap. These systems exhibit dynamic configurations and involve several interacting disciplines and manifold stakeholders that can, at any time, take part in the system or leave it. A pressing need has emerged for means to test a large number of scenarios all along the system design, operation and maintenance phases. Doing so requires the ability to model the system behavior and perform simulation on each of its facets using accurate tools for the purpose of automated testing, verification and validation. Existing industrial engineering design practices are becoming obsolete and do not have the means to follow the growing complexity of such multi-disciplinary and multi-stakeholder systems. For this matter, we have explored systems engineering (SE) practices among research communities and tool editors. Design methodologies found in literature are generally based on the functional breakdown of requirements and use general modeling languages for representing the system behavior. They are limited to finite state machines representation with a wide gap regarding the physical aspects that are neglected or at best developed in a separate corner. A survey on existing engineering methodologies is presented in this work. The main common missing aspects of these practices are identified and emphasized. A focus on formal approaches for system design and especially for automatic verification and validation processes is also introduced. Finally, an outlook of the main concepts that we chose to focus on in future works concerning the engineering of multi-energy systems is presented in this paper.10.1109/SYSCON.2019.8836741https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836741- IEEE Inglês CE1 Excluído
Trace-based Timing Analysis of Automotive Software Systems: an Experience ReportA. Bucaioni; E. Ferko; H. Lönn 2021 Trace-based timing analysis is a technique, which assesses the software timing requirements against the timing information contained in so-called traces, which are files collected from simulation tools or by running the actual systems. In this experience report, we describe our joint effort with Volvo Group Trucks Technology in designing and developing a round-trip, model-based framework for the trace-based timing analysis of automotive software. To validate the proposed framework, we use a mix of observational and descriptive methods. In particular, we validate the correctness and feasibility of the proposed approach using the Washer Wiper automotive functionality. Eventually, we discuss lessons learnt, the benefits and limitations of the proposed framework.10.1109/MODELS-C53483.2021.00046https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643829model-based software engineering;automotive software;model-based timing verification;trace analysisIEEE Inglês CE1 Excluído
Improving Traceability Link Recovery Using Fine-grained Requirements-to-Code RelationsT. Hey; F. Chen; S. Weigelt; W. F. Tichy2021 Traceability information is a fundamental prerequisite for many essential software maintenance and evolution tasks, such as change impact and software reusability analyses. However, manually generating traceability information is costly and error-prone. Therefore, researchers have developed automated approaches that utilize textual similarities between artifacts to establish trace links. These approaches tend to achieve low precision at reasonable recall levels, as they are not able to bridge the semantic gap between high-level natural language requirements and code. We propose to overcome this limitation by leveraging fine-grained, method and sentence level, similarities between the artifacts for traceability link recovery. Our approach uses word embeddings and a Word Mover's Distance-based similarity to bridge the semantic gap. The fine-grained similarities are aggregated according to the artifacts structure and participate in a majority vote to retrieve coarse-grained, requirement-to-class, trace links. In a comprehensive empirical evaluation, we show that our approach is able to outperform state-of-the-art unsupervised traceability link recovery approaches. Additionally, we illustrate the benefits of fine-grained structural analyses to word embedding-based trace link generation.10.1109/ICSME52107.2021.00008https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9609109Traceability;Traceability Link Recovery;Requirements Engineering;Word Embeddings;Natural Language Processing;Word Movers DistanceIEEE Inglês CE1 Excluído
Tricera: Verifying C Programs Using the Theory of HeapsZ. Esen; P. Rümmer 2022 TRICERA is an automated, open-source verification tool for C programs based on the concept of Constrained Horn Clauses (CHCs). In order to handle programs operating on heap, Tricera applies a novel theory of heaps, which enables the tool to hand off most of the required heap reasoning directly to the underlying CHC solver. This leads to a cleaner interface between the language-specific verification front-end and the language-independent CHC back-end, and enables verification tools for different programming languages to share a common heap back-end. The paper introduces Tricera, gives an overview of the theory of heaps, and presents preliminary experimental results using SV-COMP benchmarks.10.34727/2022/isbn.978-3-85448-053-2_45https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026586- IEEE Inglês CE1 Excluído
Verifying Deadlock and Nondeterminism in Activity DiagramsL. Lima; A. Tavares 2019 UML Activity diagrams are flowcharts that can be used to model behaviors, even concurrent ones, which makes them adequate for describing complex dynamics. Although the UML community noticeably adopts them, there is no standard approach to verify properties like the absence of deadlock and nondeterminism. The latter is usually neglected by tools even though it may be considered relevant in complex architectures like cloud computing and real-time systems. In this paper, we present a tool-chain that is supported by formal reasoning tools and formal semantics for activity diagrams to verify deadlock freedom and nondeterminism. This tool is part of a UML modeling environment, and it provides complete traceability to the UML models. Therefore, the user does not need to understand or manipulate formal notations in any part of the process. During the modeling of an activity diagram, the user can perform the analysis and have a result in the diagrammatic level. We discuss some case studies and future applications due to the potential of our approach. Therefore, our major contribution is a framework for reasoning about deadlock and nondeterminism in activity diagrams, requiring no knowledge of the underlying formal semantics.10.1109/MODELS-C.2019.00119https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904590activity diagram;verification;nondeterminism;deadlockIEEE Inglês CE1 Excluído
Exploring a Comprehensive Approach for the Automated Assessment of UMLH. Cheers; M. Javed; Y. Lin; S. Smith2019 UML is an important tool in structured software design and is commonly taught in undergraduate software courses. UML defines a complex set of linked notations and mastery requires instruction and examples over many taught courses. Such examples are typically disparate, modelling subsets of distinct systems. Teaching UML benefits from an end-to-end approach where consistency between modelling, design and implementation are equally emphasised and regular feedback is provided. A drawback of this is that assessing learner-derived UML models is a time-intensive and error-prone task if both formative and summative assessment is required. In this paper a novel framework is presented for the automated assessment of UML. The framework allows learners to be provided with automatically generated formative feedback for self-directed learning in the development of UML skills. Emphasis is placed upon the identification of the consistency and coverage of learner diagrams as this is an important skill in the application of UML. By integrating an implementation of this framework, instructor-based UML teaching can be supplemented with an end-to-end tool which allows learners to receive automated formative feedback in their understanding and usage of UML.10.1109/IIAI-AAI.2019.00036https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8992725UML Software Development, Automated, Assessment, Automatic Feedback, Self-LearningIEEE Inglês CE1 Excluído
UML Templates Distilled J. Farinha; A. R. da Silva 2022 UML templates are possibly the most neglected and misused piece of knowledge in UML modelling. This subject has been disregarded in the research and practice literature and even by modelling tools providers. This paper suggests that such oblivion results from a general misunderstanding that UML templates are just graphical representations of genericity like it is found in programming languages, and from the insufficient support from the modelling tools, with a consequence of poor usage of UML templates in practice. Indeed, the capabilities and potential of UML templates are far-reaching. Increasing awareness around them could bring significant benefits for UML users, namely, higher-level abstraction and reuse. Therefore, this paper provides a distilling tutorial on UML templates to highlight their flexibility and advantages. That presentation follows a tutorial style and is supported by several illustrative examples, varying from simpler to more complex ones. This tutorial reviews the Template construct’s core concepts and terminology, presents constraining classifiers and shows how to define properties and operations as template parameters. Then, it presents and discusses advanced aspects such as operation templates, parameter defaults, the relationship between binding and generalization, and the specific semantics of package templates. Furthermore, the paper discusses the related work and uncovers some of the UML templates’ limitations and opportunities for improvement.10.1109/ACCESS.2022.3143898https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9684375Object-oriented modelling;genericity;UML;templates;UML templatesIEEE Inglês CE1 Excluído
On Applying Model Checking in Formal VerificationH. Hjort 2022 Use of Hardware model checking in the EDA industry is widespread and now considered an essential part of verification. While there are many papers, and books, about SAT, SMT and Symbolic model checking, often very little is written about how these methods can be applied. Choices made when modeling systems can have large impacts on applicability and scalability. There is generally no formal semantics defined for the hardware design languages, nor for the intermediate representations in common use. As unsatisfactory as it may be, industry conventions and behaviour exhibited by real hardware have instead been the guides. In this tutorial we will give an overview of some of the steps needed to apply hardware model checking in an EDA tool. We will touch on synthesis, hierarchy flattening, gate lowering, driver resolution, issues with discrete/synchronous time models, feedback loops and environment constraints, input rating and initialisation/reset. Design compilation, also known as elaboration and (quick) synthesis, is used to create a gate netlist from a hardware description language, commonly System Verilog. When done for implementation this often leverages any semantic freedom in order to create a more efficient implementation. In contrast, for verification we prefer to preserve all possible behaviour of any valid implementation choice. Assertions (properties) are normally handled similarly and translated to an automata representation that is then implemented by a gate netlist. The gate netlist is a hierarchical representation of gates and their connections (to wires). Removal of hierarchy can largely be done replicating the logic. Most gate types represent combinatorial functions, these can be kept as is, or lowered to smaller subset of gate functions (such as in And-Inverter graphs). The state holding gates, (Flip-)Flops (edge sensitive) and Latches (level sensitive) require some more care to model their (as)synchronous behaviour. Special care is also needed to model Tri-state gates (and weak drivers), which can either drive a value on their output or hold it isolated. Verilog wire uses a domain with 4-values 0,1,X,Z where Z is high-impedance / not-driving. Resolving the drivers means replacing the gates that drive a common wire with a model for the resolved logic value (and possibly checks for invalid/bad combinations). It is common to have configurations, modes of operation and/or parts that should not be validated. Forcing some inputs to a fixed value is referred to as environment constraints. Mode complex constraints are instead normally considered part of the verification setup and handled as SV assumptions. The fixed values can be propagated into the gates to remove parts that become constant or disconnected. For power and performance reasons it is common that designs are multi-clocked, or that clocks are gated (can be turned off and on). To have a global synchronous model for verification we need to reduce these multi-clock systems to a single global system (or tool) clock. This is often handled by mux-feedback added to the flops/latches along with logic generating the condition for the muxes. Inputs to the netlist may also have constraints at which rate/phase they can change. Rated inputs are free to take any value but only at certain points, clock generators follow a periodic pattern. The use of a zero-delay timing model, meaning combinatorial gate output the function of their inputs without any delay, can give rise to problems when there are feedback loops in the netlist. Causing contradictions when a net would have two (or more) values, had there some delay in propagating the values through gates. There are 5 kinds of loops we can occur, through flops (data and clock), through latches (data and enable) and those only going through combinatorial gates. The ones going through flop data are benign, as its effect is mediated by the clock. The others need to be ruled out, or handled by modeling. Introducing some (fractional-)delay/steps seems an attractive approach, but establishing a bound on the number steps needed is challenging (and for some, no bound exists). Initialisation, also referred to as reset, is commonly done by applying sequence of values to a subset of inputs. This aims to get the design from an arbitrary unknown state into a set of states from which it will have predictable behaviour. Part of the design flops might have asynchronous reset, others can receive values on the data input from other flops and inputs, yet others might be left uninitialised. Automating the computation of an (over-)approximation of the reset states will provide more information to the constructed model checking problem.10.34727/2022/isbn.978-3-85448-053-2_3https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026592- IEEE Inglês CE1 Excluído
Evolution from Modeling by Means of Function Block Diagrams to Domain-specific Modeling in AutomationV. Djukić 2020 Using domain-specific modeling tools for conceptual modeling in automation can significantly improve not only quality and productivity in the development and maintenance of software, but can also influence the expected functional features related to applied electronics and mechanics. When specifying control logic in contemporary automation, engineers predominantly use general-purpose languages, like PLC code function block diagrams. The levels of abstraction and representation of the real environment and operations performed by various devices are generally low. Therefore, it is difficult to satisfy requirements and expectations of users, domain experts and software engineers and present complete control logic using a single language understandable to every one of them. This paper describes one way of evolving from the use of general-purpose to the use of domain-specific languages, which offers some practical benefits. The evolutionary path is illustrated by examples from the automotive. Special attention is paid to automated refinement of modeling languages and full application of the “model execution” paradigm to model views. The automated language refinement is achieved by means of modifiers and action reports, as an extension to code generator languages.10.1109/INISTA49547.2020.9194670https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9194670Domain-specific Modeling;Meta-modeling;Programmable logic controller (PLC);IEC 61131-3;Automated language refinementIEEE Inglês CE1 Excluído
Optimizing for Recall in Automatic Requirements Classification: An Empirical StudyJ. P. Winkler; J. Grönberg; A. Vogelsang2019 Using Machine Learning to solve requirements engineering problems can be a tricky task. Even though certain algorithms have exceptional performance, their recall is usually below 100%. One key aspect in the implementation of machine learning tools is the balance between recall and precision. Tools that do not find all correct answers may be considered useless. However, some tasks are very complicated and even requirements engineers struggle to solve them perfectly. If a tool achieves performance comparable to a trained engineer while reducing her workload considerably, it is considered to be useful. One such task is the classification of specification content elements into requirements and non-requirements. In this paper, we analyze this specific requirements classification problem and assess the importance of recall by performing an empirical study. We compared two groups of students who performed this task with and without tool support, respectively. We use the results to compute an estimate of β for the Fβ score, allowing us to choose the optimal balance between precision and recall. Furthermore, we use the results to assess the practical time savings realized by the approach. By using the tool, users may not be able to find all defects in a document, however, they will be able to find close to all of them in a fraction of the time necessary. This demonstrates the practical usefulness of our approach and machine learning tools in general.10.1109/RE.2019.00016https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920507Empirical-research;controlled-experiment;machine-learning;automationIEEE Inglês CE1 Excluído
SugarC: Scalable Desugaring of Real-World Preprocessor Usage into Pure CZ. Patterson; Z. Zhang; B. Pappas; S. Wei; P. Gazzillo2022 Variability-aware analysis is critical for ensuring the quality of con-figurable C software. An important step toward the development of variability-aware analysis at scale is to transform real-world C soft-ware that uses both C and preprocessor into pure C code, by replacing the preprocessor's compile-time variability with C's runtime-variability. In this work, we design and implement a desugaring tool, SugarC, that transforms away real-world preprocessor usage. SugarC augments C's formal grammar specification with translation rules, performs simultaneous type checking during de sugaring, and introduces numerous optimizations to address challenges that appear in real-world preprocessor usage. The experiments on DesugarBench, a benchmark consisting of 108 manually-created programs, show that SugarC supports many more language features than two existing desugaring tools. When applied on three real-world configurable C software, SugarC desugared 774 out of 813 files in the three programs, taking at most ten minutes in the worst case and less than two minutes for 95% of the C files.10.1145/3510003.3512763https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793944C preprocessor;syntax-directed translation;desugaringIEEE Inglês CE1 Excluído
Is Eve nearby? Analysing protocols under the distant-attacker assumptionR. Gil-Pons; R. Horne; S. Mauw; A. Tiu; R. Trujillo-Rasua2022 Various modern protocols tailored to emerging wire-less networks, such as body area networks, rely on the proximity and honesty of devices within the network to achieve their security goals. However, there does not exist a security framework that supports the formal analysis of such protocols, leaving the door open to unexpected flaws. In this article we introduce such a security framework, show how it can be implemented in the protocol verification tool Tamarin, and use it to find previously unknown vulnerabilities on two recent key exchange protocols.10.1109/CSF54842.2022.9919655https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919655security protocols;formal verification;key exchange;distance bounding;distant attackerIEEE Inglês CE1 Excluído
Verification of Mixed Signal IPsS. Naik; U. Raddy 2019 Verification is the most critical step in manufacture of any design. Most of the time and resources are wasted during this. In spite of spending maximum amount of time in verifying sometimes, bugs escape during pre-silicon stage. These bugs need to be removed in post-silicon stage which is very expensive and time consuming. Lack of observability is also an issue in post-silicon because of restricted access to the internal signals. This paper proposes a method in which an extra debug tool is added which facilitates observation of signal behavior on the silicon as well and fix the errors. VCS and DVE are the software tools by Synopsys used to implement the design. Overview of verification of Mixed signal IP' s using System Verilog and Open Verification Methodology (OVM) is also described. This method helps in detecting bugs at early stages of silicon thereby reducing cost and resources and also in reducing simulation run time.10.1109/RTEICT46194.2019.9016387https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9016387Verification;Pre-silicon verification;Mixed signal IP’ s;System Verilog;OVMIEEE Inglês CE1 Excluído
Assertion-Based Verification through Binary InstrumentationE. Brignon; L. Pierre 2019 Verifying the correctness and the reliability of C or C++ embedded software is a crucial issue. To alleviate this verification process, we advocate runtime assertion-based verification of formal properties. Such logic and temporal properties can be specified using the IEEE standard PSL (Property Specification Language) and automatically translated into software assertion checkers. A major issue is the instrumentation of the embedded program so that those assertion checkers will be triggered upon specific events during execution. This paper presents an automatic instrumentation solution for object files, which enables such an event-driven property evaluation. It also reports experimental results for different kinds of applications and properties.10.23919/DATE.2019.8715117https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715117- IEEE Inglês CE1 Excluído
Verifying the Conformance of a Driver Implementation to the VirtIO SpecificationM. Vara Larsen 2021 VirtIO is a specification that enables developers to base on a common interface to implement devices and drivers for virtual environments. This paper proposes the verification and analysis of the VirtIO specification by using the Clock Constraint Specification Language (CCSL) [1]. In our proof-of-concept approach, a verification engineer translates requirements into a CCSL specification. Then, the tool TimeSquare [2] is used to detect inconsistencies with a implementation but also to understand what the specification enables. This paper aims to present the approach and to have face-to-face discussions and debate about the benefits, drawbacks and trade-offs.10.23919/DATE51398.2021.9474210https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474210kernel;virtio;conformance;verification;formalIEEE Inglês CE1 Excluído
A Coq proof of the correctness of X25519 in TweetNaClP. Schwabe; B. Viguier; T. Weerwag; F. Wiedijk2021 We formally prove that the C implementation of the X25519 key-exchange protocol in the TweetNaCl library is correct. We prove both that it correctly implements the protocol from Bernstein's 2006 paper, as standardized in RFC 7748, as well as the absence of undefined behavior like arithmetic overflows and array out-of-bounds errors. We also formally prove, based on the work of Bartzia and Strub, that X25519 is mathematically correct, i.e., that it correctly computes scalar multiplication on the elliptic curve Curve25519. The proofs are all computer-verified using the Coq theorem prover. To establish the link between C and Coq we use the Verified Software Toolchain (VST).10.1109/CSF51468.2021.00023https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505238Formal-Verification;x22519;Coq;Secure-implementations;ProofsIEEE Inglês CE1 Excluído
APPEL - AGILA ProPErty and Dependency Description LanguageC. Grimm; F. Wawrzik; A. L. -F. Jung; K. Luebeck; S. Post; J. Koch; O. Bringmann2021 We give an overview of the language APPEL, the “AGILA Property and Dependency Description Language”. It is part of the cloud-based tool AGILA that supports agile development methods. The language allows us to structure and document the knowledge about system-wide dependencies in a formal, textual form. APPEL models can be uploaded to the cloud, where they are used as a knowledge-base for continuous verification and validation, from early specification to run-time verification. We describe syntax, semantics, and demonstrate its application for predicting the performance of hardware/software systems in the context of the GENIAL! project.- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9399724- IEEE Inglês CE1 Excluído
Mathematical Programming Modulo StringsA. Kumar; P. Manolios 2021 We introduce TranSeq, a non-deterministic, branching transition system for deciding the satisfiability of conjunctions of string equations. TranSeq is an extension of the Mathematical Programming Modulo Theories (MPMT) constraint solving framework and is designed to enable useful and computationally efficient inferences that reduce the search space, that encode certain string constraints and theory lemmas as integer linear constraints and that otherwise split problems into simpler cases, via branching. We have implemented a prototype, SeqSolve, in ACL2s, which uses Z3 as a back-end solver. String solvers have numerous applications, including in security, software engineering, programming languages and verification. We evaluated SeqSolve by comparing it with existing tools on a set of benchmark problems and our experimental results show that SeqSolve is both practical and efficient.10.34727/2021/isbn.978-3-85448-046-4_36https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617664- IEEE Inglês CE1 Excluído
Observation-Enhanced QoS Analysis of Component-Based SystemsC. Paterson; R. Calinescu 2020 We present a new method for the accurate analysis of the quality-of-service (QoS) properties of component-based systems. Our method takes as input a QoS property of interest and a high-level continuous-time Markov chain (CTMC) model of the analysed system, and refines this CTMC based on observations of the execution times of the system components. The refined CTMC can then be analysed with existing probabilistic model checkers to accurately predict the value of the QoS property. The paper describes the theoretical foundation underlying this model refinement, the tool we developed to automate it, and two case studies that apply our QoS analysis method to a service-based system implemented using public web services and to an IT support system at a large university, respectively. Our experiments show that traditional CTMC-based QoS analysis can produce highly inaccurate results and may lead to invalid engineering and business decisions. In contrast, our new method reduced QoS analysis errors by 84.4-89.6 percent for the service-based system and by 94.7-97 percent for the IT support system, significantly lowering the risk of such invalid decisions.10.1109/TSE.2018.2864159https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8428471Quality of service;component-based systems;Markov models;probabilistic model checkingIEEE Inglês CE1 Excluído
Plain and Simple Inductive Invariant Inference for Distributed Protocols in TLA+W. Schultz; I. Dardik; S. Tripakis2022 We present a new technique for automatically inferring inductive invariants of parameterized distributed protocols specified in TLA+. Ours is the first such invariant inference technique to work directly on TLA+, an expressive, high level specification language. To achieve this, we present a new algorithm for invariant inference that is based around a core procedure for generating plain, potentially non-inductive lemma invariants that are used as candidate conjuncts of an overall inductive invariant. We couple this with a greedy lemma invariant selection procedure that selects lemmas that eliminate the largest number of counterexamples to induction at each round of our inference procedure. We have implemented our algorithm in a tool, endive, and evaluate it on a diverse set of distributed protocol benchmarks, demonstrating competitive performance and ability to uniquely solve an industrial scale reconfiguration protocol.10.34727/2022/isbn.978-3-85448-053-2_34https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026570- IEEE Inglês CE1 Excluído
RTL Assertion Mining with Automated RTL-to-TLM AbstractionT. Ghasempouri; A. Danese; G. Pravadelli; N. Bombieri; J. Raik2019 We present a three-step flow to improve Assertion-based Verification methodology with integrated RTL-to-TLM abstraction: First, an automatic assertion miner generates a large set of possible assertions from an RTL design. Second, automatic assertion qualification identifies the most interesting assertions from this set. Third, the assertions are abstracted to the transaction level, such that they can be re-used in TLM verification. We show that the proposed flow automatically chooses the best assertions among the ones generated to verify the design components when abstracted from RTL to TLM. Our experimental results indicate that the proposed methodology allows us to re-use the most interesting set at TLM without relying on any time consuming or error-prone manual transformations with a considerable amount of speed up and considerable reduction in the execution time.10.1109/FDL.2019.8876941https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8876941- IEEE Inglês CE1 Excluído
A Proof-Producing Translator for Verilog Development in HOLA. Lööw; M. O. Myreen 2019 We present an automatic proof-producing translator targeting the hardware description language Verilog. The tool takes a circuit represented as a HOL function as input, translates the input function to a Verilog program and automatically proves a correspondence theorem between the input function and the output Verilog program ensuring that the translation is correct. As illustrated in the paper, the generated correspondence theorems furthermore enable transporting circuit reasoning from the HOL level to the Verilog level. We also present a formal semantics for the subset of Verilog targeted by the translator, which we have developed in parallel with the translator. The semantics is based on the official Verilog standard and is, unlike previous formalization efforts, designed to be usable for automated and interactive reasoning without sacrificing a clear correspondence to the standard. To illustrate the translator's applicability, we describe case studies of a simple verified processor and verified regexp matchers and synthesize them for two FPGA boards. The development has been carried out in the HOL4 theorem prover.10.1109/FormaliSE.2019.00020https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8807452interactive theorem proving;hardware verification;verilogIEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8970279
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622735
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9564360
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8866964
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9230067
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744373
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8936254
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9274794
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9291619
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9212077
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9460955
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9283690
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8877031
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9037754
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8836741
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643829
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9609109
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026586
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904590
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8992725
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9684375
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026592
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9194670
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8920507
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793944
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919655
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9016387
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8715117
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9505238
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9399724
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617664
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8428471
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10026570
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8876941
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8807452

TÍTULO AUTORES ANO RESUMO DOI PDF LINK PALAVRAS-CHAVE CARACTERÍSTICAS PRINCIPAIS PRINCIPAIS CONCEITOS MÉTODOS
FONTE DE

BUSCA IDIOMA CRITÉRIOS STATUS
PyFoReL: A Domain-
Specific Language for
Formal Requirements
in Temporal Logic

J. Anderson;
M.
Hekmatnejad;
G. Fainekos

2022

Temporal Logic (TL) bridges the
gap between natural language
and formal reasoning in the field
of complex systems verification.
However, in order to leverage the
expressivity entailed by TL, the
syntax and semantics must first
be understood—a large task in
itself. This significant knowledge
gap leads to several issues: (1)
the likelihood of adopting a TL-
based verification method is
decreased, and (2) the chance of
poorly written and inaccurate
requirements is increased. In this
ongoing work, we present the
Pythonic Formal Requirements
Language (PyFoReL) tool: a
Domain-Specific Language
inspired by the programming
language Python to simplify the
elicitation of TL-based
requirements for engineers and
non-experts.

10.1109
/RE549

65.
2022.00

037

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
920080

domain-specific
language;temporal logic;
formal requirements;
requirements-based
testing

O artigo trata da apresentação de uma
linguagem de domínio específico (Domain-

Specific Language - DSL) para especificação de
requisitos formais em lógica temporal. A DSL é

implementada em Python e utiliza o interpretador
de fórmulas LTL (Linear Temporal Logic) para

verificar a validade dos requisitos especificados.
O objetivo do trabalho é permitir que

engenheiros de sistemas possam especificar
requisitos formais de forma mais fácil e intuitiva,
utilizando uma linguagem de programação que

já é familiar para muitos.

Métodos Formais
Lógica Temporal

Lógica Temporal Linear (LTL)
Lógica de Árvore de Computação (CTL)

Linguagem de programação Python
Biblioteca PyParsing

Árvore de sintaxe abstrata (AST)
Compilador

Engenharia de requisitos

a metodologia
utilizada envolve o
desenvolvimento

de uma linguagem
específica de

domínio (Domain-
Specific Language

- DSL) para
formalização de
requisitos em

lógica temporal. A
linguagem é

implementada
utilizando a

linguagem de
programação

Python e a
biblioteca

PyParsing para
geração de uma
árvore sintática

abstrata (Abstract
Syntax Tree -

AST) a partir dos
requisitos

descritos em
linguagem natural.

A AST é então
compilada em

fórmulas lógicas
em LTL ou CTL,

permitindo a
verificação formal

dos requisitos
através de

ferramentas de
verificação. A
validação da

abordagem é feita
através da

aplicação em um
caso de estudo de

um sistema de
controle de

tráfego aéreo.

IEEE Inglês CI1 e CI4 Incluído
QualiBD: A Tool for
Modelling Quality
Requirements for Big
Data Applications

D. Arruda; N.
H. Madhavji 2019

The development of Big Data
applications is not well-explored,
to our knowledge. Embracing Big
Data in system building,
questions arise as to how to elicit,
specify, analyse, model, and
document Big Data quality
requirements. In our ongoing
research, we explore a
requirements modelling language
for Big Data software
applications. In this paper, we
introduce QualiBD, a modelling
tool that implements the proposed
goal-oriented requirements
language that facilitates the
modelling of Big Data quality
requirements.

10.1109
/BigDat
a47090.
2019.90
06294

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
006294

Big Data Applications;
Quality Requirements;
Big Data Goal-oriented
Requirements
Language;Requirements
Modelling Tool

O artigo apresenta uma ferramenta chamada
QualiBD, que tem como objetivo auxiliar na

modelagem e gerenciamento de requisitos de
qualidade para aplicativos de Big Data. A

ferramenta utiliza uma abordagem baseada em
metamodelagem e fornece suporte para

especificação, validação, análise e
documentação dos requisitos de qualidade de

dados. Além disso, o artigo apresenta um estudo
de caso para demonstrar a utilidade da

ferramenta.

Big Data
Qualidade de software

Requisitos de qualidade
Modelagem de requisitos

Linguagem de modelagem de requisitos
(REDSL)

Metodologia de modelagem de
requisitos

Ferramentas de modelagem de
requisitos

a metodologia
utilizada pode ser

caracterizada
como uma

abordagem de
modelagem e

análise de
requisitos com

base em técnicas
estabelecidas de
engenharia de

software e análise
de dados.

IEEE Inglês CI1 e CI4 Incluído

SAT-Based Arithmetic
Support for Alloy C. Cornejo 2020

Formal specifications in Alloy are
organized around user-defined
data domains, associated with
signatures, with almost no
support for built-in datatypes. This
minimality in the built-in datatypes
provided by the language is one
of its main features, as it
contributes to the automated
analyzability of models. One of
the few built-in datatypes
available in Alloy specifications
are integers, whose SAT-based
treatment allows only for small bit-
widths. In many contexts, where
relational datatypes dominate, the
use of integers may be auxiliary,
e.g., in the use of cardinality
constraints and other features.
However, as the applications of
Alloy are increased, e.g., with the
use of the language and its tool
support as backend engine for
different analysis tasks, the
provision of efficient support for
numerical datatypes becomes a
need. In this work, we present our
current preliminary approach to
providing an efficient, scalable
and user-friendly extension to
Alloy, with arithmetic support for
numerical datatypes. Our
implementation allows for
arithmetic with varying precisions,
and is implemented via standard
Alloy constructions, thus resorting
to SAT solving for resolving
arithmetic constraints in models.

-

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
285654

alloy;sat solving

O artigo aborda a extensão da linguagem Alloy,
que é uma linguagem de modelagem formal

usada para especificar sistemas e verificar sua
consistência. A extensão proposta permite a

modelagem de restrições aritméticas nos
modelos Alloy, o que permite aos usuários
expressar propriedades mais complexas e

realistas em seus modelos.

Alloy
Restrições aritméticas

Resolvedor SAT
Extensão de Alloy

Implementação de referência
Exemplos de uso e estudos de caso

Em resumo, a
metodologia

utilizada no artigo
envolve a

extensão da
linguagem Alloy
para permitir a
modelagem de

restrições
aritméticas e a
utilização de

resolvedores SAT
para lidar com

essas restrições.
A implementação
de referência é

usada para validar
e demonstrar a

eficácia e a
eficiência da
abordagem
proposta.

IEEE Inglês CI1 Incluído

Specification Patterns
for Robotic Missions

C. Menghi; C.
Tsigkanos; P.
Pelliccione; C.
Ghezzi; T.
Berger

2021

Mobile and general-purpose
robots increasingly support
everyday life, requiring
dependable robotics control
software. Creating such software
mainly amounts to implementing
complex behaviors known as
missions. Recognizing this need,
a large number of domain-specific
specification languages has been
proposed. These, in addition to
traditional logical languages,
allow the use of formally specified
missions for synthesis,
verification, simulation or guiding
implementation. For instance, the
logical language LTL is commonly
used by experts to specify
missions as an input for planners,
which synthesize a robot's
required behavior. Unfortunately,
domain-specific languages are
usually tied to specific robot
models, while logical languages
such as LTL are difficult to use by
non-experts. We present a
catalog of 22 mission
specification patterns for mobile
robots, together with tooling for
instantiating, composing, and
compiling the patterns to create
mission specifications. The
patterns provide solutions for
recurrent specification problems;
each pattern details the usage
intent, known uses, relationships
to other patterns, and—most
importantly—a template mission
specification in temporal logic.
Our tooling produces
specifications expressed in the
temporal logics LTL and CTL to
be used by planners, simulators
or model checkers. The patterns
originate from 245 mission
requirements extracted from the
robotics literature, and they are
evaluated upon a total of 441
real-world mission requirements
and 1251 mission specifications.
Five of these reflect scenarios
defined with two well-known
industrial partners developing
human-size robots. We further
validate our patterns’ correctness
with simulators and two different
types of real robots.

10.1109
/TSE.

2019.29
45329

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
859226

Mission specification;
pattern catalog;robotic
mission;model driven
engineering

O objetivo geral do artigo é fornecer um conjunto
de padrões de especificação que facilitem a

modelagem e verificação de sistemas robóticos
que realizam missões complexas, permitindo
que os desenvolvedores criem sistemas mais

confiáveis e seguros.

Sistemas robóticos
Missões robóticas

Especificação formal
Lógica temporal

Padrões de especificação
Verificação formal

Metodologia de especificação

 A abordagem é
baseada em

especificações
formais e lógica
temporal, com

foco em
estabelecer

padrões para
descrever

comportamentos e
restrições

temporais comuns
em missões

robóticas. Além
disso, o artigo

apresenta
exemplos práticos
de aplicação dos

padrões propostos
em sistemas

robóticos reais.

IEEE Inglês CI1 Incluído

Static Profiling of Alloy
Models

E. Eid; N. A.
Day 2023

Modeling of software-intensive
systems using formal declarative
modeling languages offers a
means of managing software
complexity through the use of
abstraction and early identification
of correctness issues by formal
analysis. Alloy is one such
language used for modeling
systems early in the development
process. Little work has been
done to study the styles and
techniques commonly used in
Alloy models. We present the first
static analysis study of Alloy
models. We investigate research
questions that examine a large
corpus of 1,652 Alloy models. To
evaluate these research
questions, we create a
methodology that leverages the
power of ANTLR pattern matching
and the query language XPath.
Our research questions are split
into two categories depending on
their purpose. The Model
Characteristics category aims to
identify what language constructs
are used commonly. Modeling
Practices questions are
considerably more complex and
identify how modelers are using
Alloy's constructs. We also
evaluate our research questions
on a subset of models from our
corpus written by expert
modelers. We compare the
results of the expert corpus to the
results obtained from the general
corpus to gain insight into how
expert modelers use the Alloy
language. We draw conclusions
from the findings of our research
questions and present actionable
items for educators, language and
environment designers, and tool
developers. Actionable items for
educators are intended to
highlight underutilized language
constructs and features, and help
student modelers avoid
discouraged practices. Actionable
items aimed at language
designers present ways to
improve the Alloy language by
adding constructs or removing
unused ones based on trends
identified in our corpus of models.
The actionable items aimed at
environment designers address
features to facilitate model
creation. Actionable items for tool
developers provide suggestions
for back-end optimizations.

10.1109
/TSE.

2022.31
62985

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
744446

Declarative modeling;
Alloy;static analysis

O artigo aborda uma técnica para analisar
modelos escritos na linguagem de especificação
Alloy. Essa técnica utiliza análise estática para
identificar potenciais gargalos de desempenho
no modelo e gera um perfil estático do modelo,
permitindo que os desenvolvedores otimizem o

modelo para melhorar seu desempenho. A
técnica é implementada em uma ferramenta

chamada Alloy Profiler, que é capaz de analisar
modelos Alloy de grande escala.

Alloy
Verificação de Modelo

Perfil Estático
Resolvedor SAT

Métricas de Análise
Métricas de Desempenho

Ametodologia
utilizada é

baseada em
análise estática de

modelos Alloy,
utilizando técnicas
de profiling para

coletar
informações sobre
o modelo e extrair

métricas de
desempenho e
análise. Essas
métricas são

então utilizadas
para avaliar a
qualidade do

modelo e otimizar
a sua

performance. A
análise é

realizada por meio
da utilização de
um SAT solver e
as métricas de

análise e
performance são

coletadas e
avaliadas por

meio da
ferramenta Alloy

Analyzer.

IEEE Inglês CI1 e CI4 Incluído
Towards a Formal
Specification of Multi-
paradigm Modelling

M. Amrani; D.
Blouin; R.
Heinrich; A.
Rensink; H.
Vangheluwe;
A. Wortmann

2019

The notion of a programming
paradigm is used to classify
programming languages and their
accompanying workflows based
on their salient features. Similarly,
the notion of a modelling
paradigm can be used to
characterise the plethora of
modelling approaches used to
engineer complex Cyber-Physical
Systems (CPS). Modelling
paradigms encompass
formalisms, abstractions,
workflows and supporting tool
(chain) s. A precise definition of
this modelling paradigm notion is
lacking however. Such a definition
will increase insight, will allow for
formal reasoning about the
consistency of modelling
frameworks and may serve as the
basis for the construction of new
modelling, simulation, verification,
synthesis, ...environments to
support design of CPS . We
present a formal framework
aimed at capturing the notion of
modelling paradigm, as a first
step towards a comprehensive
formalisation of multi-paradigm
modelling. Our formalisation is
illustrated by CookieCAD, a
simple Computer-Aided Design
paradigm used in the
development of cookie stencils.

10.1109
/MODE
LS-C.

2019.00
067

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
904740

Model Driven
Engineering;Multi
Paradigm;Cyber
Physical Systems;
Formalisation

 o artigo propõe uma linguagem de
especificação formal para modelagem multi-

paradigma que permite a integração de
diferentes paradigmas de modelagem em um
único modelo. A abordagem é baseada em

lógica de primeira ordem e permite a
especificação formal de restrições de integridade
e de comportamento, que podem ser verificadas
automaticamente. Além disso, o artigo apresenta
um estudo de caso para ilustrar a aplicação da

abordagem proposta.

Modelagem de múltiplos paradigmas
Especificação formal

Redes de Petri
Meta-modelagem

Lógica temporal linear
Verificação formal

Transformação de modelos

(1) identificação
de elementos
conceituais da
linguagem de

modelagem; (2)
especificação dos

elementos
conceituais em

lógica de primeira
ordem; e (3)

definição de uma
semântica

operacional para a
linguagem de
modelagem. A
metodologia foi
aplicada a duas
linguagens de

modelagem multi-
paradigma, a

Papyrus UML e a
AToMPM,

demonstrando a
sua viabilidade e

eficácia.

IEEE Inglês CI1 e CI4 Incluído
Towards Facilitating
the Exploration of
Informal Concepts in
Formal Modeling Tools

M. Gogolla; R.
Clarisó; B.
Selic; J. Cabot 2021

This contribution proposes to
apply informal ideas for model
development within a formal tool.
The basic idea is to relax the
requirements expressed with
particular modeling language
elements and allow developers to
dynamically customize the level of
formality in a visual and intuitive
way. For UML and OCL class
models, the requirements for
usual object typing, role typing,
role multiplicity, attribute typing
and constraint satisfaction are
relaxed in order to achieve
flexible object models. The long-
term aim is to support flexible,
iterative model development with
qualified tool feedback.

10.1109
/MODE

LS-
C53483

.
2021.00

044

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
643627

UML class model;UML
object model;OCL
constraint;flexible
development process

O artigo apresenta um método inovador que
busca facilitar o processo de modelagem formal
por meio da exploração de conceitos informais,

utilizando uma ontologia para mapear esses
conceitos para conceitos formais. O método é

avaliado em um estudo de caso que demonstra
a sua eficácia na modelagem de requisitos de

um sistema de controle de tráfego aéreo.

Formal methods
Modelagem formal
Modelos informais

Exploração de conceitos informais
Ferramentas de modelagem formal

Interface de usuário

O artigo menciona
algumas

ferramentas de
modelagem formal

que podem ser
utilizadas para

realizar a
transformação de
modelos informais

em modelos
formais, tais como
o TLA+ e o Alloy,

que possuem
suas próprias

metodologias e
técnicas de

especificação e
verificação formal.

Além disso, o
artigo destaca a
importância de

uma interface de
usuário amigável
e intuitiva para

facilitar o
processo de

modelagem formal
e exploração de

conceitos
informais.

IEEE Inglês CI1 e CI4 Incluído
Towards Formal
Modeling and Analysis
of SystemJ GALS
Systems using
Coloured Petri Nets

W. Zhang; Z.
Salcic; A.
Malik 2019

SystemJ is a programming
language developed for
implementing safety critical cyber-
physical systems, including
industrial automation systems.
However, the current tools do not
support an efficient mechanism to
verify SystemJ programs formally.
This paper presents a semantics-
preserving translation of the
synchronous subset of SystemJ
to Coloured Petri Net (CPN),
which in turn enables leveraging
the plethora of analysis and
verification tools for CPN to verify
SystemJ programs. The
translation and verification
approach is illustrated on a
pedagogical industrial automation
example of a SystemJ program.

10.1109
/INDIN4
1052.

2019.89
72025

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
972025

Petri Nets;Coloured
Petri Nets;GALS;formal
modeling;formal
analysis

O artigo apresenta uma abordagem baseada em
CPN para modelagem e análise formal de

sistemas GALS desenvolvidos em SystemJ. O
artigo descreve a proposta de um modelo formal,

a utilização do ambiente de modelagem e
simulação CPN Tools, um estudo de caso e uma
comparação com outras abordagens existentes.

O artigo descreve a proposta de uma
abordagem para modelar e analisar

formalmente sistemas GALS
desenvolvidos em SystemJ utilizando

Redes de Petri Coloridas (CPN) e CPN
Tools. Essa abordagem permite a

descrição precisa das interações entre
os componentes do sistema e a

verificação da correção do sistema em
relação a requisitos formais. O artigo

apresenta um estudo de caso que
demonstra a aplicação da abordagem
proposta e compara a abordagem com

outras técnicas existentes.

O artigo propõe
uma abordagem

baseada em
Redes de Petri

Coloridas (CPN)
para modelar e

analisar sistemas
GALS

desenvolvidos em
SystemJ. A

metodologia
envolve a criação

de um modelo
formal, a

implementação do
modelo no

ambiente CPN
Tools, um estudo

de caso e a
comparação com
outras técnicas
existentes. A
abordagem é
aplicada na

verificação de
requisitos formais

de um sistema
GALS com dois
componentes. A
comparação com
outras técnicas

considera critérios
como precisão,
escalabilidade e
facilidade de uso.

IEEE Inglês CI1 e CI4 Incluído
Towards the
Specification and
Verification of Legal
Contracts

A.
Parvizimosaed 2020

A contract is a legally binding
agreement that expresses high-
level requirements of parties in
terms of obligations, powers and
constraints. Parties' actions
influence the status of a contract
and shall comply with its clauses.
Manual contract monitoring is
very laborious in real markets,
such as transactive energy,
where plenty of complex contracts
are running concurrently.
Furthermore, liability, right and
performance transition through
run-time operations such as
subcontracting, assignment and
substitution complicate contract
interpretation. Automation is
needed to ensure that contracts
respect desirable properties and
to support monitoring of
compliance and handling of
violations. In this thesis research,
I propose an innovative ontology
that defines fundamental
contractual notions (such as the
ones mentioned above) and their
relationships, on which is built a
specification language, called
Symboleo, that provides syntax
and axiomatic semantics of
contracts via first-order logic.
Symboleo enables the
development of advanced
automation tools such as a
compliance checker that monitors
contracts at runtime, and a model
checking verification method that
analyzes liveness and safety
properties of contracts. This
paper reports on the problem
domain, research method, current
status, expected contributions,
and main foreseen challenges.

10.1109
/RE485

21.
2020.00

066

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
218173

Legal Contract;
Specification Language;
Model Checking;Smart
Contract;Ontology

Propõe uma metodologia baseada em
verificação formal para especificar e verificar a

correção de contratos legais. A metodologia
utiliza linguagens formais e integra várias

ferramentas de verificação. O artigo destaca a
importância da correção dos contratos legais e

apresenta uma análise experimental da
metodologia proposta. A contribuição do artigo é
para a área emergente de Direito e Tecnologia.

Aborda a especificação e verificação de
contratos legais utilizando técnicas de
verificação formal e ferramentas de

verificação. O artigo destaca a
importância da correção dos contratos

legais e contribui para a área
emergente de Direito e Tecnologia.

A metodologia
consiste em

especificar os
contratos legais
em linguagens

formais e utilizar
técnicas de

verificação formal
e ferramentas de
verificação para

garantir a
correção dos
contratos. A

metodologia é
baseada em
princípios de

engenharia de
software e ciência
da computação.

IEEE Inglês CI1 e CI4 Incluído
Tutorial: A Practical
Introduction to Formal
Development and
Verification of High-
Assurance Software
with SPARK

B. M. Brosgol;
C. Dross; Y.
Moy 2019

Summary form only given, as
follows. The complete
presentation was not made
available for publication as part of
the conference proceedings. This
hands-on tutorial will show
attendees how to use formal
methods in developing and
verifying high-assurance
software. It will cover the benefits
and costs of formal methods
technology, describe its
capabilities and limits, summarize
how to adopt formal methods at
varying levels depending on
assurance requirements, show
how to combine formal methods
with traditional testing-based
techniques, and highlight
industrial experience. The SPARK
language (a subset of Ada 2012)
will be used as the vehicle for
explaining formal methods. The
techniques presented can be
applied to other language
technologies, and the tutorial will
compare the SPARK and Frama-
C approaches. Demonstrations
will use the GNATprove toolset,
and hands-on exercises will be
drawn from the SPARK section of
the learn.adacore.com site.

10.1109
/SecDe

v.
2019.00

012

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
901601

formal methods, high-
assurance software,
safety critical software,
high-security software,
software verification,
SPARK language

O artigo oferece uma introdução clara e prática à
abordagem formal de desenvolvimento e

verificação de software, com foco na linguagem
de programação SPARK.

Desenvolvimento e verificação formal
Software de alta confiabilidade

Linguagem de programação SPARK
Análise estática

Ferramentas de verificação formal
Melhores práticas de engenharia de

software
Sistemas críticos de segurança

Correção por construção

O tutorial é
dividido em três
partes principais:
a primeira parte

aborda a
especificação

formal de
requisitos usando
a notação Ada e o
uso da ferramenta

SPARK para
verificar a

consistência dos
requisitos; a

segunda parte
descreve a

modelagem e
análise formal de

um programa
simples de
controle de

tráfego aéreo
usando SPARK; e

a terceira parte
apresenta

exemplos de
aplicações reais
usando SPARK

para o
desenvolvimento

de software
crítico.

IEEE Inglês CI1 e CI4 Incluído
Verification of a Rule-
Based Expert System
by Using SAL Model
Checker

M. U. Siregar;
S. Abriani 2019

Verification of a rule-based expert
system ensures that the
knowledge base of the expert
system is logically correct and
consistent. Application of
verification into a rule-based
expert system is one approach to
integrate software engineering
methodology and knowledge
base system. The expert system,
which we has built, is a rule-
based system developed by using
forward chaining method and
Dempster-Shafer theory of belief
functions or evidence. We use Z
language as the modelling
language for this expert system
and SAL model checker as the
verification tool. To be able to use
SAL model checker, Z2SAL will
translate the Z specification,
which models the system. In this
paper, we present some parts of
our Z specification that represent
some parts of our rule-based
expert system. We also present
some parts of our SAL
specification and theorems that
we added to this SAL
specification. At the last, we
present the usage of SAL model
checker over these theorems.
Based on these model-checking
processes, we argue that the
results are expected. This means
that each of theorems can be
model checked and the outputs of
those model checking are the
same as the outputs that we
obtain from manual investigation;
either it is VALID or INVALID.
Other interpretation of the model
check's results is some parts of
our rule-based expert system
have been verified.

10.1109
/ICICoS
48119.

2019.89
82426

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
982426

verification;expert
system;rule-based
system;Z2SAL;SAL
model checker

o artigo apresenta uma abordagem sistemática e
formal para a verificação de sistemas

especialistas baseados em regras, que utiliza o
verificador de modelos SAL e a representação

formal do sistema

 o artigo aborda conceitos relacionados
à verificação formal de sistemas,
incluindo model checking, lógica

simbólica e representação formal do
sistema. Ele também descreve a
aplicação desses conceitos na

verificação de um sistema especialista
baseado em regras usando o verificador

de modelos SAL

a metodologia
envolveu a

modelagem e
formalização do

sistema, a
especificação de

requisitos formais,
a geração do
modelo do
sistema, a

verificação formal
do sistema
usando o

verificador de
modelos SAL e a

análise dos
resultados da
verificação. A
metodologia

utilizada
demonstra uma

abordagem
sistemática para a
verificação formal

de sistemas
baseados em

regras.

IEEE Inglês CI1 e CI4 Incluído
XML-Based Video
Game Description
Language

J. R.
Quiñones; A.
J. Fernández-
Leiva

2020

This paper presents the XML-
based Video Game Description
Language (XVGDL), a new
language for specifying Video
games which is based on the
Extensible Markup Language
(XML). The proposal is portable
and extensible, and allows
games to not only be defined at
engine level but also includes
specific features that can lead
the game design process whilst
simultaneously reducing the
gap between game
specification and its
corresponding game
implementation. XVGDL is as
generic as possible, making it
possible to describe different
genres of games. This paper
focuses on presenting the
basis of the language. The
paper describes the syntax as
well as the components of
XVGDL, and provides examples
of their use. Defining games via
XML structures provides all the
advantages of the management
of XML files and opens up
interesting lines of research.
Our proposal provides a
number of novel features. So,
XVGDL game definitions can be
managed as any other XML file,
which means that it can be
automatically handled by any
XML file management software.
Another interesting feature is
that XVGDL can specify game
components (e.g., game
Artificial), in-game processes
(e.g., the procedural generation
of maps) or in-game events (e.
g., the checking of the
conditions to end a game
match) via the association with
external (possibly non-XML)
files. Moreover, XVGDL files
can be easily validated as any
XML file what means that
validations against a particular
Document Type Definition
(DTD) or XML Schema
Definition (XSD) are possible.
In addition, the paper presents
a first prototype
implementation of a (text-
based) interpreter that allows
XVGDL game specifications as
a playable game to be
executed. This tool not only
validates our proposal but also
represents a first step towards
smoothing the path to
obtaining an executable
version of a game from its
game specification.

10.1109
/ACCE

SS.
2019.29
62969

https:
//ieeexplor
e.ieee.
org/stamp/
stamp.jsp?
arnumber=
8945249

Video game
description language;
extensible markup
language;XML;game
design;game tools

Este artigo apresenta um novo VGDL que
fornece recursos não presentes em outros

VGDLs. Esta é a principal contribuição deste
trabalho. Em comum com outros VGDLs, a

proposta inclui componentes para definir os
elementos do jogo, mecânica, regras e

eventos programados. Além disso, o XVGDL
também permite que componentes de design
específicos sejam descritos, como mapas de

jogos, configurações de tela e viewports,
renderizadores de jogos ou estados de jogos.
Também pode ser facilmente estendido para
suportar alguns outros recursos como, por

exemplo, elementos multimídia.

Videogame; agentes autônomos;
Inteligência Artificial e

Computacional em Jogos

Descrevendo um
jogo usando

XVGDL;
Vantagens da
linguagem de

marcação
extensível;

XVGDL
Validação;

Especificação de
jogo e elementos

em XVGDL

IEEE Inglês CI1 e CI4 Incluído
A Model-Checking
Framework for the
Verification of Move
Smart Contracts

E. Keilty; K.
Nelaturu; B.
Wu; A.
Veneris

2022

As the popularity of distributed
ledger technology and smart
contracts continues to grow, so
does the number of decentralized
applications and their potential
exposure to expensive exploits.
The need for strong vulnerability
detection tools is critical. Move is
a recently developed smart
contract language with safety and
security at the core of its design
containing formal verification tools
embedded into the language.
Currently, these tools can only
verify local properties within a
single Move function. They
cannot verify global properties
that result from multiple function
executions. In this paper, we
introduce VeriMove, an extension
of the VeriSolid correct-by-design
model checking framework that
supports the Move language. We
show that model checking is a
feasible method to formally verify
global properties in Move smart
contracts.

10.1109
/ICSES
S54813

.
2022.99
30214

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
930214

Smart Contract;
Verification;Solidity;
Move

O artigo fornece uma visão geral da linguagem
Move e sua utilização na criação de contratos

inteligentes. Discute a importância da verificação
de contratos inteligentes para garantir sua

corretude e segurança.

Conteitos de Introdução ao Move e
contratos inteligentes, Descrição do

framework de verificação, Técnicas de
model-checking, Aplicação do

framework em estudos de caso,
Avaliação e discussão dos resultados.

A metodologia
segue essas

etapas:
Especificação do

contrato,
Modelagem,
Definição de

propriedades,
Model-checking,

Análise e
interpretação dos

resultados,
Refinamento e

repetição.

IEEE Inglês CI1 Incluído
A Temporal
Requirements
Language for
Deductive Verification
of Process-Oriented
Programs

I. Chernenko;
I. S. Anureev;
N. O.
Garanina; S.
M. Staroletov

2022

The requirements engineering
process is primarily useful for
complex software that controls
industrial processes.
Requirements for control software
suppose a description of the
change in input and output
signals over time, which
encourages the elaborations of
temporal requirements. A
verification method that allows
one to obtain a certified proof of
system operation correctness
against given requirements is the
theorem proving or deductive
verification. At the same time, the
process of deductive verification
should take into account both the
specifics of models of control
programs and the requirements
for them. While models of control
programs can be obtained from
domain-oriented languages, it is
also expedient to develop a
language for requirements. The
present paper introduces a
predicative domain-specific
language for definition of temporal
requirements intended to be used
with deductive verification tools. It
focuses on specification of
requirements for control software
written in process-oriented
languages. Moreover, we propose
to use special patterns to
describe a wide range of such
requirements. We discuss a
benchmark of ten case studies
and the requirements for them
which are linked to these
patterns. The results can be used
for building automatic verification
systems for industrial control
software.

10.1109
/EDM55

285.
2022.98
55145

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
855145

deductive verification;
temporal requirements;
formal methods;control
software;process-
oriented programs

O artigo apresenta uma linguagem específica
para a especificação de requisitos temporais em

programas orientados a processos. Essa
linguagem permite expressar propriedades
temporais como restrições, obrigações e

invariâncias relacionadas ao comportamento e à
execução desses programas. O foco principal do

artigo é a verificação dedutiva dos programas
orientados a processos em relação aos

requisitos temporais especificados. A linguagem
proposta permite que sejam formuladas

especificações precisas e verificáveis, que
podem ser submetidas a técnicas de prova
formal e raciocínio lógico para verificar a

corretude temporal dos programas.

Os principais conceitos abordados no
artigo incluem: Requisitos Temporais,
Linguagem de Requisitos Temporais,

Deductive Verification, Programas
Orientados a Processos, Verificação e

Prova Formal, Aplicação Prática.

A metodologia é
proposta no artigo

como uma
abordagem

sistemática e
confiável para a
especificação e
verificação de

requisitos
temporais em

programas
orientados a

processos. Ela
fornece uma

estrutura formal
para a análise e
validação dos

requisitos
temporais,

permitindo uma
garantia rigorosa
da corretude e

confiabilidade dos
sistemas.

IEEE Inglês CI1 Incluído
A tool for proving
Michelson Smart
Contracts in WHY3

Arrojado Da
Horta, Luis
Pedro
(57219764980
); Santos Reis,
Joao
(57221474614
); De Sousa,
Simao Melo
(15135137100
); Pereira,
Mario
(57190032035
)

2020

This paper introduces a deductive
verification tool for smart
contracts written in Michelson,
which is the low-level language of
the Tezos blockchain. Our tool
accepts a formally specified
Michelson contract and
automatically translates it to an
equivalent program written in
WhyML, the programming and
specification language of the
Why3 framework. Smart contract
instructions are mapped into a
corresponding WhyML shallow-
embedding of the their axiomatic
semantics, which we also
developed in the context of this
work. One major advantage of
this approach is that it allows an
out-of-the-box integration with the
Why3 framework, namely its
VCGen and the backend support
for several automated theorem
provers. We also discuss the use
of our tool to automatically prove
the correctness of diverse
annotated smart contracts. ©
2020 IEEE.

10.1109
/Blockc
hain503

66.
2020.00

059

https://www.
scopus.
com/inward/
record.uri?
eid=2-s2.0-
850991842
50&doi=10.
1109%
2fBlockchai
n50366.
2020.00059
&partnerID=
40&md5=62
3de99f1492
2a20a1493
e3414662e
63

Formal Verification;
Michelson; Smart
Contracts; Tezos; Why3

Principais características do artigo incluem:
Descrição da linguagem Michelson e suas

características relevantes para a verificação
formal de contratos inteligentes; Apresentação
da plataforma de prova de teoremas WHY3 e

como ela pode ser usada para provar a correção
de contratos Michelson; Detalhes sobre a

implementação da ferramenta de verificação de
contratos Michelson em WHY3, incluindo a
definição de tipos de dados e funções de

verificação; Discussão de estudos de caso que
demonstram a utilidade da ferramenta e sua

capacidade de provar propriedades importantes
dos contratos Michelson.

Principais conceitos incluem: Contratos
inteligentes: programas que são

executados em uma blockchain para
gerenciar transações e ativos;

Linguagem Michelson: linguagem de
programação usada para escrever

contratos inteligentes na blockchain
Tezos;

Prova de correção: método formal para
verificar se um programa atende a um
conjunto de propriedades específicas;
WHY3: uma plataforma de prova de
teoremas que permite a verificação

formal de programas em várias
linguagens de programação;

Tipos de dados: um conjunto de valores
e operações que podem ser realizadas

com esses valores;
Funções de verificação: funções que
são usadas para provar propriedades

específicas do código, como a ausência
de erros ou a corretude do contrato

inteligente.

A metodologia
começa com a

definição da
especificação

formal do contrato
inteligente, que

inclui a descrição
da entrada e

saída esperadas,
bem como as

propriedades que
o contrato deve

atender. A seguir,
o contrato

Michelson é
traduzido para a

linguagem de
programação de

WHY3 e integrado
com as funções
de verificação de

correção
especificadas

anteriormente. A
ferramenta de
verificação de

contrato
inteligente

Michelson em
WHY3 permite

que os
desenvolvedores

verifiquem
formalmente se o

contrato
inteligente atende

a essas
propriedades. O

processo de
verificação é

realizado por meio
de um processo

de prova assistida
por computador,

em que a
plataforma WHY3

gera e verifica
automaticamente

as provas
necessárias para

atender às
especificações. O

artigo também
discute o uso da
metodologia em
estudos de caso
específicos de

contratos
Michelson,

incluindo um
contrato de

votação simples e
um contrato de

leilão. Em ambos
os casos, a

ferramenta de
verificação em

WHY3 foi capaz
de provar

formalmente a
correção do
contrato em
relação às

especificações
definidas

anteriormente.

Scopus Inglês CI1 Incluído
A Tool to Assist the
Compiler
Construction
Instructor in
Checking the
Equivalence of
Specifications Based
on Regular
Expressions

R. Benito-
Montoro; X.
Chen; J. L.
Sierra

2021

This paper presents CheRegES
(CHEcking REGular Expression-
based Specifications), a tool that
assists the Compiler Construction
instructor in checking the
equivalence of computer
language lexical specifications
based on regular expressions.
The tool allows the comparison of
a reference specification,
provided by the instructor, with
the specification proposed by the
student. As a result, the tool can
report that: (i) both specifications
are equivalent (and, therefore, the
specification proposed by the
student can be considered
correct); (ii) there are
discrepancies between the
specification proposed by the
student and the one provided by
the instructor (and, therefore, the
specification proposed by the
student can be considered
incorrect); or (iii) the result of the
comparison is inconclusive. Also,
in case discrepancies are
discovered, the tool provides
sentences that allow
differentiation between the two
specifications, and that help the
instructor to diagnose the
problems underlying the student’s
specification. The paper
motivates the need for the tool,
describes its functionality, briefly
summarizes its internals, and
presents a preliminary evaluation
of the tool that makes the
usefulness of CheRegES as a
tool to support assessment in
Compiler Construction courses
apparent.

10.1109
/SIIE53

363.
2021.95
83625

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
583625

Assessment Tool;
Lexical Specifications;
Compiler Construction;
Regular Expressions;
Computer Science
Education

Principais características incluem: Construção de
compiladores: processo de criar um compilador
que traduz o código fonte de uma linguagem de

programação em código executável;
Especificações: descrição formal do

comportamento esperado do compilador,
geralmente em termos de linguagens regulares

ou gramáticas formais;
Expressões regulares: uma notação matemática

que descreve um conjunto de sequências de
caracteres;

Autômatos finitos: um modelo matemático
abstrato de um sistema de computação que lida
com uma entrada limitada e produz uma saída;

Equivalência de autômatos: a relação de
igualdade entre autômatos finitos, em que dois
autômatos são equivalentes se reconhecem a

mesma linguagem;
Ferramentas de verificação: programas de

computador que verificam se as especificações
são corretas e consistentes, de acordo com um

conjunto de regras e propriedades definidas.

O artigo aborda conceitos fundamentais
relacionados à construção de

compiladores, especificações baseadas
em expressões regulares e técnicas de
verificação de equivalência, com foco
em fornecer uma ferramenta prática e
útil para instrutores de construção de

compiladores.

A metodologia
utilizada neste

artigo seguiu uma
abordagem de

desenvolvimento
de software, com

uma análise
cuidadosa dos

requisitos, design
da ferramenta,

implementação e
avaliação da
eficácia da
ferramenta.

IEEE Inglês CI1 Incluído
Adversary Safety by
Construction in a
Language of
Cryptographic
Protocols

T. M. Braje; A.
R. Lee; A.
Wagner; B.
Kaiser; D.
Park; M.
Kalke; R. K.
Cunningham;
A. Chlipala

2022

Compared to ordinary concurrent
and distributed systems,
cryptographic protocols are
distinguished by the need to
reason about interference by
adversaries. We suggest a new
layered approach to tame that
complexity, via an executable
protocol language whose
semantics does not reveal an
adversary directly, instead
enforcing a set of intuitive hygiene
rules. By virtue of those rules,
protocols written in this language
provably behave identically with
or without interference by active
Dolev-Yao-style adversaries. As a
result, formal reasoning about
protocols can be simplified
enough that even naïve model
checking can establish
correctness of a multiparty
protocol, through analysis of a
state space with no adversary.
We present the design and
implementation of SPICY, short
for Secure Protocols Implemented
CorrectlY, including the semantics
of its input languages; the
essential safety proofs, formalized
in the Coq theorem prover; and
the automation techniques. We
provide a preliminary evaluation
of the tool's performance and
capabilities via a handful of case
studies.

10.1109
/CSF54

842.
2022.99
19638

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
919638

formal verification;coq;
cryptography;protocol
analysis

O artigo destaca a importância da construção de
protocolos criptográficos seguros por meio de
uma abordagem de segurança adversarial por
construção. Ele apresenta uma linguagem de

protocolos criptográficos, utiliza métodos formais
e oferece exemplos práticos para demonstrar a

eficácia das técnicas propostas.

O artigo explora conceitos-chave
relacionados à segurança adversarial,

construção de protocolos criptográficos,
linguagem de protocolos criptográficos,

métodos formais e propriedades de
segurança. Ele enfatiza a importância

de construir protocolos seguros e
apresenta abordagens para garantir a

segurança adversarial por meio da
construção de protocolos e análise

formal.

A metodologia
utilizada no artigo

envolve a
definição da

linguagem de
protocolos

criptográficos,
análise de

ameaças, projeto
de protocolos

seguros, análise
formal, estudos de
caso e avaliação
dos resultados.

Essa abordagem
visa fornecer uma
estrutura sólida
para construir

protocolos
criptográficos

seguros e garantir
sua eficácia

contra adversários
maliciosos.

IEEE Inglês CI1 Incluído
An Approach to
Validation of
Combined Natural
Language and Formal
Requirements for
Control Systems

M.
Trakhtenbrot 2019

The paper presents a novel
approach to validation of
behavioral requirements for
control systems. A requirement is
specified by a natural language
pattern and its expression in
Linear Temporal Logic (LTL). This
way flexibility and
understandability of natural
language is combined with
advantages of formalization that
is a basis for various stages of
system development, testing and
verification. Still, validity of the
requirements remains a major
challenge. The paper considers
application of mutation analysis
for capturing of correct behavioral
requirements. Generation and
exploration of mutants supports a
better understanding of
requirements, The novelty of the
approach is that the suggested
mutations are semantic-based, as
opposed to the more common
syntax-based mutation analysis.
A significant advantage of the
approach is that it allows to focus
only on plausible potential faults
in understanding of the required
system behavior, and to avoid
generation of a vast amount of
mutants that are irrelevant to the
intended meaning of the
requirements. Moreover, in many
cases the effect of semantic-
based mutations just can not be
achieved by usual syntax-based
mutations of LTL formulas
associated with requirements.
The approach is illustrated using
a rail cross control example.

10.1109
/REW.

2019.00
025

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
933687

control systems,
behavior requirements
validation, mutation
analysis

 O artigo destaca a importância da validação de
requisitos combinados de linguagem natural e
formal para sistemas de controle. Ele descreve
uma abordagem e um processo de validação,

utilizando técnicas e ferramentas adequadas, e
apresenta estudos de caso para exemplificar sua

aplicação. Isso contribui para melhorar a
qualidade e a precisão dos requisitos e,

consequentemente, aumentar a confiabilidade
dos sistemas de controle.

 O artigo explora a combinação de
requisitos de linguagem natural e formal
para sistemas de controle e propõe uma
abordagem de validação para garantir a

consistência e a precisão desses
requisitos. Os conceitos-chave incluem
a análise de conflitos e ambiguidades, a

verificação formal, a modelagem dos
sistemas de controle e a aplicação

prática por meio de estudos de caso.

A metodologia
adotada no artigo
envolve a coleta,

análise,
formalização,
verificação e
validação dos

requisitos
combinados de

linguagem natural
e formal. Ela

busca garantir que
os requisitos

sejam corretos,
consistentes e

completos,
contribuindo para

o
desenvolvimento
de sistemas de

controle confiáveis
e eficientes.

IEEE Inglês CI1 Incluído
Applying B and ProB
to a Real-world Data
Validation Project

C. Peng; W.
Keming 2021

Data validation is a constraint
satisfaction problem that can be
modelled rigorously by formal
methods like B. This paper
presents our experiences on
validating a real-world section
topology of tram lines using the B
language and ProB tool. Based
on the section topology, validation
rules are designed and
implemented by using the
ASSERTIONS Clause of B. The
Epsilon Generation Language
Script is used to build a data
conversion schema under
automatically deriving the
topology data into the B model.
Furthermore, the ProB is used to
validate whether the data satisfy
the rules. In this way, the
validated topology improves the
functional correctness of the tram
control system.

10.1109
/ISKE54

062.
2021.97
55408

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
755408

B method;rule
programming;section
topology

O artigo destaca a aplicação das técnicas
formais B e ProB em um projeto real de

validação de dados. Ele enfatiza a modelagem
formal, a análise formal e o uso do ProB como

ferramenta de verificação. Os resultados e lições
aprendidas compartilhados no artigo fornecem

insights valiosos para a aplicação dessas
técnicas em projetos semelhantes.

 O artigo apresenta os principais
conceitos do Método B e do ProB,

demonstrando sua aplicação em um
projeto prático de validação de dados. A

modelagem formal, a verificação de
propriedades e os benefícios obtidos
com a abordagem são destacados
como elementos-chave do projeto.

A metodologia
adotada no artigo

combina a
modelagem formal
com o Método B e
a verificação com

o ProB para
realizar a

validação de
dados em um

contexto real. A
utilização do

Método B permite
uma especificação

formal dos
requisitos e
restrições,

enquanto o ProB
facilita a

verificação e
identificação de

erros nos modelos
implementados.

IEEE Inglês CI1 Incluído
ARF: Automatic
Requirements
Formalisation Tool

A. Zaki-Ismail;
M. Osama; M.
Abdelrazek; J.
Grundy; A.
Ibrahim

2021

Formal verification techniques
enable the detection of complex
quality issues within system
specifications. However, the
majority of system requirements
are usually specified in natural
language (NL). Manual
formalisation of NL requirements
is an error-prone and labour-
intensive process requiring strong
mathematical expertise, and can
be infeasible for large numbers of
requirements. Existing automatic
formalisation techniques usually
support heavily constrained
natural language relying on
requirement boilerplates or
templates. In this paper, we
introduce ARF: Automatic
Requirements Formalisation Tool.
ARF can automatically transform
free-format natural language
requirements into temporal logic
based formal notations. This is
achieved through two steps: 1)
extraction of key requirement
attributes into an intermediate
representation (RCM:
Requirement Capturing Model),
and 2) transformation rules that
convert requirements from the
RCM format to formal notations.

10.1109
/RE517

29.
2021.00

060

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
604679

Requirements
engineering;
Requirements
Formalisation;
Requirements Extraction

 O artigo descreve a ARF como uma ferramenta
para a automação da formalização de requisitos,
utilizando processamento de linguagem natural e

técnicas de análise formal. A capacidade da
ferramenta de transformar requisitos em

linguagem natural em modelos formais facilita a
verificação e análise formal, contribuindo para a
melhoria da qualidade e validade dos requisitos

em projetos de engenharia de software.

Os principais conceitos envolvem a
conversão de requisitos em linguagem
natural em representações formais, a
verificação formal dos requisitos e a

automação do processo de
formalização, com exemplos e estudos

de caso para ilustrar sua aplicação
prática.

A metodologia
começa com a
definição das
linguagens

utilizadas pela
ferramenta

(natural e formal),
seguida pela
definição dos

requisitos a serem
formalizados. Em

seguida, é
definido um
processo de

mapeamento de
requisitos naturais

para requisitos
formais, usando
uma gramática
formal e regras

semânticas

IEEE Inglês Ci1 Incluído
Assertion Based
Design of Timed
Finite State Machine

A. Shkil; A.
Miroshnyk; G.
Kulak; K.
Pshenychnyi

2021

This work is dedicated to
assertion-based verification of
real time logic control systems
that are specified by a state
diagram with state looping and
implemented by hardware
description language. The
proposed method is based on the
assertion apparatus that is used
to describe the temporal nature of
the timed FSM properties.

10.1109
/EWDT
S52692

.
2021.95
81046

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
581046

timed finite state
machine;HDL-model;
assertion-based design;
SystemVerilog;formal
verification;
SystemVerilog
Assertions

 O artigo apresenta uma abordagem baseada
em assertivas para modelar e verificar sistemas
TFSM. Destacam-se a modelagem de TFSM, a

utilização de assertivas para especificar
comportamentos e propriedades do sistema, a
verificação formal com ferramentas de model

checking, exemplos e estudos de caso, além dos
benefícios e limitações da abordagem proposta.

O artigo explora a utilização de
assertivas e verificação formal no

design de sistemas TFSM, destacando
os conceitos de modelagem com

máquinas de estado temporizadas, a
utilização de assertivas para especificar
propriedades do sistema, a verificação

formal com ferramentas de model
checking e os benefícios e limitações da

abordagem proposta.

A metodologia do
artigo envolve a
definição das

especificações e
requisitos do
sistema, a

modelagem do
sistema TFSM, a
especificação de

assertivas, a
verificação formal,

a depuração e
refinamento, a
validação do
sistema e a
análise dos

resultados. Essa
metodologia é

aplicada para a
aplicação da

abordagem de
design baseada

em assertivas em
sistemas TFSM e
a verificação de

suas
propriedades.

IEEE Inglês CI1 Incluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046

Celestial: A Smart
Contracts Verification
Framework

S.
Dharanikota;
S. Mukherjee;
C. Bhardwaj;
A. Rastogi; A.
Lal

2021

We present CELESTIAL, a
framework for formally verifying
smart contracts written in the
Solidity language for the
Ethereum blockchain.
CELESTIAL allows programmers
to write expressive functional
specifications for their contracts. It
translates the contracts and the
specifications to F* to formally
verify, against an F* model of the
blockchain semantics, that the
contracts meet their
specifications. Once the
verification succeeds,
CELESTIAL performs an erasure
of the specifications to generate
Solidity code for execution on the
Ethereum blockchain. We use
CELESTIAL to verify several real-
world smart contracts from
different application domains. Our
experience shows that
CELESTIAL is a valuable tool for
writing high-assurance smart
contracts.

10.3472
7

/2021/is
bn.978-

3-
85448-
046-
4_22

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
617700

Smart contracts;
Blockchain;Reliability;
Testing

O artigo destaca a importância da verificação de
contratos inteligentes e apresentam o framework

Celestial como uma ferramenta para auxiliar
nesse processo. O artigo fornece insights

valiosos sobre as funcionalidades, a abordagem
e os estudos de caso do Celestial, além de
discutir desafios e limitações relacionados à

verificação de contratos inteligentes.

Conceitos abordados no artigo incluem
a natureza dos contratos inteligentes, a

importância da verificação, a
funcionalidade do framework Celestial,

a especificação de propriedades, a
verificação automatizada, o suporte a

linguagens de programação, a
integração com outras ferramentas e os

estudos de caso ilustrativos. O artigo
fornece uma visão abrangente sobre a
verificação de contratos inteligentes e a
utilização do framework Celestial nesse

contexto.

A metodologia
apresentada no
artigo envolve a
especificação de

propriedades,
análise estática,

interpretação
simbólica e

verificação de
propriedades para
a verificação de

contratos
inteligentes. O

framework
Celestial é

utilizado para
implementar essa

metodologia,
fornecendo uma

solução
abrangente e

eficiente para a
verificação de

contratos
inteligentes.

IEEE Inglês CI1 Incluído
Certified Embedding
of B Models in an
Integrated
Verification
Framework

A. Halchin; Y.
Ait-Ameur; N.
K. Singh; A.
Feliachi; J.
Ordioni

2019

To check the correctness of
heterogeneous models of a
complex critical system is
challenging to meet the
certification standard. Such
guarantee can be provided by
embedding the heterogeneous
models into an integrated
modelling framework. This work is
proposed in the B-PERFect
project of RATP (Parisian Public
Transport Operator and
Maintainer), it aims to apply
formal verification using the PERF
approach on the integrated
safety-critical software related to
railway domain expressed in a
single modelling language: HLL.
This paper presents a certified
translation from B formal
language to HLL. The proposed
approach uses HOL as a unified
logical framework to describe the
formal semantics and to formalize
the translation relation of both
languages. The developed
Isabelle/HOL models are proved
in order to guarantee the
correctness of our translation
process. Moreover, we have also
used weak-bisimulation relation to
check the correctness of
translation steps. The overall
approach is illustrated through a
case study issued from a railway
software system: onboard
localization function. Furthermore,
it discusses the integrated
verification at system level.

10.1109
/TASE.
2019.00

0-4

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
914050

Formal Semantics, B to
HLL Translation
Validation, Theorem
Proving, Model
Animation

O artigo apresenta uma abordagem para a
verificação de sistemas baseados em modelos B
usando um framework de verificação integrado.
A abordagem inclui a certificação de modelos B
por meio da verificação formal, integração de

diferentes técnicas de verificação, aplicação em
sistemas críticos e uma ferramenta de suporte

com interface gráfica de usuário.

O artigo incluem os modelos B, a
verificação formal, o framework de

verificação integrado, a certificação de
modelos B, a aplicação em sistemas

críticos.

 A metodologia
descrita no artigo

envolve a
especificação do

modelo B, a
verificação formal,

a geração de
provas e a

certificação do
modelo. O

framework de
verificação

integrado fornece
suporte para
essas etapas,
garantindo a

confiabilidade e
corretude dos

modelos B usados
na especificação e
desenvolvimento

de sistemas
críticos.

IEEE Inglês CI1 Incluído

Combining STPA with
SysML Modeling

F. G. R. de
Souza; J. de
Melo Bezerra;
C. M. Hirata;
P. de Saqui-
Sannes; L.
Apvrille

2020

System-Theoretic Process
Analysis (STPA) is a technique,
based on System-Theoretic
Accident Model and Process
(STAMP), to identify hazardous
control actions, loss scenarios,
and safety requirements. STPA is
considered a rather complex
technique and lacks formalism,
but there exists a growing interest
in using STPA in certifications of
safety-critical systems
development. SysML is a
modeling language for systems
engineering. It enables
representing models for analysis,
design, verification, and validation
of systems. In particular, the free
software TTool and the model-
checker UPPAAL enable formal
verification of SysML models.
This paper proposes a method
that combines STPA and SysML
modeling activities in order to
allow simulation and formal
verification of systems' models.
An automatic door system serves
as example to illustrate the
effectiveness of the proposed
approach.

10.1109
/SysCo
n47679.
2020.92
75867

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
275867

STPA;SysML;method;
safety analysis;formal
verification

O artigo apresenta a combinação da STPA com
a modelagem SysML como uma abordagem

para a análise de segurança de sistemas
complexos. Ele destaca a integração de
conceitos, o uso de diagramas SysML, a

abordagem sistemática, exemplos e casos de
estudo, além dos benefícios e contribuições

dessa combinação. A proposta visa melhorar a
análise de segurança, permitindo uma

compreensão mais abrangente dos riscos e a
adoção de medidas preventivas adequadas.

 O artigo discute a combinação da
abordagem STPA com a modelagem
SysML para melhorar a análise de

segurança de sistemas complexos. Ele
explora a identificação de perigos e
requisitos de segurança, análise de

cenários de falha, avaliação de
controles de segurança e aplicação em

diferentes setores.

Ao combinar a
análise de

segurança da
técnica STPA com
a modelagem de
sistemas usando

a linguagem
SysML, os autores
argumentam que
é possível criar
modelos mais
completos e
precisos de

sistemas que
levam em

consideração a
segurança desde

o início do
processo de

desenvolvimento.

IEEE Inglês CI1 Incluído
Conception of a
formal model-based
methodology to
support railway
engineers in the
specification and
verification of
interlocking systems

G. Lukács; T.
Bartha 2022

The use of formal modeling is
gaining popularity in the
development of safety-critical
transport applications, in
particular railway interlocking
systems, due to its ability to
specify the functionality of
systems using mathematically
precise logical rules. The goal of
the research described here is to
con-ceptualize a methodology
that provides a
specification/verification
environment supporting the
developers (domain engineers) in
the construction and verification
of formal specifications. The aim
of the methodology is to decrease
the need for mathematical-
computer science
background/knowledge at the
system engineering level. The
proposed approach includes a set
of well-known and widely used
methods, techniques, and tools to
specify and verify the functionality
related to the development of
railway interlocking systems, such
as structured and object-oriented
formalisms (e.g., the Unified
Modeling Language), model-
driven development, model
checking, etc. The application of
the methodology facilitates the
construction of correct, complete,
consistent, and verifiable
functional specifications of a
given component. This in turn
brings a significant improvement
of quality, and distributes the
development costs more evenly
among the related life-cycle
phases.

10.1109
/SACI5
5618.

2022.99
19532

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
919532

railway applications;
functionality;
specification;model
checking;computation
tree logic

O artigo descreve uma metodologia baseada em
modelos formais para apoiar engenheiros de
ferrovias na especificação e verificação de
sistemas de intertravamento. A metodologia

promove a especificação formal, a verificação
automática e a integração com ferramentas de
modelagem e verificação. Ela visa garantir a

corretude e a segurança dos sistemas
ferroviários, fornecendo suporte efetivo aos

engenheiros de ferrovias em seus processos de
trabalho.

Os principais conceitos envolvem a
modelagem formal, a verificação formal,
o suporte aos engenheiros, a integração

de ferramentas e técnicas, e a
aplicação prática por meio de estudos

de caso. A metodologia visa melhorar a
precisão, a segurança e a eficiência dos
sistemas de intertravamento ferroviário.

 A metodologia
proposta no artigo
inclui etapas como

definição de
requisitos,

modelagem
formal, verificação

formal,
refinamento
iterativo do

modelo,
documentação,
rastreabilidade,
integração de
ferramentas e

validação.

IEEE Inglês CI1 Incluído
Coverage of Meta-
Stability Using
Formal Verification in
Asynchronous Gray
Code FIFO

Shivali; M.
Khosla 2022

In Formal Verification
Environment, setup time and hold
time are not honored by formal
verification tool. To analyze the
impact of metastability on
functionality of the design in
formal verification environment,
buffer has been designed. Buffer
induces the delay of either ‘0’, ‘1’
or ‘2’ clock cycles leading to
metastability in the pointers of
Asynchronous Gray Code FIFO in
formal verification environment.
Reference code has been written
which describe the functionality of
Asynchronous Gray Code FIFO in
ideal case. Using formal
equivalence checking, output of
FIFO obtained from design
provided by the designer, is
compared with the output
obtained from the reference code
of FIFO. Formal verification
properties are written to do the
verification of the design and
check if the design is working as
predicted specifications.
Coverage written ensures no
corner case is skipped which may
lead to escapism of potential
design bugs. The command
language script containing the
verification program has been run
to invoke the JasperGold Tool.
Comparative analysis has been
done between the waveforms
obtained from the design
including a buffer and the design
without including a buffer. If both
the waveforms are not same
which means metastability has
influenced the functionality of the
design. So, to overcome the
effect of metastability on
functionality of the design, there is
need to add more synchronizers
in the design. While if the
waveforms obtained from the
design with and without buffer are
same, it means synchronizers /
Meta flops already present in the
design are enough to deal with
the metastability which may arise
during functioning of the design.

10.1109
/CONIT
55038.

2022.98
48195

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
848195

Meta-stability;Formal
Verification;Formal
Environment;
Asynchronous Gray
Code FIFO

O artigo trata da cobertura da metaestabilidade
em um FIFO assíncrono de código Gray,

utilizando técnicas de verificação formal. Ele
explora diferentes cenários e avalia se o circuito

é capaz de lidar adequadamente com a
metaestabilidade. A contribuição do artigo está
em fornecer uma abordagem específica para

essa cobertura, o que é relevante para a área de
verificação formal de circuitos assíncronos.

O artigo explora a verificação formal da
cobertura da metaestabilidade em um
FIFO assíncrono de código Gray. Ele
apresenta conceitos como a própria
metaestabilidade, verificação formal,
funcionamento assíncrono do FIFO,

cobertura da metaestabilidade e análise
de cobertura.

 A metodologia
proposta envolve
a modelagem do
FIFO assíncrono
de código Gray, a

definição de
propriedades de

verificação, a
verificação formal,

o refinamento e
correção do

modelo, a análise
de cobertura e a

validação
experimental.

IEEE Inglês CI1 Incluído
CROME: Contract-
Based Robotic
Mission Specification

P. Mallozzi; P.
Nuzzo; P.
Pelliccione; G.
Schneider

2020

We address the problem of
automatically constructing a
formal robotic mission
specification in a logic language
with precise semantics starting
from an informal description of the
mission requirements. We
present CROME (Contract-based
RObotic Mission spEcification), a
framework that allows capturing
mission requirements in terms of
goals by using specification
patterns, and automatically
building linear temporal logic
mission specifications conforming
with the requirements. CROME
leverages a new formal model,
termed Contract-based Goal
Graph (CGG), which enables
organizing the requirements in a
modular way with a rigorous
compositional semantics. By
relying on the CGG, it is then
possible to automatically: i) check
the feasibility of the overall
mission, ii) further refine it from a
library of pre-defined goals, and
iii) synthesize multiple controllers
that implement different parts of
the mission at different
abstraction levels, when the
specification is realizable. If the
overall mission is not realizable,
CROME identifies mission
scenarios, i.e., sub-missions that
can be realizable. We illustrate
the effectiveness of our
methodology and supporting tool
on a case study.

10.1109
/MEMO
CODE5
1338.

2020.93
15065

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
315065

-

O artigo introduz o CROME como uma
abordagem para a especificação de missões

robóticas baseada em contratos. Ele destaca a
formalização da especificação, a composição de
contratos, a verificação formal e a aplicação em
cenários reais como características principais da

abordagem.

O artigo introduz o conceito de
contratos de missão robótica e propõe a

abordagem CROME para a
especificação formal e verificação de

tais contratos. A composição de
contratos e a aplicação prática em

cenários reais são destacadas como
elementos-chave da abordagem. O

artigo enfatiza os benefícios e o
potencial impacto do CROME no

desenvolvimento de sistemas robóticos
confiáveis e seguros.

A metodologia do
artigo envolve a
identificação e
definição dos
requisitos da

missão, a
especificação e

formalização dos
contratos, a

verificação formal
dos contratos, a
composição de
contratos (se
necessário), a

implementação do
sistema robótico e

a validação do
sistema em
relação aos
contratos

especificados.
Essa abordagem
visa proporcionar
uma base sólida

para a
especificação,
verificação e

implementação de
missões robóticas

confiáveis e
seguras.

IEEE Inglês CI1 Incluído
FASTEN: An Open
Extensible Framework
to Experiment with
Formal Specification
Approaches

Ratiu, Daniel;
Gario, Marco;
Schoenhaar,
Hannes

2019

Formal specification approaches
have been successfully used to
specify and verify complex
systems. Verification engineers
so far either directly use formal
specification languages which can
be consumed by verification tools
(e.g. SMV, Promela) or main
stream modeling languages which
are then translated into formal
languages and verified (e.g.
SysML, AADL). The first
approach is expressive and
effective but difficult to use by
non-experts. The second
approach lowers the entry barrier
for novices but users are limited
to the constructs of the chosen
modeling languages and thereby
end up abusing the language to
encode behaviors of interest.In
this paper, we introduce a third
approach that we call FASTEN, in
which modular and extensible
Domain Specific Languages
(DSLs) are used to raise the
abstraction level of specification
languages towards the domain of
interest. The approach aims to
help novice users to use formal
specification, enable experts to
use multi-paradigm modeling, and
provide tools for the developers of
verification technologies to easily
experiment with various types of
specification approaches. To
show the feasibility of the
approach, we release an open-
source tool based on Jetbrains'
MPS language workbench that
provides an extensible stack of
more than ten DSLs, situated at
different levels of abstraction, built
on top of the SMV language. We
use the NuSMV model checker to
perform verification, to simulate
the models and lift the traces at
the abstraction level of the DSLs.
We detail on the experience with
designing and developing the
DSLs stack and briefly report on
using the DSLs in practice for the
study of a communication
protocol of a safety critical
system.

10.1109
/Formali

SE.
2019.00

013

- -

o artigo apresenta um framework aberto e
extensível para experimentar com abordagens

de especificação formal. Ele destaca a
flexibilidade e adaptabilidade do framework, o

suporte a múltiplas abordagens de
especificação, a experimentação e avaliação de

técnicas, a integração com ferramentas
existentes, a colaboração na comunidade e os

casos de uso e estudos experimentais
realizados.

O artigo introduz o framework FASTEN
e explora conceitos como especificação
formal, experimentação, integração de

ferramentas, extensibilidade,
compartilhamento de conhecimento e
casos de uso. Ele oferece uma visão

abrangente sobre a utilidade e
aplicação do framework na área de

especificação formal.

 A metodologia do
artigo abrange

desde a definição
dos requisitos até
a implementação,

validação,
documentação e

promoção da
colaboração em

torno do
framework

FASTEN. Essa
metodologia visa

garantir que o
framework seja
adequado às

necessidades dos
usuários e facilite
a experimentação

e o avanço da
área de

especificação
formal.

Web of science Inglês CI1 Incluído
Formal Modeling and
Verification of
Autonomous Driving
Scenario

B. Chen; T. Li 2021

There are abundant spatio-
temporal data and dynamic
stochastic behaviors in the
autonomous driving scenario,
which makes it full of challenges
for the modeling and verification
of the scenario. In this paper, we
propose a Scenario Modeling
Language (SCML) for
autonomous driving. SCML can
not only express the stochastic
dynamic behaviors of
autonomous driving but also
abstract the primary objects and
state transitions to model the
autonomous driving scenario.
Firstly, we propose the syntax
and semantics of SCML. Then,
we construct a metamodel of
SCML and propose mapping
rules to transform the SCML
model into the Network of
Stochastic Hybrid Automata
(NSHA) model. According to the
NSHA model, we use UPPAAL-
SMC to verify the autonomous
driving scenario. Finally, we use
the forward-collision warning
system to illustrate that the
proposed approach can
effectively model and verify the
driving scenario.

10.1109
/ICICSE
52190.

2021.94
04128

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
404128

autonomous driving
scenario modeling;
SCML;NSHA;UPPAAL-
SMC;formal verification

 O artigo utiliza técnicas de modelagem formal e
verificação formal para descrever e analisar

cenários de condução autônoma. Ele envolve a
especificação de propriedades, a formalização
dos cenários, a utilização de ferramentas de

verificação e a avaliação experimental. O
objetivo principal é garantir a segurança e o

desempenho dos sistemas de condução
autônoma por meio da aplicação de técnicas

formais de análise.

 O artigo aborda a modelagem formal e
a verificação formal de cenários de
condução autônoma, com foco na
segurança e no desempenho do

sistema. São discutidos conceitos como
modelagem formal, verificação formal,
propriedades de segurança, descrição

de cenários e ferramentas de
verificação. O objetivo é garantir que os

sistemas de condução autônoma
atendam aos requisitos de segurança e
funcionem corretamente em diferentes

situações de condução.

A metodologia
adotada no artigo
busca garantir que

os cenários de
condução

autônoma sejam
corretamente
modelados e

verificados em
relação aos
requisitos de
segurança e

desempenho. Ela
enfatiza a

utilização de
técnicas formais
para garantir a
precisão e a

confiabilidade dos
resultados da

verificação.

IEEE Inglês CI1 Incluído

Formal Requirements
in an Informal World

D. Dietsch; V.
Langenfeld; B.
Westphal 2020

With today's increasing
complexity of systems and
requirements there is a need for
formal analysis of requirements.
Although there exist several
formal requirements description
languages and corresponding
analysis tools that target an
industrial audience, there is a
large gap between the form of
requirements and the training in
formal methods available in
industry today, and the form of
requirements and the knowledge
that is necessary to successfully
operate the analysis tools. We
propose a process to bridge the
gap between customer
requirements and formal analysis.
The process is designed to
support in-house formalisation
and analysis as well as
formalisation and analysis as a
service provided by a third party.
The basic idea is that we obtain
dependability and
comprehensibility by assuming a
senior formal requirements
engineer who prepares the
requirements and later interprets
the analysis results in tandem
with the client. We obtain
scalability as most of the
formalisation and analysis is
supposed to be conducted by
junior formal requirements
engineers. In this paper, we
define and analyse the process
and report on experience from
different instantiations, where the
process was well received by
customers.

10.1109
/FORM
REQ51

202.
2020.00

010

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
224533

requirements;formal-
requirements;
requirements-
formalisation;
requirements-analysis;
process-model

O artigo aborda a respeito da qualidade dos
requisitos, onde cita ser crucial para o

desenvolvimento de sistemas e software, pois
defeitos introduzidos na análise de requisitos
podem ser reproduzidos no produto final. Há

uma distinção entre um requisito ser uma
condição ou capacidade do sistema e sua
representação. A forma predominante de

representar requisitos é a linguagem natural,
enquanto as ferramentas de análise de

requisitos formais precisam de representações
formais.

O artigo discute sobre análise de
requisitos formalizadas, uma técnica
para especificar requisitos em uma
linguagem formal. Onde mostra a

formalização e análise de requisitos
como processos diferentes que

precisam ser integrados para garantir
que os requisitos estejam corretos e

completos. A processos para
formalização e análise de requisitos

precisam ser orçamentáveis,
compreensíveis para os stakeholders e
com um resultado claramente definido.

A metodologia do
artigo aborda

sobre o Dietsch-
Langenfeld-

process model ,
um modelo de

processo para a
engenharia de

requisitos formais
que propõe trazer
a formalização e
análise para uma

escala e um
orçamento. O
processo se

conecta a um
cenário em que
toda a elicitação
de requisitos e

descrição informal
é feita e a única

lacuna restante é
a formalização e

análise.

IEEE Inglês CI1 Incluído
Formal Simulation and
Verification of Solidity
contracts in Event-B

J. Zhu; K. Hu;
M. Filali; J. -P.
Bodeveix; J. -
P. Talpin; H.
Cao

2021

Smart contracts are the artifact of
the blockchain that provides
immutable and verifiable
specifications of physical
transactions. Solidity is a domain-
specific programming language
with the purpose of defining smart
contracts. It aims at reducing the
transaction costs occasioned by
the execution of contracts on the
distributed ledgers such as
Ethereum. However, Solidity
contracts need to adhere to safety
and security requirements that
require formal verification and
certification. This paper proposes
a method to meet such
requirements by translating
Solidity contracts to Event-B
models, supporting certification.
To that purpose, we define a
restrained Solidity subset and a
transfer function that translates
Solidity contracts to Event-B
models. Besides, we have
implemented a translator to
improve the conversion efficiency.
As a case study, we take
advantage of Event-B method
capabilities to simulate models at
different levels of abstraction and
to express the properties of a
typical smart contract: Honeypot
contract. Lastly, we verify the
generated proof obligations of the
Event-B model with the help of
the Rodin platform.

10.1109
/COMP
SAC51

774.
2021.00

183

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
529594

Blockchain;Smart
contract;Solidity;Event-B
model;formal verification
for security

O trabalho apresentado no artigo é motivado
pela necessidade de construir ferramentas e

técnicas para melhorar a segurança de contratos
inteligentes por meio da verificação formal.

Introduzindo conceitos de blockchain, Ethereum,
contratos inteligentes e Solidity.

O artigo introduz o conceito de
blockchain, Ethereum, contratos

inteligentes e Solidity. Ele também
destaca a importância da segurança e

da verificação formal em contratos
inteligentes devido aos riscos de

vulnerabilidades de segurança que
podem ser explorados por hackers.

O método
mencionado no

artigo é a
verificação formal,
que usa técnicas

matemáticas
rigorosas para
provar que um

sistema é correto.
EventB é

mencionado como
uma linguagem de

modelagem de
verificação formal
para especificar e

implementar
algoritmos e

sistemas como
sistemas de

transição
discretos

baseados em uma
teoria de
conjuntos
digitados.

IEEE Inglês CI1 Incluído
Formal Specification
and Validation of a Gas
Detection System in
the Industrial Sector

A.
Choquehuanc
a; D. Rondon;
K. Quiñones;
R. León

2020

In gas concentrations greater
than the allowable amounts,
these become an imminent
danger. It is true that there are
devices that already read
information, but are intended
exclusively for the mining sector
and are very expensive. That is
why we propose to model and
validate a new system for other
industrial sectors. Our proposal,
The Gas Detection System is
based on The Explosive
Discussion Triangle method
developed by Coward and Jones.
We use this method to develop a
control system that will allow gas
concentrations to be detected in a
given environment and send an
alarm if a risk situation arises.
Formal Specifications allows the
use of mathematical notations
that help in the process of
implementing critical systems and
helps to reduce the potential
ambiguities that occur in the
interpretation of traditional graphic
models. This work uses the VDM
++ formal specification language
to describe system properties for
its subsequent modeling and
validation through the
VDMToolBox tool. The System
architecture is based on sensors,
a control module and a set of
alarms. Our proposal makes use
of formal specifications in order to
validate the main properties of the
functional requirements.

10.2391
9

/CISTI4
9556.

2020.91
41056

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
141056

Formal specification;
validation;VDM++;gas
detection;triangle
Coward

O artigo aborda o uso generalizado de
combustíveis energéticos na operação de várias
máquinas e na indústria em geral, trazendo uma
problemática para implementar um sistema de

detecção de gases perigosos no setor industrial
utilizando sensores.

O artigo introduz a linguagem VDM++
para modelar o sistema e garantir a

correta especificação dos requisitos e
evitar ambiguidades. Os mecanismos

desenvolvidos para a operação desses
dispositivos por meio de software são
muito importantes, pois determinam a

concentração desses gases.

Como
metodologia, será

utilizado a
linguagem VDM++

para modelar o
sistema de

detecção de
gases. Serão

utilizados métodos
formais para

garantir a correta
especificação dos
requisitos e evitar

ambiguidades.
Sensores serão
utilizados para

detectar a
presença de

gases perigosos
no ambiente. Os
dados coletados
pelos sensores

serão analisados
e avaliados

usando
ferramentas de

análise de dados.

IEEE Inglês CI1 Incluído
Formal UML-based
Modeling and Analysis
for Securing Location-
based IoT Applications

H. Cardenas;
R.
Zimmerman;
A. R. Viesca;
M. Al Lail; A.
J. Perez

2022

We present a process and a tool
to apply formal methods in
Internet of Things (IoT)
applications using the Unified
Modeling Language (UML). As
there are no best practices to
develop secured IoT systems, we
have developed a plug-in tool that
integrates a framework to validate
UML software models and we
present the design of a location-
based IoT application as a use
case for the validation tool.

10.1109
/MASS5
6207.

2022.00
109

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
973521

UML;Formal methods;
Security;Internet of
Things

O artigo apresenta a ideia de que dispositivos
conectados à Internet, como monitores de bebês

ou brinquedos infantis, têm muitas
vulnerabilidades de segurança, tornando a

segurança (e privacidade) desses sistemas uma
questão essencial na sociedade moderna. O
artigo apresenta três melhorias no estado-da-

arte atual para solucionar esse problema.

O artigo apresenta a aplicação de
técnicas de modelagem e verificação

formal para validar sistemas seguros de
IoT em sua fase de design. Ele propõe

a criação de modelos de aplicação
baseados em localização e verifica sua
segurança usando uma ferramenta de

análise baseada em UML. Além disso, o
artigo implementa uma ferramenta de
análise formal baseada em UML que

verifica a existência de vulnerabilidades
de segurança.

O artigo utiliza a
extensão

UML/SysML
descrita em

IoTsecM para
padronizar e

validar sistemas
de IoT seguros
em sua fase de
design. Além

disso, ele
apresenta uma
ferramenta de

análise baseada
em UML para

validar e verificar
a segurança dos

modelos de
aplicação criados.
Por fim, o artigo
implementa uma
ferramenta de
análise formal

baseada em UML
para detectar

vulnerabilidades
de segurança e

melhorar o design
dos sistemas de
IoT caso alguma

violação seja
encontrada.

IEEE Inglês CI1 Incluído
Formal Verification for
VRM Requirement
Models

Zhang, Yang
(55506039300
); Hu, Jun
(57198193833
); Wang,
Lisong
(36968141200
); Gu, Qingfan
(56204861600
); Rong, Hao
(56603776800
)

2022

At the requirements level, formal
verification and analysis are the
focus of task’s attention which is
developing complex systems by
formal methods. Model checking
is a technique for analysis and
automated verification of complex
safety-critical software systems.
In this paper, a requirement
model verification method based
on formal technology is proposed
to practice the model checking
activity into the development
process. Firstly, this essay
analyzes syntax and semantics of
models, which are defined by
tabular expressions in VRM
(variables relationship model).
Then we preprocess the VRM
model to classify into events
tables, conditions tables and
model class tables, and transform
the VRM model into the
automaton state transfer diagram
with the help of semantic
complementary work. Finally, we
design an automatic model
transformation framework from
the VRM model to the model
verification tool (nuXmv) and
implement a translator between
the formal specification language
VRM and the symbolic model
checker nuXmv. In this paper, we
discuss our translation and
abstraction approach in some
depth and illustrate its feasibility
with some preliminary examples.
© 2022, The Author(s), under
exclusive license to Springer
Nature Singapore Pte Ltd.

10.1007
/978-

981-19-
0390-
8_121

https://www.
scopus.
com/inward/
record.uri?
eid=2-s2.0-
851287367
63&doi=10.
1007%
2f978-981-
19-0390-
8_121&part
nerID=40&
md5=b1e21
48d7a2bad
a893896c2
6b12e90b1

Model checking; Model
translation; nuXmv;
Safety verification; VRM
model

O artigo aborda o desenvolvimento de sistemas
complexos por meio de métodos formais. Há
uma proposta de método de verificação de

modelos de requisitos baseado em tecnologia
formal, com ênfase na técnica de model

checking. É apresentado um framework de
transformação automática de modelos VRM em

uma ferramenta de verificação de modelos
(nuXmv).

O método é ilustrado com exemplos preliminares
e discutido em profundidade.

O artigo aborda os conceitos de
desenvolvimento de sistemas

complexos por meio de métodos
formais, verificação e análise formal de

modelos de requisitos,
Model checking, técnica de análise e
verificação automatizada de sistemas

de software críticos de segurança.
Tabular expressions em VRM, utilizado

para definir modelos de requisitos.
Autômatos de transferência de estados,

técnica para representação formal de
sistemas.

Transformação automática de modelos
VRM em ferramentas de verificação de

modelos.

A metodologia do
artigo envolve:

Análise de sintaxe
e semântica de

modelos definidos
por tabular

expressions em
VRM.

Preprocessament
o do modelo VRM
para classificá-lo

em tabelas de
eventos,

condições e
classes de

modelo.
Transformação do
modelo VRM em
um autômato de
transferência de
estados com o

auxílio de trabalho
semântico

complementar.
Desenho de um
framework de
transformação
automática de

modelos VRM em
nuXmv.

Implementação de
um tradutor entre
a linguagem de
especificação

formal VRM e o
verificador de

modelos
simbólicos

nuXmv.

Scopus Inglês CI1 Incluído
Formal Verification of
Blockchain Smart
Contract Based on
Colored Petri Net
Models

Z. Liu; J. Liu 2019

A smart contract is a computer
protocol intended to digitally
facilitate and enforce the
negotiation of a contract in
undependable environment.
However, the number of attacks
using the vulnerabilities of the
smart contracts is also growing in
recent years. Many solutions
have been proposed in order to
deal with them, such as
documenting vulnerabilities or
setting the security strategies.
Among them, the most influential
progress is made by the formal
verification method. In this paper,
we propose a formal verification
method based on Colored Petri
Nets (CPN) to verify smart
contracts in blockchain system.
First, we develop the smart
contract models with possible
attacker models based on
hierarchical CPN modeling, then
the smart contract models are
executed by step-by-step
simulation to validate their
functional correctness, and finally
we utilize the branch timing logic
ASK-CTL based model checking
technology in the CPN tools to
detect latent vulnerabilities in
smart contracts. We demonstrate
that our CPN modeling based
verification method can not only
detect the logical vulnerabilities of
the smart contract, but also
consider the impacts of users
behavior to find out potential non-
logical vulnerabilities in the
contracts, such as the
vulnerabilities caused by the
limitations of the Solidity
language.

10.1109
/COMP
SAC.

2019.10
265

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
753908

blockchain, smart
contract, formal
verification, CPN

O artigo sobre sobre smart contracts e sua
aplicação em ambientes não confiáveis.

Trazendo propostas de soluções para lidar com
as vulnerabilidades, incluindo a verificação

formal. Além da apresentação de um método de
verificação formal baseado em Colored Petri
Nets (CPN) para verificar smart contracts em

sistemas blockchain.

O artigo apresenta o conceito de smart
contracts e sua aplicação em ambientes
não confiáveis, bem como a importância
da verificação formal para lidar com as

vulnerabilidades existentes nesse
contexto. Além disso, o texto introduz a
abordagem baseada em CPN como um
método de verificação formal para smart
contracts em sistemas blockchain, que

permite detectar não só
vulnerabilidades lógicas, mas também

não lógicas.

A metodologia
proposta envolve

o
desenvolvimento
de modelos de
smart contracts
com possíveis
modelos de

atacantes usando
modelagem

hierárquica de
CPN. Os modelos
são validados por

meio de
simulação passo a

passo para
verificar a
correção

funcional. A
tecnologia de
verificação de

modelo baseada
em lógica de
ramificação

temporal ASKCTL
nas ferramentas
CPN é utilizada
para detectar

vulnerabilidades
latentes nos smart

contracts. A
abordagem

também considera
os impactos do
comportamento
dos usuários na

detecção de
potenciais

vulnerabilidades
não lógicas.

IEEE Inglês CI1 Incluído
Formal verification of
deadlock avoidance
rules for AGV systems

S. Riazi; J.
Falk; A.
Greger; A.
Pettersson; M.
Fabian

2022

Automated Guided Vehicles
(AGVs) are increasingly popular
and bring many industrial
benefits. However, when a
number of AGVs autonomously
execute their itineraries, it is
possible for two or more AGVs to
prevent each other from
completing their tasks and cause
a deadlock from where the
system cannot progress. One way
that companies try to avoid this is
to, based on simulations,
generate deadlock avoidance
rules (DA-rules) that determine for
different scenarios how the AGVs
should behave. This paper
presents an application of
translating such DA-rules to
extended finite-state automata
and then to formally verify if the
rules actually do avoid deadlocks.
This is done by using information
of an existing system setup where
there are two major types of DA-
rules. Both of these can be
modelled as automata with
guards and actions that prevent a
transition from occurring if
associated conditions are not
fulfilled. These guards are
generated automatically for all the
DA-rules corresponding to the
current itineraries. For a chosen
itinerary a complete automaton is
generated, as well as automata
representing the DA-rules. Using
the supervisor synthesis tool
SUPREMICA, it is shown that the
existing DA-rules do not manage
to remove all deadlocks in all
cases. Even worse, the DA-rules
can lead to a fully blocking
system, even though a deadlock-
free solution does exist, as can be
shown by computing a supervisor
for the system without the DA-
rules.

10.1109
/MED54

222.
2022.98
37154

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
837154

-

O artigo apresenta uma demanda crescente por
veículos guiados automaticamente (AGVs) na

indústria e destaca a autonomia dos AGVs como
uma vantagem. Também é mencionado o

problema de deadlock circular que pode ocorrer
quando vários AGVs compartilham um mesmo

espaço limitado e necessitam de múltiplas
funções de segurança.

Os principais conceitos envolvem:
Automated Guided Vehicles (AGVs):
veículos guiados automaticamente

utilizados na indústria.
Deadlock circular: situação em que um
grupo de AGVs fica preso em um loop,
bloqueando o caminho um do outro e
impossibilitando a conclusão de suas

tarefas.
DA-rules: regras de prevenção de
deadlocks utilizadas para evitar a

ocorrência de deadlocks circulares em
sistemas com múltiplos AGVs.

Verificação formal: método de garantir
que um sistema atende a determinadas

especificações através de análise
matemática rigorosa.

O artigo apresenta
dois métodos para
criar DA-rules: um
método estático

que utiliza
informações sobre

a estrutura do
sistema e

algoritmos para
gerar as regras, e

um método
dinâmico que

escaneia
itinerários para

deadlocks
circulares

iminentes. O
método utilizado
neste trabalho

atual é baseado
em modelagem de

itinerários de
AGVs como

autômatos finitos
estendidos (EFA)

e na teoria de
controle de
supervisão.

IEEE Inglês CI1 Incluído
Formal Verification of
Dynamic and
Stochastic Behaviors
for Automotive
Systems

L. Huang; T.
Liang; E. -Y.
Kang 2019

Formal analysis of functional and
non-functional requirements is
crucial in automotive systems.
The behaviors of those systems
often rely on complex dynamics
as well as on stochastic
behaviors. We have proposed a
probabilistic extension of Clock
Constraint Specification
Language, called PrCCSL, for
specification of (non)-functional
requirements and proved the
correctness of requirements by
mapping the semantics of the
specifications into UPPAAL
models. Previous work is
extended in this paper by
including an extension of
PrCCSL, called PrCCSL*, for
specification of stochastic and
dynamic system behaviors, as
well as complex requirements
related to multiple events. To
formally analyze the system
behaviors/requirements specified
in PrCCSL*, the PrCCSL*
specifications are translated into
stochastic UPPAAL models for
formal verification. We implement
an automatic translation tool,
namely ProTL, which can also
perform formal analysis on
PrCCSL* specifications using
UPPAAL-SMC as an analysis
backend. Our approach is
demonstrated on two automotive
systems case studies.

10.1109
/ICECC

S.
2019.00

009

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
882750

Automotive Systems;
PrCCSL*;UPPAAL-
SMC;ProTL

O artigo aborda sobre a análise formal de
requisitos funcionais e não-funcionais, a qual cita
como crucial em sistemas automotivos. Propõe-

se uma extensão probabilística da Linguagem de
Especificação de Restrição de Relógio, chamada
PrCCSL, para especificação de requisitos (não)

funcionais.

Os principais conceitos envolvem:
Análise formal de requisitos.

Comportamentos de sistemas
automotivos baseados em dinâmicas

complexas e comportamentos
estocásticos.

Linguagem de Especificação de
Restrição de Relógio (CCSL) e sua

extensão probabilística PrCCSL.
A extensão PrCCSL∗ para lidar com

comportamentos de sistemas
estocásticos e dinâmicos, bem como
requisitos complexos relacionados a

múltiplos eventos.
UPPAAL, um ambiente de modelagem
e verificação de sistemas de tempo real.

A metodologia do
artigo envolve:

Mapeamento das
semânticas das

especificações em
modelos UPPAAL

para verificar a
correção dos

requisitos.
Tradução

automática de
especificações
PrCCSL∗ em

modelos UPPAAL
estocásticos para
verificação formal.
Implementação de

uma ferramenta
de tradução
automática e

análise formal de
especificações

PrCCSL∗
chamada ProTL.

Demonstração da
abordagem

proposta em dois
estudos de caso

de sistemas
automotivos.

IEEE Inglês CI1 Incluído
Formal verification of
Fischer’s real-time
mutual exclusion
protocol by the
OTS/CafeOBJ method

M. Nakamura;
S. Higashi; K.
Sakakibara; a.
Ogata

2020

Fischer's protocol is a well-known
real-time mutual exclusion
protocol for multiple processes.
The mutual exclusiveness is
guaranteed by treating time
aspects of transitions. In such a
multitask real-time system, since
processes run concurrently, the
size of the state space grows
exponentially. It is not easy to
verify time constraints of a give
system. Formal descriptions of
multitask real-time systems may
help us to verify time constraints
formally with computer supports.
In this paper, as a case study of
the OTS/CafeOBJ method, we
model Fischer's protocol as an
observational transition system,
describe it in CafeOBJ algebraic
specification language, and verify
that different processes do not
enter the critical section at the
same time by the proof score
method based on equational
reasoning implemented in
CafeOBJ interpreter.

10.2391
9

/SICE4
8898.

2020.92
40272

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
240272

Multitask real-time
system;Fischer’s real-
time mutual exclusion
protocol;Algebraic
specification;
Observational transition
system;Proof score
method

O artigo aborda sobre métodos formais,
CafeOBJ, e OTS/CafeOBJ método formal em

que um sistema é modelado como um sistema
de transição observacional (OTS), sua

especificação é descrita em CafeOBJ e as
propriedades são verificadas formalmente

usando o método de prova score implementado
em CafeOBJ.

Os principais conceitos envolvem:
Formal methods: abordagem

matemática para a especificação e
verificação de sistemas de software e

hardware.
CafeOBJ: linguagem formal de

especificação executável que fornece
execução de especificação com base

em uma teoria de reescrita.
OTS/CafeOBJ method: método formal
em que um sistema é modelado como
um sistema de transição observacional
(OTS), sua especificação é descrita em

CafeOBJ e as propriedades são
verificadas formalmente usando o

método de prova score implementado
em CafeOBJ.

A metodologia
usada apresenta
uma abordagem

para
especificação e

verificação formal
de sistemas

usando o
OTS/CafeOBJ

method e a teoria
de reescrita de

CafeOBJ. Propõe
um tipo de dados

abstrato para
descrever
sistemas

multitarefa em
tempo real em
OTS/CafeOBJ.

IEEE Inglês CI1 Incluído
Formalization and
Verification of Cyclic
Group

Y. Tang; Y.
Xu; P. Liu; G.
Zeng 2021

At present, the formal method is
an important system design
verification method, which
effectively compensates the
“incomplete” problem of the
traditional methods such as
simulation and testing in the
system design verification. Since
the logical method as a typical
formal method is our research
direction, we naturally choose the
first-order logic language in the
logical method to formalize Group
theory in the field of mathematics.
Based on some formalized
conclusions of Group theory in
TPTP, this paper completes the
formal description of missing
definitions about the Group in
TPTP, namely the order of
element in group, nth-order cyclic
group and Klein four-group. Some
propositions and theorems related
to these definitions are further
formal described, and the
correctness of these descriptions
is verified by the theorem tool
Prover9.

10.1109
/ISKE54

062.
2021.97
55331

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
755331

cyclic group;first-order
logic;formalization;
Prover9;verification

O artigo trata sobre o uso de software para
resolver problemas matemáticos, com destaque

para o desenvolvimento de sistemas que
automatizam a prova de teoremas matemáticos.
Traz também descrição de diversas ferramentas
utilizadas na formalização e prova de teoremas.

O artigo aborda da utilização de
sistemas computacionais para
formalizar e provar teoremas

matemáticos, com foco em grupos
cíclicos. É apresentado um breve

histórico das ferramentas utilizadas
para esta finalidade e exemplos de

pesquisas que utilizam esta abordagem.

O método
proposto no artigo

consiste na
formalização da

descrição de
grupos cíclicos de
ordem n, partindo
da formalização
da ordem dos
elementos no

grupo. Em
seguida, é
realizada a
dedução e

verificação do
grupo cíclico de

ordem n utilizando
a ferramenta
Prover9. O

objetivo final é
demonstrar a
correção da
formalização

realizada.

IEEE Inglês CI1 Incluído
Formalization of
Requirements for
Correct Systems

I. Sayar; J.
Souquieres 2020

Improving the quality of a system
begins by their requirements
elicitation: the challenge is to
bridge the gap between the
requirements of the client and
their formal specification defined
by the scientist. A first step
consists on understanding and
rewriting the existing
requirements. Along the
development process, we
introduce formal terms in the
requirements coming the formal
specification and make explicit
the interactions between them by
a glossary. The trace of the
requirements and their
corresponding specification is
managed and serves to simplify
the activities of validation and
verification. The validation is
studied since the understanding
of the first requirements and all
along the development of their
formal specification. The
verification may detect
imperfections like incoherences
and ambiguities in both the formal
specification and their
corresponding requirements.

10.1109
/FORM
REQ51

202.
2020.00

012

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
224522

-

O artigo aborda sobre documento de requisitos,
o qual é utilizado como um acordo vinculativo

entre os clientes e os fornecedores de
desenvolvimento de software e sistemas.

Mostrando também a linguagem natural, que
embora seja utilizada para facilitar a

comunicação entre as partes envolvidas, pode
introduzir ambiguidades indesejadas nos

requisitos e levar a mal-entendidos entre as
partes interessadas.

O artigo aborda que documento de
requisitos é utilizado como uma ponte

entre os clientes e fornecedores de
software e sistemas de

desenvolvimento. Mostrando que a
refinação é um processo que permite a
transformação de um modelo abstrato
em um modelo concreto, preservando
as propriedades e comportamentos do

modelo abstrato.

A metodologia
usada, apresenta
abordagens que

propõem o uso de
linguagem natural
controlada para a

descrição de
requisitos

melhoram a
clareza dos

requisitos, mas
não contribuem

diretamente para
o

desenvolvimento
de especificações
formais. Junto ao

refinamento e
validação dos

requisitos.

IEEE Inglês CI1 Incluído
Formalizing Cyber–
Physical System Model
Transformation Via
Abstract Interpretation

N. Jarus; S. S.
Sarvestani; A.
Hurson 2019

Model transformation tools assist
system designers by reducing the
labor-intensive task of creating
and updating models of various
aspects of systems, ensuring that
modeling assumptions remain
consistent across every model of
a system, and identifying
constraints on system design
imposed by these modeling
assumptions. We have proposed
a model transformation approach
based on abstract interpretation,
a static program analysis
technique. Abstract interpretation
allows us to define
transformations that are provably
correct and specific. This work
develops the foundations of this
approach to model
transformation. We define model
transformation in terms of
abstract interpretation and prove
the soundness of our approach.
Furthermore, we develop
formalisms useful for encoding
model properties. This work
provides a methodology for
relating models of different
aspects of a system and for
applying modeling techniques
from one system domain, such as
smart power grids, to other
domains, such as water
distribution networks.

10.1109
/HASE.
2019.00

025

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
673032

Modeling, Model
transformation, Formal
methods, Abstract
interpretation

O artigo comenta sobre sistemas ciberfísicos
críticos, onde possuem múltiplos requisitos

funcionais e não funcionais que apresentam
desafios aos seus projetistas. Os projetistas

precisam integrar componentes físicos, software
de controle cibernético e hardware, e processos

para operadores humanos em um sistema
completo. A abordagem de modelagem é
utilizada para ajudar na solução desses

desafios.

O artigo trata os conceitos:
Sistema ciberfísico crítico

Requisitos funcionais e não funcionais
Integração de componentes físicos,
software de controle cibernético e

hardware e processos para operadores
humanos em um sistema completo

Modelagem formalismos
Transformação de modelos

Interpretação abstrata
Semântica de sistema e modelo

Os autores
propõem uma
metodologia
baseada em
interpretação

abstrata para a
transformação de

modelos. A
abordagem utiliza
a formalização da

semântica do
sistema e do

modelo para criar
mapeamentos

precisos entre os
dois. A

transformação de
modelos é uma

técnica para
garantir a

consistência entre
os modelos e

identificar
restrições no

projeto do
sistema.

A abordagem
deve ser aplicável

a uma ampla
gama de sistemas

e vários
formalismos de

modelagem.

IEEE Inglês CI1 Incluído
Formalizing Loop-
Carried Dependencies
in Coq for High-Level
Synthesis

F. Faissole; G.
A.
Constantinides
; D. Thomas

2019

High-level synthesis (HLS) tools
such as VivadoHLS interpret
C/C++ code supplemented by
proprietary optimization directives
called pragmas. In order to
perform loop pipelining, HLS
compilers have to deal with non-
trivial loop-carried data
dependencies. In VivadoHLS, the
dependence pragma could be
used to enforce or to eliminate
such dependencies, but, the
behavior of this directive is only
informally specified through
examples. Most of the time
programmers and the compiler
seem to agree on what the
directive means, but the
accidental misuse of this pragma
can lead to the silent generation
of an erroneous register-transfer
level (RTL) design, meaning code
that previously worked may break
with newer more aggressively
optimised releases of the
compiler. We use the Coq proof
assistant to formally specify and
verify the behavior of the
VivadoHLS dependence pragma.
We first embed the syntax and
the semantics of a tiny imperative
language Imp in Coq and specify
a conformance relation between
an Imp program and a
dependence pragma based on
data-flow transformations. We
then implement semi-automated
methods to formally verify such
conformance relations for non-
nested loop bodies.

10.1109
/FCCM.
2019.00

056

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
735537

High level synthesis;
Formal proofs;Loop
dependencies

O artigo discute a utilização de ferramentas de
síntese de alto nível (HLS) em FPGA para

projetar circuitos complexos, destacando o uso
do VivadoHLS, um compilador HLS da Xilinx.

O artigo discute o problema de garantir
a correção de um design de hardware
gerado por um compilador HLS, dado
que o programador precisa especificar
diretivas para otimizar o desempenho.

Especificamente, o problema abordado
é a falta de uma especificação formal
do comportamento das diretivas de

dependência no VivadoHLS e a falta de
verificação de sua validade pelo

compilador.

O artigo propõe
uma abordagem
para verificar a
validade das
diretivas de

dependência
antes da

compilação em
hardware.A

abordagem utiliza
uma ferramenta

de análise estática
de código para

extrair
informações sobre
as dependências
entre loops. As
informações
extraídas são

usadas para gerar
uma

representação
formal das

dependências do
código, que é

então usada para
verificar a

validade das
diretivas de

dependência do
VivadoHLS.

IEEE Inglês CI1 Incluído
Formally Verifying
Sequence Diagrams for
Safety Critical Systems

X. Chen; F.
Mallet; X. Liu 2020

UML interactions, aka sequence
diagrams, are frequently used by
engineers to describe expected
scenarios of good or bad
behaviors of systems under
design, as they provide allegedly
a simple enough syntax to
express a quite large variety of
behaviors. This paper uses them
to express formal safety
requirements for safety critical
systems in an incremental way,
where the scenarios are
progressively refined after
checking the consistency of the
requirements. As before, the
semantics of these scenarios are
expressed by transforming them
into an intermediate semantic
model amenable to formal
verification. We rely on the Clock
Constraint Specification
Language (CCSL) as the
intermediate semantic language.
An SMT-based analysis tool
called MyCCSL is used to check
consistency of the sequence
diagrams. We compare these
requirements against actual
execution traces to prove the
validity of our transformation. In
some sense, sequence diagrams
and CCSL constraints both
express a family of acceptable
infinite traces that must include
the behaviors given by the finite
set of finite execution traces
against which we validate. Finally,
the whole process is illustrated on
partial requirements for a railway
transit system.

10.1109
/TASE4
9443.

2020.00
037

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
405319

Safety Critical Systems;
Sequence Diagram;
Clock Constraint
Specification Language;
Formal Verification;
Safety Requirements

O artigo mostra a segurança como aspecto
fundamental no desenvolvimento de sistemas

críticos, juntamente a formalização de requisitos
de segurança, que é essencial para garantir a

precisão da análise.

Os conceitos abordados pelo artigo
envolvem:

Requisitos de segurança em sistemas
críticos.

Linguagens formais e semi-formais.
Diagramas de sequência do UML.

Formalização e verificação de requisitos
de segurança.

Semântica de linguagens de
especificação.

A metodologia
abordada pelo
artigo envolve:

Transformação de
diagramas de
sequência em

uma linguagem
intermediária,

CCSL, que
permite a

descrição de
relações causais e

temporais.
Verificação de
consistência
automatizada
utilizando o

MyCCSL, um
analisador de

restrições CCSL
baseado em SMT.

Simulação do
comportamento

dos diagramas de
sequência em

semântica CCSL
para validar a
correção da

transformação.

IEEE Inglês CI1 Incluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319

From BPMN2 to Event
B: A Specification and
Verification Approach
of Workflow
Applications

A. Ben
Younes; Y.
Ben Daly
Hlaoui; L. Ben
Ayed; M.
Bessifi

2019

The BPMN2 language suffers
from the absence of a precise
formal semantics of the various
notations used, which often leads
to ambiguities. In addition, this
language does not have a proof
system that validates a BPMN2
specification. Consequently, the
use of a formal method, such as
Event B, is a solution for dealing
with the shortcomings found in
the BPMN2 language. We
propose in this paper a model-
driven approach based on meta-
model and meta-model
transformation implemented in
KerMeta to specify and formally
verify workflows.

10.1109
/COMP
SAC.

2019.10
266

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
754325

Workflow Meta-model
Transformation BPMN
EventB KerMeta

O artigo aborda a modelagem de processos de
negócios, utilizando a notação BPMN 2.0 como

base.
O BPMN 2.0 é uma proposta amplamente aceita
e utilizada, devido à sua versatilidade, cobertura

de todos os padrões de fluxo de trabalho e
capacidade de execução direta da

especificação.
No entanto, o BPMN 2.0 ainda sofre com a

ausência de uma semântica formal precisa das
várias notações usadas, levando a

ambiguidades e inconsistências.

O artigo trata da modelagem de
processos de negócios, que é um

processo fundamental para a
organização e gestão eficaz de uma

empresa.
A notação BPMN 2.0 é utilizada como
base para a modelagem, sendo uma

proposta amplamente aceita e utilizada.
Os métodos formais, como o método

Event B, são apresentados como uma
alternativa para a validação da

especificação BPMN 2.0.

O artigo propõe
um framework

orientado a
modelos que

transforma uma
especificação

BPMN em uma
especificação

formal usando a
notação Event B.
A proposta busca
combinar técnicas

semi-formais e
métodos formais

para
desenvolvimento

de software
prático e rigoroso.

IEEE Inglês CI1 e CI4 Incluído
From Prose to
Prototype: Synthesising
Executable UML
Models from Natural
Language

G. J.
Ramackers; P.
P. Griffioen;
M. B. J.
Schouten; M.
R. V.
Chaudron

2021

This paper presents a vision for a
development tool that provides
automated support for
synthesising UML models from
requirements text expressed in
natural language. This approach
aims to simplify the process of
analysis - i.e. moving from written
(and spoken) descriptions of the
functionality of a system and a
domain to an executable
specification of that system. The
contribution focuses on the AI
techniques used to transform
natural language into structural
and dynamic UML models.
Moreover, we envision a ‘human-
in-the-loop’ approach where an
interactive conversational
component is used based on
machine learning of the system
under construction and corpora of
external natural language texts
and UML models. To illustrate the
approach, we present a tool
prototype. As a scoping, this
approach targets data-intensive
systems rather than control-
intensive (embedded) systems.

10.1109
/MODE

LS-
C53483

.
2021.00

061

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
643623

UML;MDA;requirement
text;natural language
processing;model driven
engineering;executable
specification;transformer
architecture

O artigo aborda a necessidade de automação de
funcionalidades complexas em sistemas de

software interligados em uma sociedade digital.
Ele apresenta algumas tecnologias que

permitem a expressão de especificações
transformáveis em executáveis, mas que são de

difícil compreensão para especialistas de
domínio e usuários finais.

Conceitos do artigo:

Model Driven Architecture (MDA): uma
abordagem para o desenvolvimento de
software que utiliza modelos abstratos

para gerar código.
Unified Modeling Language (UML): uma
linguagem de modelagem gráfica para

especificar, visualizar e documentar
sistemas de software.

Domain Specific Languages (DSLs):
linguagens de programação

especializadas em um domínio
específico.

Model Driven Engineering (MDE): uma
abordagem para o desenvolvimento de

software que utiliza modelos de alto
nível para gerar código.

Metodologia do
artigo:

Utilização de
técnicas de

processamento de
linguagem natural

para mapear
documentos de
requisitos em
modelos UML.
Utilização de
modelos de

linguagem pré-
treinados para

lidar com a
ambiguidade da

linguagem natural.
Incorporação de

uma componente
"humano na alça"
para lidar com a
ambiguidade e

incompletude dos
documentos de

requisitos.

IEEE Inglês CI1 e CI4 Incluído
Fvil: Intermediate
language based on
formal verification
virtual machine

Zeng, Weiru
(57192409388
); Liao, Yong
(55213715800
); Qian,
Weizhong
(55710445300
); Yan, Zehui
(57219163124
); Yang, Zheng
(57198347264
); Li, Ang
(57219158755
)

2020

As the software scale continues
to increase, the software
development cycle becomes
more and more compact, which
takes more time to the software
test. How to test the software and
ensure its safety efficiently and
accurately is an urgent problem to
be solved. The formal verification
virtual machine (FSPVM) [1]
developed by Coq [2] assistant
verification tool can effectively
verify programs with formal
method. However, its widespread
application is heavily restricted by
the compliant syntax of the formal
specification language Lolisa [3]
and the mechanism of
generalized algebraic types
GADTs [4]. This paper proposes
a more user-friendly intermediate
language (FVIL) based on
FSPVM, which changes the
hierarchical structure of Lolisa
and expands the type of Lolisa,
makes the formal verification of
software easier to be applied in
practice. The experiments show
that the intermediate language
can make the formal method
easier to understand, apply and
expand. © Springer Nature
Singapore Pte Ltd 2020.

10.1007
/978-

981-15-
8101-
4_59

https://www.
scopus.
com/inward/
record.uri?
eid=2-s2.0-
850914997
46&doi=10.
1007%
2f978-981-
15-8101-
4_59&partn
erID=40&m
d5=75175d
a73d20936f
6685fab6bff
9414a

Coq; Formal verification;
Intermediate language;
Software security

O artigo discute o problema da verificação de
programas de software em um cenário de

aumento de escala e complexidade do software.
Apresenta o formal verification virtual machine

(FSPVM), desenvolvido pela ferramenta de
verificação assistida Coq, como uma forma
eficaz de verificar programas com o método

formal.

O artigo aborda a questão da
verificação formal de software, que

envolve o uso de métodos matemáticos
para garantir que um programa atenda
a certas especificações e propriedades.

A proposta de uma nova linguagem
intermediária (FVIL) baseada no

FSPVM é uma tentativa de tornar a
verificação formal mais acessível e fácil

de aplicar na prática, superando as
restrições da linguagem de

especificação formal Lolisa e do
mecanismo de tipos algébricos

generalizados (GADTs).

O artigo propõe
uma nova
linguagem

intermediária
(FVIL) baseada no
FSPVM, que visa

tornar a
verificação formal
de software mais

fácil de ser
aplicada na

prática.
Os autores
utilizaram

experimentos para
validar a eficácia

da nova
linguagem

intermediária em
tornar o método
formal mais fácil

de entender,
aplicar e expandir.

Scopus Inglês CI1 e CI4 Incluído
Integration of a formal
specification approach
into CPPS engineering
workflow for machinery
validation

B. Vogel-
Heuser; C.
Huber; S. Cha;
B. Beckert

2021

Cyber Physical Production
Systems (CPPS) operate for a
long time and face continuous
and incremental changes to follow
up varying requirements.
Interdisciplinary engineering of
CPPS is often subject to delay
and cost overrun; and quality
control may even fail due to the
lack of efficient information
exchange between multiple
involved actors. We propose to
integrate a formal requirement
specification approach, namely
Generalized Test Tables including
tool support, into industrial
workflows and present the
approach through extended
notations of Business Process
Model and Notation (BPMN),
namely BPMN++*, with the tool-
coupling aspect. The suggested
tooling enables automation
engineers to follow the defined
workflow systematically and
communicate easier through the
formally represented change
requirement. The approach is
demonstrated by two typical use
cases of changing a CPPS’
control software and showing the
result by means of an extended
BPMN++ model exemplarily.

10.1109
/INDIN4
5523.

2021.95
57505

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
557505

Engineering workflow;
CSCW (Computer
Supported Cooperative
Work);Software
development
management;PLC
programming;Control
code;Formal
specification;Information
management;Test
tables

O artigo discute as características dos sistemas
de produção ciberfísicos (CPPS) e destaca sua
complexidade, interconectividade, inteligência e
inovação. Além disso, ressalta a importância da
cooperação interdisciplinar e entre empresas em

todas as fases do projeto.

O conceito central do artigo é a
integração de uma abordagem de

especificação formal - Generalized Test
Tables (GTTs) - no fluxo de engenharia
de software de controle de CPPS. O

objetivo é atender às regulamentações
legais para produtos médicos e de
outros setores, bem como fornecer

documentação clara para mudanças
futuras.

O artigo descreve
a integração da
abordagem de
especificação

formal GTTs no
fluxo de

engenharia de
software de

controle de CPPS.
Além disso,

apresenta versões
de ferramentas de

suporte
apropriadas para

as tarefas de
engenharia ao

longo do ciclo de
vida do CPPS. A
avaliação dessas

ferramentas e
aspectos

adicionais, como
equipes e

organizações, são
representados em

uma notação
BPMN estendida.
O artigo também

enfatiza a
importância da

cooperação
interdisciplinar e
entre empresas

em todas as fases
do projeto.

IEEE Inglês CI1 Incluído
KAIROS: Incremental
Verification in High-
Level Synthesis
through Latency-
Insensitive Design

L. Piccolboni;
G. D.
Guglielmo; L.
P. Carloni

2019

High-level synthesis (HLS)
improves design productivity by
replacing cycle-accurate
specifications with untimed or
transaction-based specifications.
Obtaining high-quality RTL
implementations requires
significant manual effort from
designers, who must manipulate
the code and evaluate different
HLS-knob settings. These
modifications can introduce bugs
in the RTL implementations. We
present KAIROS, a methodology
for incremental formal verification
in HLS. KAIROS verifies the
equivalence of the RTL
implementations the designer
subsequently derives from the
same specification by applying
code manipulations and knobs.

10.2391
9

/FMCA
D.

2019.88
94295

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
894295

-

O artigo discute o uso cada vez mais frequente
da síntese de alto nível (HLS) na indústria e na

academia, como uma alternativa a
especificações baseadas em ciclos, como

Verilog. A especificação de alto nível é
organizada hierarquicamente, com módulos,

processos e regiões, e muitas vezes projetada
para expor interfaces insensíveis à latência.

Conceitos abordados no artigo:

High-level synthesis (HLS)
Especificações de alto nível

organizadas hierarquicamente
Interfaces insensíveis à latência
Design-space exploration (DSE)

RTL implementations
Latency-insensitive design (LID)

Valid e ready signals nas interfaces dos
módulos

Loop unrolling
Formal incremental verification

O artigo propõe
um método de

verificação formal
incremental das
manipulações de
código e botões

de síntese
aplicados à

especificação de
alto nível de um
design HLS. O

método baseia-se
na geração de

uma propriedade
formal que
relaciona a

especificação de
alto nível original

com a versão
modificada da
especificação.

IEEE Inglês CI1 Incluído
Methods and Tools for
Formal Verification of
Cloud Sisal Programs

V. N.
Kasyanov; E.
V. Kasyanova 2020

A cloud parallel programming
system CPPS being under
development at the Institute of
Informatics Systems is aimed to
be an interactive visual
environment of functional and
parallel programming for
supporting of computer science
teaching and learning. The
system will support the
development, verification and
debugging of architecture-
independent parallel Cloud Sisal
programs and their correct
conversion into efficient code of
parallel computing systems for its
execution in clouds. In the paper,
methods and tools of the CPPS
system intended for formal
verification of Cloud Sisal
programs are described.

10.1109
/MACIS
E49704

.
2020.00

047

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
195627

automated theorem
proof;Cloud Sisal;
deductive verification;
functional programming;
parallel programming

O artigo descreve o sistema CPPS, que é um
ambiente de programação em nuvem integrado
na linguagem Cloud Sisal. O sistema inclui um
interpretador que suporta interação do usuário
durante a criação e depuração de programas

funcionais Cloud Sisal, bem como um
compilador cruzado otimizado que constrói um

programa paralelo de acordo com sua
especificação funcional.

O artigo explora o CPPS, um sistema
que tem como objetivo permitir que

programadores de aplicativos
desenvolvam, verifiquem e depurem
programas Cloud Sisal em um estilo

visual sem levar em conta o
supercomputador de destino. O sistema
é baseado em uma representação de
gráfico interno de programas Cloud

Sisal, que é focada no processamento
visual e suporta a construção de

imagens visuais de representações de
gráfico interno de programas Cloud

Sisal e suas estruturas de dados
internas.

A metodologia
envolve o sistema
CPPS, que usa
uma verificação
dedutiva para a

verificação formal
de programas
Cloud Sisal. A
verificação é

realizada usando
um subsistema de

verificação
baseado em um

estratégia de
reforço de

condição de
verificação. O
subsistema de

verificação usa a
linguagem ACL2
como linguagem
de entrada e a
linguagem C

como linguagem
intermediária.

IEEE Inglês CI1 Incluído
Model Checking
Software in
Cyberphysical Systems

M. Sirjani; E.
A. Lee; E.
Khamespanah 2020

Model checking a software
system is about verifying that the
state trajectory of every execution
of the software satisfies formally
specified properties. The set of
possible executions is modeled
as a transition system. Each
"state" in the transition system
represents an assignment of
values to variables, and a state
trajectory (a path through the
transition system) is a sequence
of such assignments. For
cyberphysical systems (CPSs),
however, we are more interested
in the state of the physical system
than the values of the software
variables. The value of model
checking the software therefore
depends on the relationship
between the state of the software
and the state of the physical
system. This relationship can be
complex because of the real-time
nature of the physical plant, the
sensors and actuators, and the
software that is almost always
concurrent and distributed. In this
paper, we study different ways to
construct a transition system
model for the distributed and
concurrent software components
of a CPS. We describe a logical-
time based transition system
model, which is commonly used
for verifying programs written in
synchronous languages, and
derive the conditions under which
such a model faithfully reflects
physical states. When these
conditions are not met (a common
situation), a finer-grained event-
based transition system model
may be required. Even this finer-
grained model, however, may not
be sufficiently faithful, and the
transition system model needs to
be refined further to express not
only the properties of the
software, but also the properties
of the hardware on which it runs.
We illustrate these tradeoffs using
a coordination language called
Lingua Franca that is well-suited
to extracting transition system
models at these various levels of
granularity, and we extend the
Timed Rebeca language and its
tool Afra to perform this extraction
and then to perform model
checking.

10.1109
/COMP
SAC48

688.
2020.0-

138

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
202762

Cyberphysical systems,
Lingua Franca, Model
checking, Rebeca,
Verification

 O artigo aborda o desafio de verificar
propriedades de sistemas ciberfísicos, que

envolvem interações entre software e o mundo
físico. Uma das principais características desses
sistemas é sua natureza reativa e interativa, o

que torna a verificação mais desafiadora do que
para sistemas que dependem apenas da

execução de software em hardware.

 O conceito central do artigo é a
verificação formal de sistemas

ciberfísicos, que envolve não apenas a
verificação de propriedades de

software, mas também a interação
desse software com seu ambiente

físico. Para alcançar a verificação bem-
sucedida desses sistemas, é necessário
combinar as semânticas de software e

física.

O método
proposto no artigo

envolve a
modelagem e a

verificação formal
de sistemas

ciberfísicos. Para
lidar com a

interação entre
software e

ambiente físico, é
necessário

combinar as
semânticas de

software e física.
Além disso, o

artigo aponta para
a necessidade de

usar técnicas
adequadas para

lidar com sistemas
híbridos, que

possuem
aspectos discretos

e contínuos.

IEEE Inglês CI1 Incluído
Model-checking infinite-
state nuclear safety
I&C systems with
nuXmv

A. Pakonen 2021

For over a decade, model
checking has been successfully
used to formally verify the
instrumentation and control (I&C)
logic design in Finnish nuclear
power plant projects. One of the
practical challenges is that the
model checker NuSMV forces the
user to abstract the way analog
signals are processed in the
model, which causes extra
manual work, and could mask
actual design issues. In this
paper, we experiment with the
newer tool nuXmv, which
supports infinite-state modelling.
Using actual models from
practical industrial projects, we
show that after changing the
analog signal processing to be
based on real number math, the
analysis times are still
manageable. The disadvantage is
that certain useful types of formal
properties are not supported by
the infinite-state algorithms. We
also discuss the nuclear industry
specific features of I&C
programming languages, which
cause significant constraints on
domain-specific formal verification
method and tool development.

10.1109
/INDIN4
5523.

2021.95
57445

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
557445

formal verification;model
checking;control
engineering;software
safety

O artigo trata do uso de model checking, um
método de verificação formal, para garantir a

segurança de sistemas críticos de controle em
aplicações nucleares.

O foco principal do estudo é analisar a eficácia
do nuXmv, um model checker que suporta
modelos de estado infinito e variáveis de

números reais, em comparação com o NuSMV,
que só suporta modelos de estado finito e

variáveis inteiras.

O artigo apresenta a aplicação da
verificação formal em um cenário de
sistemas críticos de controle, com

destaque para aplicações nucleares. O
estudo compara as capacidades de dois
model checkers - NuSMV e nuXmv - em
lidar com modelos de lógica de controle

que contêm processamento de sinal
analógico. A análise formal é uma
técnica essencial para garantir a

correção e segurança de sistemas
críticos de controle, como aqueles
usados em instalações nucleares.

A metodologia
englobada no

artigo utiliza uma
abordagem

experimental para
comparar o

desempenho do
NuSMV e do
nuXmv na

verificação de
lógicas de

controle em
sistemas críticos

de controle. A
análise é

conduzida em um
caso de estudo
que envolve a

verificação formal
de um sistema de
controle usado em

uma instalação
nuclear.

IEEE Inglês CI1 Incluído

Modeling and Verifying
Storm Using CSP

H. Zhao; H.
Zhu; Y. Fang;
L. Xiao 2019

Due to the higher pursuit of
information timeliness, a number
of distributed stream processing
computation frameworks have
emerged, among which the most
successful and widely used at
present is Storm. Storm is a
stream-only processing
computation framework which can
deal with continuous streaming
data. This paper applies
Communicating Sequential
Processes (CSP), a formal
language in process algebra, to
analyze and model the
communication behaviors in the
workflow of Storm. Then, we
transform the established model
and use the refinement checking
tool Failures-Divergences
Refinement (FDR) to verify
whether it satisfies deadlock-free
and sequential consistency
properties.

10.1109
/HASE.
2019.00

037

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
673039

Storm, CSP, FDR,
Formal modeling,
Verification

O artigo trata do Storm, um framework de
processamento de fluxo de dados em tempo

real, programado em Clojure e Java. Ele é capaz
de lidar com o fluxo de dados de entrada em

milhões de vezes por segundo, com tolerância a
falhas e escalabilidade.

O artigo aborda os seguintes conceitos:

A modelagem formal é uma abordagem
para especificar sistemas de forma

matemática e rigorosa.
Communicating Sequential Processes
(CSP) é uma linguagem formal para

descrever a comunicação entre
processos concorrentes.

Failures-Divergences Refinement (FDR)
é uma ferramenta de verificação de

refinamento para verificar propriedades
de modelos CSP.

Com a
metodologia

aplicada ao artigo,
os autores
aplicaram a

linguagem formal
CSP para modelar

formalmente o
comportamento
de comunicação
entre processos

no fluxo de
trabalho do Storm

após o usuário
enviar Topology.
Eles usaram a

ferramenta FDR
para verificar se o

modelo CSPM
estabelecido
satisfaz as

propriedades de
ausência de
deadlock e

consistência
sequencial.

IEEE Inglês CI1 Incluído
NFA Based Formal
Modeling of Smart
Parking System Using
TLA +

S. Latif; A.
Rehman; N. A.
Zafar 2019

The smart objects are used to
sense, communicate, send and to
share information within a
network. Everything which is
connected directly or indirectly
within a network for the sake of
getting, analyze or interpreting
data known as IoT. There are
many proposed applications of
IoT infrastructure in smart city.
We have proposed model of
smart parking system in this
paper which is based on UML,
automata-based model and
formal methods. The depiction of
real-world parking system is done
in UML based models to indicate
the flow and working of the
system. Automata models are
used to convert UML diagram into
automated system which provides
smart mechanism of parking
system. Automated model of
automata is represented in terms
of states and transitions. Every
state has unique identity and
defined functionality. There are
many operations of parking
system which are modeled in this
paper including find free spaces,
search shortest path towards
empty slot, car entrance and exit
with in a region. A region is an
area of parking system which is
automated and use to sense a
vehicle, car entrance, exit or to
find a location. The formal method
techniques are used to formally
verify system properties using
available facilities available in
formal method tools. We have
used Temporal Logic of Actions
(TLA+) formal language to
validate and verify system
properties using formal
techniques. TLA+ is mathematical
based notation to describe a
system using discrete
mathematics concepts. We have
integrated these three
approaches to model parking
system from depiction side,
automation side and from the
angle of verification and validation
of the model.

10.1109
/CISCT.
2019.87
77445

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
777445

Parking;UML;Formal
methods;Verification
and validation;TLC

O artigo aborda a aplicação da Internet das
Coisas (IoT) na criação de um sistema de

estacionamento inteligente em uma cidade. São
utilizados modelos UML e automata para

representar o sistema de estacionamento e sua
automação. São empregadas técnicas de
métodos formais para validar e verificar as

propriedades do sistema.

O artigo engloba os conceitos de:

Internet das Coisas (IoT): conceito que
se refere a objetos conectados em rede

e capazes de enviar e receber
informações.

Modelagem UML: linguagem gráfica
utilizada para modelar sistemas de

software.
Autômatos: modelo matemático de

sistema que possui estados e
transições entre esses estados.

Métodos Formais: conjunto de técnicas
matemáticas e lógicas para especificar,

desenvolver e verificar sistemas.

A metodologia do
artigo engloba:

Modelagem UML:
utilizada para
representar o
sistema de

estacionamento
de forma gráfica.

Autômatos:
utilizados para
automatizar o

sistema de
estacionamento e

criar um
mecanismo

inteligente de
gerenciamento.

Técnicas de
Métodos Formais:

utilizadas para
validar e verificar
as propriedades

do sistema,
utilizando a

linguagem TLA+.

IEEE Inglês CI1 Incluído
On Complementing an
Undergraduate
Software Engineering
Course with Formal
Methods

B. Westphal 2020

Software systems continue to
pervade day-to-day life and so it
becomes increasingly important
to ensure the dependability,
safety, and security of software.
One approach to this end can be
summarised under the broad term
of formal methods, i.e., the formal
analysis of requirements,
software models, or programs.
Formal methods in this sense are
today used in many branches of
the software industry, such as the
huge internet companies,
aerospace, automotive, etc. and
even made their way into small to
medium sized enterprises. In this
article, we argue the opinion that
today's students (and tomorrow's
engineers) need to be provided
with a basic understanding of
formal methods in the broad
sense (what is it, how does it feel
to use it, what are advantages
and limitations) already in
undergraduate introductions to
software engineering. We
propose a generic course design
that complements (otherwise
completely ordinary)
undergraduate introductions to
software engineering with formal
semantics and analyses of
(visual) software description
languages. We report on five
years of teaching an
implementation of the course
design that indicate the feasibility
of teaching without sacrificing
classical software engineering
topics and without over-straining
students wrt. level or workload.

10.1109
/CSEET
49119.

2020.92
06234

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
206234

Teaching;Formal
Methods;Software
Engineering

 O artigo discute a importância crescente de
aspectos como confiabilidade, segurança e

segurança no desenvolvimento de software e
como as metodologias formais podem aumentar

a confiança nessas áreas. Ele fornece uma
definição abrangente de métodos formais, que
inclui formalização de requisitos, modelagem

formal e verificação de programas dedutivos, e
destaca a mudança recente na indústria em

relação à adoção desses métodos.

O artigo aborda o conceito de métodos
formais, que são definidos como

técnicas e ferramentas
matematicamente explicáveis. Ele

discute a ampla variedade de
significados que o termo "métodos

formais" pode ter e adota uma definição
ligeiramente mais estreita, que exclui
esboços informais. O artigo também

destaca a necessidade de
complementar os cursos de engenharia
de software existentes com aspectos de
métodos formais para melhor preparar
os alunos para suas carreiras futuras.

 O artigo propõe
novos objetivos de
aprendizado para
métodos formais e

apresenta uma
abordagem para
complementar as
introduções de
graduação à

engenharia de
software com uma

introdução
abrangente aos

métodos formais.
A ideia básica é

oferecer
experiência com
métodos formais

em uma
formalização o
mais simples

possível (mas não
trivial) e completar
todas as áreas de

tópicos (ou
conhecimento)

com
sublinguagens

totalmente
definidas de

linguagens de
descrição de

software formais.

IEEE Inglês CI1 Incluído
Open and Branching
Behavioral Synthesis
with Scenario Clauses

Asteasuain,
Fernando
(15076943400
); Calonge,
Federico
(57216952638
); Dubinsky,
Manuel
(57222081187
); Gamboa,
Pablo Daniel
(57216948794
)

2021

The Software Engineering
community has identified
behavioral specification as one of
the main challenges to be
addressed for the transference of
formal verification techniques
such as model checking. In
particular, expressivity of the
specification language is a key
factor, especially when dealing
with Open Systems and
controllability of events and
branching time behavior
reasoning. In this work, we
propose the Feather Weight
Visual Scenarios (FVS) language
as an appealing declarative and
formal verification tool to specify
and synthesize the expected
behavior of systems. FVS can
express linear and branching
properties in closed and Open
systems. The validity of our
approach is proved by employing
FVS in complex, complete, and
industrial relevant case studies,
showing the flexibility and
expressive power of FVS, which
constitute the crucial features that
distinguish our approach. © 2021
Latin American Center for
Informatics Studies. All Rights
Reserved.

10.1915
3

/CLEIEJ
.24.3.1

https://www.
scopus.
com/inward/
record.uri?
eid=2-s2.0-
851231618
16&doi=10.
19153%
2fCLEIEJ.
24.3.1
&partnerID=
40&md5=e5
ea19fd6b17
3bce3d90fb
0f22f1f07b

Behavioral
specifications;
Branching reasoning;
Open systems;
Synthesis

O artigo aborda a especificação comportamental
como um dos principais desafios a serem

superados para a transferência de técnicas de
verificação formal, como a verificação de

modelos.

O artigo aborda a importância da
especificação comportamental na
verificação formal de sistemas. A

linguagem FVS é apresentada como
uma ferramenta para especificar e

sintetizar comportamento em sistemas
abertos e fechados. É destacada a
flexibilidade e poder expressivo da

linguagem FVS como características
cruciais que distinguem a abordagem

proposta.

A metodologia do
artigo apresenta
casos de estudo

complexos,
completos e

relevantes da
indústria para

validar a
abordagem
proposta. É

descrito como a
linguagem FVS é

utilizada para
especificar e

sintetizar
comportamento

esperado de
sistemas.

Scopus Inglês CI1 Incluído
Pattern Based Model
Reuse Using Colored
Petri Nets

S. H. Askari;
S. A. Khan; M.
Haris; M.
Shoaib

2019

Colored Petri Net (CPN) is a
graphical modeling language for
simulation and modeling and for
verification of discrete event
systems. CPN allows developers
to define a model in the form of
reusable components. A model
component is an independent
element, which is specified using
a formalized description, can
conform to a certain component
standard, has a well-defined
interface, and encapsulates
certain behavior. Modern
components can help the
developer reuse existing models
according to their requirement as
it reduces the cost and time of
development. Composability is
the capability to select and
integrate various components to
fulfill user requirements.
Composability provides the
means to achieve reusability
where "reuse" is the ability of a
simulation component to be
reclaimed for various applications.
We propose a verification
framework for developers to
select and assemble CPN-based
components and verify their
composability. The goal of this
paper is to provide a pattern
which helps developer in making
models of concurrent systems.
We present a case study of a
restaurant model as proof of
concept. A verified composition
affirms reuse of model
components in a meaningful
manner by satisfying given
requirement specifications.

10.1109
/ICCSA.
2019.00

0-7

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
853585

Patterns, Pattern Reuse,
Colored Petri nets,
Composability
Verification

O artigo aborda a utilização de Colored Petri
Nets (CPN) como uma linguagem gráfica para

modelagem e verificação de sistemas
concorrentes. É proposto o uso de padrões de

reutilização de componentes em sistemas
concorrentes, com o objetivo de evitar soluções
redundantes e economizar tempo e esforço na

implementação.

O artigo aborda os conceitos de:

CPN: uma linguagem gráfica para
modelagem e verificação de sistemas

concorrentes.
Padrões de reutilização: soluções

genéricas para problemas recorrentes
em um domínio específico.

Composabilidade: a capacidade de
selecionar e mesclar diferentes
componentes para atender aos

requisitos do usuário.
Reutilização: o uso de componentes
existentes em diferentes aplicações.

A metodologia do
artigo propõe a

utilização de
padrões de

reutilização em
sistemas

concorrentes,
usando a

linguagem gráfica
CPN. O objetivo é

facilitar o
desenvolvimento

de modelos,
evitando soluções

redundantes e
economizando

tempo e esforço
na

implementação. O
artigo descreve o

processo de
busca por padrões

relacionados a
problemas

específicos em
um catálogo de

soluções.

IEEE Inglês CI1 Incluído
Prema: A Tool for
Precise Requirements
Editing, Modeling and
Analysis

Y. Huang; J.
Feng; H.
Zheng; J. Zhu;
S. Wang; S.
Jiang; W.
Miao; G. Pu

2019

We present Prema, a tool for
Precise Requirement Editing,
Modeling and Analysis. It can be
used in various fields for
describing precise requirements
using formal notations and
performing rigorous analysis. By
parsing the requirements written
in formal modeling language,
Prema is able to get a model
which aptly depicts the
requirements. It also provides
different rigorous verification and
validation techniques to check
whether the requirements meet
users' expectation and find
potential errors. We show that our
tool can provide a unified
environment for writing and
verifying requirements without
using tools that are not well inter-
related. For experimental
demonstration, we use the
requirements of the automatic
train protection (ATP) system of
CASCO signal co. LTD., the
largest railway signal control
system manufacturer of China.
The code of the tool cannot be
released here because the project
is commercially confidential.
However, a demonstration video
of the tool is available at https:
//youtu.be/BX0yv8pRMWs.

10.1109
/ASE.

2019.00
128

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
952250

formal methods;
requirements modeling;
requirements
verification;formal
engineering methods

O artigo apresenta uma ferramenta de
engenharia de requisitos chamada "Prema", que
utiliza uma linguagem de especificação formal

customizada para a escrita de requisitos.
A ferramenta permite que os usuários escrevam
especificações formais e complementem com

comentários em linguagem natural.

O artigo trata do campo de pesquisa de
verificação e validação de requisitos na

engenharia de requisitos.
A V&V pode reduzir o número de
defeitos antes da implantação do
software, sendo especialmente

importante para sistemas críticos de
segurança.

Especificações na indústria são
comumente especificadas em

linguagem natural, o que torna difícil a
utilização de técnicas rigorosas de V&V.

Ferramentas para engenharia de
requisitos são escassas.

O artigo descreve
o

desenvolvimento
da ferramenta

Prema e a
metodologia
utilizada para
customizar a

linguagem formal
com base nos

hábitos de escrita
de requisitos de

diferentes setores
(aeroespacial,

aviação e controle
de sinal de
ferrovia). A

metodologia
envolveu a

colaboração com
empresas em

cada setor para
entender suas

necessidades de
especificação e
verificação de
requisitos. O

artigo também
descreve como a

ferramenta foi
avaliada em

relação à sua
usabilidade e
eficácia em
termos de

redução de
defeitos e

economia de
tempo.

IEEE Inglês CI1 Incluído
Prioritizing Scenarios
based on
STAMP/STPA Using
Statistical Model
Checking

M. Tsuji; T.
Takai; K.
Kakimoto; N.
Ishihama; M.
Katahira; H.
Iida

2020

Recently, a hazard analysis
technique STAMP/STPA has
been widely accepted since it is
recognized as being suitable for
software-intensive systems. Using
STAMP/STPA, we can find
hazardous scenarios of the target
system that cannot be obtained
by other traditional hazard
analysis methods and those
scenarios can be used for
validation testing. However,
generally the number of obtained
scenarios can be huge and the
validation testing involves a
considerable cost. In this study,
we propose a method to prioritize
hazardous scenarios identified by
STAMP/STPA with the help of a
statistical model-checking
technique. We give a procedure
for systematically transforming
the model defined by
STAMP/STPA to a formal model
for a statistical model-checking
tool. We also show the usefulness
of the proposed method using an
example of train gate control
system.

10.1109
/ICSTW
50294.

2020.00
032

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
155811

STAMP/STPA;statistical
model checking;risk
analysis

O artigo apresenta a proposta de um método
para análise de riscos em sistemas complexos,

como sistemas de software, sistemas autônomos
e sistemas ciberfísicos.

O método se baseia no modelo de acidentes
STAMP, que permite capturar problemas

decorrentes de inconsistências entre
reconhecimentos subjetivos de componentes,

sistemas ou pessoas envolvidas.

O artigo discute a importância da
análise de riscos em sistemas

complexos, como uma medida para
prevenir acidentes.

STAMP é apresentado como uma
técnica que permite capturar problemas

decorrentes de inconsistências entre
reconhecimentos subjetivos de

componentes, sistemas ou pessoas
envolvidas.

O método
proposto do

artigo, consiste
em traduzir os
resultados das
atividades de

STAMP/STPA em
modelos formais,
que são utilizados

para calcular a
probabilidade de

cenários
perigosos. Utiliza-
se a ferramenta
UPPAAL SMC

para verificar os
modelos formais e

obter a
probabilidade de
ocorrência dos

cenários
perigosos.

IEEE Inglês CI1 Incluído
Proposal of an
Approach to Generate
VDM++ Specifications
from Natural Language
Specification by
Machine Learning

Y. Shigyo; T.
Katayama 2020

A natural language contains
ambiguous expressions. The
VDM++ is one of the
methodotogies on the formal
methods to write the specification
without ambiguity. It is difficult to
write a VDM++ specification,
because VDM++ is written by
strict grammar. This research
proposes an approach to
automatically generate the
VDM++ specification by machine
learning. This approach defines
four data structures and has four
processes. In this paper,
variables and only real type in the
VDM++ specification are
generated automatically by this
approach. In order to generate
the variables and real type, it is
necessary to extract the noun
corresponding to the variable
from the natural language
specification. Consequently, our
proposed approach can generate
a VDM++ specification and we
have confirmed that the
generated VDM++ specification is
grammatically correct.

10.1109
/GCCE
50665.

2020.92
92047

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
292047

natural language
specification;machine
learning;automatic
generation;formal
method;VDM++
specification

O artigo aborda a importância do uso de
métodos formais no desenvolvimento de
software para evitar bugs decorrentes da

ambiguidade presente na linguagem natural
utilizada na especificação do software. A

proposta do artigo é gerar automaticamente
especificações VDM++ a partir de especificações

em linguagem natural usando aprendizado de
máquina, a fim de superar as dificuldades de

descrever especificações em linguagem natural
de acordo com a gramática restrita do VDM++.

O conceito central do artigo é o uso de
métodos formais para melhorar a

qualidade do software, evitando bugs
decorrentes da ambiguidade na

linguagem natural usada nas
especificações do software. O uso de
VDM++ é apresentado como um dos

métodos formais para o
desenvolvimento de software, e o artigo

propõe uma abordagem para gerar
automaticamente especificações

VDM++ a partir de especificações em
linguagem natural usando aprendizado

de máquina.

O método
proposto no artigo

consiste em
quatro processos:

o pré-
processamento de

aprendizado de
máquina, o

aprendizado de
máquina em si, o

processo de
inserção de

identificadores e o
processo de
geração da

especificação
VDM++. A

abordagem de
aprendizado de

máquina é usada
para extrair os

nomes de
variáveis e

predicados das
especificações em
linguagem natural,

que são usados
para gerar a

especificação
VDM++.

IEEE Inglês CI1 Incluído
A Formal Methods
Approach to Security
Requirements
Specification and
Verification

Q. Rouland; B.
Hamid; J. -P.
Bodeveix; M.
Filali

2019

The specification and the
verification of security
requirements is one of the major
computer-based systems
challenges. Security requirements
need to be precisely specified
before a tool can manipulate
them, and though several
approaches to security
requirements specification have
been proposed, they do not
provide the scalability and
flexibility required in practice. We
take this problem towards an
integrated approach for security
requirement specification and
treatment during the software
architecture design time. The
general idea of the approach is to:
(1) specify security requirements
as properties of a modeled
system in a technology-
independent specification
language; (2) implement the
developed model in a suitable
language with tool support for
requirement satisfaction through
model verification; and (3)
suggest a set of security policies
to constrain the operation of the
system and to guarantee the
security properties. In the scope
of this paper, we use first-order
logic as a formalism that is
abstract and technology-
independent and Alloy as a tooled
language used in modeling and
software development. To
validate our work, we explore a
set of representative security
properties from categories based
on CIA classification in the
context of secure component-
based software architecture
development.

10.1109
/ICECC

S.
2019.00

033

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
882749

Engineering secure
systems;Security
properties;Formal
methods;Metamodel

O artigo aborda a utilização de métodos formais
na especificação e verificação de requisitos de

segurança em sistemas de software. Ele
apresenta uma abordagem que usa

especificações formais para modelar os
requisitos de segurança e verificações

automáticas para garantir que o sistema
implementa esses requisitos de maneira correta

e segura.

Métodos formais
Requisitos de segurança
Idiomas de Especificação

Verificação
Árvores de ataque

Verificação de modelo
Protocolos de segurança

Propriedades de segurança
Propriedades de segurança

lógica temporal

Metodologia
descrita no artigo:

Definição dos
requisitos de
segurança,
Modelagem

formal,
Especificação

formal dos
requisitos,

Verificação formal
dos requisitos,

Análise e
correção,

Validação e
avaliação,

Documentação.
Por fim, os

resultados da
especificação e

verificação formal
dos requisitos de
segurança são

documentados de
forma clara e

precisa. A
documentação

inclui a descrição
dos requisitos, a

modelagem
formal, os

resultados da
verificação e as
ações corretivas

realizadas.

IEEE Inglês CI1 Incluido
A Formal Verification
Method for Smart
Contract

X. Wang; X.
Yang; C. Li 2020

Smart contract is a computer
protocol running on the
blockchain, which is widely used
in various fields. However, its
security problems continue to
emerge. Therefore, it is
necessary to audit the security of
smart contract before it is
deployed on the blockchain.
Traditional testing methods
cannot guarantee a high reliability
and correctness required by the
smart contract. This paper shows
a method for using modeling,
simulation and verification
language (MSVL) and
propositional projection temporal
logic (PPTL) to model and verify
the smart contract. First, a
converter tool SOL2M which can
convert Solidity program to MSVL
program is developed. Then, the
security properties of the smart
contract are described by PPTL
and a standardized process to
verify the contract is designed
through UMC4M (Unified Model
Checker for MSVL). Finally, an
example is given to illustrate the
feasibility and practicability of this
method in smart contract
verification.

10.1109
/DSA51

864.
2020.00

011

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
331049

blockchains;Smart
Contract;formal
methods;MSVL

O artigo propõe o uso de métodos de verificação
formal para garantir a corretude de contratos

inteligentes. A verificação formal é uma técnica
rigorosa que utiliza lógica matemática para

provar propriedades e verificar se um sistema
atende a determinadas especificações. O artigo
destaca a importância da verificação formal na

garantia da segurança e confiabilidade dos
contratos inteligentes e fornece uma visão geral

das técnicas e ferramentas disponíveis para
realizar essa verificação.

Os principais conceitos abordados no
artigo são: Contratos inteligentes: Os
contratos inteligentes são programas

executados em plataformas blockchain
que automatizam e facilitam a execução
de transações confiáveis entre partes.
Verificação formal: A verificação formal
é uma abordagem que utiliza métodos

matemáticos para provar a corretude de
sistemas de software. Modelagem
formal: O artigo propõe o uso de

linguagens formais e ferramentas de
modelagem para descrever os contratos

inteligentes de forma precisa.
Propriedades do contrato: O artigo

enfatiza a importância de especificar
propriedades desejadas para os

contratos inteligentes. Técnicas de
verificação formal: O artigo discute

diferentes técnicas de verificação formal
que podem ser aplicadas aos contratos
inteligentes. Ferramentas e frameworks:

O artigo menciona a existência de
ferramentas e frameworks específicos
para a verificação formal de contratos
inteligentes. Benefícios da verificação
formal: O artigo destaca os benefícios
da verificação formal na garantia da

segurança e confiabilidade dos
contratos inteligentes.

A metodologia do
artigo descreve :

Definição do
objetivo;

Modelagem do
contrato

inteligente;
Especificação das

propriedades;
Seleção de

ferramentas e
técnicas de
verificação;

Execução da
verificação formal;
Interpretação dos

resultados;
Refinamento e

iteração. Essa é
uma visão geral
da metodologia

geralmente
seguida em um

artigo que
descreve uma
abordagem de

verificação formal
para contratos

inteligente.

IEEE Inglês CI1 Incluido
A Formally Verified
Monitor for Metric
First-Order Temporal
Logic

Schneider,
Joshua; Basin,
David; Krstic,
Srdan; Traytel,
Dmitriy

2019

Runtime verification tools must
correctly establish a
specification's validity or detect
violations. This task is difficult,
especially when the specification
is given in an expressive
declarative language that
demands a non-trivial monitoring
algorithm. We use a proof
assistant to not only solve this
task, but also to gain confidence
in our solution. We formally verify
the correctness of a monitor for
metric first-order temporal logic
specifications using the
Isabelle/HOL proof assistant.
From our formalization, we extract
an executable algorithm with
correctness guarantees and use
differential testing to find
discrepancies in the outputs of
two unverified monitors for first-
order specification languages.

10.1007
/978-3-
030-

32079-
9_18

- -

O artigo apresenta um monitor formalmente
verificado para a lógica temporal de primeira
ordem. Um monitor é um componente que
verifica continuamente se uma propriedade é
satisfeita por um sistema em execução. A
formalização e verificação desse monitor
garantem sua correção e confiabilidade. O
monitor proposto é formalmente verificado
usando técnicas e ferramentas de verificação
formal. Isso envolve a definição precisa do
monitor e de suas propriedades, a modelagem
formal do sistema e a prova matemática de que
o monitor cumpre suas especificações. O artigo
descreve em detalhes o método de verificação
utilizado, incluindo a escolha das ferramentas e
técnicas utilizadas. Pode envolver a utilização de
assistentes de prova, provadores de teoremas
ou outras abordagens de verificação formal.

Lógica Temporal de Primeira Ordem
Métrica, Monitoramento de

Propriedades Temporais, Formalização
do Monitor, Verificação Formal,

Metodologia de Verificação, Aplicações
e Implicações. Esses são os principais

conceitos abordados no artigo.

Metodologia
descrita no artigo:
O primeiro passo

é definir
precisamente a

lógica temporal de
primeira ordem

métrica, incluindo
os operadores,
predicados e

funções
disponíveis. O
próximo passo

envolve a
formalização do

monitor utilizando
uma linguagem de

especificação
formal. Isso inclui
a definição dos

componentes do
monitor, como os

estados,
transições,

condições de
aceitação e as

regras para
monitorar as
propriedades

temporais
especificadas.

Proxima etapa, as
propriedades

temporais que o
monitor irá

verificar são
especificadas
formalmente

utilizando a lógica
temporal de

primeira ordem
métrica. Com o

monitor
formalizado e as

propriedades
especificadas, o
próximo passo é

realizar a
verificação formal
do monitor. Isso
pode envolver o

uso de assistentes
de prova,

provadores de
teoremas ou

outras
ferramentas e
técnicas de

verificação formal.
A verificação

formal é realizada
para garantir a

correção do
monitor em
relação às

propriedades
temporais

especificadas.O
artigo pode incluir

uma avaliação
experimental do

monitor proposto.
Isso pode
envolver a

implementação do
monitor e a

execução de
testes em
diferentes

cenários para
verificar sua

eficácia,
desempenho e

escalabilidade. A
avaliação

experimental é
importante para
demonstrar a
viabilidade e
utilidade do
monitor em

ambientes reais.
Após a verificação

formal e a
avaliação

experimental, os
resultados são

discutidos e
interpretados. Isso

inclui a análise
dos casos de
sucesso, das

limitações
identificadas e das

possíveis
melhorias ou

extensões futuras
do monitor. O
artigo pode
comparar o

monitor proposto
com abordagens

existentes na
literatura. Isso

permite destacar
as vantagens,
diferenciais e
contribuições
específicas do

monitor em
relação a
trabalhos
anteriores.

Web of science Inglês CI1 Incluido
A Framework for
Verification-Oriented
User-Friendly Network
Function Modeling

G. Marchetto;
R. Sisto; F.
Valenza; J.
Yusupov

2019

Network virtualization and
softwarization will serve as a new
way to implement new services,
increases network functionality
and flexibility. However, the
increasing complexity of the
services and the management of
very large scale environments
drastically complicate detecting
alerts and configuration errors of
the network components.
Nowadays, misconfigurations can
be identified using formal analysis
of network components for
compliance with network
requirements. Unfortunately,
formal specification of network
services requires familiarity with
discrete mathematical modeling
languages of verification tools,
which requires extensive training
for network engineers to have the
essential knowledge. This paper
addresses the above-mentioned
problem by presenting a
framework designed for
automatically extracting
verification models starting from
an abstract representation of a
given network function. Using
guidelines provided in this paper,
vendors can describe the
forwarding behavior of their
network function in developer-
friendly, high-level languages,
which can be then translated into
formal verification models of
different verification tools.

10.1109
/ACCE

SS.
2019.29
29325

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
765301

Network function
modeling;model
extraction;NFV

Este artigo apresenta uma estrutura simplificada
para modelar VNFs (Virtualized Network
Functions) que se concentra apenas no

comportamento de encaminhamento, em vez de
detalhes específicos da NF. O objetivo é permitir

que os desenvolvedores forneçam uma
descrição formal de seus dispositivos de rede

para serem usados em processos de verificação.
A abordagem busca tornar mais fácil a

verificação formal de propriedades típicas
orientadas para a acessibilidade.

VNFs: Funções de rede virtualizadas
que realizam tarefas específicas em

uma rede virtualizada.
Modelagem VNF: O processo de criar

um modelo matemático que descreva o
comportamento de uma VNF.

Verificação formal: O processo de
verificar matematicamente se uma VNF
atende a determinadas propriedades ou

requisitos.
Comportamento de encaminhamento: O
comportamento da VNF em relação ao
encaminhamento de pacotes de dados

em uma rede.
Lógica temporal: Uma linguagem formal

para especificar propriedades que
dependem do tempo.

Propriedades orientadas para a
acessibilidade: Propriedades que

verificam se um sistema é capaz de
alcançar determinados estados

desejados a partir de estados iniciais
específicos.

O método se
baseia na técnica

de modelagem
que inclui uma
biblioteca de

modelagem, um
parser e um
tradutor. O

objetivo principal
do artigo é

fornecer uma
estrutura que
permita que

desenvolvedores
possam modelar
suas VNFs de

forma mais
amigável ao

usuário e fácil de
ser verificada
formalmente.

IEEE Inglês CI1 Incluido
A Lightweight
Framework for
Regular Expression
Verification

X. Liu; Y.
Jiang; D. Wu 2019

Regular expressions and finite
state automata have been widely
used in programs for pattern
searching and string matching.
Unfortunately, despite the
popularity, regular expressions
are difficult to understand and
verify even for experienced
programmers. Conventional
testing techniques remain a
challenge as large regular
expressions are constantly used
for security purposes such as
input validation and network
intrusion detection. In this paper,
we present a lightweight
verification framework for regular
expressions. In this framework,
instead of a large number of test
cases, it takes in requirements in
natural language descriptions to
automatically synthesize formal
specifications. By checking the
equivalence between the
synthesized specifications and
target regular expressions, errors
will be detected and
counterexamples will be reported.
We have built a web application
prototype and demonstrated its
usability with two case studies.

10.1109
/HASE.
2019.00

011

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
673038

regular expression;
verification;natural
language;formal
specification;domain-
specific language

O artigo apresenta um framework leve para a
verificação de expressões regulares. O foco

principal do artigo é a verificação de expressões
regulares. As expressões regulares são

utilizadas para descrever padrões em texto, e a
verificação dessas expressões é importante para
garantir que elas estejam corretamente definidas
e não causem comportamentos inesperados. O

artigo descreve os métodos de verificação
utilizados no framework proposto. Isso pode
incluir técnicas de análise estática, model

checking ou outras abordagens de verificação
formal. O framework proposto pode incluir uma
linguagem de especificação que permite aos

usuários descrever as expressões regulares a
serem verificadas. Essa linguagem pode

fornecer recursos adicionais, como suporte a
operadores avançados, quantificadores e

construções específicas da expressão regular.

Os principais conceitos abordados no
artigo são os seguintes: Expressões

Regulares, Verificação de Expressões
Regulares, Framework Leve, Métodos

de Verificação, Detecção de Problemas,
Linguagem de Especificação, Avaliação

Experimental, Comparação com
Abordagens Anteriores.

Metodologia
descrita no artigo:
Identificação dos

requisitos de
verificação: O

primeiro passo é
identificar os

requisitos para a
verificação de
expressões

regulares. Isso
envolve entender

os tipos de
problemas que

podem ocorrer em
expressões

regulares e definir
os critérios de

verificação, como
detecção de erros

de sintaxe,
ambiguidades,

vulnerabilidades
de segurança ou

ineficiências.
Design do

framework: Com
base nos
requisitos

identificados, é
realizado o design

do framework.
Isso envolve a
definição das
estruturas de

dados, algoritmos
e métodos que
serão utilizados

para a verificação
das expressões

regulares. O
framework deve

ser projetado para
ser leve, eficiente

e facilmente
implementável.

Implementação do
framework: Nesta

etapa, o
framework
proposto é

implementado de
acordo com o

design
estabelecido. Isso
pode envolver a
codificação dos

algoritmos e
estruturas de

dados, a criação
de bibliotecas ou

módulos de
software e a

integração com
outras

ferramentas ou
ambientes de

desenvolvimento.
Desenvolvimento
de casos de teste:

É necessário
desenvolver um

conjunto de casos
de teste

representativos
para avaliar o

desempenho e a
eficácia do

framework. Os
casos de teste
devem cobrir

diferentes
aspectos das
expressões

regulares e incluir
exemplos comuns

de problemas a
serem detectados.

Execução dos
casos de teste: Os

casos de teste
desenvolvidos são

executados no
framework

implementado.
Isso envolve a
aplicação dos
algoritmos de
verificação às
expressões
regulares

fornecidas nos
casos de teste e a

avaliação dos
resultados

obtidos. Análise e
avaliação dos
resultados: Os
resultados da
execução dos
casos de teste

são analisados e
avaliados. Isso

pode envolver a
verificação da

detecção correta
de problemas, a

medição do
desempenho do

framework (como
tempo de

execução e
consumo de
recursos) e a

comparação com
resultados

esperados ou com
outras

abordagens
existentes.

Discussão dos
resultados: Os
resultados são
discutidos em

termos de
eficácia,

desempenho e
aplicabilidade do

framework
proposto. São
destacadas as
contribuições e
limitações do
framework em

relação a outros
trabalhos

existentes e são
apresentadas

possíveis
melhorias ou

extensões para
futuras pesquisas.
Exemplos de uso:

O artigo pode
fornecer exemplos
práticos de como

utilizar o
framework

proposto para
verificar

expressões
regulares em

diferentes
contextos. Isso

ajuda a ilustrar a
aplicabilidade e a

utilidade do
framework em
cenários reais.

IEEE Inglês CI1 Incluido
A Methodology for
Developing a Verifiable
Aircraft Engine
Controller from Formal
Requirements

M. Luckcuck;
M. Farrell; O.
Sheridan; R.
Monahan

2022

Verification of complex, safety-
critical systems is a significant
challenge. Manual testing and
simulations are often used, but
are only capable of exploring a
subset of the system's reachable
states. Formal methods are
mathematically-based techniques
for the specification and
development of software, which
can provide proofs of properties
and exhaustive checks over a
system's state space. In this
paper, we present a formal
requirements-driven
methodology, applied to a model
of an aircraft engine controller
that has been provided by our
industrial partner. Our
methodology begins by
formalising the controller's
natural-language requirements
using the (pre-existing) Formal
Requirements Elicitation Tool
(FRET), iteratively, in consultation
with our industry partner. Once
formalised, FRET can
automatically translate the
requirements to enable their
verification alongside a Simulink
model of the aircraft engine
controller; the requirements can
also guide formal verification
using other approaches. These
two parallel streams in our
methodology seek to combine the
results from formal requirements
elicitation, classical verification
approaches, and runtime
verification; to support the
verification of aerospace systems
modelled in Simulink, from the
requirements phase through to
execution. Our methodology
harnesses the power of formal
methods in a way that
complements existing verification
techniques, and supports the
traceability of requirements
throughout the verification
process. This methodology
streamlines the process of
developing verifiable aircraft
engine controllers, by ensuring
that the requirements are
formalised up-front and useable
during development. In this paper
we give an overview of FRET,
describe our methodology and
work to-date on the formalisation
and verification of the
requirements, and outline future
work using our methodology.

10.1109
/AERO5
3065.

2022.98
43589

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
843589

-

O artigo se concentra na verificação formal do
controlador de motor de aeronave, que é uma

técnica matemática para verificar se o
controlador atende a determinadas propriedades
ou requisitos. O artigo apresenta um estudo de

caso aplicado ao desenvolvimento de um
controlador de motor de aeronave,

demonstrando a eficácia da abordagem
proposta.

O artigo se concentra na verificação
formal do controlador de motor de

aeronave para garantir que o sistema
atenda a todos os requisitos de

segurança; A modelagem formal é o
processo de criar um modelo

matemático de um sistema usando uma
linguagem de especificação formal;

TLA+ é uma linguagem de
especificação formal usada para

descrever sistemas de software e
hardware; TLC é uma ferramenta de

verificação de modelo usada para
verificar se um modelo TLA+ atende a

determinadas propriedades ou
requisitos: O artigo apresenta um

estudo de caso em que a metodologia
proposta foi aplicada ao

desenvolvimento de um controlador de
motor de aeronave.

Metodologia
ultilizada: O artigo

propõe uma
metodologia que

inclui várias
etapas, como

modelagem formal
de requisitos,
geração de
modelos de

comportamento
do controlador,

verificação formal
e validação do

sistema. A
metodologia é
projetada para
garantir que o
controlador de

motor de
aeronave atenda

a todos os
requisitos de
segurança

necessários.

IEEE Inglês CI1 Incluido

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589

A Research Landscape
on Formal Verification
of Software
Architecture
Descriptions

C. Araújo; E.
Cavalcante; T.
Batista; M.
Oliveira; F.
Oquendo

2019

One of the many different
purposes of software architecture
descriptions is contributing to an
early analysis of the architecture
with respect to quality attributes.
The critical nature of many
software systems calls for formal
approaches aiming at precisely
verifying if their designed
architectures can meet important
properties such as consistency,
completeness, and correctness.
In this context, it is worthwhile
investigating the role of
architecture descriptions to
support the formal verification of
software architectures to ensure
their quality, as well as how such
a process happens and is
supported by existing languages
and verification tools. To evaluate
the research landscape on this
subject, we have carried out a
systematic mapping study in
which we collected and analyzed
studies available at the literature
on formal verification of
architecture descriptions. This
work contributes with (i) a
structured overview and
taxonomy of the current state of
the art on this topic and (ii) the
elicitation of important issues to
be addressed in future research.

10.1109
/ACCE

SS.
2019.29
53858

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
901988

Architecture description;
formal verification;
property specification;
software architectures;
systematic mapping

O artigo se concentra na verificação formal de
descrições de arquitetura de software, que é
uma técnica matemática para verificar se um

sistema atende a determinadas propriedades ou
requisitos, discute várias abordagens e

ferramentas para a verificação formal, incluindo
model checking, bem como ferramentas como

SPIN, UPPAAL.

Arquitetura de software: A estrutura
organizacional de um sistema de
software, que inclui componentes,
conexões entre os componentes e
restrições sobre essas conexões.

Descrições de arquitetura de software:
Representações formais ou informais

da arquitetura de um sistema de
software.

Verificação formal: O processo de usar
técnicas matemáticas para verificar se

um sistema atende a determinadas
propriedades ou requisitos.

Modelagem formal: O processo de criar
um modelo matemático que descreve o

comportamento de um sistema.
Lógica temporal: Uma linguagem formal

para especificar propriedades que
dependem do tempo.

Abordagens de verificação: Diferentes
técnicas de verificação formal, como

model checking, teoria de tipos e provas
formais.

Ferramentas de verificação:
Ferramentas de software que

automatizam o processo de verificação
formal, como SPIN, UPPAAL.

Metodologias
utilizadas no

artigo são: model
checking, teoria
de tipos, provas

formais e
ferramentas de

verificação como
SPIN, NuSMV e
UPPAAL. Além
disso, o artigo

também discute
questões de

escalabilidade,
complexidade e

integração com o
processo de

desenvolvimento
de software que
são relevantes

para a verificação
formal de

descrições de
arquitetura de

software.

IEEE Inglês CI1 Incluido
An Educational Case
Study of Using SysML
and TTool for
Unmanned Aerial
Vehicles Design

L. Apvrille; P.
de Saqui-
Sannes; R.
Vingerhoeds

2020

This article shares an experience
in using the systems modeling
language (SysML) for the design
and formal verification of
unmanned aerial vehicles (UAVs).
In particular, this article shows
how our approach helps detecting
early design errors. A UAV in
charge of taking pictures serves
as an educational and running
example throughout this article.
The SysML model of the UAV is
simulated and formally verified
using the free and open-source
tool named TTool. This
educational case study gives the
authors of this article an
opportunity to draw lessons from
teaching SysML.

10.1109
/JMASS

.
2020.30
13325

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
153801

Educational case study;
model formal
verification;model
simulation;systems
modeling language
(SysML);unmanned
aerial vehicle (UAV)

O artigo apresenta uma abordagem educacional
para o uso do SysML e do TTool no design de
VANTs, com um estudo de caso detalhado e

uma discussão sobre os resultados e as
contribuições para a educação em engenharia

de sistemas.

Principais conceitos abordados no
artigo são: System Modeling Language
(SysML): O SysML é uma linguagem de

modelagem de sistemas que permite
representar, analisar e simular sistemas

complexos, incluindo hardware,
software e processos. TTool: O TTool é

uma ferramenta de modelagem e
simulação de sistemas baseada no

SysML, que permite criar modelos de
sistemas, realizar simulações, validar e

verificar requisitos, e gerar código a
partir do modelo. Veículos Aéreos Não

Tripulados (VANTs): Os VANTs são
sistemas complexos que combinam
hardware, software e sistemas de

controle para permitir a operação de um
veículo aéreo sem a presença de um

piloto a bordo. Modelagem de
Requisitos: A modelagem de requisitos
é uma atividade essencial no processo
de design de sistemas, que consiste em

identificar, documentar e analisar os
requisitos do sistema, a fim de garantir
que o sistema desenvolvido atenda às

necessidades e expectativas do
usuário. Simulação e Validação: A

simulação e a validação são etapas
importantes no processo de design de
sistemas, que permitem verificar se o

sistema desenvolvido atende aos
requisitos especificados e se comporta

de acordo com o esperado.

A metodologia
adotada no estudo
de caso incluiu as
seguintes etapas:
Identificação dos

requisitos do
sistema;

Modelagem do
sistema no TTool;

Simulação do
sistema; Análise
dos resultados;

Geração de
código; O estudo

de caso foi
conduzido em um

ambiente
educacional, com
a participação de

estudantes de
engenharia. O

objetivo do estudo
foi demonstrar a

utilidade do
SysML e do TTool

no design de
sistemas

complexos, e
proporcionar aos
estudantes uma

experiência
prática em

modelagem e
simulação de

sistemas.

IEEE Inglês CI1 Incluido
Artifact of Bounded
Exhaustive Search of
Alloy Specification
Repairs

S. Gutiérrez
Brida; G.
Regis; G.
Zheng; H.
Bagheri; T.
Nguyen; N.
Aguirre; M.
Frias

2021

BeAFix is a tool and technique for
automated repair of faulty models
written in Alloy, a declarative
formal specification language
based on first-order relational
logic. BeAFix takes a faulty Alloy
model, i.e., an Alloy model with at
least one analysis command
whose result is contrary to the
developer's expectation, and a set
of suspicious specification
locations, and explores the space
of fix candidates consisting of all
alternative expressions for the
indicated locations, that can be
constructed by bounded
application of a family of mutation
operations. BeAFix can work with
any kind of specification oracle,
from Alloy test cases to standard
predicates and assertions
typically found in Alloy
specifications, and is backed with
a number of sound pruning
strategies, for efficient exploration
of fix candidate search spaces.

10.1109
/ICSE-
Compa
nion526

05.
2021.00

093

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
402585

-

As principais características do artigo incluem:
Descrição detalhada da ferramenta: O artigo
descreve em detalhes a ferramenta de busca

exaustiva com limites para a identificação
automatizada e correção de erros em

especificações Alloy. Estudo experimental,
Disponibilização do código fonte, Acessibilidade

da ferramenta, Contribuição para a área de
Engenharia de Software. O artigo contribui para

a área de Engenharia de Software, ao
apresentar uma ferramenta automatizada para a

identificação e correção de erros em
especificações Alloy. A ferramenta pode ser útil
para projetistas de software, pesquisadores e
estudantes que trabalham com especificações

Alloy em seus projetos.

Principais conceitos apresentados no
artigo incluem: Especificações Alloy,

Erros em especificações Alloy,
Ferramentas de reparo de

especificações, Avaliação experimental.

 A metodologia
usada pelos

autores envolveu
os seguintes
passos: Os

autores
implementaram a
ferramenta BELT

em Java. A
ferramenta usa

uma abordagem
de busca

exaustiva com
limites para

encontrar reparos
em especificações

Alloy.
Selecionaram um

conjunto de
especificações de
teste com erros
conhecidos para
avaliar a eficácia

da ferramenta
BELT.

Executaram uma
série de

experimentos para
avaliar a eficácia

da ferramenta
BELT em

comparação com
outras

ferramentas de
reparo de

especificações.
Analisaram os
resultados dos

experimentos para
determinar a
eficácia da

ferramenta BELT
em comparação

com outras
ferramentas de

reparo de
especificações.

IEEE Inglês CI1 e CI4 Incluido
AutoSVA:
Democratizing Formal
Verification of RTL
Module Interactions

M. Orenes-
Vera; A.
Manocha; D.
Wentzlaff; M.
Martonosi

2021

Modern SoC design relies on the
ability to separately verify IP
blocks relative to their own
specifications. Formal verification
(FV) using SystemVerilog
Assertions (SVA) is an effective
method to exhaustively verify
blocks at unit-level. Unfortunately,
FV has a steep learning curve
and requires engineering effort
that discourages hardware
designers from using it during
RTL module development. We
propose AutoSVA, a framework to
automatically generate FV
testbenches that verify liveness
and safety of control logic
involved in module interactions.
We demonstrate AutoSVA’s
effectiveness and efficiency on
deadlock-critical modules of
widely-used open-source
hardware projects.

10.1109
/DAC18

074.
2021.95
86118

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
586118

automatic;modular;
formal;verification;SVA

Características principais do artigo incluem:
Verificação formal, Módulos RTL, Automação,

Aprendizado de máquina, Avaliação
experimental, o artigo propõe uma plataforma de

automação de verificação formal para
democratizar a verificação de interações de

módulos RTL e torná-la mais acessível e fácil de
usar para não especialistas em design e

verificação de hardware.

Principais conceitos do artigo incluem:
Verificação formal: A verificação formal

é uma técnica automatizada para
verificar se um sistema digital satisfaz
determinadas propriedades lógicas.

RTL: RTL significa "Register-Transfer
Level" e é uma abstração de nível mais
baixo para circuitos digitais. Módulos
RTL: Os módulos RTL são blocos de
circuitos digitais implementados em

nível de registro. Propriedades lógicas:
As propriedades lógicas são

declarações que descrevem o
comportamento esperado de um

sistema digital. As propriedades lógicas
podem ser expressas em linguagens

formais como SVA (Assertion
SystemVerilog) e são usadas na

verificação formal para verificar se um
sistema satisfaz essas propriedades.

Aprendizado de máquina: O
aprendizado de máquina é uma técnica
de inteligência artificial que permite que
um sistema aprenda a partir de dados e
experiência, em vez de ser programado

explicitamente. Automação: A
automação refere-se ao processo de

automatizar tarefas repetitivas ou
trabalhosas usando software ou

sistemas de computação. No contexto
da verificação formal, a automação é
usada para gerar verificações formais

automaticamente a partir de
especificações de entrada, reduzindo a

necessidade de esforço manual por
parte dos projetistas e verificadores.

A metodologia
proposta pelo

artigo é
implementada em
uma ferramenta

chamada
AutoSVA. A

ferramenta recebe
uma especificação

de entrada na
forma de um
diagrama de

blocos ou uma
descrição textual

e gera
automaticamente

verificações
formais para

interações entre
módulos RTL. A

ferramenta é
avaliada em

vários exemplos
de caso de estudo

e os resultados
mostram que a

abordagem
proposta é capaz

de gerar
verificações

formais precisas e
eficientes.

IEEE Inglês CI1 Incluido
CIM-CSS: A Formal
Modeling Approach to
Context Identification
and Management for
Intelligent Context-
Sensitive Systems

A. M.
Baddour; J.
Sang; H. Hu;
M. A. Akbar;
H. Loulou; A.
Ali; K. Gulzar

2019

Context modeling is often used to
relate the context in which a
system will operate to the entities
of interest in the problem domain.
It remains the case that context
models are inadequate in
emerging computing paradigms
(e.g., smart spaces and the
Internet of Things), in which the
relevance of context is shaped
dynamically by the changing
needs of users. Formal models
are required to fuse and interpret
contextual information obtained
from the heterogeneous sources.
In this paper, we propose an
integrated and formal context
modeling approach for intelligent
systems operating in the context-
sensitive environments. We
introduce a goal-driven, entity-
centered identification method for
determining which context
elements are influential in
adapting the system behavior. We
then describe a four-layered
framework for metamodeling the
identification and management of
context. First, the framework
presents a formal metamodel of
context. A formalization of context
using the first-order logic with
relational operators is then
presented to specify formally the
context information at different
abstraction levels. The
metamodel, therefore, prepares
the ground for building a formal
modeling language and
automated support tool (https:
//github.com/metamodeler/CIM-
CSS/). The proposed model is
then evaluated using an
application scenario in the smart
meeting rooms domain, and the
results are analyzed qualitatively.

10.1109
/ACCE

SS.
2019.29
31001

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
772087

Context modeling;
context aware systems;
unified modeling
language;computational
modeling;object
recognition;data models;
complexity theory

A principal característica do artigo é a proposta
de uma metodologia para modelar formalmente
o contexto em sistemas sensíveis ao contexto. A
abordagem proposta é baseada na linguagem

IFML (Interaction Flow Modeling Language) e na
ferramenta de modelagem Enterprise Architect.

Os principais conceitos abordados no
artigo incluem: Contexto: O contexto se

refere às condições e informações
relevantes para um determinado

usuário ou situação. Modelagem formal:
A modelagem formal é uma abordagem
sistemática para a criação de modelos
matemáticos precisos e completos de

sistemas. IFML (Interaction Flow
Modeling Language): IFML é uma

linguagem de modelagem visual para a
criação de modelos de interface do

usuário e interação. Verificação formal:
A verificação formal é uma técnica para

verificar se um sistema atende a um
conjunto de requisitos. Gerenciamento

de contexto: O gerenciamento de
contexto se refere ao processo de

coleta, análise e uso do contexto para
adaptar o comportamento do sistema às

necessidades do usuário ou da
situação.

A metodologia
proposta consiste
em cinco etapas

principais:
Identificação de
contexto: Nesta

etapa, os
contextos

relevantes para o
sistema são

identificados e
definidos.

Modelagem do
contexto: Nesta

etapa, o contexto
é modelado
formalmente

usando a
linguagem IFML e

a ferramenta
Enterprise

Architect. São
criados diagramas
de contexto que

mostram as
entidades,

propriedades e
relacionamentos
relevantes para o

contexto.
Verificação formal:

Nesta etapa, a
modelagem do

contexto é
verificada

formalmente para
garantir que está

correta e
consistente.

Implementação:
Nesta etapa, a
modelagem do

contexto é
implementada no

sistema.
Monitoramento e

atualização: Nesta
etapa, o contexto

é monitorado
continuamente e

atualizado
conforme

necessário.

IEEE Inglês CI1 Incluido
Dargent: A Silver Bullet
for Verified Data Layout
Refinement

Chen Z,Lafont
A,O'Connor L,
Keller G,
McLaughlin C,
Jackson V,
Rizkallah C

2023

Systems programmers need fine-
grained control over the memory
layout of data structures, both to
produce performant code and to
comply with well-defined
interfaces imposed by existing
code, standardised protocols or
hardware. Code that manipulates
these low-level representations in
memory is hard to get right.
Traditionally, this problem is
addressed by the implementation
of tedious marshalling code to
convert between compiler-
selected data representations and
the desired compact data formats.
Such marshalling code is error-
prone and can lead to a
significant runtime overhead due
to excessive copying. While there
are many languages and systems
that address the correctness
issue, by automating the
generation and, in some cases,
the verification of the marshalling
code, the performance overhead
introduced by the marshalling
code remains. In particular for
systems code, this overhead can
be prohibitive. In this work, we
address both the correctness and
the performance problems. We
present a data layout description
language and data refinement
framework, called Dargent, which
allows programmers to
declaratively specify how
algebraic data types are laid out
in memory. Our solution is applied
to the Cogent language, but the
general ideas behind our solution
are applicable to other settings.
The Dargent framework
generates C code that
manipulates data directly with the
desired memory layout, while
retaining the formal proof that this
generated C code is correct with
respect to the functional
semantics. This added
expressivity removes the need for
implementing and verifying
marshalling code, which
eliminates copying, smoothens
interoperability with surrounding
systems, and increases the
trustworthiness of the overall
system.

10.1145
/357124

0

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35712
40;http://dx.
doi.org/10.
1145/35712
40

certifying compiler, data
refinement, systems
programming

O artigo apresenta uma nova ferramenta
baseada em verificação formal para refinar o

layout de dados em sistemas de computação,
com um estudo de caso para demonstrar sua
eficácia e discute possíveis áreas de pesquisa

futura.

Refinamento do layout de dados: O
processo de reorganizar os dados em

um sistema de computação para
melhorar o desempenho e a eficiência.

Verificação formal: Um método para
garantir que um sistema ou algoritmo

esteja correto e livre de erros, utilizando
ferramentas matemáticas e lógicas.

Dargent: Uma ferramenta para refinar o
layout de dados em sistemas de
computação, usando técnicas de

verificação formal. Análise de impacto:
Uma técnica para avaliar o impacto

potencial de mudanças em um sistema
de computação antes de implementá-

las. Grafo de dependência: Uma
representação visual das dependências

entre os dados em um sistema de
computação, usado pela Dargent para
analisar o sistema. Refinamento local:

O processo de refinar o layout de dados
em uma parte específica de um sistema
de computação. Refinamento global: O
processo de refinar o layout de dados

em todo o sistema de computação.
Estudo de caso: Um exemplo de como

a Dargent pode ser usada para refinar o
layout de dados em um sistema de
gerenciamento de bancos de dados.

A metodologia do
artigo envolveu o
desenvolvimento

de uma nova
ferramenta

baseada em
verificação formal

para refinar o
layout de dados
em sistemas de

computação, bem
como um estudo

de caso para
avaliar sua
eficácia e

identificação de
possíveis áreas

de melhoria para
futuras pesquisas.

ACM Inglês CI1 Incluido
DeepSTL - From
English Requirements
to Signal Temporal
Logic

J. He; E.
Bartocci; D.
Ničković; H.
Isakovic; R.
Grosu

2022

Formal methods provide very
powerful tools and techniques for
the design and analysis of
complex systems. Their practical
application remains however
limited, due to the widely
accepted belief that formal
methods require extensive
expertise and a steep learning
curve. Writing correct formal
specifications in form of logical
formulas is still considered to be a
difficult and error prone task. In
this paper we propose DeepSTL,
a tool and technique for the
translation of informal
requirements, given as free
English sentences, into Signal
Temporal Logic (STL), a formal
specification language for cyber-
physical systems, used both by
academia and advanced research
labs in industry. A major
challenge to devise such a
translator is the lack of publicly
available informal requirements
and formal specifications. We
propose a two-step workflow to
address this challenge. We first
design a grammar-based
generation technique of synthetic
data, where each output is a
random STL formula and its
associated set of possible English
translations. In the second step,
we use a state-of-the-art
transformer-based neural
translation technique, to train an
accurate attentional translator of
English to STL. The experimental
results show high translation
quality for patterns of English
requirements that have been well
trained, making this workflow
promising to be extended for
processing more complex
translation tasks.

10.1145
/351000

3.
351017

1

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
794051

Requirements
Engineering;Formal
Specification;Signal
Temporal Logic (STL);
Machine Translation

A principal característica do artigo é a proposta
de uma nova abordagem para traduzir requisitos

em linguagem natural em lógica temporal de
sinais, usando redes neurais profundas. A
abordagem proposta é baseada em uma

arquitetura de rede neural que consiste em uma
camada de codificação e uma camada de

decodificação.

Os principais conceitos abordados no
artigo incluem: Lógica temporal de
sinais (STL), Aprendizado profundo,

Redes neurais, Codificação e
decodificação, Modelagem de

requisitos, A abordagem proposta tem a
vantagem de ser capaz de traduzir com

precisão os requisitos em linguagem
natural em expressões em STL.

A metodologia
proposta consiste
em quatro etapas
principais: Coleta
de dados: Nesta

etapa, são
coletados

requisitos em
linguagem natural

e suas
correspondentes
expressões em

STL. Pré-
processamento de

dados: Nesta
etapa, os dados

coletados são pré-
processados
para serem
usados no

treinamento da
rede neural.

Treinamento da
rede neural: Nesta

etapa, a rede
neural é treinada
para mapear os
requisitos em

linguagem natural
em expressões

em STL.
Avaliação do

modelo: Nesta
etapa, o modelo

treinado é
avaliado quanto à
sua capacidade
de traduzir com

precisão os
requisitos em

linguagem natural
em expressões

em STL.

IEEE Inglês CI1 Incluido
Enumeration and
Deduction Driven Co-
Synthesis of CCSL
Specifications using
Reinforcement
Learning

M. Hu; J. Ding;
M. Zhang; F.
Mallet; M.
Chen

2021

The Clock Constraint
Specification Language (CCSL)
has become popular for modeling
and analyzing timing behaviors of
real-time embedded systems.
However, it is difficult for
requirement engineers to
accurately figure out CCSL
specifications from natural
language-based requirement
descriptions. This is mainly
because: i) most requirement
engineers lack expertise in formal
modeling; and ii) few existing
tools can be used to facilitate the
generation of CCSL
specifications. To address these
issues, this paper presents a
novel approach that combines the
merits of both Reinforcement
Learning (RL) and deductive
techniques in logical reasoning for
efficient co-synthesis of CCSL
specifications. Specifically, our
method leverages RL to
enumerate all the feasible
solutions to fill the holes of
incomplete specifications and
deductive techniques to judge the
quality of each trial. Our proposed
deductive mechanisms are useful
for not only pruning enumeration
space, but also guiding the
enumeration process to reach an
optimal solution quickly.
Comprehensive experimental
results on both well-known
benchmarks and complex
industrial examples demonstrate
the performance and scalability of
our method. Compared with the
state-of-the-art, our approach can
drastically reduce the synthesis
time by several orders of
magnitude while the accuracy of
synthesis can be guaranteed.

10.1109
/RTSS5
2674.

2021.00
030

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
622334

Specification synthesis;
reinforcement learning;
logical clocks;deduction;
enumeration

O artigo trata de problemas no processo de
especificação formal de sistemas embarcados

em tempo real, em que engenheiros de
requisitos têm dificuldade em derivar

especificações formais a partir de descrições
textuais, principalmente no que diz respeito à

modelagem temporal.

O artigo propõe uma abordagem de
síntese de especificação para

preencher lacunas em especificações
CCSL incompletas. A abordagem de

síntese é uma solução para o problema
de engenheiros de requisitos que têm
dificuldade em derivar especificações
formais a partir de descrições textuais,
especialmente na modelagem temporal.

O método
proposto é
chamado

CCSLSketch, que
é capaz de

preencher lacunas
em especificações
CCSL incompletas

com base em
traços de tempo

esperados usando
um SAT solver. O
artigo menciona

vários métodos de
validação e

verificação para
especificações

CCSL, mas esses
métodos

presumem que as
especificações

CCSL estão
completamente
prontas, o que é

difícil de alcançar
na prática.

IEEE Inglês CI1 Incluido
Formal Analysis of
Language-Based
Android Security Using
Theorem Proving
Approach

W. Khan; M.
Kamran; A.
Ahmad; F. A.
Khan; A.
Derhab

2019

Mobile devices are an
indispensable part of modern-day
lives to support portable
computations and context-aware
communication. Android
applications within a mobile
device share data to support
application operations and better
user experience, which also
increases security risks to
device's data integrity and
confidentiality. To analyze the
security provided by the Android
permissions, modern security
techniques, based on the
programming languages, have
been used to enforce best
practices for developing the
secure Android applications.
Android security assessment,
based on the language-based
techniques in an informal setting
without formal tool support, is
tedious and error-prone.
Furthermore, the lack of proof of
the soundness of the language-
based techniques raises
questions about the validity of the
analysis. To enable computer-
aided formal verification in
Android security domain, we have
developed a mathematical model
of language-based Android
security using computer-based
proof assistant Coq. One of the
main challenges for mechanizing
the language-based security in
theorem prover relates to the
complexity of variable bindings in
language-based security
techniques. As the main
contributions of the paper: 1) the
language-based security,
including variable binding, is
formalized in theorem prover Coq;
2) a formal type checker is built to
type check (capture safe data
flows within) Android applications
using computer; and 3) the
soundness of the language-based
security technique (type system)
is mechanically verified. The
formal model of the Android type
system and their proof of
soundness are machine-readable,
and their correctness can be
checked in the computer using
Coq proof and type checkers.

10.1109
/ACCE

SS.
2019.28
95261

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
626096

Android security;formal
verification;language-
based security;locally
nameless
representation;machine-
readable proofs;theorem
proving

O artigo destaca a importância da análise formal
na segurança baseada em linguagem em
dispositivos Android. Ele apresenta uma
abordagem de análise formal, utilizando

teoremas e provas, para verificar a eficácia dos
mecanismos de segurança de linguagem. A
contribuição do artigo está em fornecer uma

metodologia sólida e resultados experimentais
que podem ajudar a melhorar a segurança dos

aplicativos Android.

 O artigo discute a análise formal da
segurança baseada em linguagem em

dispositivos Android. Ele aborda
conceitos como segurança baseada em
linguagem, análise formal, teoremas e
provas, formalização de propriedades
de segurança, prova de corretude e

avaliação experimental. Esses
conceitos são fundamentais para a

compreensão da abordagem proposta
pelo artigo para verificar a segurança

dos mecanismos de segurança de
linguagem em dispositivos Android.

A metodologia
descrita no artigo

combina a
formulação de

propriedades de
segurança, a
formalização

dessas
propriedades, a
modelagem do

sistema Android, a
prova de

corretude e a
avaliação

experimental.
Essa abordagem
visa fornecer uma
análise formal da

segurança
baseada em

linguagem em
dispositivos

Android, utilizando
técnicas de prova

para verificar a
corretude dos

mecanismos de
segurança de

linguagem.

IEEE Inglês CI1 Incluido
Generating Test Cases
from Requirements: A
Case Study in Railway
Control System
Domain

H. Zheng; J.
Feng; W.
Miao; G. Pu 2021

Requirements-based testing is
one of the most commonly used
ways to ensure the correctness of
software, especially for
embedded control software in
safety-critical domains such as
spacecraft and railway systems.
Many industrial standards such as
the DO-333 and EN50128 also
request rigorous requirements-
based software testing. To test
embedded control software
effectively and efficiently,
generating high-quality test cases
automatically is extremely
important. However, existing
methods for generating test cases
from requirements require
intensive manual efforts and
expertise. To address this
problem, we proposed an
automatic requirements-based
software testing method for
embedded control software. To
obtain automatic test case
generation and precise test
oracles derivation, requirements
specification should be precise
and readable for the industrial
practitioners. Therefore, we use
the light-weight domain-specific
formal description language,
CASDL (Casco Accurate
Specification Description
Language) for the industrial
practitioners to define software
requirements into formal
specifications at the first step.
Based on the formal specification,
we propose an algorithm to
automatically generate test inputs
that satisfy the MC/DC criteria
suggested by typical industrial
standards and precise test
oracles can be derived by
“running” the specification with
such test inputs. To this end, we
proposed an algorithm for
simulating the formal specification
to generate the test oracles, i.e.,
the expected outputs
corresponding to the test inputs.
To facilitate the application of this
method in the industry, we have
built a tool that can automatically
perform the overall testing
process. To validate and evaluate
its effectiveness in real industrial
projects, we have applied it in
testing a real Automatic Train
Protection (ATP) system provided
by our industrial partner, the
Casco Signal Co., Ltd (one of the
largest railway control system
companies in China). In the case
study on ATP requirements, our
approach generated test cases
for 129 requirement items
following MC/DC criteria and
caught 40 inconsistencies
between Casco’s requirements
and implementation.

10.1109
/TASE5
2547.

2021.00
029

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
546822

Test cases;software
testing;requirements
validation and
verification;requirements
modeling

O artigo aborda a geração de casos de teste a
partir de requisitos em um estudo de caso no
domínio de sistemas de controle ferroviário.
Utiliza uma abordagem baseada em modelo

para criar diagramas de atividades a partir dos
requisitos, que são transformados em casos de
teste através de uma ferramenta de automação.

O artigo propõe uma abordagem
sistemática para gerar casos de teste a
partir de requisitos, com o objetivo de
aumentar a qualidade e a eficácia dos

testes em sistemas de controle
ferroviário. A abordagem é baseada em
modelos, que são criados a partir dos

requisitos e transformados em casos de
teste. O estudo de caso demonstra a
viabilidade e a eficácia da abordagem

proposta.

A abordagem
proposta consiste
em criar modelos
de atividades a

partir dos
requisitos,

utilizando uma
ferramenta de
modelagem.

Os modelos são
então

transformados em
casos de teste,
utilizando uma
ferramenta de

automação.
Os casos de teste

gerados são
avaliados em

termos de
cobertura de
requisitos e

eficácia, utilizando
uma ferramenta

de análise.
O estudo de caso
é conduzido em
um sistema de

controle
ferroviário,
utilizando

requisitos reais
como entrada

para a abordagem
proposta.

IEEE Inglês CE1 Excluído
Hierarchical Formal
Modeling of Internet of
Things System
Oriented to User
Behavior

L. Yu; Y. Lu;
B. Zhang; L.
Shi; F. Huang;
Y. Li; Y. Shen

2020

Ensuring the correctness and
reliability of the Internet of Things
system is the key to the
advancement of the Internet of
Things project. It is very
necessary to fully inspect the
Internet of Things system before it
is actually deployed, so as to find
the errors and defects in the
system design as soon as
possible and make
improvements. Compared with
conventional simulation and
testing, the formal method has the
advantages of low cost, short
cycle and simple steps, which
provides efficient support for the
inspection and analysis of the
Internet of Things system before
deployment. Based on the stateful
timed communication sequence
process (STCSP), we consider
the formal modeling framework
for the Internet of things system
from the perspective of external
environment input and system
architecture. We then propose a
hierarchical formal modeling
method for the Internet of things
system oriented to user behavior.
Taking the elderly home
monitoring application scene as
an example, as the input of the
external environment, the user
behavior and its implementation
object are combined into a whole
for modeling, so as to keep the
two states in sync, restrict each
other, and avoid unrealistic
sequence of activities. From the
perspectives of perception mode,
communication mode, predefined
rules and application services, we
have completed the hierarchical
modeling of the three-layer
architecture of the Internet of
Things system, that is, perception
layer, middle layer and application
layer. Finally, the model
verification tool PAT analyzes and
verifies the above model from the
aspects of security, accessibility,
and system consistency. This
method provides scientific basis
for the correctness inspection and
reliability analysis of the Internet
of Things system before
deployment in the Internet of
Things project.

10.1109
/SmartI
oT4996

6.
2020.00

050

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
192003

Internet of things
system;Formal
modeling;User behavior;
STCSP;PAT;Home
monitoring for the
elderly

O objetivo do artigo é fornecer uma metodologia
para projetar e verificar sistemas da IoT de

maneira mais eficiente, com foco no
comportamento do usuário.

Internet das coisas (IoT)
Modelagem formal

Comportamento do usuário
Modelo hierárquico

Verificação
Correção e segurança

Sistema de IoT
Sistemas críticos

Formalismo matemático
Redes de Petri

Modelagem de estados finitos
Verificação de modelo

Ferramentas de verificação
Automação de verificação

Casos de uso
Modelagem de caso de uso
Modelagem de requisitos.

Em resumo, a
metodologia

utilizada no artigo
envolve uma
abordagem

sistemática e
formal para

projetar, validar e
verificar sistemas
de IoT orientados

ao
comportamento
do usuário. A

modelagem formal
hierárquica é

usada como uma
técnica eficaz

para modelar o
comportamento

do usuário e
interações do

sistema,
permitindo a

verificação formal
e validação do

sistema.

IEEE Inglês CE1 Excluído
Instrumenting
Microservices for
Concurrent Audit
Logging: Beyond Horn
Clauses

N. D. Ahn; S.
Amir–
Mohammadian 2022

Instrumenting legacy code is an
effective approach to enforce
security policies. Formal
correctness of this approach in
the realm of audit logging relies
on semantic frameworks that
leverage information algebra to
model and compare the
information content of the
generated audit logs and the
program at runtime. Previous
work has demonstrated the
applicability of instrumentation
techniques in the enforcement of
audit logging policies for systems
with microservices architecture.
However, the specified policies
suffer from the limited expressivity
power as they are confined to
Horn clauses being directly used
in logic programming engines. In
this paper, we explore audit
logging specifications that go
beyond Horn clauses in certain
aspects, and the ways in which
these specifications are
automatically enforced in
microservices. In particular, we
explore an instrumentation tool
that rewrites Java-based
microservices according to a
JSON specification of audit
logging requirements, where
these logging requirements are
not limited to Horn clauses. The
rewritten set of microservices are
then automatically enabled to
generate audit logs that are
shown to be formally correct.

10.1109
/COMP
SAC54

236.
2022.00

280

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
842470

Audit logs;concurrent
systems;microservices;
programming
languages;security

 O artigo propõe uma abordagem para a
auditoria de sistemas de microservices que leva

em consideração a concorrência e a
escalabilidade desses sistemas.

Microservices
Auditoria de sistemas

Instrumentação
Logs de auditoria

Concurrencia
Escalabilidade

Modelos formais
Lógica de primeira ordem

Lógica de Horn
Restrições de integridade

Políticas de auditoria
Sobrecarga de processamento

Não há uma
metodologia
específica

mencionada no
artigo, mas os

autores
descrevem a

implementação e
avaliação

experimental da
abordagem

proposta em um
ambiente de

microserviços em
nuvem, visando

melhorar a
escalabilidade e

eficiência da
auditoria de

sistemas
distribuídos.

IEEE Inglês CE1 Excluído
Monitoring Data
Management Services
on the Edge Using
Enhanced TSDBs

W. Zeng; S.
Zhang; I. -L.
Yen; F. B.
Bastani; S. -Y.
Hwang

2019

Many IoT systems are data
intensive and are for the purpose
of monitoring of critical systems.
In these monitoring systems, a
large volume of data steadily flow
out of a large number of sensors
which monitor the physical
systems and environments. Thus,
first of all, we need to consider
how to store and manage these
IoT data. Also, data sharing can
greatly enhance the quality of
data analytics and help with cold
start of similar systems. Thus, the
data storage and management
solutions should consider how to
help discover useful data in order
to facilitate data sharing. Time
series databases (TSDBs) have
been developed in recent years
for storing IoT data, but they have
some deficiencies. One problem
is that they are not very effective
in supporting data sharing due to
the lack of a good semantic
model for proper data
specifications, which is critical in
data discovery. To resolve this
problem, we develop a monitoring
data annotation (MDA) model to
guide the systematic specification
of monitoring data streams. To
support the realization of the MDA
model, we also develop an
external tool suite, which stores
the additional MDA-based
specifications for the data
streams and interfaces with
queries to perform preliminary
processing to allow effective
monitoring data discovery based
on the MDA specifications.
Another problem with current
TSDBs is their focus on storing
time series data that arrive at a
fixed rate, but not on storing and
retrieval of event data, which may
come sporadically with irregular
timing patterns. When storing
such event data in existing
TSDBs, the retrieval may have
performance problems. Also,
existing TSDBs do not have
specific query language defined
for event analysis. We develop a
model for event specifications and
use it to specify abnormal system
states to be captured to allow
timely mitigation. The event
model is integrated into the TSDB
by translating them to continuous
queries defined in some TSDBs.
Also, we develop an event
storage scheme and incorporate it
in TSDBs to facilitate efficient
event retrieval. Experimental
results show that our event
solution for the TSDB is effective
and efficient.

10.1109
/SOCA.
2019.00

010

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
953028

Monitoring data
management;time series
databases;edge
computing;Internet of
Things;data discovery;
time series event
storage

O artigo trata sobre serviços de gerenciamento
de dados de monitoramento na borda (edge

computing), o que significa que o processamento
de dados ocorre mais próximo do dispositivo que

os gera, em vez de serem enviados para um
datacenter centralizado.

Edge computing ;
Os serviços de gerenciamento de dados

de monitoramento ;
TSDBs: bancos de dados otimizados
para armazenar e consultar dados de

séries temporais

O método
proposto no artigo

envolve uma
abordagem de

particionamento
de dados em que

os dados são
divididos

horizontalmente
entre diferentes

nós de
processamento,
permitindo que

cada nó lide com
uma parte do
conjunto de
dados. Além

disso, a técnica de
particionamento

vertical é aplicada
para dividir as

colunas de dados
em diferentes

tabelas., que são
comuns em

aplicações de
monitoramento e
análise de dados
em tempo real.

IEEE Inglês CE1 Excluído
PUF-G: A CAD
Framework for
Automated
Assessment of
Provable Learnability
from Formal PUF
Representations

D. Chatterjee;
D.
Mukhopadhya
y; A. Hazra

2020

Physically Unclonable Functions
(PUFs) are widely adopted in
various lightweight authenticating
devices due to their unique
fingerprints - providing uniform,
unpredictable and reliable nature
of responses. However, with the
growth of machine learning (ML)
attacks in recent times, it is
imperative that the PUFs need to
be resilient to such modeling
attacks as well. Consequently,
analyzing the learnability of PUFs
has initiated a new branch of
study leading to establishing
provable guarantees (and PAC-
learnability) of various PUF
designs. However, these
derivations are often carried out
manually while implementing the
design and thereby cannot
automatically adjust the changes
in PUF designs or its various
compositions. In this paper, for
the first time, we present an
automated framework, called
PUF-G, to reason about the PAC-
learnability of PUF designs from
an architectural level. To enable
this, we propose a formal PUF
representation language by which
any architectural PUF design and
its compositions can be specified
upfront. This PUF specification
can be automatically analyzed
through a CAD framework by
translating the same to an interim
model and then deriving the PAC-
learnability bounds from the
model. Such a tool will help the
designer to explore various
compositional architectures of
PUFs and its resilience to ML
attacks automatically before
converging on a strong PUF
design for implementation. We
also show the efficacy of our
proposed framework over a wide
range of PUF architectures while
automatically deriving their
learnability guarantees. As a
matter of independent interest,
the framework presents the first
reported proofs to show that
Interpose-PUF (newly proposed),
MUX-PUF, FF-APUF, FF-XOR
APUF and DA-PUF, are all PAC-
learnable.

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
256782

-

O artigo fala sobre um framework de CAD
(Computer-Aided Design) para a avaliação

automatizada da aprendibilidade comprovável de
Representações Formais de PUF (Physical

Unclonable Functions). O objetivo é proporcionar
um processo mais eficiente e confiável para
avaliar a aprendibilidade de representações

formais de PUF, ajudando a garantir a
segurança desses sistemas.

CAD Framework
PUF (Physical Unclonable Functions)

Provable Learnability
Formal PUF Representation

Machine Learning
SVM (Support Vector Machine)

Learning Metrics
Verification Metrics
Provable Security

Non-Interactive Zero Knowledge Proof
Hardware Security

A metodologia
utilizada envolveu
a definição de um
modelo formal de
PUF, a definição
de um modelo de
aprendizagem de
máquina para a
reconstrução do
comportamento
de uma PUF, a

construção de um
mecanismo de
avaliação de

aprendizagem
provável e a

implementação de
uma ferramenta

de software
chamada PUF-G
que integra esses
componentes para

automatizar o
processo de
avaliação. O

artigo descreve
também

experimentos de
validação da

metodologia com
uma variedade de
PUFs e dados de

aprendizagem.

IEEE Inglês CE1 Excluído
Qualification of
Hardware Description
Language Designs for
Safety Critical
Applications in Nuclear
Power Plants

A. K. John; A.
K.
Bhattacharjee 2020

Field-programmable gate-array
(FPGA)-based intelligent
hardware modules are
increasingly being used in safety
systems of nuclear power plants.
Qualification of these modules as
per safety standards such as IEC
62566/60880 and IEEE-7.4.3.2-
2010 needs considerable effort.
Many of the safety standards
demand high rigor in verifying that
the designs of these modules
meet the design intent. Use of
hardware description languages
such as VHDL or Verilog makes
the process of code review and
verification difficult due to the
complex nonsequential semantics
of these languages. It is now
recognized that formal verification
offers a complementary approach
to conventional verification.
Formal verification tools perform
analysis of designs based on
language semantics to
prove/refute their functional
correctness. In this article, we
present the architecture of a
formal verification tool for VHDL
designs and our experience of
using this tool on VHDL designs
in nuclear applications.

10.1109
/TNS.

2020.29
72903

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
990153

Bounded model
checking;formal
verification;field-
programmable gate-
array (FPGA)
qualification;VHDL

aborda a questão da qualificação de projetos de
Hardware Description Language (HDL) para
aplicações críticas de segurança em usinas

nucleares. O estudo apresenta uma abordagem
sistemática para a qualificação desses projetos,
considerando padrões de segurança específicos

do setor nuclear, bem como normas e
regulamentos internacionais. O objetivo é

garantir que os projetos de HDL sejam confiáveis
e seguros para uso em aplicações críticas de

segurança em usinas nucleares.

Linguagem de Descrição de Hardware
(HDL)

Sistemas críticos de segurança
Usinas nucleares

Qualificação
Verificação e validação (V&V)

Síntese de alto nível (HLS)
Requisitos de segurança

Normas de segurança
Injeção de falhas

Simulação de falhas
Cobertura de falhas

Análise de modo e efeitos de falha
(FMEA)

Confiabilidade

o artigo apresenta
uma abordagem

geral para a
qualificação de
designs de HDL
para aplicações

críticas de
segurança em

usinas nucleares,
que inclui uma
combinação de

técnicas de
verificação e

validação, bem
como

conformidade com
padrões de
segurança
relevantes.

IEEE Inglês CE1 Excluído
Reachability Analysis
of Cost-Reward Timed
Automata for Energy
Efficiency Scheduling

Wang W,Dong
G,Deng Z,
Zeng G,Liu W,
Xiong H

2018

As the ongoing scaling of
semiconductor technology
causing severe increase of on-
chip power density in
microprocessors, this leads for
urgent requirement for power
management during each level of
computer system design. In this
paper, we describe an approach
for solving the general class of
energy optimal task graph
scheduling problems using cost-
reward timed automata. We
propose a formal technique based
on model checking using
extended timed automata to solve
the processor frequency
assignment problem in an energy-
constrained multitasking system.
To handle the problem of state
space explosion in symbolic
model checking, we also provide
an efficient zone-based algorithm
for minimum-cost reachability.
Our approach is capable of
finding efficient solutions under
various constraints and applicable
to other problem variants as well.
Experimental results demonstrate
the usefulness and effectiveness
of our approach.

10.1145
/256068

3.
256069

5

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/25606
83.
2560695;
http://dx.doi.
org/10.
1145/25606
83.2560695

Model Checking, Real-
time scheduling, DVS,
Timed automata, Energy
efficiency

Este artigo fala sobre a aplicação de técnicas de
análise de alcance em autômatos temporizados
de custo-recompensa para melhorar a eficiência
energética em sistemas embarcados. O artigo

apresenta uma metodologia para modelar
sistemas de agendamento de eficiência

energética usando autômatos temporizados de
custo-recompensa, bem como técnicas de

análise de alcance para verificar se as metas de
eficiência energética são atingíveis.

Análise de alcançabilidade
Autômatos temporizados

Modelos de custo-recompensa
Agendamento de eficiência energética

Sistema de eventos discretos
Otimização de desempenho

Agendamento de tarefas
Programação linear

Resolução de restrições
Verificação de modelos

A metodologia é
baseada em

modelagem e
análise de

sistemas de
tempo real usando

autômatos
temporizados. O
estudo propõe
uma técnica de

análise de alcance
(reachability

analysis) para
programação de

tarefas em
sistemas

embarcados de
tempo real,
levando em

consideração a
eficiência

energética como
uma das

principais métricas
de desempenho.

ACM Inglês CE1 Excluído

Reactive Synthesis
with Spectra: A Tutorial

S. Maoz; J. O.
Ringert 2021

Spectra is a formal specification
language specifically tailored for
use in the context of reactive
synthesis, an automated
procedure to obtain a correct-by-
construction reactive system from
its temporal logic specification.
Spectra comes with the Spectra
Tools, a set of analyses, including
a synthesizer to obtain a correct-
by-construction implementation,
several means for executing the
resulting controller, and additional
analyses aimed at helping
engineers write higher-quality
specifications. This hands-on
tutorial will introduce participants
to the language and the tool set,
using examples and exercises,
covering an end-to-end process
from specification writing to
synthesis to execution. The
tutorial may be of interest to
software engineers and
researchers who are interested in
the potential applications of
formal methods to software
engineering.

10.1109
/ICSE-
Compa
nion526

05.
2021.00

136

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
402598

Reactive synthesis

O artigo fala sobre a técnica de síntese reativa,
que é uma abordagem de construção automática

de sistemas que satisfazem requisitos
comportamentais em tempo real. O foco principal
do artigo é o uso da ferramenta Spectra para a

síntese reativa.

Síntese reativa
Especificação formal

Lógica linear temporal
Lógica computacional de árvore
Satisfatibilidade módulo teoria

Espectros
Verificação de modelo

Síntese de controladores
Autômatos de estado finito

 O artigo explica o
processo de

síntese reativa,
desde a

especificação do
comportamento

desejado do
sistema em

Spectra,
passando pela

transformação em
uma especificação

LTL e pela
geração de um

modelo Mealy, até
a implementação
do sistema em
linguagem de

programação. O
tutorial apresenta

exemplos de
como especificar
comportamentos

desejados em
Spectra e fornece
uma visão geral

dos passos
envolvidos no
processo de

síntese reativa.

IEEE Inglês CE1 Excluído
Reasoning about
Functional
Programming in Java
and C++

Cok DR 2018

Verification projects on industrial
code have required reasoning
about functional programming
constructs in Java 8. General
functional programming requires
reasoning about how the
specifications of function objects
that are inputs to a method
combine to produce the
specifications of output function
objects. This short paper
describes our in-progress
experience in adapting prior work
(Kassios & Müller) to Java 8,
JML, OpenJML, and to ACSL++,
a specification language for C++
built on ACSL.

10.1145
/323645

4.
323648

3

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/32364
54.
3236483;
http://dx.doi.
org/10.
1145/32364
54.3236483

JML, ACSL++, ACSL,
specification, functional
programming, formal
verification, OpenJML

O artigo fala sobre a utilização de técnicas de
programação funcional em linguagens de

programação orientadas a objetos, como Java e
C++. Os autores argumentam que a

programação funcional pode ser benéfica para
desenvolvedores de software que buscam

escrever código mais legível, modular e testável.
O artigo apresenta uma série de exemplos que

demonstram como utilizar conceitos de
programação funcional, como funções de alta
ordem e imutabilidade, em programas Java e

C++

Programação funcional
Java
C++

Teoria dos tipos
Inferência de tipos
Sistema de tipos

Polimorfismo
Subtipagem

Funções de ordem superior
Cálculo lambda

Currying
Composição de funções

Avaliação preguiçosa
Monads

Funções puras

 é um trabalho
teórico que

apresenta uma
discussão

conceitual sobre a
natureza da

programação
funcional e sua
implementação

em linguagens de
programação

imperativas, como
Java e C++.

Portanto, não há
uma metodologia

específica
utilizada no

desenvolvimento
do artigo, mas sim
uma abordagem
teórica baseada

em análise
conceitual e
exemplos
práticos.

ACM Inglês CE1 Excluído
Safety Verification of
IEC 61131-3 Structured
Text Programs

J. Xiong; X.
Bu; Y. Huang;
J. Shi; W. He 2021

With the development of the
industrial control system,
programmable logic controllers
(PLCs) are increasingly adopted
in the process automation.
Moreover, many PLCs play key
roles in safety-critical systems,
such as nuclear power plants,
where robust and reliable control
programs are required. To ensure
the quality of programs, testing
and verification methods are
necessary. In this article, we
present a novel methodology
which applies model checking to
verifying PLC programs.
Specifically, we focus on the
structured text (ST) language
which is a widely used, high-level
programming language defined in
the electro-technical commission
(IEC) 61131-3 standard. A formal
model named behavior model
(BM) is defined to specify the
behavior of ST programs. An
algorithm based on variable state
analysis for automatically
extracting the BM from an ST
program is given. An algorithm
based on the automata-theoretic
approach is proposed to verify
linear temporal logic properties on
the BM. Finally, a real-life case
study is presented.

10.1109
/TII.

2020.29
99716

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
107345

Formal verification;
electro-technical
commission (IEC)
61131-3 standard;model
checking;structured text
(ST);weighted
pushdown system
(WPDS)

O objetivo do artigo é apresentar uma
metodologia para verificar a segurança desses
programas, usando técnicas de análise estática
e dinâmica, com base em um modelo formal do

programa.

Verificação de segurança
Programação estruturada

Linguagem estruturada de programação
(IEC 61131-3)

Model checking
Árvore de decisão binária (BDD)

Lógica temporal linear (LTL)
Verificação de modelo
Segurança funcional

Sistemas críticos de segurança
Normas de segurança (IEC 61508 e

IEC 61511)
Testes de unidade e integração

Cobertura de código
Análise estática de código.

A metodologia
consiste em

utilizar um model
checker para

verificar a
correção de
programas
escritos em

linguagem de
programação

estruturada (ST)
de acordo com o

padrão
internacional IEC
61131-3. O model
checker é utilizado

para realizar a
verificação de

modelos (model
checking) dos
programas ST
com base em

propriedades de
segurança e

comportamentais
definidas pelo

usuário. O
processo envolve
a conversão do
código ST para

uma
representação

formal de
modelos, a
definição de

propriedades a
serem verificadas
e a execução do
model checker

para verificar se
as propriedades
são satisfeitas.

IEEE Inglês CE1 Excluído
Salty-A Domain
Specific Language for
GR(1) Specifications
and Designs

T. Elliott; M.
Alshiekh; L. R.
Humphrey; L.
Pike; U. Topcu

2019

Designing robot controllers that
correctly react to changes in the
environment is a time-consuming
and error-prone process. An
alternative is to use “correct-by-
construction” synthesis
approaches to automatically
generate controller designs from
high-level specifications. In
particular, Generalized Reactivity
(l) or GR(1) specifications are
well-suited to express
specifications for robots that must
act in dynamic environments, and
approaches to generate controller
designs from GR(1) specifications
are highly computationally
efficient. Toward that end, this
paper presents Salty, a domain-
specific language for GR(1)
specifications. While tools exist to
synthesize system designs from
GR(1) specifications, Salty makes
such specifications easier to write
and debug by supporting features
such as richer input and output
types, user-defined macros,
common specification patterns,
and specification optimization and
sanity checking. Salty interfaces
with the separately developed
synthesis tool Slugs to produce a
system or controller design, and
Salty translates this design to a
software implementation in a
variety of languages. We
demonstrate Salty on an
application involving coordination
of multiple unmanned air vehicles
(UAVs) and provide a workflow
for connecting synthesized UAV
controllers to freely available UAV
planning and simulation software
suites UxAS and AMASE.

10.1109
/ICRA.

2019.87
93722

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
793722

-

O artigo apresenta uma nova linguagem de
programação de domínio específico (DSL)

chamada Salty, que foi projetada para simplificar
o processo de especificação e verificação de

sistemas reativos complexos usando a teoria de
jogos reativos (RGT) e a lógica temporal linear

(LTL).

Teoria de jogos reativos (RGT) e lógica
temporal linear (LTL);

Linguagem de programação de domínio
específico (DSL);

Especificação de sistemas reativos
complexos;

Sintaxe simplificada e expressiva para
especificações em Salty;

Especificação de requisitos de alto
nível;

Verificação de propriedades em
diferentes níveis de abstração;

Ferramentas de verificação e síntese de
controle para Salty;

Vantagens de Salty em relação a
abordagens tradicionais de

especificação e verificação de sistemas
reativos complexos;

Aplicações em sistemas críticos de
segurança e sistemas embarcados.

O artigo não
descreve uma
metodologia
específica

utilizada, mas
apresenta uma

abordagem
prática para a

especificação e
verificação de

sistemas reativos
complexos
utilizando a

linguagem de
programação de

domínio
específico (DSL)

Salty.

IEEE Inglês CE1 Excluído
Sampling of Shape
Expressions with
ShapEx

N. Basset; T.
Dang; F.
Gigler; C.
Mateis; D.
Ničković

2021

In this paper we present SHAPEx,
a tool that generates random
behaviors from shape
expressions, a formal
specification language for
describing sophisticated temporal
behaviors of CPS. The tool
samples a random behavior in
two steps: (1) it first explores the
space of qualitative
parameterized shapes and then
(2) instantiates parameters by
sampling a possibly non-linear
constraint. We implement several
sampling strategies in the tool
that we present in the paper and
demonstrate its applicability on
two use scenarios.

10.1145
/348721

2.
348735

0

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
814952

shape expressions;
sampling;hit-and-run;
testing

O artigo descreve uma nova abordagem para
amostragem de instâncias de Shape

Expressions, que é uma linguagem de descrição
de esquemas para dados semiestruturados. O

objetivo do artigo é propor uma técnica eficiente
e escalável para amostrar instâncias de Shape

Expressions que satisfaçam determinadas
restrições.

Shape Expressions (ShEx)
Restrições em ShEx

Amostragem de instâncias de ShEx
Amostragem aleatória

Otimização
Abordagem proposta (ShapEx)

Avaliação experimental
Limitações e futuras direções.

A metodologia
abordada é uma

abordagem
experimental,

onde os autores
realizam

experimentos para
comparar a
abordagem
proposta

(ShapEx) com
outras técnicas
existentes de

amostragem de
instâncias de

Shape
Expressions.

IEEE Inglês CE1 Excluído
Scalable and Robust
Algorithms for Task-
Based Coordination
From High-Level
Specifications
(ScRATCHeS)

K. Leahy; Z.
Serlin; C. -I.
Vasile; A.
Schoer; A. M.
Jones; R.
Tron; C. Belta

2022

Many existing approaches for
coordinating heterogeneous
teams of robots either consider
small numbers of agents, are
application-specific, or do not
adequately address common real-
world requirements, e.g., strict
deadlines or intertask
dependencies. We introduce
scalable and robust algorithms for
task-based coordination from
high-level specifications
(ScRATCHeS) to coordinate such
teams. We define a specification
language, capability temporal
logic, to describe rich, temporal
properties involving tasks
requiring the participation of
multiple agents with multiple
capabilities, e.g., sensors or end
effectors. Arbitrary missions and
team dynamics are jointly
encoded as constraints in a mixed
integer linear program, and
solved efficiently using
commercial off-the-shelf solvers.
ScRATCHeS optionally allows
optimization for maximal
robustness to agent attrition at the
penalty of increased computation
time. We include an online
replanning algorithm that adjusts
the plan after an agent has
dropped out. The flexible
specification language, fast
solution time, and optional
robustness of ScRATCHeS
provide a first step toward a
multipurpose on-the-fly planning
tool for tasking large teams of
agents with multiple capabilities
enacting missions with multiple
tasks. We present randomized
computational experiments to
characterize scalability and
hardware demonstrations to
illustrate the applicability of our
methods.

10.1109
/TRO.

2021.31
30794

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
663414

Formal methods;
multiagent systems;
planning;robotics

O artigo apresenta uma metodologia para
especificação e coordenação de tarefas em
sistemas multiagentes. A proposta é baseada
em especificações de alto nível e fornece um
conjunto de algoritmos escaláveis e robustos
para a coordenação de tarefas.

Algoritmos escaláveis e robustos
Coordenação baseada em tarefas
Especificações de alto nível

A abordagem é
implementada em
um framework
chamado
ScRATCHeS, que
usa técnicas de
planejamento e
alocação de
tarefas para gerar
planos de
coordenação para
os agentes.

IEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414

Scalable Translation
Validation of Unverified
Legacy OS Code

A. Tahat; S.
Joshi; P.
Goswami; B.
Ravindran

2019

Formally verifying functional and
security properties of a large-
scale production operating
system is highly desirable.
However, it is challenging as such
OSes are often written in multiple
source languages that have no
formal semantics - a prerequisite
for formal reasoning. To avoid
expensive formalization of the
semantics of multiple high-level
source languages, we present a
lightweight and rigorous
verification toolchain that verifies
OS code at the binary level,
targeting ARM machines. To
reason about ARM instructions,
we first translate the ARM
Specification Language that
describes the semantics of the
ARMv8 ISA into the PVS7
theorem prover and verify the
translation. We leverage the
radare2 reverse engineering tool
to decode ARM binaries into
PVS7 and verify the translation.
Our translation verification
methodology is a lightweight
formal validation technique that
generates large-scale instruction
emulation test lemmas whose
proof obligations are
automatically discharged. To
demonstrate our verification
methodology, we apply the
technique on two OSes: Google's
Zircon and a subset of Linux. We
extract a set of 370 functions from
these OSes, translate them into
PVS7, and verify the correctness
of the translation by automatically
discharging hundreds of
thousands of proof obligations
and tests. This took 27.5 person-
months to develop.

10.2391
9

/FMCA
D.

2019.88
94252

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
894252

Formal Verification;
Linux OS;Google Zircon

O artigo fala sobre a validação da tradução de
código de sistemas operacionais antigos e não

verificados para novas arquiteturas de hardware.
O objetivo é garantir que o sistema operacional
continue funcionando corretamente em novas
plataformas, sem a necessidade de reescrever

todo o código-fonte.

Validação de tradução
Código legado

Sistemas operacionais
Verificação de software

Validação formal
Lógica de separação

Coq
Programação funcional
Automação de prova

A metodologia
utilizada no artigo

envolve a
utilização de um

conjunto de
ferramentas para

verificar a
correção de
código de
sistemas

operacionais
legados, através

da técnica de
validação de

tradução
(translation
validation).

IEEE Inglês CE1 Excluído
Scenario-based
Requirements
Engineering for
Complex Smart City
Projects

C. Wiecher; P.
Tendyra; C.
Wolff 2022

Various stakeholders with
different backgrounds are
involved in Smart City projects.
These stake-holders define the
project goals, e.g., based on
participative approaches, market
research or innovation
management processes. To
realize these goals often complex
technical solutions must be
designed and implemented. In
practice, however, it is difficult to
synchronize the technical design
and implementation phase with
the definition of moving Smart
City goals. We hypothesize that
this is due to a lack of a “common
language” for the different
stakeholder groups and the
technical disciplines. We address
this problem with scenario-based
requirements engineering
techniques. In particular, we use
scenarios at different levels of
abstraction and formalization that
are connected end-to-end by
appropriate methods and tools.
This enables fast feedback loops
to iteratively align technical
requirements, stakeholder
expectations, and Smart City
goals. We demonstrate the
applicability of our approach in a
case study with different industry
partners.

10.1109
/E-

TEMS5
3558.

2022.99
44441

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
944441

Systems Engineering;
Requirements
Engineering;Project
Management;Innovation
Management

Discute a aplicação da engenharia de requisitos
baseada em cenários para projetos complexos

de cidades inteligentes.

Engenharia de requisitos baseada em
cenários

Projeto de cidades inteligentes
Projeto de sistemas complexos

Colaboração em equipe
Coleta de requisitos

Modelagem de cenários
Análise de requisitos

Verificação de requisitos
Validação de requisitos

Documentação de requisitos
Avaliação de requisitos

A metodologia
proposta é uma

abordagem
colaborativa que
envolve várias

partes
interessadas e

segue um
processo iterativo

em três fases:
Análise de

stakeholders e
contextuais:
identificar os
stakeholders

relevantes e suas
necessidades,

objetivos e
restrições, bem
como coletar

informações sobre
o contexto e as

restrições
ambientais e
regulatórias.
Definição de

cenários: elaborar
cenários de uso

de sistemas
inteligentes e
identificar as

funcionalidades
necessárias, bem

como suas
relações com

outras
funcionalidades e
com os requisitos
dos stakeholders.

Análise de
requisitos e

validação: analisar
a consistência e a
completude dos

requisitos
identificados em
cada cenário e

validar os
requisitos com os

stakeholders
relevantes.

IEEE Inglês CE1 Excluído
Score-Based Automatic
Detection and
Resolution of Syntactic
Ambiguity in Natural
Language
Requirements

M. Osama; A.
Zaki-Ismail; M.
Abdelrazek; J.
Grundy; A.
Ibrahim

2020

The quality of a delivered product
relies heavily upon the quality of
its requirements. Across many
disciplines and domains, system
and software requirements are
mostly specified in natural
language (NL). However, natural
language is inherently ambiguous
and inconsistent. Such intrinsic
challenges can lead to
misinterpretations and errors that
propagate to the subsequent
phases of the system
development. Pattern-based
natural language processing
(NLP) techniques have been
proposed to detect the ambiguity
in requirements specifications.
However, such approaches
typically address specific cases or
patterns and lack the versatility
essential to detecting different
cases and forms of ambiguity. In
this paper, we propose an
efficient and versatile automatic
syntactic ambiguity detection
technique for NL requirements.
The proposed technique relies on
filtering the possible scored
interpretations of a given
sentence obtained via Stanford
CoreNLP library. In addition, it
provides feedback to the user
with the possible correct
interpretations to resolve the
ambiguity. Our approach
incorporates four filtering
pipelines on the input NL-
requirements working in
conjunction with the CoreNLP
library to provide the most likely
possible correct interpretations of
a requirement. We evaluated our
approach on a suite of datasets of
126 requirements and achieved
65% precision and 99% recall on
average.

10.1109
/ICSME
46990.

2020.00
067

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
240680

Requirements
specification;
Requirements analysis;
Quality checking;
Ambiguity

O artigo fala sobre um método para detecção e
resolução automática de ambiguidades sintáticas
em requisitos de linguagem natural. Ele propõe

um modelo de pontuação para identificar
ambiguidades sintáticas e usa a lógica de

primeira ordem para gerar uma árvore de análise
sintática para o texto do requisito.

Ambiguidade sintática
Requisitos em linguagem natural

Detecção automática
Resolução automática

Pontuação baseada em modelo
Análise semântica

Árvores de análise sintática
Modelo de linguagem

A metodologia
utilizada envolveu
a criação de um

algoritmo de
pontuação para

detectar e resolver
ambiguidades
sintáticas em
requisitos de

linguagem natural.

IEEE Inglês CE1 Excluído
SecML: A Proposed
Modeling Language for
CyberSecurity C. Easttom 2019

Cybersecurity is a comparatively
new discipline, related to
computer science, electrical
engineering, and similar subjects.
As a newer discipline it lacks
some of the tools found in more
established subject areas. As one
example, many engineering
disciplines have modeling
languages specific for that
engineering discipline. As two
examples, software engineering
utilizes Unified Modeling
Language (UML) and systems
engineering uses System
Modeling Language (SysML).
Cybersecurity engineering lacks
such a generalized modeling
language. Cybersecurity as a
profession would be enhanced
with a security specific modeling
language. This paper describes
such a modeling language. The
model is described in sufficient
detail to be actionable and
applicable. However, suggestions
for future work are also provided.

10.1109
/UEMC
ON475

17.
2019.89
93105

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
993105

Cybersecurity;Modeling
languages;Engineering;
Cybersecurity
engineering;SysML;
Systems Engineering

O artigo propõe uma nova linguagem de
modelagem chamada SecML, que visa suportar

a modelagem de aspectos de segurança
cibernética em sistemas de informação

Modelagem de segurança cibernética
Linguagem de modelagem

Representação formal de requisitos de
segurança

Especificação de ameaças e
vulnerabilidades
Análise de riscos

Formalização da modelagem de
segurança

Técnicas de modelagem de segurança
de software

Processo de engenharia de segurança
de software

Abordagens de modelagem para a
segurança cibernética

 o artigo
apresenta uma

proposta de uma
nova linguagem
de modelagem
para a área de

segurança
cibernética. Para
isso, os autores
realizaram uma

análise crítica das
linguagens de
modelagem
existentes,

destacando suas
limitações e

apresentando os
requisitos para

uma nova
linguagem de
modelagem.

IEEE Inglês CE1 Excluído
Sim: A Contract-Based
Programming
Language for Safety-
Critical Software

T. Benoit 2019

An important benefit of formal
methods is the ability to
unambiguously describe the
requirements of a program and to
provide evidence of the
compliance of the software code
with these requirements.
However, formal analysis on
programs written in languages
that are used today in avionics
can be challenging since these
languages have features, such as
pointers, that complicate program
verification. So, to enable formal
verification, one must limit the
language to a subset and/or one
must endure a considerable
annotation overhead. This paper
presents Sim, a new high-level
programming language that is
designed for the development and
verification of safety-critical
software. The Sim language has
been designed so that only a
small annotation overhead is
needed and one can make
extensive use of automatic
verification tools. We show that in
Sim 4 to 5 times fewer
annotations are needed
compared to programs written in
VeriFast-C to prove equivalent
properties. We additionally
demonstrate that Sim is suitable
as a language for avionics
software development by
implementing and verifying an
elementary fly-by-wire application
and deploying it on an STM32
microcontroller.

10.1109
/DASC4
3569.

2019.90
81681

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
081681

contracts;semi-
automatic verification;
formal methods;
programming language;
safety-critical systems

O artigo fala sobre uma nova linguagem de
programação, chamada Sim, desenvolvida para

o desenvolvimento de software crítico de
segurança. A linguagem é baseada em contratos

e usa a verificação formal para garantir que o
código do programa atenda aos requisitos de

segurança.

Programação baseada em contratos
Design por Contrato

Software crítico de segurança
Árvore de sintaxe abstrata (AST)

Lógica de separação
Verificação de afirmação em tempo de

execução
Linguagem de especificação

Verificação formal
Prova automatizada de teoremas

Lógica de Hoare

A metodologia
utilizada no artigo
é a proposição de

uma nova
linguagem de

programação e
sua análise

teórica, bem como
a implementação
de um protótipo

para demonstrar a
eficácia da
abordagem
proposta.

IEEE Inglês CE1 Excluído
Smart Bound Selection
for the Verification of
UML/OCL Class
Diagrams

R. Clarisó; C.
A. González;
J. Cabot 2019

Correctness of UML class
diagrams annotated with OCL
constraints can be checked using
bounded verification techniques,
e.g., SAT or constraint
programming (CP) solvers.
Bounded verification detects
faults efficiently but, on the other
hand, the absence of faults does
not guarantee a correct behavior
outside the bounded domain.
Hence, choosing suitable bounds
is a non-trivial process as there is
a trade-off between the
verification time (faster for smaller
domains) and the confidence in
the result (better for larger
domains). Unfortunately, bounded
verification tools provide little
support in the bound selection
process. In this paper, we present
a technique that can be used to (i)
automatically infer verification
bounds whenever possible, (ii)
tighten a set of bounds proposed
by the user and (iii) guide the user
in the bound selection process.
This approach may increase the
usability of UML/OCL bounded
verification tools and improve the
efficiency of the verification
process.

10.1109
/TSE.

2017.27
77830

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
119996

Formal verification;UML;
class diagram;OCL;
constraint propagation;
SAT

O artigo fala sobre uma técnica para seleção
inteligente de limites para a verificação de

diagramas de classe UML/OCL.

Verificação de modelos
Diagramas de classes UML/OCL

Restrições OCL
Análise de fluxo de dados

Seleção de limites inteligentes (smart
bound selection)

A metodologia
não foi

especificada IEEE Inglês CE1 Excluído
Smart Contract
Defense through
Bytecode Rewriting

G. Ayoade; E.
Bauman; L.
Khan; K.
Hamlen

2019

An Ethereum bytecode rewriting
and validation architecture is
proposed and evaluated for
securing smart contracts in
decentralized cryptocurrency
systems without access to
contract source code. This
addresses a wave of smart
contract vulnerabilities that have
been exploited by cybercriminals
in recent years to steal millions of
dollars from victims. Such attacks
have motivated various best
practices proposals for helping
developers write safer contracts;
but as the number of
programming languages used to
develop smart contracts
increases, implementing these
best practices can be
cumbersome and hard to enforce
across the development tool
chain. Automated hardening at
the bytecode level bypasses this
source-level heterogeneity to
enforce safety and code integrity
properties of contracts
independently of the sources
whence they were derived. In
addition, a binary code verification
tool implemented atop the Coq
interactive theorem prover
establishes input-output
equivalence between the original
code and the modified code.
Evaluation demonstrates that the
system can enforce policies that
protect against integer overflow
and underflow vulnerabilities in
real Ethereum contract bytecode,
and overhead is measured in
terms of instruction counts.

10.1109
/Blockc
hain.

2019.00
059

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
946210

blockchain;ethereum;in-
lined reference
monitors;formal
methods

O artigo aborda a defesa de contratos
inteligentes através da reescrita do código de
bytecode. O objetivo é garantir que o contrato
inteligente execute apenas o código seguro e
impeça a execução de código malicioso. Para

isso, o artigo propõe uma abordagem de
reescrita de bytecode que modifica o código do

contrato inteligente para remover as
vulnerabilidades.

Smart contracts
Contratos inteligentes

Segurança de contratos inteligentes
Bytecode

Redução de código (code-reducing)
Máquina virtual Ethereum (EVM)

Análise de bytecode
Análise estática

Técnicas de análise de código
Instrumentação de código
Programação defensiva
Verificação de código

Ferramentas de análise estática.

Envolve a análise
de bytecode de

contratos
inteligentes em
blockchain, o

desenvolvimento
de uma

ferramenta de
reescrita de

bytecode e a
validação da
abordagem

proposta por meio
de testes em

contratos
inteligentes reais.
Além disso, foram
utilizadas técnicas

de engenharia
reversa e análise
estática de código

para identificar
vulnerabilidades

em contratos
inteligentes e

verificar a eficácia
da ferramenta de

reescrita de
bytecode
proposta.

IEEE Inglês CE1 Excluído
SMT-Based
Consistency Checking
of Configuration-Based
Components
Specifications

L. Pandolfo; L.
Pulina; S.
Vuotto 2021

Cyber-Physical Systems (CPSs)
are engineered systems that are
built from, and depend upon, the
seamless integration of
computational algorithms and
physical components. CPSs are
widely used in many safety-critical
domains, making it crucial to
ensure that they operate safely
without causing harm to people
and the environment. Therefore,
their design should be robust
enough to deal with unexpected
conditions and flexible to answer
to the high scalability and
complexity of systems.
Nowadays, it is well-established
that formal verification has a great
potential in reinforcing safety of
critical systems, but nevertheless
its application in the development
of industrial products may still be
a challenging activity. In this
paper, we describe an approach
based on Satisfiability Modulo
Theories (SMT) to formally verify,
at the design stage, the
consistency of the system design
- expressed in a given domain-
specific language, called QRML,
which is specifically designed for
CPSs - with respect to some
given property constraints, with
the purpose to reduce
inconsistencies during the system
development process. To this
end, we propose an SMT-based
approach for checking the
consistency of configuration
based-components specifications
and we report the results of the
experimental analysis using three
different state-of-the-art SMT
solvers. The main goal of the
experimental analysis is to test
the scalability of the selected
SMT solvers and thus to
determine which SMT solver is
the best in checking the
satisfiability of the properties.

10.1109
/ACCE

SS.
2021.30
85911

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
446129

Design verification;
application of formal
methods;satisfiability
modulo theories

trata de uma abordagem baseada em
Satisfiability Modulo Theories (SMT) para

verificação de consistência de especificações de
componentes de software baseados em

configuração.

Verificação de consistência
Componentes configuráveis
Lógica de primeira ordem

Teoria de igualdade
Teoria de conjuntos

Verificação SMT (Satisfiability Modulo
Theories)

Z3 SMT solver
Especificação de componentes

Restrições de configuração
Análise de restrições

Model checking
Verificação formal

A metodologia é
baseada em é
baseada em
Satisfiability

Modulo Theories
(SMT), que é uma

técnica que
combina a
decisão de

satisfatibilidade
booleana com

teorias
específicas,
permitindo a
verificação

automática de
propriedades

lógicas
complexas.

IEEE Inglês CE1 Excluído
SOLOMON: An
Automated Framework
for Detecting Fault
Attack Vulnerabilities in
Hardware

M. Srivastava;
P. SLPSK; I.
Roy; C.
Rebeiro; A.
Hazra; S.
Bhunia

2020

Fault attacks are potent physical
attacks on crypto-devices. A
single fault injected during
encryption can reveal the cipher's
secret key. In a hardware
realization of an encryption
algorithm, only a tiny fraction of
the gates is exploitable by such
an attack. Finding these
vulnerable gates has been a
manual and tedious task requiring
considerable expertise. In this
paper, we propose SOLOMON,
the first automatic fault attack
vulnerability detection framework
for hardware designs. Given a
cipher implementation, either at
RTL or gate-level, SOLOMON
uses formal methods to map
vulnerable regions in the cipher
algorithm to specific locations in
the hardware thus enabling
targeted countermeasures to be
deployed with much lesser
overheads. We demonstrate the
efficacy of the SOLOMON
framework using three ciphers:
AES, CLEFIA, and Simon.

10.2391
9

/DATE4
8585.

2020.91
16380

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
116380

fault attack;fault
evaluation tools;formal
verification

o artigo aborda o desenvolvimento de algoritmos
escaláveis e robustos para coordenação

baseada em tarefas a partir de especificações de
alto nível.

coordenação baseada em tarefas,
especificações de alto nível,

planejamento de trajetória, modelagem
de sistemas dinâmicos, e algoritmos de

otimização.

A metodologia
utilizada envolveu
a implementação
de um sistema de

simulação para
validar os
algoritmos

propostos e testar
sua escalabilidade

e robustez.

IEEE Inglês CE1 Excluído
Space-time Constraint
Resources Modeling
and Safety Verification
Method for Automated
Vehicles

Y. Zhu; X.
Chen; Y. Zhao 2022

Automated vehicle combines
physics and computation on the
basis of environment perception.
It can realize intelligent interaction
with the environment. Automated
vehicle is a typical CPS.
However, the continuous changes
of driving physical space bring
certain challenges to the safety of
CPS resources. Therefore, how to
solve this kind of CPS resource
safety problems caused by space
and time changes becomes the
key. We propose a space-time
constraint resource modeling and
safety verification method for
automated vehicle to solve this
problem. Firstly, the physical
topology model is proposed to
model the physical topology
space of CPS, which is able to
describe the topology space.
Secondly, the Resource-Space
Time Communicating Sequential
Process (RS- TCSP) is proposed
by extending the resource vector
on the basis of Time
Communicating Sequential
Process(TCSP) to describe the
resources in CPS topology.
Thirdly, the physical topology
model and RS- TCSP are
mapped to bigraphs and bigraphs
reactive system, respectively. The
safety of CPS resources is
verified by BigMC, the verification
tool of bigraphs, and the
counterexample path is modified.
Finally, a driving scene is given to
verify the effectiveness of the
proposes method.

10.1109
/DSA56

465.
2022.00

112

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
914482

cyber physical system;
formal verification;
process algebra;space-
time constraint;resource
safety

O objetivo do trabalho é fornecer uma
abordagem formal para modelar as restrições de
recursos em veículos automatizados e verificar
sua segurança. A abordagem é aplicada a um

cenário de veículo automatizado que deve
realizar manobras de ultrapassagem em uma
estrada de mão dupla, garantindo que essas

manobras sejam seguras em termos de distância
de segurança e tempo de conclusão.

Recursos com restrições de espaço-
tempo

Verificação de segurança
Veículos automatizados
Autômatos temporizados

Autômatos híbridos
Verificação de modelo

Validação baseada em simulação
Verificador de modelo Uppaal
Propriedades de segurança

Alocação de recursos

Descreve a
proposta de um

método de
modelagem de

restrições espaço-
temporais e

verificação de
segurança para

veículos
automatizados,

utilizando a lógica
temporal CTL e

técnicas de model
checking.

IEEE Inglês CE1 Excluído
SPARK by Example:
An Introduction to
Formal Verification
through the Standard
C++ Library

Creuse L,
Huguet J,
Garion C,
Hugues J

2019

This paper presents SPARK by
Example [10], a guide for people
wanting to get involved in formal
verification of SPARK programs.
SPARK by Example is inspired by
ACSL by Example, a similar effort
for C/ACSL programs, and
provides detailed specification,
implementation and proof of
classic algorithms (array
manipulation, sorting, heap etc).
A comparison between ACSL and
SPARK is done in the light of
proof performance and ease of
use.

10.1145
/337540

8.
337541

5

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/33754
08.
3375415;
http://dx.doi.
org/10.
1145/33754
08.3375415

- - - - ACM Inglês CE5 Excluído
Specification and
Automated Analysis of
Inter-Parameter
Dependencies in Web
APIs

A. Martin-
Lopez; S.
Segura; C.
Müller; A.
Ruiz-Cortés

2022

Web services often impose inter-
parameter dependencies that
restrict the way in which two or
more input parameters can be
combined to form valid calls to the
service. Unfortunately, current
specification languages for web
services like the OpenAPI
Specification (OAS) provide no
support for the formal description
of such dependencies, which
makes it hardly possible to
automatically discover and
interact with services without
human intervention. In this article,
we present an approach for the
specification and automated
analysis of inter-parameter
dependencies in web APIs. We
first present a domain-specific
language, called Inter-parameter
Dependency Language (IDL), for
the specification of dependencies
among input parameters in web
services. Then, we propose a
mapping to translate an IDL
document into a constraint
satisfaction problem (CSP),
enabling the automated analysis
of IDL specifications using
standard CSP-based reasoning
operations. Specifically, we
present a catalogue of seven
analysis operations on IDL
documents allowing to compute,
for example, whether a given
request satisfies all the
dependencies of the service.
Finally, we present a tool suite
including an editor, a parser, an
OAS extension, a constraint
programming-aided library, and a
test suite supporting IDL
specifications and their analyses.
Together, these contributions
pave the way for a new range of
specification-driven applications
in areas such as code generation
and testing.

10.1109
/TSC.

2021.30
50610

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
319562

Web API;REST;inter-
parameter dependency;
DSL;automated analysis

O objetivo é apresentar uma introdução prática à
verificação formal, utilizando a ferramenta

SPARK como base, que permite a especificação
e verificação de propriedades formais em

programas escritos em linguagem de
programação Ada e também em algumas partes

da linguagem C++.

Verificação formal de programas
Linguagem de programação SPARK

Biblioteca padrão do C++
Especificação e verificação de

propriedades formais
Programação segura
Exceções e ponteiros

Ferramentas de verificação formal
SPARK Examiner.

 Não descreve
explicitamente

uma metodologia
utilizada, uma vez
que é um artigo
introdutório que

apresenta a
linguagem de
programação
SPARK e sua
aplicação na

especificação e
verificação de
propriedades

formais

IEEE Inglês CE1 Excluído
Speed up the validation
process by formal
veerification method

R. M.
Sarikhada; P.
K Shah 2020

Formal verification (FV) has been
widely accepted as a verification
approach for catching corner logic
design issues, it also fastens the
verification process of any
subsystem. Usage of formal
verification for any RTL
verification is an easy task
compared to the traditional
simulation method. In this paper,
we discuss the approaches of
verifying a DUT by formal
verification method, and how it
will reduce the time of the overall
verification cycle. In addition to
that, I'll also discuss the flow of
verification to test any DUT under
the formal verification method. In
this test case, I used an
assertion-based verification
methodology to test the DUT and
compare it with traditional
simulation-based verification
methodology.

10.1109
/INOCO
N50539

.
2020.92
98384

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
298384

Formal Verification;
Assertion based
verification;system
verilog assertion

O artigo propõe o uso de uma abordagem de
verificação formal que combina técnicas de
modelagem formal com algoritmos de verificação
automática para detectar erros de design ou
implementação em sistemas complexos.

Verificação formal
Algoritmos de verificação automática
Erros de design ou implementação

Sistemas complexos
Validação de sistemas

Aplicações críticas
Confiança e segurança dos sistemas

Modelagem formal

É possível inferir
que o artigo

apresenta uma
revisão sobre o

estado da arte da
verificação formal
e algoritmos de

verificação
automática,

sugerindo o uso
dessas técnicas
para acelerar o

processo de
validação de

sistemas críticos.

IEEE Inglês CE1 Excluído
SSpinJa: Facilitating
Schedulers in Model
Checking

T. Nhat-Hoa;
T. Aoki 2021

The execution of a software
system that runs on top of an
Operating System (OS) is usually
controlled by the scheduler.
Therefore, to accurately verify the
system, the scheduling policy
needs to be taken into account in
the verification. In model checking
techniques, the scheduling policy
affects the search algorithm to
explore the state space to check
the behaviors of the system.
Existing works try to
specify/implement the scheduler
(s) along with the set of
processes in the specification
language(s) used by the model
checking tool(s). In reality, many
kinds of scheduling policies are
used by the OS(s), e.g. round-
robin, priority, and first-in-first-out.
There are also many variations of
these policies, which are usually
different from the 'textbook’ ones.
That means dealing with the
variations of the scheduling
policies in model checking is
necessary and important.
However, because the
implementation of the scheduler
always starts from scratch, it is
error-prone and time-consuming.
Therefore, the existing works are
difficult to deal with the different
scheduling policies. To address
this problem, we propose a
method that introduces a domain-
specific language (DSL) to
facilitate the variation of the
policies. All necessary information
to perform the scheduling tasks is
generated automatically from the
description of the scheduler. We
also introduce a search algorithm
using this information to explore
the states of the system to verify
the behaviors of the system. In
this paper, we introduce SSpinJa,
a tool in which we implemented
this approach. Our tool supports
an environment for editing the
scheduling policy (in the DSL)
and the model checker for
verifying the system. The results
of our experiments show that a)
we can handle different
scheduling policies easily, b) we
can accurately verify the
behaviors of the systems, and c)
our approach is also practical.

10.1109
/QRS54

544.
2021.00

073

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
724957

scheduling policy;model
checking;domain-
specific language

O artigo descreve uma ferramenta de model
checking para sistemas concorrentes chamada
SSpinJa. A ferramenta é voltada para facilitar a
construção de escalonadores (ou schedulers)

personalizados para model checking, permitindo
que os usuários descrevam seus próprios
escalonadores e os integrem facilmente ao

processo de model checking.

GR(1)
DSL
Salty

Síntese de controladores
Experimentos

A metodologia
utilizada pelos

autores consistiu
em:

Desenvolver a
DSL Salty para
especificação e

design de
sistemas reativos

que suporta a
escrita de

especificações
GR(1) de forma
mais concisa e

fácil de entender.
Implementar a
ferramenta de

síntese de
controladores

baseada em Salty
para gerar

automaticamente
um controlador

que garante que o
sistema satisfaz

as especificações
GR(1) escritas em

Salty.
Realizar

experimentos para
avaliar a eficácia
da abordagem
proposta. Os
experimentos

incluem a
comparação de

Salty com outras
linguagens de

especificação de
sistemas reativos
e a avaliação do
desempenho da
ferramenta de

síntese de
controladores em

diferentes
cenários de teste.

IEEE Inglês CE1 Excluído

StaBL: Statecharts with
Local Variables

Chakrabarti
SK,
Venkatesan K 2020

Complexity of specification
models of the present day have
started becoming non-trivial.
Hence, there is a need to evolve
existing specification languages
to support writing specifications
following good coding practices
such as incremental development
and modularisation. Statechart is
a modelling notation that has wide
acceptance in the industry. To the
best of our knowledge all current
implementations of Statecharts
have one common shortcoming:
all Statechart variables are global.
Global variables in a specification
can lead to monolithic and fragile
models which are hard to
maintain and reuse.In this paper,
we introduce local variables in
Statecharts, motivate their use
through illustrative examples,
formalise their semantics, and
analyse their interaction with
basic Statechart features like
hierarchical states, transitions and
history. We have implemented
this Statechart variant with local
variables in a specification
language called StaBL. Our case
studies demonstrate significant
improvement in modularity in
models with local variable w.r.t
those without local variables.

10.1145
/338503

2.
338504

0

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/33850
32.
3385040;
http://dx.doi.
org/10.
1145/33850
32.3385040

-

O artigo trata da descrição de uma extensão da
linguagem de modelagem Statecharts, que

permite a definição de variáveis locais em cada
estado do modelo. Statecharts é uma linguagem

de modelagem visual para descrever
comportamentos complexos em sistemas de

software e hardware.

Statecharts
Variáveis locais

Comportamentos complexos
Modularidade do sistema

Sintaxe e semântica da extensão StaBL
Exemplos de uso em diferentes

aplicações
Geração de código a partir de modelos

StaBL.

A metodologia
utilizada no artigo

envolve a
proposta de uma
extensão para a

linguagem
Statecharts, a

implementação da
extensão StaBL

em um compilador
Statecharts

existente e a
avaliação da
extensão em
termos de sua
usabilidade e

eficácia.

ACM Inglês CE1 Excluído
Structure Preserving
Transformations for
Practical Model-based
Systems Engineering

S. Ji; M.
Wilkinson; C.
E. Dickerson 2022

In this third decade of systems
engineering in the twenty-first
century, it is important to develop
and demonstrate practical
methods to exploit machine-
readable models in the
engineering of systems.
Substantial investment has been
made in languages and modelling
tools for developing models. A
key problem is that system
architects and engineers work in
a multidisciplinary environment in
which models are not the product
of any one individual. This paper
provides preliminary results of a
formal approach to specify
models and structure preserving
transformations between them
that support model
synchronization. This is an
important area of research and
practice in software engineering.
However, it is limited to
synchronization at the code level
of systems. This paper leverages
previous research of the authors
to define a core fractal for
interpretation of concepts into
model specifications and
transformation between models.
This fractal is used to extend the
concept of synchronization of
models to the system level and is
demonstrated through a practical
engineering example for an
advanced driver assistance
system.

10.1109
/ISSE54

508.
2022.10
005437

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=1
0005437

Model-based Systems
Engineering;Model
Synchronization;Model
Transformation;SysML

O artigo apresenta uma abordagem de
engenharia de sistemas baseada em modelos,

que visa facilitar a transformação de modelos em
diferentes níveis de abstração, preservando a

estrutura subjacente dos modelos e suas
propriedades.

Engenharia de sistemas baseada em
modelos

Transformações de modelos
Preservação de estrutura durante

transformações de modelos
Ferramentas de modelagem e

transformação de modelos
Linguagem de transformação de

modelos

A metodologia
utilizada no artigo

é baseada em
uma abordagem

de
desenvolvimento

dirigida por
modelos (Model-

Driven
Development -

MDD), na qual o
modelo é o

artefato central de
desenvolvimento
e é usado como

entrada para gerar
diferentes

artefatos de
software. Além

disso, são
utilizados

conceitos de
teoria de categoria
para garantir que

a estrutura e a
semântica dos
modelos são
preservadas
durante as

transformações.

IEEE Inglês CE1 Excluído
Symbolic Execution
based Verification of
Compliance with the
ISO 26262 Functional
Safety Standard

M. Ahmed; M.
Safar 2019

This paper proposes a new
technique for verifying the
compliance of AUTOSAR
software with the ISO26262
functional safety standard. A
framework is presented which
formally verifies that a given
implemented AUTOSAR software
fulfils high risk Automotive Safety
Integrity Level (ASIL) C and D
requirements. The framework
exploits the power of symbolic
execution to uncover defects
early in the design stage. The
efficacy of the framework is
demonstrated on the AUTOSAR
watchdog manager and watchdog
interface modules.

10.1109
/DTIS.

2019.87
35046

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
735046

Symbolic Execution;
ISO-26262;Automotive
Functional Safety;
Formal Verification;
AUTOSAR Watchdog
Modules

O artigo trata sobre o uso da técnica de
execução simbólica para verificar a
conformidade de software com o padrão de
segurança funcional ISO 26262. O objetivo é
apresentar uma abordagem sistemática para a
verificação do software, que pode ser aplicada
em diferentes etapas do processo de
desenvolvimento, e que ajuda a identificar
violações de requisitos de segurança

Verificação de conformidade com o
padrão de segurança funcional ISO
26262.
Execução simbólica, uma técnica de
análise estática de programas que
simula todas as possíveis trajetórias de
execução sem executar o código.
Geração automática de requisitos de
segurança para componentes de
software.
Análise de limites, que verifica se todos
os limites especificados no padrão ISO
26262 são cumpridos.
Verificação de requisitos de segurança
em nível de sistema e nível de
componente de software.

A metodologia
utiliza uma técnica
de simulação
simbólica
chamada
"concrete and
symbolic
execution" para
analisar o
comportamento
dinâmico do
software em
diferentes
cenários de
entrada. Em
seguida, verifica-
se se o
comportamento
observado está
em conformidade
com os requisitos
de segurança
especificados pelo
padrão. O
processo de
verificação é
automatizado
usando uma
ferramenta de
análise estática
baseada em
simulação
simbólica.

IEEE Inglês CE1 Excluído
Systematic Evaluation
and Usability Analysis
of Formal Methods
Tools for Railway
Signaling System
Design

A. Ferrari; F.
Mazzanti; D.
Basile; M. H.
ter Beek

2022

Formal methods and supporting
tools have a long record of
success in the development of
safety-critical systems. However,
no single tool has emerged as the
dominant solution for system
design. Each tool differs from the
others in terms of the modeling
language used, its verification
capabilities and other
complementary features, and
each development context has
peculiar needs that require
different tools. This is particularly
problematic for the railway
industry, in which formal methods
are highly recommended by the
norms, but no actual guidance is
provided for the selection of tools.
To guide companies in the
selection of the most appropriate
formal methods tools to adopt in
their contexts, a clear assessment
of the features of the currently
available tools is required. To
address this goal, this paper
considers a set of 13 formal
methods tools that have been
used for the early design of
railway systems, and it presents a
systematic evaluation of such
tools and a preliminary usability
analysis of a subset of 7 tools,
involving railway practitioners.
The results are discussed
considering the most desired
aspects by industry and earlier
related studies. While the focus is
on the railway signaling domain,
the overall methodology can be
applied to similar contexts. Our
study thus contributes with a
systematic evaluation of formal
methods tools and it shows that
despite the poor graphical
interfaces, usability and maturity
of the tools are not major
problems, as claimed by
contributions from the literature.
Instead, support for process
integration is the most relevant
obstacle for the adoption of most
of the tools. Our contribution can
be useful to R&D engineers from
railway signaling companies and
infrastructure managers, but also
to tool developers and academic
researchers alike.

10.1109
/TSE.

2021.31
24677

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
599463

-

Trata da avaliação sistemática e análise de
usabilidade de ferramentas de métodos formais

para o projeto de sistemas de sinalização
ferroviária. O estudo apresenta uma abordagem
sistemática para avaliar ferramentas de métodos

formais e os desafios associados à sua
integração em um processo de design industrial.
O objetivo é avaliar a eficácia das ferramentas

em termos de precisão, escalabilidade,
usabilidade e tempo de verificação. A análise é

realizada em um estudo de caso que utiliza
quatro ferramentas diferentes e é avaliada com

base em um conjunto de critérios definidos.

Métodos formais para a verificação de
sistemas críticos;

Modelagem de sistemas de sinalização
ferroviária;

Análise de usabilidade de ferramentas
de métodos formais;

Avaliação sistemática de ferramentas
de métodos formais;

Estudos de caso de aplicação das
ferramentas em sistemas de sinalização

ferroviária.

a metodologia
utilizada consistiu
em uma avaliação

sistemática e
análise de

usabilidade de
quatro

ferramentas de
métodos formais

usadas no projeto
de sistemas de

sinalização
ferroviária. A
avaliação foi

conduzida em
duas fases: a
primeira fase

envolveu a análise
de documentos e

informações
disponíveis na
web sobre as
ferramentas,
enquanto a

segunda fase foi
baseada em
experimentos

práticos com as
ferramentas,

utilizando casos
de estudo de
sinalização

ferroviária como
base para a
avaliação. A
análise se

concentrou em
aspectos de
usabilidade,

facilidade de uso,
eficácia, eficiência

e satisfação do
usuário.

IEEE Inglês CE1 Excluído

Teaching Design by
Contract using Snap!

M. Huisman;
R. E. Monti 2021

With the progress in deductive
program verification research,
new tools and techniques have
become available to support
design-by-contract reasoning
about non-trivial programs written
in widely-used programming
languages. However, deductive
program verification remains an
activity for experts, with ample
experience in programming,
specification and verification. We
would like to change this
situation, by developing program
verification techniques that are
available to a larger audience. In
this paper, we present how we
developed prototypal program
verification support for Snap!.
Snap! is a visual programming
language, aiming in particular at
high school students. We added
specification language constructs
in a similar visual style, designed
to make the intended semantics
clear from the look and feel of the
specification constructs. We
provide support both for static and
dynamic verification of Snap!
programs. Special attention is
given to the error messaging, to
make this as intuitive as possible.

10.1109
/SEEN

G53126
.

2021.00
007

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
474640

verification;software;
education

O objetivo do trabalho é apresentar o conceito
de DBC e como ele pode ser aplicado no

desenvolvimento de software, além de
demonstrar a utilização da ferramenta Snap!
para implementar essa metodologia de forma

visual e interativa. O artigo discute a importância
do uso do DBC na produção de código confiável

e eficiente, além de apresentar exemplos
práticos de implementação de contratos em

programas desenvolvidos na plataforma Snap!.

Design by Contract
Snap!

Bloco de assertiva
Bloco de assume
Bloco de garantia
Bloco de exceção

Programação orientada a objetos

O artigo descreve
a utilização da
metodologia de
ensino baseada

em projeto (PBL -
Problem-Based
Learning) para

ensinar o conceito
de Design by

Contract (DbC)
em programação
para iniciantes. O
PBL consiste em

envolver os
alunos em

projetos práticos e
desafiadores que

os levam a
desenvolver

habilidades de
resolução de
problemas e
trabalho em
equipe. Além
disso, o artigo

utiliza a
ferramenta Snap!
como ambiente de
programação para

que os alunos
possam praticar a
implementação do

DbC.

IEEE Inglês CE1 Excluído
The Formal Mechanism
of the UML Model
Based on SBOPN Y. Xiaoling 2019

This paper introduces the State-
Based Object Petri net, gives the
definition, firing rule and analysis
methods of the net. Based on
aforementioned, state-based
object petri net is chosen to
formalize the UML and give the
mechanism and corresponding
algorithms that can be used to
map state chart diagrams and the
collaboration diagram of UML
specification into state-based
object petri net model in the early
phase of UML modeling. The
state-based object petri net model
gotten by these algorithms not
only is object-oriented but also
can be analyzed and validated to
find out deadlock with powerful
Petri tools, thus the verification of
the model in the early phase is
can be realized.

10.1109
/ICSAI4
8974.

2019.90
10446

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
010446

component;Object-
Oriented;Petri Net;UML;
State- Based Object
Petri Net;formal
mechanism

O artigo aborda a criação de um mecanismo
formal para o modelo UML (Unified Modeling
Language) baseado em SBOPN (Stochastic

Binary Ordered Petri Nets). O objetivo do
trabalho é fornecer uma abordagem formal para

a verificação do comportamento dinâmico de
sistemas baseados em UML, permitindo que os
desenvolvedores possam identificar possíveis

erros no design do sistema antes da
implementação.

UML
SBOPN (State-Based Object Petri Nets)

Mecanismo formal

Apresenta uma
abordagem formal

baseada na
combinação da
notação UML

(Unified Modeling
Language) com a
técnica SBOPN
(Stochastic Petri

Net with Biological
Object Process)

para modelar
sistemas

complexos e
analisar seu

comportamento
dinâmico. A
abordagem
proposta é

ilustrada por meio
de um exemplo de

estudo de caso.

IEEE Inglês CE1 Excluído
The Notion of Cross
Coverage in AMS
Design Verification

S. Sanyal; A.
Hazra; P.
Dasgupta; S.
Morrison; S.
Surendran; L.
Balasubraman
ian

2020

Coverage monitoring is
fundamental to design
verification. Coverage artifacts
are well developed for digital
integrated circuits and these aim
to cover the discrete state space
and logical behaviors of the
design. Analog designers are
similarly concerned with the
operating regions of the design
and its response to an infinite and
dense input space. Analog
variables can influence each
other in far more complex ways
as compared to digital variables,
consequently, the notion of cross
coverage, as introduced in the
analog context for the first time in
this paper, is of high importance
in analog design verification. This
paper presents the formal syntax
and semantics of analog cross
coverage artifacts, the methods
for evaluating them using our tool
kit, and most importantly, the
insights that can be gained from
such cross coverage analysis.

10.1109
/ASP-

DAC47
756.

2020.90
45131

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
045131

-

O artigo discute a importância da cobertura de
verificação em projetos de sistemas em chip

analógicos/mistos (AMS) e apresenta a noção de
cobertura cruzada (cross coverage) como uma

técnica para melhorar a qualidade da verificação
desses sistemas. O artigo aborda conceitos
como cobertura de verificação, verificação

funcional e AMS.

Notion
Cross Coverage

AMS Design Verification.

Não apresenta um
método

especifico, mas
sim se concentra

principalmente em
apresentar e

discutir o conceito
de cobertura

cruzada (cross-
coverage) no
contexto da

verificação de
design de

sistemas de sinais
mistos (AMS).

IEEE Inglês CE1 Excluído
The Post Language:
Process-Oriented
Extension for IEC
61131-3 Structured
Text

V. Bashev; I.
Anureev; V.
Zyubin 2020

This paper introduces a new
programming language for control
software specification. The
language called poST is a
process-oriented extension of the
IEC 61131-3 Structured Text
language widely used in the PLC
domain. The poST language
enables control software
specification as a set of
interacting FSM-based processes
that have event-driven behaviour
and operate with time intervals.
The language is intended to
provide a possibility to use the
process-oriented approach for
IEC 61131-3 users and
comparing to the other process-
oriented languages poST is easy
to learn for the IEC 61131-3
community. An IDE for poST was
developed with Eclipse (Xtext)
toolset. Paper illustrates the poST
language using for a hand dryer
control software: we provide the
source poST code and the
generated C code for Arduino
(ATmega 168) platform.

10.1109
/RusAut
oCon49

822.
2020.92
08049

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
208049

process-oriented
programming;PLC
languages;IEC 61131-3;
Structured Text

O artigo aborda a proposta de uma linguagem
de programação orientada a processos chamada
"Post Language". A ideia é estender a linguagem

estruturada IEC 61131-3 para permitir a
descrição de programas de controle de processo

de uma forma mais intuitiva e compreensível,
com a inclusão de primitivas específicas para
modelar processos. O objetivo é melhorar a
produtividade e a qualidade do código em

sistemas de automação e controle de processos
industriais.

Linguagem estruturada.
IEC 61131-3:
Processo:

Orientação a processos:
Extensão de linguagem

O trabalho
apresenta uma
nova linguagem
de programação
chamada Post

Language, que é
uma extensão do

IEC 61131-3
Structured Text. O
artigo descreve a

sintaxe e
semântica da Post

Language e
compara sua

capacidade com
outras linguagens
de programação

existentes.

IEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049

Tool-Supported
Analysis of Dynamic
and Stochastic
Behaviors in Cyber-
Physical Systems

L. Huang; T.
Liang; E. -Y.
Kang 2019

Formal analysis of functional and
non-functional requirements is
crucial in cyber-physical systems
(CPS), in which controllers
interact with physical
environments. The continuous
time behaviors of CPS often rely
on complex dynamics as well as
on stochastic behaviors. We have
previously proposed a
probabilistic extension of Clock
Constraint Specification
Language, called PrCCSL, for
specification of (non)-functional
requirements of CPS and proved
the correctness of requirements
by mapping the semantics of the
specifications into verifiable
UPPAAL models. Previous work
is extended in this paper by
including an extension of
PrCCSL, i.e., PrCCSL*, which
incorporates annotations of
continuous behaviors and
stochastic characteristics of CPS.
The CPS behaviors are specified
in PrCCSL* and translated into
stochastic UPPAAL models for
formal verification. The translation
algorithm from PrCCSL* into
UPPAAL models is provided and
implemented in an automatic
translation tool, namely ProTL.
Formal verification of CPS against
(non)-functional requirements is
performed by ProTL using
UPPAAL-SMC as an analysis
backend. Our approach is
demonstrated on a series of CPS
case studies.

10.1109
/QRS.

2019.00
039

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
854706

CPS;PrCCSL*;UPPAAL-
SMC;ProTL

Esse trabalho aborda a análise de
comportamentos dinâmicos e estocásticos em
sistemas ciberfísicos, utilizando ferramentas de
modelagem e simulação para verificar
propriedades de segurança e desempenho.

Análise de comportamentos dinâmicos
e estocásticos em sistemas ciberfísicos
Modelagem de sistemas ciberfísicos
usando a linguagem de modelagem
SysML
Modelagem de comportamentos
estocásticos em SysML usando a
extensão SysML-Stochastic
Geração de modelos formais de Markov
a partir dos modelos SysML
estocásticos
Análise de propriedades de segurança
e desempenho em sistemas ciberfísicos
por meio da verificação de modelos de
Markov formais
Integração de ferramentas de
modelagem e verificação para suportar
a análise de comportamentos dinâmicos
e estocásticos em sistemas ciberfísicos.

A metodologia
envolve a criação
de modelos
formais para
representar o
comportamento
do sistema, a
aplicação de
técnicas de
análise de
modelagem e a
simulação do
sistema para
verificar as
propriedades
desejadas. O
trabalho
apresenta um
estudo de caso
em que a
metodologia é
aplicada para
analisar o
comportamento
de um sistema de
transporte
autônomo.

IEEE Inglês CE1 Excluído
Tooled approach for
formal verification of
components
interactions modeled in
SysML

M. S. GHITRI;
M.
MESSABIHI;
A. BENAMAR

2019

Software systems are becoming
more complex and their
implementation requires more
rigorous modeling approaches,
for this reason the OMG (Object
Management Group) has
implemented the SysML standard
to model complex systems.
Sequence diagram is one of the
fundamental diagrams of SysML
because it allows behavioral
specification of systems.
However, SysML still has a lack
of formal semantics following his
semi-formal definition, which
makes it impossible to directly
apply the simulation and
verification methods to these
diagrams. The model
transformation community offers
several solutions to transform the
SysML specification into formal
methods in order to bridge the
gap between them, this
community is divided into two
principal's axes, the first ones
working on the formalization of
structural diagrams, and the
others have worked on behavioral
diagrams. Our work contributes to
behavioral modeling and aims to
combine all the highlights of the
other approaches in a single
framework for formal verification
of SDs, using TAN and Uppaal
model checker. The proposed
approach has been tested
through a case study of an
interaction between ATM and
Bank to prove their reliability.

10.1109
/ICTAA
CS4847

4.
2019.89
88134

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
988134

SysML;ATL;Formal
Verification;Timed
Automata Network;
Model Checking;
Acceleo;Uppaal

O artigo apresenta uma abordagem para
verificar formalmente as interações entre

componentes modelados em SysML (Linguagem
de Modelagem de Sistemas) usando

ferramentas de verificação formal. A proposta do
artigo é melhorar a precisão e eficiência da

verificação de sistemas críticos, especialmente
aqueles que envolvem interações complexas

entre componentes.

Formal verification
Components interactions

SysML
Tooled approach

Modelagem do
sistema em

SysML
Conversão do

modelo SysML em
um modelo formal
Verificação formal

do modelo
utilizando

ferramentas de
verificação
automática

Análise dos
resultados e

correção de erros
no modelo, se

necessário.

IEEE Inglês CE1 Excluído

Tools for
Disambiguating RFCs

Yen J,
Govindan R,
Raghavan B 2021

For decades, drafting Internet
protocols has taken significant
amounts of human supervision
due to the fundamental ambiguity
of natural language. Given such
ambiguity, it is also not surprising
that protocol implementations
have long exhibited bugs. This
pain and overhead can be
significantly reduced with the help
of natural language processing
(NLP).We recently applied NLP to
identify ambiguous or under-
specified sentences in RFCs, and
to generate protocol
implementations automatically
when the ambiguity is clarified.
However this system is far from
general or deployable. To further
reduce the overhead and errors
due to ambiguous sentences, and
to improve the generality of this
system, much work remains to be
done. In this paper, we consider
what it would take to produce a
fully-general and useful system
for easing the natural-language
challenges in the RFC process.

10.1145
/347230

5.
347231

4

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/34723
05.
3472314;
http://dx.doi.
org/10.
1145/34723
05.3472314

natural language,
protocol specifications

O artigo aborda a questão da ambiguidade na
interpretação dos Request for Comments

(RFCs), que são documentos técnicos utilizados
para estabelecer padrões na Internet. O artigo

propõe a utilização de ferramentas para auxiliar
na identificação de ambiguidades e na resolução
de conflitos de interpretação dos RFCs, com o

objetivo de melhorar a implementação dos
padrões estabelecidos.

Disambiguação
RFCs (Request for Comments)
Ferramentas de análise de texto

Mineração de dados
Análise de sentimentos

A proposta se
baseia em uma
abordagem de
aprendizado de
máquina para
identificar as

possíveis
interpretações de

um termo e
fornecer

sugestões para o
usuário selecionar
a mais adequada.

ACM Inglês CE1 e CE2 Excluído

Toward Verified
Artificial Intelligence

Seshia SA,
Sadigh D,
Sastry SS 2022

Making AI more trustworthy with a
formal methods-based approach
to AI system verification and
validation.

10.1145
/350391

4

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35039
14;http://dx.
doi.org/10.
1145/35039
14

-

O artigo aborda a necessidade de se
desenvolver técnicas formais para garantir a
segurança e a confiabilidade em sistemas de

inteligência artificial (IA). Ele discute os desafios
de se verificar e validar sistemas de IA

complexos e propõe a utilização de técnicas de
verificação formal para garantir que tais sistemas

se comportem corretamente em todas as
situações.

Inteligência artificial verificada (Verified
AI)

Verificação formal
Lógica de Hoare

Aprendizado por reforço
Redes neurais artificiais (RNAs)

Diferenciação automática
Propriedades de segurança e corretude

Robustez
Fairness

Transparência

- ACM Inglês CE1 e CE2 Excluído
Towards a Simplified
Evaluation of Graphical
DSL Workbenches

A. Dembri; M.
Redjimi 2022

The design and development of
graphical tools for new domain-
specific languages is still a
challenge for designers; the
Model-Driven Architecture (MDA)
makes a qualitative difference in
the creation of Domain Specific
Language (DSL). We aim in this
paper to analyze and evaluate the
performance of some language
workbenches that makes the
development of domain-specific
language simpler and more
specialised. To evaluate these
tools, a formal specification of a
Petri net called Agent Petri Net is
selected. We analyze criteria
related to abstraction level,
facilities to tailor DSL to specific
domains, simplicity of
development and the productivity
guarantee with these tools.
Practical experience highlights
the real capabilities of each tool
and considers as an evaluation
support to select the adequate
solution to design DSL that
responds to user requirements.

10.1109
/ISIA55

826.
2022.99
93580

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
993580

MDA;DSL;Language
workbenches;
evaluation;graphical
modelling framework;
Cinco;Sirius

Esse artigo propõe uma metodologia para avaliar
workbenches de DSLs gráficas com base em

três dimensões (Técnica, Usabilidade e
Impacto), usando um conjunto de métricas. A

metodologia é aplicada em três estudos de caso
para identificar pontos fortes e fracos de cada
workbench e ajudar na seleção da ferramenta

mais adequada para um projeto de DSL gráfica.

Graphical DSLs
Workbenches
Usabilidade
Efetividade
Métricas

Experimentos

A metodologia
consiste em um

conjunto de
métricas de

usabilidade e
efetividade, que
são coletadas

através de
experimentos
controlados e

estruturados com
usuários. O
objetivo é

simplificar a
avaliação de IDEs

para DSLs
gráficas, tornando
o processo mais

eficiente e
acessível para

desenvolvedores
e pesquisadores.

IEEE Inglês CE1 e CE2 Excluído
Towards a time editor
for orchestrating
connected objects in
the Web of Things

I.
MEZENNER;
S.
BOUYAKOUB;
F. M.
BOUYAKOUB

2019

Web of Things is a new paradigm,
it constitutes the heart of a great
research activity. However, most
of this work does not take into
account its temporal aspect,
whereas it is a critical dimension
directly related to customer
satisfaction, optimization and is
considered as a very effective
strategy for cost reduction. For
this matter, we propose a tool to
edit and verify the time
constraints added to an abstract
BPEL specification. Furthermore,
the editor allows the user to edit
abstract BPEL specification that
orchestrates Web services
offered by objects connected to
the Web of Things. Through the
latter, the input specification is
enriched with constraints and time
attributes. Then, a temporal
verification and validation process
is applied to detect any temporal
errors or conflicts.

10.1109
/ICTAA
CS4847

4.
2019.89
88132

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
988132

Web of Things;Web
service orchestration;
WS-BPEL;Allen’s
algebra

O artigo propõe um editor de tempo para
orquestração de objetos conectados na Web das

Coisas. A abordagem usa uma linguagem de
especificação de fluxo de dados e inclui
validação através de simulação. O artigo
também apresenta cenários de uso em

diferentes contextos.

Web das Coisas (Web of Things)
Orquestração de objetos conectados
Edição temporal de fluxos de dados

Linguagem de especificação de fluxo de
dados

Validação por simulação
Cenários de uso em diferentes

contextos.

A abordagem
proposta inclui um
editor de tempo,
que permite a

edição temporal
de fluxos de
dados, e um

mecanismo de
validação

baseado em
simulação. Além
disso, o artigo
apresenta uma

série de cenários
de uso em
diferentes

contextos, que
foram utilizados
para avaliar a

eficácia da
abordagem
proposta.

IEEE Inglês CE1 e CE2 Excluído
Towards Formal
Verification of Program
Obfuscation

W. Lu; B.
Sistany; A.
Felty; P. Scott 2020

Code obfuscation involves
transforming a program to a new
version that performs the same
computation but hides the
functionality of the original code.
An important property of such a
transformation is that it preserves
the behavior of the original
program. In this paper, we lay the
foundation for studying and
reasoning about code obfuscating
transformations, and show how
the preservation of certain
behaviours may be formally
verified. To this end, we apply
techniques of formal specification
and verification using the Coq
Proof Assistant. We use and
extend an existing encoding of a
simple imperative language in
Coq along with an encoding of
Hoare logic for reasoning about
this language. We formulate what
it means for a program's
semantics to be preserved by an
obfuscating transformation, and
give formal machine-checked
proofs that these behaviours or
properties hold. We also define a
lower-level block-structured
language which is "wrapped
around" our imperative language,
allowing us to model certain
flattening transformations and
treat blocks of codes as objects in
their own right.

10.1109
/EuroS
PW513

79.
2020.00

091

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
229802

obfuscation;verification;
security;correctness;
Coq;proof

O artigo discute diferentes técnicas de ofuscação
de programas e destaca a importância da
verificação de programas obfuscados em

contextos de segurança e privacidade.

O artigo aborda a importância da
verificação formal de programas

obfuscados em contextos de segurança
e privacidade, bem como apresenta
uma abordagem para a verificação

formal desses programas, utilizando
técnicas de model checking e provas de

teoremas.

A metodologia
baseada em

model checking e
provas de

teoremas para
verificar a

semântica de
programas

obfuscados em
relação aos seus

programas
originais

correspondentes.
A abordagem é

avaliada por meio
de um estudo de

caso em que
diferentes

técnicas de
ofuscação são
aplicadas a um
programa de

exemplo.

IEEE Inglês CE1 e CE2 Excluído

Towards Verified Self-
Driving Infrastructure

Liu B,
Kheradmand
A,Caesar M,
Godfrey PB

2020

Modern self-driving'' service
infrastructures consist of a
diverse collection of distributed
control components providing a
broad spectrum of application-
and network-centric functions.
The complex and non-
deterministic nature of these
interactions leads to failures,
ranging from subtle gray failures
to catastrophic service outages,
that are difficult to anticipate and
repair.Our goal is to call attention
to the need for formal
understanding of dynamic service
infrastructure control. We provide
an overview of several incidents
reported by large service
providers as well as issues in a
popular orchestration system,
identifying key characteristics of
the systems and their failures. We
then propose a verification
approach in which we treat
abstract models of control
components and the environment
as parametric transition systems
and leverage symbolic model
checking to verify safety and
liveness properties, or propose
safe configuration parameters.
Our preliminary experiments
show that our approach is
effective in analyzing complex
failure scenarios with acceptable
performance overhead.

10.1145
/342260

4.
342594

9

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/34226
04.
3425949;
http://dx.doi.
org/10.
1145/34226
04.3425949

verification, parameter
synthesis, service
infrastructure control,
self-driving
infrastructure, symbolic
model checking

O artigo destaca a importância da segurança,
utiliza linguagens formais e integra ferramentas
de verificação. Além disso, o artigo apresenta

uma análise experimental da metodologia
proposta.

Infraestrutura para veículos autônomos,
verificação formal, linguagens formais,
ferramentas de verificação, segurança

do sistema e análise experimental.

É baseada em
verificação formal

e envolve a
especificação de
propriedades de

segurança,
modelagem

formal, geração
de condições de
teste, verificação
formal e análise
dos resultados.

Destaca-se
também a

importância da
verificação

modular e é
apresentada uma

análise
experimental da

metodologia
proposta.

ACM Inglês CE1 e CE2 Excluído
Trace-Checking CPS
Properties: Bridging the
Cyber-Physical Gap

C. Menghi; E.
Viganò; D.
Bianculli; L. C.
Briand

2021

Cyber-physical systems combine
software and physical
components. Specification-driven
trace-checking tools for CPS
usually provide users with a
specification language to express
the requirements of interest, and
an automatic procedure to check
whether these requirements hold
on the execution traces of a CPS.
Although there exist several
specification languages for CPS,
they are often not sufficiently
expressive to allow the
specification of complex CPS
properties related to the software
and the physical components and
their interactions. In this paper,
we propose (i) the Hybrid Logic of
Signals (HLS), a logic-based
language that allows the
specification of complex CPS
requirements, and (ii) ThEodorE,
an efficient SMT-based trace-
checking procedure. This
procedure reduces the problem of
checking a CPS requirement over
an execution trace, to checking
the satisfiability of an SMT
formula. We evaluated our
contributions by using a
representative industrial case
study in the satellite domain. We
assessed the expressiveness of
HLS by considering 212
requirements of our case study.
HLS could express all the 212
requirements. We also assessed
the applicability of ThEodorE by
running the trace-checking
procedure for 747 trace-
requirement combinations.
ThEodorE was able to produce a
verdict in 74.5% of the cases.
Finally, we compared HLS and
ThEodorE with other specification
languages and trace-checking
tools from the literature. Our
results show that, from a practical
standpoint, our approach offers a
better trade-off between
expressiveness and performance.

10.1109
/ICSE4
3902.

2021.00
082

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
402030

Monitors;Languages;
Specification;Validation;
Formal methods;
Semantics

O artigo foco em sistemas ciberfísicos,
abordagem de verificação baseada em

rastreamento de execução, integração de
técnicas de modelagem e verificação,

abordagem modular, foco em propriedades de
segurança e análise experimental.

Sistemas ciberfísicos (CPS), verificação
de propriedades de segurança,

abordagem de verificação baseada em
rastreamento de execução, modelagem

formal, verificação formal e análise
experimental.

 Modelagem do
sistema, geração
de cenários de
teste, execução

de testes e
verificação dos
resultados. A

modelagem do
sistema é feita

utilizando técnicas
de modelagem

formal, permitindo
a representação
do sistema em

diferentes níveis
de abstração. A

geração de
cenários de teste
é realizada com

base na
modelagem do

sistema,
permitindo a
simulação de

diferentes
situações. A
execução de

testes é realizada
para validar os

cenários de teste
gerados e
identificar

possíveis erros.
Por fim, a

verificação dos
resultados é

realizada para
garantir a

conformidade do
sistema com as
especificações.

IEEE Inglês CE1 e CE2 Excluído
Transformation of non-
standard nuclear I&C
logic drawings to formal
verification models

A. Pakonen;
P. Biswas; N.
Papakonstanti
nou

2020

Model checking methods have
been proven to be a valuable
asset for identifying undesired
behaviour of safety-critical
Instrumentation and Control (I&C)
logics. Their application in the
nuclear domain has been very
successful and has triggered
significant interest from the safety
community. Creating formal
models from the diagrams found
on paper or from digital formats
without the needed semantics is
one bottleneck that hinders the
adoption of model checking due
to costs in time and may
introduce errors. This paper
proposes a methodology for the
creation of formal models from
I&C diagrams drawn in generic
modelling tools (lacking specific
I&C semantics). The generic I&C
logic diagram is transformed into
an intermediate UML model that
in turn can be transformed to
other target formats like IEC
61131 PLCopen XML I&C
software or NuSMV formal model
code. This methodology is
demonstrated with a typical
example of a trip signal generator
application logic. This application
logic is drawn in MS Visio, it is
transformed to an I&C model in
UML with the needed properties
for model checking, then to IEC
61131 PLCopen XML and to an
input file for the NuSMV model
checker.

10.1109
/IECON
43393.

2020.92
55176

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
255176

I&C;function block
diagram;nuclear energy;
IEC61131;PLCOpen
XML;Model-Based
System Engineering

O artigo apresenta uma metodologia para
converter desenhos de lógica de controle e

instrumentação (I&C) nucleares não
padronizados em modelos formais verificáveis,

combinando técnicas de processamento de
imagens com métodos formais de verificação.

Os resultados dos experimentos mostram que a
metodologia pode ser aplicada com sucesso e

pode ser uma ferramenta valiosa para a
verificação de sistemas de I&C nucleares

críticos.

Lógica de controle e instrumentação
(I&C) nucleares, verificação formal,

processamento de imagens,
modelagem formal, transformação de

desenhos em modelos, sistemas
críticos e automação da verificação.

Digitalização do
desenho,

segmentação do
desenho, extração
de informações,

modelagem formal
e verificação

formal. A
digitalização é

feita por meio de
um scanner,
seguida da

segmentação da
imagem em partes

menores e
extração de
informações
relevantes. A

modelagem formal
é realizada

utilizando um
modelo de estado-
finito, que é então

verificado
formalmente para

garantir a sua
corretude.

IEEE Inglês CE1 e CE2 Excluído
Translating Process
Interaction World View
Models to DEVS:
GPSS to (Python(P))
DEVS

R. Paredis; S.
Van Mierlo; H.
Vangheluwe 2020

Discrete-event modelling and
simulation languages can be
classified based on their world
view: event scheduling, activity
scanning, or process interaction.
To study the semantics of these
languages one may investigate
the relationship between them,
and in particular translate models
between languages in different
world views. A translation
approach also lets one re-use all
the simulation tooling available for
the target language. We describe
a translation of the classic
process interaction language
GPSS developed by Gordon in
the early 1960s onto DEVS, a
modular discrete-event modelling
and simulation language with
precise semantics developed by
Zeigler in the late 1970s. We
specify and implement a
translation that produces, for each
GPSS model, a behaviourally
equivalent DEVS model. As
GPSS has no formal semantics,
there is no proof of equivalence.
Rather, we describe the structure
of the translation, starting from
Gordon's informal description,
centered around the main data
structures called chains and the
scanning algorithm. We build a
working prototype for a
representative subset of GPSS
blocks found in most tools
implementing the language.
Finally, we exhaustively test the
translation by comparing
simulation results of the
generated DEVS model with a
those obtained by the GPSS
World simulator. GPSS World is a
popular GPSS variant. We also
demonstrate our approach on a
small but representative example
from the manufacturing domain.

10.1109
/WSC4
8552.

2020.93
83952

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
383952

-
O artigo descreve um processo de tradução de

modelos de Process Interaction World View
(PIWV) baseados na linguagem GPSS para o
formalismo DEVS usando a implementação

Python(P)DEVS.

Process Interaction World View (PIWV)
General Purpose Simulation System

(GPSS)
Discrete Event System Specification

(DEVS)
Python(P)DEVS

Translação de modelos

Conversão do
modelo GPSS
para o modelo
PIWV (Process

Interaction World
View);

Conversão do
modelo PIWV
para o modelo

DEVS (Discrete
Event System
Specification)
utilizando a

implementação
Python(P)DEVS;

Execução da
simulação do
modelo DEVS

obtido a partir do
modelo PIWV.

IEEE Inglês CE1 e CE2 Excluído
Translation Validation
of Code Generation
from the SIGNAL Data-
Flow Language to
Verilog

H. M. Amjad;
K. Hu; J. Niu;
N. Khan; L.
Besnard; J. -P.
Talpin

2019

The SIGNAL is a high-level
synchronous data-flow language
for the design and implementation
of safety-critical embedded
systems. It provides a unified
framework for specification,
modeling, formal analysis, and
automatic code generation for
different general-purpose
languages like Java, C, and C++.
However, fully implemented and
verified open source tool for code
generation from SIGNAL to
Hardware Description Language
(HDL) is not available. This paper
describes the formal verification
of the generated Verilog code
from the SIGNAL language.
Proving the correctness of
generated code is very important
when it is for safety-critical
embedded systems. We use the
translation validation technique
for verifying the correctness of the
generated code. In this approach,
the Polychrony Toolset builds the
models of source
SIGNALprograms with its
associated model checker
SIGALI. The open source tool
Yosys generates models for
target Verilog programs in the
SMT-LIB standard format. We
transform the model generated by
Yosys to the model accepted by
the SIGALI model checker.
Finally, we use the SIGALI model
checker to validate the translation
by symbolic simulation between
both source and target program
models. The target program may
have fewer behaviors than the
source program therefore if the
model of the target program
implies the model of the source
program, it means the target
program preserves the semantics
of the source program, and the
translation is correct.

10.1109
/SKG49

510.
2019.00

034

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
044129

translation validation,
embedded systems,
Verilog, SIGNAL,
SIGALI, Yosys,
semantics

o artigo trata da validação da tradução de código
gerado da linguagem SIGNAL para Verilog,

utilizando técnicas de verificação formal para
garantir que o comportamento do código gerado

corresponda ao comportamento esperado na
especificação original. A validação é feita em
duas etapas: simulação e verificação formal.

Linguagem de fluxo de dados SIGNAL
Verilog

Geração automática de código
Validação de tradução

Comparação de comportamento
Técnicas de verificação formal

Geração do
código Verilog a

partir da
especificação

SIGNAL.
Simulação do
código gerado

para verificar se
ele se comporta
como esperado.
Formalização da

especificação
original e

verificação formal
do código gerado
para garantir que

eles sejam
equivalentes.
Correção de

erros, se
necessário, e
repetição dos

passos anteriores
até que o código

gerado seja
validado com

sucesso.

IEEE Inglês CE1 Excluído
Unifying Separation
Logic and Region Logic
to Allow Interoperability

Bao Y,
Leavens GT,
Ernst G 2018

Framing is important for
specification and verification,
especially in programs that
mutate data structures with
shared data, such as DAGs. Both
separation logic and region logic
are successful approaches to
framing, with separation logic
providing a concise way to reason
about data structures that are
disjoint, and region logic providing
the ability to reason about framing
for shared mutable data. In order
to obtain the benefits of both
logics for programs with shared
mutable data, this paper unifies
them into a single logic, which
can encode both of them and
allows them to interoperate. The
new logic thus provides a way to
reason about program modules
specified in a mix of styles.

10.1007
/s00165

-018-
0455-5

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1007/s0016
5-018-0455-
5;http://dx.
doi.org/10.
1007/s0016
5-018-0455-
5

Formal verification,
Separation logic, Unified
fine-grained region logic
(UFRL), Framing, Fine-
grained region logic,
Formal specification,
Shared mutable data,
Hoare logic

O artigo propõe uma técnica para unificar a
lógica de separação e região para permitir

interoperabilidade entre ferramentas de
verificação. A técnica envolve a criação de uma

nova lógica chamada "lógica de região
paramétrica". A eficácia da técnica é avaliada

em estudos de caso e experimentos em
diferentes ferramentas de verificação.

Lógica de separação, lógica de região,
interoperabilidade, verificação de

programas, lógica de região
paramétrica.

Definição da
lógica de região
paramétrica, que
unifica as lógicas
de separação e

região.

Formalização das
regras de

inferência da
lógica, incluindo
as regras para

lidar com a união
e interseção de

regiões.

Definição de uma
semântica

operacional para a
lógica de região

paramétrica.

Implementação da
técnica proposta

em diferentes
ferramentas de
verificação de
programas e
avaliação da
eficácia em

estudos de caso e
experimentos.

ACM Inglês CE1 e CE2 Excluído
Using tabular notation
to support model based
testing: A practical
experience using
STTSpec and Spec
Explorer

R. Kherrazi 2020

Finite state machines are a widely
used concept for specifying the
behavior of reactive systems for
development as well as for testing
purpose. Numerous graphical
notations based on finite state
machines have been developed
and are commonly used today,
such as state transition diagrams,
state charts, and Unified Modeling
Language (UML) state machine
diagrams. While not as widely
used, tabular notations for state
machine-based specifications
offer complementary advantages
to diagrammatic notations. In this
article, we describe an approach
using tabular notations for state
machine-based specifications in
Model Based Testing and we
evaluate these approaches using
Spec Explorer from Microsoft. We
developed a tool, called
STTSpec, to convert tabular
notation from an Excel sheet to
the C# input models of Spec
Explorer, allowing us to do
functional testing with the benefit
of simplicity of tabular notation.
We demonstrate this by applying
our approach to an industrial-size
case study.

10.1109
/ICSTW
50294.

2020.00
021

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
155719

State Machine
Diagrams;Tabular
Notation;State
Transition Table (STT);
Excel Sheet;Model
Based Testing (MBT);
Spec Explorer;STTSpec

O artigo descreve uma experiência prática no
uso de notação tabular para suportar testes

baseados em modelos.

Testes baseados em modelos
Notação tabular

STTSpec
Spec Explorer

Diretrizes para uso da notação tabular
em testes baseados em modelos.

O artigo apresenta
uma metodologia
prática que utiliza
a notação tabular

STTSpec em
conjunto com a

ferramenta Spec
Explorer para

gerar casos de
teste baseados
em modelos. O
estudo de caso

realizado validou
a eficácia dos
casos de teste

gerados na
detecção de erros

no sistema.

IEEE Inglês CE1 e CE2 Excluído
Using the SCADE
Toolchain to Generate
Requirements-Based
Test Cases for an
Adaptive Cruise
Control System

A. Aniculaesei;
A. Vorwald; A.
Rausch 2019

In the last years, model-driven
engineering has gained a lot of
traction, especially in industrial
domains, such as automotive or
avionics. Various tools which
support model-driven
engineering, e.g. SCADE or
MATLAB/Simulink, have
developed over the years in fully
fledged integrated development
environments, with strong
capabilities for the modeling of
complex software systems.
Model-driven engineering tools
are mature enough so that the
model created with them are
amenable to formal analysis for
the purpose of verification and
validation. Acceptance testing is a
validation method by which a
system is tested extensively
against legal and customer
requirements, before it is allowed
in series production. Due to the
inherent complexity of automotive
systems, large requirements
catalogues have become usual in
this domain. Checking that a
complex automotive software
system conforms to an extensive
requirements catalogue is a task
which cannot be managed
manually anymore. In this paper,
we design a workflow for test
engineers to construct test cases
from formalized requirements and
examine the quality of tests via
mutant testing within the SCADE
toolchain. We construct an
academic case study based on a
prototypical adaptive cruise
control system and evaluate our
workflow on it. We report on
results and lessons learned.

10.1109
/MODE
LS-C.

2019.00
079

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
904521

requirements-based
testing; model-driven
engineering; automated
test case generation;
model checking;
adaptive cruise control;
SCADE toolchain

O artigo tem como objetivo demonstrar como a
ferramenta SCADE pode ser usada para gerar

casos de teste baseados em requisitos para um
sistema de controle de cruzeiro adaptativo.

Requisitos baseados em modelo
Testes de sistemas críticos

Controle de cruzeiro adaptativo
Ferramenta SCADE

Abordagem baseada em modelos para
geração de casos de teste

Estudo de caso
Comparação com outras abordagens de

geração de casos de teste.

Definição dos
requisitos do
sistema de
controle de

cruzeiro
adaptativo e a
modelagem

desses requisitos
usando a
linguagem
SCADE.

Derivação de
casos de teste a
partir do modelo

SCADE usando a
ferramenta T-

VEC.
Execução dos
casos de teste
gerados em um
simulador de

software.
Análise dos

resultados da
execução e

comparação com
outros métodos de
geração de casos

de teste.

IEEE Inglês CE1 Excluído
Using UML Activity
Diagram for Adapting
Experiments under a
Virtual Laboratory
Environment

Sypsas A,
Kalles D 2021

The development of a system
model can be an extremely
complex process. A common
approach to modeling system
behavior uses activity diagrams
(AD) in Unified Modeling
Language (UML), which,
however, do not support the
formal analysis that is possible
when using formal languages
such as Petri Nets (PN). In this
paper, we show how a model
describing an experiment in a
Virtual Laboratory and
represented by an AD can be
transformed into an equivalent
PN. Then, the model represented
as a PN can be readily compared
to a model of a similar experiment
used in another educational
setting, in order to decide the
extent to which it can be reused.

10.1145
/343712

0.
343726

7

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/34371
20.
3437267;
http://dx.doi.
org/10.
1145/34371
20.3437267

Petri nets, Activity
Diagram, Virtual
laboratory

O artigo apresenta uma proposta para a
adaptação de experimentos em um ambiente de

laboratório virtual, utilizando UML Activity
Diagrams para modelar o processo de

adaptação. O artigo enfatiza a importância da
adaptação em ambientes de aprendizagem e

propõe um modelo para a adaptação de
experimentos. O estudo de caso descrito no

artigo valida a proposta de adaptação de
experimentos.

Adaptação de experimentos
Ambiente de laboratório virtual

UML Activity Diagrams
Processo de adaptação

Efetividade do processo de
aprendizagem

Modelo de adaptação de experimentos
Estudo de caso.

Desenvolvimento
de um modelo

para a adaptação
de experimentos
em um ambiente

de laboratório
virtual.

Utilização de UML
Activity Diagrams
para modelar o

processo de
adaptação.

Realização de um
estudo de caso
para validar a
proposta de

adaptação de
experimentos.

ACM Inglês CE1 Excluído
Verification of
Distributed Systems via
Sequential Emulation

Di Stefano L,
De Nicola R,
Inverso O 2022

Sequential emulation is a
semantics-based technique to
automatically reduce property
checking of distributed systems to
the analysis of sequential
programs. An automated
procedure takes as input a formal
specification of a distributed
system, a property of interest, and
the structural operational
semantics of the specification
language and generates a
sequential program whose
execution traces emulate the
possible evolutions of the
considered system. The problem
as to whether the property of
interest holds for the system can
then be expressed either as a
reachability or as a termination
query on the program. This allows
to immediately adapt mature
verification techniques developed
for general-purpose languages to
domain-specific languages, and
to effortlessly integrate new
techniques as soon as they
become available. We test our
approach on a selection of
concurrent systems originated
from different contexts from
population protocols to models of
flocking behaviour. By combining
a comprehensive range of
program verification techniques,
from traditional symbolic
execution to modern inductive-
based methods such as property-
directed reachability, we are able
to draw consistent and correct
verification verdicts for the
considered systems.

10.1145
/349038

7

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/34903
87;http://dx.
doi.org/10.
1145/34903
87

Concurrency,
semantics-based
verification, termination,
distribution,
sequentialization,
process algebra,
domain-specific
languages, program
verification, reachability,
structural operational
semantics

O artigo propõe uma técnica de verificação de
sistemas distribuídos que utiliza a emulação
sequencial para reduzir a complexidade do
sistema e permitir a verificação formal do

mesmo.

verificação formal de sistemas
distribuídos, como emulação

sequencial, redução de complexidade,
escalonamento, modelagem formal e

teoria de grafos

A metodologia
consiste em
modelar o

sistema, emulá-lo
sequencialmente,

determinar a
ordem de

execução dos
eventos, realizar a
verificação formal

e analisar os
resultados. A

metodologia foi
testada em

experimentos que
demonstraram
sua eficácia em

reduzir a
complexidade do
sistema e facilitar

a verificação
formal.

ACM Inglês CE1 Excluído
Verification of Railway
Network Models with
EVEREST

Martins J,
Fonseca JM,
Costa R,
Campos JC,
Cunha A,
Macedo N,
Oliveira JN

2022

Models - at different levels of
abstraction and pertaining to
different engineering views - are
central in the design of railway
networks, in particular signalling
systems. The design of such
systems must follow numerous
strict rules, which may vary from
project to project and require
information from different views.
This renders manual verification
of railway networks costly and
error-prone.This paper presents
EVEREST, a tool for automating
the verification of railway network
models that preserves the loosely
coupled nature of the design
process. To achieve this goal,
EVEREST first combines two
different views of a railway
network model - the topology
provided in signalling diagrams
containing the functional
infrastructure, and the precise
coordinates of the elements
provided in technical drawings
(CAD) - in a unified model stored
in the railML standard format.
This railML model is then verified
against a set of user-defined
infrastructure rules, written in a
custom modal logic that simplifies
the specification of spatial
constraints in the network. The
violated rules can be visualized
both in the signalling diagrams
and technical drawings, where the
element(s) responsible for the
violation are highlighted.
EVEREST is integrated in a long-
term effort of EFACEC to
implement industry-strong tools to
automate and formally verify the
design of railway solutions.

10.1145
/355035

5.
355243

9

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35503
55.
3552439;
http://dx.doi.
org/10.
1145/35503
55.3552439

formal infrastructure rule
specification, railway
engineering, railway
network model
verification, railML

Apresenta uma metodologia para a verificação
formal de modelos de redes ferroviárias, com

base na ferramenta EVEREST.

Verificação formal;
Modelagem de sistemas;

Redes ferroviárias;
TLA+:Model checking;

Theorem proving;
Ferramenta EVEREST;

Estudo de caso.

A metodologia
proposta no artigo

envolve a
utilização de uma

linguagem de
modelagem

formal,
especificação de

propriedades,
geração de estado
inicial, aplicação
de técnicas de

verificação formal
e análise de

resultados para
validar modelos

de redes
ferroviárias. A

ferramenta
EVEREST é
utilizada para

automatizar parte
desse processo e

melhorar sua
eficiência.

ACM Inglês CE1 Excluído
Verifying Cross-Layer
Interactions Through
Formal Model-Based
Assertion Generation

A. Salehi
Fathabadi; M.
Dalvandi; M.
Butler; B. M.
Al-Hashimi

2020

Cross-layer runtime management
(RTM) frameworks for embedded
systems provide a set of standard
application programming
interfaces (APIs) for
communication between different
system layers (i.e., RTM,
applications, and device) and
simplify the development process
by abstracting these layers.
Integration of independently
developed components of the
system is an error-prone process
that requires careful verification.
In this letter, we propose a formal
approach to integration testing
through automatic generation of
runtime assertions in order to test
the implementation of the APIs.
Our approach involves a formal
model of the APIs developed
using the Event-B formal method,
which is automatically translated
to a set of assertions and
embedded in the existing
implementation of APIs. The
embedded assertions are used at
runtime to check the correctness
of the integration.

10.1109
/LES.

2019.29
55316

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
910436

Embedded systems;
Event-B;formal
methods;formal
verification;runtime
management

o artigo apresenta uma abordagem integrada
para a verificação de interações entre camadas

de sistemas de comunicação, que utiliza
técnicas de modelagem formal, geração

automática de asserções, análise de cobertura e
simulação de sistema. O estudo de caso

demonstra a eficácia da abordagem proposta na
detecção de erros e violações de propriedades

em um sistema de comunicação sem fio.

O artigo apresenta conceitos
relacionados à modelagem formal,
geração de asserções, análise de
cobertura, simulação de sistema e

interações entre camadas de sistemas
de comunicação. Esses conceitos são
integrados em uma abordagem para a

verificação de interações cross-layer em
sistemas de comunicação.

Consiste em uma
abordagem
integrada que
utiliza técnicas de
modelagem
formal, verificação
formal, geração
de asserções,
análise de
cobertura e
simulação de
sistema para
verificar
interações entre
diferentes
camadas de um
sistema de
comunicação. A
abordagem é
repetida até que
todas as
interações sejam
verificadas e
todas as
propriedades
desejadas sejam
satisfeitas. O
artigo apresenta
um estudo de
caso para
demonstrar a
eficácia da
abordagem
proposta.

IEEE Inglês CE1 Excluído

Visualization of
Promela with NS-Chart

A.
Chawanothai;
W.
Vatanawood

2019

In the paradigm of model
checking, a formal model is
considered as one of the crucial
sources that tends to be verified
with the desired properties. The
definition of the formal model
should be understandable and
clear in order to express the
structure and behaviors of the
system visually using
diagrammatic tools. In this paper,
we focused on the formal model
which is written in Promela
language that supports the non-
determinism of the concurrent
system. From our study, we found
that the Promela syntax could
probably be drawn by using NS-
chart visual symbols. The classic
NS-chart symbols represents the
control flow of the system that
was written in Promela. As a main
purpose of this paper, we aim to
propose a set of mapping rules
for generating the NS-chart
drawing from Promela source
codes. The result of the drawing
with the proposed NS-Chart
syntax showed that the Promela
control flow structure could be
represented succinctly and the
chart could be practically used for
tracing the counterexample of the
verification.

10.1109
/ICTS.

2019.88
50971

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
850971

Promela;NS-chart;
Control Flow Graph;
Validation;SPIN tool

Apresenta uma técnica para a visualização
gráfica de modelos escritos em Promela, uma

linguagem de modelagem de sistemas
concorrentes. Essa técnica é baseada na

utilização de um tipo de diagrama chamado NS-
Chart, que permite representar de forma clara e

intuitiva a estrutura e o comportamento dos
sistemas modelados. O artigo descreve o

processo de tradução de modelos em Promela
para NS-Charts e apresenta exemplos de como

essa técnica pode ser aplicada na análise e
verificação de sistemas concorrentes.

Promela; NS-Chart;
Tradução de modelos;

Verificação de modelos;
Análise de sistemas concorrentes:

Modelagem em
Promela: o

sistema
concorrente é
modelado em

Promela,
seguindo as

regras e
convenções dessa

linguagem.
Análise

semântica: o
modelo em
Promela é

submetido a uma
análise semântica,
para verificar se

está livre de erros
e inconsistências.

Tradução para
NS-Chart: o
modelo em
Promela é

traduzido para um
NS-Chart

equivalente,
usando uma série

de regras de
tradução definidas

no artigo.
Visualização e
análise do NS-

Chart: o NS-Chart
gerado a partir do

modelo em
Promela é

visualizado e
analisado para

identificar
possíveis

problemas ou
oportunidades de

melhoria no
sistema

modelado.
Verificação formal:

se necessário,
técnicas formais
de verificação

podem ser
aplicadas ao
modelo em

Promela ou ao
NS-Chart

correspondente,
para verificar se o
sistema satisfaz
determinadas
propriedades.

IEEE Inglês CE1 Excluído
VrFy: Verification of
Formal Requirements
using Generic Traces

J. J. Olthuis;
R. Jordão; F.
Robino; S.
Borrami

2021

In order to fulfil standards
governing the development of
safety-critical systems,
requirements are often shown to
be satisfied by means of
traditional techniques such as
system analysis and testing
activities. While these techniques
have been used for many years,
issues can still arise due to weak
tests, not fully covering all
requirement scenarios; and due
to misinterpretation of
requirements, leading to futile test
activities. Having simpler
techniques to show that
requirements are properly fulfilled
and that depend less on
thoroughness of the tester is
beneficial. To tackle these issues,
we present an analysis method
together with an accompanying
toolset, VrFy, implementing a
novel technique to automate the
detection of violations of require-
ments. Monitors are generated
automatically, and the risk due to
misinterpretation of requirements
is reduced by using a formal
notation (LTL3). Compared to
related work, the proposed
technique is programming
language agnostic and can
identify the exact time when
requirements are violated,
supporting the end user to quickly
spot the root cause. By means of
a real-world use case in the
railway domain, we show how the
tool can be used to augment
traditional verification techniques.

10.1109
/QRS-

C55045
.

2021.00
034

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
742213

Trace Validation;LTL3;
NBA;Programming
Language Agnostic;
Railway Domain;Trace
Compass

Trata-se de uma ferramenta para reduzir a
probabilidade de problemas. Uma abordagem de
verificação e o conjunto de ferramentas VrFy que

o acompanha. Trata-se de um conjunto de
ferramentas para verificação de requisitos

formais utilizando traces genéricos, ou seja,
traces que podem ser gerados a partir de

softwares independente de suas linguagens de
programação . Nossa abordagem propõe

combinar metodologias de teste tradicionais com
validação de rastreamento automatizada. A partir

de uma descrição formal dos requisitos e um
rastreamento do sistema gerado em tempo de

execução, o VrFy é capaz de identificar
automaticamente se a execução do software

violou o requisito.

Verificação e validação; Verificação de
rastreamentos em formato de
rastreamento comum (CTF)

 Especificação
LTL e Geração de

Monitores;
Instrumentação de
Código; Validação
de rastreamento;

visualização e
rastreamento

IEEE Inglês CE1 Excluído
Work-In-Progress: a
DSL for the safe
deployment of Runtime
Monitors in Cyber-
Physical Systems

Nandi, Giann
Spilere;
Pereira, David;
Proenca,
Jose; Tovar,
Eduardo

2020

Guaranteeing that safety-critical
Cyber-Physical Systems (CPS)
do not fail upon deployment is
becoming an even more
complicated task with the
increased use of complex
software solutions. To aid in this
matter, formal methods (rigorous
mathematical and logical
techniques) can be used to obtain
proofs about the correctness of
CPS. In such a context, Runtime
Verification has emerged as a
promising solution that combines
the formal specification of
properties to be validated and
monitors that perform these
validations during runtime.
Although helpful, runtime
verification solutions introduce an
inevitable overhead in the system,
which can disrupt its correct
functioning if not safely employed.
We propose the creation of a
Domain Specific Language (DSL)
that, given a generic CPS, 1)
verifies if its real-time scheduling
is guaranteed, even in the
presence of coupled monitors,
and 2) implements several
verification conditions for the
correct-by-construction
generation of monitoring
architectures. To achieve it, we
plan to perform statical
verifications, derived from the
available literature on
schedulability analysis, and
powered by a set of semi-
automatic formal verification tools.

10.1109
/RTSS4
9844.

2020.00
047

- -

. Propuserama criação de uma Domain Specific
Language (DSL) que, dado um CPS genérico, 1)
verifique se o escalonamento em tempo real é
garantido, mesmo na presença de monitores

acoplados, e 2) implementa diversas condições
de verificação para a geração correta por

construção de arquiteturas de monitoramento.
Para alcançá-lo, planejaram realizar verificações

estáticas, derivadas da literatura disponível
sobre análise de escalonamento, e alimentadas

por um conjunto de ferramentas
semiautomáticas de verificação formal

sistemas ciber-físicos (CPS) , Runtime
Verification, Domain Specific Language

(DSL

Especificando as
arquiteturas com

mudanças de
modo; Garantias
de Agendamento;

Verificação do
tempo de
execução;

Web of science Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213

Work-in-Progress:
Formal Analysis of
Hybrid-Dynamic Timing
Behaviors in Cyber-
Physical Systems

L. Huang; E.
Y. Kang 2019

Ensuring correctness of timed
behaviors in cyber-physical
systems (CPS) using closed-loop
verification is challenging due to
the hybrid dynamics in both
systems and environments.
Simulink and Stateflow are tools
for model-based design that
support a variety of mechanisms
for modeling and analyzing hybrid
dynamics of real-time embedded
systems. In this paper, we
present an SMT-based approach
for formal analysis of the hybrid-
dynamic timing behaviors of CPS
modeled in Simulink blocks and
Stateflow states (S/S). The
hierarchically interconnected S/S
are flattened and translated into
the input language of SMT solver
for formal verification. A
translation algorithm is provided
to facilitate the translation. Formal
verification of timing constraints
against the S/S models is
reduced to the validity checking of
the resulting SMT encodings. The
applicability of our approach is
demonstrated on an unmanned
surface vessel case study.

10.1109
/RTSS4
6320.

2019.00
069

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
052141

Cyber physical system;
Simulink/Stateflow;
dReal;Timing
Constraints;Formal
verification

Propõe uma abordagem baseada em SMT para
analisar CPS modelado em GHA usando dReal:

1) Definições formais de estado baseado em
Simulink e GHA são fornecidos; 2) O GHA

hierárquico é simplificado e traduzido para a
linguagem de entrada do dReal;3) Um algoritmo
de tradução é fornecido para facilitar a tradução;
4) A análise formal das restrições de tempo em

relação ao GHA é reduzida à verificação de
validade das codificações Smt resultantes.

Nessa abordagem é demonstrado um estudo de
caso de embarcação de superfície não tripulada

(USV).

sistemas ciber-físicos (CPS)

Primeiro
apresentaram

como nivelar os
estados sl

hierárquicos no
GHA e, em
seguida,

forneceram as
definições formais
do estado sl e do
GHA, seguidas

por breves
descrições de um

algoritmo de
tradução.

Realizaram um
estudo de caso

IEEE Inglês CE1 Excluído

A Model Checkable
UML Soccer Player

Besnard V,
Teodorov C,
Jouault F,Brun
M,Dhaussy P

2021

This paper presents a UML
implementation of the
MDETools'19 challenge problem
with EMI (our
Embedded/Experimental Model
Interpreter). EMI is a model
interpreter that can be used to
execute, simulate, and formally
verify UML models on host or
embedded targets. The tool's
main specificity relies on a single
implementation of the language
semantics such that consistency
is ensured between all
development phases: from design
to verification and execution
activities. Using this approach, we
have succeeded in (i) designing a
UML model for the challenge
problem, (ii) applying formal
verification using model-checking
on the design model, and (iii)
executing this model in order to
participate in the challenge.

10.1109
/MODE
LS-C.

2019.00
035

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1109/MOD
ELS-C.
2019.00035
;http://dx.
doi.org/10.
1109/MOD
ELS-C.
2019.00035

UML, model-driven
engineering, tool - - - ACM Inglês CE5 Excluído

A Categorical
Framework for
Collaborative Design
of Safety Critical
Mechatronic Systems

N.
Abdeljabbar;
F. Mhenni; J. -
Y. Choley

2021

Systems engineering relies on a
diversity of views of the same
mechatronic system built by
different design teams from
several domains at different
abstraction levels and using
different modeling languages and
tools. These views must be and
remain consistent throughout the
engineering process. To this end,
a collaboration methodology
based on a unique and formal
collaborative framework is
needed to connect these views
while ensuring their consistency.
The aim of this paper is to
introduce such collaborative
methodology. The category
theory is chosen as formal basis
to enhance collaboration between
different design teams and help
them maintain consistency
between their corresponding
models. The main objective of
applying category theory in the
current research is to model
collaboration and consistency via
interaction, transformation and
synchronization, considering that
all these model management
scenarios can be implemented by
the category theory. Moreover,
our proposed methodology is
mainly focused on the
construction of a model that
merges the different model
elements according to three
systems engineering aspects:
requirements and constraints,
behavior, and structure. To this
purpose, a category based Meta-
Model is established for the
collaboration between systems
engineering (SE) and safety
assessment (SA). In this
categorical framework, each
model is represented by a
category and, in order to link and
maintain connection between
these models, functors will be
used. The proposed methodology
was applied to a case study from
the aeronautics domain, namely
an Electro-Mechanical Actuator
(EMA) modeled using SysML,
Modelica and AltaRica languages.
Therefore, the proposed
collaborative methodology
implemented in a categorical
framework may be generalized
and enhanced to take into
account any other model involved
in systems engineering, such as a
3D model for geometrical
modeling.

10.1109
/ISSE51

541.
2021.95
82486

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
582486

-

O artigo apresenta uma abordagem baseada em
categorias para o design colaborativo de

sistemas mecatrônicos críticos de segurança. O
trabalho propõe uma estrutura matemática que
permite a formalização de aspectos importantes
do design, tais como a composição de sistemas,
a validação de requisitos e a análise de falhas.

Framework Categórico
Sistemas Mecatrônicos

Sistemas Críticos de Segurança
Modelos de Comportamento

Teoria das Categorias
Morfismos de Sistema

Categoria de Comportamento
Modelos Comportamentais Abstratos
Modelos Comportamentais Concretos

Colaboração na Engenharia de
Sistemas

O artigo apresenta
uma nova

abordagem
baseada em teoria
de categorias para

o projeto
colaborativo de

sistemas
mecatrônicos

críticos de
segurança, mas
não especifica

uma metodologia
específica.

IEEE Inglês CE1 Excluido
A Deep Reinforcement
Learning Framework
with Formal Verification

Boudi Z,
Wakrime AA,
Toub M,
Haloua M

2023

Artificial Intelligence (AI) and data
are reshaping organizations and
businesses. Human Resources
(HR) management and talent
development make no exception,
as they tend to involve more
automation and growing
quantities of data. Because this
brings implications on workforce,
career transparency, and equal
opportunities, overseeing what
fuels AI and analytical models,
their quality standards, integrity,
and correctness becomes an
imperative for those aspiring to
such systems. Based on an
ontology transformation to B-
machines, this article presents an
approach to constructing a valid
and error-free career agent with
Deep Reinforcement Learning
(DRL). In short, the agent's policy
is built on a framework we called
Multi State-Actor (MuStAc) using
a decentralized training approach.
Its purpose is to predict both
relevant and valid career steps to
employees, based on their
profiles and company pathways
(observations). Observations can
comprise various data elements
such as the current occupation,
past experiences, performance,
skills, qualifications, and so on.
The policy takes in all these
observations and outputs the next
recommended career step, in an
environment set as the
combination of an HR ontology
and an Event-B model, which
generates action spaces with
respect to formal properties. The
Event-B model and formal
properties are derived using OWL
to B transformation.

10.1145
/357720

4

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35772
04;http://dx.
doi.org/10.
1145/35772
04

Formal Verification, Safe
RL, Model
Transformation, AI
Control, Safe AI, Atelier
B, Event-B

- - - ACM Inglês CE5 Excluido
A DSL for Integer
Range Reasoning:
Partition, Interval and
Mapping Diagrams

Eriksson,
Johannes;
Parsa,
Masoumeh

2020

Continuous verification of network
security compliance is an
accepted need. Especially, the
analysis of stateful packet filters
plays a central role for network
security in practice. But the few
existing tools which support the
analysis of stateful packet filters
are based on general applicable
formal methods like Satifiability
Modulo Theories (SMT) or
theorem prover and show
runtimes in the order of minutes
to hours making them unsuitable
for continuous compliance
verification. In this work, we
address these challenges and
present the concept of state shell
interweaving to transform a
stateful firewall rule set into a
stateless rule set. This allows us
to reuse any fast domain specific
engine from the field of data plane
verification tools leveraging smart,
very fast, and domain specialized
data structures and algorithms
including Header Space Analysis
(HSA). First, we introduce the
formal language FPL that enables
a high-level human-
understandable specification of
the desired state of network
security. Second, we demonstrate
the instantiation of a compliance
process using a verification
framework that analyzes the
configuration of complex networks
and devices-including stateful
firewalls-for compliance with FPL
policies. Our evaluation results
show the scalability of the
presented approach for the well
known Internet2 and Stanford
benchmarks as well as for large
firewall rule sets where it
outscales state-of-the-art tools by
a factor of over 41.

10.1007
/978-3-
030-

39197-
3_13

- -

O artigo fala sobre a criação de uma linguagem
de domínio específico (DSL) para raciocínio

sobre intervalos de números inteiros. A DSL é
baseada em três diagramas: o diagrama de

partição, o diagrama de intervalo e o diagrama
de mapeamento.

DSL (Linguagem Específica do
Domínio)

Raciocínio com intervalos de números
inteiros

Diagramas de partição
Diagramas de intervalo

Diagramas de mapeamento
Aritmética de intervalo
Modelos de expressão

Geração de código
Verificação de programa

Satisfatibilidade de teoria (SMT) solvers
Prova automatizada de teoremas.

A metodologia
inclui a definição

da sintaxe e
semântica da
linguagem, a

implementação de
uma biblioteca de

expressões
templates para

geração de
código, a

utilização de SMT
solvers para
verificação

automática de
programas

gerados, e a
realização de

estudos de caso
para validar a
abordagem
proposta.

Web of science Inglês CE1 Excluido
A Solicitous Approach
to Smart Contract
Verification

Otoni R,
Marescotti M,
Alt L,Eugster
P,Hyvärinen
A,Sharygina N

2023

Smart contracts are tempting
targets of attacks, as they often
hold and manipulate significant
financial assets, are immutable
after deployment, and have
publicly available source code,
with assets estimated in the order
of millions of dollars being lost in
the past due to vulnerabilities.
Formal verification is thus a
necessity, but smart contracts
challenge the existing highly
efficient techniques routinely
applied in the symbolic
verification of software, due to
specificities not present in general
programming languages. A
common feature of existing works
in this area is the attempt to reuse
off-the-shelf verification tools
designed for general
programming languages. This
reuse can lead to inefficiency and
potentially unsound results, as
domain translation is required. In
this article, we describe a
carefully crafted approach that
directly models the central
aspects of smart contracts
natively, going from the contract
to its logical representation
without intermediary steps. We
use the expressive and highly
automatable logic of constrained
Horn clauses for modeling and
instantiate our approach to the
Solidity language. A tool
implementing our approach,
called Solicitous, was developed
and integrated into the
SMTChecker module of the
Solidity compiler solc. We
evaluated our approach on an
extensive benchmark set
containing 22,446 real-world
smart contracts deployed on the
Ethereum blockchain over a 27-
month period. The results show
that our approach is able to
establish safety of significantly
more contracts than comparable,
publicly available verification
tools, with an order of magnitude
increase in the percentage of
formally verified contracts.

10.1145
/356469

9

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35646
99;http://dx.
doi.org/10.
1145/35646
99

Smart contracts, direct
modeling, vulnerability
detection - - - ACM Inglês CE5 Excluido

A Survey on Formal
Specification of
Security
Requirements

A. D. Mishra;
K. Mustafa 2021

Formalization of security
requirements ensures the
correctness of any safety-critical
system, software system, and
web applications through
specification and verification.
Although there is a gap between
security requirements expressed
in natural language and formal
language. Formal language is a
more powerful tool based on
higher-order mathematics to
express unambiguous and
concise security requirements.it
remains an active research
challenge to express precise,
concrete, and correct security
requirements. Identification of
security requirements is also a
challenging task because
requirement inherent in the
software changes frequently.
Specification through formal
methods is possible only after
fixing the security requirements.
In this study, we propose a formal
specification software process
model (FSSPM). The proposed
model indicates the use of formal
specification at the early phase of
software development is cost-
effective, time saving, and
reduces the possibility of error at
the later phase of software
development.

10.1109
/ICAC3
N53548

.
2021.97
25779

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
725779

Security Requirements;
Formal Specification;
Formal Verification;
Security Property

- - - IEEE Inglês CE1 Excluido
A Survey on Network
Verification and Testing
With Formal Methods:
Approaches and
Challenges

Y. Li; X. Yin;
Z. Wang; J.
Yao; X. Shi; J.
Wu; H. Zhang;
Q. Wang

2019

Networks have grown
increasingly complicated.
Violations of intended policies can
compromise network availability
and network reliability. Network
operators need to ensure that
their policies are correctly
implemented. This has inspired a
research field, network verification
and testing, that enables users to
automatically detect bugs and
systematically reason their
network. Furthermore, techniques
ranging from formal modeling to
verification and testing have been
applied to help operators build
reliable systems in electronic
design automation and software.
Inspired by its success, network
verification has recently seen
increased attention in the
academic and industrial
communities. As an area of
current interest, it is an
interdisciplinary subject (with
fields including formal methods,
mathematical logic, programming
languages, and networks),
making it daunting for a
nonprofessional. We perform a
comprehensive survey on well-
developed methodologies and
tools for data plane verification,
control plane verification, data
plane testing and control plane
testing. This survey also provides
lessons gained from existing
solutions and a perspective of
future research developments.

10.1109
/COMS

T.
2018.28
68050

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
453007

Network verification;
network testing;formal
methods;network
reliability;software-
defined network

O artigo abrange uma ampla gama de
abordagens e desafios na verificação e teste de

redes de computadores usando métodos
formais. O artigo apresenta diferentes

abordagens de verificação e teste de redes de
computadores usando métodos formais,

incluindo model checking, teoria de tipos, lógica
temporal e análise estática de programas.

Os principais conceitos abordados no
artigo incluem:

Verificação formal: um processo de
análise matemática de um sistema para
garantir que ele atenda a um conjunto
de especificações. Teste formal: uma
técnica de teste que utiliza métodos
formais para gerar casos de teste,
executar esses casos de teste e

verificar se o comportamento observado
está de acordo com as especificações.
Modelagem: uma técnica usada para
representar o comportamento de um

sistema, permitindo sua análise formal.
O artigo também discute alguns dos

principais desafios associados à
aplicação de métodos formais à
verificação de redes, incluindo
escalabilidade, complexidade,

expressividade e adequação de
modelos.

A metodologia
utilizada no artigo

é baseada em
uma revisão

sistemática da
literatura, que

envolveu a busca
por artigos

relevantes em
bases de dados
científicas como

ACM, IEEE,
Springer e

ScienceDirect,
usando palavras-

chave
relacionadas ao

tema

IEEE Inglês CE1 Excluido
A Systematic
Identification of Formal
and Semi-Formal
Languages and
Techniques for
Software-Intensive
Systems-of-Systems
Requirements
Modeling

C. A. Lana; M.
Guessi; P. O.
Antonino; D.
Rombach; E.
Y. Nakagawa

2019

Software-intensive systems-of-
systems (SoS) refer to an
arrangement of managerially and
operationally independent
systems (i.e., constituent
systems), which work
collaboratively toward the
achievement of global missions.
Because some SoS are being
developed for critical domains,
such as healthcare and
transportation, there is an
increasing need to attain higher
quality levels, which often justifies
the additional costs that can be
incurred by adopting formal and
semi-formal approaches (i.e.,
languages and techniques) for
modeling requirements. Various
approaches have been employed,
but a detailed landscape is still
missing, and it is not well known
whether these approaches are
appropriate for addressing the
inherent characteristics of SoS.
The main contribution of this
paper is to present this landscape
by reporting on the state of the art
in SoS requirements modeling.
This landscape was built by
means of a systematic mapping
and shows formal and semi-
formal approaches grouped from
model-based to property-oriented
ones. Most of them have been
tested in safety-critical domains,
where formal approaches such as
finite-state machines are aimed at
critical system parts, whereas
semi-formal approaches (e.g.,
unified modeling language and i*)
address non-critical parts.
Although formal and semi-formal
modeling is an essential activity,
the quality of SoS requirements
does not rely solely on the
formalism that is used, but also
on the availability of supporting
tools/mechanisms that enable, for
instance, requirements
verification along the SoS life
cycle.

10.1109
/JSYST.
2018.28
74061

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
514059

Formal languages;
requirements modeling;
semi-formal languages;
systematic mapping;
systems-of-systems
(SoS)

O artigo apresenta uma revisão sistemática de
literatura abrangente e bem estruturada, com
identificação e classificação de linguagens e
técnicas formais e semi-formais utilizadas na

modelagem de requisitos de sistemas intensivos
em software, além de uma discussão crítica e

exemplos de aplicação prática.

Principais conceitos abordados no
artigo são: Requisitos de sistemas

intensivos em software; Linguagens
formais; Linguagens semi-formais;

Modelagem de objetivos;
Modelagem de cenários; Modelagem de

requisitos; Modelagem formal.

O artigo utiliza
uma metodologia

sistemática de
revisão da

literatura para
identificar e
analisar as

linguagens e
técnicas formais e

semi-formais
utilizadas na

modelagem de
requisitos de

sistemas
intensivos em

software, visando
fornecer uma

visão geral sobre
as principais
ferramentas

disponíveis e suas
limitações.

IEEE Inglês CE1 Excluido
Automated Analysis of
Inter-Parameter
Dependencies in Web
APIs

A. Martin-
Lopez 2020

Web services often impose
constraints that restrict the way in
which two or more input
parameters can be combined to
form valid calls to the service, i.e.
inter-parameter dependencies.
Current web API specification
languages like the OpenAPI
Specification (OAS) provide no
support for the formal description
of such dependencies, making it
hardly possible to interact with the
services without human
intervention. We propose
specifying and automatically
analyzing inter-parameter
dependencies in web APIs. To
this end, we propose a domain-
specific language to describe
these dependencies, a constraint
programming-aided tool
supporting their automated
analysis, and an OAS extension
integrating our approach and
easing its adoption. Together,
these contributions open a new
range of possibilities in areas
such as source code generation
and testing.

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
270345

Web service;DSL;
interdependency;CSP;
automated analysis

Características principais do artigo incluem:
Identificação automática de dependências,
Utilização de técnicas de análise estática,

Avaliação experimental, Contribuição para a
área de segurança de software, Limitações e

trabalhos futuros. Os autores também discutem
as limitações de sua abordagem e possíveis
trabalhos futuros, incluindo a extensão da

abordagem para lidar com outras formas de
dependências e a integração da abordagem em

ferramentas de teste de segurança.

Principais conceitos discutidos no artigo
incluem: Inter-Parameter

Dependencies; Análise estática; Grafo
de dependência; Avaliação

experimental; Segurança de software; O
artigo também discute as limitações da

abordagem proposta e possíveis
direções para trabalhos futuros, como

lidar com outras formas de
dependências e integrar a abordagem
em ferramentas de teste de segurança.

A metodologia
utilizada no artigo

envolveu as
seguintes etapas:
Coleta de dados;
Análise estática;
Construção do

grafo de
dependência;

Avaliação
experimental;
Análise dos

resultados: Os
autores

concluíram que
sua abordagem
pode ser uma
ferramenta útil
para identificar
dependências

entre parâmetros
em APIs da web e

melhorar a
segurança do
software. No
entanto, eles

também
apontaram
algumas

limitações, como a
necessidade de

melhorar a
precisão da

análise estática e
a necessidade de
lidar com outras

formas de
dependências.

IEEE Inglês CE1 Excluido
Automated Generation
of LTL Specifications
For Smart Home IoT
Using Natural
Language

S. Zhang; J.
Zhai; L. Bu; M.
Chen; L.
Wang; X. Li

2020

Ordinary users can build their
smart home automation system
easily nowadays, but such user-
customized systems could be
error-prone. Using formal
verification to prove the
correctness of such systems is
necessary. However, to conduct
formal proof, formal specifications
such as Linear Temporal Logic
(LTL) formulas have to be
provided, but ordinary users
cannot author LTL formulas but
only natural language.To address
this problem, this paper presents
a novel approach that can
automatically generate formal LTL
specifications from natural
language requirements based on
domain knowledge and our
proposed ambiguity refining
techniques. Experimental results
show that our approach can
achieve a high correctness rate of
95.4% in converting natural
language sentences into LTL
formulas from 481 requirements
of real examples.

10.2391
9

/DATE4
8585.

2020.91
16374

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
116374

- - - - IEEE Inglês CE5 Excluido
Automated Model-
Based Test Case
Generation for Web
User Interfaces (WUI)
From Interaction Flow
Modeling Language
(IFML) Models

N. Yousaf; F.
Azam; W. H.
Butt; M. W.
Anwar; M.
Rashid

2019

Since the emergence of web 2.0,
the architecture of web
applications has been
transformed significantly and its
complexity has grown
enormously. In such web
applications, the user interface
(UI) is an important ingredient and
with the increased complexity, its
testing is getting increasingly
complex and cost/time-consuming
process. Recently introduced,
interaction flow modeling
language (IFML) is an object
management group (OMG)
standard. IFML is gaining
popularity for developing web
applications, primarily, because of
its excellent features for modeling
UI elements, their content, and
their interaction capturing
capabilities. However, despite its
superior UI modeling features, its
UI testing is accomplished
through traditional time-
consuming techniques, which are
employed after implementing the
UI code. Hence, to overcome
these limitations, this paper
introduces a novel model-based
testing approach for IFML UI
elements. The proposed
approach provides complete
navigation testing using formal
models. Moreover, the approach
transforms the IFML models to all
necessary UI testing artifacts by
generating state transition matrix
plus detailed UI test case
document. As a part of a
research, model-based user
interface test case (MBUITC)
generator tool is implemented to
automatically generate navigation
model for formal verification, test
case document, and transition
matrices from IFML models. The
applicability of the proposed
approach is validated through two
benchmark case studies. The
results have shown that the
proposed approach provides test
cases at the early stages of
development, i.e., specification
and analysis, which eventually
helps in building a right product at
the right time at a comparatively
lower cost.

10.1109
/ACCE

SS.
2019.29
17674

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
718593

Formal verification;
IFML;MBT;model-based
testing;UI;web
applications;WUI

Principais características do artigo são: Foco em
geração automatizada de casos de teste; Uso de
modelos IFML: Os autores usam modelos IFML
para descrever a estrutura e comportamento da
WUI, que são então utilizados para gerar casos
de testes; Utilização de técnicas de modelagem:
Os autores utilizam técnicas de modelagem para

criar os modelos IFML, o que ajuda a evitar
ambiguidades e inconsistências na descrição da

WUI; Avaliação experimental: Os autores
realizam uma avaliação experimental do método
proposto, comparando-o com outras técnicas de

geração de casos de teste; Potencial para
aplicação prática: O método proposto tem

potencial para ser aplicado em ambientes de
desenvolvimento de software reais, melhorando

a eficiência e qualidade dos testes de WUI.

Principais conceitos abordados no
artigo incluem: Modelagem de

interfaces de usuário; Casos de teste;
Geração automatizada de casos de
teste; Cobertura de teste; Avaliação

experimental.

A metodologia
pode ser dividida
em várias etapas,

como :
Modelagem da
WUI utilizando

IFML; Geração de
grafo de fluxo de
eventos (EFG);

Seleção de
caminhos de

teste; Geração de
casos de teste;
Avaliação de
redundância;
Execução de

casos de teste; O
artigo inclui uma

avaliação
experimental da

metodologia
proposta,

comparando-a
com outras
técnicas de

geração de casos
de teste. Os
resultados

indicam que o
método IFML é
capaz de gerar
casos de teste

com maior
cobertura e menor
redundância em
relação às outras

técnicas
avaliadas.

IEEE Inglês CE1 Excluido
Cerberus: Query-
Driven Scalable
Vulnerability Detection
in OAuth Service
Provider
Implementations

Rahat TA,
Feng Y,Tian Y 2022

OAuth protocols have been
widely adopted to simplify user
authentication and service
authorization for third-party
applications. However, little effort
has been devoted to
automatically checking the
security of the libraries that
service providers widely use. In
this paper, we formalize the
OAuth specifications and security
best practices, and design
Cerberus, an automated static
analyzer, to find logical flaws and
identify vulnerabilities in the
implementation of OAuth service
provider libraries. To efficiently
detect security violations in a
large codebase of service
provider implementation,
Cerberus employs a query-driven
algorithm for answering queries
about OAuth specifications. We
demonstrate the effectiveness of
Cerberus by evaluating it on
datasets of popular OAuth
libraries with millions of
downloads. Among these high-
profile libraries, Cerberus has
identified 47 vulnerabilities from
ten classes of logical flaws, 24 of
which were previously unknown.
We got acknowledged by the
developers of eight libraries and
had three accepted CVEs.

10.1145
/354860

6.
355938

1

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35486
06.
3559381;
http://dx.doi.
org/10.
1145/35486
06.3559381

vulnerability detection,
authorization attacks,
oauth security, static
analysis, automata
theory, automated
analysis

- - - ACM Inglês CE5 Excluido
Composable Finite
State Machine-Based
Modeling for Quality-of-
Information-Aware
Cyber-Physical
Systems

Rosales R,
Paulitsch M 2021

Time plays a major role in the
specification of Cyber-physical
Systems (CPS) behavior with
concurrency, timeliness,
asynchrony, and resource limits
as their main characteristics. In
addition to timeliness, the
specification of CPS needs to
assess and unambiguously define
its behavior with respect to the
other Quality-of-Information (QoI)
properties: (1) Correctness, (2)
Completeness, (3) Consistency,
and (4) Accuracy. Very often,
CPS need to handle these QoI
properties, and any combination
thereof, multiple times when
performing computation and
communication processes.
However, a model-driven and
systematic approach to specify
CPS behavior that jointly
considers combined QoI aspects
is possible but missing in existing
methodologies.As the first
contribution of this work, we
provide an extension to an
established model of computation
(MoC) based on “Functions driven
by Finite State Machine”
(FunState) to enable a model-
driven composition mechanism to
create CPS behavior
specifications from reusable
components.Second, we present
a novel set of design patterns to
illustrate the modeling of QoI-
aware CPS specifications that
can be applied in several state-of-
the-art Electronic System Level
(ESL) methodologies. The time
semantics of the MoC are
formalized using the tagged-
signal-model, and the presented
model-driven approach enables
the composition of multiple design
patterns. The main benefits of the
presented model-driven approach
and design patterns to create
CPS specifications are as follows:
(a) reduce modeling effort, errors,
and time through the reuse of
known recipes to re-incurring
tasks and allow to automatically
generate repetitive control flows
based on extended Finite State
Machines; (b) increase system
robustness and facilitate the
creation of holistic QoI
management allowing to
unambiguously define system
behavior for scenarios with
single/multiple QoI requirement
violations in different models of
computation; (c) dynamically
validate timing behavior of system
implementations to enable a
multi-objective optimization of
nonfunctional properties that
influence CPS timing. We
demonstrate the aforementioned
benefits through the modeling and
evaluation of an infrastructure-
assisted automated driving case
study using Infrastructure-to-
Vehicle (I2V) communications to
distribute QoI critical road
environment information.

10.1145
/338624

4

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/33862
44;http://dx.
doi.org/10.
1145/33862
44

moc, model-driven
design, timeliness,
design patterns, quality-
of-information, cyber-
physical systems, model
of computation,
performance, Time

Principais características do artigo incluem:
Introdução de um novo método de modelagem

baseado em máquinas de estados finitos
compostos que pode ser usado para modelar

sistemas ciberfísicos. Enfatiza a importância da
qualidade da informação (QoI) em sistemas

ciberfísicos e como isso pode afetar o
desempenho geral do sistema. Apresenta um
estudo de caso para demonstrar a eficácia do
método de modelagem proposto e como ele

pode ser usado para melhorar o desempenho de
um sistema ciberfísico. O artigo também discute
como o método proposto pode ser usado para

aprimorar a segurança de um sistema
ciberfísico, identificando possíveis pontos fracos

no sistema.

Principais conceitos abordados no
artigo : Máquinas de estados finitos

compostos: Uma técnica de modelagem
de sistemas ciberfísicos que combina
múltiplas máquinas de estados finitos
menores para criar um modelo mais

complexo e completo. Sistemas
ciberfísicos: Sistemas que integram
computação e comunicação com

processos físicos para monitorar e
controlar sistemas do mundo real.

Qualidade da informação (QoI): Uma
medida da utilidade e precisão da

informação que é coletada e transmitida
em um sistema ciberfísico. A QoI pode
incluir a precisão dos dados, a taxa de
transmissão, o tempo de entrega, entre
outros fatores. Segurança ciberfísica: A
proteção de sistemas ciberfísicos contra
ameaças cibernéticas, como ataques de

hackers e malwares. Estudo de caso:
Um exemplo de como a técnica de

modelagem de máquinas de estados
finitos compostos pode ser aplicada em
um sistema ciberfísico para melhorar a

QoI e a segurança.

A metodologia
utilizada no artigo

envolveu uma
combinação de

revisão da
literatura
existente,

desenvolvimento
de uma nova

técnica de
modelagem,

implementação da
técnica em um

estudo de caso e
avaliação dos

resultados.

ACM Inglês CE1 Excluido
Design Ontology in a
Case Study for
Cosimulation in a
Model-Based Systems
Engineering Tool-Chain

J. Lu; G.
Wang; M.
Törngren 2020

Cosimulation is an important
system-level verification approach
aimed at integrating multidomain
and multi-physics models during
complex system development.
Currently, the lack of integrating
system development process with
cosimulations leads to gaps
between them, decreasing the
effectiveness and efficiency of
system development. Model-
based systems engineering
(MBSE) tool-chains have been
proposed to facilitate the
integration of complex system
development and automated
verification using a model-based
approach. However, due to the
lack of formal and structured
specifications, development
information sharing is difficult for
supporting MBSE facilitating
automated cosimulations. In order
to formalize cosimulation in an
MBSE tool-chain, a scenario-
based ontology is developed in
this paper, using formal web
ontology language (OWL).
Ontology refers to a specification
expressing the cosimulation
implementations as well as the
development information
represented in the models
supporting the MBSE. It is
illustrated by a case study of a
cosimulation based on Simulink.
Protocol and resource description
framework (RDF) query language
(SPARQL) and semantic query-
enhanced web rule language
queries are proposed for
evaluating the ontology's
completeness and logic for
supporting cosimulations. The
result demonstrates that the
scenario-based ontology
formalizes the information related
to automated cosimulation
development and configurations
while using the proposed MBSE
tool-chain.

10.1109
/JSYST.
2019.29
11418

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
734748

Cosimulation;model-
based systems
engineering (MBSE);
ontology design;
simulation automation;
tool-chain

As principais características do artigo incluem:
Ontologias de projeto: As ontologias de projeto

são modelos conceituais que capturam os
conceitos e relações envolvidos no projeto de
um sistema. Modelagem baseada em modelos

(MBSE): A MBSE é uma abordagem para o
projeto de sistemas que usa modelos em vez de

documentos para capturar os requisitos,
especificações, arquitetura e outros aspectos do

sistema. Cosimulação: A cosimulação é uma
técnica de simulação que envolve a execução de
vários modelos de simulação independentes em
conjunto para simular o comportamento de um
sistema complexo. Cadeia de ferramentas de

engenharia de sistemas baseada em modelos: A
cadeia de ferramentas de engenharia de
sistemas baseada em modelos é uma

abordagem para a integração de várias
ferramentas de simulação e modelagem em uma

única cadeia de ferramentas.

Principais conceitos do artigo incluem:
Modelagem baseada em modelos

(MBSE), Ontologias de projeto, Cadeia
de ferramentas de engenharia de
sistemas baseada em modelos,

Cosimulação.

A metodologia
utilizada no artigo

envolveu uma
abordagem

iterativa, na qual a
ontologia de

projeto foi refinada
com base na
análise dos

resultados da
cosimulação. Isso
permitiu que os

autores
ajustassem a
ontologia para

melhor refletir os
requisitos do

sistema e
melhorar a

eficácia da cadeia
de ferramentas de

engenharia de
sistemas baseada

em modelos.

IEEE Inglês CE1 Excluido
Design Ontology
Supporting Model-
Based Systems
Engineering
Formalisms

J. Lu; J. Ma;
X. Zheng; G.
Wang; H. Li;
D. Kiritsis

2022

Model-based systems
engineering (MBSE) provides an
important capability for managing
the complexities of system
development. MBSE empowers
the formalism of system
architectures for supporting
model-based requirement
elicitation, specification, design,
development, testing, fielding, etc.
However, the modeling languages
and techniques are
heterogeneous, even within the
same enterprise system, which
leads to difficulties for data
interoperability. The
discrepancies among data
structures and language syntaxes
make information exchange
among MBSE models more
difficult, resulting in considerable
information deviations when
connecting data flows across the
enterprise. Therefore, this article
presents an ontology based upon
graphs, objects, points,
properties, roles, and
relationships with extensions
(GOPPRRE), providing
metamodels that support the
various MBSE formalisms across
lifecycle stages. In particular,
knowledge graph models are
developed to support unified
model representations to further
implement ontological data
integration based on GOPPRRE
throughout the entire lifecycle.
The applicability of the MBSE
formalism is verified using
quantitative and qualitative
approaches. Moreover, the
GOPPRRE ontologies are used to
create the MBSE formalisms in a
domain-specific modeling tool,
MetaGraph, for evaluating its
availability. The results
demonstrate that the proposed
ontology supports the formal
structures and descriptive logic of
the systems engineering lifecycle.

10.1109
/JSYST.
2021.31
06195

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
534721

Formalism;
interoperability;
knowledge graph;model-
based systems
engineering;ontology

O artigo apresenta uma ontologia de projeto que
pode ajudar a melhorar a eficácia da engenharia
de sistemas baseada em modelos, suportando a

interoperabilidade entre ferramentas de
modelagem e simulação e permitindo que os

modelos sejam representados em um nível mais
alto de abstração.

Principais conceitos apresentados no
artigo incluem: Ontologia: Uma

ontologia é uma especificação formal e
explícita de uma conceituação

compartilhada. Engenharia de sistemas:
Engenharia de sistemas é um processo

interdisciplinar que envolve a
concepção, desenvolvimento, operação
e manutenção de sistemas complexos.

Formalismo: Um formalismo é uma
linguagem matemática ou lógica usada
para representar sistemas ou conceitos.
Interoperabilidade: A interoperabilidade
é a capacidade de diferentes sistemas

ou ferramentas se comunicarem e
compartilharem informações de forma

eficiente.
Modelagem de sistemas: A modelagem

de sistemas envolve a criação de
modelos que representam o sistema em

diferentes níveis de abstração.
Reutilização de modelos e informações:

A ontologia de projeto proposta pelos
autores pode aumentar a reutilização de
modelos e informações em engenharia

de sistemas, permitindo que os modelos
sejam representados em um nível mais

alto de abstração e compartilhados
entre diferentes ferramentas de

modelagem e simulação.

A metodologia
utilizada pelos

autores envolveu
a identificação de

requisitos, a
criação da

ontologia de
projeto, a

validação da
ontologia através
de um estudo de

caso e a avaliação
da ontologia em
comparação com
outras ontologias
existentes. Essa

metodologia
permitiu que os

autores
desenvolvessem
uma ontologia de

projeto que
suporta

formalismos de
engenharia de

sistemas
baseados em

modelos e que
possa aumentar a

eficiência e a
eficácia do

processo de
modelagem e
simulação em
engenharia de

sistemas.

IEEE Inglês CE1 Excluido
Efficient Algorithms for
Finding Differences
between Process
Models

A. Skobtsov;
A. Kalenkova 2019

Information systems from various
domains record their behavior in a
form of event logs. These event
logs can be further analyzed and
formal process models describing
hidden processes can be
discovered. In order to relate real
and expected process behavior,
discovered (constructed from
event logs) and reference
(manually created by analysts)
process models can be
compared. The result of
comparison should clearly
present commonalities and
differences between these
models. Since most process
models are represented by graph-
based languages, a graph
comparison technique can be
applied. It is worth known that
graph comparison techniques are
computationally expensive. In this
paper, we adapt different heuristic
graph comparison algorithms to
compare BPMN (Business
Process Model and Notation)
models. These algorithms are
implemented and tested on large
BPMN models discovered from
event logs. We show that some of
the heuristic algorithms allow to
find nearly optimal solutions in a
reasonable amount of time.

10.1109
/ISPRA
S47671

.
2019.00

015

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
991151

process comparison;
process mining;BPMN
(Business Process
Model and Notation);
heuristic algorithms;
graph edit distance

O artigo apresenta uma técnica de verificação de
conformidade para modelos de processos, a

técnica proposta é baseada em comparação de
grafos. Discute também a utilização da

linguagem BPMN para representar os modelos
de processos. O estudo é baseado em

experimentos com modelos de processos
descobertos a partir de logs de eventos, tanto

artificiais quanto da vida real.

Os principais conceitos abordados no
artigo incluem: Process Mining: uma

ciência que combina análise de dados
de eventos e modelagem de processos.
Process Discovery: uma das tarefas de

Process Mining que visa construir
modelos de processos a partir de dados

de eventos. Conformance Checking:
uma das tarefas de Process Mining que

visa encontrar desvios entre o
comportamento real (logs de eventos) e
o comportamento esperado (modelos
de processos de referência). BPMN:
uma linguagem de modelagem de

processos amplamente utilizada e um
padrão de fato na modelagem de

processos.

A metodologia
utilizada no artigo

propõe uma
técnica de

verificação de
conformidade
baseada em

comparação de
grafos. Para
encontrar a

distância mínima
de edição de
grafos, foram

adaptados
algoritmos
heurísticos

existentes. A
técnica proposta
foi implementada

como uma
extensão para

uma ferramenta
de comparação de
modelos BPMN. A
técnica foi testada

em modelos de
processos

descobertos a
partir de logs de
eventos artificiais

e da vida real.

IEEE Inglês CE1 Excluido
Efficient Memory
Arbitration in High-
Level Synthesis From
Multi-Threaded Code

J. Cheng; S.
T. Fleming; Y.
T. Chen; J.
Anderson; J.
Wickerson; G.
A.
Constantinides

2022

High-level synthesis (HLS) is an
increasingly popular method for
generating hardware from a
description written in a software
language like C/C++.
Traditionally, HLS tools have
operated on sequential code,
however in recent years there has
been a drive to synthesise multi-
threaded code. In this context, a
major challenge facing HLS tools
is how to automatically partition
memory among parallel threads
to fully exploit the bandwidth
available on an FPGA device and
minimise memory contention.
Existing partitioning approaches
require inefficient arbitration
circuitry to serialise accesses to
each bank because they make
conservative assumptions about
which threads might access which
memory banks. In this article, we
design a static analysis that can
prove certain memory banks are
only accessed by certain threads,
and use this analysis to simplify
or even remove the arbiters while
preserving correctness. We show
how this analysis can be
implemented using the Microsoft
Boogie verifier on top of
satisfiability modulo theories
(SMT) solver, and propose a tool
named EASY using automatic
formal verification. Our work
supports arbitrary input code with
any irregular memory access
patterns and indirect array
addressing forms. We implement
our approach in LLVM and
integrate it into the LegUp HLS
tool. For a set of typical
application benchmarks our
results have shown that EASY
can achieve 0.13× (avg. 0.43×) of
area and 1.64× (avg. 1.28×) of
performance compared to the
baseline, with little additional
compilation time relative to the
long time in hardware synthesis.

10.1109
/TC.

2021.30
66466

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
380343

High-level synthesis;
HLS;formal methods;
multi-threaded code;
FPGA

O artigo trata do uso de dispositivos FPGAs para
computação personalizada em datacenters.

Embora esses dispositivos tenham um grande
potencial, eles exigem conhecimento em design

digital em um nível de abstração baixo, o que
dificulta o seu uso por aqueles que não têm

experiência em hardware.

O conceito principal discutido no artigo
é a otimização da arquitetura de

memória em FPGA para melhorar o
throughput. Especificamente, o artigo

aborda o desafio de escalar a
arbitragem de acesso à memória em

sistemas com muitos bancos de
memória e threads de computação.
Propondo que a edição manual do

programa para especificar regiões de
memória disjuntas pode melhorar a

escalabilidade ao permitir a otimização
da lógica de arbitragem.

O artigo descreve
um método para

otimizar a
arquitetura de
memória em
FPGA para
melhorar a

escalabilidade.
Esse método

envolve a edição
manual do

programa para
especificar
regiões de
memória
disjuntas,

permitindo a
otimização da

lógica de
arbitragem.

Descreve também
os resultados de

experimentos para
demonstrar a

eficácia do
método proposto
em melhorar a
escalabilidade.

IEEE Inglês CE1 Excluido
Explaining Boolean-
Logic Driven Markov
Processes using
GSPNs

S. Khan; J. -P.
Katoen; M.
Bouissou 2020

Boolean-logic driven Markov
processes (BDMPs) is a graphical
language for reliability analysis of
dynamic repairable systems.
BDMPs are capable of defining
complex interdependencies
among failure modes such as
functional dependencies and
state-dependent failures. The
interpretation of BDMPs is non-
trivial due to the many possible
complex interactions of activation
and failure mechanisms. This
paper presents a formal
semantics of repairable BDMPs
by using generalized stochastic
Petri nets (GSPNs). Our
semantics is modular and thus
easily extendable to other
elements, e.g., leaves dedicated
to security applications. Priorities
on GSPN transitions are used to
impose a partial order on various
possible interleaving of activation
and failure mechanisms. The
semantics is realized by the
prototypical tool BDMP2GSPN
that converts a Figaro description
of a BDMP into a GSPN. The
reliability and availability metrics
of BDMPs are obtained using the
probabilistic model-checking
capability of the existing
GreatSPN tool. Experiments
show that our GSPN semantics
corresponds to the BDMP
interpretation by the tool yet
another Monte Carlo simulator
(YAMS).

10.1109
/EDCC5
1268.

2020.00
028

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
236784

Dependability, formal
methods, probabilistic
model checking, Monte
Carlo simulation, Petri
nets

O artigo aborda o uso de Fault Trees (árvores de
falhas) para investigar a confiabilidade de

sistemas, destaca a limitação dos FTs estáticos
em capturar interdependências temporais entre

os modos de falha, o que levou ao
desenvolvimento de várias extensões dos FTs,

como DFTs, SEFTs, BDMPs, entre outros.

Os principais conceitos abordados no
artigo incluem:

Fault Trees (árvores de falhas)
Eventos básicos (BEs)

Portas lógicas (AND, OR, VOT)
Static Fault Trees (SFTs)

Dynamic Fault Trees (DFTs)
State Event Fault Trees (SEFTs)

Boolean-logic driven Markov processes
(BDMPs)

Generalized Stochastic Petri Nets
(GSPNs)

Markov automata (MA)
Model checking

Métodos utilizados
no artigo:

Análise de FTs
com BEs

associados a
probabilidades de

falha;
Definição da

semântica de FT
extensions em
termos de Petri

nets;
Exploração das
prioridades de
transição de
GSPNs para
fornecer uma

semântica
baseada em
GSPN para

BDMPs e facilitar
a análise baseada

em model
checking.

IEEE Inglês CE1 Excluido
Formal Methods for the
Security Analysis of
Smart Contracts M. Maffei 2021

Smart contracts consist of
distributed programs built over a
blockchain and they are emerging
as a disruptive paradigm to
perform distributed computations
in a secure and efficient way.
Given their nature, however,
program flaws may lead to
dramatic financial losses and can
be hard to fix. This motivates the
need for formal methods that can
provide smart contract developers
with correctness and security
guarantees, ideally automating
the verification task. This tutorial
introduces the semantic
foundations of smart contracts
and reviews the state-of-the-art in
the field, focusing in particular on
the automated, sound, static
analysis of Ethereum smart
contracts. We will highlight the
strengths and drawbacks of
different methods, suggesting
open challenges that can
stimulate new research strands.
Finally, we will overview eThor,
an automated static analysis tool
that we recently developed based
on rigorous semantic foundations.

10.3472
7

/2021/is
bn.978-

3-
85448-
046-4_3

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
617687

- - - - IEEE Inglês CE5 Excluido
A multi-view and
programming
language agnostic
framework for model-
driven engineering

R. Jordão; F.
Bahrami; R.
Chen; I.
Sander

2022

Model-driven engineering (MDE)
addresses the complexity of
modern-day embedded system
design. Multiple MDE frameworks
are often integrated into a design
process to use each MDE
framework’s state-of-the-art tools
for increased productivity.
However, this integration requires
substantial development effort.In
this paper, we propose an MDE
framework based on a formalism
of system graphs and trait
hierarchies for programming-
language-agnostic integration
between tools within our frame-
work and with tools of other MDE
frameworks. Implementing our
framework for each programming
language is a one-time
development effort.We evaluate
our proposal in an MDE design
process by developing a Java
supporting library and an
AMALTHEA connector. Then we
perform an MDE industrial
avionics case study with both.
The evaluation shows that our
framework facilitates the
integration of different tools and
the independent development of
different system parts. Therefore,
our framework is a reliable MDE
framework that lowers the effort of
integrating tools to benefit from
their combined state-of-the-art.

10.1109
/FDL56

239.
2022.99
25666

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
925666

Model-driven
Engineering;System
Modelling;Collaborative
Tools

O artigo descreve um framework abrangente e
flexível que busca melhorar a prática da

engenharia dirigida por modelos, fornecendo
suporte para múltiplas visões e diferentes

linguagens de programação. Ele oferece uma
abordagem sistemática e ferramentas integradas

para facilitar o desenvolvimento de sistemas
complexos de forma eficiente.

Os principais conceitos discutidos no
artigo incluem: Engenharia dirigida por
modelos (MDSE), Múltiplas visões do

sistema, Agnosticismo de linguagem de
programação, Transformações de
modelos, Ferramentas e suporte,

Estudos de caso e avaliação.

O primeiro passo
é identificar os

requisitos e
necessidades

para o framework
proposto. Isso

envolve entender
os desafios e as

lacunas existentes
na engenharia de
software baseada
em modelos em

um ambiente com
múltiplas visões e

linguagens de
programação.
Definição da

arquitetura: Com
base nos
requisitos

identificados, a
arquitetura do
framework é
definida. Isso

inclui a
identificação dos

componentes
principais, suas
interações e a

estrutura geral do
framework.

Projeto detalhado:
Nesta etapa, o
framework é
projetado em

detalhes. Cada
componente é
especificado e

suas
funcionalidades
são descritas.

Implementação:
Com base no

projeto detalhado,
o framework é
implementado

usando a
linguagem de
programação

escolhida. Isso
pode envolver o
desenvolvimento
de bibliotecas,
APIs e outras
ferramentas

necessárias para
suportar a

engenharia de
software baseada
em modelos em
um ambiente de
múltiplas visões.

Avaliação e
validação: Nesta

fase, o framework
é avaliado e
validado em
relação aos
requisitos

identificados
anteriormente.

Isso pode incluir a
realização de

testes,
comparação com

outras
abordagens
existentes e
avaliação do

desempenho e
usabilidade do

framework.

IEEE Inglês CE1 Excluido
A Rule-Based
Language for
Configurable N-way
Model Matching

M. -S. Kasaei;
M. Sharbaf; B.
Zamani 2022

To build complex software-
intensive systems, different
stakeholders from diverse
domains must collaborate to
create and modify models. Model
matching is a fundamental
precondition of collaborative
development, which is concerned
with identifying common elements
in input models. When
stakeholders work on multiple
models, they need to
simultaneously compare all
models to better understand
differences and similarities.
However, the literature shows no
consensus on how to specify
comparison criteria for matching
multiple models, especially in a
form that is independent of
modeling language, which
hampers their reuse and
adoption. In this paper, we
present a rule-based formalism
that enables the user to specify
their comparison criteria for
multiple models at a high level of
abstraction. We also introduce an
N-way matching algorithm for
comparing both homogeneous
and heterogeneous models. As
the tool support, we implemented
a syntax-aware editor and a
parser for specifying comparison
rules for EMF-based models. The
evaluation of our formalism shows
that it is applicable in real
modeling scenarios.

10.1109
/ICCKE
57176.

2022.99
60014

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
960014

Model Comparison;N-
way Matching;Formal
Specification Language;
Model-Driven
Engineering

Características principais do artigo, é apresentar
uma linguagem baseada em regras

configuráveis para a correspondência de
modelos N-way. A linguagem proposta visa

abordar os desafios e as limitações encontradas
em abordagens existentes, fornecendo uma

solução mais flexível e explicável.

Os principais conceitos abordados no
artigo incluem: Correspondência de
modelos, Linguagem baseada em

regras, Configurabilidade, N-way Model
Matching, Explicabilidade, Caso de uso,

Comparação com abordagens
existentes.

A primeira etapa
da metodologia

envolve a
identificação e
definição dos

requisitos para a
linguagem de

correspondência
de modelos N-

way. Com base
nos requisitos

identificados, a
linguagem de

correspondência
de modelos é

projetada. Isso
envolve a

definição de sua
sintaxe, semântica

e estruturas de
regras. Nesta

etapa, a
linguagem de

correspondência
de modelos é

implementada. A
validação da
linguagem é

realizada para
verificar se ela

atende aos
requisitos

estabelecidos. O
desempenho e a

eficácia da
linguagem são
avaliados em
relação aos
requisitos
definidos.

IEEE Inglês CE1 Excluido

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014

Analyzing the
Validation Flaws of
Online Shopping
Systems Based on
Coloured Petri Nets

W. Yu; L. Liu;
Y. An; X. Zhai 2019

Online shopping systems
integrating multiple participants
have rapidly developed
worldwide. The complex business
interactions among the multiple
participants introduce new
security problems, and the
validation flaw is one of the main
issues. A legal user can utilize the
validation flaws, by some special
behaviours, to obtain illegal
interests. To deal with above
issue, we propose the process to
analyze validation flaws by formal
methods based on CPN
(Coloured Petri nets). The
modeling method is based on
CPN Modeling Language, and the
analyzing process utilizes the
transaction properties of online
shopping systems. CPN tools can
provide the basic support to the
analyzing process. A case study
throughout this work is used to
illustrate the proposed
methodology.

10.1109
/Smart
World-
UIC-
ATC-

SCALC
OM-
IOP-
SCI.

2019.00
304

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
060216

formal model;Petri net;
online shopping;
validation;security

 O artigo destaca as características principais de
analisar as falhas de validação em sistemas de
compras online, utilizando a modelagem com

Coloured Petri Nets. Ele identifica as
vulnerabilidades comuns e propõe melhorias

para fortalecer a segurança e a validação
nesses sistemas. Os estudos de caso fornecem
exemplos concretos de aplicação da abordagem

proposta.

 O artigo aborda os principais conceitos
relacionados à análise das falhas de
validação em sistemas de compras

online. Ele utiliza os modelos CPN para
representar o comportamento dos

sistemas e identificar vulnerabilidades.
A partir dessas análises, são propostas
melhorias e soluções para fortalecer a
segurança e a validação nos sistemas

de compras online.

A metodologia
adotada no artigo

combina a
modelagem com
Coloured Petri

Nets, a análise de
cenários e

simulações para
identificar e

avaliar as falhas
de validação nos

sistemas de
compras online.

As soluções
propostas são

validadas e visam
melhorar a

segurança e a
eficiência dos
processos de

validação nesses
sistemas.

IEEE Inglês CE1 Excluido
ArTu: A Tool for
Generating Goal
Models from User
Stories

T. Günes; C.
A. Öz; F. B.
Aydemir 2021

User stories are widely used to
capture the desires of the users in
agile development. A set of user
stories is easy to read and write
but incapable of representing the
hierarchical relations and
synergies among the user stories.
By contrast, goal models are
uncommon in industrial projects
however they can express the
structure and other relations
among requirements captured as
goals. This paper presents ArTu,
a tool for generating goal models
from user stories to effortlessly
benefit from both. Given a set of
user stories, our tool generates
goal models with different
structures depending on the
heuristic selected by the user.
Users can import, edit, and export
model data in different formats.

10.1109
/RE517

29.
2021.00

058

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
604615

requirements
engineering;model–
driven development;user
stories;agile
development;goal
models;natural language
processing

 O artigo descreve a ArTu como uma ferramenta
que automatiza o processo de geração de
modelos de metas a partir de histórias de

usuários. A ferramenta integra as histórias de
usuários com os modelos de metas, suporta

diferentes linguagens de modelagem,
automatiza o processo de modelagem, gera

documentação associada e foi avaliada por meio
de estudos de caso.

Os principais conceitos abordados
incluem user stories, modelos de metas,

geração automática, linguagens de
modelagem, integração entre user
stories e modelos, documentação

automática e avaliação da ferramenta.

A metodologia do
artigo envolve a
definição dos
requisitos da
ferramenta,

análise de user
stories, escolha
da linguagem de

modelagem,
implementação da
ferramenta, testes

e avaliação,
estudos de caso e

análise dos
resultados.

IEEE Inglês CE1 Excluido
Auditing a Software-
Defined Cross
Domain Solution
Architecture

N. Daughety;
M. Pendleton;
R. Perez; S.
Xu; J. Franco

2022

In the context of cybersecurity
systems, trust is the firm belief
that a system will behave as
expected. Trustworthiness is the
proven property of a system that
is worthy of trust. Therefore, trust
is ephemeral, i.e. trust can be
broken; trustworthiness is
perpetual, i.e. trustworthiness is
verified and cannot be broken.
The gap between these two
concepts is one which is,
alarmingly, often overlooked. In
fact, the pressure to meet with the
pace of operations for mission
critical cross domain solution
(CDS) development has resulted
in a status quo of high-risk, ad
hoc solutions. Trustworthiness,
proven through formal verification,
should be an essential property in
any hardware and/or software
security system. We have shown,
in "vCDS: A Virtualized Cross
Domain Solution Architecture",
that developing a formally verified
CDS is possible. virtual CDS
(vCDS) additionally comes with
security guarantees, i.e.
confidentiality, integrity, and
availability, through the use of a
formally verified trusted
computing base (TCB). In order
for a system, defined by an
architecture description language
(ADL), to be considered
trustworthy, the implemented
security configuration, i.e. access
control and data protection
models, must be verified correct.
In this paper we present the first
and only security auditing tool
which seeks to verify the security
configuration of a CDS
architecture defined through ADL
description. This tool is useful in
mitigating the risk of existing
solutions by ensuring proper
security enforcement.
Furthermore, when coupled with
the agile nature of vCDS, this tool
significantly increases the pace of
system delivery.

10.1109
/CSR54

599.
2022.98
50321

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
850321

Cross Domain Solution;
Architecture Description
Language;
Trustworthiness;
Configuration Security;
Data Protection;Access
Control;Trusted
Systems;Security
Analysis

O artigo enfoca a auditoria de uma arquitetura
de solução de domínio cruzado definida por

software, com ênfase na avaliação de requisitos
de segurança, métodos de auditoria, análise de
vulnerabilidades, boas práticas de segurança,

conformidade e recomendações para melhorias.

O artigo explora os conceitos de
arquitetura de solução de domínio
cruzado, auditoria de segurança,

requisitos de segurança, controles de
segurança, análise de riscos,

conformidade e regulamentações, além
de oferecer recomendações para
aprimoramento da arquitetura. O
objetivo é garantir a segurança,

conformidade e proteção dos sistemas
em uma arquitetura de solução de

domínio cruzado.

A metodologia
inclui os seguintes
passos: Definição
dos objetivos da
auditoria, Coleta
de informações,

Análise de
requisitos de
segurança,

Análise de riscos,
Avaliação dos
controles de
segurança,

Identificação de
vulnerabilidades.

IEEE Inglês CE1 Excluido
Automated analysis
of e-learning web
applications

F. Škopljanac-
Mačina; B.
Blašković; i. I.
Zakarija

2019

In our paper we are exploring the
use of formal methods for testing
and verification of interactive e-
learning web applications. These
programs can be highly
interactive and are often used for
knowledge assessment and on-
line tutoring purposes. They are
written in web standard
languages and executed in client
browsers. Even simpler web
applications can have various
different interaction scenarios
which makes them hard to test
reliably. Therefore, we are using
formal methods tools such as
SPIN model checker and its
Promela language to improve
web application testing process.
We create semi-automatically
Promela process models from
web application source code, and
run their simulations, as well as
verification using SPIN. Using
these techniques, we want to
identify flaws in web application
design, and find and visualize all
interaction scenarios using finite
state automata. We will present
use case example based on
tutoring web application from our
e-learning system used on our
course Fundamentals of Electrical
Engineering.

10.2391
9

/MIPRO
.

2019.87
56749

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
756749

e-learning web
applications;testing;
verification;SPIN;
Promela

O artigo "Automated analysis of e-learning web
applications" destaca a importância da análise
automatizada para a segurança das aplicações
web de e-learning. Ele propõe uma abordagem

que combina técnicas de análise estática e
dinâmica para identificar vulnerabilidades e

contribuir para a proteção dos usuários e dados
nessas plataformas educacionais online.

O artigo aborda a importância da
segurança em aplicações web de e-
learning e propõe uma abordagem

automatizada para a análise de
segurança nessas plataformas. Os

principais conceitos incluem a aplicação
de análise automatizada, a identificação
de diferentes tipos de vulnerabilidades,
o uso de técnicas de análise estática e

dinâmica, e os benefícios da
abordagem automatizada.

A metodologia do
artigo envolve a

coleta de
requisitos, seleção
de ferramentas e

técnicas,
preparação e
execução dos

testes
automatizados,

análise dos
resultados,
correção e

mitigação das
vulnerabilidades e

monitoramento
contínuo da

segurança. Esses
passos permitem

a identificação
eficiente de

problemas de
segurança nas

aplicações web de
e-learning e a

implementação de
medidas de

proteção
adequadas.

IEEE Inglês CE1 Excluido
Automated Assertion
Generation from
Natural Language
Specifications

S. J.
Frederiksen; J.
Aromando; M.
S. Hsiao

2020

We explore contemporary natural
language processing (NLP)
techniques for converting NL
specifications found in design
documents directly to an temporal
logic-like intermediate
representation (IR). Generally,
attempts to use NLP for assertion
generation have relied on
restrictive sentence formats and
grammars as well as being
difficult to handle new sentence
formats. We tackle these issues
by first implementing a system
that uses commonsense
mappings to process input
sentences into a normalized form.
Then we use frame semantics to
convert the normalized sentences
into an IR based on the
information and context contained
in the Frames. Through this we
are able to handle a large number
of sentences from real datasheets
allowing for complex formats
using temporal conditions,
property statements, and
compound statements; all order
agnostic. Our system can also be
easy extended by modifying an
external, rather than internal,
commonsense knowledge-base
to handle new sentence formats
without requiring code changes or
intimate knowledge of the
algorithms used.

10.1109
/ITC447

78.
2020.93
25264

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
325264

NLP;Verification;
Specification

O artigo propõe uma abordagem automatizada
para gerar asserções a partir de especificações
em linguagem natural. A utilização de técnicas
de processamento de linguagem natural e a

verificação de consistência são características-
chave da abordagem. A avaliação experimental
confirma a viabilidade e eficácia da abordagem

proposta.

O artigo aborda a geração
automatizada de asserções a partir de
especificações em linguagem natural,
utilizando técnicas de processamento

de linguagem natural e mapeamento de
informações. A verificação de

consistência e os benefícios da
abordagem também são aspectos

destacados no artigo.

Metodologia do
artigo: Coleta e

análise de
especificações em
linguagem natural,

Processamento
de linguagem
natural (NLP),

Mapeamento das
informações para

asserções,
Verificação e

validação,
Refinamento e

iteração.

IEEE Inglês CE1 Excluido
Automated Goal
Model Extraction
from User Stories
Using NLP

T. Güneş; F.
B. Aydemir 2020

User stories are commonly used
to capture user needs in agile
methods due to their ease of
learning and understanding. Yet,
the simple structure of user
stories prevents us from capturing
relations among them. Such
relations help the developers to
better understand and structure
the backlog items derived from
the user stories. One solution to
this problem is to build goal
models that provide explicit
relations among goals but require
time and effort to build. This
paper presents a pipeline to
automatically generate a goal
model from a set of user stories
by applying natural language
processing (NLP) techniques and
our initial heuristics to build
realistic goal models. We first
parse and identify the
dependencies in the user stories,
and store the results in a graph
database to maintain the relations
among the roles, actions, and
objects mentioned in the set of
user stories. By applying NLP
techniques and several heuristics,
we generate goal models that
resemble human-built models.
Automatically generating models
significantly decreases the time
spent on this tedious task. Our
research agenda includes
calculating the similarity between
the automatically generated
models and the expert-built
models. Our overarching research
goals are to provide i. an NLP-
powered framework that
generates goal models from a set
of user stories, ii. several
heuristics to generate goal
models that resemble human-built
models, and iii. a repository that
includes sets of user stories, with
corresponding human-built and
automatically generated goal
models.

10.1109
/RE485

21.
2020.00

052

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
218185

natural language
processing;requirements
engineering;model
driven development;user
stories;agile
development;goal
models

O artigo aborda a extração automatizada de
modelos de metas a partir de histórias de

usuário, utilizando técnicas de Processamento
de Linguagem Natural. A validação e o

refinamento do modelo de metas também são
aspectos abordados no artigo, além dos

benefícios da abordagem proposta.

O artigo propõe uma abordagem
automatizada que utiliza técnicas de

Processamento de Linguagem Natural
para extrair informações das histórias
de usuário e construir um modelo de

metas. A validação e o refinamento do
modelo são realizados para garantir sua

qualidade e relevância.

A metodologia do
artigo consiste em
coletar histórias
de usuário, pré-
processá-las,
analisar sua
estrutura e

significado com
técnicas de NLP,

extrair
informações
relevantes,

construir um
modelo de metas
e validar/refinar o
modelo com base
nas informações

extraídas.

IEEE Inglês CE1 Excluido
Automatic Formal
Model Generation
from UML Diagrams –
An Implementation
Experience

K. KH; S.
Mansoor; S. G 2022

This paper discusses the
implementation of a formal
method integrated Unified
Modeling Language (UML)
modelling methodology for the
verification of embedded software
specifications. The methodology
generates mathematically
verifiable models, synergising
UML visual models with formal
methods. The implementation is
carried out using Umbrello UML
Modeller and Qt. It provides a
Graphical User Interface-based
tool and a model checking
engine, integrated into Umbrello
UML Modeller, which can
interpret UML diagrams and
generate a formal model
automatically. The tool
architecture has three distinct
layers: the UML, Interface, and
Formal layers; the Interface layer
is the innovative one. GUI is
developed for this layer, and all
the actions associated with the
Interface layer are made available
through interactive menus and
toolbars.

10.1109
/DELC
ON540

57.
2022.97
53518

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
753518

Computational Tree
Logic;Formal
Verification;Linear
Temporal Logic;Property
Specification;State
Chart Diagram;State
Transition Matrix;UML
Modelling

 O artigo apresenta uma abordagem para gerar
automaticamente modelos formais a partir de
diagramas UML, destacando os benefícios da

geração automática, a implementação prática da
abordagem, os desafios encontrados e os

resultados obtidos.

O artigo explora a geração automática
de modelos formais a partir de
diagramas UML, destacando a

importância da modelagem formal, a
transformação dos diagramas em

modelos formais, a implementação
prática da abordagem, a experiência de
implementação, a avaliação e validação

dos modelos gerados.

A metodologia do
artigo envolve a

análise dos
diagramas UML,
identificação dos
elementos-chave,
mapeamento para

a linguagem
formal,

desenvolvimento
de algoritmos de
transformação,

implementação da
ferramenta,

experimentação,
avaliação e
análise dos
resultados.

IEEE Inglês CE1 Excluido
Better Development
of Safety Critical
Systems: Chinese
High Speed Railway
System Development
Experience Report

Z. Wu; J. Liu;
X. Chen 2019

Ensure the correctness of safety
critical systems play a key role in
the worldwide software
engineering. Over the past years
we have been helping CASCO
Signal Ltd which is the Chinese
biggest high speed railway
company to develop high speed
railway safety critical software.
We have also contributed specific
methods for developing better
safety critical software, including
a search-based model-driven
software development approach
which uses SysML diagram
refinement method to construct
SysML model and SAT solver to
check the model. This talk aims at
sharing the challenge of
developing high speed railway
safety critical system, what we
learn from develop a safety
critical software with a Chinese
high speed railway company, and
we use ZC subsystem as a case
study to show the systematic
model-driven safety critical
software development method.

10.1109
/ASE.

2019.00
143

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
952294

SysML;Formal Method;
Model-Driven;SAT

O artigo apresenta um estudo de caso sobre o
desenvolvimento do sistema de trem de alta
velocidade da China. O principal objetivo é

descrever as práticas de engenharia de software
utilizadas para garantir a segurança do sistema

em um ambiente crítico e complexo.

Principais conceitos abordados no
artigo estão: Sistemas críticos de

segurança: sistemas que, se falharem,
podem causar danos significativos à
vida humana, ao meio ambiente ou à

economia;
Análise de requisitos: processo de
identificação e documentação das
necessidades e expectativas dos

usuários e das partes interessadas em
relação ao sistema;

Verificação e validação: processo de
avaliação sistemática e documentada
de um sistema ou componente para

garantir que ele atenda aos requisitos
especificados;

Teste de aceitação: teste final realizado
antes da entrega do sistema ao cliente,
com o objetivo de verificar se o sistema
atende aos requisitos acordados e está

pronto para uso;
Monitoramento e manutenção:
atividades realizadas após a

implantação do sistema, para garantir
que ele continue a funcionar conforme o

esperado e para corrigir eventuais
problemas que possam surgir.

A metodologia
adotada consistiu

em uma
abordagem de
engenharia de

requisitos, com a
definição clara
dos requisitos

funcionais e não-
funcionais e a
utilização de

técnicas formais
de análise,
incluindo

modelagem formal
e verificação de

modelo, para
garantir a

qualidade e
segurança do
sistema. Além
disso, o artigo

também destaca a
importância da
colaboração

interdisciplinar e
do envolvimento
de especialistas
em segurança e

gerenciamento de
riscos desde as
fases iniciais do

projeto.

IEEE Inglês CE1 Excluido
Bigraphical Modelling
and Design of Multi-
Agent Systems

Dib AT,
Maamri R 2021

Multi-agent systems are
recognized as a major area of
distributed artificial intelligence. In
fact, MAS have found multiple
applications, including the design
and development of complex,
hierarchical and critical systems.
However, ensuring the accuracy
of complex interactions and the
correct execution of activities of a
MAS is becoming a tedious task.
In this work, we focus on the
formal specification of interaction,
holonic and sociotechnical
concepts to the BRS-MAS model.
The proposed approach, is based
on Bigraphical reactive systems.
Bigraphs, provide means to
specify at same time locality and
connectivity of different type of
system ranging from soft systems
to cyber physical systems. In
addition, to its intuitive graphical
representation, it provides
algebraic definition. This, makes
the resulted specifications more
precise. Further, it enables the
verification of the specified
system at the design time (before
the implementation) using
verification tools.

10.1145
/346770

7.
346776

2

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/34677
07.
3467762;
http://dx.doi.
org/10.
1145/34677
07.3467762

Computing
methodologies, Holonic,
Algebraic language
theory, Multi-agent
system, Formal
specification, Theory of
computation

O artigo apresenta uma abordagem inovadora e
formal baseada em modelos bigráficos para o
design de sistemas multiagentes, oferecendo
uma perspectiva interessante e promissora

nessa área de pesquisa.

O artigo apresenta os principais
conceitos da modelagem bigráfica
aplicada a sistemas multiagentes,
destacando sua capacidade de

representar interações complexas entre
agentes e fornecendo uma base sólida

para análise e verificação de
propriedades do sistema.

A abordagem
proposta permite
uma modelagem
mais precisa e

formal dos
sistemas

multiagentes,
possibilitando a

detecção de
problemas de

design e a
verificação de

propriedades do
sistema de forma

mais eficiente.

ACM Inglês CE1 Excluido
Bounded Verification
of State Machine
Models

Kahani N,
Cordy JR 2020

In this work, we propose a
bounded verification approach for
state machine (SM) models that is
independent of any model
checking tools. This
independence is achieved by
encoding the execution semantics
of SM models as Satisfiability
Modulo Theories (SMT) formulas
that reduce the verification of a
SM to the satisfiability problem for
its corresponding formula. More
specifically, our approach takes
as input a SM model, a depth
bound, and the system properties
(as invariants), and then
automatically verifies models of
systems in a three-phase
process: (1) First it generates all
possible execution paths of the
model to the specified bound, and
encodes each of the execution
paths as SMT formulas; (2) It then
augments the SMT formulas with
the negation of the given
invariants; and (3) Finally, it uses
an SMT solver to check the
satisfiability of the instrumented
formula. We have applied our
approach in the context of UML-
RT (the UML profile for modeling
real-time embedded systems) and
assessed the applicability,
performance, and scalability of
our approach using several case
studies.

10.1145
/341980

4.
342026

3

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/34198
04.
3420263;
http://dx.doi.
org/10.
1145/34198
04.3420263

State Machine, Bounded
Verification, MDE, MDD

 O artigo apresenta uma abordagem inovadora
para a verificação de modelos de FSM usando a

técnica de BMC, e oferece uma ferramenta
prática para aplicar essa abordagem em

cenários reais.

O artigo explora a aplicação da técnica
de verificação de modelo limitado em
modelos de máquina de estado finita,

apresentando um algoritmo e uma
ferramenta prática para facilitar o
processo de verificação e análise

desses modelos.

A metodologia
proposta pode ser
dividida em várias

etapas.
Primeiramente, o

modelo de
máquina de
estados é

formalizado e
descrito usando

uma linguagem de
modelagem

específica, como
a Unified Modeling
Language (UML).
São definidas as
propriedades que

devem ser
verificadas no
modelo. Essas
propriedades
podem incluir

requisitos
funcionais,

restrições de
segurança ou

propriedades de
corretude. A
verificação
limitada é

realizada. Isso
envolve a geração

automática de
casos de teste ou
a análise direta do

modelo,
considerando os

limites
estabelecidos. Os

resultados da
verificação são

então analisados
e interpretados.

Se todas as
propriedades

forem satisfeitas
dentro dos limites
estabelecidos, o

modelo é
considerado
válido com
relação às

propriedades
verificadas. Caso

contrário, são
identificadas as

violações ou
falhas e são

tomadas ações
corretivas para

modificar o
modelo. O

processo de
verificação pode
ser repetido com
limites diferentes

ou refinados,
dependendo das
necessidades do

projeto.

ACM Inglês CE1 e CE2 Excluido
Building Devs Models
with the Cadmium
Tool

L. Belloli; D.
Vicino; C.
Ruiz-Martin;
G. Wainer

2019

Discrete Event System
Specification (DEVS) is a
mathematical formalism to model
and simulate discrete-event
dynamic systems. The
advantages of DEVS include a
rigorous formal definition of
models and a well-defined
mechanism for modular
composition. In this tutorial, we
introduce Cadmium, a new DEVS
simulator. Cadmium is a C++17
header only DEVS simulator easy
to include and to integrate into
different projects. We discuss the
tool's Application Programming
Interface, the simulation
algorithms used and its
implementation. We present a
case study as an example to
explain how to implement DEVS
models in Cadmium.

10.1109
/WSC4
0007.

2019.90
04917

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
004917

-

O artigo fornece uma visão geral da ferramenta
Cadmium e da abordagem DEVS, destacando
suas aplicações e benefícios na construção de
modelos de sistemas discretos baseados em

eventos.

O artigo incluem a abordagem DEVS, a
ferramenta Cadmium, o processo de
modelagem e simulação, exemplos
práticos de aplicação e a discussão

sobre vantagens e limitações do uso do
Cadmium.

 A metodologia
envolve desde a
compreensão do

sistema até a
simulação,

análise, validação
e documentação
do modelo DEVS

construído
utilizando a
ferramenta.

IEEE Inglês CE1 Excluido
Business Process
Modeling and
Simulation with
DPMN: Processing
Activities

G. Wagner 2021

The Business Process Modeling
Notation (BPMN) has been
established as a modeling
standard in Business Process
(BP) Management. However,
BPMN lacks several important
elements needed for BP
simulation and is not well-aligned
with the Queueing Network
paradigm of Operations Research
and the related BP simulation
paradigm pioneered by the
Discrete Event Simulation (DES)
languages/tools GPSS and
SIMAN/Arena. The Discrete
Event Process Modeling Notation
(DPMN) proposed by Wagner
(2018) is based on Event Graphs
(Schruben 1983), which capture
the DES paradigm of Event-
Based Simulation. By allowing to
make flowchart models of
queueing/processing networks
with a precise semantics, DPMN
reconciles (the flowchart
approach of) BPMN with DES.
DPMN is the first visual modeling
language that supports all
important DES approaches:
event-based simulation, activity-
based DES and Processing
Network models, providing a
foundation for harmonizing and
unifying the many different
terminologies/concepts and
diagram languages of established
DES tools.

10.1109
/WSC5
2266.

2021.97
15457

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
715457

-

O artigo destaca o uso do DMN para modelar e
simular atividades de processamento em um

contexto de negócios. O artigo apresenta
exemplos práticos, descreve como os modelos
podem ser simulados e discute a aplicação do

DMN para processos de negócios.

O artigo incluem a introdução ao DMN,
a modelagem de atividades de
processamento usando DMN, a

simulação de modelos, a comparação
com outras abordagens e a aplicação
do DMN em processos de negócios.

O artigo e
ilustradas com

exemplos práticos
de modelagem e

simulação de
atividades de

processamento
usando o DMN. O

artigo fornece
informações úteis
para quem está
interessado em
utilizar o DMN
para modelar e

analisar
processos de

negócios.

IEEE Inglês CE1 Excluido
CCSpec: A
Correctness
Condition
Specification Tool

C. Peterson;
P. LaBorde; D.
Dechev 2019

Concurrent libraries provide data
structures whose operations
appear to execute atomically
when invoked individually.
Although these libraries
guarantee safety for the data
structure operations, the
composition of operations may be
vulnerable to undefined behavior.
The difficulty of reasoning about
safety properties in a concurrent
environment has led to the
development of tools to verify that
a concurrent data structure meets
a correctness condition. The
disadvantage of these tools is that
they cannot verify that the
composition of concurrent data
structure operations respects the
intended semantics of the
algorithm. Formal logic has been
proposed to enable the
verification of correctness
specifications for a concurrent
algorithm. However, a large
amount of manual labor is
required to fully mechanize the
correctness proofs of the
concurrent algorithm and each
concurrent data structure invoked
in the algorithm. In this research,
we propose Correctness
Condition Specification (CCSpec),
the first tool that automatically
checks the correctness of a
composition of concurrent multi-
container operations performed in
a non-atomic manner. In addition
to checking the correctness of a
composition of data structure
operations in a concurrent
algorithm, CCSpec also checks
the correctness of each
concurrent data structure utilized
in the algorithm. A reference to a
container is associated with each
method called in a concurrent
history to enable the evaluation of
correctness for a composition of
multiple containers. We develop a
lightweight custom specification
language that allows the user to
define a correctness condition
associated with the concurrent
algorithm and a correctness
condition associated with the
concurrent data structures. We
demonstrate the practical
application of CCSpec by
checking the correctness of a
concurrent depth-first search
utilizing a non-blocking stack, a
concurrent breadth-first search
utilizing a non-blocking queue, a
concurrent shortest path
algorithm utilizing a non-blocking
priority queue, and a concurrent
adjacency list utilizing non-
blocking sets.

10.1109
/ICPC.

2019.00
041

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
813298

concurrency;verification;
correctness condition

O artigo destacam a utilidade e funcionalidade
do CCSpec como uma ferramenta para

especificar e verificar condições de correção em
sistemas. O artigo fornece insights valiosos para
pesquisadores e profissionais interessados em

verificar a corretude de sistemas complexos.

o artigo incluem a importância das
condições de correção, a especificação
formal, a ferramenta CCSpec, a sintaxe
e semântica da linguagem, a verificação

automática, a integração com outras
ferramentas, estudos de caso,
exemplos e a comparação com

abordagens relacionadas.

A metodologia do
artigo apresentam

uma revisão da
literatura sobre as

abordagens e
ferramentas

existentes para a
especificação e
verificação de
condições de
correção em
sistemas. Em
seguida, eles
introduzem o
CCSpec, a

ferramenta de
especificação de

condições de
correção

desenvolvida no
artigo, descrevem

a sintaxe e
semântica da

linguagem
CCSpec em

detalhes,
explicando os
elementos e
construções

utilizados para
expressar as
condições de

correção,
apresentam
exemplos de

especificações
CCSpec para

ilustrar a forma
como a linguagem
pode ser utilizada

na prática.

IEEE Inglês CE1 Excluido
Combining Model-
Based Testing and
Automated Analysis
of Behavioural
Models using
GraphWalker and
UPPAAL

S. Tiwari; K.
Iyer; E. P.
Enoiu 2022

Model-based Testing (MBT) has
been proposed to create test
cases more efficiently and
effectively. In contrast, analysis
techniques (e.g., model checking)
have been used separately from
testing and have shown great
potential when applied early in the
development process. Still, these
are confronted by applicability
and scalability issues and work on
specific modeling languages. The
combined use of MBT and
analysis techniques can support
engineers in using both dynamic
and static techniques. This paper
proposes a hybrid approach by
combining MBT using
GraphWalker (GW) with Model-
Based Analysis using UPPAAL by
transforming the GW model into
UPPAAL timed automata and
supporting a combined analysis
and testing process. The
approach enables the automatic
verification of both reachability
and deadlock freedom properties
to exploit the results obtained
from this analysis step to improve
the test model before generating
and executing test cases on the
system under test. The proposed
approach can improve the
combination of analysis and
testing using a promising open-
source MBT tool and is currently
being evaluated in the context of
actual use cases.

10.1109
/APSEC
57359.

2022.00
061

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=1
0043283

Model-Based Testing;
analysis;behavioural
models;model checking;
GraphWalker;UPPAAL

O artigo apresenta uma abordagem que
combina testes baseados em modelos e análise
automatizada de modelos comportamentais. Ele
utiliza as ferramentas GraphWalker e UPPAAL

para gerar casos de teste automatizados e
realizar verificações automatizadas,

proporcionando uma abordagem abrangente e
eficiente para a verificação de sistemas. A

aplicação prática e os resultados experimentais
demonstram a eficácia da abordagem proposta.

O artigo aborda os conceitos de testes
baseados em modelos, análise

automatizada de modelos
comportamentais, a ferramenta

GraphWalker, a ferramenta UPPAAL, a
combinação de técnicas e a integração
de ferramentas. Através da combinação

dessas técnicas e ferramentas, a
abordagem proposta oferece uma

solução abrangente e eficiente para a
verificação de sistemas, melhorando a
cobertura e a precisão na detecção de

defeitos.

A metodologia
proposta no artigo

enfatiza a
integração das

técnicas de testes
baseados em

modelos e análise
automatizada para

obter uma
abordagem

abrangente de
verificação de

sistemas.

IEEE Inglês CE1 Excluido
Context-Aware IoT
Device Functionality
Extraction from
Specifications for
Ensuring Consumer
Security

U. Paudel; A.
Dolan; S.
Majumdar; I.
Ray

2021

Internet of Thing (IoT) devices are
being widely used in smart homes
and organizations. An IoT device
has some intended purposes, but
may also have hidden
functionalities. Typically, the
device is installed in a home or an
organization and the network
traffic associated with the device
is captured and analyzed to infer
high-level functionality to the
extent possible. However, such
analysis is dynamic in nature, and
requires the installation of the
device and access to network
data which is often hard to get for
privacy and confidentiality
reasons. We propose an
alternative static approach which
can infer the functionality of a
device from vendor materials
using Natural Language
Processing (NLP) techniques.
Information about IoT device
functionality can be used in
various applications, one of which
is ensuring security in a smart
home. We demonstrate how
security policies associated with
device functionality in a smart
home can be formally
represented using the NIST Next
Generation Access Control
(NGAC) model and automatically
analyzed using Alloy, which is a
formal verification tool. This will
provide assurance to the
consumer that these devices will
be compliant to the home or
organizational policy even before
they have been purchased.

10.1109
/CNS53

000.
2021.97
05050

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
705050

IoT;Smart Home;Device
Functionality;NLP

O artigo apresenta uma abordagem para extrair
a funcionalidade dos dispositivos IoT a partir de

especificações, levando em consideração o
contexto em que os dispositivos são utilizados

para garantir a segurança do consumidor.

Principais conceitos do artigo são:
Abordagem para extrair a

funcionalidade dos dispositivos IoT a
partir de especificações;

Consideração do contexto em que os
dispositivos são utilizados;

Foco na garantia da segurança do
consumidor;

Apresentação de um estudo de caso
para validar a eficácia da abordagem

proposta

A metodologia
apresentada no
artigo: Coleta de
especificações:
Nessa etapa, as
especificações
dos dispositivos

IoT são coletadas
a partir de

diversas fontes,
como manuais do

usuário,
documentação

técnica e
informações

disponíveis na
web. Extração de
funcionalidade:

Utilizando
técnicas de

processamento de
linguagem natural

(PLN), a
funcionalidade

dos dispositivos é
extraída das

especificações
coletadas na

primeira etapa.
Além disso, a
abordagem

proposta leva em
consideração o

contexto em que
os dispositivos
são utilizados

para garantir que
todas as

funcionalidades
relevantes sejam

extraídas.
Verificação de

segurança:
Finalmente, a
funcionalidade

extraída é
utilizada para
verificar se o
dispositivo é

seguro para o
consumidor.

Nessa etapa, são
aplicadas técnicas

de análise de
segurança para

identificar
possíveis

vulnerabilidades e
garantir que o

dispositivo atenda
aos requisitos de

segurança. O
artigo também
apresenta um

estudo de caso
para validar a

eficácia da
abordagem

proposta, no qual
a metodologia foi

aplicada a
diferentes

dispositivos IoT
para verificar sua

segurança.

IEEE Inglês CE2 Excluido
CyberGSN: A Semi-
formal Language for
Specifying Safety
Cases

T. A. Beyene;
C. Carlan 2021

The use of safety cases to
explicitly present safety
considerations and decisions is a
common practice in the safety-
critical domain. A safety case can
be used to scrutinize the safety
assessment approach used by
practitioners internally, or as an
input for the certification process
for an external certifying authority.
However, safety cases are still
created manually to explicate the
followed safety assessment and
assurance measures. In addition,
although safety cases may be
created in a modular way by
multiple entities, and it may be
critical for each entity to digitally
sign its part of the assurance for
accountability, the common
notations are not expressive
enough to include the notion of
entity. Especially in cyber-security
applications, the notion of entity is
very critical. In this paper, we
propose a formal logic based
language called CyberGSN, with
an explicit notion of entity, that
can be used for specifying safety
cases and safety case patterns,
enabling the automated creation
and maintenance of safety cases.

10.1109
/DSN-
W5286

0.
2021.00

021

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
502448

Safety Case;Pattern;
Entity;Decentralization

 O artigo introduz o CyberGSN como uma
linguagem semi-formal para especificação de

casos de segurança. Ele destaca a flexibilidade,
a estruturação e a adaptabilidade da linguagem,
bem como sua integração com ferramentas de
análise. A aplicação prática do CyberGSN em
casos reais de segurança é apresentada como
uma característica importante da abordagem.

O artigo apresenta o conceito de casos
de segurança e propõe o uso da

linguagem semi-formal CyberGSN para
especificar e argumentar a segurança

de sistemas. Os conceitos de metas de
segurança, evidências, argumentos e

integração com ferramentas de análise
são fundamentais na abordagem

proposta.

A metodologia do
artigo envolve a
identificação dos

requisitos de
segurança, a

especificação das
metas de

segurança, o
desenvolvimento
dos argumentos
de segurança, a

representação dos
casos de

segurança em
CyberGSN, a

análise e
verificação dos

casos, a revisão e
atualização dos

casos, e a
documentação e
comunicação dos

casos de
segurança.

IEEE Inglês CE2 Excluido
Design and
Implementation of
SysML Activity
Diagram Simulation
Function Based on
fUML Specification

B. Huang; Y.
Liu; X. Wu; J.
Lv; Y. Liu 2022

With the rapid development of
computer science and
technology, Model-Based
Systems Engineering (MBSE) has
been widely used in the field of
system design and simulation,
gradually replacing traditional
text-based systems engineering
methods. As a standard modeling
language in the field of systems
engineering, SysML, together with
modeling tools and modeling
methods, is called the three pillars
of MBSE. Activity diagram is a
kind of behavior diagram of
SysML, and its simulation plays
an important role in MBSE
practice. Aiming at the problem
that the activity diagram
simulation capability of domestic
SysML modeling software is
insufficient, this paper implements
the simulation function of SysML
activity diagram based on the
fUML specification.

10.1109
/CRC55

853.
2022.10
041232

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=1
0041232

MBSE;fUML;SysML;
Activity Diagram;System
Simulation

O artigo descreve a implementação de uma
função de simulação para diagramas de

atividades do SysML baseada na especificação
fUML. A abordagem permite a execução

dinâmica e a análise do comportamento do
sistema, proporcionando uma ferramenta prática

para a simulação e validação de modelos de
sistemas complexos.

O artigo explora a simulação de
diagramas de atividades do SysML
usando a especificação fUML como
base. Ele apresenta os conceitos

fundamentais do SysML e do fUML,
descreve a função de simulação

implementada e demonstra a utilidade
prática da abordagem para a análise e
simulação de sistemas modelados em

SysML.

A metodologia do
artigo envolve a

revisão dos
requisitos e

especificações, o
estudo da

especificação
fUML, o design e

implementação da
função de

simulação, os
testes e validação,

a avaliação e
refinamento, e a

documentação de
todo o processo.

IEEE Inglês CE1 e CE2 Excluido
Diversity-Driven
Automated Formal
Verification

E. First; Y.
Brun 2022

Formally verified correctness is
one of the most desirable
properties of software systems.
But despite great progress made
via interactive theorem provers,
such as Coq, writing proof scripts
for verification remains one of the
most effort-intensive (and often
prohibitively difficult) software
development activities. Recent
work has created tools that
automatically synthesize proofs or
proof scripts. For example,
CoqHammer can prove 26.6% of
theorems completely
automatically by reasoning using
precomputed facts, while TacTok
and ASTactic, which use machine
learning to model proof scripts
and then perform biased search
through the proof-script space,
can prove 12.9% and 12.3% of
the theorems, respectively.
Further, these three tools are
highly complementary; together,
they can prove 30.4% of the
theorems fully automatically. Our
key insight is that control over the
learning process can produce a
diverse set of models, and that,
due to the unique nature of proof
synthesis (the existence of the
theorem prover, an oracle that
infallibly judges a proof's
correctness), this diversity can
significantly improve these tools'
proving power. Accordingly, we
develop Diva, which uses a
diverse set of models with
TacTok's and ASTactic's search
mech-anism to prove 21.7% of
the theorems. That is, Diva
proves 68% more theorems than
TacTok and 77% more than
ASTactic. Complementary to
CoqHammer, Diva proves 781
theorems (27% added value) that
CoqHammer does not, and 364
theorems no existing tool has
proved automatically. Together
with CoqHammer, Diva proves
33.8% of the theorems, the
largest fraction to date. We
explore nine dimensions for
learning diverse models, and
identify which dimensions lead to
the most useful diversity. Further,
we develop an optimization to
speed up Diva's execution by
40×. Our study introduces a
completely new idea for using
diversity in machine learning to
improve the power of state-of-the-
art proof-script synthesis
techniques, and empirically
demonstrates that the
improvement is significant on a
dataset of 68K theorems from 122
open-source software projects.

10.1145
/351000

3.
351013

8

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
793984

Automated formal
verification;language
models;Coq;interactive
proof assistants;proof
synthesis

 O artigo aborda a aplicação da diversidade
como uma abordagem para melhorar a

verificação formal automatizada. Ele propõe a
geração de casos de teste diversificados e o uso

de técnicas de otimização e aprendizado de
máquina para aprimorar o processo de
verificação. Através de uma avaliação

experimental, o artigo demonstra os benefícios e
a eficácia dessa abordagem na descoberta de

falhas e na garantia da confiabilidade dos
sistemas verificados formalmente.

O artigo aborda a aplicação da
diversidade na verificação formal

automatizada, visando aumentar a
cobertura e descobrir uma ampla gama
de falhas e propriedades violadas. Ele
discute a geração de casos de teste
diversificados, o uso de técnicas de

otimização e aprendizado de máquina,
e apresenta uma avaliação

experimental para demonstrar a eficácia
da abordagem proposta.

 A metodologia do
artigo envolve a
definição dos
objetivos de

verificação, a
seleção das
técnicas de

verificação formal,
a identificação das

fontes de
diversidade, a

implementação da
diversidade no
processo de
verificação, a
execução da

verificação formal,
a avaliação dos
resultados e os
refinamentos
iterativos da
abordagem.

IEEE Inglês CE2 Excluido
Documentation-based
functional constraint
generation for library
methods

R. Jiang; Z.
Chen; Y. Pei;
M. Pan; T.
Zhang; X. Li

2022

Although software libraries
promote code reuse and facilitate
software development, they
increase the complexity of
programme analysis tasks. To
effectively analyse programmes
built on top of software libraries, it
is essential to have specifications
for the library methods that can
be easily processed by analysis
tools. However, the availability of
such specifications is seriously
limited at the moment. Manually
writing the specifications can be
prohibitively expensive and error-
prone, while existing automated
approaches to inferring the
specifications seldom produce
results that are strong enough to
be used in programme analysis.
In this work, we propose the
DOC2SMT approach to
generating strong functional
constraints in SMT for library
methods based on their
documentations. DOC2SMT first
applies natural language
processing (NLP) techniques and
a set of rules to translate a
method's natural language
documentation into a large
number of candidate constraint
clauses in OCL. Then, it utilises a
manually enhanced domain
model to identify OCL candidate
constraint clauses that comply
with the problem domain in static
validation, translates well-formed
OCL constraints into the SMT-LIB
format, and checks whether each
5MB-LIB constraint rightly
abstracts the functionalities of the
method under consideration via
testing in dynamic validation. In
the end, it reports the first
functional constraint that survives
both validations to the user as the
result. We have implemented the
approach into a supporting tool
with the same name. In
experiments conducted on 451
methods from the Java
Collections Framework and the
Java IO library, DOC2SMT
generated correct constraints for
309 methods, with the average
generation time for each correct
constraint being merely 2.7 min.
We have also applied the
generated constraints to facilitate
symbolic-execution-based test
generation with the Symbolic
Java PathFinder (SPF) tool. For
24 utility methods manipulating
Java container and IO objects,
SPF with access to the generated
constraints produced 51.2 times
more test cases than SPF without
the access.

10.1109
/ICST53

961.
2022.00

056

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
787888

documentation analysis;
domain model;OCL;
SMT;specification
generation

O artigo aborda a geração de restrições
funcionais para métodos de bibliotecas com

base na documentação. A abordagem proposta
utiliza informações da documentação, como
descrições e exemplos de uso, para inferir
restrições funcionais. O artigo descreve a

implementação de uma ferramenta de suporte e
apresenta uma avaliação experimental. A

abordagem oferece benefícios na automatização
do processo de geração de restrições funcionais,

mas também possui limitações relacionadas à
qualidade da documentação.

O artigo aborda a geração
automatizada de restrições funcionais
para métodos de bibliotecas com base

na documentação disponível. São
propostas técnicas para análise e

inferência das restrições funcionais, e
uma ferramenta é implementada para

automatizar esse processo. A validação
da abordagem é realizada em

bibliotecas reais, demonstrando a sua
aplicabilidade e benefícios potenciais.

 A metodologia do
artigo envolve a
coleta e análise

da documentação,
a identificação de
padrões e regras,

o
desenvolvimento

de uma
ferramenta para

geração
automatizada de

restrições, a
validação da

abordagem em
métodos de

bibliotecas reais e
a análise dos

resultados
obtidos. Essa

metodologia visa
oferecer uma
abordagem

prática e
automatizada para

a geração de
restrições

funcionais com
base na

documentação
disponível.

IEEE Inglês CE1 Excluido

Domain Specific
Program Synthesis

P. Archana; P.
B. Harish; N.
Rajan; S. P; N.
S. Kumar

2021

Program Synthesis refers to the
task of constructing a program in
a specific programming language,
given its intent in a particular
format. This emerging field can be
applied in diverse domains and is
currently being investigated with
different techniques. A program
synthesizer would simplify the
efforts of programmers and help
them focus on the program's core
logic, without worrying about
language syntax and other
domain specifics. We applied the
concepts of program synthesis in
the context of solving a
propositional logic word problem.
We have developed a tool that is
capable of understanding, parsing
and evaluating a propositional
logic word problem. With the
user's natural language input, this
tool processes the query and
evaluates truth values of the
question expressions. The
working of the tool can be
explained in three major phases:
natural language processing,
machine learning to obtain postfix
notations of the Boolean
expressions involved, and further
evaluation of the postfix notations
to determine the answers. Our
goal was to explore the domain
agnostic capabilities of our
program-synthesis-based
techniques of learning used in the
implementation of this tool.

10.1109
/ASIAN
CON51

346.
2021.95
44738

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
544738

propositional logic;
program synthesis;
boolean;natural
language processing;
sequence-to-sequence
model

 O artigo aborda a síntese de programas
específicos de domínio, destacando a

importância do conhecimento do domínio,
apresentando diferentes abordagens e técnicas,

discutindo desafios e limitações, fornecendo
exemplos e estudos de caso, e contribuindo para

o avanço da área de síntese de programas.

O artigo explora conceitos-chave
relacionados à síntese de programas
específicos de domínio, destacando a

importância do conhecimento do
domínio, o uso de linguagens de

domínio específico, a consideração de
requisitos e restrições do domínio, as

técnicas de síntese utilizadas, a
avaliação das abordagens e as

aplicações práticas da síntese de
programas.

A metodologia
proposta consiste

em três etapas
principais:

especificação de
requisitos,
geração de
programa

candidato e
validação. Na

primeira etapa, o
usuário especifica
os requisitos do

programa em uma
linguagem de

domínio
específico. Na

segunda etapa, a
geração de
programas

candidatos é
realizada através
de um processo
de busca em um

espaço de
programas,

utilizando técnicas
de programação

genética e
aprendizado de

máquina.
Finalmente, na

terceira etapa, a
validação é feita

por meio de testes
automáticos,

análise estática e
interação com o

usuário.

IEEE Inglês CE1 Excluido
Formal Verification and
Performance Analysis
of a New Data
Exchange Protocol for
Connected Vehicles

S. Chouali; A.
Boukerche; A.
Mostefaoui; M.
A. Merzoug

2020

In this article, we focus on the
usage of MQTT (Message
Queuing Telemetry Transport)
within Connected Vehicles (CVs).
Indeed, in the original version of
MQTT protocol, the broker is
responsible “only” for sending
received data to subscribers;
abstracting then the underlying
mechanism of data exchange.
However, within CVs context,
subscribers (i.e., the processing
infrastructure) may be overloaded
with irrelevant data, in particular
when the requirement is real or
near real-time processing. To
overcome this issue, we propose
MQTT-CV; a new variant of
MQTT protocol, in which the
broker is able to perform local
processing in order to reduce the
workload at the infrastructure; i.e.,
filtering data before sending them.
In this article, we first validate
formally the correctness of
MQTT-CV protocol (i.e., the three
components of the proposed
protocol are correctly interacting),
through the use of Promela
language and its system
verification tool; the model
checker SPIN. Secondly, using
real-world data provided by our
car manufacturer partner, we
have conducted real
implementation and experiments.
The obtained results show the
effectiveness of our approach in
term of data workload reduction at
the processing infrastructure. The
mean improvement, besides the
fact that it is dependent of the
target application, was in general
about 10 times less in comparison
to native MQTT protocol.

10.1109
/TVT.

2020.30
40817

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
272870

Connected vehicles;data
filtration;formal analysis;
formal verification;
MQTT;promela;SPIN

O artigo aborda o conceito de Internet das
Coisas (IoT), que está cada vez mais presente
em diversos setores da sociedade. Destaca a
importância do protocolo de comunicação para

as aplicações em IoT, uma vez que ele abstrai a
troca de dados entre os dispositivos conectados.
O foco principal do artigo é no protocolo MQTT,

que é amplamente utilizado em aplicações reais,
especialmente no setor automotivo.

O artigo apresenta o conceito de IoT,
que consiste na conexão de objetos

inteligentes capazes de coletar,
processar e transmitir dados. Destaca o
papel do protocolo de comunicação na
abstração da troca de dados entre os
dispositivos conectados. Apresenta o
protocolo MQTT, que é baseado no

modelo de mensagens
publish/subscribe e é amplamente

utilizado em aplicações IoT. Explica
como o MQTT é utilizado na indústria

automotiva para coletar dados de
veículos conectados e processá-los em

tempo real.

O artigo não
apresenta um

método
específico, mas

descreve como o
MQTT é utilizado

na indústria
automotiva para
coletar dados de

veículos
conectados e

processá-los em
tempo real.

Também destaca
algumas

limitações do
MQTT em relação

ao papel do
broker na

transmissão de
dados, que podem
ser problemáticas

no contexto de
veículos

conectados.

IEEE Inglês CE1 Excluido
Formal Verification of
SDN-Based Firewalls
by Using TLA+

Y. -M. Kim; M.
Kang 2020

Software-defined networking
(SDN) has generated increased
interest due to the rapid growth in
the amount of data generated by
the development of the Internet
and communications, the
commercialization of 5G, and
increasingly complex networks.
While SDN is more advantageous
than traditional networks in terms
of efficient network management,
rapid deployment, and dynamic
scalability, the correctness of a
network configuration must be
ensured in advance. In other
words, SDN components such as
network devices, SDN controllers,
and applications need to be
deployed correctly and must be
free of rule conflicts, particularly
between various application
policies; otherwise, it may result
in network paralysis in the worst
case. This paper assumes that
the SDN network is free of rule
conflicts when the rules in the
SDN switches correctly obey
firewall application or policies. To
solve this problem, this paper
proposes a verification framework
for SDN using TLA+. We show
that the firewall rule behavior of
switches can be formalized using
TLA+, and this is verified with the
TLC model checker that uses
TLA+ as the model description
language. We check two different
types of topology models through
our verification framework to
ensure that the same firewall
rules are maintained even if the
topology changes. The findings
show that the firewall rules may
be inconsistent as the topology
changes.

10.1109
/ACCE

SS.
2020.29
79894

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
031323

Firewall;formal methods;
software-defined
networking;TLA+

O artigo apresenta a importância da garantia da
correção das configurações de rede em SDN.

Destaca-se a necessidade de evitar conflitos de
regras entre as políticas de aplicação para evitar
a paralisia da rede. É proposto um framework de

verificação usando a linguagem TLA+ para
formalizar e verificar o comportamento das

regras de firewall nos switches SDN.

Os principais conceitos envolvem:
Software-defined networking (SDN):

rede que permite a gestão centralizada
e programável de dispositivos de rede.

Firewall: sistema que monitora e
controla o tráfego de rede com base em

um conjunto de regras.
TLA+ (Temporal Logic of Actions): uma
linguagem formal usada para modelar e

verificar sistemas concorrentes e
distribuídos.

A metodologia
descrita pelo

artigo, propõe um
framework

baseado em TLA+
para verificar a

consistência das
regras de firewall

em SDN. O
modelo de

comportamento
de regras é

formalizado em
TLA+ e verificado

com o modelo
TLC (The TLA+
model checker).
Dois modelos de

topologia
diferentes são
usados para

verificar a
consistência das
regras de firewall

sob diferentes
condições.

IEEE Inglês CE1 Excluido

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323

Formalization of Robot
Skills with Descriptive
and Operational
Models

C. Lesire; D.
Doose; C.
Grand 2020

In this paper, we propose a formal
language to specify robot skills, i.
e. the elementary behaviours or
functions provided by the robot
platform in order to perform an
autonomous mission. The
advantage of the language we
propose is that it integrates a
wide range of elements that
allows to define and provide
automatic translation both to
operational models, used online
to control the skill execution, and
descriptive models, allowing to
reason about the expected skill
execution, and then apply
automated planning or model-
checking taking skill models into
account.

10.1109
/IROS4
5743.

2020.93
40698

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
340698

-

O artigo aborda sobre a utilização de sistemas
robóticos inteligentes e autônomos, mostrando

como inevitável em condições reais de
operação. Cita também, como necessário

programar esses sistemas para customizar o
serviço do robô, especificar como o robô deve

reagir a perigos em uma missão de vigilância, ou
colaborar com outros robôs ou humanos em

tarefas de fabricação.

Os conceitos mencionados pelo artigo
englobam:

Programação de nível de tarefa:
abordagem para programação de robôs

que consiste em montar
comportamentos elementares ou
habilidades para projetar a tarefa
completa ou missão do sistema

robótico.
Modelos de habilidades: são usados
para raciocinar sobre as capacidades

dos robôs e podem ser descritivos
(definir o comportamento da habilidade)

ou operacionais (definir como a
habilidade deve ser executada).

A metodologia do
artigo envolve:

Desenvolvimento
de modelos de

habilidades: são
necessários para
raciocinar sobre
as capacidades

dos robôs e
podem ser

descritivos ou
operacionais.

Consistência entre
modelos

descritivos e
operacionais: é

uma preocupação
quando se projeta
uma arquitetura
deliberativa que

integra
planejamento de
longo prazo das

atividades do robô
e execução online

de
comportamentos

ou quando se
realiza verificação

com base em
model-checking.
Proposição de
uma definição

formal de
habilidades para
derivar modelos

descritivos e
operacionais: isso
permite garantir a
consistência entre

esses modelos.
Ferramentas para

automatizar a
construção de
modelos: são

propostas para
facilitar a

construção de
modelos de
habilidades.

IEEE Inglês CE1 Excluido

From Real-Time Logic
to Timed Automata

Ferrère T,
Maler O,
Ničković D,
Pnueli A

2019

We show how to construct
temporal testers for the logic
MITL, a prominent linear-time
logic for real-time systems. A
temporal tester is a transducer
that inputs a signal holding the
Boolean value of atomic
propositions and outputs the truth
value of a formula along time.
Here we consider testers over
continuous-time Boolean signals
that use clock variables to enforce
duration constraints, as in timed
automata. We first rewrite the
MITL formula into a “simple”
formula using a limited set of
temporal modalities. We then
build testers for these specific
modalities and show how to
compose testers for simple
formulae into complex ones.
Temporal testers can be turned
into acceptors, yielding a
compositional translation from
MITL to timed automata. This
construction is much simpler than
previously known and remains
asymptotically optimal. It supports
both past and future operators
and can easily be extended.

10.1145
/328697

6

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/32869
76;http://dx.
doi.org/10.
1145/32869
76

formal verification, timed
automata, real-time,
Temporal logic, model
checking

- - - ACM Inglês CE5 Excluido
Integrated Automotive
Requirements
Engineering with a
SysML-Based Domain-
Specific Language

R. Maschotta;
A. Wichmann;
A.
Zimmermann;
K. Gruber

2019

The rising overall complexity of
modern cars as a special case of
mechatronic systems leads to an
increasing number of functions
implemented by electric and
electronic (E/E-) systems. Well-
known design problems of
complex modular systems arise
out of this. To achieve high-
quality standards along the whole
product life cycle, modern
systems and software
engineering methods and
techniques are necessary. Model-
based approaches are widely
used in the automotive domain,
based on different types of
models used in development
phases at different abstraction
levels. The Unified Modeling
Language and the Systems
Modeling Language are general-
propose modeling languages that
are widely used in the automotive
domain. However, there are
several domain-specific
languages that support the
automotive domain more
specifically. A domain-specific
SysML profile for functional and
nonfunctional requirements in
automotive technical systems has
been proposed in our previous
work. This paper describes our
model-driven approach to specify
domain-specific languages and
corresponding domain-specific
tools. The specifications are
based on UML extensions using
profiles only, which is a
lightweight approach compared to
other proposals. This allows the
reuse and extension of existing
UML or SysML models. A
domain-specific graphical editor is
presented in this paper based on
the specified extensions. The
resulting graphical editor is used
to model an automotive technical
system as an example.

10.1109
/ICMEC

H.
2019.87
22951

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
722951

Automotive system
design;integrated
mechatronic design;
model analysis;model
queries;UML;SysML;
validation;model-driven
engineering;Eclipse
Sirius

O artigo aborda a complexidade crescente de
sistemas eletrônicos e elétricos em carros

modernos. Explorando a importância de métodos
e técnicas para garantir a qualidade e segurança

desses sistemas. Discute também a
necessidade de diferentes grupos de designers

(E/E, mecânica, funcionalidade) trabalharem
juntos para evitar conflitos e retrabalho.

Conceitos abordados no artigo:

Automotive SPICE: conceito de
melhoria de processos de software

específico para a indústria automotiva.
Model-driven systems engineering:

abordagem de engenharia de sistemas
que utiliza modelos para a

implementação de sistemas.
UML: linguagem de modelagem geral
para software amplamente utilizada.

SysML: linguagem de modelagem geral
para engenharia de sistemas, com uma

abordagem específica para a área
automotiva.

Domain-specific language: linguagem
de modelagem específica para uma

área de conhecimento.

Métodos
apresentados no

artigo:

Utilização de
diferentes
modelos e

linguagens de
modelagem para
engenharia de

sistemas na área
automotiva,

incluindo UML,
SysML e

linguagens
específicas de

domínio.
Abordagem de
engenharia de

sistemas
orientada a

modelos (model-
driven systems

engineering).
Integração de
aspectos de

diferentes grupos
de designers (E/E,

mecânica,
funcionalidade)

para evitar
conflitos e
retrabalho.

IEEE Inglês CE1 Excluido
Integration of Formal
Proof into Unified
Assurance Cases with
Isabelle/SACM

Foster S,
Nemouchi Y,
Gleirscher M,
Wei R,Kelly T

2021

Assurance cases are often
required to certify critical systems.
The use of formal methods in
assurance can improve
automation, increase confidence,
and overcome errant reasoning.
However, assurance cases can
never be fully formalised, as the
use of formal methods is
contingent on models that are
validated by informal processes.
Consequently, assurance
techniques should support both
formal and informal artifacts, with
explicated inferential links
between them. In this paper, we
contribute a formal machine-
checked interactive language,
called Isabelle/SACM, supporting
the computer-assisted
construction of assurance cases
compliant with the OMG
Structured Assurance Case Meta-
Model. The use of Isabelle/SACM
guarantees well-formedness,
consistency, and traceability of
assurance cases, and allows a
tight integration of formal and
informal evidence of various
provenance. In particular, Isabelle
brings a diverse range of
automated verification techniques
that can provide evidence. To
validate our approach, we present
a substantial case study based on
the Tokeneer secure entry system
benchmark. We embed its
functional specification into
Isabelle, verify its security
requirements, and form a modular
security case in Isabelle/SACM
that combines the heterogeneous
artifacts. We thus show that
Isabelle is a suitable platform for
critical systems assurance.

10.1007
/s00165

-021-
00537-4

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1007/s0016
5-021-
00537-4;
http://dx.doi.
org/10.
1007/s0016
5-021-
00537-4

Assurance cases,
Safety cases, Integrated
formal methods,
Common criteria, Proof
assistants

- - - ACM Inglês CE5 Excluido
Interactive Behavior-
driven Development: a
Low-code Perspective

N. Patkar; A.
Chiş; N.
Stulova; O.
Nierstrasz

2021

Within behavior-driven
development (BDD), different
types of stakeholders collaborate
in creating scenarios that specify
application behavior. The current
workflow for BDD expects non-
technical stakeholders to use an
integrated development
environment (IDE) to write textual
scenarios in the Gherkin
language and verify application
behavior using test passed/failed
reports. Research to date shows
that this approach leads non-
technical stakeholders to perceive
BDD as an overhead in addition
to the testing. In this vision paper,
we propose an alternative
approach to specify and verify
application behavior visually,
interactively, and collaboratively
within an IDE. Instead of writing
textual scenarios, non-technical
stakeholders compose, edit, and
save scenarios by using tailored
graphical interfaces that allow
them to manipulate involved
domain objects. Upon executing
such interactively composed
scenarios, all stakeholders verify
the application behavior by
inspecting domain-specific
representations of run-time
domain objects instead of a test
run report. Such a low code
approach to BDD has the
potential to enable nontechnical
stakeholders to engage more
harmoniously in behavior
specification and validation
together with technical
stakeholders within an IDE. There
are two main contributions of this
work: (i) we present an analysis of
the features of 13 BDD tools, (ii)
we describe a prototype
implementation of our approach,
and (iii) we outline our plan to
conduct a large-scale developer
survey to evaluate our approach
to highlight the perceived benefits
over the existing approach.

10.1109
/MODE

LS-
C53483

.
2021.00

024

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
643783

bdd;behavior-driven
development;
collaborative
development;
acceptance testing;
visual programming;
end-user programming

O artigo propõe uma abordagem alternativa para
a especificação e verificação de comportamento

de aplicativos dentro do desenvolvimento
orientado por comportamento (BDD).

A abordagem proposta é visual, interativa e
colaborativa, usando interfaces gráficas

personalizadas para que os stakeholders não
técnicos possam manipular objetos de domínio.

O artigo trata de uma abordagem
alternativa para o desenvolvimento

orientado por comportamento (BDD),
que se concentra na especificação e

verificação do comportamento do
aplicativo por meio da colaboração de
diferentes stakeholders. O objetivo é

tornar o processo de BDD mais
acessível e colaborativo para

stakeholders não técnicos, permitindo
que eles participem da especificação e

validação do comportamento do
aplicativo juntamente com os

stakeholders técnicos.

O artigo propõe
uma abordagem

visual, interativa e
colaborativa para
a especificação e

verificação do
comportamento
do aplicativo. A
abordagem usa

interfaces gráficas
personalizadas

para que os
stakeholders não
técnicos possam
manipular objetos

de domínio e
representa o

comportamento
do aplicativo

usando
representações
específicas do
domínio dos

objetos em tempo
de execução.

IEEE Inglês CE1 Excluido

JGuard: Programming
Misuse-Resilient APIs

Binder S,
Narasimhan K,
Kernig S,
Mezini M

2022

APIs provide access to valuable
features, but studies have shown
that they are hard to use
correctly. Misuses of these APIs
can be quite costly. Even though
documentations and usage
manuals exist, developers find it
hard to integrate these in practice.
Several static and dynamic
analysis tools exist to detect and
mitigate API misuses. But it is
natural to wonder if APIs can be
made more difficult to misuse by
capturing the knowledge of
domain experts (, API designers).
Approaches like CogniCrypt have
made inroads into this direction
by offering API specification
languages like CrySL which are
then consumed by static analysis
tools. But studies have shown
that developers do not enjoy
installing new tools into their
pipeline. In this paper, we present
jGuard, an extension to Java that
allows API designers to directly
encode their specifications while
implementing their APIs. Code
written in jGuard is then compiled
to regular Java with the checks
encoded as exceptions, thereby
making sure the API user does
not need to install any new
tooling. Our evaluation shows that
jGuard can be used to express
the most commonly occuring
misuses in practice, matches the
accuracy of state of the art in API
misuse detection tools, and
introduces negligible performance
overhead.

10.1145
/356751

2.
356752

6

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35675
12.
3567526;
http://dx.doi.
org/10.
1145/35675
12.3567526

DSL, API, Java - - - ACM Inglês CE5 Excluido
Low-Cost Optical
Tracking Controller
System for Fine Motor
Rehabilitation in
Children with Brain
Damage: Formal
Specification and
Validation

E. E.
Saavedra
Parisaca; E.
Enriqueta
Vidal Duarte

2021

Acquired brain damage in
children is increasingly frequent,
and as main deficit produces
motor alterations that manifest as
the child grows, affecting muscle
tone, coordination and motor
control, in order to influence these
aspects, fine motor skills are
intervened, since these involve a
coordinated effort of the brain and
muscles, having a direct impact
on the learning capacity of
children and can improve their
independence and autonomy.
Although traditional therapies
have been proven with great
effectiveness, there are also
different rehabilitation systems
that make use of tracking devices,
however not all of them are
accessible due to their high cost
or the lack of specialists who
master them. That is the reason a
low-cost optical tracking
Controller System is proposed to
complement fine motor-oriented
rehabilitation, allowing
movements to be captured with
precision and to obtain feedback
on the accuracy of the exercises.
In this paper we focus on the first
stage referring to the formal
specification of the requirements
and their validation. The proposal
is based on the Leap Motion
optical tracking device and limited
to exercises with a fine motor and
wrist. The controller system aims
to provide a better environment
for users to run their rehabilitation
process, in addition to considering
the rehabilitation progress. The
proposal uses formal
specifications to reduce possible
ambiguities in the face of a
system that may cause future
damage to its users if the
rehabilitation is not carried out
correctly, in the same way they
are used to validate the main
properties of the functional
requirements. The formal
specification language VDM ++ is
used to describe the system
properties for later modeling and
validation through the
VDMToolBox tool. As a result, a
formal specification of 4
requirements and a 100%
coverage analysis were achieved.

10.2391
9

/CISTI5
2073.

2021.94
76615

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
476615

Virtual Rehabilitation;
Formal Specification;
Validation and
Verification

O artigo aborda sobre características do dano
cerebral adquirido em crianças, como problemas
motores, cognitivos e comportamentais que se
manifestam com o tempo. O principal déficit é a
alteração motora, que pode ser fina ou grossa.

O artigo aborda o conceito de
reabilitação para crianças com dano
cerebral adquirido, sendo necessário
realizar a reabilitação em uma etapa

inicial. A falta de tratamento pode
prejudicar a criança no futuro.

A metodologia
envolve um meio
para desenvolver
um sistema que

possa
proporcionar um

seguimento e
retroalimentação
inteligente em um

processo de
recuperação do
paciente. Utiliza

métodos formais e
notações

matemáticas para
reduzir

ambiguidades no
sistema.

IEEE Espanhol CE1 Excluido
Mining Specifications
from Documentation
using a Crowd

P. Sun; C.
Brown; I.
Beschastnikh;
K. T. Stolee

2019

Temporal API specifications are
useful for many software
engineering tasks, such as test
case generation. In practice,
however, APIs are rarely formally
specified, inspiring researchers to
develop tools that infer or mine
specifications automatically.
Traditional specification miners
infer likely temporal properties by
statically analyzing the source
code or by analyzing program
runtime traces. These
approaches are frequently
confounded by the complexity of
modern software and by the
unavailability of representative
and correct traces. Formally
specifying software is traditionally
an expert task. We hypothesize
that human crowd intelligence
provides a scalable and high-
quality alternative to experts,
without compromising on quality.
In this work we present
CrowdSpec, an approach to use
collective intelligence of crowds to
generate or improve automatically
mined specifications. CrowdSpec
uses the observation that APIs
are often accompanied by natural
language documentation, which is
a more appropriate resource for
humans to interpret and is a
complementary source of
information to what is used by
most automated specification
miners.

10.1109
/SANE

R.
2019.86
68025

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
668025

Specification mining;
crowdsourcing;Java
APIs

O artigo trata da importância da especificação
correta do comportamento de APIs de software

para serem usadas por vários programas
clientes.

São apresentados métodos automatizados de
inferência de especificações a partir da

execução de programas clientes, mas estes são
incompletos e requerem revisão humana.

É proposto o CrowdSpec, uma metodologia que
utiliza a inteligência da multidão para criar

especificações de API de alta qualidade, de
forma leve e escalável.

Conceitos do artigo englobam:

Especificação de API: descrição do
comportamento esperado de uma API,
que deve ser seguida pelos programas

clientes que a utilizam.
Inferência de especificação: processo

automatizado de descoberta da
especificação de API a partir da
execução de programas clientes.

CrowdSpec: metodologia que combina
inferência de especificação

automatizada com revisão humana por
meio da inteligência da multidão.

Métodos
abordados no

artigo:

O CrowdSpec
utiliza a

documentação da
API e verifica

especificações
temporais em
relação a essa
documentação.
A verificação é
realizada por
trabalhadores

humanos em uma
plataforma de

crowdsourcing,
seguindo um
processo de

triagem
automatizado para

identificar
trabalhadores
competentes.

A abordagem do
CrowdSpec é

escalável por usar
a multidão em vez
de especialistas, e

é leve por
aproveitar

recursos de
linguagem natural,
em vez de código-
fonte ou traços de

execução.

IEEE Inglês CE1 Excluido
Model driven
programming of
autonomous floats for
multidisciplinary
monitoring of the
oceans

S. Bonnieux;
S. Mosser; M.
Blay-
Fornarino; Y.
Hello; G. Nolet

2019

Monitoring of the oceans with
autonomous floats is of great
interest for many disciplines.
Monitoring on a global scale
needs a multidisciplinary
approach to be affordable. For
this purpose, we propose an
approach that allows
oceanographers from different
specialities to develop
applications for autonomous
floats. However, developing such
applications usually requires
expertise in embedded systems,
and they must be reliable and
efficient with regards to the limited
resources of the floats (e.g.,
energy, processing power). We
have followed a Model Driven
Engineering approach composed
of i) a Domain Specific Language
to allow oceanographers to
develop applications, ii) analysis
tools to ensure that applications
are efficient and reliable, iii) a
composition tool to allow the
deployment of different
applications on a same float, and
iv) a code generator that produce
efficient and reliable code for the
float. We present our approach
with a biological and a
seismological application. We
validate it with technical metrics
and an experiment.

10.1109
/OCEA
NSE.

2019.88
67453

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
867453

Model Driven
Engineering;Domain
Specific Language;
embedded system;
constrained resources

O artigo apresenta um projeto de monitoramento
acústico passivo dos oceanos, utilizando
flutuadores autônomos que podem ser

adaptados para diferentes aplicações, como
medições físicas ou químicas.

O conceito central do artigo é a
utilização de flutuadores autônomos
adaptativos para o monitoramento
acústico passivo dos oceanos, que

podem ser equipados com diferentes
tipos de sensores e aplicações. A

abordagem proposta visa facilitar o
desenvolvimento de novas aplicações
para diferentes especialidades, como

biologia marinha, meteorologia e
sismologia, permitindo que

oceanógrafos escrevam suas próprias
aplicações de forma eficiente e

confiável.

A metodologia do
artigo descreve o
funcionamento
dos flutuadores
autônomos, que

têm quatro
estados de
operação:
descida,

estacionamento,
subida e
superfície.

As aplicações
definem a

profundidade e
duração do

mergulho e as
medições a serem

realizadas e
transmitidas por

satélite.
O artigo destaca a

importância de
considerar a vida
útil da bateria e os

custos de
comunicação ao

desenvolver
novas aplicações.
O artigo também

enfatiza a
necessidade de

colaboração
multidisciplinar

para o
monitoramento
acústico global
dos oceanos,

dada a
complexidade e o

custo da
implementação

em escala global.

IEEE Inglês CE1 Excluido
Model-Based Systems
Engineering to Design
An Onboard Surround
Vision System for
Cooperative Automated
Vehicles

N. Kemsaram;
A. Das; G.
Dubbelman 2021

Cooperative automated vehicles
have various electronic control
units with multiple sensors
running complex software
algorithms to perceive and
navigate their environment.
Hence, there is a need to use
advanced software engineering
design methodology to reduce the
software complexity and increase
modularity. In this paper, we
applied the SysCARS model-
based systems engineering
methodology to design an
onboard surround vision system
with a SysML modeling language
using the IBM Rational Rhapsody
modeling tool. The modeling
methodology is described through
various phases and steps with a
modeling language to overcome
the challenges. The modeling tool
takes the information from the
design model of the system and
generates a skeletal code. The
algorithm is written for each
generated skeletal code,
compiled with a C++ compiler on
the host Desktop PC (Ubuntu
16.04 LTS), and deployed on the
target Nvidia Drive PX2
embedded hardware platform.
The designed solution fulfills the
requirements of the onboard
surround vision system.

10.1109
/IISEC5
4230.

2021.96
72396

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
672396

Cooperative automated
vehicle;deep neural
networks;model-based
systems engineering;
surround vision system;
system modeling
language;unified
modeling language

O artigo propõe um sistema de visão surround a
bordo de um veículo autônomo para uma

condução autônoma cooperativa completa. O
sistema de visão surround é composto por

câmeras estéreo frontal, laterais e traseiras, para
perceber os arredores do veículo.

O artigo propõe um sistema de visão
surround para veículos autônomos que

permita uma condução autônoma
cooperativa completa. A proposta é

melhorar a percepção do ambiente do
veículo e, assim, melhorar a segurança
e eficiência da condução autônoma. O

artigo destaca a importância da
engenharia de sistemas baseada em

modelo e da linguagem de modelagem
SysML para projetar sistemas

complexos como o sistema de visão
surround.

Métodos
abordados no

artigo:

O artigo descreve
a aplicação da
metodologia de
engenharia de

sistemas baseada
em modelo
(MBSE) e a

linguagem de
modelagem de

sistemas SysML
no projeto do

sistema de visão
surround.

O artigo menciona
o uso da

ferramenta de
modelagem IBM

Rational
Rhapsody.

O artigo destaca a
importância de um

bom design de
software para
evitar erros na

fase de requisitos
do ciclo de

desenvolvimento
de software.

IEEE Inglês CE1 Excluido
Model-Checking Legal
Contracts with
SymboleoPC

Parvizimosaed
A,Roveri M,
Rasti A,Amyot
D,Logrippo L,
Mylopoulos J

2022

Legal contracts specify
requirements for business
transactions. As any other
requirements specification,
contracts may contain errors and
violate properties expected by
contracting parties. Symboleo
was recently proposed as a
formal specification language for
legal contracts. This paper
presents SymboleoPC, a tool for
analyzing Symboleo contracts
using model checking. It
highlights the architecture,
implementation and testing of the
tool, as well as a scalability
evaluation with respect to the size
of contracts and properties to be
checked through a series of
experiments. The results suggest
that SymboleoPC can be usefully
applied to the analysis of formal
specifications of contracts with
real-life sizes and structures.

10.1145
/355035

5.
355244

9

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35503
55.
3552449;
http://dx.doi.
org/10.
1145/35503
55.3552449

legal contracts, model
checking, nuXmv,
performance analysis,
smart contracts,
software requirements
specifications, formal
specification languages

- - - ACM Inglês CE5 Excluido
Modeling of Natural
Language
Requirements based
on States and Modes

Y. Liu; J. -M.
Bruel 2022

The relationship between states
(status of a system) and modes
(capabilities of a system) used to
describe system requirements is
often poorly defined. The unclear
relationship could make systems
of interest out of control because
of the out of boundaries of the
systems caused by the newly
added modes. Formally modeling
requirements can clarify the
relationship between states and
modes, making the system safe.
To this end, the MoSt language (a
Domain Specific Language
implemented on the Xtext
framework) is proposed to
modeling requirements based on
states and modes. In this article,
the relationship between states
and modes is firstly provided. The
metamodel and grammar of the
language are then proposed.
Finally, a validator is implemented
to realise static checks of the
MoSt model. The grammar and
the validator are integrated into a
publicly available Eclipse-based
tool. A case study on
requirements for designing cars
has been conducted to illustrate
the feasibility of the MoSt
language. In this case study, we
injected 9 errors. The results
show that all the errors were
detected in the static analysis.

10.1109
/REW5
6159.

2022.00
043

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
920159

States and Modes;
Requirements Modeling;
Domain Specific
Language

O artigo discute a importância de se entender
claramente as capacidades e limites de um
sistema, destacando a ambiguidade entre

estados e modos e como isso pode
comprometer a segurança de sistemas

complexos.

 O artigo propõe o uso de estados e
modos para modelar e verificar os

requisitos de um sistema, criando uma
linguagem específica de domínio

chamada MoSt (Modes and States)
para ajudar os usuários a escrever

requisitos em linguagem natural
controlada.

A metodologia
proposta, comenta

sobre o MoSt,
cujo foi

implementado
usando o

framework Xtext e
utilizado para
modelar os

requisitos de um
projeto de design

de carros. Os
erros injetados no

modelo MoSt
foram detectados

com sucesso,
demonstrando a

eficácia da
linguagem na

formalização e
gestão de

requisitos. O uso
de estados e
modos como

termos
padronizados para

comunicação
entre membros da

equipe é
enfatizado como

uma forma de
evitar conflitos
desnecessários
na descrição do

sistema.

IEEE Inglês CE1 Excluido
Multiple Analyses,
Requirements Once:
Simplifying Testing and
Verification in
Automotive Model-
Based Development

Berger,
Philipp;
Nellen,
Johanna;
Katoen, Joost-
Pieter;
Abraham,
Erika Prime;
Bin Waez,
Tawhid;
Rambow,
Thomas

2019

In industrial model-based
development (MBD) frameworks,
requirements are typically
specified informally using textual
descriptions. To enable the
application of formal methods,
these specifications need to be
formalized in the input languages
of all formal tools that should be
applied to analyse the models at
different development levels. In
this paper we propose a unified
approach for the computer-
assisted formal specification of
requirements and their fully
automated translation into the
specification languages of
different verification tools. We
consider a two-stage MBD
scenario where first Simulink
models are developed from which
executable code is generated
automatically. We (i) propose a
specification language and a
prototypical tool for the formal but
still textual specification of
requirements, (ii) show how these
requirements can be translated
automatically into the input
languages of Simulink Design
Verifier for verification of Simulink
models and BTC Embedded-
Validator for source code
verification, and (iii) show how our
unified framework enables
besides automated formal
verification also the automated
generation of test cases.

10.1007
/978-3-
030-

27008-
7_4

- - - - - Web of science Inglês CE5 Excluido
New Opportunities for
Integrated Formal
Methods

Gleirscher M,
Foster S,
Woodcock J 2019

Formal methods have provided
approaches for investigating
software engineering
fundamentals and also have high
potential to improve current
practices in dependability
assurance. In this article, we
summarise known strengths and
weaknesses of formal methods.
From the perspective of the
assurance of robots and
autonomous systems (RAS), we
highlight new opportunities for
integrated formal methods and
identify threats to the adoption of
such methods. Based on these
opportunities and threats, we
develop an agenda for
fundamental and empirical
research on integrated formal
methods and for successful
transfer of validated research to
RAS assurance. Furthermore, we
outline our expectations on useful
outcomes of such an agenda.

10.1145
/335723

1

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/33572
31;http://dx.
doi.org/10.
1145/33572
31

threats, robots and
autonomous systems,
SWOT, opportunities,
weaknesses,
integration, strengths,
research agenda,
unification, challenges,
Formal methods

- - - ACM Inglês CE5 Excluido
Notice of Violation of
IEEE Publication
Principles: Mobile
Application
Development:
Automated Test Input
Generation Via Model
Inference based on
User Story and
Acceptance Criteria

H. Iqbal 2019

In the past few years, there has
been observed explosive growth
in the development of Mobile
Applications across Android and
iOS operating system which has
led to the direct impact towards
mobile app development. In order
to design and propose quality-
oriented apps, it is the primary
responsibility of the developers to
devote time and sufficient efforts
towards testing to make the Apps
bug free and operational in the
hands of end users without any
hiccup. In order to test the mobile
apps, manual testing procedures
takes prolonged amount of time in
writing test cases and even the
full testing requirements are not
met. In addition to this, lack of
sufficient knowledge by the tester
also impacts overall quality and
assurance that app is bug free.
To overcome all the issues of
testing, and to assure that apps
designed by developers are
almost bug free, we propose a
new testing methodology cum tool
“AgileUATM” which works
primarily towards white-box and
black-box testing. With this tool,
all the test cases are generated
automatically based on user
stories and acceptance criteria by
using formal specification and Z3
SMT solvers. To test the validity
of the proposed tool, we applied
the tool in real-time operational
environment with regard to test
Mobile apps. Using this tool, all
the acceptance criteria is
determined via user stories. The
testers/developers specify
requirements with formal
specifications based on programs
properties, predicates, invariants,
and constraints. From the results,
it is observed that the proposed
tool i.e. AgileUATM generated
effective and accurate test cases,
test input, and expected output
was generated in a unified
fashion from the user stories to
meet acceptance criteria. In
addition to this, the tool also
reduced the development time to
identify test data as compared to
manual Behavior Driven
Development (BDD)
methodologies. With this tool, the
developers got better idea with
regard to required tests and able
to translate the customers natural
languages to the computer
language as well.;Notice of
Violation of IEEE Publication
Principles

 “Mobile
Application Development:
Automated Test Input Generation
Via Model Inference based on
User Story and Acceptance
Criteria”
 by Hena Iqbal

in the Proceedings of the
International Conference on
Digitization (ICD), November
2019, pp. 92-103

 After
careful and considered review of
the content and authorship of this
paper by a duly constituted expert
committee, this paper has been
found to be in violation of IEEE’s
Publication Principles.

This paper is a near duplication of
the original text from the paper
cited below. The original text was
copied without attribution
(including appropriate references
to the original author(s) and/or
paper title) and without
permission.

 Due to the
nature of this violation,
reasonable effort should be made
to remove all past references to
this paper, and future references
should be made to the following
article:

 “Automated Test
Input Generation via Model
Inference Based on User Story
and Acceptance Criteria for
Mobile Application Development”

 by Duc-Man Nguyen, Quyet-
Thang Huynh, Nhu-Hang Ha and
Thanh-Hung Nguyen
 in the
International Journal of Software
Engineering and Knowledge
Engineering, Vol. 30, No. 3 2020,
pp. 399-425

10.1109
/ICD479

81.
2019.91
05761

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
105761

-
O artigo aborda a importância do teste de

aplicativos móveis e como ele é crítico para a
qualidade e o sucesso de uma aplicação móvel.
Ele também descreve a complexidade do teste
de aplicativos móveis e a pressão enfrentada
pelos testadores para garantir que a aplicação

seja lançada no mercado em tempo hábil e com
alta qualidade. O artigo propõe uma nova

metodologia para geração de casos de teste
automatizados a partir de histórias do usuário e

critérios de aceitação em projetos ágeis de
desenvolvimento de aplicativos móveis.

O artigo apresenta a importância do
teste de aplicativos móveis e descreve

as principais características que os
usuários consideram ao investir dinheiro
em um aplicativo, como funcionalidade
livre de problemas, interface do usuário
simples e uso seguro de dados móveis.

O artigo também destaca a
complexidade do teste de aplicativos
móveis e a pressão enfrentada pelos

testadores para garantir que a aplicação
seja lançada no mercado em tempo

hábil e com alta qualidade.

O artigo propõe
uma nova

metodologia para
geração de casos

de teste
automatizados a
partir de histórias

do usuário e
critérios de

aceitação em
projetos ágeis de
desenvolvimento

de aplicativos
móveis. A nova
metodologia é
baseada em
inferência de

modelos e utiliza
uma ferramenta

chamada
AgileUATM para
gerar casos de

teste
automatizados a
partir de histórias

do usuário e
critérios de
aceitação.

IEEE Inglês CE1 Excluido
On How Bit-Vector
Logic Can Help Verify
LTL-Based
Specifications

M. M. P.
Kallehbasti; M.
Rossi; L.
Baresi

2022

This paper studies how bit-vector
logic (bv logic) can help improve
the efficiency of verifying
specifications expressed in Linear
Temporal Logic (LTL). First, it
exploits the notion of Bounded
Satisfiability Checking to propose
an improved encoding of LTL
formulae into formulae of bv logic,
which can be formally verified by
means of Satisfiability Modulo
Theories (SMT) solvers. To
assess the gain in efficiency, we
compare the proposed encoding,
implemented in our tool $\mathbb
{Z}$Zot, against three well-known
encodings available in the
literature: the classic bounded
encoding and the optimized,
incremental one, as implemented
in both NuSMV and nuXmv, and
the encoding optimized for metric
temporal logic, which was the
“standard” implementation
provided by $\mathbb {Z}$Zot.
We also compared the newly
proposed solution against five
additional efficient algorithms
proposed by nuXmv, which is the
state-of-the-art tool for verifying
LTL specifications. The
experiments show that the new
encoding provides significant
benefits with respect to existing
tools. Since the first set of
experiments only used Z3 as
SMT solver, we also wanted to
assess whether the benefits were
induced by the specific solver or
were more general. This is why
we also embedded different SMT
solvers in $\mathbb {Z}$Zot.
Besides Z3, we also carried out
experiments with CVC4, Mathsat,
Yices2, and Boolector, and
compared the results against the
first and second best solutions
provided by either NuSMV or
nuXmv. Obtained results witness
that the benefits of the bv logic
encoding are independent of the
specific solver. Bv logic-based
solutions are better than
traditional ones with only a few
exceptions. It is also true that
there is no particular SMT solver
that outperformed the others.
Boolector is often the best as for
memory usage, while Yices2 and
Z3 are often the fastest ones.

10.1109
/TSE.

2020.30
14394

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
159928

Formal methods;linear
temporal logic;bounded
satisfiability checking;
bit-vector logic

O artigo aborda o papel da Lógica Temporal
Linear (LTL) na ciência da computação,

apresentando sua aplicação na especificação e
verificação de programas, geração de casos de
teste, síntese de controladores, formalização de
notações, verificação em tempo de execução de
sistemas e como formalismo de planejamento.

O artigo aborda os conceitos de:

Lógica Temporal Linear (LTL): um
formalismo para especificação e

verificação de sistemas baseado em
fórmulas lógicas que descrevem
propriedades de comportamento

temporal.
Bounded Satisfiability Checking (BSC):
uma técnica de verificação que traduz

fórmulas LTL em fórmulas de outra
lógica decifrável, como a lógica

proposicional, que captura modelos
periodicamente ultimados da fórmula

original de comprimento limitado.
Bounded Model Checking (BMC): uma
técnica de verificação que verifica se

um modelo finito satisfaz uma
propriedade para um número finito de

etapas (ou "blocos").

A metodologia do
artigo propõe uma
nova técnica de

codificação
baseada em

lógica de bit-vetor
para LTL que

permite que os
solucionadores

SMT explorem a
representação de
diferentes valores

temporais de
variáveis como
vetores, o que

leva a
simplificações e
otimizações de
nível de palavra

(vetor).
O novo método é

implementado
como um plug-in
adicional em um

verificador de
satisfatibilidade

limitado chamado
Zot, que também

suporta a
codificação bv

logic anterior e a
codificação LTL

padrão.

IEEE Inglês CE1 Excluido
Perceptions and the
extent of Model-Based
Systems Engineering
(MBSE) use – An
industry survey

A. Akundi; W.
Ankobiah; O.
Mondragon; S.
Luna

2022

Model-Based Systems
Engineering (MBSE) supports the
development of complex systems
through capturing,
communicating, and managing
system specifications with an
emphasis on the use of modeling
languages, tools, and methods. It
is a well-known fact that varying
levels of effort are required to
implement MBSE in industries
based on the complexity of the
systems a given industry is
associated with. This paper
shares the results of a survey to
industry professionals from
Defense, Aerospace, Automotive,
Consultancy, Software, and IT
industry clusters. The research
goal is to understand the current
state of perception on what MBSE
is and the use of MBSE among
different industry clusters. The
survey analysis includes a
comparison of how MBSE is
defined, advantages on the use of
MBSE, project types, specific life
cycle stage when MBSE is
applied, and adoption challenges,
as reported by the survey
participants. The researchers also
aim to trigger discussions in the
MBSE community for identifying
strategies to address MBSE
related challenges tailored to a
specific industry type.

10.1109
/SysCo
n53536.
2022.97
73894

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
773894

Model-based System
Engineering;MBSE;
survey;industry;systems
engineering;industry-
specific;system
complexity;adoption
challenges

O artigo trata do uso de Model-Based Systems
Engineering (MBSE) na indústria, com foco na

captura, comunicação e gerenciamento de
especificações de sistemas por meio de
linguagens, ferramentas e métodos de

modelagem.

O artigo enfatiza a importância do
MBSE em setores com sistemas

complexos, como Defesa, Aeroespacial
e Automotivo, onde a implementação do

MBSE pode ser mais desafiadora
devido ao alto nível de complexidade

dos sistemas.

A metodologia do
artigo mostra um

estudo que foi
realizado por meio
de uma pesquisa
com profissionais
da indústria, que

foram
questionados

sobre sua
percepção do

MBSE e seu uso
em projetos. A

análise dos
resultados inclui

uma comparação
de como o MBSE
é definido, seus
benefícios, tipos

de projeto,
estágios

específicos do
ciclo de vida em
que o MBSE é

aplicado e
desafios de

adoção relatados
pelos

participantes da
pesquisa.

IEEE Inglês CE1 Excluido
Poster: Automatic
Consistency Checking
of Requirements with
ReqV

S. Vuotto; M.
Narizzano; L.
Pulina; A.
Tacchella

2019

In the context of Requirements
Engineering, checking the
consistency of functional
requirements is an important and
still mostly open problem. In case
of requirements written in natural
language, the corresponding
manual review is time consuming
and error prone. On the other
hand, automated consistency
checking most often requires
overburdening formalizations. In
this paper we introduce ReqV, a
tool for formal consistency
checking of requirements. The
main goal of the tool is to provide
an easy-to-use environment for
the verification of requirements in
Cyber-Physical Systems (CPS).
ReqV takes as input a set of
requirements expressed in a
structured natural language,
translates them in a formal
language and it checks their inner
consistency. In case of failure,
ReqV can also extracts a minimal
set of conflicting requirements to
help designers in correcting the
specification.

10.1109
/ICST.

2019.00
043

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
730195

Requirements
Engineering;Verification;
Consistency;CPS

O artigo discute a importância de verificar a
validade das especificações de requisitos em
sistemas ciberfísicos críticos de segurança, e

apresenta uma ferramenta chamada REQV que
visa simplificar esse processo.

O artigo discute sistemas ciberfísicos
críticos de segurança e a importância

de verificar a validade das
especificações de requisitos. A

ferramenta REQV utiliza padrões de
especificação de propriedades (PSPs)

para permitir que usuários sem
conhecimento de formalização de

lógicas possam escrever requisitos e
verificar sua consistência.

A metodologia do
artigo descreve a
ferramenta REQV
e sua arquitetura.
A implementação

da ferramenta
utiliza um Java

library chamado
SPECPRO, que
estende os PSPs

para incluir
afirmações

numéricas e
booleanas e
fornece um

algoritmo para
encontrar um

conjunto mínimo
de requisitos

conflitantes em
caso de

inconsistência.

IEEE Inglês CE1 Excluido

Program Synthesis for
Cyber-Resilience N. Catano 2023

Architectural tactics enable
stakeholders to achieve cyber-
resilience requirements. They
permit systems to react, resist,
detect, and recover from cyber
incidents. This paper presents an
approach to generate source
code for architectural tactics
typically used in safety and
mission-critical systems. Our
approach extensively relies on the
use of the Event-B formal method
and the EventB2Java code
generation plugin of the Rodin
platform. It leverages the
modeling of architectural tactics in
the Event-B formal language and
uses a set of EventB2Java
transformation rules to generate
certified code implementations for
the said tactics. Since resilience
requirements are statements
about a system over time, and
because of the fact that the
Event-B language does not
provide (native) support for the
writing of temporal specifications,
we have implemented a novel
Linear Temporal Logic (LTL)
extension for Event-B. We
support several architectural
tactics for availability,
performance, and security. The
generated code is certified in the
following sense: discharging proof
obligations in Rodin - the platform
we use for writing the Event-B
models - attests to the soundness
of the architectural tactics
modelled in Event-B, and the
soundness of the translation
encoded by the EventB2Java tool
attests to the code correctness.
Finally, we demonstrate the
usability of our resilience
validation approach with the aid of
an Autonomous Vehicle System.
It further helped us increase our
confidence in the soundness of
our Event-B LTL extension.

10.1109
/TSE.

2022.31
68672

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
760016

Code synthesis;Event-B;
formal methods;
resilience;security;
testing;verification

O artigo aborda a importância da ciber-resiliência
para sistemas críticos e destaca a necessidade
de um enfoque na segurança desde o início do

projeto, ao invés de ser uma preocupação
secundária. O método proposto utiliza uma

abordagem baseada em modelagem arquitetural
e síntese de código certificado para táticas de
resiliência, combinada com testes de software

para verificar propriedades do sistema.

O conceito central abordado no artigo é
o de ciber-resiliência, que se refere à

capacidade de um sistema de se
antecipar, resistir, se recuperar e se
adaptar a condições adversas ou

ataques cibernéticos. O artigo destaca
que a prevenção de todos os possíveis

ataques cibernéticos é inviável,
especialmente no caso de ataques 0-
day, e que a segurança deve ser uma

preocupação primordial na fase de
projeto.

 O método
proposto no artigo

envolve a
modelagem de

táticas de
resiliência para

diferentes
atributos de

qualidade em um
formalismo

baseado em
eventos (Event-B),

a síntese de
código certificado
para implementar
essas táticas, e a

validação do
código por meio

de testes de
software. O

objetivo é integrar
a ciber-resiliência

desde o nível
arquitetural até a

implementação do
sistema, de modo
a garantir que as

táticas de
resiliência sejam
implementadas
corretamente e
que o sistema

seja capaz de se
recuperar de

possíveis ataques.

IEEE Inglês CE1 Excluido

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016

TÍTULO AUTORES ANO RESUMO DOI PDF LINK
PALAVRA
S-CHAVE

CARACTERÍSTICAS
PRINCIPAIS

PRINCIPAIS
CONCEITOS MÉTODOS

FONTE DE
BUSCA IDIOMA CRITÉRIOS STATUS

PyFoReL: A Domain-
Specific Language for
Formal Requirements
in Temporal Logic

J. Anderson;
M.
Hekmatnejad;
G. Fainekos

2022

Temporal
Logic (TL)
bridges the
gap
between
natural
language
and formal
reasoning
in the field
of complex
systems
verification.
However, in
order to
leverage
the
expressivity
entailed by
TL, the
syntax and
semantics
must first
be
understood
—a large
task in
itself. This
significant
knowledge
gap leads
to several
issues: (1)
the
likelihood of
adopting a
TL-based
verification
method is
decreased,
and (2) the
chance of
poorly
written and
inaccurate
requirement
s is
increased.
In this
ongoing
work, we
present the
Pythonic
Formal
Requireme
nts
Language
(PyFoReL)
tool: a
Domain-
Specific
Language
inspired by
the
programmin
g language
Python to
simplify the
elicitation of
TL-based
requirement
s for
engineers
and non-
experts.

10.1109
/RE549

65.
2022.00

037

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
920080

domain-
specific
language;
temporal
logic;formal
requirement
s;
requirement
s-based
testing

O artigo trata da apresentação
de uma linguagem de domínio
específico (Domain-Specific

Language - DSL) para
especificação de requisitos

formais em lógica temporal. A
DSL é implementada em

Python e utiliza o interpretador
de fórmulas LTL (Linear

Temporal Logic) para verificar a
validade dos requisitos

especificados. O objetivo do
trabalho é permitir que

engenheiros de sistemas
possam especificar requisitos
formais de forma mais fácil e

intuitiva, utilizando uma
linguagem de programação que

já é familiar para muitos.

Métodos Formais
Lógica Temporal

Lógica Temporal Linear
(LTL)

Lógica de Árvore de
Computação (CTL)

Linguagem de
programação Python
Biblioteca PyParsing
Árvore de sintaxe

abstrata (AST)
Compilador

Engenharia de requisitos

a metodologia
utilizada envolve o
desenvolvimento

de uma linguagem
específica de

domínio (Domain-
Specific Language

- DSL) para
formalização de
requisitos em

lógica temporal. A
linguagem é

implementada
utilizando a

linguagem de
programação

Python e a
biblioteca

PyParsing para
geração de uma
árvore sintática

abstrata (Abstract
Syntax Tree -

AST) a partir dos
requisitos

descritos em
linguagem natural.

A AST é então
compilada em

fórmulas lógicas
em LTL ou CTL,

permitindo a
verificação formal

dos requisitos
através de

ferramentas de
verificação. A
validação da

abordagem é feita
através da

aplicação em um
caso de estudo de

um sistema de
controle de

tráfego aéreo.

IEEE Inglês CI1 e CI4 Incluído
QualiBD: A Tool for
Modelling Quality
Requirements for Big
Data Applications

D. Arruda; N.
H. Madhavji 2019

The
developme
nt of Big
Data
applications
is not well-
explored, to
our
knowledge.
Embracing
Big Data in
system
building,
questions
arise as to
how to
elicit,
specify,
analyse,
model, and
document
Big Data
quality
requirement
s. In our
ongoing
research,
we explore
a
requirement
s modelling
language
for Big Data
software
applications
. In this
paper, we
introduce
QualiBD, a
modelling
tool that
implements
the
proposed
goal-
oriented
requirement
s language
that
facilitates
the
modelling
of Big Data
quality
requirement
s.

10.1109
/BigDat
a47090.
2019.90
06294

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
006294

Big Data
Applications
;Quality
Requiremen
ts;Big Data
Goal-
oriented
Requiremen
ts
Language;
Requiremen
ts Modelling
Tool

O artigo apresenta uma
ferramenta chamada QualiBD,
que tem como objetivo auxiliar

na modelagem e
gerenciamento de requisitos de
qualidade para aplicativos de
Big Data. A ferramenta utiliza
uma abordagem baseada em
metamodelagem e fornece
suporte para especificação,

validação, análise e
documentação dos requisitos
de qualidade de dados. Além
disso, o artigo apresenta um

estudo de caso para
demonstrar a utilidade da

ferramenta.

Big Data
Qualidade de software

Requisitos de qualidade
Modelagem de requisitos

Linguagem de
modelagem de requisitos

(REDSL)
Metodologia de

modelagem de requisitos
Ferramentas de

modelagem de requisitos

a metodologia
utilizada pode ser

caracterizada
como uma

abordagem de
modelagem e

análise de
requisitos com

base em técnicas
estabelecidas de
engenharia de

software e análise
de dados.

IEEE Inglês CI1 e CI4 Incluído

SAT-Based Arithmetic
Support for Alloy C. Cornejo 2020

Formal
specificatio
ns in Alloy
are
organized
around
user-
defined
data
domains,
associated
with
signatures,
with almost
no support
for built-in
datatypes.
This
minimality
in the built-
in
datatypes
provided by
the
language is
one of its
main
features, as
it
contributes
to the
automated
analyzabilit
y of
models.
One of the
few built-in
datatypes
available in
Alloy
specificatio
ns are
integers,
whose
SAT-based
treatment
allows only
for small
bit-widths.
In many
contexts,
where
relational
datatypes
dominate,
the use of
integers
may be
auxiliary, e.
g., in the
use of
cardinality
constraints
and other
features.
However,
as the
applications
of Alloy are
increased,
e.g., with
the use of
the
language
and its tool
support as
backend
engine for
different
analysis
tasks, the
provision of
efficient
support for
numerical
datatypes
becomes a
need. In
this work,
we present
our current
preliminary
approach to
providing
an efficient,
scalable
and user-
friendly
extension
to Alloy,
with
arithmetic
support for
numerical
datatypes.
Our
implementa
tion allows
for
arithmetic
with varying
precisions,
and is
implemente
d via
standard
Alloy
constructio
ns, thus
resorting to
SAT solving
for
resolving
arithmetic
constraints
in models.

-

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
285654

alloy;sat
solving

O artigo aborda a extensão da
linguagem Alloy, que é uma
linguagem de modelagem

formal usada para especificar
sistemas e verificar sua
consistência. A extensão

proposta permite a modelagem
de restrições aritméticas nos
modelos Alloy, o que permite

aos usuários expressar
propriedades mais complexas e

realistas em seus modelos.

Alloy
Restrições aritméticas

Resolvedor SAT
Extensão de Alloy

Implementação de
referência

Exemplos de uso e
estudos de caso

Em resumo, a
metodologia

utilizada no artigo
envolve a

extensão da
linguagem Alloy
para permitir a
modelagem de

restrições
aritméticas e a
utilização de

resolvedores SAT
para lidar com

essas restrições.
A implementação
de referência é

usada para validar
e demonstrar a

eficácia e a
eficiência da
abordagem
proposta.

IEEE Inglês CI1 Incluído

Specification Patterns
for Robotic Missions

C. Menghi; C.
Tsigkanos; P.
Pelliccione; C.
Ghezzi; T.
Berger

2021

Mobile and
general-
purpose
robots
increasingly
support
everyday
life,
requiring
dependable
robotics
control
software.
Creating
such
software
mainly
amounts to
implementi
ng complex
behaviors
known as
missions.
Recognizin
g this need,
a large
number of
domain-
specific
specificatio
n
languages
has been
proposed.
These, in
addition to
traditional
logical
languages,
allow the
use of
formally
specified
missions for
synthesis,
verification,
simulation
or guiding
implementa
tion. For
instance,
the logical
language
LTL is
commonly
used by
experts to
specify
missions as
an input for
planners,
which
synthesize
a robot's
required
behavior.
Unfortunate
ly, domain-
specific
languages
are usually
tied to
specific
robot
models,
while
logical
languages
such as
LTL are
difficult to
use by non-
experts. We
present a
catalog of
22 mission
specificatio
n patterns
for mobile
robots,
together
with tooling
for
instantiating
,
composing,
and
compiling
the patterns
to create
mission
specificatio
ns. The
patterns
provide
solutions
for
recurrent
specificatio
n problems;
each
pattern
details the
usage
intent,
known
uses,
relationship
s to other
patterns,
and—most
importantly
—a
template
mission
specificatio
n in
temporal
logic. Our
tooling
produces
specificatio
ns
expressed
in the
temporal
logics LTL
and CTL to
be used by
planners,
simulators
or model
checkers.
The
patterns
originate
from 245
mission
requirement
s extracted
from the
robotics
literature,
and they
are
evaluated
upon a total
of 441 real-
world
mission
requirement
s and 1251
mission
specificatio
ns. Five of
these
reflect
scenarios
defined with
two well-
known
industrial
partners
developing
human-size
robots. We
further
validate our
patterns’
correctness
with
simulators
and two
different
types of
real robots.

10.1109
/TSE.

2019.29
45329

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
859226

Mission
specificatio
n;pattern
catalog;
robotic
mission;
model
driven
engineering

O objetivo geral do artigo é
fornecer um conjunto de

padrões de especificação que
facilitem a modelagem e
verificação de sistemas

robóticos que realizam missões
complexas, permitindo que os

desenvolvedores criem
sistemas mais confiáveis e

seguros.

Sistemas robóticos
Missões robóticas

Especificação formal
Lógica temporal

Padrões de
especificação

Verificação formal
Metodologia de
especificação

 A abordagem é
baseada em

especificações
formais e lógica
temporal, com

foco em
estabelecer

padrões para
descrever

comportamentos e
restrições

temporais comuns
em missões

robóticas. Além
disso, o artigo

apresenta
exemplos práticos
de aplicação dos

padrões propostos
em sistemas

robóticos reais.

IEEE Inglês CI1 Incluído

Static Profiling of Alloy
Models

E. Eid; N. A.
Day 2023

Modeling of
software-
intensive
systems
using
formal
declarative
modeling
languages
offers a
means of
managing
software
complexity
through the
use of
abstraction
and early
identificatio
n of
correctness
issues by
formal
analysis.
Alloy is one
such
language
used for
modeling
systems
early in the
developme
nt process.
Little work
has been
done to
study the
styles and
techniques
commonly
used in
Alloy
models. We
present the
first static
analysis
study of
Alloy
models. We
investigate
research
questions
that
examine a
large
corpus of
1,652 Alloy
models. To
evaluate
these
research
questions,
we create a
methodolog
y that
leverages
the power
of ANTLR
pattern
matching
and the
query
language
XPath. Our
research
questions
are split
into two
categories
depending
on their
purpose.
The Model
Characteris
tics
category
aims to
identify
what
language
constructs
are used
commonly.
Modeling
Practices
questions
are
considerabl
y more
complex
and identify
how
modelers
are using
Alloy's
constructs.
We also
evaluate
our
research
questions
on a subset
of models
from our
corpus
written by
expert
modelers.
We
compare
the results
of the
expert
corpus to
the results
obtained
from the
general
corpus to
gain insight
into how
expert
modelers
use the
Alloy
language.
We draw
conclusions
from the
findings of
our
research
questions
and present
actionable
items for
educators,
language
and
environmen
t designers,
and tool
developers.
Actionable
items for
educators
are
intended to
highlight
underutilize
d language
constructs
and
features,
and help
student
modelers
avoid
discourage
d practices.
Actionable
items
aimed at
language
designers
present
ways to
improve the
Alloy
language
by adding
constructs
or removing
unused
ones based
on trends
identified in
our corpus
of models.
The
actionable
items
aimed at
environmen
t designers
address
features to
facilitate
model
creation.
Actionable
items for
tool
developers
provide
suggestions
for back-
end
optimization
s.

10.1109
/TSE.

2022.31
62985

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
744446

Declarative
modeling;
Alloy;static
analysis

O artigo aborda uma técnica
para analisar modelos escritos
na linguagem de especificação

Alloy. Essa técnica utiliza
análise estática para identificar

potenciais gargalos de
desempenho no modelo e gera
um perfil estático do modelo,

permitindo que os
desenvolvedores otimizem o
modelo para melhorar seu
desempenho. A técnica é
implementada em uma

ferramenta chamada Alloy
Profiler, que é capaz de

analisar modelos Alloy de
grande escala.

Alloy
Verificação de Modelo

Perfil Estático
Resolvedor SAT

Métricas de Análise
Métricas de
Desempenho

Ametodologia
utilizada é

baseada em
análise estática de

modelos Alloy,
utilizando técnicas
de profiling para

coletar
informações sobre
o modelo e extrair

métricas de
desempenho e
análise. Essas
métricas são

então utilizadas
para avaliar a
qualidade do

modelo e otimizar
a sua

performance. A
análise é

realizada por meio
da utilização de
um SAT solver e
as métricas de

análise e
performance são

coletadas e
avaliadas por

meio da
ferramenta Alloy

Analyzer.

IEEE Inglês CI1 e CI4 Incluído
Towards a Formal
Specification of Multi-
paradigm Modelling

M. Amrani; D.
Blouin; R.
Heinrich; A.
Rensink; H.
Vangheluwe;
A. Wortmann

2019

The notion
of a
programmin
g paradigm
is used to
classify
programmin
g
languages
and their
accompanyi
ng
workflows
based on
their salient
features.
Similarly,
the notion
of a
modelling
paradigm
can be
used to
characteris
e the
plethora of
modelling
approaches
used to
engineer
complex
Cyber-
Physical
Systems
(CPS).
Modelling
paradigms
encompass
formalisms,
abstraction
s,
workflows
and
supporting
tool(chain)
s. A precise
definition of
this
modelling
paradigm
notion is
lacking
however.
Such a
definition
will
increase
insight, will
allow for
formal
reasoning
about the
consistency
of
modelling
frameworks
and may
serve as
the basis
for the
constructio
n of new
modelling,
simulation,
verification,
synthesis,
...
environmen
ts to
support
design of
CPS . We
present a
formal
framework
aimed at
capturing
the notion
of
modelling
paradigm,
as a first
step
towards a
comprehen
sive
formalisatio
n of multi-
paradigm
modelling.
Our
formalisatio
n is
illustrated
by
CookieCAD
, a simple
Computer-
Aided
Design
paradigm
used in the
developme
nt of cookie
stencils.

10.1109
/MODE
LS-C.

2019.00
067

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
904740

Model
Driven
Engineering
;Multi
Paradigm;
Cyber
Physical
Systems;
Formalisatio
n

 o artigo propõe uma linguagem
de especificação formal para
modelagem multi-paradigma
que permite a integração de
diferentes paradigmas de
modelagem em um único
modelo. A abordagem é

baseada em lógica de primeira
ordem e permite a

especificação formal de
restrições de integridade e de
comportamento, que podem

ser verificadas
automaticamente. Além disso,
o artigo apresenta um estudo

de caso para ilustrar a
aplicação da abordagem

proposta.

Modelagem de múltiplos
paradigmas

Especificação formal
Redes de Petri

Meta-modelagem
Lógica temporal linear

Verificação formal
Transformação de

modelos

(1) identificação
de elementos
conceituais da
linguagem de

modelagem; (2)
especificação dos

elementos
conceituais em

lógica de primeira
ordem; e (3)

definição de uma
semântica

operacional para a
linguagem de
modelagem. A
metodologia foi
aplicada a duas
linguagens de

modelagem multi-
paradigma, a

Papyrus UML e a
AToMPM,

demonstrando a
sua viabilidade e

eficácia.

IEEE Inglês CI1 e CI4 Incluído
Towards Facilitating
the Exploration of
Informal Concepts in
Formal Modeling Tools

M. Gogolla; R.
Clarisó; B.
Selic; J. Cabot 2021

This
contribution
proposes to
apply
informal
ideas for
model
developme
nt within a
formal tool.
The basic
idea is to
relax the
requirement
s
expressed
with
particular
modeling
language
elements
and allow
developers
to
dynamically
customize
the level of
formality in
a visual and
intuitive
way. For
UML and
OCL class
models, the
requirement
s for usual
object
typing, role
typing, role
multiplicity,
attribute
typing and
constraint
satisfaction
are relaxed
in order to
achieve
flexible
object
models.
The long-
term aim is
to support
flexible,
iterative
model
developme
nt with
qualified
tool
feedback.

10.1109
/MODE

LS-
C53483

.
2021.00

044

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
643627

UML class
model;UML
object
model;OCL
constraint;
flexible
developmen
t process

O artigo apresenta um método
inovador que busca facilitar o

processo de modelagem formal
por meio da exploração de

conceitos informais, utilizando
uma ontologia para mapear

esses conceitos para conceitos
formais. O método é avaliado
em um estudo de caso que
demonstra a sua eficácia na
modelagem de requisitos de
um sistema de controle de

tráfego aéreo.

Formal methods
Modelagem formal
Modelos informais

Exploração de conceitos
informais

Ferramentas de
modelagem formal

Interface de usuário

O artigo menciona
algumas

ferramentas de
modelagem formal

que podem ser
utilizadas para

realizar a
transformação de
modelos informais

em modelos
formais, tais como
o TLA+ e o Alloy,

que possuem
suas próprias

metodologias e
técnicas de

especificação e
verificação formal.

Além disso, o
artigo destaca a
importância de

uma interface de
usuário amigável
e intuitiva para

facilitar o
processo de

modelagem formal
e exploração de

conceitos
informais.

IEEE Inglês CI1 e CI4 Incluído
Towards Formal
Modeling and Analysis
of SystemJ GALS
Systems using
Coloured Petri Nets

W. Zhang; Z.
Salcic; A.
Malik 2019

SystemJ is
a
programmin
g language
developed
for
implementi
ng safety
critical
cyber-
physical
systems,
including
industrial
automation
systems.
However,
the current
tools do not
support an
efficient
mechanism
to verify
SystemJ
programs
formally.
This paper
presents a
semantics-
preserving
translation
of the
synchronou
s subset of
SystemJ to
Coloured
Petri Net
(CPN),
which in
turn
enables
leveraging
the plethora
of analysis
and
verification
tools for
CPN to
verify
SystemJ
programs.
The
translation
and
verification
approach is
illustrated
on a
pedagogica
l industrial
automation
example of
a SystemJ
program.

10.1109
/INDIN4
1052.

2019.89
72025

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
972025

Petri Nets;
Coloured
Petri Nets;
GALS;
formal
modeling;
formal
analysis

O artigo apresenta uma
abordagem baseada em CPN

para modelagem e análise
formal de sistemas GALS

desenvolvidos em SystemJ. O
artigo descreve a proposta de
um modelo formal, a utilização
do ambiente de modelagem e

simulação CPN Tools, um
estudo de caso e uma

comparação com outras
abordagens existentes.

O artigo descreve a
proposta de uma

abordagem para modelar
e analisar formalmente

sistemas GALS
desenvolvidos em
SystemJ utilizando

Redes de Petri Coloridas
(CPN) e CPN Tools.

Essa abordagem permite
a descrição precisa das

interações entre os
componentes do sistema

e a verificação da
correção do sistema em

relação a requisitos
formais. O artigo

apresenta um estudo de
caso que demonstra a

aplicação da abordagem
proposta e compara a
abordagem com outras

técnicas existentes.

O artigo propõe
uma abordagem

baseada em
Redes de Petri

Coloridas (CPN)
para modelar e

analisar sistemas
GALS

desenvolvidos em
SystemJ. A

metodologia
envolve a criação

de um modelo
formal, a

implementação do
modelo no

ambiente CPN
Tools, um estudo

de caso e a
comparação com
outras técnicas
existentes. A
abordagem é
aplicada na

verificação de
requisitos formais

de um sistema
GALS com dois
componentes. A
comparação com
outras técnicas

considera critérios
como precisão,
escalabilidade e
facilidade de uso.

IEEE Inglês CI1 e CI4 Incluído
Towards the
Specification and
Verification of Legal
Contracts

A.
Parvizimosaed 2020

A contract
is a legally
binding
agreement
that
expresses
high-level
requirement
s of parties
in terms of
obligations,
powers and
constraints.
Parties'
actions
influence
the status
of a
contract
and shall
comply with
its clauses.
Manual
contract
monitoring
is very
laborious in
real
markets,
such as
transactive
energy,
where
plenty of
complex
contracts
are running
concurrentl
y.
Furthermor
e, liability,
right and
performanc
e transition
through
run-time
operations
such as
subcontract
ing,
assignment
and
substitution
complicate
contract
interpretatio
n.
Automation
is needed
to ensure
that
contracts
respect
desirable
properties
and to
support
monitoring
of
compliance
and
handling of
violations.
In this
thesis
research, I
propose an
innovative
ontology
that defines
fundamenta
l
contractual
notions
(such as
the ones
mentioned
above) and
their
relationship
s, on which
is built a
specificatio
n language,
called
Symboleo,
that
provides
syntax and
axiomatic
semantics
of contracts
via first-
order logic.
Symboleo
enables the
developme
nt of
advanced
automation
tools such
as a
compliance
checker
that
monitors
contracts at
runtime,
and a
model
checking
verification
method that
analyzes
liveness
and safety
properties
of
contracts.
This paper
reports on
the problem
domain,
research
method,
current
status,
expected
contribution
s, and main
foreseen
challenges.

10.1109
/RE485

21.
2020.00

066

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
218173

Legal
Contract;
Specificatio
n
Language;
Model
Checking;
Smart
Contract;
Ontology

Propõe uma metodologia
baseada em verificação formal
para especificar e verificar a

correção de contratos legais. A
metodologia utiliza linguagens

formais e integra várias
ferramentas de verificação. O

artigo destaca a importância da
correção dos contratos legais e

apresenta uma análise
experimental da metodologia
proposta. A contribuição do

artigo é para a área emergente
de Direito e Tecnologia.

Aborda a especificação e
verificação de contratos
legais utilizando técnicas
de verificação formal e

ferramentas de
verificação. O artigo

destaca a importância da
correção dos contratos
legais e contribui para a

área emergente de
Direito e Tecnologia.

A metodologia
consiste em

especificar os
contratos legais
em linguagens

formais e utilizar
técnicas de

verificação formal
e ferramentas de
verificação para

garantir a
correção dos
contratos. A

metodologia é
baseada em
princípios de

engenharia de
software e ciência
da computação.

IEEE Inglês CI1 e CI4 Incluído
Tutorial: A Practical
Introduction to Formal
Development and
Verification of High-
Assurance Software
with SPARK

B. M. Brosgol;
C. Dross; Y.
Moy 2019

Summary
form only
given, as
follows. The
complete
presentatio
n was not
made
available
for
publication
as part of
the
conference
proceeding
s. This
hands-on
tutorial will
show
attendees
how to use
formal
methods in
developing
and
verifying
high-
assurance
software. It
will cover
the benefits
and costs
of formal
methods
technology,
describe its
capabilities
and limits,
summarize
how to
adopt
formal
methods at
varying
levels
depending
on
assurance
requirement
s, show
how to
combine
formal
methods
with
traditional
testing-
based
techniques,
and
highlight
industrial
experience.
The
SPARK
language (a
subset of
Ada 2012)
will be used
as the
vehicle for
explaining
formal
methods.
The
techniques
presented
can be
applied to
other
language
technologie
s, and the
tutorial will
compare
the SPARK
and Frama-
C
approaches
.
Demonstrat
ions will
use the
GNATprove
toolset, and
hands-on
exercises
will be
drawn from
the SPARK
section of
the learn.
adacore.
com site.

10.1109
/SecDe

v.
2019.00

012

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
901601

formal
methods,
high-
assurance
software,
safety
critical
software,
high-
security
software,
software
verification,
SPARK
language

O artigo oferece uma
introdução clara e prática à

abordagem formal de
desenvolvimento e verificação

de software, com foco na
linguagem de programação

SPARK.

Desenvolvimento e
verificação formal
Software de alta

confiabilidade
Linguagem de

programação SPARK
Análise estática
Ferramentas de
verificação formal

Melhores práticas de
engenharia de software

Sistemas críticos de
segurança

Correção por construção

O tutorial é
dividido em três
partes principais:
a primeira parte

aborda a
especificação

formal de
requisitos usando
a notação Ada e o
uso da ferramenta

SPARK para
verificar a

consistência dos
requisitos; a

segunda parte
descreve a

modelagem e
análise formal de

um programa
simples de
controle de

tráfego aéreo
usando SPARK; e

a terceira parte
apresenta

exemplos de
aplicações reais
usando SPARK

para o
desenvolvimento

de software
crítico.

IEEE Inglês CI1 e CI4 Incluído
Verification of a Rule-
Based Expert System
by Using SAL Model
Checker

M. U. Siregar;
S. Abriani 2019

Verification
of a rule-
based
expert
system
ensures
that the
knowledge
base of the
expert
system is
logically
correct and
consistent.
Application
of
verification
into a rule-
based
expert
system is
one
approach to
integrate
software
engineering
methodolog
y and
knowledge
base
system.
The expert
system,
which we
has built, is
a rule-
based
system
developed
by using
forward
chaining
method and
Dempster-
Shafer
theory of
belief
functions or
evidence.
We use Z
language
as the
modelling
language
for this
expert
system and
SAL model
checker as
the
verification
tool. To be
able to use
SAL model
checker,
Z2SAL will
translate
the Z
specificatio
n, which
models the
system. In
this paper,
we present
some parts
of our Z
specificatio
n that
represent
some parts
of our rule-
based
expert
system. We
also
present
some parts
of our SAL
specificatio
n and
theorems
that we
added to
this SAL
specificatio
n. At the
last, we
present the
usage of
SAL model
checker
over these
theorems.
Based on
these
model-
checking
processes,
we argue
that the
results are
expected.
This means
that each of
theorems
can be
model
checked
and the
outputs of
those
model
checking
are the
same as
the outputs
that we
obtain from
manual
investigatio
n; either it
is VALID or
INVALID.
Other
interpretatio
n of the
model
check's
results is
some parts
of our rule-
based
expert
system
have been
verified.

10.1109
/ICICoS
48119.

2019.89
82426

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
982426

verification;
expert
system;rule-
based
system;
Z2SAL;SAL
model
checker

o artigo apresenta uma
abordagem sistemática e

formal para a verificação de
sistemas especialistas

baseados em regras, que
utiliza o verificador de modelos
SAL e a representação formal

do sistema

 o artigo aborda
conceitos relacionados à

verificação formal de
sistemas, incluindo

model checking, lógica
simbólica e

representação formal do
sistema. Ele também
descreve a aplicação
desses conceitos na

verificação de um
sistema especialista
baseado em regras

usando o verificador de
modelos SAL

a metodologia
envolveu a

modelagem e
formalização do

sistema, a
especificação de

requisitos formais,
a geração do
modelo do
sistema, a

verificação formal
do sistema
usando o

verificador de
modelos SAL e a

análise dos
resultados da
verificação. A
metodologia

utilizada
demonstra uma

abordagem
sistemática para a
verificação formal

de sistemas
baseados em

regras.

IEEE Inglês CI1 e CI4 Incluído
XML-Based Video
Game Description
Language

J. R.
Quiñones; A.
J. Fernández-
Leiva

2020

This paper
presents
the XML-
based
Video
Game
Descriptio
n
Language
(XVGDL), a
new
language
for
specifying
Video
games
which is
based on
the
Extensible
Markup
Language
(XML). The
proposal is
portable
and
extensible,
and allows
games to
not only be
defined at
engine
level but
also
includes
specific
features
that can
lead the
game
design
process
whilst
simultaneo
usly
reducing
the gap
between
game
specificati
on and its
correspon
ding game
implement
ation.
XVGDL is
as generic
as
possible,
making it
possible to
describe
different
genres of
games.
This paper
focuses on
presenting
the basis
of the
language.
The paper
describes
the syntax
as well as
the
componen
ts of
XVGDL,
and
provides
examples
of their
use.
Defining
games via
XML
structures
provides
all the
advantage
s of the
manageme
nt of XML
files and
opens up
interesting
lines of
research.
Our
proposal
provides a
number of
novel
features.
So, XVGDL
game
definitions
can be
managed
as any
other XML
file, which
means that
it can be
automatica
lly handled
by any
XML file
manageme
nt
software.
Another
interesting
feature is
that
XVGDL
can
specify
game
componen
ts (e.g.,
game
Artificial),
in-game
processes
(e.g., the
procedural
generation
of maps)
or in-game
events (e.
g., the
checking
of the
conditions
to end a
game
match) via
the
associatio
n with
external
(possibly
non-XML)
files.
Moreover,
XVGDL
files can
be easily
validated
as any
XML file
what
means that
validations
against a
particular
Document
Type
Definition
(DTD) or
XML
Schema
Definition
(XSD) are
possible.
In addition,
the paper
presents a
first
prototype
implement
ation of a
(text-
based)
interpreter
that allows
XVGDL
game
specificati
ons as a
playable
game to be
executed.
This tool
not only
validates
our
proposal
but also
represents
a first step
towards
smoothing
the path to
obtaining
an
executable
version of
a game
from its
game
specificati
on.

10.1109
/ACCE

SS.
2019.29
62969

https:
//ieeexplor
e.ieee.
org/stamp/
stamp.jsp?
arnumber=
8945249

Video
game
description
language;
extensible
markup
language;
XML;game
design;
game tools

Este artigo apresenta um
novo VGDL que fornece

recursos não presentes em
outros VGDLs. Esta é a

principal contribuição deste
trabalho. Em comum com
outros VGDLs, a proposta
inclui componentes para

definir os elementos do jogo,
mecânica, regras e eventos
programados. Além disso, o
XVGDL também permite que

componentes de design
específicos sejam descritos,

como mapas de jogos,
configurações de tela e

viewports, renderizadores de
jogos ou estados de jogos.

Também pode ser facilmente
estendido para suportar
alguns outros recursos

como, por exemplo,
elementos multimídia.

Videogame; agentes
autônomos;

Inteligência Artificial e
Computacional em

Jogos

Descrevendo um
jogo usando

XVGDL;
Vantagens da
linguagem de

marcação
extensível;

XVGDL
Validação;

Especificação de
jogo e elementos

em XVGDL

IEEE Inglês CI1 e CI4 Incluído
A Model-Checking
Framework for the
Verification of Move
Smart Contracts

E. Keilty; K.
Nelaturu; B.
Wu; A.
Veneris

2022

As the
popularity
of
distributed
ledger
technology
and smart
contracts
continues
to grow, so
does the
number of
decentraliz
ed
applications
and their
potential
exposure to
expensive
exploits.
The need
for strong
vulnerability
detection
tools is
critical.
Move is a
recently
developed
smart
contract
language
with safety
and
security at
the core of
its design
containing
formal
verification
tools
embedded
into the
language.
Currently,
these tools
can only
verify local
properties
within a
single Move
function.
They
cannot
verify global
properties
that result
from
multiple
function
executions.
In this
paper, we
introduce
VeriMove,
an
extension
of the
VeriSolid
correct-by-
design
model
checking
framework
that
supports
the Move
language.
We show
that model
checking is
a feasible
method to
formally
verify global
properties
in Move
smart
contracts.

10.1109
/ICSES
S54813

.
2022.99
30214

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
930214

Smart
Contract;
Verification;
Solidity;
Move

O artigo fornece uma visão
geral da linguagem Move e sua

utilização na criação de
contratos inteligentes. Discute
a importância da verificação de

contratos inteligentes para
garantir sua corretude e

segurança.

Conteitos de Introdução
ao Move e contratos

inteligentes, Descrição
do framework de

verificação, Técnicas de
model-checking,

Aplicação do framework
em estudos de caso,

Avaliação e discussão
dos resultados.

A metodologia
segue essas

etapas:
Especificação do

contrato,
Modelagem,
Definição de

propriedades,
Model-checking,

Análise e
interpretação dos

resultados,
Refinamento e

repetição.

IEEE Inglês CI1 Incluído
A Temporal
Requirements
Language for
Deductive Verification
of Process-Oriented
Programs

I. Chernenko;
I. S. Anureev;
N. O.
Garanina; S.
M. Staroletov

2022

The
requirement
s
engineering
process is
primarily
useful for
complex
software
that
controls
industrial
processes.
Requireme
nts for
control
software
suppose a
description
of the
change in
input and
output
signals over
time, which
encourages
the
elaboration
s of
temporal
requirement
s. A
verification
method that
allows one
to obtain a
certified
proof of
system
operation
correctness
against
given
requirement
s is the
theorem
proving or
deductive
verification.
At the same
time, the
process of
deductive
verification
should take
into
account
both the
specifics of
models of
control
programs
and the
requirement
s for them.
While
models of
control
programs
can be
obtained
from
domain-
oriented
languages,
it is also
expedient
to develop
a language
for
requirement
s. The
present
paper
introduces
a
predicative
domain-
specific
language
for
definition of
temporal
requirement
s intended
to be used
with
deductive
verification
tools. It
focuses on
specificatio
n of
requirement
s for control
software
written in
process-
oriented
languages.
Moreover,
we propose
to use
special
patterns to
describe a
wide range
of such
requirement
s. We
discuss a
benchmark
of ten case
studies and
the
requirement
s for them
which are
linked to
these
patterns.
The results
can be
used for
building
automatic
verification
systems for
industrial
control
software.

10.1109
/EDM55

285.
2022.98
55145

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
855145

deductive
verification;
temporal
requirement
s;formal
methods;
control
software;
process-
oriented
programs

O artigo apresenta uma
linguagem específica para a
especificação de requisitos
temporais em programas

orientados a processos. Essa
linguagem permite expressar
propriedades temporais como

restrições, obrigações e
invariâncias relacionadas ao

comportamento e à execução
desses programas. O foco

principal do artigo é a
verificação dedutiva dos
programas orientados a

processos em relação aos
requisitos temporais

especificados. A linguagem
proposta permite que sejam
formuladas especificações
precisas e verificáveis, que
podem ser submetidas a

técnicas de prova formal e
raciocínio lógico para verificar a

corretude temporal dos
programas.

Os principais conceitos
abordados no artigo
incluem: Requisitos

Temporais, Linguagem
de Requisitos Temporais,

Deductive Verification,
Programas Orientados a
Processos, Verificação e
Prova Formal, Aplicação

Prática.

A metodologia é
proposta no artigo

como uma
abordagem

sistemática e
confiável para a
especificação e
verificação de

requisitos
temporais em

programas
orientados a

processos. Ela
fornece uma

estrutura formal
para a análise e
validação dos

requisitos
temporais,

permitindo uma
garantia rigorosa
da corretude e

confiabilidade dos
sistemas.

IEEE Inglês CI1 Incluído
A tool for proving
Michelson Smart
Contracts in WHY3

Arrojado Da
Horta, Luis
Pedro
(57219764980
); Santos Reis,
Joao
(57221474614
); De Sousa,
Simao Melo
(15135137100
); Pereira,
Mario
(57190032035
)

2020

This paper
introduces
a deductive
verification
tool for
smart
contracts
written in
Michelson,
which is the
low-level
language of
the Tezos
blockchain.
Our tool
accepts a
formally
specified
Michelson
contract
and
automaticall
y translates
it to an
equivalent
program
written in
WhyML, the
programmin
g and
specificatio
n language
of the Why3
framework.
Smart
contract
instructions
are mapped
into a
correspondi
ng WhyML
shallow-
embedding
of the their
axiomatic
semantics,
which we
also
developed
in the
context of
this work.
One major
advantage
of this
approach is
that it
allows an
out-of-the-
box
integration
with the
Why3
framework,
namely its
VCGen and
the
backend
support for
several
automated
theorem
provers.
We also
discuss the
use of our
tool to
automaticall
y prove the
correctness
of diverse
annotated
smart
contracts.
© 2020
IEEE.

10.1109
/Blockc
hain503

66.
2020.00

059

https://www.
scopus.
com/inward/
record.uri?
eid=2-s2.0-
850991842
50&doi=10.
1109%
2fBlockchai
n50366.
2020.00059
&partnerID=
40&md5=62
3de99f1492
2a20a1493
e3414662e
63

Formal
Verification;
Michelson;
Smart
Contracts;
Tezos;
Why3

Principais características do
artigo incluem: Descrição da
linguagem Michelson e suas

características relevantes para
a verificação formal de
contratos inteligentes;

Apresentação da plataforma de
prova de teoremas WHY3 e

como ela pode ser usada para
provar a correção de contratos
Michelson; Detalhes sobre a

implementação da ferramenta
de verificação de contratos

Michelson em WHY3, incluindo
a definição de tipos de dados e

funções de verificação;
Discussão de estudos de caso
que demonstram a utilidade da
ferramenta e sua capacidade

de provar propriedades
importantes dos contratos

Michelson.

Principais conceitos
incluem: Contratos

inteligentes: programas
que são executados em

uma blockchain para
gerenciar transações e

ativos;
Linguagem Michelson:

linguagem de
programação usada para

escrever contratos
inteligentes na

blockchain Tezos;
Prova de correção:
método formal para

verificar se um programa
atende a um conjunto de

propriedades
específicas;

WHY3: uma plataforma
de prova de teoremas

que permite a verificação
formal de programas em

várias linguagens de
programação;

Tipos de dados: um
conjunto de valores e
operações que podem

ser realizadas com esses
valores;

Funções de verificação:
funções que são usadas
para provar propriedades

específicas do código,
como a ausência de

erros ou a corretude do
contrato inteligente.

A metodologia
começa com a

definição da
especificação

formal do contrato
inteligente, que

inclui a descrição
da entrada e

saída esperadas,
bem como as

propriedades que
o contrato deve

atender. A seguir,
o contrato

Michelson é
traduzido para a

linguagem de
programação de

WHY3 e integrado
com as funções
de verificação de

correção
especificadas

anteriormente. A
ferramenta de
verificação de

contrato
inteligente

Michelson em
WHY3 permite

que os
desenvolvedores

verifiquem
formalmente se o

contrato
inteligente atende

a essas
propriedades. O

processo de
verificação é

realizado por meio
de um processo

de prova assistida
por computador,

em que a
plataforma WHY3

gera e verifica
automaticamente

as provas
necessárias para

atender às
especificações. O

artigo também
discute o uso da
metodologia em
estudos de caso
específicos de

contratos
Michelson,

incluindo um
contrato de

votação simples e
um contrato de

leilão. Em ambos
os casos, a

ferramenta de
verificação em

WHY3 foi capaz
de provar

formalmente a
correção do
contrato em
relação às

especificações
definidas

anteriormente.

Scopus Inglês CI1 Incluído
A Tool to Assist the
Compiler
Construction
Instructor in
Checking the
Equivalence of
Specifications Based
on Regular
Expressions

R. Benito-
Montoro; X.
Chen; J. L.
Sierra

2021

This paper
presents
CheRegES
(CHEcking
REGular
Expression-
based
Specificatio
ns), a tool
that assists
the
Compiler
Constructio
n instructor
in checking
the
equivalence
of computer
language
lexical
specificatio
ns based
on regular
expressions
. The tool
allows the
comparison
of a
reference
specificatio
n, provided
by the
instructor,
with the
specificatio
n proposed
by the
student. As
a result, the
tool can
report that:
(i) both
specificatio
ns are
equivalent
(and,
therefore,
the
specificatio
n proposed
by the
student can
be
considered
correct); (ii)
there are
discrepanci
es between
the
specificatio
n proposed
by the
student and
the one
provided by
the
instructor
(and,
therefore,
the
specificatio
n proposed
by the
student can
be
considered
incorrect);
or (iii) the
result of the
comparison
is
inconclusiv
e. Also, in
case
discrepanci
es are
discovered,
the tool
provides
sentences
that allow
differentiati
on between
the two
specificatio
ns, and that
help the
instructor to
diagnose
the
problems
underlying
the student’
s
specificatio
n. The
paper
motivates
the need for
the tool,
describes
its
functionality
, briefly
summarize
s its
internals,
and
presents a
preliminary
evaluation
of the tool
that makes
the
usefulness
of
CheRegES
as a tool to
support
assessment
in Compiler
Constructio
n courses
apparent.

10.1109
/SIIE53

363.
2021.95
83625

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
583625

Assessment
Tool;Lexical
Specificatio
ns;Compiler
Constructio
n;Regular
Expressions
;Computer
Science
Education

Principais características
incluem: Construção de

compiladores: processo de
criar um compilador que traduz

o código fonte de uma
linguagem de programação em

código executável;
Especificações: descrição
formal do comportamento
esperado do compilador,
geralmente em termos de
linguagens regulares ou

gramáticas formais;
Expressões regulares: uma

notação matemática que
descreve um conjunto de
sequências de caracteres;

Autômatos finitos: um modelo
matemático abstrato de um
sistema de computação que

lida com uma entrada limitada
e produz uma saída;

Equivalência de autômatos: a
relação de igualdade entre

autômatos finitos, em que dois
autômatos são equivalentes se

reconhecem a mesma
linguagem;

Ferramentas de verificação:
programas de computador que
verificam se as especificações
são corretas e consistentes, de

acordo com um conjunto de
regras e propriedades

definidas.

O artigo aborda
conceitos fundamentais

relacionados à
construção de
compiladores,

especificações baseadas
em expressões regulares
e técnicas de verificação

de equivalência, com
foco em fornecer uma

ferramenta prática e útil
para instrutores de

construção de
compiladores.

A metodologia
utilizada neste

artigo seguiu uma
abordagem de

desenvolvimento
de software, com

uma análise
cuidadosa dos

requisitos, design
da ferramenta,

implementação e
avaliação da
eficácia da
ferramenta.

IEEE Inglês CI1 Incluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920080
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9006294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9285654
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8859226
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904740
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8972025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218173
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901601
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8982426
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945249
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9930214
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9855145
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099184250&doi=10.1109%2fBlockchain50366.2020.00059&partnerID=40&md5=623de99f14922a20a1493e3414662e63
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9583625

Adversary Safety by
Construction in a
Language of
Cryptographic
Protocols

T. M. Braje; A.
R. Lee; A.
Wagner; B.
Kaiser; D.
Park; M.
Kalke; R. K.
Cunningham;
A. Chlipala

2022

Compared
to ordinary
concurrent
and
distributed
systems,
cryptograph
ic protocols
are
distinguishe
d by the
need to
reason
about
interference
by
adversaries
. We
suggest a
new
layered
approach to
tame that
complexity,
via an
executable
protocol
language
whose
semantics
does not
reveal an
adversary
directly,
instead
enforcing a
set of
intuitive
hygiene
rules. By
virtue of
those rules,
protocols
written in
this
language
provably
behave
identically
with or
without
interference
by active
Dolev-Yao-
style
adversaries
. As a
result,
formal
reasoning
about
protocols
can be
simplified
enough that
even naïve
model
checking
can
establish
correctness
of a
multiparty
protocol,
through
analysis of
a state
space with
no
adversary.
We present
the design
and
implementa
tion of
SPICY,
short for
Secure
Protocols
Implemente
d CorrectlY,
including
the
semantics
of its input
languages;
the
essential
safety
proofs,
formalized
in the Coq
theorem
prover; and
the
automation
techniques.
We provide
a
preliminary
evaluation
of the tool's
performanc
e and
capabilities
via a
handful of
case
studies.

10.1109
/CSF54

842.
2022.99
19638

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
919638

formal
verification;
coq;
cryptograph
y;protocol
analysis

O artigo destaca a importância
da construção de protocolos

criptográficos seguros por meio
de uma abordagem de

segurança adversarial por
construção. Ele apresenta uma

linguagem de protocolos
criptográficos, utiliza métodos
formais e oferece exemplos
práticos para demonstrar a

eficácia das técnicas
propostas.

O artigo explora
conceitos-chave
relacionados à

segurança adversarial,
construção de protocolos
criptográficos, linguagem

de protocolos
criptográficos, métodos
formais e propriedades

de segurança. Ele
enfatiza a importância de

construir protocolos
seguros e apresenta

abordagens para garantir
a segurança adversarial
por meio da construção
de protocolos e análise

formal.

A metodologia
utilizada no artigo

envolve a
definição da

linguagem de
protocolos

criptográficos,
análise de

ameaças, projeto
de protocolos

seguros, análise
formal, estudos de
caso e avaliação
dos resultados.

Essa abordagem
visa fornecer uma
estrutura sólida
para construir

protocolos
criptográficos

seguros e garantir
sua eficácia

contra adversários
maliciosos.

IEEE Inglês CI1 Incluído
An Approach to
Validation of
Combined Natural
Language and Formal
Requirements for
Control Systems

M.
Trakhtenbrot 2019

The paper
presents a
novel
approach to
validation of
behavioral
requirement
s for control
systems. A
requirement
is specified
by a natural
language
pattern and
its
expression
in Linear
Temporal
Logic (LTL).
This way
flexibility
and
understand
ability of
natural
language is
combined
with
advantages
of
formalizatio
n that is a
basis for
various
stages of
system
developme
nt, testing
and
verification.
Still, validity
of the
requirement
s remains a
major
challenge.
The paper
considers
application
of mutation
analysis for
capturing of
correct
behavioral
requirement
s.
Generation
and
exploration
of mutants
supports a
better
understandi
ng of
requirement
s, The
novelty of
the
approach is
that the
suggested
mutations
are
semantic-
based, as
opposed to
the more
common
syntax-
based
mutation
analysis. A
significant
advantage
of the
approach is
that it
allows to
focus only
on plausible
potential
faults in
understandi
ng of the
required
system
behavior,
and to
avoid
generation
of a vast
amount of
mutants
that are
irrelevant to
the
intended
meaning of
the
requirement
s.
Moreover,
in many
cases the
effect of
semantic-
based
mutations
just can not
be
achieved by
usual
syntax-
based
mutations
of LTL
formulas
associated
with
requirement
s. The
approach is
illustrated
using a rail
cross
control
example.

10.1109
/REW.

2019.00
025

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
933687

control
systems,
behavior
requirement
s validation,
mutation
analysis

 O artigo destaca a importância
da validação de requisitos
combinados de linguagem

natural e formal para sistemas
de controle. Ele descreve uma
abordagem e um processo de
validação, utilizando técnicas e

ferramentas adequadas, e
apresenta estudos de caso

para exemplificar sua
aplicação. Isso contribui para

melhorar a qualidade e a
precisão dos requisitos e,

consequentemente, aumentar a
confiabilidade dos sistemas de

controle.

 O artigo explora a
combinação de requisitos

de linguagem natural e
formal para sistemas de
controle e propõe uma

abordagem de validação
para garantir a

consistência e a precisão
desses requisitos. Os

conceitos-chave incluem
a análise de conflitos e

ambiguidades, a
verificação formal, a

modelagem dos sistemas
de controle e a aplicação

prática por meio de
estudos de caso.

A metodologia
adotada no artigo
envolve a coleta,

análise,
formalização,
verificação e
validação dos

requisitos
combinados de

linguagem natural
e formal. Ela

busca garantir que
os requisitos

sejam corretos,
consistentes e

completos,
contribuindo para

o
desenvolvimento
de sistemas de

controle confiáveis
e eficientes.

IEEE Inglês CI1 Incluído
Applying B and ProB
to a Real-world Data
Validation Project

C. Peng; W.
Keming 2021

Data
validation is
a constraint
satisfaction
problem
that can be
modelled
rigorously
by formal
methods
like B. This
paper
presents
our
experience
s on
validating a
real-world
section
topology of
tram lines
using the B
language
and ProB
tool. Based
on the
section
topology,
validation
rules are
designed
and
implemente
d by using
the
ASSERTIO
NS Clause
of B. The
Epsilon
Generation
Language
Script is
used to
build a data
conversion
schema
under
automaticall
y deriving
the
topology
data into
the B
model.
Furthermor
e, the ProB
is used to
validate
whether the
data satisfy
the rules. In
this way,
the
validated
topology
improves
the
functional
correctness
of the tram
control
system.

10.1109
/ISKE54

062.
2021.97
55408

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
755408

B method;
rule
programmin
g;section
topology

O artigo destaca a aplicação
das técnicas formais B e ProB

em um projeto real de
validação de dados. Ele

enfatiza a modelagem formal, a
análise formal e o uso do ProB

como ferramenta de
verificação. Os resultados e

lições aprendidas
compartilhados no artigo

fornecem insights valiosos para
a aplicação dessas técnicas em

projetos semelhantes.

 O artigo apresenta os
principais conceitos do
Método B e do ProB,
demonstrando sua

aplicação em um projeto
prático de validação de
dados. A modelagem

formal, a verificação de
propriedades e os

benefícios obtidos com a
abordagem são

destacados como
elementos-chave do

projeto.

A metodologia
adotada no artigo

combina a
modelagem formal
com o Método B e
a verificação com

o ProB para
realizar a

validação de
dados em um

contexto real. A
utilização do

Método B permite
uma especificação

formal dos
requisitos e
restrições,

enquanto o ProB
facilita a

verificação e
identificação de

erros nos modelos
implementados.

IEEE Inglês CI1 Incluído
ARF: Automatic
Requirements
Formalisation Tool

A. Zaki-Ismail;
M. Osama; M.
Abdelrazek; J.
Grundy; A.
Ibrahim

2021

Formal
verification
techniques
enable the
detection of
complex
quality
issues
within
system
specificatio
ns.
However,
the majority
of system
requirement
s are
usually
specified in
natural
language
(NL).
Manual
formalisatio
n of NL
requirement
s is an
error-prone
and labour-
intensive
process
requiring
strong
mathematic
al
expertise,
and can be
infeasible
for large
numbers of
requirement
s. Existing
automatic
formalisatio
n
techniques
usually
support
heavily
constrained
natural
language
relying on
requirement
boilerplates
or
templates.
In this
paper, we
introduce
ARF:
Automatic
Requireme
nts
Formalisati
on Tool.
ARF can
automaticall
y transform
free-format
natural
language
requirement
s into
temporal
logic based
formal
notations.
This is
achieved
through two
steps: 1)
extraction
of key
requirement
attributes
into an
intermediat
e
representati
on (RCM:
Requireme
nt
Capturing
Model), and
2)
transformati
on rules
that convert
requirement
s from the
RCM
format to
formal
notations.

10.1109
/RE517

29.
2021.00

060

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
604679

Requiremen
ts
engineering
;
Requiremen
ts
Formalisatio
n;
Requiremen
ts
Extraction

 O artigo descreve a ARF como
uma ferramenta para a

automação da formalização de
requisitos, utilizando

processamento de linguagem
natural e técnicas de análise

formal. A capacidade da
ferramenta de transformar
requisitos em linguagem

natural em modelos formais
facilita a verificação e análise
formal, contribuindo para a

melhoria da qualidade e
validade dos requisitos em
projetos de engenharia de

software.

Os principais conceitos
envolvem a conversão

de requisitos em
linguagem natural em

representações formais,
a verificação formal dos

requisitos e a automação
do processo de

formalização, com
exemplos e estudos de
caso para ilustrar sua

aplicação prática.

A metodologia
começa com a
definição das
linguagens

utilizadas pela
ferramenta

(natural e formal),
seguida pela
definição dos

requisitos a serem
formalizados. Em

seguida, é
definido um
processo de

mapeamento de
requisitos naturais

para requisitos
formais, usando
uma gramática
formal e regras

semânticas

IEEE Inglês Ci1 Incluído
Assertion Based
Design of Timed
Finite State Machine

A. Shkil; A.
Miroshnyk; G.
Kulak; K.
Pshenychnyi

2021

This work is
dedicated
to
assertion-
based
verification
of real time
logic control
systems
that are
specified by
a state
diagram
with state
looping and
implemente
d by
hardware
description
language.
The
proposed
method is
based on
the
assertion
apparatus
that is used
to describe
the
temporal
nature of
the timed
FSM
properties.

10.1109
/EWDT
S52692

.
2021.95
81046

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
581046

timed finite
state
machine;
HDL-model;
assertion-
based
design;
SystemVeril
og;formal
verification;
SystemVeril
og
Assertions

 O artigo apresenta uma
abordagem baseada em

assertivas para modelar e
verificar sistemas TFSM.

Destacam-se a modelagem de
TFSM, a utilização de

assertivas para especificar
comportamentos e

propriedades do sistema, a
verificação formal com
ferramentas de model

checking, exemplos e estudos
de caso, além dos benefícios e

limitações da abordagem
proposta.

O artigo explora a
utilização de assertivas e

verificação formal no
design de sistemas

TFSM, destacando os
conceitos de modelagem
com máquinas de estado

temporizadas, a
utilização de assertivas

para especificar
propriedades do sistema,
a verificação formal com
ferramentas de model

checking e os benefícios
e limitações da

abordagem proposta.

A metodologia do
artigo envolve a
definição das

especificações e
requisitos do
sistema, a

modelagem do
sistema TFSM, a
especificação de

assertivas, a
verificação formal,

a depuração e
refinamento, a
validação do
sistema e a
análise dos

resultados. Essa
metodologia é

aplicada para a
aplicação da

abordagem de
design baseada

em assertivas em
sistemas TFSM e
a verificação de

suas
propriedades.

IEEE Inglês CI1 Incluído
Celestial: A Smart
Contracts Verification
Framework

S.
Dharanikota;
S. Mukherjee;
C. Bhardwaj;
A. Rastogi; A.
Lal

2021

We present
CELESTIA
L, a
framework
for formally
verifying
smart
contracts
written in
the Solidity
language
for the
Ethereum
blockchain.
CELESTIA
L allows
programme
rs to write
expressive
functional
specificatio
ns for their
contracts. It
translates
the
contracts
and the
specificatio
ns to F* to
formally
verify,
against an
F* model of
the
blockchain
semantics,
that the
contracts
meet their
specificatio
ns. Once
the
verification
succeeds,
CELESTIA
L performs
an erasure
of the
specificatio
ns to
generate
Solidity
code for
execution
on the
Ethereum
blockchain.
We use
CELESTIA
L to verify
several
real-world
smart
contracts
from
different
application
domains.
Our
experience
shows that
CELESTIA
L is a
valuable
tool for
writing
high-
assurance
smart
contracts.

10.3472
7

/2021/is
bn.978-

3-
85448-
046-
4_22

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
617700

Smart
contracts;
Blockchain;
Reliability;
Testing

O artigo destaca a importância
da verificação de contratos
inteligentes e apresentam o

framework Celestial como uma
ferramenta para auxiliar nesse

processo. O artigo fornece
insights valiosos sobre as

funcionalidades, a abordagem
e os estudos de caso do
Celestial, além de discutir

desafios e limitações
relacionados à verificação de

contratos inteligentes.

Conceitos abordados no
artigo incluem a natureza

dos contratos
inteligentes, a
importância da
verificação, a

funcionalidade do
framework Celestial, a

especificação de
propriedades, a

verificação automatizada,
o suporte a linguagens

de programação, a
integração com outras

ferramentas e os estudos
de caso ilustrativos. O

artigo fornece uma visão
abrangente sobre a

verificação de contratos
inteligentes e a utilização
do framework Celestial

nesse contexto.

A metodologia
apresentada no
artigo envolve a
especificação de

propriedades,
análise estática,

interpretação
simbólica e

verificação de
propriedades para
a verificação de

contratos
inteligentes. O

framework
Celestial é

utilizado para
implementar essa

metodologia,
fornecendo uma

solução
abrangente e

eficiente para a
verificação de

contratos
inteligentes.

IEEE Inglês CI1 Incluído
Certified Embedding
of B Models in an
Integrated
Verification
Framework

A. Halchin; Y.
Ait-Ameur; N.
K. Singh; A.
Feliachi; J.
Ordioni

2019

To check
the
correctness
of
heterogene
ous models
of a
complex
critical
system is
challenging
to meet the
certification
standard.
Such
guarantee
can be
provided by
embedding
the
heterogene
ous models
into an
integrated
modelling
framework.
This work is
proposed in
the B-
PERFect
project of
RATP
(Parisian
Public
Transport
Operator
and
Maintainer),
it aims to
apply
formal
verification
using the
PERF
approach
on the
integrated
safety-
critical
software
related to
railway
domain
expressed
in a single
modelling
language:
HLL. This
paper
presents a
certified
translation
from B
formal
language to
HLL. The
proposed
approach
uses HOL
as a unified
logical
framework
to describe
the formal
semantics
and to
formalize
the
translation
relation of
both
languages.
The
developed
Isabelle/HO
L models
are proved
in order to
guarantee
the
correctness
of our
translation
process.
Moreover,
we have
also used
weak-
bisimulation
relation to
check the
correctness
of
translation
steps. The
overall
approach is
illustrated
through a
case study
issued from
a railway
software
system:
onboard
localization
function.
Furthermor
e, it
discusses
the
integrated
verification
at system
level.

10.1109
/TASE.
2019.00

0-4

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
914050

Formal
Semantics,
B to HLL
Translation
Validation,
Theorem
Proving,
Model
Animation

O artigo apresenta uma
abordagem para a verificação

de sistemas baseados em
modelos B usando um

framework de verificação
integrado. A abordagem inclui a
certificação de modelos B por

meio da verificação formal,
integração de diferentes
técnicas de verificação,

aplicação em sistemas críticos
e uma ferramenta de suporte

com interface gráfica de
usuário.

O artigo incluem os
modelos B, a verificação
formal, o framework de
verificação integrado, a
certificação de modelos

B, a aplicação em
sistemas críticos.

 A metodologia
descrita no artigo

envolve a
especificação do

modelo B, a
verificação formal,

a geração de
provas e a

certificação do
modelo. O

framework de
verificação

integrado fornece
suporte para
essas etapas,
garantindo a

confiabilidade e
corretude dos

modelos B usados
na especificação e
desenvolvimento

de sistemas
críticos.

IEEE Inglês CI1 Incluído

Combining STPA with
SysML Modeling

F. G. R. de
Souza; J. de
Melo Bezerra;
C. M. Hirata;
P. de Saqui-
Sannes; L.
Apvrille

2020

System-
Theoretic
Process
Analysis
(STPA) is a
technique,
based on
System-
Theoretic
Accident
Model and
Process
(STAMP),
to identify
hazardous
control
actions,
loss
scenarios,
and safety
requirement
s. STPA is
considered
a rather
complex
technique
and lacks
formalism,
but there
exists a
growing
interest in
using STPA
in
certification
s of safety-
critical
systems
developme
nt. SysML
is a
modeling
language
for systems
engineering
. It enables
representin
g models
for analysis,
design,
verification,
and
validation of
systems. In
particular,
the free
software
TTool and
the model-
checker
UPPAAL
enable
formal
verification
of SysML
models.
This paper
proposes a
method that
combines
STPA and
SysML
modeling
activities in
order to
allow
simulation
and formal
verification
of systems'
models. An
automatic
door
system
serves as
example to
illustrate
the
effectivenes
s of the
proposed
approach.

10.1109
/SysCo
n47679.
2020.92
75867

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
275867

STPA;
SysML;
method;
safety
analysis;
formal
verification

O artigo apresenta a
combinação da STPA com a

modelagem SysML como uma
abordagem para a análise de

segurança de sistemas
complexos. Ele destaca a

integração de conceitos, o uso
de diagramas SysML, a
abordagem sistemática,

exemplos e casos de estudo,
além dos benefícios e
contribuições dessa

combinação. A proposta visa
melhorar a análise de

segurança, permitindo uma
compreensão mais abrangente

dos riscos e a adoção de
medidas preventivas

adequadas.

 O artigo discute a
combinação da

abordagem STPA com a
modelagem SysML para

melhorar a análise de
segurança de sistemas

complexos. Ele explora a
identificação de perigos e
requisitos de segurança,
análise de cenários de

falha, avaliação de
controles de segurança e
aplicação em diferentes

setores.

Ao combinar a
análise de

segurança da
técnica STPA com
a modelagem de
sistemas usando

a linguagem
SysML, os autores
argumentam que
é possível criar
modelos mais
completos e
precisos de

sistemas que
levam em

consideração a
segurança desde

o início do
processo de

desenvolvimento.

IEEE Inglês CI1 Incluído
Conception of a
formal model-based
methodology to
support railway
engineers in the
specification and
verification of
interlocking systems

G. Lukács; T.
Bartha 2022

The use of
formal
modeling is
gaining
popularity
in the
developme
nt of safety-
critical
transport
applications
, in
particular
railway
interlocking
systems,
due to its
ability to
specify the
functionality
of systems
using
mathematic
ally precise
logical
rules. The
goal of the
research
described
here is to
con-
ceptualize a
methodolog
y that
provides a
specificatio
n/verificatio
n
environmen
t supporting
the
developers
(domain
engineers)
in the
constructio
n and
verification
of formal
specificatio
ns. The aim
of the
methodolog
y is to
decrease
the need for
mathematic
al-computer
science
background
/knowledge
at the
system
engineering
level. The
proposed
approach
includes a
set of well-
known and
widely used
methods,
techniques,
and tools to
specify and
verify the
functionality
related to
the
developme
nt of railway
interlocking
systems,
such as
structured
and object-
oriented
formalisms
(e.g., the
Unified
Modeling
Language),
model-
driven
developme
nt, model
checking,
etc. The
application
of the
methodolog
y facilitates
the
constructio
n of correct,
complete,
consistent,
and
verifiable
functional
specificatio
ns of a
given
component.
This in turn
brings a
significant
improveme
nt of
quality, and
distributes
the
developme
nt costs
more
evenly
among the
related life-
cycle
phases.

10.1109
/SACI5
5618.

2022.99
19532

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
919532

railway
applications
;
functionality
;
specificatio
n;model
checking;
computation
tree logic

O artigo descreve uma
metodologia baseada em

modelos formais para apoiar
engenheiros de ferrovias na

especificação e verificação de
sistemas de intertravamento. A

metodologia promove a
especificação formal, a

verificação automática e a
integração com ferramentas de
modelagem e verificação. Ela
visa garantir a corretude e a

segurança dos sistemas
ferroviários, fornecendo suporte

efetivo aos engenheiros de
ferrovias em seus processos de

trabalho.

Os principais conceitos
envolvem a modelagem

formal, a verificação
formal, o suporte aos

engenheiros, a
integração de

ferramentas e técnicas, e
a aplicação prática por

meio de estudos de
caso. A metodologia visa
melhorar a precisão, a

segurança e a eficiência
dos sistemas de
intertravamento

ferroviário.

 A metodologia
proposta no artigo
inclui etapas como

definição de
requisitos,

modelagem
formal, verificação

formal,
refinamento
iterativo do

modelo,
documentação,
rastreabilidade,
integração de
ferramentas e

validação.

IEEE Inglês CI1 Incluído
Coverage of Meta-
Stability Using
Formal Verification in
Asynchronous Gray
Code FIFO

Shivali; M.
Khosla 2022

In Formal
Verification
Environmen
t, setup
time and
hold time
are not
honored by
formal
verification
tool. To
analyze the
impact of
metastabilit
y on
functionality
of the
design in
formal
verification
environmen
t, buffer has
been
designed.
Buffer
induces the
delay of
either ‘0’, ‘1’
or ‘2’ clock
cycles
leading to
metastabilit
y in the
pointers of
Asynchrono
us Gray
Code FIFO
in formal
verification
environmen
t.
Reference
code has
been
written
which
describe
the
functionality
of
Asynchrono
us Gray
Code FIFO
in ideal
case. Using
formal
equivalence
checking,
output of
FIFO
obtained
from design
provided by
the
designer, is
compared
with the
output
obtained
from the
reference
code of
FIFO.
Formal
verification
properties
are written
to do the
verification
of the
design and
check if the
design is
working as
predicted
specificatio
ns.
Coverage
written
ensures no
corner case
is skipped
which may
lead to
escapism of
potential
design
bugs. The
command
language
script
containing
the
verification
program
has been
run to
invoke the
JasperGold
Tool.
Comparativ
e analysis
has been
done
between
the
waveforms
obtained
from the
design
including a
buffer and
the design
without
including a
buffer. If
both the
waveforms
are not
same which
means
metastabilit
y has
influenced
the
functionality
of the
design. So,
to
overcome
the effect of
metastabilit
y on
functionality
of the
design,
there is
need to add
more
synchronize
rs in the
design.
While if the
waveforms
obtained
from the
design with
and without
buffer are
same, it
means
synchronize
rs / Meta
flops
already
present in
the design
are enough
to deal with
the
metastabilit
y which
may arise
during
functioning
of the
design.

10.1109
/CONIT
55038.

2022.98
48195

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
848195

Meta-
stability;
Formal
Verification;
Formal
Environmen
t;
Asynchrono
us Gray
Code FIFO

O artigo trata da cobertura da
metaestabilidade em um FIFO

assíncrono de código Gray,
utilizando técnicas de

verificação formal. Ele explora
diferentes cenários e avalia se

o circuito é capaz de lidar
adequadamente com a

metaestabilidade. A
contribuição do artigo está em

fornecer uma abordagem
específica para essa cobertura,
o que é relevante para a área

de verificação formal de
circuitos assíncronos.

O artigo explora a
verificação formal da

cobertura da
metaestabilidade em um

FIFO assíncrono de
código Gray. Ele

apresenta conceitos
como a própria

metaestabilidade,
verificação formal,

funcionamento
assíncrono do FIFO,

cobertura da
metaestabilidade e

análise de cobertura.

 A metodologia
proposta envolve
a modelagem do
FIFO assíncrono
de código Gray, a

definição de
propriedades de

verificação, a
verificação formal,

o refinamento e
correção do

modelo, a análise
de cobertura e a

validação
experimental.

IEEE Inglês CI1 Incluído
CROME: Contract-
Based Robotic
Mission Specification

P. Mallozzi; P.
Nuzzo; P.
Pelliccione; G.
Schneider

2020

We address
the problem
of
automaticall
y
constructin
g a formal
robotic
mission
specificatio
n in a logic
language
with precise
semantics
starting
from an
informal
description
of the
mission
requirement
s. We
present
CROME
(Contract-
based
RObotic
Mission
spEcificatio
n), a
framework
that allows
capturing
mission
requirement
s in terms
of goals by
using
specificatio
n patterns,
and
automaticall
y building
linear
temporal
logic
mission
specificatio
ns
conforming
with the
requirement
s. CROME
leverages a
new formal
model,
termed
Contract-
based Goal
Graph
(CGG),
which
enables
organizing
the
requirement
s in a
modular
way with a
rigorous
composition
al
semantics.
By relying
on the
CGG, it is
then
possible to
automaticall
y: i) check
the
feasibility of
the overall
mission, ii)
further
refine it
from a
library of
pre-defined
goals, and
iii)
synthesize
multiple
controllers
that
implement
different
parts of the
mission at
different
abstraction
levels,
when the
specificatio
n is
realizable.
If the
overall
mission is
not
realizable,
CROME
identifies
mission
scenarios, i.
e., sub-
missions
that can be
realizable.
We
illustrate
the
effectivenes
s of our
methodolog
y and
supporting
tool on a
case study.

10.1109
/MEMO
CODE5
1338.

2020.93
15065

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
315065

-

O artigo introduz o CROME
como uma abordagem para a

especificação de missões
robóticas baseada em

contratos. Ele destaca a
formalização da especificação,
a composição de contratos, a

verificação formal e a aplicação
em cenários reais como

características principais da
abordagem.

O artigo introduz o
conceito de contratos de
missão robótica e propõe

a abordagem CROME
para a especificação

formal e verificação de
tais contratos. A

composição de contratos
e a aplicação prática em

cenários reais são
destacadas como

elementos-chave da
abordagem. O artigo

enfatiza os benefícios e o
potencial impacto do

CROME no
desenvolvimento de
sistemas robóticos

confiáveis e seguros.

A metodologia do
artigo envolve a
identificação e
definição dos
requisitos da

missão, a
especificação e

formalização dos
contratos, a

verificação formal
dos contratos, a
composição de
contratos (se
necessário), a

implementação do
sistema robótico e

a validação do
sistema em
relação aos
contratos

especificados.
Essa abordagem
visa proporcionar
uma base sólida

para a
especificação,
verificação e

implementação de
missões robóticas

confiáveis e
seguras.

IEEE Inglês CI1 Incluído
FASTEN: An Open
Extensible Framework
to Experiment with
Formal Specification
Approaches

Ratiu, Daniel;
Gario, Marco;
Schoenhaar,
Hannes

2019

Formal
specificatio
n
approaches
have been
successfull
y used to
specify and
verify
complex
systems.
Verification
engineers
so far either
directly use
formal
specificatio
n
languages
which can
be
consumed
by
verification
tools (e.g.
SMV,
Promela) or
main
stream
modeling
languages
which are
then
translated
into formal
languages
and verified
(e.g.
SysML,
AADL). The
first
approach is
expressive
and
effective
but difficult
to use by
non-
experts.
The second
approach
lowers the
entry
barrier for
novices but
users are
limited to
the
constructs
of the
chosen
modeling
languages
and thereby
end up
abusing the
language to
encode
behaviors
of interest.
In this
paper, we
introduce a
third
approach
that we call
FASTEN, in
which
modular
and
extensible
Domain
Specific
Languages
(DSLs) are
used to
raise the
abstraction
level of
specificatio
n
languages
towards the
domain of
interest.
The
approach
aims to
help novice
users to
use formal
specificatio
n, enable
experts to
use multi-
paradigm
modeling,
and provide
tools for the
developers
of
verification
technologie
s to easily
experiment
with various
types of
specificatio
n
approaches
. To show
the
feasibility of
the
approach,
we release
an open-
source tool
based on
Jetbrains'
MPS
language
workbench
that
provides an
extensible
stack of
more than
ten DSLs,
situated at
different
levels of
abstraction,
built on top
of the SMV
language.
We use the
NuSMV
model
checker to
perform
verification,
to simulate
the models
and lift the
traces at
the
abstraction
level of the
DSLs. We
detail on
the
experience
with
designing
and
developing
the DSLs
stack and
briefly
report on
using the
DSLs in
practice for
the study of
a
communica
tion
protocol of
a safety
critical
system.

10.1109
/Formali

SE.
2019.00

013

- -

o artigo apresenta um
framework aberto e extensível

para experimentar com
abordagens de especificação

formal. Ele destaca a
flexibilidade e adaptabilidade

do framework, o suporte a
múltiplas abordagens de

especificação, a
experimentação e avaliação de

técnicas, a integração com
ferramentas existentes, a

colaboração na comunidade e
os casos de uso e estudos
experimentais realizados.

O artigo introduz o
framework FASTEN e

explora conceitos como
especificação formal,

experimentação,
integração de
ferramentas,

extensibilidade,
compartilhamento de

conhecimento e casos de
uso. Ele oferece uma

visão abrangente sobre a
utilidade e aplicação do
framework na área de
especificação formal.

 A metodologia do
artigo abrange

desde a definição
dos requisitos até
a implementação,

validação,
documentação e

promoção da
colaboração em

torno do
framework

FASTEN. Essa
metodologia visa

garantir que o
framework seja
adequado às

necessidades dos
usuários e facilite
a experimentação

e o avanço da
área de

especificação
formal.

Web of science Inglês CI1 Incluído
Formal Modeling and
Verification of
Autonomous Driving
Scenario

B. Chen; T. Li 2021

There are
abundant
spatio-
temporal
data and
dynamic
stochastic
behaviors
in the
autonomou
s driving
scenario,
which
makes it full
of
challenges
for the
modeling
and
verification
of the
scenario. In
this paper,
we propose
a Scenario
Modeling
Language
(SCML) for
autonomou
s driving.
SCML can
not only
express the
stochastic
dynamic
behaviors
of
autonomou
s driving
but also
abstract the
primary
objects and
state
transitions
to model
the
autonomou
s driving
scenario.
Firstly, we
propose the
syntax and
semantics
of SCML.
Then, we
construct a
metamodel
of SCML
and
propose
mapping
rules to
transform
the SCML
model into
the Network
of
Stochastic
Hybrid
Automata
(NSHA)
model.
According
to the
NSHA
model, we
use
UPPAAL-
SMC to
verify the
autonomou
s driving
scenario.
Finally, we
use the
forward-
collision
warning
system to
illustrate
that the
proposed
approach
can
effectively
model and
verify the
driving
scenario.

10.1109
/ICICSE
52190.

2021.94
04128

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
404128

autonomou
s driving
scenario
modeling;
SCML;
NSHA;
UPPAAL-
SMC;formal
verification

 O artigo utiliza técnicas de
modelagem formal e

verificação formal para
descrever e analisar cenários
de condução autônoma. Ele
envolve a especificação de

propriedades, a formalização
dos cenários, a utilização de

ferramentas de verificação e a
avaliação experimental. O

objetivo principal é garantir a
segurança e o desempenho
dos sistemas de condução

autônoma por meio da
aplicação de técnicas formais

de análise.

 O artigo aborda a
modelagem formal e a
verificação formal de

cenários de condução
autônoma, com foco na

segurança e no
desempenho do sistema.
São discutidos conceitos
como modelagem formal,

verificação formal,
propriedades de

segurança, descrição de
cenários e ferramentas

de verificação. O objetivo
é garantir que os

sistemas de condução
autônoma atendam aos
requisitos de segurança

e funcionem
corretamente em

diferentes situações de
condução.

A metodologia
adotada no artigo
busca garantir que

os cenários de
condução

autônoma sejam
corretamente
modelados e

verificados em
relação aos
requisitos de
segurança e

desempenho. Ela
enfatiza a

utilização de
técnicas formais
para garantir a
precisão e a

confiabilidade dos
resultados da

verificação.

IEEE Inglês CI1 Incluído

Formal Requirements
in an Informal World

D. Dietsch; V.
Langenfeld; B.
Westphal 2020

With
today's
increasing
complexity
of systems
and
requirement
s there is a
need for
formal
analysis of
requirement
s. Although
there exist
several
formal
requirement
s
description
languages
and
correspondi
ng analysis
tools that
target an
industrial
audience,
there is a
large gap
between
the form of
requirement
s and the
training in
formal
methods
available in
industry
today, and
the form of
requirement
s and the
knowledge
that is
necessary
to
successfull
y operate
the analysis
tools. We
propose a
process to
bridge the
gap
between
customer
requirement
s and
formal
analysis.
The
process is
designed to
support in-
house
formalisatio
n and
analysis as
well as
formalisatio
n and
analysis as
a service
provided by
a third
party. The
basic idea
is that we
obtain
dependabili
ty and
comprehen
sibility by
assuming a
senior
formal
requirement
s engineer
who
prepares
the
requirement
s and later
interprets
the analysis
results in
tandem
with the
client. We
obtain
scalability
as most of
the
formalisatio
n and
analysis is
supposed
to be
conducted
by junior
formal
requirement
s
engineers.
In this
paper, we
define and
analyse the
process
and report
on
experience
from
different
instantiation
s, where
the process
was well
received by
customers.

10.1109
/FORM
REQ51

202.
2020.00

010

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
224533

requirement
s;formal-
requirement
s;
requirement
s-
formalisatio
n;
requirement
s-analysis;
process-
model

O artigo aborda a respeito da
qualidade dos requisitos, onde

cita ser crucial para o
desenvolvimento de sistemas e

software, pois defeitos
introduzidos na análise de

requisitos podem ser
reproduzidos no produto final.

Há uma distinção entre um
requisito ser uma condição ou
capacidade do sistema e sua

representação. A forma
predominante de representar

requisitos é a linguagem
natural, enquanto as

ferramentas de análise de
requisitos formais precisam de

representações formais.

O artigo discute sobre
análise de requisitos
formalizadas, uma

técnica para especificar
requisitos em uma

linguagem formal. Onde
mostra a formalização e

análise de requisitos
como processos

diferentes que precisam
ser integrados para

garantir que os requisitos
estejam corretos e

completos. A processos
para formalização e
análise de requisitos

precisam ser
orçamentáveis,

compreensíveis para os
stakeholders e com um
resultado claramente

definido.

A metodologia do
artigo aborda

sobre o Dietsch-
Langenfeld-

process model ,
um modelo de

processo para a
engenharia de

requisitos formais
que propõe trazer
a formalização e
análise para uma

escala e um
orçamento. O
processo se

conecta a um
cenário em que
toda a elicitação
de requisitos e

descrição informal
é feita e a única

lacuna restante é
a formalização e

análise.

IEEE Inglês CI1 Incluído
Formal Simulation and
Verification of Solidity
contracts in Event-B

J. Zhu; K. Hu;
M. Filali; J. -P.
Bodeveix; J. -
P. Talpin; H.
Cao

2021

Smart
contracts
are the
artifact of
the
blockchain
that
provides
immutable
and
verifiable
specificatio
ns of
physical
transaction
s. Solidity is
a domain-
specific
programmin
g language
with the
purpose of
defining
smart
contracts. It
aims at
reducing
the
transaction
costs
occasioned
by the
execution
of contracts
on the
distributed
ledgers
such as
Ethereum.
However,
Solidity
contracts
need to
adhere to
safety and
security
requirement
s that
require
formal
verification
and
certification.
This paper
proposes a
method to
meet such
requirement
s by
translating
Solidity
contracts to
Event-B
models,
supporting
certification.
To that
purpose,
we define a
restrained
Solidity
subset and
a transfer
function
that
translates
Solidity
contracts to
Event-B
models.
Besides,
we have
implemente
d a
translator to
improve the
conversion
efficiency.
As a case
study, we
take
advantage
of Event-B
method
capabilities
to simulate
models at
different
levels of
abstraction
and to
express the
properties
of a typical
smart
contract:
Honeypot
contract.
Lastly, we
verify the
generated
proof
obligations
of the
Event-B
model with
the help of
the Rodin
platform.

10.1109
/COMP
SAC51

774.
2021.00

183

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
529594

Blockchain;
Smart
contract;
Solidity;
Event-B
model;
formal
verification
for security

O trabalho apresentado no
artigo é motivado pela

necessidade de construir
ferramentas e técnicas para

melhorar a segurança de
contratos inteligentes por meio

da verificação formal.
Introduzindo conceitos de

blockchain, Ethereum,
contratos inteligentes e Solidity.

O artigo introduz o
conceito de blockchain,

Ethereum, contratos
inteligentes e Solidity.
Ele também destaca a

importância da
segurança e da

verificação formal em
contratos inteligentes
devido aos riscos de
vulnerabilidades de

segurança que podem
ser explorados por

hackers.

O método
mencionado no

artigo é a
verificação formal,
que usa técnicas

matemáticas
rigorosas para
provar que um

sistema é correto.
EventB é

mencionado como
uma linguagem de

modelagem de
verificação formal
para especificar e

implementar
algoritmos e

sistemas como
sistemas de

transição
discretos

baseados em uma
teoria de
conjuntos
digitados.

IEEE Inglês CI1 Incluído
Formal Specification
and Validation of a Gas
Detection System in
the Industrial Sector

A.
Choquehuanc
a; D. Rondon;
K. Quiñones;
R. León

2020

In gas
concentrati
ons greater
than the
allowable
amounts,
these
become an
imminent
danger. It is
true that
there are
devices that
already
read
information,
but are
intended
exclusively
for the
mining
sector and
are very
expensive.
That is why
we propose
to model
and
validate a
new system
for other
industrial
sectors.
Our
proposal,
The Gas
Detection
System is
based on
The
Explosive
Discussion
Triangle
method
developed
by Coward
and Jones.
We use this
method to
develop a
control
system that
will allow
gas
concentrati
ons to be
detected in
a given
environmen
t and send
an alarm if
a risk
situation
arises.
Formal
Specificatio
ns allows
the use of
mathematic
al notations
that help in
the process
of
implementi
ng critical
systems
and helps
to reduce
the
potential
ambiguities
that occur
in the
interpretatio
n of
traditional
graphic
models.
This work
uses the
VDM ++
formal
specificatio
n language
to describe
system
properties
for its
subsequent
modeling
and
validation
through the
VDMToolB
ox tool. The
System
architecture
is based on
sensors, a
control
module and
a set of
alarms. Our
proposal
makes use
of formal
specificatio
ns in order
to validate
the main
properties
of the
functional
requirement
s.

10.2391
9

/CISTI4
9556.

2020.91
41056

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
141056

Formal
specificatio
n;validation;
VDM++;gas
detection;
triangle
Coward

O artigo aborda o uso
generalizado de combustíveis
energéticos na operação de

várias máquinas e na indústria
em geral, trazendo uma

problemática para implementar
um sistema de detecção de
gases perigosos no setor

industrial utilizando sensores.

O artigo introduz a
linguagem VDM++ para

modelar o sistema e
garantir a correta
especificação dos
requisitos e evitar
ambiguidades. Os

mecanismos
desenvolvidos para a

operação desses
dispositivos por meio de

software são muito
importantes, pois

determinam a
concentração desses

gases.

Como
metodologia, será

utilizado a
linguagem VDM++

para modelar o
sistema de

detecção de
gases. Serão

utilizados métodos
formais para

garantir a correta
especificação dos
requisitos e evitar

ambiguidades.
Sensores serão
utilizados para

detectar a
presença de

gases perigosos
no ambiente. Os
dados coletados
pelos sensores

serão analisados
e avaliados

usando
ferramentas de

análise de dados.

IEEE Inglês CI1 Incluído
Formal UML-based
Modeling and Analysis
for Securing Location-
based IoT Applications

H. Cardenas;
R.
Zimmerman;
A. R. Viesca;
M. Al Lail; A.
J. Perez

2022

We present
a process
and a tool
to apply
formal
methods in
Internet of
Things
(IoT)
applications
using the
Unified
Modeling
Language
(UML). As
there are
no best
practices to
develop
secured IoT
systems,
we have
developed
a plug-in
tool that
integrates a
framework
to validate
UML
software
models and
we present
the design
of a
location-
based IoT
application
as a use
case for the
validation
tool.

10.1109
/MASS5
6207.

2022.00
109

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
973521

UML;
Formal
methods;
Security;
Internet of
Things

O artigo apresenta a ideia de
que dispositivos conectados à
Internet, como monitores de

bebês ou brinquedos infantis,
têm muitas vulnerabilidades de

segurança, tornando a
segurança (e privacidade)

desses sistemas uma questão
essencial na sociedade

moderna. O artigo apresenta
três melhorias no estado-da-

arte atual para solucionar esse
problema.

O artigo apresenta a
aplicação de técnicas de
modelagem e verificação

formal para validar
sistemas seguros de IoT
em sua fase de design.
Ele propõe a criação de
modelos de aplicação

baseados em localização
e verifica sua segurança
usando uma ferramenta
de análise baseada em

UML. Além disso, o
artigo implementa uma
ferramenta de análise

formal baseada em UML
que verifica a existência
de vulnerabilidades de

segurança.

O artigo utiliza a
extensão

UML/SysML
descrita em

IoTsecM para
padronizar e

validar sistemas
de IoT seguros
em sua fase de
design. Além

disso, ele
apresenta uma
ferramenta de

análise baseada
em UML para

validar e verificar
a segurança dos

modelos de
aplicação criados.
Por fim, o artigo
implementa uma
ferramenta de
análise formal

baseada em UML
para detectar

vulnerabilidades
de segurança e

melhorar o design
dos sistemas de
IoT caso alguma

violação seja
encontrada.

IEEE Inglês CI1 Incluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919638
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8933687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604679
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9581046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617700
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8914050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9275867
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9919532
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9848195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9315065
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9404128
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224533
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9529594
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9141056
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9973521

Formal Verification for
VRM Requirement
Models

Zhang, Yang
(55506039300
); Hu, Jun
(57198193833
); Wang,
Lisong
(36968141200
); Gu, Qingfan
(56204861600
); Rong, Hao
(56603776800
)

2022

At the
requirement
s level,
formal
verification
and
analysis are
the focus of
task’s
attention
which is
developing
complex
systems by
formal
methods.
Model
checking is
a technique
for analysis
and
automated
verification
of complex
safety-
critical
software
systems. In
this paper,
a
requirement
model
verification
method
based on
formal
technology
is proposed
to practice
the model
checking
activity into
the
developme
nt process.
Firstly, this
essay
analyzes
syntax and
semantics
of models,
which are
defined by
tabular
expressions
in VRM
(variables
relationship
model).
Then we
preprocess
the VRM
model to
classify into
events
tables,
conditions
tables and
model class
tables, and
transform
the VRM
model into
the
automaton
state
transfer
diagram
with the
help of
semantic
complemen
tary work.
Finally, we
design an
automatic
model
transformati
on
framework
from the
VRM model
to the
model
verification
tool
(nuXmv)
and
implement
a translator
between
the formal
specificatio
n language
VRM and
the
symbolic
model
checker
nuXmv. In
this paper,
we discuss
our
translation
and
abstraction
approach in
some depth
and
illustrate its
feasibility
with some
preliminary
examples.
© 2022,
The Author
(s), under
exclusive
license to
Springer
Nature
Singapore
Pte Ltd.

10.1007
/978-

981-19-
0390-
8_121

https://www.
scopus.
com/inward/
record.uri?
eid=2-s2.0-
851287367
63&doi=10.
1007%
2f978-981-
19-0390-
8_121&part
nerID=40&
md5=b1e21
48d7a2bad
a893896c2
6b12e90b1

Model
checking;
Model
translation;
nuXmv;
Safety
verification;
VRM model

O artigo aborda o
desenvolvimento de sistemas

complexos por meio de
métodos formais. Há uma

proposta de método de
verificação de modelos de

requisitos baseado em
tecnologia formal, com ênfase
na técnica de model checking.
É apresentado um framework
de transformação automática

de modelos VRM em uma
ferramenta de verificação de

modelos (nuXmv).
O método é ilustrado com
exemplos preliminares e

discutido em profundidade.

O artigo aborda os
conceitos de

desenvolvimento de
sistemas complexos por

meio de métodos
formais, verificação e

análise formal de
modelos de requisitos,

Model checking, técnica
de análise e verificação

automatizada de
sistemas de software
críticos de segurança.

Tabular expressions em
VRM, utilizado para
definir modelos de

requisitos.
Autômatos de

transferência de estados,
técnica para

representação formal de
sistemas.

Transformação
automática de modelos
VRM em ferramentas de
verificação de modelos.

A metodologia do
artigo envolve:

Análise de sintaxe
e semântica de

modelos definidos
por tabular

expressions em
VRM.

Preprocessament
o do modelo VRM
para classificá-lo

em tabelas de
eventos,

condições e
classes de

modelo.
Transformação do
modelo VRM em
um autômato de
transferência de
estados com o

auxílio de trabalho
semântico

complementar.
Desenho de um
framework de
transformação
automática de

modelos VRM em
nuXmv.

Implementação de
um tradutor entre
a linguagem de
especificação

formal VRM e o
verificador de

modelos
simbólicos

nuXmv.

Scopus Inglês CI1 Incluído
Formal Verification of
Blockchain Smart
Contract Based on
Colored Petri Net
Models

Z. Liu; J. Liu 2019

A smart
contract is
a computer
protocol
intended to
digitally
facilitate
and enforce
the
negotiation
of a
contract in
undependa
ble
environmen
t. However,
the number
of attacks
using the
vulnerabiliti
es of the
smart
contracts is
also
growing in
recent
years.
Many
solutions
have been
proposed in
order to
deal with
them, such
as
documentin
g
vulnerabiliti
es or
setting the
security
strategies.
Among
them, the
most
influential
progress is
made by
the formal
verification
method. In
this paper,
we propose
a formal
verification
method
based on
Colored
Petri Nets
(CPN) to
verify smart
contracts in
blockchain
system.
First, we
develop the
smart
contract
models with
possible
attacker
models
based on
hierarchical
CPN
modeling,
then the
smart
contract
models are
executed
by step-by-
step
simulation
to validate
their
functional
correctness
, and finally
we utilize
the branch
timing logic
ASK-CTL
based
model
checking
technology
in the CPN
tools to
detect
latent
vulnerabiliti
es in smart
contracts.
We
demonstrat
e that our
CPN
modeling
based
verification
method can
not only
detect the
logical
vulnerabiliti
es of the
smart
contract,
but also
consider
the impacts
of users
behavior to
find out
potential
non-logical
vulnerabiliti
es in the
contracts,
such as the
vulnerabiliti
es caused
by the
limitations
of the
Solidity
language.

10.1109
/COMP
SAC.

2019.10
265

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
753908

blockchain,
smart
contract,
formal
verification,
CPN

O artigo sobre sobre smart
contracts e sua aplicação em

ambientes não confiáveis.
Trazendo propostas de

soluções para lidar com as
vulnerabilidades, incluindo a
verificação formal. Além da

apresentação de um método de
verificação formal baseado em
Colored Petri Nets (CPN) para

verificar smart contracts em
sistemas blockchain.

O artigo apresenta o
conceito de smart

contracts e sua aplicação
em ambientes não

confiáveis, bem como a
importância da

verificação formal para
lidar com as

vulnerabilidades
existentes nesse

contexto. Além disso, o
texto introduz a

abordagem baseada em
CPN como um método
de verificação formal

para smart contracts em
sistemas blockchain, que
permite detectar não só
vulnerabilidades lógicas,

mas também não
lógicas.

A metodologia
proposta envolve

o
desenvolvimento
de modelos de
smart contracts
com possíveis
modelos de

atacantes usando
modelagem

hierárquica de
CPN. Os modelos
são validados por

meio de
simulação passo a

passo para
verificar a
correção

funcional. A
tecnologia de
verificação de

modelo baseada
em lógica de
ramificação

temporal ASKCTL
nas ferramentas
CPN é utilizada
para detectar

vulnerabilidades
latentes nos smart

contracts. A
abordagem

também considera
os impactos do
comportamento
dos usuários na

detecção de
potenciais

vulnerabilidades
não lógicas.

IEEE Inglês CI1 Incluído
Formal verification of
deadlock avoidance
rules for AGV systems

S. Riazi; J.
Falk; A.
Greger; A.
Pettersson; M.
Fabian

2022

Automated
Guided
Vehicles
(AGVs) are
increasingly
popular and
bring many
industrial
benefits.
However,
when a
number of
AGVs
autonomou
sly execute
their
itineraries,
it is
possible for
two or more
AGVs to
prevent
each other
from
completing
their tasks
and cause
a deadlock
from where
the system
cannot
progress.
One way
that
companies
try to avoid
this is to,
based on
simulations,
generate
deadlock
avoidance
rules (DA-
rules) that
determine
for different
scenarios
how the
AGVs
should
behave.
This paper
presents an
application
of
translating
such DA-
rules to
extended
finite-state
automata
and then to
formally
verify if the
rules
actually do
avoid
deadlocks.
This is
done by
using
information
of an
existing
system
setup
where there
are two
major types
of DA-rules.
Both of
these can
be
modelled
as
automata
with guards
and actions
that prevent
a transition
from
occurring if
associated
conditions
are not
fulfilled.
These
guards are
generated
automaticall
y for all the
DA-rules
correspondi
ng to the
current
itineraries.
For a
chosen
itinerary a
complete
automaton
is
generated,
as well as
automata
representin
g the DA-
rules. Using
the
supervisor
synthesis
tool
SUPREMIC
A, it is
shown that
the existing
DA-rules do
not manage
to remove
all
deadlocks
in all cases.
Even
worse, the
DA-rules
can lead to
a fully
blocking
system,
even
though a
deadlock-
free
solution
does exist,
as can be
shown by
computing
a
supervisor
for the
system
without the
DA-rules.

10.1109
/MED54

222.
2022.98
37154

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
837154

-

O artigo apresenta uma
demanda crescente por

veículos guiados
automaticamente (AGVs) na

indústria e destaca a
autonomia dos AGVs como
uma vantagem. Também é
mencionado o problema de
deadlock circular que pode

ocorrer quando vários AGVs
compartilham um mesmo

espaço limitado e necessitam
de múltiplas funções de

segurança.

Os principais conceitos
envolvem:

Automated Guided
Vehicles (AGVs):
veículos guiados
automaticamente

utilizados na indústria.
Deadlock circular:

situação em que um
grupo de AGVs fica
preso em um loop,

bloqueando o caminho
um do outro e

impossibilitando a
conclusão de suas

tarefas.
DA-rules: regras de

prevenção de deadlocks
utilizadas para evitar a

ocorrência de deadlocks
circulares em sistemas

com múltiplos AGVs.
Verificação formal:

método de garantir que
um sistema atende a

determinadas
especificações através
de análise matemática

rigorosa.

O artigo apresenta
dois métodos para
criar DA-rules: um
método estático

que utiliza
informações sobre

a estrutura do
sistema e

algoritmos para
gerar as regras, e

um método
dinâmico que

escaneia
itinerários para

deadlocks
circulares

iminentes. O
método utilizado
neste trabalho

atual é baseado
em modelagem de

itinerários de
AGVs como

autômatos finitos
estendidos (EFA)

e na teoria de
controle de
supervisão.

IEEE Inglês CI1 Incluído
Formal Verification of
Dynamic and
Stochastic Behaviors
for Automotive
Systems

L. Huang; T.
Liang; E. -Y.
Kang 2019

Formal
analysis of
functional
and non-
functional
requirement
s is crucial
in
automotive
systems.
The
behaviors
of those
systems
often rely
on complex
dynamics
as well as
on
stochastic
behaviors.
We have
proposed a
probabilistic
extension
of Clock
Constraint
Specificatio
n
Language,
called
PrCCSL,
for
specificatio
n of (non)-
functional
requirement
s and
proved the
correctness
of
requirement
s by
mapping
the
semantics
of the
specificatio
ns into
UPPAAL
models.
Previous
work is
extended in
this paper
by including
an
extension
of PrCCSL,
called
PrCCSL*,
for
specificatio
n of
stochastic
and
dynamic
system
behaviors,
as well as
complex
requirement
s related to
multiple
events. To
formally
analyze the
system
behaviors/r
equirement
s specified
in
PrCCSL*,
the
PrCCSL*
specificatio
ns are
translated
into
stochastic
UPPAAL
models for
formal
verification.
We
implement
an
automatic
translation
tool,
namely
ProTL,
which can
also
perform
formal
analysis on
PrCCSL*
specificatio
ns using
UPPAAL-
SMC as an
analysis
backend.
Our
approach is
demonstrat
ed on two
automotive
systems
case
studies.

10.1109
/ICECC

S.
2019.00

009

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
882750

Automotive
Systems;
PrCCSL*;
UPPAAL-
SMC;ProTL

O artigo aborda sobre a análise
formal de requisitos funcionais
e não-funcionais, a qual cita
como crucial em sistemas

automotivos. Propõe-se uma
extensão probabilística da

Linguagem de Especificação
de Restrição de Relógio,
chamada PrCCSL, para

especificação de requisitos
(não) funcionais.

Os principais conceitos
envolvem:

Análise formal de
requisitos.

Comportamentos de
sistemas automotivos

baseados em dinâmicas
complexas e

comportamentos
estocásticos.

Linguagem de
Especificação de

Restrição de Relógio
(CCSL) e sua extensão
probabilística PrCCSL.
A extensão PrCCSL∗

para lidar com
comportamentos de

sistemas estocásticos e
dinâmicos, bem como
requisitos complexos

relacionados a múltiplos
eventos.

UPPAAL, um ambiente
de modelagem e

verificação de sistemas
de tempo real.

A metodologia do
artigo envolve:

Mapeamento das
semânticas das

especificações em
modelos UPPAAL

para verificar a
correção dos

requisitos.
Tradução

automática de
especificações
PrCCSL∗ em

modelos UPPAAL
estocásticos para
verificação formal.
Implementação de

uma ferramenta
de tradução
automática e

análise formal de
especificações

PrCCSL∗
chamada ProTL.

Demonstração da
abordagem

proposta em dois
estudos de caso

de sistemas
automotivos.

IEEE Inglês CI1 Incluído
Formal verification of
Fischer’s real-time
mutual exclusion
protocol by the
OTS/CafeOBJ method

M. Nakamura;
S. Higashi; K.
Sakakibara; a.
Ogata

2020

Fischer's
protocol is
a well-
known real-
time mutual
exclusion
protocol for
multiple
processes.
The mutual
exclusivene
ss is
guaranteed
by treating
time
aspects of
transitions.
In such a
multitask
real-time
system,
since
processes
run
concurrentl
y, the size
of the state
space
grows
exponentiall
y. It is not
easy to
verify time
constraints
of a give
system.
Formal
descriptions
of multitask
real-time
systems
may help
us to verify
time
constraints
formally
with
computer
supports. In
this paper,
as a case
study of the
OTS/CafeO
BJ method,
we model
Fischer's
protocol as
an
observation
al transition
system,
describe it
in CafeOBJ
algebraic
specificatio
n language,
and verify
that
different
processes
do not enter
the critical
section at
the same
time by the
proof score
method
based on
equational
reasoning
implemente
d in
CafeOBJ
interpreter.

10.2391
9

/SICE4
8898.

2020.92
40272

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
240272

Multitask
real-time
system;
Fischer’s
real-time
mutual
exclusion
protocol;
Algebraic
specificatio
n;
Observation
al transition
system;
Proof score
method

O artigo aborda sobre métodos
formais, CafeOBJ, e

OTS/CafeOBJ método formal
em que um sistema é

modelado como um sistema de
transição observacional (OTS),

sua especificação é descrita
em CafeOBJ e as propriedades

são verificadas formalmente
usando o método de prova

score implementado em
CafeOBJ.

Os principais conceitos
envolvem:

Formal methods:
abordagem matemática
para a especificação e
verificação de sistemas
de software e hardware.

CafeOBJ: linguagem
formal de especificação
executável que fornece

execução de
especificação com base

em uma teoria de
reescrita.

OTS/CafeOBJ method:
método formal em que

um sistema é modelado
como um sistema de

transição observacional
(OTS), sua especificação
é descrita em CafeOBJ e

as propriedades são
verificadas formalmente

usando o método de
prova score

implementado em
CafeOBJ.

A metodologia
usada apresenta
uma abordagem

para
especificação e

verificação formal
de sistemas

usando o
OTS/CafeOBJ

method e a teoria
de reescrita de

CafeOBJ. Propõe
um tipo de dados

abstrato para
descrever
sistemas

multitarefa em
tempo real em
OTS/CafeOBJ.

IEEE Inglês CI1 Incluído
Formalization and
Verification of Cyclic
Group

Y. Tang; Y.
Xu; P. Liu; G.
Zeng 2021

At present,
the formal
method is
an
important
system
design
verification
method,
which
effectively
compensat
es the
“incomplete
” problem of
the
traditional
methods
such as
simulation
and testing
in the
system
design
verification.
Since the
logical
method as
a typical
formal
method is
our
research
direction,
we naturally
choose the
first-order
logic
language in
the logical
method to
formalize
Group
theory in
the field of
mathematic
s. Based on
some
formalized
conclusions
of Group
theory in
TPTP, this
paper
completes
the formal
description
of missing
definitions
about the
Group in
TPTP,
namely the
order of
element in
group, nth-
order cyclic
group and
Klein four-
group.
Some
proposition
s and
theorems
related to
these
definitions
are further
formal
described,
and the
correctness
of these
descriptions
is verified
by the
theorem
tool
Prover9.

10.1109
/ISKE54

062.
2021.97
55331

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
755331

cyclic
group;first-
order logic;
formalizatio
n;Prover9;
verification

O artigo trata sobre o uso de
software para resolver

problemas matemáticos, com
destaque para o

desenvolvimento de sistemas
que automatizam a prova de
teoremas matemáticos. Traz

também descrição de diversas
ferramentas utilizadas na
formalização e prova de

teoremas.

O artigo aborda da
utilização de sistemas
computacionais para
formalizar e provar

teoremas matemáticos,
com foco em grupos

cíclicos. É apresentado
um breve histórico das
ferramentas utilizadas
para esta finalidade e

exemplos de pesquisas
que utilizam esta

abordagem.

O método
proposto no artigo

consiste na
formalização da

descrição de
grupos cíclicos de
ordem n, partindo
da formalização
da ordem dos
elementos no

grupo. Em
seguida, é
realizada a
dedução e

verificação do
grupo cíclico de

ordem n utilizando
a ferramenta
Prover9. O

objetivo final é
demonstrar a
correção da
formalização

realizada.

IEEE Inglês CI1 Incluído
Formalization of
Requirements for
Correct Systems

I. Sayar; J.
Souquieres 2020

Improving
the quality
of a system
begins by
their
requirement
s elicitation:
the
challenge is
to bridge
the gap
between
the
requirement
s of the
client and
their formal
specificatio
n defined
by the
scientist. A
first step
consists on
understandi
ng and
rewriting
the existing
requirement
s. Along the
developme
nt process,
we
introduce
formal
terms in the
requirement
s coming
the formal
specificatio
n and make
explicit the
interactions
between
them by a
glossary.
The trace of
the
requirement
s and their
correspondi
ng
specificatio
n is
managed
and serves
to simplify
the
activities of
validation
and
verification.
The
validation is
studied
since the
understandi
ng of the
first
requirement
s and all
along the
developme
nt of their
formal
specificatio
n. The
verification
may detect
imperfectio
ns like
incoherenc
es and
ambiguities
in both the
formal
specificatio
n and their
correspondi
ng
requirement
s.

10.1109
/FORM
REQ51

202.
2020.00

012

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
224522

-

O artigo aborda sobre
documento de requisitos, o
qual é utilizado como um

acordo vinculativo entre os
clientes e os fornecedores de

desenvolvimento de software e
sistemas. Mostrando também a
linguagem natural, que embora

seja utilizada para facilitar a
comunicação entre as partes
envolvidas, pode introduzir

ambiguidades indesejadas nos
requisitos e levar a mal-

entendidos entre as partes
interessadas.

O artigo aborda que
documento de requisitos

é utilizado como uma
ponte entre os clientes e
fornecedores de software

e sistemas de
desenvolvimento.
Mostrando que a

refinação é um processo
que permite a

transformação de um
modelo abstrato em um

modelo concreto,
preservando as
propriedades e

comportamentos do
modelo abstrato.

A metodologia
usada, apresenta
abordagens que

propõem o uso de
linguagem natural
controlada para a

descrição de
requisitos

melhoram a
clareza dos

requisitos, mas
não contribuem

diretamente para
o

desenvolvimento
de especificações
formais. Junto ao

refinamento e
validação dos

requisitos.

IEEE Inglês CI1 Incluído
Formalizing Cyber–
Physical System Model
Transformation Via
Abstract Interpretation

N. Jarus; S. S.
Sarvestani; A.
Hurson 2019

Model
transformati
on tools
assist
system
designers
by reducing
the labor-
intensive
task of
creating
and
updating
models of
various
aspects of
systems,
ensuring
that
modeling
assumption
s remain
consistent
across
every
model of a
system,
and
identifying
constraints
on system
design
imposed by
these
modeling
assumption
s. We have
proposed a
model
transformati
on
approach
based on
abstract
interpretatio
n, a static
program
analysis
technique.
Abstract
interpretatio
n allows us
to define
transformati
ons that are
provably
correct and
specific.
This work
develops
the
foundations
of this
approach to
model
transformati
on. We
define
model
transformati
on in terms
of abstract
interpretatio
n and prove
the
soundness
of our
approach.
Furthermor
e, we
develop
formalisms
useful for
encoding
model
properties.
This work
provides a
methodolog
y for
relating
models of
different
aspects of
a system
and for
applying
modeling
techniques
from one
system
domain,
such as
smart
power
grids, to
other
domains,
such as
water
distribution
networks.

10.1109
/HASE.
2019.00

025

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
673032

Modeling,
Model
transformati
on, Formal
methods,
Abstract
interpretatio
n

O artigo comenta sobre
sistemas ciberfísicos críticos,

onde possuem múltiplos
requisitos funcionais e não
funcionais que apresentam

desafios aos seus projetistas.
Os projetistas precisam integrar
componentes físicos, software

de controle cibernético e
hardware, e processos para
operadores humanos em um

sistema completo. A
abordagem de modelagem é

utilizada para ajudar na solução
desses desafios.

O artigo trata os
conceitos:

Sistema ciberfísico crítico
Requisitos funcionais e

não funcionais
Integração de

componentes físicos,
software de controle

cibernético e hardware e
processos para

operadores humanos em
um sistema completo

Modelagem formalismos
Transformação de

modelos
Interpretação abstrata

Semântica de sistema e
modelo

Os autores
propõem uma
metodologia
baseada em
interpretação

abstrata para a
transformação de

modelos. A
abordagem utiliza
a formalização da

semântica do
sistema e do

modelo para criar
mapeamentos

precisos entre os
dois. A

transformação de
modelos é uma

técnica para
garantir a

consistência entre
os modelos e

identificar
restrições no

projeto do
sistema.

A abordagem
deve ser aplicável

a uma ampla
gama de sistemas

e vários
formalismos de

modelagem.

IEEE Inglês CI1 Incluído
Formalizing Loop-
Carried Dependencies
in Coq for High-Level
Synthesis

F. Faissole; G.
A.
Constantinides
; D. Thomas

2019

High-level
synthesis
(HLS) tools
such as
VivadoHLS
interpret
C/C++ code
supplement
ed by
proprietary
optimization
directives
called
pragmas. In
order to
perform
loop
pipelining,
HLS
compilers
have to
deal with
non-trivial
loop-carried
data
dependenci
es. In
VivadoHLS,
the
dependenc
e pragma
could be
used to
enforce or
to eliminate
such
dependenci
es, but, the
behavior of
this
directive is
only
informally
specified
through
examples.
Most of the
time
programme
rs and the
compiler
seem to
agree on
what the
directive
means, but
the
accidental
misuse of
this pragma
can lead to
the silent
generation
of an
erroneous
register-
transfer
level (RTL)
design,
meaning
code that
previously
worked
may break
with newer
more
aggressivel
y optimised
releases of
the
compiler.
We use the
Coq proof
assistant to
formally
specify and
verify the
behavior of
the
VivadoHLS
dependenc
e pragma.
We first
embed the
syntax and
the
semantics
of a tiny
imperative
language
Imp in Coq
and specify
a
conformanc
e relation
between an
Imp
program
and a
dependenc
e pragma
based on
data-flow
transformati
ons. We
then
implement
semi-
automated
methods to
formally
verify such
conformanc
e relations
for non-
nested loop
bodies.

10.1109
/FCCM.
2019.00

056

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
735537

High level
synthesis;
Formal
proofs;Loop
dependenci
es

O artigo discute a utilização de
ferramentas de síntese de alto

nível (HLS) em FPGA para
projetar circuitos complexos,

destacando o uso do
VivadoHLS, um compilador

HLS da Xilinx.

O artigo discute o
problema de garantir a
correção de um design

de hardware gerado por
um compilador HLS,

dado que o programador
precisa especificar

diretivas para otimizar o
desempenho.

Especificamente, o
problema abordado é a

falta de uma
especificação formal do

comportamento das
diretivas de dependência
no VivadoHLS e a falta
de verificação de sua

validade pelo compilador.

O artigo propõe
uma abordagem
para verificar a
validade das
diretivas de

dependência
antes da

compilação em
hardware.A

abordagem utiliza
uma ferramenta

de análise estática
de código para

extrair
informações sobre
as dependências
entre loops. As
informações
extraídas são

usadas para gerar
uma

representação
formal das

dependências do
código, que é

então usada para
verificar a

validade das
diretivas de

dependência do
VivadoHLS.

IEEE Inglês CI1 Incluído
Formally Verifying
Sequence Diagrams for
Safety Critical Systems

X. Chen; F.
Mallet; X. Liu 2020

UML
interactions
, aka
sequence
diagrams,
are
frequently
used by
engineers
to describe
expected
scenarios
of good or
bad
behaviors
of systems
under
design, as
they
provide
allegedly a
simple
enough
syntax to
express a
quite large
variety of
behaviors.
This paper
uses them
to express
formal
safety
requirement
s for safety
critical
systems in
an
incremental
way, where
the
scenarios
are
progressive
ly refined
after
checking
the
consistency
of the
requirement
s. As
before, the
semantics
of these
scenarios
are
expressed
by
transformin
g them into
an
intermediat
e semantic
model
amenable
to formal
verification.
We rely on
the Clock
Constraint
Specificatio
n Language
(CCSL) as
the
intermediat
e semantic
language.
An SMT-
based
analysis
tool called
MyCCSL is
used to
check
consistency
of the
sequence
diagrams.
We
compare
these
requirement
s against
actual
execution
traces to
prove the
validity of
our
transformati
on. In some
sense,
sequence
diagrams
and CCSL
constraints
both
express a
family of
acceptable
infinite
traces that
must
include the
behaviors
given by
the finite
set of finite
execution
traces
against
which we
validate.
Finally, the
whole
process is
illustrated
on partial
requirement
s for a
railway
transit
system.

10.1109
/TASE4
9443.

2020.00
037

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
405319

Safety
Critical
Systems;
Sequence
Diagram;
Clock
Constraint
Specificatio
n
Language;
Formal
Verification;
Safety
Requiremen
ts

O artigo mostra a segurança
como aspecto fundamental no
desenvolvimento de sistemas

críticos, juntamente a
formalização de requisitos de
segurança, que é essencial
para garantir a precisão da

análise.

Os conceitos abordados
pelo artigo envolvem:

Requisitos de segurança
em sistemas críticos.
Linguagens formais e

semi-formais.
Diagramas de sequência

do UML.
Formalização e

verificação de requisitos
de segurança.

Semântica de linguagens
de especificação.

A metodologia
abordada pelo
artigo envolve:

Transformação de
diagramas de
sequência em

uma linguagem
intermediária,

CCSL, que
permite a

descrição de
relações causais e

temporais.
Verificação de
consistência
automatizada
utilizando o

MyCCSL, um
analisador de

restrições CCSL
baseado em SMT.

Simulação do
comportamento

dos diagramas de
sequência em

semântica CCSL
para validar a
correção da

transformação.

IEEE Inglês CI1 Incluído
From BPMN2 to Event
B: A Specification and
Verification Approach
of Workflow
Applications

A. Ben
Younes; Y.
Ben Daly
Hlaoui; L. Ben
Ayed; M.
Bessifi

2019

The
BPMN2
language
suffers from
the
absence of
a precise
formal
semantics
of the
various
notations
used, which
often leads
to
ambiguities.
In addition,
this
language
does not
have a
proof
system that
validates a
BPMN2
specificatio
n.
Consequen
tly, the use
of a formal
method,
such as
Event B, is
a solution
for dealing
with the
shortcomin
gs found in
the BPMN2
language.
We
propose in
this paper a
model-
driven
approach
based on
meta-model
and meta-
model
transformati
on
implemente
d in
KerMeta to
specify and
formally
verify
workflows.

10.1109
/COMP
SAC.

2019.10
266

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
754325

Workflow
Meta-model
Transformat
ion BPMN
EventB
KerMeta

O artigo aborda a modelagem
de processos de negócios,

utilizando a notação BPMN 2.0
como base.

O BPMN 2.0 é uma proposta
amplamente aceita e utilizada,

devido à sua versatilidade,
cobertura de todos os padrões

de fluxo de trabalho e
capacidade de execução direta

da especificação.
No entanto, o BPMN 2.0 ainda
sofre com a ausência de uma
semântica formal precisa das

várias notações usadas,
levando a ambiguidades e

inconsistências.

O artigo trata da
modelagem de

processos de negócios,
que é um processo
fundamental para a

organização e gestão
eficaz de uma empresa.
A notação BPMN 2.0 é

utilizada como base para
a modelagem, sendo

uma proposta
amplamente aceita e

utilizada.
Os métodos formais,

como o método Event B,
são apresentados como
uma alternativa para a

validação da
especificação BPMN 2.0.

O artigo propõe
um framework

orientado a
modelos que

transforma uma
especificação

BPMN em uma
especificação

formal usando a
notação Event B.
A proposta busca
combinar técnicas

semi-formais e
métodos formais

para
desenvolvimento

de software
prático e rigoroso.

IEEE Inglês CI1 e CI4 Incluído
From Prose to
Prototype: Synthesising
Executable UML
Models from Natural
Language

G. J.
Ramackers; P.
P. Griffioen;
M. B. J.
Schouten; M.
R. V.
Chaudron

2021

This paper
presents a
vision for a
developme
nt tool that
provides
automated
support for
synthesisin
g UML
models
from
requirement
s text
expressed
in natural
language.
This
approach
aims to
simplify the
process of
analysis - i.
e. moving
from written
(and
spoken)
descriptions
of the
functionality
of a system
and a
domain to
an
executable
specificatio
n of that
system.
The
contribution
focuses on
the AI
techniques
used to
transform
natural
language
into
structural
and
dynamic
UML
models.
Moreover,
we envision
a ‘human-
in-the-loop’
approach
where an
interactive
conversatio
nal
component
is used
based on
machine
learning of
the system
under
constructio
n and
corpora of
external
natural
language
texts and
UML
models. To
illustrate
the
approach,
we present
a tool
prototype.
As a
scoping,
this
approach
targets
data-
intensive
systems
rather than
control-
intensive
(embedded
) systems.

10.1109
/MODE

LS-
C53483

.
2021.00

061

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
643623

UML;MDA;
requirement
text;natural
language
processing;
model
driven
engineering
;executable
specificatio
n;
transformer
architecture

O artigo aborda a necessidade
de automação de

funcionalidades complexas em
sistemas de software

interligados em uma sociedade
digital.

Ele apresenta algumas
tecnologias que permitem a

expressão de especificações
transformáveis em executáveis,

mas que são de difícil
compreensão para

especialistas de domínio e
usuários finais.

Conceitos do artigo:

Model Driven
Architecture (MDA): uma

abordagem para o
desenvolvimento de
software que utiliza

modelos abstratos para
gerar código.

Unified Modeling
Language (UML): uma

linguagem de
modelagem gráfica para
especificar, visualizar e

documentar sistemas de
software.

Domain Specific
Languages (DSLs):

linguagens de
programação

especializadas em um
domínio específico.

Model Driven
Engineering (MDE): uma

abordagem para o
desenvolvimento de
software que utiliza

modelos de alto nível
para gerar código.

Metodologia do
artigo:

Utilização de
técnicas de

processamento de
linguagem natural

para mapear
documentos de
requisitos em
modelos UML.
Utilização de
modelos de

linguagem pré-
treinados para

lidar com a
ambiguidade da

linguagem natural.
Incorporação de

uma componente
"humano na alça"
para lidar com a
ambiguidade e

incompletude dos
documentos de

requisitos.

IEEE Inglês CI1 e CI4 Incluído
Fvil: Intermediate
language based on
formal verification
virtual machine

Zeng, Weiru
(57192409388
); Liao, Yong
(55213715800
); Qian,
Weizhong
(55710445300
); Yan, Zehui
(57219163124
); Yang, Zheng
(57198347264
); Li, Ang
(57219158755
)

2020

As the
software
scale
continues
to increase,
the
software
developme
nt cycle
becomes
more and
more
compact,
which takes
more time
to the
software
test. How to
test the
software
and ensure
its safety
efficiently
and
accurately
is an urgent
problem to
be solved.
The formal
verification
virtual
machine
(FSPVM)
[1]
developed
by Coq [2]
assistant
verification
tool can
effectively
verify
programs
with formal
method.
However,
its
widespread
application
is heavily
restricted
by the
compliant
syntax of
the formal
specificatio
n language
Lolisa [3]
and the
mechanism
of
generalized
algebraic
types
GADTs [4].
This paper
proposes a
more user-
friendly
intermediat
e language
(FVIL)
based on
FSPVM,
which
changes
the
hierarchical
structure of
Lolisa and
expands
the type of
Lolisa,
makes the
formal
verification
of software
easier to be
applied in
practice.
The
experiment
s show that
the
intermediat
e language
can make
the formal
method
easier to
understand,
apply and
expand. ©
Springer
Nature
Singapore
Pte Ltd
2020.

10.1007
/978-

981-15-
8101-
4_59

https://www.
scopus.
com/inward/
record.uri?
eid=2-s2.0-
850914997
46&doi=10.
1007%
2f978-981-
15-8101-
4_59&partn
erID=40&m
d5=75175d
a73d20936f
6685fab6bff
9414a

Coq;
Formal
verification;
Intermediat
e language;
Software
security

O artigo discute o problema da
verificação de programas de
software em um cenário de

aumento de escala e
complexidade do software.

Apresenta o formal verification
virtual machine (FSPVM),

desenvolvido pela ferramenta
de verificação assistida Coq,
como uma forma eficaz de
verificar programas com o

método formal.

O artigo aborda a
questão da verificação
formal de software, que

envolve o uso de
métodos matemáticos
para garantir que um
programa atenda a

certas especificações e
propriedades.A proposta
de uma nova linguagem

intermediária (FVIL)
baseada no FSPVM é

uma tentativa de tornar a
verificação formal mais

acessível e fácil de
aplicar na prática,

superando as restrições
da linguagem de

especificação formal
Lolisa e do mecanismo

de tipos algébricos
generalizados (GADTs).

O artigo propõe
uma nova
linguagem

intermediária
(FVIL) baseada no
FSPVM, que visa

tornar a
verificação formal
de software mais

fácil de ser
aplicada na

prática.
Os autores
utilizaram

experimentos para
validar a eficácia

da nova
linguagem

intermediária em
tornar o método
formal mais fácil

de entender,
aplicar e expandir.

Scopus Inglês CI1 e CI4 Incluído
Integration of a formal
specification approach
into CPPS engineering
workflow for machinery
validation

B. Vogel-
Heuser; C.
Huber; S. Cha;
B. Beckert

2021

Cyber
Physical
Production
Systems
(CPPS)
operate for
a long time
and face
continuous
and
incremental
changes to
follow up
varying
requirement
s.
Interdiscipli
nary
engineering
of CPPS is
often
subject to
delay and
cost
overrun;
and quality
control may
even fail
due to the
lack of
efficient
information
exchange
between
multiple
involved
actors. We
propose to
integrate a
formal
requirement
specificatio
n approach,
namely
Generalize
d Test
Tables
including
tool
support,
into
industrial
workflows
and present
the
approach
through
extended
notations of
Business
Process
Model and
Notation
(BPMN),
namely
BPMN++*,
with the
tool-
coupling
aspect. The
suggested
tooling
enables
automation
engineers
to follow the
defined
workflow
systematica
lly and
communica
te easier
through the
formally
represented
change
requirement
. The
approach is
demonstrat
ed by two
typical use
cases of
changing a
CPPS’
control
software
and
showing the
result by
means of
an
extended
BPMN++
model
exemplarily.

10.1109
/INDIN4
5523.

2021.95
57505

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
557505

Engineering
workflow;
CSCW
(Computer
Supported
Cooperative
Work);
Software
developmen
t
manageme
nt;PLC
programmin
g;Control
code;
Formal
specificatio
n;
Information
manageme
nt;Test
tables

O artigo discute as
características dos sistemas de
produção ciberfísicos (CPPS) e

destaca sua complexidade,
interconectividade, inteligência

e inovação. Além disso,
ressalta a importância da

cooperação interdisciplinar e
entre empresas em todas as

fases do projeto.

O conceito central do
artigo é a integração de

uma abordagem de
especificação formal -

Generalized Test Tables
(GTTs) - no fluxo de

engenharia de software
de controle de CPPS. O

objetivo é atender às
regulamentações legais
para produtos médicos e
de outros setores, bem

como fornecer
documentação clara para

mudanças futuras.

O artigo descreve
a integração da
abordagem de
especificação

formal GTTs no
fluxo de

engenharia de
software de

controle de CPPS.
Além disso,

apresenta versões
de ferramentas de

suporte
apropriadas para

as tarefas de
engenharia ao

longo do ciclo de
vida do CPPS. A
avaliação dessas

ferramentas e
aspectos

adicionais, como
equipes e

organizações, são
representados em

uma notação
BPMN estendida.
O artigo também

enfatiza a
importância da

cooperação
interdisciplinar e
entre empresas

em todas as fases
do projeto.

IEEE Inglês CI1 Incluído
KAIROS: Incremental
Verification in High-
Level Synthesis
through Latency-
Insensitive Design

L. Piccolboni;
G. D.
Guglielmo; L.
P. Carloni

2019

High-level
synthesis
(HLS)
improves
design
productivity
by
replacing
cycle-
accurate
specificatio
ns with
untimed or
transaction-
based
specificatio
ns.
Obtaining
high-quality
RTL
implementa
tions
requires
significant
manual
effort from
designers,
who must
manipulate
the code
and
evaluate
different
HLS-knob
settings.
These
modification
s can
introduce
bugs in the
RTL
implementa
tions. We
present
KAIROS, a
methodolog
y for
incremental
formal
verification
in HLS.
KAIROS
verifies the
equivalence
of the RTL
implementa
tions the
designer
subsequent
ly derives
from the
same
specificatio
n by
applying
code
manipulatio
ns and
knobs.

10.2391
9

/FMCA
D.

2019.88
94295

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
894295

-

O artigo discute o uso cada vez
mais frequente da síntese de
alto nível (HLS) na indústria e

na academia, como uma
alternativa a especificações
baseadas em ciclos, como

Verilog. A especificação de alto
nível é organizada

hierarquicamente, com
módulos, processos e regiões,
e muitas vezes projetada para
expor interfaces insensíveis à

latência.

Conceitos abordados no
artigo:

High-level synthesis
(HLS)

Especificações de alto
nível organizadas
hierarquicamente

Interfaces insensíveis à
latência

Design-space exploration
(DSE)

RTL implementations
Latency-insensitive

design (LID)
Valid e ready signals nas
interfaces dos módulos

Loop unrolling
Formal incremental

verification

O artigo propõe
um método de

verificação formal
incremental das
manipulações de
código e botões

de síntese
aplicados à

especificação de
alto nível de um
design HLS. O

método baseia-se
na geração de

uma propriedade
formal que
relaciona a

especificação de
alto nível original

com a versão
modificada da
especificação.

IEEE Inglês CI1 Incluído
Methods and Tools for
Formal Verification of
Cloud Sisal Programs

V. N.
Kasyanov; E.
V. Kasyanova 2020

A cloud
parallel
programmin
g system
CPPS
being under
developme
nt at the
Institute of
Informatics
Systems is
aimed to be
an
interactive
visual
environmen
t of
functional
and parallel
programmin
g for
supporting
of computer
science
teaching
and
learning.
The system
will support
the
developme
nt,
verification
and
debugging
of
architecture
-
independen
t parallel
Cloud Sisal
programs
and their
correct
conversion
into efficient
code of
parallel
computing
systems for
its
execution in
clouds. In
the paper,
methods
and tools of
the CPPS
system
intended for
formal
verification
of Cloud
Sisal
programs
are
described.

10.1109
/MACIS
E49704

.
2020.00

047

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
195627

automated
theorem
proof;Cloud
Sisal;
deductive
verification;
functional
programmin
g;parallel
programmin
g

O artigo descreve o sistema
CPPS, que é um ambiente de

programação em nuvem
integrado na linguagem Cloud

Sisal. O sistema inclui um
interpretador que suporta

interação do usuário durante a
criação e depuração de

programas funcionais Cloud
Sisal, bem como um

compilador cruzado otimizado
que constrói um programa

paralelo de acordo com sua
especificação funcional.

O artigo explora o CPPS,
um sistema que tem

como objetivo permitir
que programadores de

aplicativos desenvolvam,
verifiquem e depurem
programas Cloud Sisal

em um estilo visual sem
levar em conta o

supercomputador de
destino. O sistema é

baseado em uma
representação de gráfico

interno de programas
Cloud Sisal, que é

focada no
processamento visual e
suporta a construção de

imagens visuais de
representações de
gráfico interno de

programas Cloud Sisal e
suas estruturas de dados

internas.

A metodologia
envolve o sistema
CPPS, que usa
uma verificação
dedutiva para a

verificação formal
de programas
Cloud Sisal. A
verificação é

realizada usando
um subsistema de

verificação
baseado em um

estratégia de
reforço de

condição de
verificação. O
subsistema de

verificação usa a
linguagem ACL2
como linguagem
de entrada e a
linguagem C

como linguagem
intermediária.

IEEE Inglês CI1 Incluído
Model Checking
Software in
Cyberphysical Systems

M. Sirjani; E.
A. Lee; E.
Khamespanah 2020

Model
checking a
software
system is
about
verifying
that the
state
trajectory of
every
execution
of the
software
satisfies
formally
specified
properties.
The set of
possible
executions
is modeled
as a
transition
system.
Each
"state" in
the
transition
system
represents
an
assignment
of values to
variables,
and a state
trajectory (a
path
through the
transition
system) is a
sequence
of such
assignment
s. For
cyberphysic
al systems
(CPSs),
however,
we are
more
interested
in the state
of the
physical
system
than the
values of
the
software
variables.
The value
of model
checking
the
software
therefore
depends on
the
relationship
between
the state of
the
software
and the
state of the
physical
system.
This
relationship
can be
complex
because of
the real-
time nature
of the
physical
plant, the
sensors
and
actuators,
and the
software
that is
almost
always
concurrent
and
distributed.
In this
paper, we
study
different
ways to
construct a
transition
system
model for
the
distributed
and
concurrent
software
component
s of a CPS.
We
describe a
logical-time
based
transition
system
model,
which is
commonly
used for
verifying
programs
written in
synchronou
s
languages,
and derive
the
conditions
under
which such
a model
faithfully
reflects
physical
states.
When these
conditions
are not met
(a common
situation), a
finer-
grained
event-
based
transition
system
model may
be required.
Even this
finer-
grained
model,
however,
may not be
sufficiently
faithful, and
the
transition
system
model
needs to be
refined
further to
express not
only the
properties
of the
software,
but also the
properties
of the
hardware
on which it
runs. We
illustrate
these
tradeoffs
using a
coordinatio
n language
called
Lingua
Franca that
is well-
suited to
extracting
transition
system
models at
these
various
levels of
granularity,
and we
extend the
Timed
Rebeca
language
and its tool
Afra to
perform this
extraction
and then to
perform
model
checking.

10.1109
/COMP
SAC48

688.
2020.0-

138

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
202762

Cyberphysi
cal
systems,
Lingua
Franca,
Model
checking,
Rebeca,
Verification

 O artigo aborda o desafio de
verificar propriedades de
sistemas ciberfísicos, que
envolvem interações entre

software e o mundo físico. Uma
das principais características

desses sistemas é sua
natureza reativa e interativa, o
que torna a verificação mais

desafiadora do que para
sistemas que dependem
apenas da execução de
software em hardware.

 O conceito central do
artigo é a verificação
formal de sistemas

ciberfísicos, que envolve
não apenas a verificação

de propriedades de
software, mas também a
interação desse software
com seu ambiente físico.

Para alcançar a
verificação bem-sucedida

desses sistemas, é
necessário combinar as

semânticas de software e
física.

O método
proposto no artigo

envolve a
modelagem e a

verificação formal
de sistemas

ciberfísicos. Para
lidar com a

interação entre
software e

ambiente físico, é
necessário

combinar as
semânticas de

software e física.
Além disso, o

artigo aponta para
a necessidade de

usar técnicas
adequadas para

lidar com sistemas
híbridos, que

possuem
aspectos discretos

e contínuos.

IEEE Inglês CI1 Incluído

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128736763&doi=10.1007%2f978-981-19-0390-8_121&partnerID=40&md5=b1e2148d7a2bada893896c26b12e90b1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8753908
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837154
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882750
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240272
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9755331
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9224522
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673032
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735537
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9405319
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8754325
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643623
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091499746&doi=10.1007%2f978-981-15-8101-4_59&partnerID=40&md5=75175da73d20936f6685fab6bff9414a
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557505
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9195627
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9202762

Model-checking infinite-
state nuclear safety
I&C systems with
nuXmv

A. Pakonen 2021

For over a
decade,
model
checking
has been
successfull
y used to
formally
verify the
instrumenta
tion and
control
(I&C) logic
design in
Finnish
nuclear
power plant
projects.
One of the
practical
challenges
is that the
model
checker
NuSMV
forces the
user to
abstract the
way analog
signals are
processed
in the
model,
which
causes
extra
manual
work, and
could mask
actual
design
issues. In
this paper,
we
experiment
with the
newer tool
nuXmv,
which
supports
infinite-
state
modelling.
Using
actual
models
from
practical
industrial
projects, we
show that
after
changing
the analog
signal
processing
to be based
on real
number
math, the
analysis
times are
still
manageabl
e. The
disadvanta
ge is that
certain
useful types
of formal
properties
are not
supported
by the
infinite-
state
algorithms.
We also
discuss the
nuclear
industry
specific
features of
I&C
programmin
g
languages,
which
cause
significant
constraints
on domain-
specific
formal
verification
method and
tool
developme
nt.

10.1109
/INDIN4
5523.

2021.95
57445

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
557445

formal
verification;
model
checking;
control
engineering
;software
safety

O artigo trata do uso de model
checking, um método de

verificação formal, para garantir
a segurança de sistemas
críticos de controle em
aplicações nucleares.

O foco principal do estudo é
analisar a eficácia do nuXmv,

um model checker que suporta
modelos de estado infinito e

variáveis de números reais, em
comparação com o NuSMV,
que só suporta modelos de

estado finito e variáveis
inteiras.

O artigo apresenta a
aplicação da verificação
formal em um cenário de

sistemas críticos de
controle, com destaque

para aplicações
nucleares. O estudo

compara as capacidades
de dois model checkers -

NuSMV e nuXmv - em
lidar com modelos de
lógica de controle que

contêm processamento
de sinal analógico. A
análise formal é uma

técnica essencial para
garantir a correção e

segurança de sistemas
críticos de controle,

como aqueles usados
em instalações

nucleares.

A metodologia
englobada no

artigo utiliza uma
abordagem

experimental para
comparar o

desempenho do
NuSMV e do
nuXmv na

verificação de
lógicas de

controle em
sistemas críticos

de controle. A
análise é

conduzida em um
caso de estudo
que envolve a

verificação formal
de um sistema de
controle usado em

uma instalação
nuclear.

IEEE Inglês CI1 Incluído

Modeling and Verifying
Storm Using CSP

H. Zhao; H.
Zhu; Y. Fang;
L. Xiao 2019

Due to the
higher
pursuit of
information
timeliness,
a number of
distributed
stream
processing
computatio
n
frameworks
have
emerged,
among
which the
most
successful
and widely
used at
present is
Storm.
Storm is a
stream-only
processing
computatio
n
framework
which can
deal with
continuous
streaming
data. This
paper
applies
Communica
ting
Sequential
Processes
(CSP), a
formal
language in
process
algebra, to
analyze
and model
the
communica
tion
behaviors
in the
workflow of
Storm.
Then, we
transform
the
established
model and
use the
refinement
checking
tool
Failures-
Divergence
s
Refinement
(FDR) to
verify
whether it
satisfies
deadlock-
free and
sequential
consistency
properties.

10.1109
/HASE.
2019.00

037

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
673039

Storm,
CSP, FDR,
Formal
modeling,
Verification

O artigo trata do Storm, um
framework de processamento
de fluxo de dados em tempo

real, programado em Clojure e
Java. Ele é capaz de lidar com
o fluxo de dados de entrada em
milhões de vezes por segundo,

com tolerância a falhas e
escalabilidade.

O artigo aborda os
seguintes conceitos:

A modelagem formal é
uma abordagem para

especificar sistemas de
forma matemática e

rigorosa.
Communicating

Sequential Processes
(CSP) é uma linguagem
formal para descrever a

comunicação entre
processos concorrentes.
Failures-Divergences

Refinement (FDR) é uma
ferramenta de verificação

de refinamento para
verificar propriedades de

modelos CSP.

Com a
metodologia

aplicada ao artigo,
os autores
aplicaram a

linguagem formal
CSP para modelar

formalmente o
comportamento
de comunicação
entre processos

no fluxo de
trabalho do Storm

após o usuário
enviar Topology.
Eles usaram a

ferramenta FDR
para verificar se o

modelo CSPM
estabelecido
satisfaz as

propriedades de
ausência de
deadlock e

consistência
sequencial.

IEEE Inglês CI1 Incluído
NFA Based Formal
Modeling of Smart
Parking System Using
TLA +

S. Latif; A.
Rehman; N. A.
Zafar 2019

The smart
objects are
used to
sense,
communica
te, send
and to
share
information
within a
network.
Everything
which is
connected
directly or
indirectly
within a
network for
the sake of
getting,
analyze or
interpreting
data known
as IoT.
There are
many
proposed
applications
of IoT
infrastructur
e in smart
city. We
have
proposed
model of
smart
parking
system in
this paper
which is
based on
UML,
automata-
based
model and
formal
methods.
The
depiction of
real-world
parking
system is
done in
UML based
models to
indicate the
flow and
working of
the system.
Automata
models are
used to
convert
UML
diagram
into
automated
system
which
provides
smart
mechanism
of parking
system.
Automated
model of
automata is
represented
in terms of
states and
transitions.
Every state
has unique
identity and
defined
functionality
. There are
many
operations
of parking
system
which are
modeled in
this paper
including
find free
spaces,
search
shortest
path
towards
empty slot,
car
entrance
and exit
with in a
region. A
region is an
area of
parking
system
which is
automated
and use to
sense a
vehicle, car
entrance,
exit or to
find a
location.
The formal
method
techniques
are used to
formally
verify
system
properties
using
available
facilities
available in
formal
method
tools. We
have used
Temporal
Logic of
Actions
(TLA+)
formal
language to
validate
and verify
system
properties
using
formal
techniques.
TLA+ is
mathematic
al based
notation to
describe a
system
using
discrete
mathematic
s concepts.
We have
integrated
these three
approaches
to model
parking
system
from
depiction
side,
automation
side and
from the
angle of
verification
and
validation of
the model.

10.1109
/CISCT.
2019.87
77445

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
777445

Parking;
UML;
Formal
methods;
Verification
and
validation;
TLC

O artigo aborda a aplicação da
Internet das Coisas (IoT) na
criação de um sistema de

estacionamento inteligente em
uma cidade. São utilizados

modelos UML e automata para
representar o sistema de

estacionamento e sua
automação. São empregadas
técnicas de métodos formais

para validar e verificar as
propriedades do sistema.

O artigo engloba os
conceitos de:

Internet das Coisas (IoT):
conceito que se refere a
objetos conectados em

rede e capazes de enviar
e receber informações.

Modelagem UML:
linguagem gráfica

utilizada para modelar
sistemas de software.
Autômatos: modelo

matemático de sistema
que possui estados e
transições entre esses

estados.
Métodos Formais:

conjunto de técnicas
matemáticas e lógicas

para especificar,
desenvolver e verificar

sistemas.

A metodologia do
artigo engloba:

Modelagem UML:
utilizada para
representar o
sistema de

estacionamento
de forma gráfica.

Autômatos:
utilizados para
automatizar o

sistema de
estacionamento e

criar um
mecanismo

inteligente de
gerenciamento.

Técnicas de
Métodos Formais:

utilizadas para
validar e verificar
as propriedades

do sistema,
utilizando a

linguagem TLA+.

IEEE Inglês CI1 Incluído
On Complementing an
Undergraduate
Software Engineering
Course with Formal
Methods

B. Westphal 2020

Software
systems
continue to
pervade
day-to-day
life and so it
becomes
increasingly
important to
ensure the
dependabili
ty, safety,
and
security of
software.
One
approach to
this end
can be
summarise
d under the
broad term
of formal
methods, i.
e., the
formal
analysis of
requirement
s, software
models, or
programs.
Formal
methods in
this sense
are today
used in
many
branches of
the
software
industry,
such as the
huge
internet
companies,
aerospace,
automotive,
etc. and
even made
their way
into small to
medium
sized
enterprises.
In this
article, we
argue the
opinion that
today's
students
(and
tomorrow's
engineers)
need to be
provided
with a basic
understandi
ng of formal
methods in
the broad
sense
(what is it,
how does it
feel to use
it, what are
advantages
and
limitations)
already in
undergradu
ate
introduction
s to
software
engineering
. We
propose a
generic
course
design that
complemen
ts
(otherwise
completely
ordinary)
undergradu
ate
introduction
s to
software
engineering
with formal
semantics
and
analyses of
(visual)
software
description
languages.
We report
on five
years of
teaching an
implementa
tion of the
course
design that
indicate the
feasibility of
teaching
without
sacrificing
classical
software
engineering
topics and
without
over-
straining
students
wrt. level or
workload.

10.1109
/CSEET
49119.

2020.92
06234

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
206234

Teaching;
Formal
Methods;
Software
Engineering

 O artigo discute a importância
crescente de aspectos como
confiabilidade, segurança e

segurança no desenvolvimento
de software e como as

metodologias formais podem
aumentar a confiança nessas

áreas. Ele fornece uma
definição abrangente de

métodos formais, que inclui
formalização de requisitos,

modelagem formal e
verificação de programas

dedutivos, e destaca a
mudança recente na indústria
em relação à adoção desses

métodos.

O artigo aborda o
conceito de métodos

formais, que são
definidos como técnicas

e ferramentas
matematicamente

explicáveis. Ele discute a
ampla variedade de

significados que o termo
"métodos formais" pode

ter e adota uma definição
ligeiramente mais

estreita, que exclui
esboços informais. O

artigo também destaca a
necessidade de

complementar os cursos
de engenharia de

software existentes com
aspectos de métodos
formais para melhor

preparar os alunos para
suas carreiras futuras.

 O artigo propõe
novos objetivos de
aprendizado para
métodos formais e

apresenta uma
abordagem para
complementar as
introduções de
graduação à

engenharia de
software com uma

introdução
abrangente aos

métodos formais.
A ideia básica é

oferecer
experiência com
métodos formais

em uma
formalização o
mais simples

possível (mas não
trivial) e completar
todas as áreas de

tópicos (ou
conhecimento)

com
sublinguagens

totalmente
definidas de

linguagens de
descrição de

software formais.

IEEE Inglês CI1 Incluído
Open and Branching
Behavioral Synthesis
with Scenario Clauses

Asteasuain,
Fernando
(15076943400
); Calonge,
Federico
(57216952638
); Dubinsky,
Manuel
(57222081187
); Gamboa,
Pablo Daniel
(57216948794
)

2021

The
Software
Engineering
community
has
identified
behavioral
specificatio
n as one of
the main
challenges
to be
addressed
for the
transferenc
e of formal
verification
techniques
such as
model
checking. In
particular,
expressivity
of the
specificatio
n language
is a key
factor,
especially
when
dealing with
Open
Systems
and
controllabilit
y of events
and
branching
time
behavior
reasoning.
In this work,
we propose
the Feather
Weight
Visual
Scenarios
(FVS)
language
as an
appealing
declarative
and formal
verification
tool to
specify and
synthesize
the
expected
behavior of
systems.
FVS can
express
linear and
branching
properties
in closed
and Open
systems.
The validity
of our
approach is
proved by
employing
FVS in
complex,
complete,
and
industrial
relevant
case
studies,
showing the
flexibility
and
expressive
power of
FVS, which
constitute
the crucial
features
that
distinguish
our
approach.
© 2021
Latin
American
Center for
Informatics
Studies. All
Rights
Reserved.

10.1915
3

/CLEIEJ
.24.3.1

https://www.
scopus.
com/inward/
record.uri?
eid=2-s2.0-
851231618
16&doi=10.
19153%
2fCLEIEJ.
24.3.1
&partnerID=
40&md5=e5
ea19fd6b17
3bce3d90fb
0f22f1f07b

Behavioral
specificatio
ns;
Branching
reasoning;
Open
systems;
Synthesis

O artigo aborda a especificação
comportamental como um dos

principais desafios a serem
superados para a transferência

de técnicas de verificação
formal, como a verificação de

modelos.

O artigo aborda a
importância da
especificação

comportamental na
verificação formal de

sistemas. A linguagem
FVS é apresentada como

uma ferramenta para
especificar e sintetizar

comportamento em
sistemas abertos e

fechados. É destacada a
flexibilidade e poder

expressivo da linguagem
FVS como

características cruciais
que distinguem a

abordagem proposta.

A metodologia do
artigo apresenta
casos de estudo

complexos,
completos e

relevantes da
indústria para

validar a
abordagem
proposta. É

descrito como a
linguagem FVS é

utilizada para
especificar e

sintetizar
comportamento

esperado de
sistemas.

Scopus Inglês CI1 Incluído
Pattern Based Model
Reuse Using Colored
Petri Nets

S. H. Askari;
S. A. Khan; M.
Haris; M.
Shoaib

2019

Colored
Petri Net
(CPN) is a
graphical
modeling
language
for
simulation
and
modeling
and for
verification
of discrete
event
systems.
CPN allows
developers
to define a
model in
the form of
reusable
component
s. A model
component
is an
independen
t element,
which is
specified
using a
formalized
description,
can
conform to
a certain
component
standard,
has a well-
defined
interface,
and
encapsulat
es certain
behavior.
Modern
component
s can help
the
developer
reuse
existing
models
according
to their
requirement
as it
reduces the
cost and
time of
developme
nt.
Composabil
ity is the
capability to
select and
integrate
various
component
s to fulfill
user
requirement
s.
Composabil
ity provides
the means
to achieve
reusability
where
"reuse" is
the ability of
a simulation
component
to be
reclaimed
for various
applications
. We
propose a
verification
framework
for
developers
to select
and
assemble
CPN-based
component
s and verify
their
composabili
ty. The goal
of this
paper is to
provide a
pattern
which helps
developer
in making
models of
concurrent
systems.
We present
a case
study of a
restaurant
model as
proof of
concept. A
verified
composition
affirms
reuse of
model
component
s in a
meaningful
manner by
satisfying
given
requirement
specificatio
ns.

10.1109
/ICCSA.
2019.00

0-7

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
853585

Patterns,
Pattern
Reuse,
Colored
Petri nets,
Composabil
ity
Verification

O artigo aborda a utilização de
Colored Petri Nets (CPN) como

uma linguagem gráfica para
modelagem e verificação de

sistemas concorrentes. É
proposto o uso de padrões de
reutilização de componentes

em sistemas concorrentes, com
o objetivo de evitar soluções
redundantes e economizar

tempo e esforço na
implementação.

O artigo aborda os
conceitos de:

CPN: uma linguagem
gráfica para modelagem
e verificação de sistemas

concorrentes.
Padrões de reutilização:
soluções genéricas para
problemas recorrentes

em um domínio
específico.

Composabilidade: a
capacidade de selecionar

e mesclar diferentes
componentes para

atender aos requisitos do
usuário.

Reutilização: o uso de
componentes existentes
em diferentes aplicações.

A metodologia do
artigo propõe a

utilização de
padrões de

reutilização em
sistemas

concorrentes,
usando a

linguagem gráfica
CPN. O objetivo é

facilitar o
desenvolvimento

de modelos,
evitando soluções

redundantes e
economizando

tempo e esforço
na

implementação. O
artigo descreve o

processo de
busca por padrões

relacionados a
problemas

específicos em
um catálogo de

soluções.

IEEE Inglês CI1 Incluído
Prema: A Tool for
Precise Requirements
Editing, Modeling and
Analysis

Y. Huang; J.
Feng; H.
Zheng; J. Zhu;
S. Wang; S.
Jiang; W.
Miao; G. Pu

2019

We present
Prema, a
tool for
Precise
Requireme
nt Editing,
Modeling
and
Analysis. It
can be
used in
various
fields for
describing
precise
requirement
s using
formal
notations
and
performing
rigorous
analysis. By
parsing the
requirement
s written in
formal
modeling
language,
Prema is
able to get
a model
which aptly
depicts the
requirement
s. It also
provides
different
rigorous
verification
and
validation
techniques
to check
whether the
requirement
s meet
users'
expectation
and find
potential
errors. We
show that
our tool can
provide a
unified
environmen
t for writing
and
verifying
requirement
s without
using tools
that are not
well inter-
related. For
experiment
al
demonstrati
on, we use
the
requirement
s of the
automatic
train
protection
(ATP)
system of
CASCO
signal co.
LTD., the
largest
railway
signal
control
system
manufactur
er of China.
The code of
the tool
cannot be
released
here
because
the project
is
commerciall
y
confidential.
However, a
demonstrati
on video of
the tool is
available at
https:
//youtu.
be/BX0yv8
pRMWs.

10.1109
/ASE.

2019.00
128

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
952250

formal
methods;
requirement
s modeling;
requirement
s
verification;
formal
engineering
methods

O artigo apresenta uma
ferramenta de engenharia de
requisitos chamada "Prema",
que utiliza uma linguagem de

especificação formal
customizada para a escrita de

requisitos.
A ferramenta permite que os

usuários escrevam
especificações formais e

complementem com
comentários em linguagem

natural.

O artigo trata do campo
de pesquisa de

verificação e validação
de requisitos na

engenharia de requisitos.
A V&V pode reduzir o

número de defeitos antes
da implantação do
software, sendo
especialmente

importante para sistemas
críticos de segurança.

Especificações na
indústria são comumente

especificadas em
linguagem natural, o que
torna difícil a utilização

de técnicas rigorosas de
V&V. Ferramentas para
engenharia de requisitos

são escassas.

O artigo descreve
o

desenvolvimento
da ferramenta

Prema e a
metodologia
utilizada para
customizar a

linguagem formal
com base nos

hábitos de escrita
de requisitos de

diferentes setores
(aeroespacial,

aviação e controle
de sinal de
ferrovia). A

metodologia
envolveu a

colaboração com
empresas em

cada setor para
entender suas

necessidades de
especificação e
verificação de
requisitos. O

artigo também
descreve como a

ferramenta foi
avaliada em

relação à sua
usabilidade e
eficácia em
termos de

redução de
defeitos e

economia de
tempo.

IEEE Inglês CI1 Incluído
Prioritizing Scenarios
based on
STAMP/STPA Using
Statistical Model
Checking

M. Tsuji; T.
Takai; K.
Kakimoto; N.
Ishihama; M.
Katahira; H.
Iida

2020

Recently, a
hazard
analysis
technique
STAMP/ST
PA has
been widely
accepted
since it is
recognized
as being
suitable for
software-
intensive
systems.
Using
STAMP/ST
PA, we can
find
hazardous
scenarios
of the target
system that
cannot be
obtained by
other
traditional
hazard
analysis
methods
and those
scenarios
can be
used for
validation
testing.
However,
generally
the number
of obtained
scenarios
can be
huge and
the
validation
testing
involves a
considerabl
e cost. In
this study,
we propose
a method to
prioritize
hazardous
scenarios
identified by
STAMP/ST
PA with the
help of a
statistical
model-
checking
technique.
We give a
procedure
for
systematica
lly
transformin
g the model
defined by
STAMP/ST
PA to a
formal
model for a
statistical
model-
checking
tool. We
also show
the
usefulness
of the
proposed
method
using an
example of
train gate
control
system.

10.1109
/ICSTW
50294.

2020.00
032

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
155811

STAMP/ST
PA;
statistical
model
checking;
risk analysis

O artigo apresenta a proposta
de um método para análise de
riscos em sistemas complexos,

como sistemas de software,
sistemas autônomos e
sistemas ciberfísicos.

O método se baseia no modelo
de acidentes STAMP, que

permite capturar problemas
decorrentes de inconsistências

entre reconhecimentos
subjetivos de componentes,

sistemas ou pessoas
envolvidas.

O artigo discute a
importância da análise
de riscos em sistemas
complexos, como uma
medida para prevenir

acidentes.
STAMP é apresentado
como uma técnica que

permite capturar
problemas decorrentes
de inconsistências entre

reconhecimentos
subjetivos de

componentes, sistemas
ou pessoas envolvidas.

O método
proposto do

artigo, consiste
em traduzir os
resultados das
atividades de

STAMP/STPA em
modelos formais,
que são utilizados

para calcular a
probabilidade de

cenários
perigosos. Utiliza-
se a ferramenta
UPPAAL SMC

para verificar os
modelos formais e

obter a
probabilidade de
ocorrência dos

cenários
perigosos.

IEEE Inglês CI1 Incluído
Proposal of an
Approach to Generate
VDM++ Specifications
from Natural Language
Specification by
Machine Learning

Y. Shigyo; T.
Katayama 2020

A natural
language
contains
ambiguous
expressions
. The
VDM++ is
one of the
methodotog
ies on the
formal
methods to
write the
specificatio
n without
ambiguity.
It is difficult
to write a
VDM++
specificatio
n, because
VDM++ is
written by
strict
grammar.
This
research
proposes
an
approach to
automaticall
y generate
the VDM++
specificatio
n by
machine
learning.
This
approach
defines four
data
structures
and has
four
processes.
In this
paper,
variables
and only
real type in
the VDM++
specificatio
n are
generated
automaticall
y by this
approach.
In order to
generate
the
variables
and real
type, it is
necessary
to extract
the noun
correspondi
ng to the
variable
from the
natural
language
specificatio
n.
Consequen
tly, our
proposed
approach
can
generate a
VDM++
specificatio
n and we
have
confirmed
that the
generated
VDM++
specificatio
n is
grammatica
lly correct.

10.1109
/GCCE
50665.

2020.92
92047

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
292047

natural
language
specificatio
n;machine
learning;
automatic
generation;
formal
method;
VDM++
specificatio
n

O artigo aborda a importância
do uso de métodos formais no
desenvolvimento de software

para evitar bugs decorrentes da
ambiguidade presente na

linguagem natural utilizada na
especificação do software. A
proposta do artigo é gerar

automaticamente
especificações VDM++ a partir

de especificações em
linguagem natural usando

aprendizado de máquina, a fim
de superar as dificuldades de
descrever especificações em
linguagem natural de acordo
com a gramática restrita do

VDM++.

O conceito central do
artigo é o uso de

métodos formais para
melhorar a qualidade do
software, evitando bugs

decorrentes da
ambiguidade na

linguagem natural usada
nas especificações do

software. O uso de
VDM++ é apresentado
como um dos métodos

formais para o
desenvolvimento de
software, e o artigo

propõe uma abordagem
para gerar

automaticamente
especificações VDM++ a
partir de especificações
em linguagem natural

usando aprendizado de
máquina.

O método
proposto no artigo

consiste em
quatro processos:

o pré-
processamento de

aprendizado de
máquina, o

aprendizado de
máquina em si, o

processo de
inserção de

identificadores e o
processo de
geração da

especificação
VDM++. A

abordagem de
aprendizado de

máquina é usada
para extrair os

nomes de
variáveis e

predicados das
especificações em
linguagem natural,

que são usados
para gerar a

especificação
VDM++.

IEEE Inglês CI1 Incluído
A Formal Methods
Approach to Security
Requirements
Specification and
Verification

Q. Rouland; B.
Hamid; J. -P.
Bodeveix; M.
Filali

2019

The
specificatio
n and the
verification
of security
requirement
s is one of
the major
computer-
based
systems
challenges.
Security
requirement
s need to
be precisely
specified
before a
tool can
manipulate
them, and
though
several
approaches
to security
requirement
s
specificatio
n have
been
proposed,
they do not
provide the
scalability
and
flexibility
required in
practice.
We take
this
problem
towards an
integrated
approach
for security
requirement
specificatio
n and
treatment
during the
software
architecture
design
time. The
general
idea of the
approach is
to: (1)
specify
security
requirement
s as
properties
of a
modeled
system in a
technology-
independen
t
specificatio
n language;
(2)
implement
the
developed
model in a
suitable
language
with tool
support for
requirement
satisfaction
through
model
verification;
and (3)
suggest a
set of
security
policies to
constrain
the
operation of
the system
and to
guarantee
the security
properties.
In the
scope of
this paper,
we use
first-order
logic as a
formalism
that is
abstract
and
technology-
independen
t and Alloy
as a tooled
language
used in
modeling
and
software
developme
nt. To
validate our
work, we
explore a
set of
representati
ve security
properties
from
categories
based on
CIA
classificatio
n in the
context of
secure
component-
based
software
architecture
developme
nt.

10.1109
/ICECC

S.
2019.00

033

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
882749

Engineering
secure
systems;
Security
properties;
Formal
methods;
Metamodel

O artigo aborda a utilização de
métodos formais na

especificação e verificação de
requisitos de segurança em
sistemas de software. Ele

apresenta uma abordagem que
usa especificações formais

para modelar os requisitos de
segurança e verificações

automáticas para garantir que o
sistema implementa esses

requisitos de maneira correta e
segura.

Métodos formais
Requisitos de segurança
Idiomas de Especificação

Verificação
Árvores de ataque

Verificação de modelo
Protocolos de segurança

Propriedades de
segurança

Propriedades de
segurança

lógica temporal

Metodologia
descrita no artigo:

Definição dos
requisitos de
segurança,
Modelagem

formal,
Especificação

formal dos
requisitos,

Verificação formal
dos requisitos,

Análise e
correção,

Validação e
avaliação,

Documentação.
Por fim, os

resultados da
especificação e

verificação formal
dos requisitos de
segurança são

documentados de
forma clara e

precisa. A
documentação

inclui a descrição
dos requisitos, a

modelagem
formal, os

resultados da
verificação e as
ações corretivas

realizadas.

IEEE Inglês CI1 Incluido
A Formal Verification
Method for Smart
Contract

X. Wang; X.
Yang; C. Li 2020

Smart
contract is
a computer
protocol
running on
the
blockchain,
which is
widely used
in various
fields.
However,
its security
problems
continue to
emerge.
Therefore,
it is
necessary
to audit the
security of
smart
contract
before it is
deployed
on the
blockchain.
Traditional
testing
methods
cannot
guarantee a
high
reliability
and
correctness
required by
the smart
contract.
This paper
shows a
method for
using
modeling,
simulation
and
verification
language
(MSVL) and
proposition
al
projection
temporal
logic
(PPTL) to
model and
verify the
smart
contract.
First, a
converter
tool SOL2M
which can
convert
Solidity
program to
MSVL
program is
developed.
Then, the
security
properties
of the smart
contract are
described
by PPTL
and a
standardize
d process
to verify the
contract is
designed
through
UMC4M
(Unified
Model
Checker for
MSVL).
Finally, an
example is
given to
illustrate
the
feasibility
and
practicabilit
y of this
method in
smart
contract
verification.

10.1109
/DSA51

864.
2020.00

011

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
331049

blockchains
;Smart
Contract;
formal
methods;
MSVL

O artigo propõe o uso de
métodos de verificação formal
para garantir a corretude de

contratos inteligentes. A
verificação formal é uma

técnica rigorosa que utiliza
lógica matemática para provar
propriedades e verificar se um
sistema atende a determinadas

especificações. O artigo
destaca a importância da

verificação formal na garantia
da segurança e confiabilidade

dos contratos inteligentes e
fornece uma visão geral das

técnicas e ferramentas
disponíveis para realizar essa

verificação.

Os principais conceitos
abordados no artigo são:
Contratos inteligentes:

Os contratos inteligentes
são programas
executados em

plataformas blockchain
que automatizam e

facilitam a execução de
transações confiáveis

entre partes. Verificação
formal: A verificação

formal é uma abordagem
que utiliza métodos

matemáticos para provar
a corretude de sistemas
de software. Modelagem
formal: O artigo propõe o

uso de linguagens
formais e ferramentas de

modelagem para
descrever os contratos
inteligentes de forma

precisa. Propriedades do
contrato: O artigo

enfatiza a importância de
especificar propriedades

desejadas para os
contratos inteligentes.

Técnicas de verificação
formal: O artigo discute
diferentes técnicas de
verificação formal que

podem ser aplicadas aos
contratos inteligentes.

Ferramentas e
frameworks: O artigo

menciona a existência de
ferramentas e

frameworks específicos
para a verificação formal
de contratos inteligentes.
Benefícios da verificação
formal: O artigo destaca

os benefícios da
verificação formal na

garantia da segurança e
confiabilidade dos

contratos inteligentes.

A metodologia do
artigo descreve :

Definição do
objetivo;

Modelagem do
contrato

inteligente;
Especificação das

propriedades;
Seleção de

ferramentas e
técnicas de
verificação;

Execução da
verificação formal;
Interpretação dos

resultados;
Refinamento e

iteração. Essa é
uma visão geral
da metodologia

geralmente
seguida em um

artigo que
descreve uma
abordagem de

verificação formal
para contratos

inteligente.

IEEE Inglês CI1 Incluido
A Formally Verified
Monitor for Metric
First-Order Temporal
Logic

Schneider,
Joshua; Basin,
David; Krstic,
Srdan; Traytel,
Dmitriy

2019

Runtime
verification
tools must
correctly
establish a
specificatio
n's validity
or detect
violations.
This task is
difficult,
especially
when the
specificatio
n is given in
an
expressive
declarative
language
that
demands a
non-trivial
monitoring
algorithm.
We use a
proof
assistant to
not only
solve this
task, but
also to gain
confidence
in our
solution.
We formally
verify the
correctness
of a monitor
for metric
first-order
temporal
logic
specificatio
ns using
the
Isabelle/HO
L proof
assistant.
From our
formalizatio
n, we
extract an
executable
algorithm
with
correctness
guarantees
and use
differential
testing to
find
discrepanci
es in the
outputs of
two
unverified
monitors for
first-order
specificatio
n
languages.

10.1007
/978-3-
030-

32079-
9_18

- -

O artigo apresenta um monitor
formalmente verificado para a
lógica temporal de primeira
ordem. Um monitor é um
componente que verifica
continuamente se uma
propriedade é satisfeita por um
sistema em execução. A
formalização e verificação
desse monitor garantem sua
correção e confiabilidade. O
monitor proposto é
formalmente verificado usando
técnicas e ferramentas de
verificação formal. Isso envolve
a definição precisa do monitor
e de suas propriedades, a
modelagem formal do sistema
e a prova matemática de que o
monitor cumpre suas
especificações. O artigo
descreve em detalhes o
método de verificação utilizado,
incluindo a escolha das
ferramentas e técnicas
utilizadas. Pode envolver a
utilização de assistentes de
prova, provadores de teoremas
ou outras abordagens de
verificação formal.

Lógica Temporal de
Primeira Ordem Métrica,

Monitoramento de
Propriedades Temporais,
Formalização do Monitor,

Verificação Formal,
Metodologia de

Verificação, Aplicações e
Implicações. Esses são
os principais conceitos

abordados no artigo.

Metodologia
descrita no artigo:
O primeiro passo

é definir
precisamente a

lógica temporal de
primeira ordem

métrica, incluindo
os operadores,
predicados e

funções
disponíveis. O
próximo passo

envolve a
formalização do

monitor utilizando
uma linguagem de

especificação
formal. Isso inclui
a definição dos

componentes do
monitor, como os

estados,
transições,

condições de
aceitação e as

regras para
monitorar as
propriedades

temporais
especificadas.

Proxima etapa, as
propriedades

temporais que o
monitor irá

verificar são
especificadas
formalmente

utilizando a lógica
temporal de

primeira ordem
métrica. Com o

monitor
formalizado e as

propriedades
especificadas, o
próximo passo é

realizar a
verificação formal
do monitor. Isso
pode envolver o

uso de assistentes
de prova,

provadores de
teoremas ou

outras
ferramentas e
técnicas de

verificação formal.
A verificação

formal é realizada
para garantir a

correção do
monitor em
relação às

propriedades
temporais

especificadas.O
artigo pode incluir

uma avaliação
experimental do

monitor proposto.
Isso pode
envolver a

implementação do
monitor e a

execução de
testes em
diferentes

cenários para
verificar sua

eficácia,
desempenho e

escalabilidade. A
avaliação

experimental é
importante para
demonstrar a
viabilidade e
utilidade do
monitor em

ambientes reais.
Após a verificação

formal e a
avaliação

experimental, os
resultados são

discutidos e
interpretados. Isso

inclui a análise
dos casos de
sucesso, das

limitações
identificadas e das

possíveis
melhorias ou

extensões futuras
do monitor. O
artigo pode
comparar o

monitor proposto
com abordagens

existentes na
literatura. Isso

permite destacar
as vantagens,
diferenciais e
contribuições
específicas do

monitor em
relação a
trabalhos
anteriores.

Web of science Inglês CI1 Incluido
A Framework for
Verification-Oriented
User-Friendly Network
Function Modeling

G. Marchetto;
R. Sisto; F.
Valenza; J.
Yusupov

2019

Network
virtualizatio
n and
softwarizati
on will
serve as a
new way to
implement
new
services,
increases
network
functionality
and
flexibility.
However,
the
increasing
complexity
of the
services
and the
manageme
nt of very
large scale
environmen
ts
drastically
complicate
detecting
alerts and
configuratio
n errors of
the network
component
s.
Nowadays,
misconfigur
ations can
be
identified
using
formal
analysis of
network
component
s for
compliance
with
network
requirement
s.
Unfortunate
ly, formal
specificatio
n of
network
services
requires
familiarity
with
discrete
mathematic
al modeling
languages
of
verification
tools, which
requires
extensive
training for
network
engineers
to have the
essential
knowledge.
This paper
addresses
the above-
mentioned
problem by
presenting
a
framework
designed
for
automaticall
y extracting
verification
models
starting
from an
abstract
representati
on of a
given
network
function.
Using
guidelines
provided in
this paper,
vendors
can
describe
the
forwarding
behavior of
their
network
function in
developer-
friendly,
high-level
languages,
which can
be then
translated
into formal
verification
models of
different
verification
tools.

10.1109
/ACCE

SS.
2019.29
29325

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
765301

Network
function
modeling;
model
extraction;
NFV

Este artigo apresenta uma
estrutura simplificada para
modelar VNFs (Virtualized
Network Functions) que se

concentra apenas no
comportamento de

encaminhamento, em vez de
detalhes específicos da NF. O

objetivo é permitir que os
desenvolvedores forneçam

uma descrição formal de seus
dispositivos de rede para

serem usados em processos
de verificação. A abordagem

busca tornar mais fácil a
verificação formal de

propriedades típicas orientadas
para a acessibilidade.

VNFs: Funções de rede
virtualizadas que
realizam tarefas

específicas em uma rede
virtualizada.

Modelagem VNF: O
processo de criar um

modelo matemático que
descreva o

comportamento de uma
VNF.

Verificação formal: O
processo de verificar
matematicamente se
uma VNF atende a

determinadas
propriedades ou

requisitos.
Comportamento de
encaminhamento: O

comportamento da VNF
em relação ao

encaminhamento de
pacotes de dados em

uma rede.
Lógica temporal: Uma
linguagem formal para

especificar propriedades
que dependem do

tempo.
Propriedades orientadas

para a acessibilidade:
Propriedades que

verificam se um sistema
é capaz de alcançar

determinados estados
desejados a partir de

estados iniciais
específicos.

O método se
baseia na técnica

de modelagem
que inclui uma
biblioteca de

modelagem, um
parser e um
tradutor. O

objetivo principal
do artigo é

fornecer uma
estrutura que
permita que

desenvolvedores
possam modelar
suas VNFs de

forma mais
amigável ao

usuário e fácil de
ser verificada
formalmente.

IEEE Inglês CI1 Incluido
A Lightweight
Framework for
Regular Expression
Verification

X. Liu; Y.
Jiang; D. Wu 2019

Regular
expressions
and finite
state
automata
have been
widely used
in programs
for pattern
searching
and string
matching.
Unfortunate
ly, despite
the
popularity,
regular
expressions
are difficult
to
understand
and verify
even for
experience
d
programme
rs.
Convention
al testing
techniques
remain a
challenge
as large
regular
expressions
are
constantly
used for
security
purposes
such as
input
validation
and
network
intrusion
detection.
In this
paper, we
present a
lightweight
verification
framework
for regular
expressions
. In this
framework,
instead of a
large
number of
test cases,
it takes in
requirement
s in natural
language
descriptions
to
automaticall
y
synthesize
formal
specificatio
ns. By
checking
the
equivalence
between
the
synthesized
specificatio
ns and
target
regular
expressions
, errors will
be detected
and
counterexa
mples will
be
reported.
We have
built a web
application
prototype
and
demonstrat
ed its
usability
with two
case
studies.

10.1109
/HASE.
2019.00

011

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
673038

regular
expression;
verification;
natural
language;
formal
specificatio
n;domain-
specific
language

O artigo apresenta um
framework leve para a

verificação de expressões
regulares. O foco principal do

artigo é a verificação de
expressões regulares. As
expressões regulares são
utilizadas para descrever

padrões em texto, e a
verificação dessas expressões
é importante para garantir que

elas estejam corretamente
definidas e não causem

comportamentos inesperados.
O artigo descreve os métodos

de verificação utilizados no
framework proposto. Isso pode

incluir técnicas de análise
estática, model checking ou

outras abordagens de
verificação formal. O framework

proposto pode incluir uma
linguagem de especificação

que permite aos usuários
descrever as expressões

regulares a serem verificadas.
Essa linguagem pode fornecer

recursos adicionais, como
suporte a operadores

avançados, quantificadores e
construções específicas da

expressão regular.

Os principais conceitos
abordados no artigo são

os seguintes:
Expressões Regulares,

Verificação de
Expressões Regulares,

Framework Leve,
Métodos de Verificação,
Detecção de Problemas,

Linguagem de
Especificação, Avaliação

Experimental,
Comparação com

Abordagens Anteriores.

Metodologia
descrita no artigo:
Identificação dos

requisitos de
verificação: O

primeiro passo é
identificar os

requisitos para a
verificação de
expressões

regulares. Isso
envolve entender

os tipos de
problemas que

podem ocorrer em
expressões

regulares e definir
os critérios de

verificação, como
detecção de erros

de sintaxe,
ambiguidades,

vulnerabilidades
de segurança ou

ineficiências.
Design do

framework: Com
base nos
requisitos

identificados, é
realizado o design

do framework.
Isso envolve a
definição das
estruturas de

dados, algoritmos
e métodos que
serão utilizados

para a verificação
das expressões

regulares. O
framework deve

ser projetado para
ser leve, eficiente

e facilmente
implementável.

Implementação do
framework: Nesta

etapa, o
framework
proposto é

implementado de
acordo com o

design
estabelecido. Isso
pode envolver a
codificação dos

algoritmos e
estruturas de

dados, a criação
de bibliotecas ou

módulos de
software e a

integração com
outras

ferramentas ou
ambientes de

desenvolvimento.
Desenvolvimento
de casos de teste:

É necessário
desenvolver um

conjunto de casos
de teste

representativos
para avaliar o

desempenho e a
eficácia do

framework. Os
casos de teste
devem cobrir

diferentes
aspectos das
expressões

regulares e incluir
exemplos comuns

de problemas a
serem detectados.

Execução dos
casos de teste: Os

casos de teste
desenvolvidos são

executados no
framework

implementado.
Isso envolve a
aplicação dos
algoritmos de
verificação às
expressões
regulares

fornecidas nos
casos de teste e a

avaliação dos
resultados

obtidos. Análise e
avaliação dos
resultados: Os
resultados da
execução dos
casos de teste

são analisados e
avaliados. Isso

pode envolver a
verificação da

detecção correta
de problemas, a

medição do
desempenho do

framework (como
tempo de

execução e
consumo de
recursos) e a

comparação com
resultados

esperados ou com
outras

abordagens
existentes.

Discussão dos
resultados: Os
resultados são
discutidos em

termos de
eficácia,

desempenho e
aplicabilidade do

framework
proposto. São
destacadas as
contribuições e
limitações do
framework em

relação a outros
trabalhos

existentes e são
apresentadas

possíveis
melhorias ou

extensões para
futuras pesquisas.
Exemplos de uso:

O artigo pode
fornecer exemplos
práticos de como

utilizar o
framework

proposto para
verificar

expressões
regulares em

diferentes
contextos. Isso

ajuda a ilustrar a
aplicabilidade e a

utilidade do
framework em
cenários reais.

IEEE Inglês CI1 Incluido
A Methodology for
Developing a Verifiable
Aircraft Engine
Controller from Formal
Requirements

M. Luckcuck;
M. Farrell; O.
Sheridan; R.
Monahan

2022

Verification
of complex,
safety-
critical
systems is
a significant
challenge.
Manual
testing and
simulations
are often
used, but
are only
capable of
exploring a
subset of
the
system's
reachable
states.
Formal
methods
are
mathematic
ally-based
techniques
for the
specificatio
n and
developme
nt of
software,
which can
provide
proofs of
properties
and
exhaustive
checks over
a system's
state
space. In
this paper,
we present
a formal
requirement
s-driven
methodolog
y, applied
to a model
of an
aircraft
engine
controller
that has
been
provided by
our
industrial
partner.
Our
methodolog
y begins by
formalising
the
controller's
natural-
language
requirement
s using the
(pre-
existing)
Formal
Requireme
nts
Elicitation
Tool
(FRET),
iteratively,
in
consultation
with our
industry
partner.
Once
formalised,
FRET can
automaticall
y translate
the
requirement
s to enable
their
verification
alongside a
Simulink
model of
the aircraft
engine
controller;
the
requirement
s can also
guide
formal
verification
using other
approaches
. These two
parallel
streams in
our
methodolog
y seek to
combine
the results
from formal
requirement
s elicitation,
classical
verification
approaches
, and
runtime
verification;
to support
the
verification
of
aerospace
systems
modelled in
Simulink,
from the
requirement
s phase
through to
execution.
Our
methodolog
y
harnesses
the power
of formal
methods in
a way that
complemen
ts existing
verification
techniques,
and
supports
the
traceability
of
requirement
s
throughout
the
verification
process.
This
methodolog
y
streamlines
the process
of
developing
verifiable
aircraft
engine
controllers,
by ensuring
that the
requirement
s are
formalised
up-front
and
useable
during
developme
nt. In this
paper we
give an
overview of
FRET,
describe
our
methodolog
y and work
to-date on
the
formalisatio
n and
verification
of the
requirement
s, and
outline
future work
using our
methodolog
y.

10.1109
/AERO5
3065.

2022.98
43589

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
843589

-

O artigo se concentra na
verificação formal do

controlador de motor de
aeronave, que é uma técnica
matemática para verificar se o

controlador atende a
determinadas propriedades ou
requisitos. O artigo apresenta

um estudo de caso aplicado ao
desenvolvimento de um
controlador de motor de

aeronave, demonstrando a
eficácia da abordagem

proposta.

O artigo se concentra na
verificação formal do

controlador de motor de
aeronave para garantir
que o sistema atenda a
todos os requisitos de

segurança; A
modelagem formal é o
processo de criar um

modelo matemático de
um sistema usando uma

linguagem de
especificação formal;

TLA+ é uma linguagem
de especificação formal
usada para descrever

sistemas de software e
hardware; TLC é uma

ferramenta de verificação
de modelo usada para
verificar se um modelo

TLA+ atende a
determinadas

propriedades ou
requisitos: O artigo

apresenta um estudo de
caso em que a

metodologia proposta foi
aplicada ao

desenvolvimento de um
controlador de motor de

aeronave.

Metodologia
ultilizada: O artigo

propõe uma
metodologia que

inclui várias
etapas, como

modelagem formal
de requisitos,
geração de
modelos de

comportamento
do controlador,

verificação formal
e validação do

sistema. A
metodologia é
projetada para
garantir que o
controlador de

motor de
aeronave atenda

a todos os
requisitos de
segurança

necessários.

IEEE Inglês CI1 Incluido
A Research Landscape
on Formal Verification
of Software
Architecture
Descriptions

C. Araújo; E.
Cavalcante; T.
Batista; M.
Oliveira; F.
Oquendo

2019

One of the
many
different
purposes of
software
architecture
descriptions
is
contributing
to an early
analysis of
the
architecture
with respect
to quality
attributes.
The critical
nature of
many
software
systems
calls for
formal
approaches
aiming at
precisely
verifying if
their
designed
architecture
s can meet
important
properties
such as
consistency
,
completene
ss, and
correctness
. In this
context, it is
worthwhile
investigatin
g the role of
architecture
descriptions
to support
the formal
verification
of software
architecture
s to ensure
their
quality, as
well as how
such a
process
happens
and is
supported
by existing
languages
and
verification
tools. To
evaluate
the
research
landscape
on this
subject, we
have
carried out
a
systematic
mapping
study in
which we
collected
and
analyzed
studies
available at
the
literature on
formal
verification
of
architecture
descriptions
. This work
contributes
with (i) a
structured
overview
and
taxonomy
of the
current
state of the
art on this
topic and
(ii) the
elicitation of
important
issues to be
addressed
in future
research.

10.1109
/ACCE

SS.
2019.29
53858

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
901988

Architecture
description;
formal
verification;
property
specificatio
n;software
architecture
s;
systematic
mapping

O artigo se concentra na
verificação formal de

descrições de arquitetura de
software, que é uma técnica
matemática para verificar se

um sistema atende a
determinadas propriedades ou

requisitos, discute várias
abordagens e ferramentas para
a verificação formal, incluindo
model checking, bem como

ferramentas como SPIN,
UPPAAL.

Arquitetura de software:
A estrutura

organizacional de um
sistema de software, que

inclui componentes,
conexões entre os

componentes e
restrições sobre essas

conexões.
Descrições de

arquitetura de software:
Representações formais

ou informais da
arquitetura de um

sistema de software.
Verificação formal: O

processo de usar
técnicas matemáticas
para verificar se um
sistema atende a

determinadas
propriedades ou

requisitos.
Modelagem formal: O
processo de criar um

modelo matemático que
descreve o

comportamento de um
sistema.

Lógica temporal: Uma
linguagem formal para

especificar propriedades
que dependem do

tempo.
Abordagens de

verificação: Diferentes
técnicas de verificação

formal, como model
checking, teoria de tipos

e provas formais.
Ferramentas de

verificação: Ferramentas
de software que

automatizam o processo
de verificação formal,
como SPIN, UPPAAL.

Metodologias
utilizadas no

artigo são: model
checking, teoria
de tipos, provas

formais e
ferramentas de

verificação como
SPIN, NuSMV e
UPPAAL. Além
disso, o artigo

também discute
questões de

escalabilidade,
complexidade e

integração com o
processo de

desenvolvimento
de software que
são relevantes

para a verificação
formal de

descrições de
arquitetura de

software.

IEEE Inglês CI1 Incluido
An Educational Case
Study of Using SysML
and TTool for
Unmanned Aerial
Vehicles Design

L. Apvrille; P.
de Saqui-
Sannes; R.
Vingerhoeds

2020

This article
shares an
experience
in using the
systems
modeling
language
(SysML) for
the design
and formal
verification
of
unmanned
aerial
vehicles
(UAVs). In
particular,
this article
shows how
our
approach
helps
detecting
early
design
errors. A
UAV in
charge of
taking
pictures
serves as
an
educational
and running
example
throughout
this article.
The SysML
model of
the UAV is
simulated
and
formally
verified
using the
free and
open-
source tool
named
TTool. This
educational
case study
gives the
authors of
this article
an
opportunity
to draw
lessons
from
teaching
SysML.

10.1109
/JMASS

.
2020.30
13325

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
153801

Educational
case study;
model
formal
verification;
model
simulation;
systems
modeling
language
(SysML);
unmanned
aerial
vehicle
(UAV)

O artigo apresenta uma
abordagem educacional para o

uso do SysML e do TTool no
design de VANTs, com um

estudo de caso detalhado e
uma discussão sobre os

resultados e as contribuições
para a educação em

engenharia de sistemas.

Principais conceitos
abordados no artigo são:

System Modeling
Language (SysML): O

SysML é uma linguagem
de modelagem de

sistemas que permite
representar, analisar e

simular sistemas
complexos, incluindo
hardware, software e
processos. TTool: O

TTool é uma ferramenta
de modelagem e

simulação de sistemas
baseada no SysML, que
permite criar modelos de

sistemas, realizar
simulações, validar e
verificar requisitos, e

gerar código a partir do
modelo. Veículos Aéreos
Não Tripulados (VANTs):
Os VANTs são sistemas

complexos que
combinam hardware,

software e sistemas de
controle para permitir a
operação de um veículo

aéreo sem a presença de
um piloto a bordo.

Modelagem de
Requisitos: A

modelagem de requisitos
é uma atividade

essencial no processo de
design de sistemas, que
consiste em identificar,

documentar e analisar os
requisitos do sistema, a

fim de garantir que o
sistema desenvolvido

atenda às necessidades
e expectativas do

usuário. Simulação e
Validação: A simulação e
a validação são etapas

importantes no processo
de design de sistemas,

que permitem verificar se
o sistema desenvolvido
atende aos requisitos

especificados e se
comporta de acordo com

o esperado.

A metodologia
adotada no estudo
de caso incluiu as
seguintes etapas:
Identificação dos

requisitos do
sistema;

Modelagem do
sistema no TTool;

Simulação do
sistema; Análise
dos resultados;

Geração de
código; O estudo

de caso foi
conduzido em um

ambiente
educacional, com
a participação de

estudantes de
engenharia. O

objetivo do estudo
foi demonstrar a

utilidade do
SysML e do TTool

no design de
sistemas

complexos, e
proporcionar aos
estudantes uma

experiência
prática em

modelagem e
simulação de

sistemas.

IEEE Inglês CI1 Incluido

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9557445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673039
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8777445
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9206234
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123161816&doi=10.19153%2fCLEIEJ.24.3.1&partnerID=40&md5=e5ea19fd6b173bce3d90fb0f22f1f07b
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952250
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155811
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9292047
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8882749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9331049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8765301
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8673038
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9843589
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8901988
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9153801

Artifact of Bounded
Exhaustive Search of
Alloy Specification
Repairs

S. Gutiérrez
Brida; G.
Regis; G.
Zheng; H.
Bagheri; T.
Nguyen; N.
Aguirre; M.
Frias

2021

BeAFix is a
tool and
technique
for
automated
repair of
faulty
models
written in
Alloy, a
declarative
formal
specificatio
n language
based on
first-order
relational
logic.
BeAFix
takes a
faulty Alloy
model, i.e.,
an Alloy
model with
at least one
analysis
command
whose
result is
contrary to
the
developer's
expectation
, and a set
of
suspicious
specificatio
n locations,
and
explores
the space
of fix
candidates
consisting
of all
alternative
expressions
for the
indicated
locations,
that can be
constructed
by bounded
application
of a family
of mutation
operations.
BeAFix can
work with
any kind of
specificatio
n oracle,
from Alloy
test cases
to standard
predicates
and
assertions
typically
found in
Alloy
specificatio
ns, and is
backed with
a number of
sound
pruning
strategies,
for efficient
exploration
of fix
candidate
search
spaces.

10.1109
/ICSE-
Compa
nion526

05.
2021.00

093

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
402585

-

As principais características do
artigo incluem: Descrição

detalhada da ferramenta: O
artigo descreve em detalhes a
ferramenta de busca exaustiva
com limites para a identificação

automatizada e correção de
erros em especificações Alloy.

Estudo experimental,
Disponibilização do código

fonte, Acessibilidade da
ferramenta, Contribuição para a

área de Engenharia de
Software. O artigo contribui

para a área de Engenharia de
Software, ao apresentar uma
ferramenta automatizada para
a identificação e correção de

erros em especificações Alloy.
A ferramenta pode ser útil para

projetistas de software,
pesquisadores e estudantes

que trabalham com
especificações Alloy em seus

projetos.

Principais conceitos
apresentados no artigo
incluem: Especificações

Alloy, Erros em
especificações Alloy,

Ferramentas de reparo
de especificações,

Avaliação experimental.

 A metodologia
usada pelos

autores envolveu
os seguintes
passos: Os

autores
implementaram a
ferramenta BELT

em Java. A
ferramenta usa

uma abordagem
de busca

exaustiva com
limites para

encontrar reparos
em especificações

Alloy.
Selecionaram um

conjunto de
especificações de
teste com erros
conhecidos para
avaliar a eficácia

da ferramenta
BELT.

Executaram uma
série de

experimentos para
avaliar a eficácia

da ferramenta
BELT em

comparação com
outras

ferramentas de
reparo de

especificações.
Analisaram os
resultados dos

experimentos para
determinar a
eficácia da

ferramenta BELT
em comparação

com outras
ferramentas de

reparo de
especificações.

IEEE Inglês CI1 e CI4 Incluido
AutoSVA:
Democratizing Formal
Verification of RTL
Module Interactions

M. Orenes-
Vera; A.
Manocha; D.
Wentzlaff; M.
Martonosi

2021

Modern
SoC design
relies on
the ability to
separately
verify IP
blocks
relative to
their own
specificatio
ns. Formal
verification
(FV) using
SystemVeril
og
Assertions
(SVA) is an
effective
method to
exhaustivel
y verify
blocks at
unit-level.
Unfortunate
ly, FV has a
steep
learning
curve and
requires
engineering
effort that
discourage
s hardware
designers
from using
it during
RTL
module
developme
nt. We
propose
AutoSVA, a
framework
to
automaticall
y generate
FV
testbenche
s that verify
liveness
and safety
of control
logic
involved in
module
interactions
. We
demonstrat
e AutoSVA’
s
effectivenes
s and
efficiency
on
deadlock-
critical
modules of
widely-used
open-
source
hardware
projects.

10.1109
/DAC18

074.
2021.95
86118

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
586118

automatic;
modular;
formal;
verification;
SVA

Características principais do
artigo incluem: Verificação

formal, Módulos RTL,
Automação, Aprendizado de

máquina, Avaliação
experimental, o artigo propõe
uma plataforma de automação

de verificação formal para
democratizar a verificação de
interações de módulos RTL e
torná-la mais acessível e fácil
de usar para não especialistas

em design e verificação de
hardware.

Principais conceitos do
artigo incluem:

Verificação formal: A
verificação formal é uma

técnica automatizada
para verificar se um

sistema digital satisfaz
determinadas

propriedades lógicas.
RTL: RTL significa

"Register-Transfer Level"
e é uma abstração de
nível mais baixo para

circuitos digitais.
Módulos RTL: Os

módulos RTL são blocos
de circuitos digitais

implementados em nível
de registro. Propriedades
lógicas: As propriedades
lógicas são declarações

que descrevem o
comportamento

esperado de um sistema
digital. As propriedades

lógicas podem ser
expressas em linguagens

formais como SVA
(Assertion

SystemVerilog) e são
usadas na verificação
formal para verificar se

um sistema satisfaz
essas propriedades.

Aprendizado de
máquina: O aprendizado

de máquina é uma
técnica de inteligência

artificial que permite que
um sistema aprenda a

partir de dados e
experiência, em vez de

ser programado
explicitamente.
Automação: A

automação refere-se ao
processo de automatizar

tarefas repetitivas ou
trabalhosas usando

software ou sistemas de
computação. No contexto
da verificação formal, a

automação é usada para
gerar verificações

formais automaticamente
a partir de especificações
de entrada, reduzindo a
necessidade de esforço
manual por parte dos

projetistas e
verificadores.

A metodologia
proposta pelo

artigo é
implementada em
uma ferramenta

chamada
AutoSVA. A

ferramenta recebe
uma especificação

de entrada na
forma de um
diagrama de

blocos ou uma
descrição textual

e gera
automaticamente

verificações
formais para

interações entre
módulos RTL. A

ferramenta é
avaliada em

vários exemplos
de caso de estudo

e os resultados
mostram que a

abordagem
proposta é capaz

de gerar
verificações

formais precisas e
eficientes.

IEEE Inglês CI1 Incluido
CIM-CSS: A Formal
Modeling Approach to
Context Identification
and Management for
Intelligent Context-
Sensitive Systems

A. M.
Baddour; J.
Sang; H. Hu;
M. A. Akbar;
H. Loulou; A.
Ali; K. Gulzar

2019

Context
modeling is
often used
to relate the
context in
which a
system will
operate to
the entities
of interest
in the
problem
domain. It
remains the
case that
context
models are
inadequate
in emerging
computing
paradigms
(e.g., smart
spaces and
the Internet
of Things),
in which the
relevance
of context is
shaped
dynamically
by the
changing
needs of
users.
Formal
models are
required to
fuse and
interpret
contextual
information
obtained
from the
heterogene
ous
sources. In
this paper,
we propose
an
integrated
and formal
context
modeling
approach
for
intelligent
systems
operating in
the context-
sensitive
environmen
ts. We
introduce a
goal-driven,
entity-
centered
identificatio
n method
for
determining
which
context
elements
are
influential in
adapting
the system
behavior.
We then
describe a
four-layered
framework
for
metamodeli
ng the
identificatio
n and
manageme
nt of
context.
First, the
framework
presents a
formal
metamodel
of context.
A
formalizatio
n of context
using the
first-order
logic with
relational
operators is
then
presented
to specify
formally the
context
information
at different
abstraction
levels. The
metamodel,
therefore,
prepares
the ground
for building
a formal
modeling
language
and
automated
support tool
(https:
//github.
com/metam
odeler/CIM-
CSS/). The
proposed
model is
then
evaluated
using an
application
scenario in
the smart
meeting
rooms
domain,
and the
results are
analyzed
qualitatively
.

10.1109
/ACCE

SS.
2019.29
31001

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
772087

Context
modeling;
context
aware
systems;
unified
modeling
language;
computation
al modeling;
object
recognition;
data
models;
complexity
theory

A principal característica do
artigo é a proposta de uma
metodologia para modelar
formalmente o contexto em

sistemas sensíveis ao contexto.
A abordagem proposta é

baseada na linguagem IFML
(Interaction Flow Modeling

Language) e na ferramenta de
modelagem Enterprise

Architect.

Os principais conceitos
abordados no artigo
incluem: Contexto: O
contexto se refere às

condições e informações
relevantes para um

determinado usuário ou
situação. Modelagem
formal: A modelagem

formal é uma abordagem
sistemática para a

criação de modelos
matemáticos precisos e
completos de sistemas.
IFML (Interaction Flow
Modeling Language):

IFML é uma linguagem
de modelagem visual

para a criação de
modelos de interface do

usuário e interação.
Verificação formal: A

verificação formal é uma
técnica para verificar se
um sistema atende a um
conjunto de requisitos.

Gerenciamento de
contexto: O

gerenciamento de
contexto se refere ao
processo de coleta,

análise e uso do contexto
para adaptar o

comportamento do
sistema às necessidades

do usuário ou da
situação.

A metodologia
proposta consiste
em cinco etapas

principais:
Identificação de
contexto: Nesta

etapa, os
contextos

relevantes para o
sistema são

identificados e
definidos.

Modelagem do
contexto: Nesta

etapa, o contexto
é modelado
formalmente

usando a
linguagem IFML e

a ferramenta
Enterprise

Architect. São
criados diagramas
de contexto que

mostram as
entidades,

propriedades e
relacionamentos
relevantes para o

contexto.
Verificação formal:

Nesta etapa, a
modelagem do

contexto é
verificada

formalmente para
garantir que está

correta e
consistente.

Implementação:
Nesta etapa, a
modelagem do

contexto é
implementada no

sistema.
Monitoramento e

atualização: Nesta
etapa, o contexto

é monitorado
continuamente e

atualizado
conforme

necessário.

IEEE Inglês CI1 Incluido
Dargent: A Silver Bullet
for Verified Data Layout
Refinement

Chen Z,Lafont
A,O'Connor L,
Keller G,
McLaughlin C,
Jackson V,
Rizkallah C

2023

Systems
programme
rs need
fine-grained
control over
the memory
layout of
data
structures,
both to
produce
performant
code and to
comply with
well-defined
interfaces
imposed by
existing
code,
standardise
d protocols
or
hardware.
Code that
manipulate
s these low-
level
representati
ons in
memory is
hard to get
right.
Traditionall
y, this
problem is
addressed
by the
implementa
tion of
tedious
marshalling
code to
convert
between
compiler-
selected
data
representati
ons and the
desired
compact
data
formats.
Such
marshalling
code is
error-prone
and can
lead to a
significant
runtime
overhead
due to
excessive
copying.
While there
are many
languages
and
systems
that
address the
correctness
issue, by
automating
the
generation
and, in
some
cases, the
verification
of the
marshalling
code, the
performanc
e overhead
introduced
by the
marshalling
code
remains. In
particular
for systems
code, this
overhead
can be
prohibitive.
In this work,
we address
both the
correctness
and the
performanc
e problems.
We present
a data
layout
description
language
and data
refinement
framework,
called
Dargent,
which
allows
programme
rs to
declarativel
y specify
how
algebraic
data types
are laid out
in memory.
Our
solution is
applied to
the Cogent
language,
but the
general
ideas
behind our
solution are
applicable
to other
settings.
The
Dargent
framework
generates
C code that
manipulate
s data
directly with
the desired
memory
layout,
while
retaining
the formal
proof that
this
generated
C code is
correct with
respect to
the
functional
semantics.
This added
expressivity
removes
the need for
implementi
ng and
verifying
marshalling
code, which
eliminates
copying,
smoothens
interoperabi
lity with
surrounding
systems,
and
increases
the
trustworthin
ess of the
overall
system.

10.1145
/357124

0

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35712
40;http://dx.
doi.org/10.
1145/35712
40

certifying
compiler,
data
refinement,
systems
programmin
g

O artigo apresenta uma nova
ferramenta baseada em

verificação formal para refinar o
layout de dados em sistemas

de computação, com um
estudo de caso para

demonstrar sua eficácia e
discute possíveis áreas de

pesquisa futura.

Refinamento do layout
de dados: O processo de
reorganizar os dados em

um sistema de
computação para

melhorar o desempenho
e a eficiência. Verificação
formal: Um método para
garantir que um sistema

ou algoritmo esteja
correto e livre de erros,
utilizando ferramentas
matemáticas e lógicas.

Dargent: Uma ferramenta
para refinar o layout de
dados em sistemas de
computação, usando

técnicas de verificação
formal. Análise de

impacto: Uma técnica
para avaliar o impacto
potencial de mudanças

em um sistema de
computação antes de

implementá-las. Grafo de
dependência: Uma

representação visual das
dependências entre os

dados em um sistema de
computação, usado pela
Dargent para analisar o
sistema. Refinamento
local: O processo de

refinar o layout de dados
em uma parte específica

de um sistema de
computação.

Refinamento global: O
processo de refinar o

layout de dados em todo
o sistema de

computação. Estudo de
caso: Um exemplo de

como a Dargent pode ser
usada para refinar o

layout de dados em um
sistema de

gerenciamento de
bancos de dados.

A metodologia do
artigo envolveu o
desenvolvimento

de uma nova
ferramenta

baseada em
verificação formal

para refinar o
layout de dados
em sistemas de

computação, bem
como um estudo

de caso para
avaliar sua
eficácia e

identificação de
possíveis áreas

de melhoria para
futuras pesquisas.

ACM Inglês CI1 Incluido
DeepSTL - From
English Requirements
to Signal Temporal
Logic

J. He; E.
Bartocci; D.
Ničković; H.
Isakovic; R.
Grosu

2022

Formal
methods
provide
very
powerful
tools and
techniques
for the
design and
analysis of
complex
systems.
Their
practical
application
remains
however
limited, due
to the
widely
accepted
belief that
formal
methods
require
extensive
expertise
and a steep
learning
curve.
Writing
correct
formal
specificatio
ns in form
of logical
formulas is
still
considered
to be a
difficult and
error prone
task. In this
paper we
propose
DeepSTL, a
tool and
technique
for the
translation
of informal
requirement
s, given as
free English
sentences,
into Signal
Temporal
Logic
(STL), a
formal
specificatio
n language
for cyber-
physical
systems,
used both
by
academia
and
advanced
research
labs in
industry. A
major
challenge
to devise
such a
translator is
the lack of
publicly
available
informal
requirement
s and
formal
specificatio
ns. We
propose a
two-step
workflow to
address
this
challenge.
We first
design a
grammar-
based
generation
technique
of synthetic
data, where
each output
is a random
STL
formula and
its
associated
set of
possible
English
translations
. In the
second
step, we
use a state-
of-the-art
transformer
-based
neural
translation
technique,
to train an
accurate
attentional
translator of
English to
STL. The
experiment
al results
show high
translation
quality for
patterns of
English
requirement
s that have
been well
trained,
making this
workflow
promising
to be
extended
for
processing
more
complex
translation
tasks.

10.1145
/351000

3.
351017

1

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
794051

Requiremen
ts
Engineering
;Formal
Specificatio
n;Signal
Temporal
Logic (STL);
Machine
Translation

A principal característica do
artigo é a proposta de uma

nova abordagem para traduzir
requisitos em linguagem

natural em lógica temporal de
sinais, usando redes neurais

profundas. A abordagem
proposta é baseada em uma

arquitetura de rede neural que
consiste em uma camada de

codificação e uma camada de
decodificação.

Os principais conceitos
abordados no artigo

incluem: Lógica temporal
de sinais (STL),

Aprendizado profundo,
Redes neurais,
Codificação e
decodificação,
Modelagem de

requisitos, A abordagem
proposta tem a vantagem
de ser capaz de traduzir

com precisão os
requisitos em linguagem
natural em expressões

em STL.

A metodologia
proposta consiste
em quatro etapas
principais: Coleta
de dados: Nesta

etapa, são
coletados

requisitos em
linguagem natural

e suas
correspondentes
expressões em

STL. Pré-
processamento de

dados: Nesta
etapa, os dados

coletados são pré-
processados
para serem
usados no

treinamento da
rede neural.

Treinamento da
rede neural: Nesta

etapa, a rede
neural é treinada
para mapear os
requisitos em

linguagem natural
em expressões

em STL.
Avaliação do

modelo: Nesta
etapa, o modelo

treinado é
avaliado quanto à
sua capacidade
de traduzir com

precisão os
requisitos em

linguagem natural
em expressões

em STL.

IEEE Inglês CI1 Incluido
Enumeration and
Deduction Driven Co-
Synthesis of CCSL
Specifications using
Reinforcement
Learning

M. Hu; J. Ding;
M. Zhang; F.
Mallet; M.
Chen

2021

The Clock
Constraint
Specificatio
n Language
(CCSL) has
become
popular for
modeling
and
analyzing
timing
behaviors
of real-time
embedded
systems.
However, it
is difficult
for
requirement
engineers
to
accurately
figure out
CCSL
specificatio
ns from
natural
language-
based
requirement
descriptions
. This is
mainly
because: i)
most
requirement
engineers
lack
expertise in
formal
modeling;
and ii) few
existing
tools can
be used to
facilitate the
generation
of CCSL
specificatio
ns. To
address
these
issues, this
paper
presents a
novel
approach
that
combines
the merits
of both
Reinforcem
ent
Learning
(RL) and
deductive
techniques
in logical
reasoning
for efficient
co-
synthesis of
CCSL
specificatio
ns.
Specifically,
our method
leverages
RL to
enumerate
all the
feasible
solutions to
fill the holes
of
incomplete
specificatio
ns and
deductive
techniques
to judge the
quality of
each trial.
Our
proposed
deductive
mechanism
s are useful
for not only
pruning
enumeratio
n space,
but also
guiding the
enumeratio
n process
to reach an
optimal
solution
quickly.
Comprehen
sive
experiment
al results
on both
well-known
benchmark
s and
complex
industrial
examples
demonstrat
e the
performanc
e and
scalability
of our
method.
Compared
with the
state-of-
the-art, our
approach
can
drastically
reduce the
synthesis
time by
several
orders of
magnitude
while the
accuracy of
synthesis
can be
guaranteed.

10.1109
/RTSS5
2674.

2021.00
030

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
622334

Specificatio
n synthesis;
reinforceme
nt learning;
logical
clocks;
deduction;
enumeratio
n

O artigo trata de problemas no
processo de especificação

formal de sistemas
embarcados em tempo real, em
que engenheiros de requisitos

têm dificuldade em derivar
especificações formais a partir

de descrições textuais,
principalmente no que diz

respeito à modelagem
temporal.

O artigo propõe uma
abordagem de síntese de

especificação para
preencher lacunas em
especificações CCSL

incompletas. A
abordagem de síntese é

uma solução para o
problema de engenheiros

de requisitos que têm
dificuldade em derivar

especificações formais a
partir de descrições

textuais, especialmente
na modelagem temporal.

O método
proposto é
chamado

CCSLSketch, que
é capaz de

preencher lacunas
em especificações
CCSL incompletas

com base em
traços de tempo

esperados usando
um SAT solver. O
artigo menciona

vários métodos de
validação e

verificação para
especificações

CCSL, mas esses
métodos

presumem que as
especificações

CCSL estão
completamente
prontas, o que é

difícil de alcançar
na prática.

IEEE Inglês CI1 Incluido
Formal Analysis of
Language-Based
Android Security Using
Theorem Proving
Approach

W. Khan; M.
Kamran; A.
Ahmad; F. A.
Khan; A.
Derhab

2019

Mobile
devices are
an
indispensab
le part of
modern-day
lives to
support
portable
computatio
ns and
context-
aware
communica
tion.
Android
applications
within a
mobile
device
share data
to support
application
operations
and better
user
experience,
which also
increases
security
risks to
device's
data
integrity
and
confidentiali
ty. To
analyze the
security
provided by
the Android
permissions
, modern
security
techniques,
based on
the
programmin
g
languages,
have been
used to
enforce
best
practices
for
developing
the secure
Android
applications
. Android
security
assessment
, based on
the
language-
based
techniques
in an
informal
setting
without
formal tool
support, is
tedious and
error-prone.
Furthermor
e, the lack
of proof of
the
soundness
of the
language-
based
techniques
raises
questions
about the
validity of
the
analysis. To
enable
computer-
aided
formal
verification
in Android
security
domain, we
have
developed
a
mathematic
al model of
language-
based
Android
security
using
computer-
based proof
assistant
Coq. One
of the main
challenges
for
mechanizin
g the
language-
based
security in
theorem
prover
relates to
the
complexity
of variable
bindings in
language-
based
security
techniques.
As the main
contribution
s of the
paper: 1)
the
language-
based
security,
including
variable
binding, is
formalized
in theorem
prover Coq;
2) a formal
type
checker is
built to type
check
(capture
safe data
flows
within)
Android
applications
using
computer;
and 3) the
soundness
of the
language-
based
security
technique
(type
system) is
mechanicall
y verified.
The formal
model of
the Android
type system
and their
proof of
soundness
are
machine-
readable,
and their
correctness
can be
checked in
the
computer
using Coq
proof and
type
checkers.

10.1109
/ACCE

SS.
2019.28
95261

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
626096

Android
security;
formal
verification;
language-
based
security;
locally
nameless
representati
on;
machine-
readable
proofs;
theorem
proving

O artigo destaca a importância
da análise formal na segurança

baseada em linguagem em
dispositivos Android. Ele

apresenta uma abordagem de
análise formal, utilizando
teoremas e provas, para
verificar a eficácia dos

mecanismos de segurança de
linguagem. A contribuição do
artigo está em fornecer uma

metodologia sólida e resultados
experimentais que podem

ajudar a melhorar a segurança
dos aplicativos Android.

 O artigo discute a
análise formal da

segurança baseada em
linguagem em

dispositivos Android. Ele
aborda conceitos como
segurança baseada em

linguagem, análise
formal, teoremas e

provas, formalização de
propriedades de

segurança, prova de
corretude e avaliação
experimental. Esses

conceitos são
fundamentais para a

compreensão da
abordagem proposta

pelo artigo para verificar
a segurança dos
mecanismos de

segurança de linguagem
em dispositivos Android.

A metodologia
descrita no artigo

combina a
formulação de

propriedades de
segurança, a
formalização

dessas
propriedades, a
modelagem do

sistema Android, a
prova de

corretude e a
avaliação

experimental.
Essa abordagem
visa fornecer uma
análise formal da

segurança
baseada em

linguagem em
dispositivos

Android, utilizando
técnicas de prova

para verificar a
corretude dos

mecanismos de
segurança de

linguagem.

IEEE Inglês CI1 Incluido

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402585
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9586118
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8772087
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3571240;http://dx.doi.org/10.1145/3571240
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9794051
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9622334
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8626096

TÍTULO AUTORES ANO RESUMO DOI PDF LINK
PALAVRA
S-CHAVE

CARACTERÍSTICAS
PRINCIPAIS

PRINCIPAIS
CONCEITOS MÉTODOS

FONTE DE
BUSCA IDIOMA CRITÉRIOS STATUS

Work-in-Progress:
Formal Analysis of
Hybrid-Dynamic Timing
Behaviors in Cyber-
Physical Systems

L. Huang; E.
Y. Kang 2019

Ensuring
correctness
of timed
behaviors
in cyber-
physical
systems
(CPS)
using
closed-loop
verification
is
challenging
due to the
hybrid
dynamics in
both
systems
and
environmen
ts. Simulink
and
Stateflow
are tools for
model-
based
design that
support a
variety of
mechanism
s for
modeling
and
analyzing
hybrid
dynamics of
real-time
embedded
systems. In
this paper,
we present
an SMT-
based
approach
for formal
analysis of
the hybrid-
dynamic
timing
behaviors
of CPS
modeled in
Simulink
blocks and
Stateflow
states
(S/S). The
hierarchicall
y
interconnec
ted S/S are
flattened
and
translated
into the
input
language of
SMT solver
for formal
verification.
A
translation
algorithm is
provided to
facilitate the
translation.
Formal
verification
of timing
constraints
against the
S/S models
is reduced
to the
validity
checking of
the
resulting
SMT
encodings.
The
applicability
of our
approach is
demonstrat
ed on an
unmanned
surface
vessel case
study.

10.1109
/RTSS4
6320.

2019.00
069

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
052141

Cyber
physical
system;
Simulink/St
ateflow;
dReal;
Timing
Constraints;
Formal
verification

Propõe uma abordagem
baseada em SMT para analisar

CPS modelado em GHA
usando dReal: 1) Definições

formais de estado baseado em
Simulink e GHA são fornecidos;

2) O GHA hierárquico é
simplificado e traduzido para a

linguagem de entrada do
dReal;3) Um algoritmo de
tradução é fornecido para

facilitar a tradução; 4) A análise
formal das restrições de tempo
em relação ao GHA é reduzida
à verificação de validade das
codificações Smt resultantes.

Nessa abordagem é
demonstrado um estudo de

caso de embarcação de
superfície não tripulada (USV).

sistemas ciber-físicos
(CPS)

Primeiro
apresentaram

como nivelar os
estados sl

hierárquicos no
GHA e, em
seguida,

forneceram as
definições formais
do estado sl e do
GHA, seguidas

por breves
descrições de um

algoritmo de
tradução.

Realizaram um
estudo de caso

IEEE Inglês CE1 Excluído
Work-In-Progress: a
DSL for the safe
deployment of Runtime
Monitors in Cyber-
Physical Systems

Nandi, Giann
Spilere;
Pereira, David;
Proenca,
Jose; Tovar,
Eduardo

2020

Guaranteei
ng that
safety-
critical
Cyber-
Physical
Systems
(CPS) do
not fail
upon
deployment
is becoming
an even
more
complicated
task with
the
increased
use of
complex
software
solutions.
To aid in
this matter,
formal
methods
(rigorous
mathematic
al and
logical
techniques)
can be
used to
obtain
proofs
about the
correctness
of CPS. In
such a
context,
Runtime
Verification
has
emerged as
a promising
solution
that
combines
the formal
specificatio
n of
properties
to be
validated
and
monitors
that
perform
these
validations
during
runtime.
Although
helpful,
runtime
verification
solutions
introduce
an
inevitable
overhead in
the system,
which can
disrupt its
correct
functioning
if not safely
employed.
We
propose the
creation of
a Domain
Specific
Language
(DSL) that,
given a
generic
CPS, 1)
verifies if its
real-time
scheduling
is
guaranteed,
even in the
presence of
coupled
monitors,
and 2)
implements
several
verification
conditions
for the
correct-by-
constructio
n
generation
of
monitoring
architecture
s. To
achieve it,
we plan to
perform
statical
verifications
, derived
from the
available
literature on
schedulabili
ty analysis,
and
powered by
a set of
semi-
automatic
formal
verification
tools.

10.1109
/RTSS4
9844.

2020.00
047

- -

. Propuserama criação de uma
Domain Specific Language
(DSL) que, dado um CPS
genérico, 1) verifique se o

escalonamento em tempo real
é garantido, mesmo na
presença de monitores

acoplados, e 2) implementa
diversas condições de

verificação para a geração
correta por construção de

arquiteturas de monitoramento.
Para alcançá-lo, planejaram

realizar verificações estáticas,
derivadas da literatura

disponível sobre análise de
escalonamento, e alimentadas

por um conjunto de
ferramentas semiautomáticas

de verificação formal

sistemas ciber-físicos
(CPS) , Runtime

Verification, Domain
Specific Language (DSL

Especificando as
arquiteturas com

mudanças de
modo; Garantias
de Agendamento;

Verificação do
tempo de
execução;

Web of science Inglês CE1 Excluído
VrFy: Verification of
Formal Requirements
using Generic Traces

J. J. Olthuis;
R. Jordão; F.
Robino; S.
Borrami

2021

In order to
fulfil
standards
governing
the
developme
nt of safety-
critical
systems,
requirement
s are often
shown to
be satisfied
by means
of
traditional
techniques
such as
system
analysis
and testing
activities.
While these
techniques
have been
used for
many
years,
issues can
still arise
due to
weak tests,
not fully
covering all
requirement
scenarios;
and due to
misinterpret
ation of
requirement
s, leading
to futile test
activities.
Having
simpler
techniques
to show
that
requirement
s are
properly
fulfilled and
that depend
less on
thoroughne
ss of the
tester is
beneficial.
To tackle
these
issues, we
present an
analysis
method
together
with an
accompanyi
ng toolset,
VrFy,
implementi
ng a novel
technique
to automate
the
detection of
violations of
require-
ments.
Monitors
are
generated
automaticall
y, and the
risk due to
misinterpret
ation of
requirement
s is
reduced by
using a
formal
notation
(LTL3).
Compared
to related
work, the
proposed
technique is
programmin
g language
agnostic
and can
identify the
exact time
when
requirement
s are
violated,
supporting
the end
user to
quickly spot
the root
cause. By
means of a
real-world
use case in
the railway
domain, we
show how
the tool can
be used to
augment
traditional
verification
techniques.

10.1109
/QRS-

C55045
.

2021.00
034

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
742213

Trace
Validation;
LTL3;NBA;
Programmin
g Language
Agnostic;
Railway
Domain;
Trace
Compass

Trata-se de uma ferramenta
para reduzir a probabilidade de
problemas. Uma abordagem de

verificação e o conjunto de
ferramentas VrFy que o

acompanha. Trata-se de um
conjunto de ferramentas para

verificação de requisitos
formais utilizando traces

genéricos, ou seja, traces que
podem ser gerados a partir de

softwares independente de
suas linguagens de

programação . Nossa
abordagem propõe combinar

metodologias de teste
tradicionais com validação de
rastreamento automatizada. A
partir de uma descrição formal

dos requisitos e um
rastreamento do sistema

gerado em tempo de execução,
o VrFy é capaz de identificar

automaticamente se a
execução do software violou o

requisito.

Verificação e validação;
Verificação de

rastreamentos em
formato de rastreamento

comum (CTF)

 Especificação
LTL e Geração de

Monitores;
Instrumentação de
Código; Validação
de rastreamento;

visualização e
rastreamento

IEEE Inglês CE1 Excluído

Visualization of
Promela with NS-Chart

A.
Chawanothai;
W.
Vatanawood

2019

In the
paradigm of
model
checking, a
formal
model is
considered
as one of
the crucial
sources
that tends
to be
verified with
the desired
properties.
The
definition of
the formal
model
should be
understand
able and
clear in
order to
express the
structure
and
behaviors
of the
system
visually
using
diagrammat
ic tools. In
this paper,
we focused
on the
formal
model
which is
written in
Promela
language
that
supports
the non-
determinis
m of the
concurrent
system.
From our
study, we
found that
the
Promela
syntax
could
probably be
drawn by
using NS-
chart visual
symbols.
The classic
NS-chart
symbols
represents
the control
flow of the
system that
was written
in Promela.
As a main
purpose of
this paper,
we aim to
propose a
set of
mapping
rules for
generating
the NS-
chart
drawing
from
Promela
source
codes. The
result of the
drawing
with the
proposed
NS-Chart
syntax
showed
that the
Promela
control flow
structure
could be
represented
succinctly
and the
chart could
be
practically
used for
tracing the
counterexa
mple of the
verification.

10.1109
/ICTS.

2019.88
50971

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
850971

Promela;
NS-chart;
Control
Flow Graph;
Validation;
SPIN tool

Apresenta uma técnica para a
visualização gráfica de

modelos escritos em Promela,
uma linguagem de modelagem

de sistemas concorrentes.
Essa técnica é baseada na

utilização de um tipo de
diagrama chamado NS-Chart,

que permite representar de
forma clara e intuitiva a

estrutura e o comportamento
dos sistemas modelados. O

artigo descreve o processo de
tradução de modelos em

Promela para NS-Charts e
apresenta exemplos de como

essa técnica pode ser aplicada
na análise e verificação de

sistemas concorrentes.

Promela; NS-Chart;
Tradução de modelos;

Verificação de modelos;
Análise de sistemas

concorrentes:

Modelagem em
Promela: o

sistema
concorrente é
modelado em

Promela,
seguindo as

regras e
convenções dessa

linguagem.
Análise

semântica: o
modelo em
Promela é

submetido a uma
análise semântica,
para verificar se

está livre de erros
e inconsistências.

Tradução para
NS-Chart: o
modelo em
Promela é

traduzido para um
NS-Chart

equivalente,
usando uma série

de regras de
tradução definidas

no artigo.
Visualização e
análise do NS-

Chart: o NS-Chart
gerado a partir do

modelo em
Promela é

visualizado e
analisado para

identificar
possíveis

problemas ou
oportunidades de

melhoria no
sistema

modelado.
Verificação formal:

se necessário,
técnicas formais
de verificação

podem ser
aplicadas ao
modelo em

Promela ou ao
NS-Chart

correspondente,
para verificar se o
sistema satisfaz
determinadas
propriedades.

IEEE Inglês CE1 Excluído
Verifying Cross-Layer
Interactions Through
Formal Model-Based
Assertion Generation

A. Salehi
Fathabadi; M.
Dalvandi; M.
Butler; B. M.
Al-Hashimi

2020

Cross-layer
runtime
manageme
nt (RTM)
frameworks
for
embedded
systems
provide a
set of
standard
application
programmin
g interfaces
(APIs) for
communica
tion
between
different
system
layers (i.e.,
RTM,
applications
, and
device) and
simplify the
developme
nt process
by
abstracting
these
layers.
Integration
of
independen
tly
developed
component
s of the
system is
an error-
prone
process
that
requires
careful
verification.
In this
letter, we
propose a
formal
approach to
integration
testing
through
automatic
generation
of runtime
assertions
in order to
test the
implementa
tion of the
APIs. Our
approach
involves a
formal
model of
the APIs
developed
using the
Event-B
formal
method,
which is
automaticall
y translated
to a set of
assertions
and
embedded
in the
existing
implementa
tion of
APIs. The
embedded
assertions
are used at
runtime to
check the
correctness
of the
integration.

10.1109
/LES.

2019.29
55316

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
910436

Embedded
systems;
Event-B;
formal
methods;
formal
verification;
runtime
manageme
nt

o artigo apresenta uma
abordagem integrada para a

verificação de interações entre
camadas de sistemas de
comunicação, que utiliza

técnicas de modelagem formal,
geração automática de
asserções, análise de

cobertura e simulação de
sistema. O estudo de caso

demonstra a eficácia da
abordagem proposta na

detecção de erros e violações
de propriedades em um

sistema de comunicação sem
fio.

O artigo apresenta
conceitos relacionados à

modelagem formal,
geração de asserções,
análise de cobertura,

simulação de sistema e
interações entre

camadas de sistemas de
comunicação. Esses

conceitos são integrados
em uma abordagem para

a verificação de
interações cross-layer

em sistemas de
comunicação.

Consiste em uma
abordagem
integrada que
utiliza técnicas de
modelagem
formal, verificação
formal, geração
de asserções,
análise de
cobertura e
simulação de
sistema para
verificar
interações entre
diferentes
camadas de um
sistema de
comunicação. A
abordagem é
repetida até que
todas as
interações sejam
verificadas e
todas as
propriedades
desejadas sejam
satisfeitas. O
artigo apresenta
um estudo de
caso para
demonstrar a
eficácia da
abordagem
proposta.

IEEE Inglês CE1 Excluído
Verification of Railway
Network Models with
EVEREST

Martins J,
Fonseca JM,
Costa R,
Campos JC,
Cunha A,
Macedo N,
Oliveira JN

2022

Models - at
different
levels of
abstraction
and
pertaining
to different
engineering
views - are
central in
the design
of railway
networks, in
particular
signalling
systems.
The design
of such
systems
must follow
numerous
strict rules,
which may
vary from
project to
project and
require
information
from
different
views. This
renders
manual
verification
of railway
networks
costly and
error-prone.
This paper
presents
EVEREST,
a tool for
automating
the
verification
of railway
network
models that
preserves
the loosely
coupled
nature of
the design
process. To
achieve this
goal,
EVEREST
first
combines
two
different
views of a
railway
network
model - the
topology
provided in
signalling
diagrams
containing
the
functional
infrastructur
e, and the
precise
coordinates
of the
elements
provided in
technical
drawings
(CAD) - in a
unified
model
stored in
the railML
standard
format. This
railML
model is
then
verified
against a
set of user-
defined
infrastructur
e rules,
written in a
custom
modal logic
that
simplifies
the
specificatio
n of spatial
constraints
in the
network.
The
violated
rules can
be
visualized
both in the
signalling
diagrams
and
technical
drawings,
where the
element(s)
responsible
for the
violation
are
highlighted.
EVEREST
is
integrated
in a long-
term effort
of EFACEC
to
implement
industry-
strong tools
to automate
and
formally
verify the
design of
railway
solutions.

10.1145
/355035

5.
355243

9

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35503
55.
3552439;
http://dx.doi.
org/10.
1145/35503
55.3552439

formal
infrastructur
e rule
specificatio
n, railway
engineering
, railway
network
model
verification,
railML

Apresenta uma metodologia
para a verificação formal de

modelos de redes ferroviárias,
com base na ferramenta

EVEREST.

Verificação formal;
Modelagem de sistemas;

Redes ferroviárias;
TLA+:Model checking;

Theorem proving;
Ferramenta EVEREST;

Estudo de caso.

A metodologia
proposta no artigo

envolve a
utilização de uma

linguagem de
modelagem

formal,
especificação de

propriedades,
geração de estado
inicial, aplicação
de técnicas de

verificação formal
e análise de

resultados para
validar modelos

de redes
ferroviárias. A

ferramenta
EVEREST é
utilizada para

automatizar parte
desse processo e

melhorar sua
eficiência.

ACM Inglês CE1 Excluído
Verification of
Distributed Systems via
Sequential Emulation

Di Stefano L,
De Nicola R,
Inverso O 2022

Sequential
emulation is
a
semantics-
based
technique
to
automaticall
y reduce
property
checking of
distributed
systems to
the analysis
of
sequential
programs.
An
automated
procedure
takes as
input a
formal
specificatio
n of a
distributed
system, a
property of
interest,
and the
structural
operational
semantics
of the
specificatio
n language
and
generates a
sequential
program
whose
execution
traces
emulate the
possible
evolutions
of the
considered
system.
The
problem as
to whether
the property
of interest
holds for
the system
can then be
expressed
either as a
reachability
or as a
termination
query on
the
program.
This allows
to
immediately
adapt
mature
verification
techniques
developed
for general-
purpose
languages
to domain-
specific
languages,
and to
effortlessly
integrate
new
techniques
as soon as
they
become
available.
We test our
approach
on a
selection of
concurrent
systems
originated
from
different
contexts
from
population
protocols to
models of
flocking
behaviour.
By
combining
a
comprehen
sive range
of program
verification
techniques,
from
traditional
symbolic
execution
to modern
inductive-
based
methods
such as
property-
directed
reachability,
we are able
to draw
consistent
and correct
verification
verdicts for
the
considered
systems.

10.1145
/349038

7

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/34903
87;http://dx.
doi.org/10.
1145/34903
87

Concurrenc
y,
semantics-
based
verification,
termination,
distribution,
sequentializ
ation,
process
algebra,
domain-
specific
languages,
program
verification,
reachability,
structural
operational
semantics

O artigo propõe uma técnica de
verificação de sistemas
distribuídos que utiliza a

emulação sequencial para
reduzir a complexidade do

sistema e permitir a verificação
formal do mesmo.

verificação formal de
sistemas distribuídos,

como emulação
sequencial, redução de

complexidade,
escalonamento,

modelagem formal e
teoria de grafos

A metodologia
consiste em
modelar o

sistema, emulá-lo
sequencialmente,

determinar a
ordem de

execução dos
eventos, realizar a
verificação formal

e analisar os
resultados. A

metodologia foi
testada em

experimentos que
demonstraram
sua eficácia em

reduzir a
complexidade do
sistema e facilitar

a verificação
formal.

ACM Inglês CE1 Excluído
Using UML Activity
Diagram for Adapting
Experiments under a
Virtual Laboratory
Environment

Sypsas A,
Kalles D 2021

The
developme
nt of a
system
model can
be an
extremely
complex
process. A
common
approach to
modeling
system
behavior
uses
activity
diagrams
(AD) in
Unified
Modeling
Language
(UML),
which,
however,
do not
support the
formal
analysis
that is
possible
when using
formal
languages
such as
Petri Nets
(PN). In this
paper, we
show how a
model
describing
an
experiment
in a Virtual
Laboratory
and
represented
by an AD
can be
transformed
into an
equivalent
PN. Then,
the model
represented
as a PN
can be
readily
compared
to a model
of a similar
experiment
used in
another
educational
setting, in
order to
decide the
extent to
which it can
be reused.

10.1145
/343712

0.
343726

7

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/34371
20.
3437267;
http://dx.doi.
org/10.
1145/34371
20.3437267

Petri nets,
Activity
Diagram,
Virtual
laboratory

O artigo apresenta uma
proposta para a adaptação de
experimentos em um ambiente
de laboratório virtual, utilizando

UML Activity Diagrams para
modelar o processo de

adaptação. O artigo enfatiza a
importância da adaptação em
ambientes de aprendizagem e

propõe um modelo para a
adaptação de experimentos. O

estudo de caso descrito no
artigo valida a proposta de

adaptação de experimentos.

Adaptação de
experimentos

Ambiente de laboratório
virtual

UML Activity Diagrams
Processo de adaptação
Efetividade do processo

de aprendizagem
Modelo de adaptação de

experimentos
Estudo de caso.

Desenvolvimento
de um modelo

para a adaptação
de experimentos
em um ambiente

de laboratório
virtual.

Utilização de UML
Activity Diagrams
para modelar o

processo de
adaptação.

Realização de um
estudo de caso
para validar a
proposta de

adaptação de
experimentos.

ACM Inglês CE1 Excluído
Using the SCADE
Toolchain to Generate
Requirements-Based
Test Cases for an
Adaptive Cruise
Control System

A. Aniculaesei;
A. Vorwald; A.
Rausch 2019

In the last
years,
model-
driven
engineering
has gained
a lot of
traction,
especially
in industrial
domains,
such as
automotive
or avionics.
Various
tools which
support
model-
driven
engineering
, e.g.
SCADE or
MATLAB/Si
mulink,
have
developed
over the
years in
fully fledged
integrated
developme
nt
environmen
ts, with
strong
capabilities
for the
modeling of
complex
software
systems.
Model-
driven
engineering
tools are
mature
enough so
that the
model
created
with them
are
amenable
to formal
analysis for
the purpose
of
verification
and
validation.
Acceptance
testing is a
validation
method by
which a
system is
tested
extensively
against
legal and
customer
requirement
s, before it
is allowed
in series
production.
Due to the
inherent
complexity
of
automotive
systems,
large
requirement
s
catalogues
have
become
usual in this
domain.
Checking
that a
complex
automotive
software
system
conforms to
an
extensive
requirement
s catalogue
is a task
which
cannot be
managed
manually
anymore. In
this paper,
we design a
workflow for
test
engineers
to construct
test cases
from
formalized
requirement
s and
examine
the quality
of tests via
mutant
testing
within the
SCADE
toolchain.
We
construct
an
academic
case study
based on a
prototypical
adaptive
cruise
control
system and
evaluate
our
workflow on
it. We
report on
results and
lessons
learned.

10.1109
/MODE
LS-C.

2019.00
079

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
904521

requirement
s-based
testing;
model-
driven
engineering
; automated
test case
generation;
model
checking;
adaptive
cruise
control;
SCADE
toolchain

O artigo tem como objetivo
demonstrar como a ferramenta
SCADE pode ser usada para

gerar casos de teste baseados
em requisitos para um sistema

de controle de cruzeiro
adaptativo.

Requisitos baseados em
modelo

Testes de sistemas
críticos

Controle de cruzeiro
adaptativo

Ferramenta SCADE
Abordagem baseada em
modelos para geração de

casos de teste
Estudo de caso

Comparação com outras
abordagens de geração

de casos de teste.

Definição dos
requisitos do
sistema de
controle de

cruzeiro
adaptativo e a
modelagem

desses requisitos
usando a
linguagem
SCADE.

Derivação de
casos de teste a
partir do modelo

SCADE usando a
ferramenta T-

VEC.
Execução dos
casos de teste
gerados em um
simulador de

software.
Análise dos

resultados da
execução e

comparação com
outros métodos de
geração de casos

de teste.

IEEE Inglês CE1 Excluído
Using tabular notation
to support model based
testing: A practical
experience using
STTSpec and Spec
Explorer

R. Kherrazi 2020

Finite state
machines
are a widely
used
concept for
specifying
the
behavior of
reactive
systems for
developme
nt as well
as for
testing
purpose.
Numerous
graphical
notations
based on
finite state
machines
have been
developed
and are
commonly
used today,
such as
state
transition
diagrams,
state
charts, and
Unified
Modeling
Language
(UML) state
machine
diagrams.
While not
as widely
used,
tabular
notations
for state
machine-
based
specificatio
ns offer
complemen
tary
advantages
to
diagrammat
ic notations.
In this
article, we
describe an
approach
using
tabular
notations
for state
machine-
based
specificatio
ns in Model
Based
Testing and
we evaluate
these
approaches
using Spec
Explorer
from
Microsoft.
We
developed
a tool,
called
STTSpec,
to convert
tabular
notation
from an
Excel sheet
to the C#
input
models of
Spec
Explorer,
allowing us
to do
functional
testing with
the benefit
of simplicity
of tabular
notation.
We
demonstrat
e this by
applying
our
approach to
an
industrial-
size case
study.

10.1109
/ICSTW
50294.

2020.00
021

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
155719

State
Machine
Diagrams;
Tabular
Notation;
State
Transition
Table
(STT);Excel
Sheet;
Model
Based
Testing
(MBT);Spec
Explorer;
STTSpec

O artigo descreve uma
experiência prática no uso de
notação tabular para suportar
testes baseados em modelos.

Testes baseados em
modelos

Notação tabular
STTSpec

Spec Explorer
Diretrizes para uso da

notação tabular em
testes baseados em

modelos.

O artigo apresenta
uma metodologia
prática que utiliza
a notação tabular

STTSpec em
conjunto com a

ferramenta Spec
Explorer para

gerar casos de
teste baseados
em modelos. O
estudo de caso

realizado validou
a eficácia dos
casos de teste

gerados na
detecção de erros

no sistema.

IEEE Inglês CE1 e CE2 Excluído
Unifying Separation
Logic and Region Logic
to Allow Interoperability

Bao Y,
Leavens GT,
Ernst G 2018

Framing is
important
for
specificatio
n and
verification,
especially
in programs
that mutate
data
structures
with shared
data, such
as DAGs.
Both
separation
logic and
region logic
are
successful
approaches
to framing,
with
separation
logic
providing a
concise
way to
reason
about data
structures
that are
disjoint, and
region logic
providing
the ability to
reason
about
framing for
shared
mutable
data. In
order to
obtain the
benefits of
both logics
for
programs
with shared
mutable
data, this
paper
unifies
them into a
single logic,
which can
encode
both of
them and
allows them
to
interoperate
. The new
logic thus
provides a
way to
reason
about
program
modules
specified in
a mix of
styles.

10.1007
/s00165

-018-
0455-5

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1007/s0016
5-018-0455-
5;http://dx.
doi.org/10.
1007/s0016
5-018-0455-
5

Formal
verification,
Separation
logic,
Unified fine-
grained
region logic
(UFRL),
Framing,
Fine-
grained
region logic,
Formal
specificatio
n, Shared
mutable
data, Hoare
logic

O artigo propõe uma técnica
para unificar a lógica de
separação e região para

permitir interoperabilidade entre
ferramentas de verificação. A
técnica envolve a criação de
uma nova lógica chamada

"lógica de região paramétrica".
A eficácia da técnica é avaliada

em estudos de caso e
experimentos em diferentes
ferramentas de verificação.

Lógica de separação,
lógica de região,

interoperabilidade,
verificação de

programas, lógica de
região paramétrica.

Definição da
lógica de região
paramétrica, que
unifica as lógicas
de separação e

região.

Formalização das
regras de

inferência da
lógica, incluindo
as regras para

lidar com a união
e interseção de

regiões.

Definição de uma
semântica

operacional para a
lógica de região

paramétrica.

Implementação da
técnica proposta

em diferentes
ferramentas de
verificação de
programas e
avaliação da
eficácia em

estudos de caso e
experimentos.

ACM Inglês CE1 e CE2 Excluído
Translation Validation
of Code Generation
from the SIGNAL Data-
Flow Language to
Verilog

H. M. Amjad;
K. Hu; J. Niu;
N. Khan; L.
Besnard; J. -P.
Talpin

2019

The
SIGNAL is
a high-level
synchronou
s data-flow
language
for the
design and
implementa
tion of
safety-
critical
embedded
systems. It
provides a
unified
framework
for
specificatio
n,
modeling,
formal
analysis,
and
automatic
code
generation
for different
general-
purpose
languages
like Java,
C, and
C++.
However,
fully
implemente
d and
verified
open
source tool
for code
generation
from
SIGNAL to
Hardware
Description
Language
(HDL) is not
available.
This paper
describes
the formal
verification
of the
generated
Verilog
code from
the SIGNAL
language.
Proving the
correctness
of
generated
code is very
important
when it is
for safety-
critical
embedded
systems.
We use the
translation
validation
technique
for verifying
the
correctness
of the
generated
code. In
this
approach,
the
Polychrony
Toolset
builds the
models of
source
SIGNALpro
grams with
its
associated
model
checker
SIGALI.
The open
source tool
Yosys
generates
models for
target
Verilog
programs in
the SMT-
LIB
standard
format. We
transform
the model
generated
by Yosys to
the model
accepted
by the
SIGALI
model
checker.
Finally, we
use the
SIGALI
model
checker to
validate the
translation
by symbolic
simulation
between
both source
and target
program
models.
The target
program
may have
fewer
behaviors
than the
source
program
therefore if
the model
of the target
program
implies the
model of
the source
program, it
means the
target
program
preserves
the
semantics
of the
source
program,
and the
translation
is correct.

10.1109
/SKG49

510.
2019.00

034

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
044129

translation
validation,
embedded
systems,
Verilog,
SIGNAL,
SIGALI,
Yosys,
semantics

o artigo trata da validação da
tradução de código gerado da

linguagem SIGNAL para
Verilog, utilizando técnicas de

verificação formal para garantir
que o comportamento do

código gerado corresponda ao
comportamento esperado na

especificação original. A
validação é feita em duas

etapas: simulação e verificação
formal.

Linguagem de fluxo de
dados SIGNAL

Verilog
Geração automática de

código
Validação de tradução

Comparação de
comportamento

Técnicas de verificação
formal

Geração do
código Verilog a

partir da
especificação

SIGNAL.
Simulação do
código gerado

para verificar se
ele se comporta
como esperado.
Formalização da

especificação
original e

verificação formal
do código gerado
para garantir que

eles sejam
equivalentes.
Correção de

erros, se
necessário, e
repetição dos

passos anteriores
até que o código

gerado seja
validado com

sucesso.

IEEE Inglês CE1 Excluído
Translating Process
Interaction World View
Models to DEVS:
GPSS to (Python(P))
DEVS

R. Paredis; S.
Van Mierlo; H.
Vangheluwe 2020

Discrete-
event
modelling
and
simulation
languages
can be
classified
based on
their world
view: event
scheduling,
activity
scanning,
or process
interaction.
To study
the
semantics
of these
languages
one may
investigate
the
relationship
between
them, and
in particular
translate
models
between
languages
in different
world
views. A
translation
approach
also lets
one re-use
all the
simulation
tooling
available
for the
target
language.
We
describe a
translation
of the
classic
process
interaction
language
GPSS
developed
by Gordon
in the early
1960s onto
DEVS, a
modular
discrete-
event
modelling
and
simulation
language
with precise
semantics
developed
by Zeigler
in the late
1970s. We
specify and
implement
a
translation
that
produces,
for each
GPSS
model, a
behavioural
ly
equivalent
DEVS
model. As
GPSS has
no formal
semantics,
there is no
proof of
equivalence
. Rather,
we describe
the
structure of
the
translation,
starting
from
Gordon's
informal
description,
centered
around the
main data
structures
called
chains and
the
scanning
algorithm.
We build a
working
prototype
for a
representati
ve subset
of GPSS
blocks
found in
most tools
implementi
ng the
language.
Finally, we
exhaustivel
y test the
translation
by
comparing
simulation
results of
the
generated
DEVS
model with
a those
obtained by
the GPSS
World
simulator.
GPSS
World is a
popular
GPSS
variant. We
also
demonstrat
e our
approach
on a small
but
representati
ve example
from the
manufacturi
ng domain.

10.1109
/WSC4
8552.

2020.93
83952

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
383952

-
O artigo descreve um processo

de tradução de modelos de
Process Interaction World View
(PIWV) baseados na linguagem
GPSS para o formalismo DEVS

usando a implementação
Python(P)DEVS.

Process Interaction
World View (PIWV)
General Purpose

Simulation System
(GPSS)

Discrete Event System
Specification (DEVS)

Python(P)DEVS
Translação de modelos

Conversão do
modelo GPSS
para o modelo
PIWV (Process

Interaction World
View);

Conversão do
modelo PIWV
para o modelo

DEVS (Discrete
Event System
Specification)
utilizando a

implementação
Python(P)DEVS;

Execução da
simulação do
modelo DEVS

obtido a partir do
modelo PIWV.

IEEE Inglês CE1 e CE2 Excluído
Transformation of non-
standard nuclear I&C
logic drawings to formal
verification models

A. Pakonen;
P. Biswas; N.
Papakonstanti
nou

2020

Model
checking
methods
have been
proven to
be a
valuable
asset for
identifying
undesired
behaviour
of safety-
critical
Instrumenta
tion and
Control
(I&C)
logics.
Their
application
in the
nuclear
domain has
been very
successful
and has
triggered
significant
interest
from the
safety
community.
Creating
formal
models
from the
diagrams
found on
paper or
from digital
formats
without the
needed
semantics
is one
bottleneck
that hinders
the
adoption of
model
checking
due to
costs in
time and
may
introduce
errors. This
paper
proposes a
methodolog
y for the
creation of
formal
models
from I&C
diagrams
drawn in
generic
modelling
tools
(lacking
specific I&C
semantics).
The generic
I&C logic
diagram is
transformed
into an
intermediat
e UML
model that
in turn can
be
transformed
to other
target
formats like
IEC 61131
PLCopen
XML I&C
software or
NuSMV
formal
model
code. This
methodolog
y is
demonstrat
ed with a
typical
example of
a trip signal
generator
application
logic. This
application
logic is
drawn in
MS Visio, it
is
transformed
to an I&C
model in
UML with
the needed
properties
for model
checking,
then to IEC
61131
PLCopen
XML and to
an input file
for the
NuSMV
model
checker.

10.1109
/IECON
43393.

2020.92
55176

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
255176

I&C;function
block
diagram;
nuclear
energy;
IEC61131;
PLCOpen
XML;Model-
Based
System
Engineering

O artigo apresenta uma
metodologia para converter

desenhos de lógica de controle
e instrumentação (I&C)

nucleares não padronizados
em modelos formais

verificáveis, combinando
técnicas de processamento de
imagens com métodos formais
de verificação. Os resultados

dos experimentos mostram que
a metodologia pode ser

aplicada com sucesso e pode
ser uma ferramenta valiosa

para a verificação de sistemas
de I&C nucleares críticos.

Lógica de controle e
instrumentação (I&C)
nucleares, verificação
formal, processamento

de imagens, modelagem
formal, transformação de
desenhos em modelos,

sistemas críticos e
automação da

verificação.

Digitalização do
desenho,

segmentação do
desenho, extração
de informações,

modelagem formal
e verificação

formal. A
digitalização é

feita por meio de
um scanner,
seguida da

segmentação da
imagem em partes

menores e
extração de
informações
relevantes. A

modelagem formal
é realizada

utilizando um
modelo de estado-
finito, que é então

verificado
formalmente para

garantir a sua
corretude.

IEEE Inglês CE1 e CE2 Excluído
Trace-Checking CPS
Properties: Bridging the
Cyber-Physical Gap

C. Menghi; E.
Viganò; D.
Bianculli; L. C.
Briand

2021

Cyber-
physical
systems
combine
software
and
physical
component
s.
Specificatio
n-driven
trace-
checking
tools for
CPS
usually
provide
users with a
specificatio
n language
to express
the
requirement
s of
interest,
and an
automatic
procedure
to check
whether
these
requirement
s hold on
the
execution
traces of a
CPS.
Although
there exist
several
specificatio
n
languages
for CPS,
they are
often not
sufficiently
expressive
to allow the
specificatio
n of
complex
CPS
properties
related to
the
software
and the
physical
component
s and their
interactions
. In this
paper, we
propose (i)
the Hybrid
Logic of
Signals
(HLS), a
logic-based
language
that allows
the
specificatio
n of
complex
CPS
requirement
s, and (ii)
ThEodorE,
an efficient
SMT-based
trace-
checking
procedure.
This
procedure
reduces the
problem of
checking a
CPS
requirement
over an
execution
trace, to
checking
the
satisfiability
of an SMT
formula.
We
evaluated
our
contribution
s by using a
representati
ve industrial
case study
in the
satellite
domain. We
assessed
the
expressiven
ess of HLS
by
considering
212
requirement
s of our
case study.
HLS could
express all
the 212
requirement
s. We also
assessed
the
applicability
of
ThEodorE
by running
the trace-
checking
procedure
for 747
trace-
requirement
combinatio
ns.
ThEodorE
was able to
produce a
verdict in
74.5% of
the cases.
Finally, we
compared
HLS and
ThEodorE
with other
specificatio
n
languages
and trace-
checking
tools from
the
literature.
Our results
show that,
from a
practical
standpoint,
our
approach
offers a
better
trade-off
between
expressiven
ess and
performanc
e.

10.1109
/ICSE4
3902.

2021.00
082

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
402030

Monitors;
Languages;
Specificatio
n;
Validation;
Formal
methods;
Semantics

O artigo foco em sistemas
ciberfísicos, abordagem de

verificação baseada em
rastreamento de execução,
integração de técnicas de
modelagem e verificação,

abordagem modular, foco em
propriedades de segurança e

análise experimental.

Sistemas ciberfísicos
(CPS), verificação de

propriedades de
segurança, abordagem
de verificação baseada

em rastreamento de
execução, modelagem

formal, verificação formal
e análise experimental.

 Modelagem do
sistema, geração
de cenários de
teste, execução

de testes e
verificação dos
resultados. A

modelagem do
sistema é feita

utilizando técnicas
de modelagem

formal, permitindo
a representação
do sistema em

diferentes níveis
de abstração. A

geração de
cenários de teste
é realizada com

base na
modelagem do

sistema,
permitindo a
simulação de

diferentes
situações. A
execução de

testes é realizada
para validar os

cenários de teste
gerados e
identificar

possíveis erros.
Por fim, a

verificação dos
resultados é

realizada para
garantir a

conformidade do
sistema com as
especificações.

IEEE Inglês CE1 e CE2 Excluído

Towards Verified Self-
Driving Infrastructure

Liu B,
Kheradmand
A,Caesar M,
Godfrey PB

2020

Modern
self-driving''
service
infrastructur
es consist
of a diverse
collection of
distributed
control
component
s providing
a broad
spectrum of
application-
and
network-
centric
functions.
The
complex
and non-
deterministi
c nature of
these
interactions
leads to
failures,
ranging
from subtle
gray
failures to
catastrophi
c service
outages,
that are
difficult to
anticipate
and repair.
Our goal is
to call
attention to
the need for
formal
understandi
ng of
dynamic
service
infrastructur
e control.
We provide
an overview
of several
incidents
reported by
large
service
providers
as well as
issues in a
popular
orchestratio
n system,
identifying
key
characterist
ics of the
systems
and their
failures. We
then
propose a
verification
approach in
which we
treat
abstract
models of
control
component
s and the
environmen
t as
parametric
transition
systems
and
leverage
symbolic
model
checking to
verify safety
and
liveness
properties,
or propose
safe
configuratio
n
parameters.
Our
preliminary
experiment
s show that
our
approach is
effective in
analyzing
complex
failure
scenarios
with
acceptable
performanc
e overhead.

10.1145
/342260

4.
342594

9

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/34226
04.
3425949;
http://dx.doi.
org/10.
1145/34226
04.3425949

verification,
parameter
synthesis,
service
infrastructur
e control,
self-driving
infrastructur
e, symbolic
model
checking

O artigo destaca a importância
da segurança, utiliza

linguagens formais e integra
ferramentas de verificação.

Além disso, o artigo apresenta
uma análise experimental da

metodologia proposta.

Infraestrutura para
veículos autônomos,
verificação formal,

linguagens formais,
ferramentas de

verificação, segurança
do sistema e análise

experimental.

É baseada em
verificação formal

e envolve a
especificação de
propriedades de

segurança,
modelagem

formal, geração
de condições de
teste, verificação
formal e análise
dos resultados.

Destaca-se
também a

importância da
verificação

modular e é
apresentada uma

análise
experimental da

metodologia
proposta.

ACM Inglês CE1 e CE2 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9052141
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9742213
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8850971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8910436
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552439;http://dx.doi.org/10.1145/3550355.3552439
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3490387;http://dx.doi.org/10.1145/3490387
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3437120.3437267;http://dx.doi.org/10.1145/3437120.3437267
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8904521
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9155719
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-018-0455-5;http://dx.doi.org/10.1007/s00165-018-0455-5
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9044129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9383952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9255176
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402030
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3422604.3425949;http://dx.doi.org/10.1145/3422604.3425949

Towards Formal
Verification of Program
Obfuscation

W. Lu; B.
Sistany; A.
Felty; P. Scott 2020

Code
obfuscation
involves
transformin
g a
program to
a new
version that
performs
the same
computatio
n but hides
the
functionality
of the
original
code. An
important
property of
such a
transformati
on is that it
preserves
the
behavior of
the original
program. In
this paper,
we lay the
foundation
for studying
and
reasoning
about code
obfuscating
transformati
ons, and
show how
the
preservatio
n of certain
behaviours
may be
formally
verified. To
this end, we
apply
techniques
of formal
specificatio
n and
verification
using the
Coq Proof
Assistant.
We use and
extend an
existing
encoding of
a simple
imperative
language in
Coq along
with an
encoding of
Hoare logic
for
reasoning
about this
language.
We
formulate
what it
means for a
program's
semantics
to be
preserved
by an
obfuscating
transformati
on, and
give formal
machine-
checked
proofs that
these
behaviours
or
properties
hold. We
also define
a lower-
level block-
structured
language
which is
"wrapped
around" our
imperative
language,
allowing us
to model
certain
flattening
transformati
ons and
treat blocks
of codes as
objects in
their own
right.

10.1109
/EuroS
PW513

79.
2020.00

091

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
229802

obfuscation;
verification;
security;
correctness;
Coq;proof

O artigo discute diferentes
técnicas de ofuscação de
programas e destaca a

importância da verificação de
programas obfuscados em
contextos de segurança e

privacidade.

O artigo aborda a
importância da

verificação formal de
programas obfuscados

em contextos de
segurança e privacidade,

bem como apresenta
uma abordagem para a

verificação formal desses
programas, utilizando

técnicas de model
checking e provas de

teoremas.

A metodologia
baseada em

model checking e
provas de

teoremas para
verificar a

semântica de
programas

obfuscados em
relação aos seus

programas
originais

correspondentes.
A abordagem é

avaliada por meio
de um estudo de

caso em que
diferentes

técnicas de
ofuscação são
aplicadas a um
programa de

exemplo.

IEEE Inglês CE1 e CE2 Excluído
Towards a time editor
for orchestrating
connected objects in
the Web of Things

I.
MEZENNER;
S.
BOUYAKOUB;
F. M.
BOUYAKOUB

2019

Web of
Things is a
new
paradigm, it
constitutes
the heart of
a great
research
activity.
However,
most of this
work does
not take
into
account its
temporal
aspect,
whereas it
is a critical
dimension
directly
related to
customer
satisfaction,
optimization
and is
considered
as a very
effective
strategy for
cost
reduction.
For this
matter, we
propose a
tool to edit
and verify
the time
constraints
added to an
abstract
BPEL
specificatio
n.
Furthermor
e, the editor
allows the
user to edit
abstract
BPEL
specificatio
n that
orchestrate
s Web
services
offered by
objects
connected
to the Web
of Things.
Through
the latter,
the input
specificatio
n is
enriched
with
constraints
and time
attributes.
Then, a
temporal
verification
and
validation
process is
applied to
detect any
temporal
errors or
conflicts.

10.1109
/ICTAA
CS4847

4.
2019.89
88132

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
988132

Web of
Things;Web
service
orchestratio
n;WS-
BPEL;Allen’
s algebra

O artigo propõe um editor de
tempo para orquestração de
objetos conectados na Web

das Coisas. A abordagem usa
uma linguagem de

especificação de fluxo de
dados e inclui validação

através de simulação. O artigo
também apresenta cenários de

uso em diferentes contextos.

Web das Coisas (Web of
Things)

Orquestração de objetos
conectados

Edição temporal de
fluxos de dados
Linguagem de

especificação de fluxo de
dados

Validação por simulação
Cenários de uso em
diferentes contextos.

A abordagem
proposta inclui um
editor de tempo,
que permite a

edição temporal
de fluxos de
dados, e um

mecanismo de
validação

baseado em
simulação. Além
disso, o artigo
apresenta uma

série de cenários
de uso em
diferentes

contextos, que
foram utilizados
para avaliar a

eficácia da
abordagem
proposta.

IEEE Inglês CE1 e CE2 Excluído
Towards a Simplified
Evaluation of Graphical
DSL Workbenches

A. Dembri; M.
Redjimi 2022

The design
and
developme
nt of
graphical
tools for
new
domain-
specific
languages
is still a
challenge
for
designers;
the Model-
Driven
Architecture
(MDA)
makes a
qualitative
difference
in the
creation of
Domain
Specific
Language
(DSL). We
aim in this
paper to
analyze
and
evaluate
the
performanc
e of some
language
workbench
es that
makes the
developme
nt of
domain-
specific
language
simpler and
more
specialised.
To evaluate
these tools,
a formal
specificatio
n of a Petri
net called
Agent Petri
Net is
selected.
We analyze
criteria
related to
abstraction
level,
facilities to
tailor DSL
to specific
domains,
simplicity of
developme
nt and the
productivity
guarantee
with these
tools.
Practical
experience
highlights
the real
capabilities
of each tool
and
considers
as an
evaluation
support to
select the
adequate
solution to
design DSL
that
responds to
user
requirement
s.

10.1109
/ISIA55

826.
2022.99
93580

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
993580

MDA;DSL;
Language
workbenche
s;
evaluation;
graphical
modelling
framework;
Cinco;Sirius

Esse artigo propõe uma
metodologia para avaliar

workbenches de DSLs gráficas
com base em três dimensões

(Técnica, Usabilidade e
Impacto), usando um conjunto
de métricas. A metodologia é
aplicada em três estudos de
caso para identificar pontos

fortes e fracos de cada
workbench e ajudar na seleção
da ferramenta mais adequada

para um projeto de DSL
gráfica.

Graphical DSLs
Workbenches
Usabilidade
Efetividade

Métricas
Experimentos

A metodologia
consiste em um

conjunto de
métricas de

usabilidade e
efetividade, que
são coletadas

através de
experimentos
controlados e

estruturados com
usuários. O
objetivo é

simplificar a
avaliação de IDEs

para DSLs
gráficas, tornando
o processo mais

eficiente e
acessível para

desenvolvedores
e pesquisadores.

IEEE Inglês CE1 e CE2 Excluído

Toward Verified
Artificial Intelligence

Seshia SA,
Sadigh D,
Sastry SS 2022

Making AI
more
trustworthy
with a
formal
methods-
based
approach to
AI system
verification
and
validation.

10.1145
/350391

4

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35039
14;http://dx.
doi.org/10.
1145/35039
14

-

O artigo aborda a necessidade
de se desenvolver técnicas

formais para garantir a
segurança e a confiabilidade
em sistemas de inteligência
artificial (IA). Ele discute os
desafios de se verificar e

validar sistemas de IA
complexos e propõe a

utilização de técnicas de
verificação formal para garantir

que tais sistemas se
comportem corretamente em

todas as situações.

Inteligência artificial
verificada (Verified AI)

Verificação formal
Lógica de Hoare

Aprendizado por reforço
Redes neurais artificiais

(RNAs)
Diferenciação automática

Propriedades de
segurança e corretude

Robustez
Fairness

Transparência

- ACM Inglês CE1 e CE2 Excluído

Tools for
Disambiguating RFCs

Yen J,
Govindan R,
Raghavan B 2021

For
decades,
drafting
Internet
protocols
has taken
significant
amounts of
human
supervision
due to the
fundamenta
l ambiguity
of natural
language.
Given such
ambiguity, it
is also not
surprising
that
protocol
implementa
tions have
long
exhibited
bugs. This
pain and
overhead
can be
significantly
reduced
with the
help of
natural
language
processing
(NLP).We
recently
applied
NLP to
identify
ambiguous
or under-
specified
sentences
in RFCs,
and to
generate
protocol
implementa
tions
automaticall
y when the
ambiguity is
clarified.
However
this system
is far from
general or
deployable.
To further
reduce the
overhead
and errors
due to
ambiguous
sentences,
and to
improve the
generality
of this
system,
much work
remains to
be done. In
this paper,
we consider
what it
would take
to produce
a fully-
general and
useful
system for
easing the
natural-
language
challenges
in the RFC
process.

10.1145
/347230

5.
347231

4

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/34723
05.
3472314;
http://dx.doi.
org/10.
1145/34723
05.3472314

natural
language,
protocol
specificatio
ns

O artigo aborda a questão da
ambiguidade na interpretação
dos Request for Comments

(RFCs), que são documentos
técnicos utilizados para
estabelecer padrões na

Internet. O artigo propõe a
utilização de ferramentas para

auxiliar na identificação de
ambiguidades e na resolução
de conflitos de interpretação
dos RFCs, com o objetivo de

melhorar a implementação dos
padrões estabelecidos.

Disambiguação
RFCs (Request for

Comments)
Ferramentas de análise

de texto
Mineração de dados

Análise de sentimentos

A proposta se
baseia em uma
abordagem de
aprendizado de
máquina para
identificar as

possíveis
interpretações de

um termo e
fornecer

sugestões para o
usuário selecionar
a mais adequada.

ACM Inglês CE1 e CE2 Excluído
Tooled approach for
formal verification of
components
interactions modeled in
SysML

M. S. GHITRI;
M.
MESSABIHI;
A. BENAMAR

2019

Software
systems
are
becoming
more
complex
and their
implementa
tion
requires
more
rigorous
modeling
approaches
, for this
reason the
OMG
(Object
Manageme
nt Group)
has
implemente
d the
SysML
standard to
model
complex
systems.
Sequence
diagram is
one of the
fundamenta
l diagrams
of SysML
because it
allows
behavioral
specificatio
n of
systems.
However,
SysML still
has a lack
of formal
semantics
following
his semi-
formal
definition,
which
makes it
impossible
to directly
apply the
simulation
and
verification
methods to
these
diagrams.
The model
transformati
on
community
offers
several
solutions to
transform
the SysML
specificatio
n into
formal
methods in
order to
bridge the
gap
between
them, this
community
is divided
into two
principal's
axes, the
first ones
working on
the
formalizatio
n of
structural
diagrams,
and the
others have
worked on
behavioral
diagrams.
Our work
contributes
to
behavioral
modeling
and aims to
combine all
the
highlights of
the other
approaches
in a single
framework
for formal
verification
of SDs,
using TAN
and Uppaal
model
checker.
The
proposed
approach
has been
tested
through a
case study
of an
interaction
between
ATM and
Bank to
prove their
reliability.

10.1109
/ICTAA
CS4847

4.
2019.89
88134

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
988134

SysML;ATL;
Formal
Verification;
Timed
Automata
Network;
Model
Checking;
Acceleo;
Uppaal

O artigo apresenta uma
abordagem para verificar

formalmente as interações
entre componentes modelados

em SysML (Linguagem de
Modelagem de Sistemas)
usando ferramentas de

verificação formal. A proposta
do artigo é melhorar a precisão
e eficiência da verificação de

sistemas críticos,
especialmente aqueles que

envolvem interações
complexas entre componentes.

Formal verification
Components interactions

SysML
Tooled approach

Modelagem do
sistema em

SysML
Conversão do

modelo SysML em
um modelo formal
Verificação formal

do modelo
utilizando

ferramentas de
verificação
automática

Análise dos
resultados e

correção de erros
no modelo, se

necessário.

IEEE Inglês CE1 Excluído
Tool-Supported
Analysis of Dynamic
and Stochastic
Behaviors in Cyber-
Physical Systems

L. Huang; T.
Liang; E. -Y.
Kang 2019

Formal
analysis of
functional
and non-
functional
requirement
s is crucial
in cyber-
physical
systems
(CPS), in
which
controllers
interact with
physical
environmen
ts. The
continuous
time
behaviors
of CPS
often rely
on complex
dynamics
as well as
on
stochastic
behaviors.
We have
previously
proposed a
probabilistic
extension
of Clock
Constraint
Specificatio
n
Language,
called
PrCCSL,
for
specificatio
n of (non)-
functional
requirement
s of CPS
and proved
the
correctness
of
requirement
s by
mapping
the
semantics
of the
specificatio
ns into
verifiable
UPPAAL
models.
Previous
work is
extended in
this paper
by including
an
extension
of PrCCSL,
i.e.,
PrCCSL*,
which
incorporate
s
annotations
of
continuous
behaviors
and
stochastic
characterist
ics of CPS.
The CPS
behaviors
are
specified in
PrCCSL*
and
translated
into
stochastic
UPPAAL
models for
formal
verification.
The
translation
algorithm
from
PrCCSL*
into
UPPAAL
models is
provided
and
implemente
d in an
automatic
translation
tool,
namely
ProTL.
Formal
verification
of CPS
against
(non)-
functional
requirement
s is
performed
by ProTL
using
UPPAAL-
SMC as an
analysis
backend.
Our
approach is
demonstrat
ed on a
series of
CPS case
studies.

10.1109
/QRS.

2019.00
039

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
854706

CPS;
PrCCSL*;
UPPAAL-
SMC;ProTL

Esse trabalho aborda a análise
de comportamentos dinâmicos
e estocásticos em sistemas
ciberfísicos, utilizando
ferramentas de modelagem e
simulação para verificar
propriedades de segurança e
desempenho.

Análise de
comportamentos
dinâmicos e estocásticos
em sistemas ciberfísicos
Modelagem de sistemas
ciberfísicos usando a
linguagem de
modelagem SysML
Modelagem de
comportamentos
estocásticos em SysML
usando a extensão
SysML-Stochastic
Geração de modelos
formais de Markov a
partir dos modelos
SysML estocásticos
Análise de propriedades
de segurança e
desempenho em
sistemas ciberfísicos por
meio da verificação de
modelos de Markov
formais
Integração de
ferramentas de
modelagem e verificação
para suportar a análise
de comportamentos
dinâmicos e estocásticos
em sistemas ciberfísicos.

A metodologia
envolve a criação
de modelos
formais para
representar o
comportamento
do sistema, a
aplicação de
técnicas de
análise de
modelagem e a
simulação do
sistema para
verificar as
propriedades
desejadas. O
trabalho
apresenta um
estudo de caso
em que a
metodologia é
aplicada para
analisar o
comportamento
de um sistema de
transporte
autônomo.

IEEE Inglês CE1 Excluído
The Post Language:
Process-Oriented
Extension for IEC
61131-3 Structured
Text

V. Bashev; I.
Anureev; V.
Zyubin 2020

This paper
introduces
a new
programmin
g language
for control
software
specificatio
n. The
language
called poST
is a
process-
oriented
extension
of the IEC
61131-3
Structured
Text
language
widely used
in the PLC
domain.
The poST
language
enables
control
software
specificatio
n as a set
of
interacting
FSM-based
processes
that have
event-
driven
behaviour
and operate
with time
intervals.
The
language is
intended to
provide a
possibility
to use the
process-
oriented
approach
for IEC
61131-3
users and
comparing
to the other
process-
oriented
languages
poST is
easy to
learn for the
IEC 61131-
3
community.
An IDE for
poST was
developed
with Eclipse
(Xtext)
toolset.
Paper
illustrates
the poST
language
using for a
hand dryer
control
software:
we provide
the source
poST code
and the
generated
C code for
Arduino
(ATmega
168)
platform.

10.1109
/RusAut
oCon49

822.
2020.92
08049

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
208049

process-
oriented
programmin
g;PLC
languages;
IEC 61131-
3;Structured
Text

O artigo aborda a proposta de
uma linguagem de

programação orientada a
processos chamada "Post

Language". A ideia é estender
a linguagem estruturada IEC

61131-3 para permitir a
descrição de programas de

controle de processo de uma
forma mais intuitiva e

compreensível, com a inclusão
de primitivas específicas para
modelar processos. O objetivo
é melhorar a produtividade e a

qualidade do código em
sistemas de automação e

controle de processos
industriais.

Linguagem estruturada.
IEC 61131-3:
Processo:

Orientação a processos:
Extensão de linguagem

O trabalho
apresenta uma
nova linguagem
de programação
chamada Post

Language, que é
uma extensão do

IEC 61131-3
Structured Text. O
artigo descreve a

sintaxe e
semântica da Post

Language e
compara sua

capacidade com
outras linguagens
de programação

existentes.

IEEE Inglês CE1 Excluído
The Notion of Cross
Coverage in AMS
Design Verification

S. Sanyal; A.
Hazra; P.
Dasgupta; S.
Morrison; S.
Surendran; L.
Balasubraman
ian

2020

Coverage
monitoring
is
fundamenta
l to design
verification.
Coverage
artifacts are
well
developed
for digital
integrated
circuits and
these aim
to cover the
discrete
state space
and logical
behaviors
of the
design.
Analog
designers
are similarly
concerned
with the
operating
regions of
the design
and its
response to
an infinite
and dense
input
space.
Analog
variables
can
influence
each other
in far more
complex
ways as
compared
to digital
variables,
consequent
ly, the
notion of
cross
coverage,
as
introduced
in the
analog
context for
the first
time in this
paper, is of
high
importance
in analog
design
verification.
This paper
presents
the formal
syntax and
semantics
of analog
cross
coverage
artifacts,
the
methods for
evaluating
them using
our tool kit,
and most
importantly,
the insights
that can be
gained from
such cross
coverage
analysis.

10.1109
/ASP-

DAC47
756.

2020.90
45131

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
045131

-

O artigo discute a importância
da cobertura de verificação em
projetos de sistemas em chip
analógicos/mistos (AMS) e

apresenta a noção de
cobertura cruzada (cross

coverage) como uma técnica
para melhorar a qualidade da

verificação desses sistemas. O
artigo aborda conceitos como

cobertura de verificação,
verificação funcional e AMS.

Notion
Cross Coverage

AMS Design Verification.

Não apresenta um
método

especifico, mas
sim se concentra

principalmente em
apresentar e

discutir o conceito
de cobertura

cruzada (cross-
coverage) no
contexto da

verificação de
design de

sistemas de sinais
mistos (AMS).

IEEE Inglês CE1 Excluído
The Formal Mechanism
of the UML Model
Based on SBOPN Y. Xiaoling 2019

This paper
introduces
the State-
Based
Object Petri
net, gives
the
definition,
firing rule
and
analysis
methods of
the net.
Based on
aforementio
ned, state-
based
object petri
net is
chosen to
formalize
the UML
and give
the
mechanism
and
correspondi
ng
algorithms
that can be
used to
map state
chart
diagrams
and the
collaboratio
n diagram
of UML
specificatio
n into state-
based
object petri
net model
in the early
phase of
UML
modeling.
The state-
based
object petri
net model
gotten by
these
algorithms
not only is
object-
oriented but
also can be
analyzed
and
validated to
find out
deadlock
with
powerful
Petri tools,
thus the
verification
of the
model in
the early
phase is
can be
realized.

10.1109
/ICSAI4
8974.

2019.90
10446

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
010446

component;
Object-
Oriented;
Petri Net;
UML;State-
Based
Object Petri
Net;formal
mechanism

O artigo aborda a criação de
um mecanismo formal para o

modelo UML (Unified Modeling
Language) baseado em

SBOPN (Stochastic Binary
Ordered Petri Nets). O objetivo

do trabalho é fornecer uma
abordagem formal para a

verificação do comportamento
dinâmico de sistemas

baseados em UML, permitindo
que os desenvolvedores

possam identificar possíveis
erros no design do sistema
antes da implementação.

UML
SBOPN (State-Based

Object Petri Nets)
Mecanismo formal

Apresenta uma
abordagem formal

baseada na
combinação da
notação UML

(Unified Modeling
Language) com a
técnica SBOPN
(Stochastic Petri

Net with Biological
Object Process)

para modelar
sistemas

complexos e
analisar seu

comportamento
dinâmico. A
abordagem
proposta é

ilustrada por meio
de um exemplo de

estudo de caso.

IEEE Inglês CE1 Excluído

Teaching Design by
Contract using Snap!

M. Huisman;
R. E. Monti 2021

With the
progress in
deductive
program
verification
research,
new tools
and
techniques
have
become
available to
support
design-by-
contract
reasoning
about non-
trivial
programs
written in
widely-used
programmin
g
languages.
However,
deductive
program
verification
remains an
activity for
experts,
with ample
experience
in
programmin
g,
specificatio
n and
verification.
We would
like to
change this
situation, by
developing
program
verification
techniques
that are
available to
a larger
audience.
In this
paper, we
present
how we
developed
prototypal
program
verification
support for
Snap!.
Snap! is a
visual
programmin
g language,
aiming in
particular at
high school
students.
We added
specificatio
n language
constructs
in a similar
visual style,
designed to
make the
intended
semantics
clear from
the look
and feel of
the
specificatio
n
constructs.
We provide
support
both for
static and
dynamic
verification
of Snap!
programs.
Special
attention is
given to the
error
messaging,
to make
this as
intuitive as
possible.

10.1109
/SEEN

G53126
.

2021.00
007

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
474640

verification;
software;
education

O objetivo do trabalho é
apresentar o conceito de DBC
e como ele pode ser aplicado

no desenvolvimento de
software, além de demonstrar a
utilização da ferramenta Snap!

para implementar essa
metodologia de forma visual e
interativa. O artigo discute a

importância do uso do DBC na
produção de código confiável e
eficiente, além de apresentar

exemplos práticos de
implementação de contratos
em programas desenvolvidos

na plataforma Snap!.

Design by Contract
Snap!

Bloco de assertiva
Bloco de assume
Bloco de garantia
Bloco de exceção

Programação orientada a
objetos

O artigo descreve
a utilização da
metodologia de
ensino baseada

em projeto (PBL -
Problem-Based
Learning) para

ensinar o conceito
de Design by

Contract (DbC)
em programação
para iniciantes. O
PBL consiste em

envolver os
alunos em

projetos práticos e
desafiadores que

os levam a
desenvolver

habilidades de
resolução de
problemas e
trabalho em
equipe. Além
disso, o artigo

utiliza a
ferramenta Snap!
como ambiente de
programação para

que os alunos
possam praticar a
implementação do

DbC.

IEEE Inglês CE1 Excluído
Systematic Evaluation
and Usability Analysis
of Formal Methods
Tools for Railway
Signaling System
Design

A. Ferrari; F.
Mazzanti; D.
Basile; M. H.
ter Beek

2022

Formal
methods
and
supporting
tools have
a long
record of
success in
the
developme
nt of safety-
critical
systems.
However,
no single
tool has
emerged as
the
dominant
solution for
system
design.
Each tool
differs from
the others
in terms of
the
modeling
language
used, its
verification
capabilities
and other
complemen
tary
features,
and each
developme
nt context
has
peculiar
needs that
require
different
tools. This
is
particularly
problematic
for the
railway
industry, in
which
formal
methods
are highly
recommend
ed by the
norms, but
no actual
guidance is
provided for
the
selection of
tools. To
guide
companies
in the
selection of
the most
appropriate
formal
methods
tools to
adopt in
their
contexts, a
clear
assessment
of the
features of
the
currently
available
tools is
required.
To address
this goal,
this paper
considers a
set of 13
formal
methods
tools that
have been
used for the
early
design of
railway
systems,
and it
presents a
systematic
evaluation
of such
tools and a
preliminary
usability
analysis of
a subset of
7 tools,
involving
railway
practitioner
s. The
results are
discussed
considering
the most
desired
aspects by
industry
and earlier
related
studies.
While the
focus is on
the railway
signaling
domain, the
overall
methodolog
y can be
applied to
similar
contexts.
Our study
thus
contributes
with a
systematic
evaluation
of formal
methods
tools and it
shows that
despite the
poor
graphical
interfaces,
usability
and
maturity of
the tools
are not
major
problems,
as claimed
by
contribution
s from the
literature.
Instead,
support for
process
integration
is the most
relevant
obstacle for
the
adoption of
most of the
tools. Our
contribution
can be
useful to
R&D
engineers
from
railway
signaling
companies
and
infrastructur
e
managers,
but also to
tool
developers
and
academic
researchers
alike.

10.1109
/TSE.

2021.31
24677

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
599463

-

Trata da avaliação sistemática
e análise de usabilidade de

ferramentas de métodos
formais para o projeto de
sistemas de sinalização

ferroviária. O estudo apresenta
uma abordagem sistemática
para avaliar ferramentas de

métodos formais e os desafios
associados à sua integração
em um processo de design

industrial. O objetivo é avaliar a
eficácia das ferramentas em

termos de precisão,
escalabilidade, usabilidade e

tempo de verificação. A análise
é realizada em um estudo de

caso que utiliza quatro
ferramentas diferentes e é
avaliada com base em um

conjunto de critérios definidos.

Métodos formais para a
verificação de sistemas

críticos;
Modelagem de sistemas
de sinalização ferroviária;
Análise de usabilidade

de ferramentas de
métodos formais;

Avaliação sistemática de
ferramentas de métodos

formais;
Estudos de caso de

aplicação das
ferramentas em sistemas
de sinalização ferroviária.

a metodologia
utilizada consistiu
em uma avaliação

sistemática e
análise de

usabilidade de
quatro

ferramentas de
métodos formais

usadas no projeto
de sistemas de

sinalização
ferroviária. A
avaliação foi

conduzida em
duas fases: a
primeira fase

envolveu a análise
de documentos e

informações
disponíveis na
web sobre as
ferramentas,
enquanto a

segunda fase foi
baseada em
experimentos

práticos com as
ferramentas,

utilizando casos
de estudo de
sinalização

ferroviária como
base para a
avaliação. A
análise se

concentrou em
aspectos de
usabilidade,

facilidade de uso,
eficácia, eficiência

e satisfação do
usuário.

IEEE Inglês CE1 Excluído
Symbolic Execution
based Verification of
Compliance with the
ISO 26262 Functional
Safety Standard

M. Ahmed; M.
Safar 2019

This paper
proposes a
new
technique
for verifying
the
compliance
of
AUTOSAR
software
with the
ISO26262
functional
safety
standard. A
framework
is
presented
which
formally
verifies that
a given
implemente
d
AUTOSAR
software
fulfils high
risk
Automotive
Safety
Integrity
Level
(ASIL) C
and D
requirement
s. The
framework
exploits the
power of
symbolic
execution
to uncover
defects
early in the
design
stage. The
efficacy of
the
framework
is
demonstrat
ed on the
AUTOSAR
watchdog
manager
and
watchdog
interface
modules.

10.1109
/DTIS.

2019.87
35046

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
735046

Symbolic
Execution;
ISO-26262;
Automotive
Functional
Safety;
Formal
Verification;
AUTOSAR
Watchdog
Modules

O artigo trata sobre o uso da
técnica de execução simbólica
para verificar a conformidade
de software com o padrão de
segurança funcional ISO
26262. O objetivo é apresentar
uma abordagem sistemática
para a verificação do software,
que pode ser aplicada em
diferentes etapas do processo
de desenvolvimento, e que
ajuda a identificar violações de
requisitos de segurança

Verificação de
conformidade com o
padrão de segurança
funcional ISO 26262.
Execução simbólica, uma
técnica de análise
estática de programas
que simula todas as
possíveis trajetórias de
execução sem executar
o código.
Geração automática de
requisitos de segurança
para componentes de
software.
Análise de limites, que
verifica se todos os
limites especificados no
padrão ISO 26262 são
cumpridos.
Verificação de requisitos
de segurança em nível
de sistema e nível de
componente de software.

A metodologia
utiliza uma técnica
de simulação
simbólica
chamada
"concrete and
symbolic
execution" para
analisar o
comportamento
dinâmico do
software em
diferentes
cenários de
entrada. Em
seguida, verifica-
se se o
comportamento
observado está
em conformidade
com os requisitos
de segurança
especificados pelo
padrão. O
processo de
verificação é
automatizado
usando uma
ferramenta de
análise estática
baseada em
simulação
simbólica.

IEEE Inglês CE1 Excluído
Structure Preserving
Transformations for
Practical Model-based
Systems Engineering

S. Ji; M.
Wilkinson; C.
E. Dickerson 2022

In this third
decade of
systems
engineering
in the
twenty-first
century, it is
important to
develop
and
demonstrat
e practical
methods to
exploit
machine-
readable
models in
the
engineering
of systems.
Substantial
investment
has been
made in
languages
and
modelling
tools for
developing
models. A
key
problem is
that system
architects
and
engineers
work in a
multidiscipli
nary
environmen
t in which
models are
not the
product of
any one
individual.
This paper
provides
preliminary
results of a
formal
approach to
specify
models and
structure
preserving
transformati
ons
between
them that
support
model
synchroniza
tion. This is
an
important
area of
research
and
practice in
software
engineering
. However,
it is limited
to
synchroniza
tion at the
code level
of systems.
This paper
leverages
previous
research of
the authors
to define a
core fractal
for
interpretatio
n of
concepts
into model
specificatio
ns and
transformati
on between
models.
This fractal
is used to
extend the
concept of
synchroniza
tion of
models to
the system
level and is
demonstrat
ed through
a practical
engineering
example for
an
advanced
driver
assistance
system.

10.1109
/ISSE54

508.
2022.10
005437

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=1
0005437

Model-
based
Systems
Engineering
;Model
Synchroniz
ation;Model
Transformat
ion;SysML

O artigo apresenta uma
abordagem de engenharia de

sistemas baseada em modelos,
que visa facilitar a

transformação de modelos em
diferentes níveis de abstração,

preservando a estrutura
subjacente dos modelos e suas

propriedades.

Engenharia de sistemas
baseada em modelos
Transformações de

modelos
Preservação de estrutura
durante transformações

de modelos
Ferramentas de
modelagem e

transformação de
modelos

Linguagem de
transformação de

modelos

A metodologia
utilizada no artigo

é baseada em
uma abordagem

de
desenvolvimento

dirigida por
modelos (Model-

Driven
Development -

MDD), na qual o
modelo é o

artefato central de
desenvolvimento
e é usado como

entrada para gerar
diferentes

artefatos de
software. Além

disso, são
utilizados

conceitos de
teoria de categoria
para garantir que

a estrutura e a
semântica dos
modelos são
preservadas
durante as

transformações.

IEEE Inglês CE1 Excluído

StaBL: Statecharts with
Local Variables

Chakrabarti
SK,
Venkatesan K 2020

Complexity
of
specificatio
n models of
the present
day have
started
becoming
non-trivial.
Hence,
there is a
need to
evolve
existing
specificatio
n
languages
to support
writing
specificatio
ns following
good
coding
practices
such as
incremental
developme
nt and
modularisat
ion.
Statechart
is a
modelling
notation
that has
wide
acceptance
in the
industry. To
the best of
our
knowledge
all current
implementa
tions of
Statecharts
have one
common
shortcomin
g: all
Statechart
variables
are global.
Global
variables in
a
specificatio
n can lead
to
monolithic
and fragile
models
which are
hard to
maintain
and reuse.
In this
paper, we
introduce
local
variables in
Statecharts,
motivate
their use
through
illustrative
examples,
formalise
their
semantics,
and
analyse
their
interaction
with basic
Statechart
features
like
hierarchical
states,
transitions
and history.
We have
implemente
d this
Statechart
variant with
local
variables in
a
specificatio
n language
called
StaBL. Our
case
studies
demonstrat
e significant
improveme
nt in
modularity
in models
with local
variable w.
r.t those
without
local
variables.

10.1145
/338503

2.
338504

0

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/33850
32.
3385040;
http://dx.doi.
org/10.
1145/33850
32.3385040

-

O artigo trata da descrição de
uma extensão da linguagem de

modelagem Statecharts, que
permite a definição de variáveis

locais em cada estado do
modelo. Statecharts é uma
linguagem de modelagem

visual para descrever
comportamentos complexos
em sistemas de software e

hardware.

Statecharts
Variáveis locais

Comportamentos
complexos

Modularidade do sistema
Sintaxe e semântica da

extensão StaBL
Exemplos de uso em
diferentes aplicações
Geração de código a

partir de modelos StaBL.

A metodologia
utilizada no artigo

envolve a
proposta de uma
extensão para a

linguagem
Statecharts, a

implementação da
extensão StaBL

em um compilador
Statecharts

existente e a
avaliação da
extensão em
termos de sua
usabilidade e

eficácia.

ACM Inglês CE1 Excluído
SSpinJa: Facilitating
Schedulers in Model
Checking

T. Nhat-Hoa;
T. Aoki 2021

The
execution
of a
software
system that
runs on top
of an
Operating
System
(OS) is
usually
controlled
by the
scheduler.
Therefore,
to
accurately
verify the
system, the
scheduling
policy
needs to be
taken into
account in
the
verification.
In model
checking
techniques,
the
scheduling
policy
affects the
search
algorithm to
explore the
state space
to check
the
behaviors
of the
system.
Existing
works try to
specify/impl
ement the
scheduler
(s) along
with the set
of
processes
in the
specificatio
n language
(s) used by
the model
checking
tool(s). In
reality,
many kinds
of
scheduling
policies are
used by the
OS(s), e.g.
round-
robin,
priority, and
first-in-first-
out. There
are also
many
variations
of these
policies,
which are
usually
different
from the
'textbook’
ones. That
means
dealing with
the
variations
of the
scheduling
policies in
model
checking is
necessary
and
important.
However,
because
the
implementa
tion of the
scheduler
always
starts from
scratch, it is
error-prone
and time-
consuming.
Therefore,
the existing
works are
difficult to
deal with
the different
scheduling
policies. To
address
this
problem,
we propose
a method
that
introduces
a domain-
specific
language
(DSL) to
facilitate the
variation of
the policies.
All
necessary
information
to perform
the
scheduling
tasks is
generated
automaticall
y from the
description
of the
scheduler.
We also
introduce a
search
algorithm
using this
information
to explore
the states
of the
system to
verify the
behaviors
of the
system. In
this paper,
we
introduce
SSpinJa, a
tool in
which we
implemente
d this
approach.
Our tool
supports an
environmen
t for editing
the
scheduling
policy (in
the DSL)
and the
model
checker for
verifying
the system.
The results
of our
experiment
s show that
a) we can
handle
different
scheduling
policies
easily, b)
we can
accurately
verify the
behaviors
of the
systems,
and c) our
approach is
also
practical.

10.1109
/QRS54

544.
2021.00

073

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
724957

scheduling
policy;
model
checking;
domain-
specific
language

O artigo descreve uma
ferramenta de model checking

para sistemas concorrentes
chamada SSpinJa. A

ferramenta é voltada para
facilitar a construção de

escalonadores (ou schedulers)
personalizados para model
checking, permitindo que os
usuários descrevam seus

próprios escalonadores e os
integrem facilmente ao

processo de model checking.

GR(1)
DSL
Salty

Síntese de controladores
Experimentos

A metodologia
utilizada pelos

autores consistiu
em:

Desenvolver a
DSL Salty para
especificação e

design de
sistemas reativos

que suporta a
escrita de

especificações
GR(1) de forma
mais concisa e

fácil de entender.
Implementar a
ferramenta de

síntese de
controladores

baseada em Salty
para gerar

automaticamente
um controlador

que garante que o
sistema satisfaz

as especificações
GR(1) escritas em

Salty.
Realizar

experimentos para
avaliar a eficácia
da abordagem
proposta. Os
experimentos

incluem a
comparação de

Salty com outras
linguagens de

especificação de
sistemas reativos
e a avaliação do
desempenho da
ferramenta de

síntese de
controladores em

diferentes
cenários de teste.

IEEE Inglês CE1 Excluído
Speed up the validation
process by formal
veerification method

R. M.
Sarikhada; P.
K Shah 2020

Formal
verification
(FV) has
been widely
accepted
as a
verification
approach
for catching
corner logic
design
issues, it
also fastens
the
verification
process of
any
subsystem.
Usage of
formal
verification
for any RTL
verification
is an easy
task
compared
to the
traditional
simulation
method. In
this paper,
we discuss
the
approaches
of verifying
a DUT by
formal
verification
method,
and how it
will reduce
the time of
the overall
verification
cycle. In
addition to
that, I'll also
discuss the
flow of
verification
to test any
DUT under
the formal
verification
method. In
this test
case, I
used an
assertion-
based
verification
methodolog
y to test the
DUT and
compare it
with
traditional
simulation-
based
verification
methodolog
y.

10.1109
/INOCO
N50539

.
2020.92
98384

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
298384

Formal
Verification;
Assertion
based
verification;
system
verilog
assertion

O artigo propõe o uso de uma
abordagem de verificação
formal que combina técnicas de
modelagem formal com
algoritmos de verificação
automática para detectar erros
de design ou implementação
em sistemas complexos.

Verificação formal
Algoritmos de verificação

automática
Erros de design ou

implementação
Sistemas complexos

Validação de sistemas
Aplicações críticas

Confiança e segurança
dos sistemas

Modelagem formal

É possível inferir
que o artigo

apresenta uma
revisão sobre o

estado da arte da
verificação formal
e algoritmos de

verificação
automática,

sugerindo o uso
dessas técnicas
para acelerar o

processo de
validação de

sistemas críticos.

IEEE Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229802
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988132
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9993580
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3503914;http://dx.doi.org/10.1145/3503914
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3472305.3472314;http://dx.doi.org/10.1145/3472305.3472314
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8988134
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8854706
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9208049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9045131
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9010446
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9474640
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9599463
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8735046
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10005437
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3385032.3385040;http://dx.doi.org/10.1145/3385032.3385040
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9724957
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9298384

Specification and
Automated Analysis of
Inter-Parameter
Dependencies in Web
APIs

A. Martin-
Lopez; S.
Segura; C.
Müller; A.
Ruiz-Cortés

2022

Web
services
often
impose
inter-
parameter
dependenci
es that
restrict the
way in
which two
or more
input
parameters
can be
combined
to form
valid calls
to the
service.
Unfortunate
ly, current
specificatio
n
languages
for web
services
like the
OpenAPI
Specificatio
n (OAS)
provide no
support for
the formal
description
of such
dependenci
es, which
makes it
hardly
possible to
automaticall
y discover
and interact
with
services
without
human
intervention
. In this
article, we
present an
approach
for the
specificatio
n and
automated
analysis of
inter-
parameter
dependenci
es in web
APIs. We
first present
a domain-
specific
language,
called Inter-
parameter
Dependenc
y Language
(IDL), for
the
specificatio
n of
dependenci
es among
input
parameters
in web
services.
Then, we
propose a
mapping to
translate an
IDL
document
into a
constraint
satisfaction
problem
(CSP),
enabling
the
automated
analysis of
IDL
specificatio
ns using
standard
CSP-based
reasoning
operations.
Specifically,
we present
a catalogue
of seven
analysis
operations
on IDL
documents
allowing to
compute,
for
example,
whether a
given
request
satisfies all
the
dependenci
es of the
service.
Finally, we
present a
tool suite
including an
editor, a
parser, an
OAS
extension,
a constraint
programmin
g-aided
library, and
a test suite
supporting
IDL
specificatio
ns and their
analyses.
Together,
these
contribution
s pave the
way for a
new range
of
specificatio
n-driven
applications
in areas
such as
code
generation
and testing.

10.1109
/TSC.

2021.30
50610

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
319562

Web API;
REST;inter-
parameter
dependency
;DSL;
automated
analysis

O objetivo é apresentar uma
introdução prática à verificação
formal, utilizando a ferramenta

SPARK como base, que
permite a especificação e

verificação de propriedades
formais em programas escritos
em linguagem de programação

Ada e também em algumas
partes da linguagem C++.

Verificação formal de
programas

Linguagem de
programação SPARK

Biblioteca padrão do C++
Especificação e
verificação de

propriedades formais
Programação segura
Exceções e ponteiros

Ferramentas de
verificação formal
SPARK Examiner.

 Não descreve
explicitamente

uma metodologia
utilizada, uma vez
que é um artigo
introdutório que

apresenta a
linguagem de
programação
SPARK e sua
aplicação na

especificação e
verificação de
propriedades

formais

IEEE Inglês CE1 Excluído
SPARK by Example:
An Introduction to
Formal Verification
through the Standard
C++ Library

Creuse L,
Huguet J,
Garion C,
Hugues J

2019

This paper
presents
SPARK by
Example
[10], a
guide for
people
wanting to
get involved
in formal
verification
of SPARK
programs.
SPARK by
Example is
inspired by
ACSL by
Example, a
similar
effort for
C/ACSL
programs,
and
provides
detailed
specificatio
n,
implementa
tion and
proof of
classic
algorithms
(array
manipulatio
n, sorting,
heap etc).
A
comparison
between
ACSL and
SPARK is
done in the
light of
proof
performanc
e and ease
of use.

10.1145
/337540

8.
337541

5

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/33754
08.
3375415;
http://dx.doi.
org/10.
1145/33754
08.3375415

- - - - ACM Inglês CE5 Excluído
Space-time Constraint
Resources Modeling
and Safety Verification
Method for Automated
Vehicles

Y. Zhu; X.
Chen; Y. Zhao 2022

Automated
vehicle
combines
physics and
computatio
n on the
basis of
environmen
t
perception.
It can
realize
intelligent
interaction
with the
environmen
t.
Automated
vehicle is a
typical
CPS.
However,
the
continuous
changes of
driving
physical
space bring
certain
challenges
to the
safety of
CPS
resources.
Therefore,
how to
solve this
kind of CPS
resource
safety
problems
caused by
space and
time
changes
becomes
the key. We
propose a
space-time
constraint
resource
modeling
and safety
verification
method for
automated
vehicle to
solve this
problem.
Firstly, the
physical
topology
model is
proposed to
model the
physical
topology
space of
CPS, which
is able to
describe
the
topology
space.
Secondly,
the
Resource-
Space Time
Communica
ting
Sequential
Process
(RS- TCSP)
is proposed
by
extending
the
resource
vector on
the basis of
Time
Communica
ting
Sequential
Process
(TCSP) to
describe
the
resources
in CPS
topology.
Thirdly, the
physical
topology
model and
RS- TCSP
are mapped
to bigraphs
and
bigraphs
reactive
system,
respectively
. The safety
of CPS
resources
is verified
by BigMC,
the
verification
tool of
bigraphs,
and the
counterexa
mple path
is modified.
Finally, a
driving
scene is
given to
verify the
effectivenes
s of the
proposes
method.

10.1109
/DSA56

465.
2022.00

112

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
914482

cyber
physical
system;
formal
verification;
process
algebra;
space-time
constraint;
resource
safety

O objetivo do trabalho é
fornecer uma abordagem
formal para modelar as

restrições de recursos em
veículos automatizados e
verificar sua segurança. A

abordagem é aplicada a um
cenário de veículo

automatizado que deve realizar
manobras de ultrapassagem

em uma estrada de mão dupla,
garantindo que essas

manobras sejam seguras em
termos de distância de
segurança e tempo de

conclusão.

Recursos com restrições
de espaço-tempo

Verificação de segurança
Veículos automatizados
Autômatos temporizados

Autômatos híbridos
Verificação de modelo

Validação baseada em
simulação

Verificador de modelo
Uppaal

Propriedades de
segurança

Alocação de recursos

Descreve a
proposta de um

método de
modelagem de

restrições espaço-
temporais e

verificação de
segurança para

veículos
automatizados,

utilizando a lógica
temporal CTL e

técnicas de model
checking.

IEEE Inglês CE1 Excluído
SOLOMON: An
Automated Framework
for Detecting Fault
Attack Vulnerabilities in
Hardware

M. Srivastava;
P. SLPSK; I.
Roy; C.
Rebeiro; A.
Hazra; S.
Bhunia

2020

Fault
attacks are
potent
physical
attacks on
crypto-
devices. A
single fault
injected
during
encryption
can reveal
the cipher's
secret key.
In a
hardware
realization
of an
encryption
algorithm,
only a tiny
fraction of
the gates is
exploitable
by such an
attack.
Finding
these
vulnerable
gates has
been a
manual and
tedious task
requiring
considerabl
e expertise.
In this
paper, we
propose
SOLOMON
, the first
automatic
fault attack
vulnerability
detection
framework
for
hardware
designs.
Given a
cipher
implementa
tion, either
at RTL or
gate-level,
SOLOMON
uses formal
methods to
map
vulnerable
regions in
the cipher
algorithm to
specific
locations in
the
hardware
thus
enabling
targeted
countermea
sures to be
deployed
with much
lesser
overheads.
We
demonstrat
e the
efficacy of
the
SOLOMON
framework
using three
ciphers:
AES,
CLEFIA,
and Simon.

10.2391
9

/DATE4
8585.

2020.91
16380

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
116380

fault attack;
fault
evaluation
tools;formal
verification

o artigo aborda o
desenvolvimento de algoritmos

escaláveis e robustos para
coordenação baseada em

tarefas a partir de
especificações de alto nível.

coordenação baseada
em tarefas,

especificações de alto
nível, planejamento de

trajetória, modelagem de
sistemas dinâmicos, e

algoritmos de otimização.

A metodologia
utilizada envolveu
a implementação
de um sistema de

simulação para
validar os
algoritmos

propostos e testar
sua escalabilidade

e robustez.

IEEE Inglês CE1 Excluído
SMT-Based
Consistency Checking
of Configuration-Based
Components
Specifications

L. Pandolfo; L.
Pulina; S.
Vuotto 2021

Cyber-
Physical
Systems
(CPSs) are
engineered
systems
that are
built from,
and depend
upon, the
seamless
integration
of
computatio
nal
algorithms
and
physical
component
s. CPSs are
widely used
in many
safety-
critical
domains,
making it
crucial to
ensure that
they
operate
safely
without
causing
harm to
people and
the
environmen
t.
Therefore,
their design
should be
robust
enough to
deal with
unexpected
conditions
and flexible
to answer
to the high
scalability
and
complexity
of systems.
Nowadays,
it is well-
established
that formal
verification
has a great
potential in
reinforcing
safety of
critical
systems,
but
nevertheles
s its
application
in the
developme
nt of
industrial
products
may still be
a
challenging
activity. In
this paper,
we describe
an
approach
based on
Satisfiability
Modulo
Theories
(SMT) to
formally
verify, at
the design
stage, the
consistency
of the
system
design -
expressed
in a given
domain-
specific
language,
called
QRML,
which is
specifically
designed
for CPSs -
with respect
to some
given
property
constraints,
with the
purpose to
reduce
inconsisten
cies during
the system
developme
nt process.
To this end,
we propose
an SMT-
based
approach
for
checking
the
consistency
of
configuratio
n based-
component
s
specificatio
ns and we
report the
results of
the
experiment
al analysis
using three
different
state-of-
the-art SMT
solvers.
The main
goal of the
experiment
al analysis
is to test
the
scalability
of the
selected
SMT
solvers and
thus to
determine
which SMT
solver is the
best in
checking
the
satisfiability
of the
properties.

10.1109
/ACCE

SS.
2021.30
85911

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
446129

Design
verification;
application
of formal
methods;
satisfiability
modulo
theories

trata de uma abordagem
baseada em Satisfiability

Modulo Theories (SMT) para
verificação de consistência de

especificações de
componentes de software
baseados em configuração.

Verificação de
consistência

Componentes
configuráveis

Lógica de primeira ordem
Teoria de igualdade
Teoria de conjuntos
Verificação SMT

(Satisfiability Modulo
Theories)

Z3 SMT solver
Especificação de

componentes
Restrições de
configuração

Análise de restrições
Model checking

Verificação formal

A metodologia é
baseada em é
baseada em
Satisfiability

Modulo Theories
(SMT), que é uma

técnica que
combina a
decisão de

satisfatibilidade
booleana com

teorias
específicas,
permitindo a
verificação

automática de
propriedades

lógicas
complexas.

IEEE Inglês CE1 Excluído
Smart Contract
Defense through
Bytecode Rewriting

G. Ayoade; E.
Bauman; L.
Khan; K.
Hamlen

2019

An
Ethereum
bytecode
rewriting
and
validation
architecture
is proposed
and
evaluated
for securing
smart
contracts in
decentraliz
ed
cryptocurre
ncy
systems
without
access to
contract
source
code. This
addresses
a wave of
smart
contract
vulnerabiliti
es that
have been
exploited by
cybercrimin
als in
recent
years to
steal
millions of
dollars from
victims.
Such
attacks
have
motivated
various
best
practices
proposals
for helping
developers
write safer
contracts;
but as the
number of
programmin
g
languages
used to
develop
smart
contracts
increases,
implementi
ng these
best
practices
can be
cumbersom
e and hard
to enforce
across the
developme
nt tool
chain.
Automated
hardening
at the
bytecode
level
bypasses
this source-
level
heterogenei
ty to
enforce
safety and
code
integrity
properties
of contracts
independen
tly of the
sources
whence
they were
derived. In
addition, a
binary code
verification
tool
implemente
d atop the
Coq
interactive
theorem
prover
establishes
input-output
equivalence
between
the original
code and
the
modified
code.
Evaluation
demonstrat
es that the
system can
enforce
policies that
protect
against
integer
overflow
and
underflow
vulnerabiliti
es in real
Ethereum
contract
bytecode,
and
overhead is
measured
in terms of
instruction
counts.

10.1109
/Blockc
hain.

2019.00
059

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
946210

blockchain;
ethereum;
in-lined
reference
monitors;
formal
methods

O artigo aborda a defesa de
contratos inteligentes através

da reescrita do código de
bytecode. O objetivo é garantir

que o contrato inteligente
execute apenas o código

seguro e impeça a execução
de código malicioso. Para isso,

o artigo propõe uma
abordagem de reescrita de

bytecode que modifica o código
do contrato inteligente para

remover as vulnerabilidades.

Smart contracts
Contratos inteligentes

Segurança de contratos
inteligentes
Bytecode

Redução de código
(code-reducing)
Máquina virtual
Ethereum (EVM)

Análise de bytecode
Análise estática

Técnicas de análise de
código

Instrumentação de
código

Programação defensiva
Verificação de código

Ferramentas de análise
estática.

Envolve a análise
de bytecode de

contratos
inteligentes em
blockchain, o

desenvolvimento
de uma

ferramenta de
reescrita de

bytecode e a
validação da
abordagem

proposta por meio
de testes em

contratos
inteligentes reais.
Além disso, foram
utilizadas técnicas

de engenharia
reversa e análise
estática de código

para identificar
vulnerabilidades

em contratos
inteligentes e

verificar a eficácia
da ferramenta de

reescrita de
bytecode
proposta.

IEEE Inglês CE1 Excluído
Smart Bound Selection
for the Verification of
UML/OCL Class
Diagrams

R. Clarisó; C.
A. González;
J. Cabot 2019

Correctnes
s of UML
class
diagrams
annotated
with OCL
constraints
can be
checked
using
bounded
verification
techniques,
e.g., SAT or
constraint
programmin
g (CP)
solvers.
Bounded
verification
detects
faults
efficiently
but, on the
other hand,
the
absence of
faults does
not
guarantee a
correct
behavior
outside the
bounded
domain.
Hence,
choosing
suitable
bounds is a
non-trivial
process as
there is a
trade-off
between
the
verification
time (faster
for smaller
domains)
and the
confidence
in the result
(better for
larger
domains).
Unfortunate
ly, bounded
verification
tools
provide little
support in
the bound
selection
process. In
this paper,
we present
a technique
that can be
used to (i)
automaticall
y infer
verification
bounds
whenever
possible, (ii)
tighten a
set of
bounds
proposed
by the user
and (iii)
guide the
user in the
bound
selection
process.
This
approach
may
increase
the usability
of
UML/OCL
bounded
verification
tools and
improve the
efficiency of
the
verification
process.

10.1109
/TSE.

2017.27
77830

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
119996

Formal
verification;
UML;class
diagram;
OCL;
constraint
propagation
;SAT

O artigo fala sobre uma técnica
para seleção inteligente de
limites para a verificação de

diagramas de classe
UML/OCL.

Verificação de modelos
Diagramas de classes

UML/OCL
Restrições OCL

Análise de fluxo de
dados

Seleção de limites
inteligentes (smart bound

selection)

A metodologia
não foi

especificada IEEE Inglês CE1 Excluído
Sim: A Contract-Based
Programming
Language for Safety-
Critical Software

T. Benoit 2019

An
important
benefit of
formal
methods is
the ability to
unambiguo
usly
describe
the
requirement
s of a
program
and to
provide
evidence of
the
compliance
of the
software
code with
these
requirement
s. However,
formal
analysis on
programs
written in
languages
that are
used today
in avionics
can be
challenging
since these
languages
have
features,
such as
pointers,
that
complicate
program
verification.
So, to
enable
formal
verification,
one must
limit the
language to
a subset
and/or one
must
endure a
considerabl
e
annotation
overhead.
This paper
presents
Sim, a new
high-level
programmin
g language
that is
designed
for the
developme
nt and
verification
of safety-
critical
software.
The Sim
language
has been
designed
so that only
a small
annotation
overhead is
needed and
one can
make
extensive
use of
automatic
verification
tools. We
show that in
Sim 4 to 5
times fewer
annotations
are needed
compared
to programs
written in
VeriFast-C
to prove
equivalent
properties.
We
additionally
demonstrat
e that Sim
is suitable
as a
language
for avionics
software
developme
nt by
implementi
ng and
verifying an
elementary
fly-by-wire
application
and
deploying it
on an
STM32
microcontro
ller.

10.1109
/DASC4
3569.

2019.90
81681

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
081681

contracts;
semi-
automatic
verification;
formal
methods;
programmin
g language;
safety-
critical
systems

O artigo fala sobre uma nova
linguagem de programação,
chamada Sim, desenvolvida
para o desenvolvimento de

software crítico de segurança.
A linguagem é baseada em

contratos e usa a verificação
formal para garantir que o

código do programa atenda aos
requisitos de segurança.

Programação baseada
em contratos

Design por Contrato
Software crítico de

segurança
Árvore de sintaxe

abstrata (AST)
Lógica de separação

Verificação de afirmação
em tempo de execução

Linguagem de
especificação

Verificação formal
Prova automatizada de

teoremas
Lógica de Hoare

A metodologia
utilizada no artigo
é a proposição de

uma nova
linguagem de

programação e
sua análise

teórica, bem como
a implementação
de um protótipo

para demonstrar a
eficácia da
abordagem
proposta.

IEEE Inglês CE1 Excluído
SecML: A Proposed
Modeling Language for
CyberSecurity C. Easttom 2019

Cybersecuri
ty is a
comparativ
ely new
discipline,
related to
computer
science,
electrical
engineering
, and
similar
subjects.
As a newer
discipline it
lacks some
of the tools
found in
more
established
subject
areas. As
one
example,
many
engineering
disciplines
have
modeling
languages
specific for
that
engineering
discipline.
As two
examples,
software
engineering
utilizes
Unified
Modeling
Language
(UML) and
systems
engineering
uses
System
Modeling
Language
(SysML).
Cybersecuri
ty
engineering
lacks such
a
generalized
modeling
language.
Cybersecuri
ty as a
profession
would be
enhanced
with a
security
specific
modeling
language.
This paper
describes
such a
modeling
language.
The model
is described
in sufficient
detail to be
actionable
and
applicable.
However,
suggestions
for future
work are
also
provided.

10.1109
/UEMC
ON475

17.
2019.89
93105

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
993105

Cybersecuri
ty;Modeling
languages;
Engineering
;
Cybersecuri
ty
engineering
;SysML;
Systems
Engineering

O artigo propõe uma nova
linguagem de modelagem
chamada SecML, que visa
suportar a modelagem de
aspectos de segurança

cibernética em sistemas de
informação

Modelagem de
segurança cibernética

Linguagem de
modelagem

Representação formal de
requisitos de segurança

Especificação de
ameaças e

vulnerabilidades
Análise de riscos
Formalização da
modelagem de

segurança
Técnicas de modelagem

de segurança de
software

Processo de engenharia
de segurança de

software
Abordagens de

modelagem para a
segurança cibernética

 o artigo
apresenta uma

proposta de uma
nova linguagem
de modelagem
para a área de

segurança
cibernética. Para
isso, os autores
realizaram uma

análise crítica das
linguagens de
modelagem
existentes,

destacando suas
limitações e

apresentando os
requisitos para

uma nova
linguagem de
modelagem.

IEEE Inglês CE1 Excluído
Score-Based Automatic
Detection and
Resolution of Syntactic
Ambiguity in Natural
Language
Requirements

M. Osama; A.
Zaki-Ismail; M.
Abdelrazek; J.
Grundy; A.
Ibrahim

2020

The quality
of a
delivered
product
relies
heavily
upon the
quality of its
requirement
s. Across
many
disciplines
and
domains,
system and
software
requirement
s are
mostly
specified in
natural
language
(NL).
However,
natural
language is
inherently
ambiguous
and
inconsistent
. Such
intrinsic
challenges
can lead to
misinterpret
ations and
errors that
propagate
to the
subsequent
phases of
the system
developme
nt. Pattern-
based
natural
language
processing
(NLP)
techniques
have been
proposed to
detect the
ambiguity in
requirement
s
specificatio
ns.
However,
such
approaches
typically
address
specific
cases or
patterns
and lack
the
versatility
essential to
detecting
different
cases and
forms of
ambiguity.
In this
paper, we
propose an
efficient
and
versatile
automatic
syntactic
ambiguity
detection
technique
for NL
requirement
s. The
proposed
technique
relies on
filtering the
possible
scored
interpretatio
ns of a
given
sentence
obtained
via Stanford
CoreNLP
library. In
addition, it
provides
feedback to
the user
with the
possible
correct
interpretatio
ns to
resolve the
ambiguity.
Our
approach
incorporate
s four
filtering
pipelines on
the input
NL-
requirement
s working in
conjunction
with the
CoreNLP
library to
provide the
most likely
possible
correct
interpretatio
ns of a
requirement
. We
evaluated
our
approach
on a suite
of datasets
of 126
requirement
s and
achieved
65%
precision
and 99%
recall on
average.

10.1109
/ICSME
46990.

2020.00
067

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
240680

Requiremen
ts
specificatio
n;
Requiremen
ts analysis;
Quality
checking;
Ambiguity

O artigo fala sobre um método
para detecção e resolução

automática de ambiguidades
sintáticas em requisitos de

linguagem natural. Ele propõe
um modelo de pontuação para

identificar ambiguidades
sintáticas e usa a lógica de

primeira ordem para gerar uma
árvore de análise sintática para

o texto do requisito.

Ambiguidade sintática
Requisitos em linguagem

natural
Detecção automática
Resolução automática

Pontuação baseada em
modelo

Análise semântica
Árvores de análise

sintática
Modelo de linguagem

A metodologia
utilizada envolveu
a criação de um

algoritmo de
pontuação para

detectar e resolver
ambiguidades
sintáticas em
requisitos de

linguagem natural.

IEEE Inglês CE1 Excluído
Scenario-based
Requirements
Engineering for
Complex Smart City
Projects

C. Wiecher; P.
Tendyra; C.
Wolff 2022

Various
stakeholder
s with
different
background
s are
involved in
Smart City
projects.
These
stake-
holders
define the
project
goals, e.g.,
based on
participative
approaches
, market
research or
innovation
manageme
nt
processes.
To realize
these goals
often
complex
technical
solutions
must be
designed
and
implemente
d. In
practice,
however, it
is difficult to
synchronize
the
technical
design and
implementa
tion phase
with the
definition of
moving
Smart City
goals. We
hypothesize
that this is
due to a
lack of a
“common
language”
for the
different
stakeholder
groups and
the
technical
disciplines.
We address
this
problem
with
scenario-
based
requirement
s
engineering
techniques.
In
particular,
we use
scenarios
at different
levels of
abstraction
and
formalizatio
n that are
connected
end-to-end
by
appropriate
methods
and tools.
This
enables
fast
feedback
loops to
iteratively
align
technical
requirement
s,
stakeholder
expectation
s, and
Smart City
goals. We
demonstrat
e the
applicability
of our
approach in
a case
study with
different
industry
partners.

10.1109
/E-

TEMS5
3558.

2022.99
44441

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
944441

Systems
Engineering
;
Requiremen
ts
Engineering
;Project
Manageme
nt;
Innovation
Manageme
nt

Discute a aplicação da
engenharia de requisitos

baseada em cenários para
projetos complexos de cidades

inteligentes.

Engenharia de requisitos
baseada em cenários
Projeto de cidades

inteligentes
Projeto de sistemas

complexos
Colaboração em equipe

Coleta de requisitos
Modelagem de cenários

Análise de requisitos
Verificação de requisitos
Validação de requisitos

Documentação de
requisitos

Avaliação de requisitos

A metodologia
proposta é uma

abordagem
colaborativa que
envolve várias

partes
interessadas e

segue um
processo iterativo

em três fases:
Análise de

stakeholders e
contextuais:
identificar os
stakeholders

relevantes e suas
necessidades,

objetivos e
restrições, bem
como coletar

informações sobre
o contexto e as

restrições
ambientais e
regulatórias.
Definição de

cenários: elaborar
cenários de uso

de sistemas
inteligentes e
identificar as

funcionalidades
necessárias, bem

como suas
relações com

outras
funcionalidades e
com os requisitos
dos stakeholders.

Análise de
requisitos e

validação: analisar
a consistência e a
completude dos

requisitos
identificados em
cada cenário e

validar os
requisitos com os

stakeholders
relevantes.

IEEE Inglês CE1 Excluído
Scalable Translation
Validation of Unverified
Legacy OS Code

A. Tahat; S.
Joshi; P.
Goswami; B.
Ravindran

2019

Formally
verifying
functional
and
security
properties
of a large-
scale
production
operating
system is
highly
desirable.
However, it
is
challenging
as such
OSes are
often
written in
multiple
source
languages
that have
no formal
semantics -
a
prerequisite
for formal
reasoning.
To avoid
expensive
formalizatio
n of the
semantics
of multiple
high-level
source
languages,
we present
a
lightweight
and
rigorous
verification
toolchain
that verifies
OS code at
the binary
level,
targeting
ARM
machines.
To reason
about ARM
instructions,
we first
translate
the ARM
Specificatio
n Language
that
describes
the
semantics
of the
ARMv8 ISA
into the
PVS7
theorem
prover and
verify the
translation.
We
leverage
the radare2
reverse
engineering
tool to
decode
ARM
binaries
into PVS7
and verify
the
translation.
Our
translation
verification
methodolog
y is a
lightweight
formal
validation
technique
that
generates
large-scale
instruction
emulation
test
lemmas
whose
proof
obligations
are
automaticall
y
discharged.
To
demonstrat
e our
verification
methodolog
y, we apply
the
technique
on two
OSes:
Google's
Zircon and
a subset of
Linux. We
extract a
set of 370
functions
from these
OSes,
translate
them into
PVS7, and
verify the
correctness
of the
translation
by
automaticall
y
discharging
hundreds of
thousands
of proof
obligations
and tests.
This took
27.5
person-
months to
develop.

10.2391
9

/FMCA
D.

2019.88
94252

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
894252

Formal
Verification;
Linux OS;
Google
Zircon

O artigo fala sobre a validação
da tradução de código de

sistemas operacionais antigos
e não verificados para novas
arquiteturas de hardware. O

objetivo é garantir que o
sistema operacional continue
funcionando corretamente em

novas plataformas, sem a
necessidade de reescrever

todo o código-fonte.

Validação de tradução
Código legado

Sistemas operacionais
Verificação de software

Validação formal
Lógica de separação

Coq
Programação funcional
Automação de prova

A metodologia
utilizada no artigo

envolve a
utilização de um

conjunto de
ferramentas para

verificar a
correção de
código de
sistemas

operacionais
legados, através

da técnica de
validação de

tradução
(translation
validation).

IEEE Inglês CE1 Excluído
Scalable and Robust
Algorithms for Task-
Based Coordination
From High-Level
Specifications
(ScRATCHeS)

K. Leahy; Z.
Serlin; C. -I.
Vasile; A.
Schoer; A. M.
Jones; R.
Tron; C. Belta

2022

Many
existing
approaches
for
coordinatin
g
heterogene
ous teams
of robots
either
consider
small
numbers of
agents, are
application-
specific, or
do not
adequately
address
common
real-world
requirement
s, e.g.,
strict
deadlines
or intertask
dependenci
es. We
introduce
scalable
and robust
algorithms
for task-
based
coordinatio
n from high-
level
specificatio
ns
(ScRATCH
eS) to
coordinate
such
teams. We
define a
specificatio
n language,
capability
temporal
logic, to
describe
rich,
temporal
properties
involving
tasks
requiring
the
participatio
n of
multiple
agents with
multiple
capabilities,
e.g.,
sensors or
end
effectors.
Arbitrary
missions
and team
dynamics
are jointly
encoded as
constraints
in a mixed
integer
linear
program,
and solved
efficiently
using
commercial
off-the-shelf
solvers.
ScRATCHe
S optionally
allows
optimization
for maximal
robustness
to agent
attrition at
the penalty
of
increased
computatio
n time. We
include an
online
replanning
algorithm
that adjusts
the plan
after an
agent has
dropped
out. The
flexible
specificatio
n language,
fast solution
time, and
optional
robustness
of
ScRATCHe
S provide a
first step
toward a
multipurpos
e on-the-fly
planning
tool for
tasking
large teams
of agents
with
multiple
capabilities
enacting
missions
with
multiple
tasks. We
present
randomized
computatio
nal
experiment
s to
characteriz
e scalability
and
hardware
demonstrati
ons to
illustrate
the
applicability
of our
methods.

10.1109
/TRO.

2021.31
30794

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
663414

Formal
methods;
multiagent
systems;
planning;
robotics

O artigo apresenta uma
metodologia para especificação
e coordenação de tarefas em
sistemas multiagentes. A
proposta é baseada em
especificações de alto nível e
fornece um conjunto de
algoritmos escaláveis e
robustos para a coordenação
de tarefas.

Algoritmos escaláveis e
robustos
Coordenação baseada
em tarefas
Especificações de alto
nível

A abordagem é
implementada em
um framework
chamado
ScRATCHeS, que
usa técnicas de
planejamento e
alocação de
tarefas para gerar
planos de
coordenação para
os agentes.

IEEE Inglês CE1 Excluído
Sampling of Shape
Expressions with
ShapEx

N. Basset; T.
Dang; F.
Gigler; C.
Mateis; D.
Ničković

2021

In this
paper we
present
SHAPEx, a
tool that
generates
random
behaviors
from shape
expressions
, a formal
specificatio
n language
for
describing
sophisticate
d temporal
behaviors
of CPS.
The tool
samples a
random
behavior in
two steps:
(1) it first
explores
the space
of
qualitative
parameteriz
ed shapes
and then
(2)
instantiates
parameters
by sampling
a possibly
non-linear
constraint.
We
implement
several
sampling
strategies
in the tool
that we
present in
the paper
and
demonstrat
e its
applicability
on two use
scenarios.

10.1145
/348721

2.
348735

0

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
814952

shape
expressions
;sampling;
hit-and-run;
testing

O artigo descreve uma nova
abordagem para amostragem

de instâncias de Shape
Expressions, que é uma

linguagem de descrição de
esquemas para dados

semiestruturados. O objetivo do
artigo é propor uma técnica
eficiente e escalável para

amostrar instâncias de Shape
Expressions que satisfaçam

determinadas restrições.

Shape Expressions
(ShEx)

Restrições em ShEx
Amostragem de

instâncias de ShEx
Amostragem aleatória

Otimização
Abordagem proposta

(ShapEx)
Avaliação experimental

Limitações e futuras
direções.

A metodologia
abordada é uma

abordagem
experimental,

onde os autores
realizam

experimentos para
comparar a
abordagem
proposta

(ShapEx) com
outras técnicas
existentes de

amostragem de
instâncias de

Shape
Expressions.

IEEE Inglês CE1 Excluído
Salty-A Domain
Specific Language for
GR(1) Specifications
and Designs

T. Elliott; M.
Alshiekh; L. R.
Humphrey; L.
Pike; U. Topcu

2019

Designing
robot
controllers
that
correctly
react to
changes in
the
environmen
t is a time-
consuming
and error-
prone
process. An
alternative
is to use
“correct-by-
constructio
n” synthesis
approaches
to
automaticall
y generate
controller
designs
from high-
level
specificatio
ns. In
particular,
Generalize
d Reactivity
(l) or GR(1)
specificatio
ns are well-
suited to
express
specificatio
ns for
robots that
must act in
dynamic
environmen
ts, and
approaches
to generate
controller
designs
from GR(1)
specificatio
ns are
highly
computatio
nally
efficient.
Toward that
end, this
paper
presents
Salty, a
domain-
specific
language
for GR(1)
specificatio
ns. While
tools exist
to
synthesize
system
designs
from GR(1)
specificatio
ns, Salty
makes such
specificatio
ns easier to
write and
debug by
supporting
features
such as
richer input
and output
types, user-
defined
macros,
common
specificatio
n patterns,
and
specificatio
n
optimization
and sanity
checking.
Salty
interfaces
with the
separately
developed
synthesis
tool Slugs
to produce
a system or
controller
design, and
Salty
translates
this design
to a
software
implementa
tion in a
variety of
languages.
We
demonstrat
e Salty on
an
application
involving
coordinatio
n of
multiple
unmanned
air vehicles
(UAVs) and
provide a
workflow for
connecting
synthesized
UAV
controllers
to freely
available
UAV
planning
and
simulation
software
suites
UxAS and
AMASE.

10.1109
/ICRA.

2019.87
93722

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
793722

-

O artigo apresenta uma nova
linguagem de programação de

domínio específico (DSL)
chamada Salty, que foi

projetada para simplificar o
processo de especificação e

verificação de sistemas
reativos complexos usando a
teoria de jogos reativos (RGT)
e a lógica temporal linear (LTL).

Teoria de jogos reativos
(RGT) e lógica temporal

linear (LTL);
Linguagem de

programação de domínio
específico (DSL);
Especificação de
sistemas reativos

complexos;
Sintaxe simplificada e

expressiva para
especificações em Salty;

Especificação de
requisitos de alto nível;

Verificação de
propriedades em

diferentes níveis de
abstração;

Ferramentas de
verificação e síntese de

controle para Salty;
Vantagens de Salty em
relação a abordagens

tradicionais de
especificação e

verificação de sistemas
reativos complexos;

Aplicações em sistemas
críticos de segurança e
sistemas embarcados.

O artigo não
descreve uma
metodologia
específica

utilizada, mas
apresenta uma

abordagem
prática para a

especificação e
verificação de

sistemas reativos
complexos
utilizando a

linguagem de
programação de

domínio
específico (DSL)

Salty.

IEEE Inglês CE1 Excluído
Safety Verification of
IEC 61131-3 Structured
Text Programs

J. Xiong; X.
Bu; Y. Huang;
J. Shi; W. He 2021

With the
developme
nt of the
industrial
control
system,
programma
ble logic
controllers
(PLCs) are
increasingly
adopted in
the process
automation.
Moreover,
many PLCs
play key
roles in
safety-
critical
systems,
such as
nuclear
power
plants,
where
robust and
reliable
control
programs
are
required.
To ensure
the quality
of
programs,
testing and
verification
methods
are
necessary.
In this
article, we
present a
novel
methodolog
y which
applies
model
checking to
verifying
PLC
programs.
Specifically,
we focus on
the
structured
text (ST)
language
which is a
widely
used, high-
level
programmin
g language
defined in
the electro-
technical
commission
(IEC)
61131-3
standard. A
formal
model
named
behavior
model (BM)
is defined
to specify
the
behavior of
ST
programs.
An
algorithm
based on
variable
state
analysis for
automaticall
y extracting
the BM
from an ST
program is
given. An
algorithm
based on
the
automata-
theoretic
approach is
proposed to
verify linear
temporal
logic
properties
on the BM.
Finally, a
real-life
case study
is
presented.

10.1109
/TII.

2020.29
99716

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
107345

Formal
verification;
electro-
technical
commission
(IEC)
61131-3
standard;
model
checking;
structured
text (ST);
weighted
pushdown
system
(WPDS)

O objetivo do artigo é
apresentar uma metodologia

para verificar a segurança
desses programas, usando

técnicas de análise estática e
dinâmica, com base em um
modelo formal do programa.

Verificação de segurança
Programação estruturada
Linguagem estruturada
de programação (IEC

61131-3)
Model checking

Árvore de decisão binária
(BDD)

Lógica temporal linear
(LTL)

Verificação de modelo
Segurança funcional
Sistemas críticos de

segurança
Normas de segurança

(IEC 61508 e IEC 61511)
Testes de unidade e

integração
Cobertura de código
Análise estática de

código.

A metodologia
consiste em

utilizar um model
checker para

verificar a
correção de
programas
escritos em

linguagem de
programação

estruturada (ST)
de acordo com o

padrão
internacional IEC
61131-3. O model
checker é utilizado

para realizar a
verificação de

modelos (model
checking) dos
programas ST
com base em

propriedades de
segurança e

comportamentais
definidas pelo

usuário. O
processo envolve
a conversão do
código ST para

uma
representação

formal de
modelos, a
definição de

propriedades a
serem verificadas
e a execução do
model checker

para verificar se
as propriedades
são satisfeitas.

IEEE Inglês CE1 Excluído
Reasoning about
Functional
Programming in Java
and C++

Cok DR 2018

Verification
projects on
industrial
code have
required
reasoning
about
functional
programmin
g
constructs
in Java 8.
General
functional
programmin
g requires
reasoning
about how
the
specificatio
ns of
function
objects that
are inputs
to a method
combine to
produce the
specificatio
ns of output
function
objects.
This short
paper
describes
our in-
progress
experience
in adapting
prior work
(Kassios &
Müller) to
Java 8,
JML,
OpenJML,
and to
ACSL++, a
specificatio
n language
for C++
built on
ACSL.

10.1145
/323645

4.
323648

3

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/32364
54.
3236483;
http://dx.doi.
org/10.
1145/32364
54.3236483

JML,
ACSL++,
ACSL,
specificatio
n, functional
programmin
g, formal
verification,
OpenJML

O artigo fala sobre a utilização
de técnicas de programação
funcional em linguagens de
programação orientadas a

objetos, como Java e C++. Os
autores argumentam que a

programação funcional pode
ser benéfica para

desenvolvedores de software
que buscam escrever código

mais legível, modular e
testável. O artigo apresenta
uma série de exemplos que
demonstram como utilizar
conceitos de programação

funcional, como funções de alta
ordem e imutabilidade, em

programas Java e C++

Programação funcional
Java
C++

Teoria dos tipos
Inferência de tipos
Sistema de tipos

Polimorfismo
Subtipagem

Funções de ordem
superior

Cálculo lambda
Currying

Composição de funções
Avaliação preguiçosa

Monads
Funções puras

 é um trabalho
teórico que

apresenta uma
discussão

conceitual sobre a
natureza da

programação
funcional e sua
implementação

em linguagens de
programação

imperativas, como
Java e C++.

Portanto, não há
uma metodologia

específica
utilizada no

desenvolvimento
do artigo, mas sim
uma abordagem
teórica baseada

em análise
conceitual e
exemplos
práticos.

ACM Inglês CE1 Excluído

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9319562
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3375408.3375415;http://dx.doi.org/10.1145/3375408.3375415
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9914482
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116380
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9446129
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8946210
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8119996
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9081681
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8993105
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9240680
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9944441
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894252
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9663414
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9814952
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8793722
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9107345
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3236454.3236483;http://dx.doi.org/10.1145/3236454.3236483

Reactive Synthesis
with Spectra: A Tutorial

S. Maoz; J. O.
Ringert 2021

Spectra is a
formal
specificatio
n language
specifically
tailored for
use in the
context of
reactive
synthesis,
an
automated
procedure
to obtain a
correct-by-
constructio
n reactive
system
from its
temporal
logic
specificatio
n. Spectra
comes with
the Spectra
Tools, a set
of analyses,
including a
synthesizer
to obtain a
correct-by-
constructio
n
implementa
tion,
several
means for
executing
the
resulting
controller,
and
additional
analyses
aimed at
helping
engineers
write
higher-
quality
specificatio
ns. This
hands-on
tutorial will
introduce
participants
to the
language
and the tool
set, using
examples
and
exercises,
covering an
end-to-end
process
from
specificatio
n writing to
synthesis to
execution.
The tutorial
may be of
interest to
software
engineers
and
researchers
who are
interested
in the
potential
applications
of formal
methods to
software
engineering
.

10.1109
/ICSE-
Compa
nion526

05.
2021.00

136

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
402598

Reactive
synthesis

O artigo fala sobre a técnica de
síntese reativa, que é uma
abordagem de construção

automática de sistemas que
satisfazem requisitos

comportamentais em tempo
real. O foco principal do artigo
é o uso da ferramenta Spectra

para a síntese reativa.

Síntese reativa
Especificação formal

Lógica linear temporal
Lógica computacional de

árvore
Satisfatibilidade módulo

teoria
Espectros

Verificação de modelo
Síntese de controladores

Autômatos de estado
finito

 O artigo explica o
processo de

síntese reativa,
desde a

especificação do
comportamento

desejado do
sistema em

Spectra,
passando pela

transformação em
uma especificação

LTL e pela
geração de um

modelo Mealy, até
a implementação
do sistema em
linguagem de

programação. O
tutorial apresenta

exemplos de
como especificar
comportamentos

desejados em
Spectra e fornece
uma visão geral

dos passos
envolvidos no
processo de

síntese reativa.

IEEE Inglês CE1 Excluído
Reachability Analysis
of Cost-Reward Timed
Automata for Energy
Efficiency Scheduling

Wang W,Dong
G,Deng Z,
Zeng G,Liu W,
Xiong H

2018

As the
ongoing
scaling of
semiconduc
tor
technology
causing
severe
increase of
on-chip
power
density in
microproce
ssors, this
leads for
urgent
requirement
for power
manageme
nt during
each level
of computer
system
design. In
this paper,
we describe
an
approach
for solving
the general
class of
energy
optimal task
graph
scheduling
problems
using cost-
reward
timed
automata.
We
propose a
formal
technique
based on
model
checking
using
extended
timed
automata to
solve the
processor
frequency
assignment
problem in
an energy-
constrained
multitasking
system. To
handle the
problem of
state space
explosion in
symbolic
model
checking,
we also
provide an
efficient
zone-based
algorithm
for
minimum-
cost
reachability.
Our
approach is
capable of
finding
efficient
solutions
under
various
constraints
and
applicable
to other
problem
variants as
well.
Experiment
al results
demonstrat
e the
usefulness
and
effectivenes
s of our
approach.

10.1145
/256068

3.
256069

5

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/25606
83.
2560695;
http://dx.doi.
org/10.
1145/25606
83.2560695

Model
Checking,
Real-time
scheduling,
DVS, Timed
automata,
Energy
efficiency

Este artigo fala sobre a
aplicação de técnicas de
análise de alcance em

autômatos temporizados de
custo-recompensa para

melhorar a eficiência
energética em sistemas
embarcados. O artigo

apresenta uma metodologia
para modelar sistemas de
agendamento de eficiência

energética usando autômatos
temporizados de custo-

recompensa, bem como
técnicas de análise de alcance
para verificar se as metas de

eficiência energética são
atingíveis.

Análise de
alcançabilidade

Autômatos temporizados
Modelos de custo-

recompensa
Agendamento de

eficiência energética
Sistema de eventos

discretos
Otimização de
desempenho

Agendamento de tarefas
Programação linear

Resolução de restrições
Verificação de modelos

A metodologia é
baseada em

modelagem e
análise de

sistemas de
tempo real usando

autômatos
temporizados. O
estudo propõe
uma técnica de

análise de alcance
(reachability

analysis) para
programação de

tarefas em
sistemas

embarcados de
tempo real,
levando em

consideração a
eficiência

energética como
uma das

principais métricas
de desempenho.

ACM Inglês CE1 Excluído
Qualification of
Hardware Description
Language Designs for
Safety Critical
Applications in Nuclear
Power Plants

A. K. John; A.
K.
Bhattacharjee 2020

Field-
programma
ble gate-
array
(FPGA)-
based
intelligent
hardware
modules
are
increasingly
being used
in safety
systems of
nuclear
power
plants.
Qualificatio
n of these
modules as
per safety
standards
such as
IEC
62566/6088
0 and
IEEE-
7.4.3.2-
2010 needs
considerabl
e effort.
Many of the
safety
standards
demand
high rigor in
verifying
that the
designs of
these
modules
meet the
design
intent. Use
of hardware
description
languages
such as
VHDL or
Verilog
makes the
process of
code review
and
verification
difficult due
to the
complex
nonsequent
ial
semantics
of these
languages.
It is now
recognized
that formal
verification
offers a
complemen
tary
approach to
convention
al
verification.
Formal
verification
tools
perform
analysis of
designs
based on
language
semantics
to
prove/refute
their
functional
correctness
. In this
article, we
present the
architecture
of a formal
verification
tool for
VHDL
designs
and our
experience
of using this
tool on
VHDL
designs in
nuclear
applications
.

10.1109
/TNS.

2020.29
72903

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
990153

Bounded
model
checking;
formal
verification;
field-
programma
ble gate-
array
(FPGA)
qualification
;VHDL

aborda a questão da
qualificação de projetos de

Hardware Description
Language (HDL) para
aplicações críticas de
segurança em usinas

nucleares. O estudo apresenta
uma abordagem sistemática
para a qualificação desses

projetos, considerando padrões
de segurança específicos do

setor nuclear, bem como
normas e regulamentos

internacionais. O objetivo é
garantir que os projetos de

HDL sejam confiáveis e
seguros para uso em
aplicações críticas de
segurança em usinas

nucleares.

Linguagem de Descrição
de Hardware (HDL)
Sistemas críticos de

segurança
Usinas nucleares

Qualificação
Verificação e validação

(V&V)
Síntese de alto nível

(HLS)
Requisitos de segurança

Normas de segurança
Injeção de falhas

Simulação de falhas
Cobertura de falhas
Análise de modo e

efeitos de falha (FMEA)
Confiabilidade

o artigo apresenta
uma abordagem

geral para a
qualificação de
designs de HDL
para aplicações

críticas de
segurança em

usinas nucleares,
que inclui uma
combinação de

técnicas de
verificação e

validação, bem
como

conformidade com
padrões de
segurança
relevantes.

IEEE Inglês CE1 Excluído
PUF-G: A CAD
Framework for
Automated
Assessment of
Provable Learnability
from Formal PUF
Representations

D. Chatterjee;
D.
Mukhopadhya
y; A. Hazra

2020

Physically
Unclonable
Functions
(PUFs) are
widely
adopted in
various
lightweight
authenticati
ng devices
due to their
unique
fingerprints
- providing
uniform,
unpredictab
le and
reliable
nature of
responses.
However,
with the
growth of
machine
learning
(ML)
attacks in
recent
times, it is
imperative
that the
PUFs need
to be
resilient to
such
modeling
attacks as
well.
Consequen
tly,
analyzing
the
learnability
of PUFs
has initiated
a new
branch of
study
leading to
establishing
provable
guarantees
(and PAC-
learnability)
of various
PUF
designs.
However,
these
derivations
are often
carried out
manually
while
implementi
ng the
design and
thereby
cannot
automaticall
y adjust the
changes in
PUF
designs or
its various
composition
s. In this
paper, for
the first
time, we
present an
automated
framework,
called PUF-
G, to
reason
about the
PAC-
learnability
of PUF
designs
from an
architectura
l level. To
enable this,
we propose
a formal
PUF
representati
on
language
by which
any
architectura
l PUF
design and
its
composition
s can be
specified
upfront.
This PUF
specificatio
n can be
automaticall
y analyzed
through a
CAD
framework
by
translating
the same to
an interim
model and
then
deriving the
PAC-
learnability
bounds
from the
model.
Such a tool
will help the
designer to
explore
various
composition
al
architecture
s of PUFs
and its
resilience to
ML attacks
automaticall
y before
converging
on a strong
PUF design
for
implementa
tion. We
also show
the efficacy
of our
proposed
framework
over a wide
range of
PUF
architecture
s while
automaticall
y deriving
their
learnability
guarantees.
As a matter
of
independen
t interest,
the
framework
presents
the first
reported
proofs to
show that
Interpose-
PUF (newly
proposed),
MUX-PUF,
FF-APUF,
FF-XOR
APUF and
DA-PUF,
are all
PAC-
learnable.

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
256782

-

O artigo fala sobre um
framework de CAD (Computer-
Aided Design) para a avaliação

automatizada da
aprendibilidade comprovável de

Representações Formais de
PUF (Physical Unclonable
Functions). O objetivo é

proporcionar um processo mais
eficiente e confiável para

avaliar a aprendibilidade de
representações formais de
PUF, ajudando a garantir a
segurança desses sistemas.

CAD Framework
PUF (Physical

Unclonable Functions)
Provable Learnability

Formal PUF
Representation

Machine Learning
SVM (Support Vector

Machine)
Learning Metrics

Verification Metrics
Provable Security

Non-Interactive Zero
Knowledge Proof

Hardware Security

A metodologia
utilizada envolveu
a definição de um
modelo formal de
PUF, a definição
de um modelo de
aprendizagem de
máquina para a
reconstrução do
comportamento
de uma PUF, a

construção de um
mecanismo de
avaliação de

aprendizagem
provável e a

implementação de
uma ferramenta

de software
chamada PUF-G
que integra esses
componentes para

automatizar o
processo de
avaliação. O

artigo descreve
também

experimentos de
validação da

metodologia com
uma variedade de
PUFs e dados de

aprendizagem.

IEEE Inglês CE1 Excluído

Program Synthesis for
Cyber-Resilience N. Catano 2023

Architectura
l tactics
enable
stakeholder
s to achieve
cyber-
resilience
requirement
s. They
permit
systems to
react,
resist,
detect, and
recover
from cyber
incidents.
This paper
presents an
approach to
generate
source
code for
architectura
l tactics
typically
used in
safety and
mission-
critical
systems.
Our
approach
extensively
relies on
the use of
the Event-B
formal
method and
the
EventB2Jav
a code
generation
plugin of
the Rodin
platform. It
leverages
the
modeling of
architectura
l tactics in
the Event-B
formal
language
and uses a
set of
EventB2Jav
a
transformati
on rules to
generate
certified
code
implementa
tions for the
said tactics.
Since
resilience
requirement
s are
statements
about a
system
over time,
and
because of
the fact that
the Event-B
language
does not
provide
(native)
support for
the writing
of temporal
specificatio
ns, we have
implemente
d a novel
Linear
Temporal
Logic (LTL)
extension
for Event-B.
We support
several
architectura
l tactics for
availability,
performanc
e, and
security.
The
generated
code is
certified in
the
following
sense:
discharging
proof
obligations
in Rodin -
the platform
we use for
writing the
Event-B
models -
attests to
the
soundness
of the
architectura
l tactics
modelled in
Event-B,
and the
soundness
of the
translation
encoded by
the
EventB2Jav
a tool
attests to
the code
correctness
. Finally, we
demonstrat
e the
usability of
our
resilience
validation
approach
with the aid
of an
Autonomou
s Vehicle
System. It
further
helped us
increase
our
confidence
in the
soundness
of our
Event-B
LTL
extension.

10.1109
/TSE.

2022.31
68672

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
760016

Code
synthesis;
Event-B;
formal
methods;
resilience;
security;
testing;
verification

O artigo aborda a importância
da ciber-resiliência para

sistemas críticos e destaca a
necessidade de um enfoque na

segurança desde o início do
projeto, ao invés de ser uma
preocupação secundária. O
método proposto utiliza uma

abordagem baseada em
modelagem arquitetural e

síntese de código certificado
para táticas de resiliência,
combinada com testes de

software para verificar
propriedades do sistema.

O conceito central
abordado no artigo é o
de ciber-resiliência, que
se refere à capacidade
de um sistema de se
antecipar, resistir, se

recuperar e se adaptar a
condições adversas ou
ataques cibernéticos. O

artigo destaca que a
prevenção de todos os

possíveis ataques
cibernéticos é inviável,
especialmente no caso
de ataques 0-day, e que
a segurança deve ser

uma preocupação
primordial na fase de

projeto.

 O método
proposto no artigo

envolve a
modelagem de

táticas de
resiliência para

diferentes
atributos de

qualidade em um
formalismo

baseado em
eventos (Event-B),

a síntese de
código certificado
para implementar
essas táticas, e a

validação do
código por meio

de testes de
software. O

objetivo é integrar
a ciber-resiliência

desde o nível
arquitetural até a

implementação do
sistema, de modo
a garantir que as

táticas de
resiliência sejam
implementadas
corretamente e
que o sistema

seja capaz de se
recuperar de

possíveis ataques.

IEEE Inglês CE1 Excluido
Poster: Automatic
Consistency Checking
of Requirements with
ReqV

S. Vuotto; M.
Narizzano; L.
Pulina; A.
Tacchella

2019

In the
context of
Requireme
nts
Engineering
, checking
the
consistency
of
functional
requirement
s is an
important
and still
mostly
open
problem. In
case of
requirement
s written in
natural
language,
the
correspondi
ng manual
review is
time
consuming
and error
prone. On
the other
hand,
automated
consistency
checking
most often
requires
overburdeni
ng
formalizatio
ns. In this
paper we
introduce
ReqV, a
tool for
formal
consistency
checking of
requirement
s. The main
goal of the
tool is to
provide an
easy-to-use
environmen
t for the
verification
of
requirement
s in Cyber-
Physical
Systems
(CPS).
ReqV takes
as input a
set of
requirement
s
expressed
in a
structured
natural
language,
translates
them in a
formal
language
and it
checks their
inner
consistency
. In case of
failure,
ReqV can
also
extracts a
minimal set
of
conflicting
requirement
s to help
designers
in
correcting
the
specificatio
n.

10.1109
/ICST.

2019.00
043

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
730195

Requiremen
ts
Engineering
;
Verification;
Consistency
;CPS

O artigo discute a importância
de verificar a validade das

especificações de requisitos
em sistemas ciberfísicos
críticos de segurança, e

apresenta uma ferramenta
chamada REQV que visa
simplificar esse processo.

O artigo discute sistemas
ciberfísicos críticos de

segurança e a
importância de verificar a

validade das
especificações de

requisitos. A ferramenta
REQV utiliza padrões de

especificação de
propriedades (PSPs)

para permitir que
usuários sem

conhecimento de
formalização de lógicas

possam escrever
requisitos e verificar sua

consistência.

A metodologia do
artigo descreve a
ferramenta REQV
e sua arquitetura.
A implementação

da ferramenta
utiliza um Java

library chamado
SPECPRO, que
estende os PSPs

para incluir
afirmações

numéricas e
booleanas e
fornece um

algoritmo para
encontrar um

conjunto mínimo
de requisitos

conflitantes em
caso de

inconsistência.

IEEE Inglês CE1 Excluido
Perceptions and the
extent of Model-Based
Systems Engineering
(MBSE) use – An
industry survey

A. Akundi; W.
Ankobiah; O.
Mondragon; S.
Luna

2022

Model-
Based
Systems
Engineering
(MBSE)
supports
the
developme
nt of
complex
systems
through
capturing,
communica
ting, and
managing
system
specificatio
ns with an
emphasis
on the use
of modeling
languages,
tools, and
methods. It
is a well-
known fact
that varying
levels of
effort are
required to
implement
MBSE in
industries
based on
the
complexity
of the
systems a
given
industry is
associated
with. This
paper
shares the
results of a
survey to
industry
professiona
ls from
Defense,
Aerospace,
Automotive,
Consultanc
y, Software,
and IT
industry
clusters.
The
research
goal is to
understand
the current
state of
perception
on what
MBSE is
and the use
of MBSE
among
different
industry
clusters.
The survey
analysis
includes a
comparison
of how
MBSE is
defined,
advantages
on the use
of MBSE,
project
types,
specific life
cycle stage
when
MBSE is
applied,
and
adoption
challenges,
as reported
by the
survey
participants
. The
researchers
also aim to
trigger
discussions
in the
MBSE
community
for
identifying
strategies
to address
MBSE
related
challenges
tailored to a
specific
industry
type.

10.1109
/SysCo
n53536.
2022.97
73894

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
773894

Model-
based
System
Engineering
;MBSE;
survey;
industry;
systems
engineering
;industry-
specific;
system
complexity;
adoption
challenges

O artigo trata do uso de Model-
Based Systems Engineering

(MBSE) na indústria, com foco
na captura, comunicação e

gerenciamento de
especificações de sistemas por

meio de linguagens,
ferramentas e métodos de

modelagem.

O artigo enfatiza a
importância do MBSE em

setores com sistemas
complexos, como

Defesa, Aeroespacial e
Automotivo, onde a

implementação do MBSE
pode ser mais

desafiadora devido ao
alto nível de

complexidade dos
sistemas.

A metodologia do
artigo mostra um

estudo que foi
realizado por meio
de uma pesquisa
com profissionais
da indústria, que

foram
questionados

sobre sua
percepção do

MBSE e seu uso
em projetos. A

análise dos
resultados inclui

uma comparação
de como o MBSE
é definido, seus
benefícios, tipos

de projeto,
estágios

específicos do
ciclo de vida em
que o MBSE é

aplicado e
desafios de

adoção relatados
pelos

participantes da
pesquisa.

IEEE Inglês CE1 Excluido
On How Bit-Vector
Logic Can Help Verify
LTL-Based
Specifications

M. M. P.
Kallehbasti; M.
Rossi; L.
Baresi

2022

This paper
studies how
bit-vector
logic (bv
logic) can
help
improve the
efficiency of
verifying
specificatio
ns
expressed
in Linear
Temporal
Logic (LTL).
First, it
exploits the
notion of
Bounded
Satisfiability
Checking to
propose an
improved
encoding of
LTL
formulae
into
formulae of
bv logic,
which can
be formally
verified by
means of
Satisfiability
Modulo
Theories
(SMT)
solvers. To
assess the
gain in
efficiency,
we
compare
the
proposed
encoding,
implemente
d in our tool
$\mathbb
{Z}$Zot,
against
three well-
known
encodings
available in
the
literature:
the classic
bounded
encoding
and the
optimized,
incremental
one, as
implemente
d in both
NuSMV
and nuXmv,
and the
encoding
optimized
for metric
temporal
logic, which
was the
“standard”
implementa
tion
provided by
$\mathbb
{Z}$Zot. We
also
compared
the newly
proposed
solution
against five
additional
efficient
algorithms
proposed
by nuXmv,
which is the
state-of-
the-art tool
for verifying
LTL
specificatio
ns. The
experiment
s show that
the new
encoding
provides
significant
benefits
with respect
to existing
tools. Since
the first set
of
experiment
s only used
Z3 as SMT
solver, we
also wanted
to assess
whether the
benefits
were
induced by
the specific
solver or
were more
general.
This is why
we also
embedded
different
SMT
solvers in
$\mathbb
{Z}$Zot.
Besides Z3,
we also
carried out
experiment
s with
CVC4,
Mathsat,
Yices2, and
Boolector,
and
compared
the results
against the
first and
second
best
solutions
provided by
either
NuSMV or
nuXmv.
Obtained
results
witness that
the benefits
of the bv
logic
encoding
are
independen
t of the
specific
solver. Bv
logic-based
solutions
are better
than
traditional
ones with
only a few
exceptions.
It is also
true that
there is no
particular
SMT solver
that
outperform
ed the
others.
Boolector is
often the
best as for
memory
usage,
while
Yices2 and
Z3 are
often the
fastest
ones.

10.1109
/TSE.

2020.30
14394

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
159928

Formal
methods;
linear
temporal
logic;
bounded
satisfiability
checking;
bit-vector
logic

O artigo aborda o papel da
Lógica Temporal Linear (LTL)
na ciência da computação,

apresentando sua aplicação na
especificação e verificação de
programas, geração de casos

de teste, síntese de
controladores, formalização de
notações, verificação em tempo

de execução de sistemas e
como formalismo de

planejamento.

O artigo aborda os
conceitos de:

Lógica Temporal Linear
(LTL): um formalismo
para especificação e

verificação de sistemas
baseado em fórmulas

lógicas que descrevem
propriedades de
comportamento

temporal.
Bounded Satisfiability
Checking (BSC): uma
técnica de verificação

que traduz fórmulas LTL
em fórmulas de outra

lógica decifrável, como a
lógica proposicional, que

captura modelos
periodicamente

ultimados da fórmula
original de comprimento

limitado.
Bounded Model

Checking (BMC): uma
técnica de verificação

que verifica se um
modelo finito satisfaz
uma propriedade para
um número finito de
etapas (ou "blocos").

A metodologia do
artigo propõe uma
nova técnica de

codificação
baseada em

lógica de bit-vetor
para LTL que

permite que os
solucionadores

SMT explorem a
representação de
diferentes valores

temporais de
variáveis como
vetores, o que

leva a
simplificações e
otimizações de
nível de palavra

(vetor).
O novo método é

implementado
como um plug-in
adicional em um

verificador de
satisfatibilidade

limitado chamado
Zot, que também

suporta a
codificação bv

logic anterior e a
codificação LTL

padrão.

IEEE Inglês CE1 Excluido
Notice of Violation of
IEEE Publication
Principles: Mobile
Application
Development:
Automated Test Input
Generation Via Model
Inference based on
User Story and
Acceptance Criteria

H. Iqbal 2019

In the past
few years,
there has
been
observed
explosive
growth in
the
developme
nt of Mobile
Application
s across
Android
and iOS
operating
system
which has
led to the
direct
impact
towards
mobile app
developme
nt. In order
to design
and
propose
quality-
oriented
apps, it is
the primary
responsibilit
y of the
developers
to devote
time and
sufficient
efforts
towards
testing to
make the
Apps bug
free and
operational
in the
hands of
end users
without any
hiccup. In
order to test
the mobile
apps,
manual
testing
procedures
takes
prolonged
amount of
time in
writing test
cases and
even the
full testing
requirement
s are not
met. In
addition to
this, lack of
sufficient
knowledge
by the
tester also
impacts
overall
quality and
assurance
that app is
bug free.
To
overcome
all the
issues of
testing, and
to assure
that apps
designed
by
developers
are almost
bug free,
we propose
a new
testing
methodolog
y cum tool
“AgileUAT
M” which
works
primarily
towards
white-box
and black-
box testing.
With this
tool, all the
test cases
are
generated
automaticall
y based on
user stories
and
acceptance
criteria by
using
formal
specificatio
n and Z3
SMT
solvers. To
test the
validity of
the
proposed
tool, we
applied the
tool in real-
time
operational
environmen
t with
regard to
test Mobile
apps. Using
this tool, all
the
acceptance
criteria is
determined
via user
stories. The
testers/dev
elopers
specify
requirement
s with
formal
specificatio
ns based
on
programs
properties,
predicates,
invariants,
and
constraints.
From the
results, it is
observed
that the
proposed
tool i.e.
AgileUATM
generated
effective
and
accurate
test cases,
test input,
and
expected
output was
generated
in a unified
fashion
from the
user stories
to meet
acceptance
criteria. In
addition to
this, the
tool also
reduced the
developme
nt time to
identify test
data as
compared
to manual
Behavior
Driven
Developme
nt (BDD)
methodolog
ies. With
this tool,
the
developers
got better
idea with
regard to
required
tests and
able to
translate
the
customers
natural
languages
to the
computer
language
as well.;
Notice of
Violation of
IEEE
Publication
Principles

“Mobile
Application
Developme
nt:
Automated
Test Input
Generation
Via Model
Inference
based on
User Story
and
Acceptance
Criteria”

 by
Hena Iqbal

 in the
Proceeding
s of the
Internationa
l
Conference
on
Digitization
(ICD),
November
2019, pp.
92-103

After
careful and
considered
review of
the content
and
authorship
of this
paper by a
duly
constituted
expert
committee,
this paper
has been
found to be
in violation
of IEEE’s
Publication
Principles.

This paper
is a near
duplication
of the
original text
from the
paper cited
below. The
original text
was copied
without
attribution
(including
appropriate
references
to the
original
author(s)
and/or
paper title)
and without
permission.

Due to the
nature of
this
violation,
reasonable
effort
should be
made to
remove all
past
references
to this
paper, and
future
references
should be
made to the
following
article:

“Automated
Test Input
Generation
via Model
Inference
Based on
User Story
and
Acceptance
Criteria for
Mobile
Application
Developme
nt”
 by
Duc-Man
Nguyen,
Quyet-
Thang
Huynh,
Nhu-Hang
Ha and
Thanh-
Hung
Nguyen

 in the
Internationa
l Journal of
Software
Engineering
and
Knowledge
Engineering
, Vol. 30,
No. 3 2020,
pp. 399-425

10.1109
/ICD479

81.
2019.91
05761

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
105761

-
O artigo aborda a importância
do teste de aplicativos móveis

e como ele é crítico para a
qualidade e o sucesso de uma
aplicação móvel. Ele também
descreve a complexidade do

teste de aplicativos móveis e a
pressão enfrentada pelos

testadores para garantir que a
aplicação seja lançada no

mercado em tempo hábil e com
alta qualidade. O artigo propõe

uma nova metodologia para
geração de casos de teste
automatizados a partir de

histórias do usuário e critérios
de aceitação em projetos ágeis

de desenvolvimento de
aplicativos móveis.

O artigo apresenta a
importância do teste de

aplicativos móveis e
descreve as principais
características que os

usuários consideram ao
investir dinheiro em um

aplicativo, como
funcionalidade livre de
problemas, interface do
usuário simples e uso

seguro de dados móveis.
O artigo também destaca
a complexidade do teste
de aplicativos móveis e a
pressão enfrentada pelos
testadores para garantir

que a aplicação seja
lançada no mercado em
tempo hábil e com alta

qualidade.

O artigo propõe
uma nova

metodologia para
geração de casos

de teste
automatizados a
partir de histórias

do usuário e
critérios de

aceitação em
projetos ágeis de
desenvolvimento

de aplicativos
móveis. A nova
metodologia é
baseada em
inferência de

modelos e utiliza
uma ferramenta

chamada
AgileUATM para
gerar casos de

teste
automatizados a
partir de histórias

do usuário e
critérios de
aceitação.

IEEE Inglês CE1 Excluido
New Opportunities for
Integrated Formal
Methods

Gleirscher M,
Foster S,
Woodcock J 2019

Formal
methods
have
provided
approaches
for
investigatin
g software
engineering
fundamenta
ls and also
have high
potential to
improve
current
practices in
dependabili
ty
assurance.
In this
article, we
summarise
known
strengths
and
weaknesse
s of formal
methods.
From the
perspective
of the
assurance
of robots
and
autonomou
s systems
(RAS), we
highlight
new
opportunitie
s for
integrated
formal
methods
and identify
threats to
the
adoption of
such
methods.
Based on
these
opportunitie
s and
threats, we
develop an
agenda for
fundamenta
l and
empirical
research on
integrated
formal
methods
and for
successful
transfer of
validated
research to
RAS
assurance.
Furthermor
e, we
outline our
expectation
s on useful
outcomes
of such an
agenda.

10.1145
/335723

1

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/33572
31;http://dx.
doi.org/10.
1145/33572
31

threats,
robots and
autonomou
s systems,
SWOT,
opportunitie
s,
weaknesse
s,
integration,
strengths,
research
agenda,
unification,
challenges,
Formal
methods

- - - ACM Inglês CE5 Excluido
Multiple Analyses,
Requirements Once:
Simplifying Testing and
Verification in
Automotive Model-
Based Development

Berger,
Philipp;
Nellen,
Johanna;
Katoen, Joost-
Pieter;
Abraham,
Erika Prime;
Bin Waez,
Tawhid;
Rambow,
Thomas

2019

In industrial
model-
based
developme
nt (MBD)
frameworks
,
requirement
s are
typically
specified
informally
using
textual
descriptions
. To enable
the
application
of formal
methods,
these
specificatio
ns need to
be
formalized
in the input
languages
of all formal
tools that
should be
applied to
analyse the
models at
different
developme
nt levels. In
this paper
we propose
a unified
approach
for the
computer-
assisted
formal
specificatio
n of
requirement
s and their
fully
automated
translation
into the
specificatio
n
languages
of different
verification
tools. We
consider a
two-stage
MBD
scenario
where first
Simulink
models are
developed
from which
executable
code is
generated
automaticall
y. We (i)
propose a
specificatio
n language
and a
prototypical
tool for the
formal but
still textual
specificatio
n of
requirement
s, (ii) show
how these
requirement
s can be
translated
automaticall
y into the
input
languages
of Simulink
Design
Verifier for
verification
of Simulink
models and
BTC
Embedded-
Validator
for source
code
verification,
and (iii)
show how
our unified
framework
enables
besides
automated
formal
verification
also the
automated
generation
of test
cases.

10.1007
/978-3-
030-

27008-
7_4

- - - - - Web of science Inglês CE5 Excluido
Monitoring Data
Management Services
on the Edge Using
Enhanced TSDBs

W. Zeng; S.
Zhang; I. -L.
Yen; F. B.
Bastani; S. -Y.
Hwang

2019

Many IoT
systems
are data
intensive
and are for
the purpose
of
monitoring
of critical
systems. In
these
monitoring
systems, a
large
volume of
data
steadily
flow out of
a large
number of
sensors
which
monitor the
physical
systems
and
environmen
ts. Thus,
first of all,
we need to
consider
how to
store and
manage
these IoT
data. Also,
data
sharing can
greatly
enhance
the quality
of data
analytics
and help
with cold
start of
similar
systems.
Thus, the
data
storage and
manageme
nt solutions
should
consider
how to help
discover
useful data
in order to
facilitate
data
sharing.
Time series
databases
(TSDBs)
have been
developed
in recent
years for
storing IoT
data, but
they have
some
deficiencies
. One
problem is
that they
are not very
effective in
supporting
data
sharing due
to the lack
of a good
semantic
model for
proper data
specificatio
ns, which is
critical in
data
discovery.
To resolve
this
problem,
we develop
a
monitoring
data
annotation
(MDA)
model to
guide the
systematic
specificatio
n of
monitoring
data
streams. To
support the
realization
of the MDA
model, we
also
develop an
external
tool suite,
which
stores the
additional
MDA-based
specificatio
ns for the
data
streams
and
interfaces
with queries
to perform
preliminary
processing
to allow
effective
monitoring
data
discovery
based on
the MDA
specificatio
ns. Another
problem
with current
TSDBs is
their focus
on storing
time series
data that
arrive at a
fixed rate,
but not on
storing and
retrieval of
event data,
which may
come
sporadically
with
irregular
timing
patterns.
When
storing
such event
data in
existing
TSDBs, the
retrieval
may have
performanc
e problems.
Also,
existing
TSDBs do
not have
specific
query
language
defined for
event
analysis.
We develop
a model for
event
specificatio
ns and use
it to specify
abnormal
system
states to be
captured to
allow timely
mitigation.
The event
model is
integrated
into the
TSDB by
translating
them to
continuous
queries
defined in
some
TSDBs.
Also, we
develop an
event
storage
scheme
and
incorporate
it in TSDBs
to facilitate
efficient
event
retrieval.
Experiment
al results
show that
our event
solution for
the TSDB is
effective
and
efficient.

10.1109
/SOCA.
2019.00

010

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
953028

Monitoring
data
manageme
nt;time
series
databases;
edge
computing;
Internet of
Things;data
discovery;
time series
event
storage

O artigo trata sobre serviços de
gerenciamento de dados de

monitoramento na borda (edge
computing), o que significa que

o processamento de dados
ocorre mais próximo do

dispositivo que os gera, em vez
de serem enviados para um

datacenter centralizado.

Edge computing ;
Os serviços de

gerenciamento de dados
de monitoramento ;

TSDBs: bancos de dados
otimizados para

armazenar e consultar
dados de séries

temporais

O método
proposto no artigo

envolve uma
abordagem de

particionamento
de dados em que

os dados são
divididos

horizontalmente
entre diferentes

nós de
processamento,
permitindo que

cada nó lide com
uma parte do
conjunto de
dados. Além

disso, a técnica de
particionamento

vertical é aplicada
para dividir as

colunas de dados
em diferentes

tabelas., que são
comuns em

aplicações de
monitoramento e
análise de dados
em tempo real.

IEEE Inglês CE1 Excluído
Modeling of Natural
Language
Requirements based
on States and Modes

Y. Liu; J. -M.
Bruel 2022

The
relationship
between
states
(status of a
system)
and modes
(capabilities
of a
system)
used to
describe
system
requirement
s is often
poorly
defined.
The unclear
relationship
could make
systems of
interest out
of control
because of
the out of
boundaries
of the
systems
caused by
the newly
added
modes.
Formally
modeling
requirement
s can clarify
the
relationship
between
states and
modes,
making the
system
safe.To this
end, the
MoSt
language (a
Domain
Specific
Language
implemente
d on the
Xtext
framework)
is proposed
to modeling
requirement
s based on
states and
modes. In
this article,
the
relationship
between
states and
modes is
firstly
provided.
The
metamodel
and
grammar of
the
language
are then
proposed.
Finally, a
validator is
implemente
d to realise
static
checks of
the MoSt
model. The
grammar
and the
validator
are
integrated
into a
publicly
available
Eclipse-
based tool.
A case
study on
requirement
s for
designing
cars has
been
conducted
to illustrate
the
feasibility of
the MoSt
language.
In this case
study, we
injected 9
errors. The
results
show that
all the
errors were
detected in
the static
analysis.

10.1109
/REW5
6159.

2022.00
043

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
920159

States and
Modes;
Requiremen
ts Modeling;
Domain
Specific
Language

O artigo discute a importância
de se entender claramente as
capacidades e limites de um

sistema, destacando a
ambiguidade entre estados e

modos e como isso pode
comprometer a segurança de

sistemas complexos.

 O artigo propõe o uso de
estados e modos para
modelar e verificar os

requisitos de um sistema,
criando uma linguagem
específica de domínio

chamada MoSt (Modes
and States) para ajudar
os usuários a escrever

requisitos em linguagem
natural controlada.

A metodologia
proposta, comenta

sobre o MoSt,
cujo foi

implementado
usando o

framework Xtext e
utilizado para
modelar os

requisitos de um
projeto de design

de carros. Os
erros injetados no

modelo MoSt
foram detectados

com sucesso,
demonstrando a

eficácia da
linguagem na

formalização e
gestão de

requisitos. O uso
de estados e
modos como

termos
padronizados para

comunicação
entre membros da

equipe é
enfatizado como

uma forma de
evitar conflitos
desnecessários
na descrição do

sistema.

IEEE Inglês CE1 Excluido
Model-Checking Legal
Contracts with
SymboleoPC

Parvizimosaed
A,Roveri M,
Rasti A,Amyot
D,Logrippo L,
Mylopoulos J

2022

Legal
contracts
specify
requirement
s for
business
transaction
s. As any
other
requirement
s
specificatio
n, contracts
may
contain
errors and
violate
properties
expected
by
contracting
parties.
Symboleo
was
recently
proposed
as a formal
specificatio
n language
for legal
contracts.
This paper
presents
SymboleoP
C, a tool for
analyzing
Symboleo
contracts
using
model
checking. It
highlights
the
architecture
,
implementa
tion and
testing of
the tool, as
well as a
scalability
evaluation
with respect
to the size
of contracts
and
properties
to be
checked
through a
series of
experiment
s. The
results
suggest
that
SymboleoP
C can be
usefully
applied to
the analysis
of formal
specificatio
ns of
contracts
with real-life
sizes and
structures.

10.1145
/355035

5.
355244

9

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35503
55.
3552449;
http://dx.doi.
org/10.
1145/35503
55.3552449

legal
contracts,
model
checking,
nuXmv,
performanc
e analysis,
smart
contracts,
software
requirement
s
specificatio
ns, formal
specificatio
n languages

- - - ACM Inglês CE5 Excluido
Model-Based Systems
Engineering to Design
An Onboard Surround
Vision System for
Cooperative Automated
Vehicles

N. Kemsaram;
A. Das; G.
Dubbelman 2021

Cooperativ
e
automated
vehicles
have
various
electronic
control
units with
multiple
sensors
running
complex
software
algorithms
to perceive
and
navigate
their
environmen
t. Hence,
there is a
need to use
advanced
software
engineering
design
methodolog
y to reduce
the
software
complexity
and
increase
modularity.
In this
paper, we
applied the
SysCARS
model-
based
systems
engineering
methodolog
y to design
an onboard
surround
vision
system with
a SysML
modeling
language
using the
IBM
Rational
Rhapsody
modeling
tool. The
modeling
methodolog
y is
described
through
various
phases and
steps with a
modeling
language to
overcome
the
challenges.
The
modeling
tool takes
the
information
from the
design
model of
the system
and
generates a
skeletal
code. The
algorithm is
written for
each
generated
skeletal
code,
compiled
with a C++
compiler on
the host
Desktop PC
(Ubuntu
16.04 LTS),
and
deployed
on the
target
Nvidia
Drive PX2
embedded
hardware
platform.
The
designed
solution
fulfills the
requirement
s of the
onboard
surround
vision
system.

10.1109
/IISEC5
4230.

2021.96
72396

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
672396

Cooperative
automated
vehicle;
deep neural
networks;
model-
based
systems
engineering
;surround
vision
system;
system
modeling
language;
unified
modeling
language

O artigo propõe um sistema de
visão surround a bordo de um
veículo autônomo para uma

condução autônoma
cooperativa completa. O

sistema de visão surround é
composto por câmeras estéreo
frontal, laterais e traseiras, para

perceber os arredores do
veículo.

O artigo propõe um
sistema de visão

surround para veículos
autônomos que permita

uma condução autônoma
cooperativa completa. A
proposta é melhorar a

percepção do ambiente
do veículo e, assim,

melhorar a segurança e
eficiência da condução

autônoma. O artigo
destaca a importância da
engenharia de sistemas

baseada em modelo e da
linguagem de

modelagem SysML para
projetar sistemas

complexos como o
sistema de visão

surround.

Métodos
abordados no

artigo:

O artigo descreve
a aplicação da
metodologia de
engenharia de

sistemas baseada
em modelo
(MBSE) e a

linguagem de
modelagem de

sistemas SysML
no projeto do

sistema de visão
surround.

O artigo menciona
o uso da

ferramenta de
modelagem IBM

Rational
Rhapsody.

O artigo destaca a
importância de um

bom design de
software para
evitar erros na

fase de requisitos
do ciclo de

desenvolvimento
de software.

IEEE Inglês CE1 Excluido
Model driven
programming of
autonomous floats for
multidisciplinary
monitoring of the
oceans

S. Bonnieux;
S. Mosser; M.
Blay-
Fornarino; Y.
Hello; G. Nolet

2019

Monitoring
of the
oceans with
autonomou
s floats is of
great
interest for
many
disciplines.
Monitoring
on a global
scale needs
a
multidiscipli
nary
approach to
be
affordable.
For this
purpose,
we propose
an
approach
that allows
oceanograp
hers from
different
specialities
to develop
applications
for
autonomou
s floats.
However,
developing
such
applications
usually
requires
expertise in
embedded
systems,
and they
must be
reliable and
efficient
with
regards to
the limited
resources
of the floats
(e.g.,
energy,
processing
power). We
have
followed a
Model
Driven
Engineering
approach
composed
of i) a
Domain
Specific
Language
to allow
oceanograp
hers to
develop
applications
, ii) analysis
tools to
ensure that
applications
are efficient
and
reliable, iii)
a
composition
tool to allow
the
deployment
of different
applications
on a same
float, and
iv) a code
generator
that
produce
efficient
and reliable
code for the
float. We
present our
approach
with a
biological
and a
seismologic
al
application.
We validate
it with
technical
metrics and
an
experiment.

10.1109
/OCEA
NSE.

2019.88
67453

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
867453

Model
Driven
Engineering
;Domain
Specific
Language;
embedded
system;
constrained
resources

O artigo apresenta um projeto
de monitoramento acústico

passivo dos oceanos, utilizando
flutuadores autônomos que
podem ser adaptados para
diferentes aplicações, como

medições físicas ou químicas.

O conceito central do
artigo é a utilização de
flutuadores autônomos

adaptativos para o
monitoramento acústico
passivo dos oceanos,

que podem ser
equipados com

diferentes tipos de
sensores e aplicações. A
abordagem proposta visa

facilitar o
desenvolvimento de

novas aplicações para
diferentes

especialidades, como
biologia marinha,
meteorologia e

sismologia, permitindo
que oceanógrafos

escrevam suas próprias
aplicações de forma
eficiente e confiável.

A metodologia do
artigo descreve o
funcionamento
dos flutuadores
autônomos, que

têm quatro
estados de
operação:
descida,

estacionamento,
subida e
superfície.

As aplicações
definem a

profundidade e
duração do

mergulho e as
medições a serem

realizadas e
transmitidas por

satélite.
O artigo destaca a

importância de
considerar a vida
útil da bateria e os

custos de
comunicação ao

desenvolver
novas aplicações.
O artigo também

enfatiza a
necessidade de

colaboração
multidisciplinar

para o
monitoramento
acústico global
dos oceanos,

dada a
complexidade e o

custo da
implementação

em escala global.

IEEE Inglês CE1 Excluido
Mining Specifications
from Documentation
using a Crowd

P. Sun; C.
Brown; I.
Beschastnikh;
K. T. Stolee

2019

Temporal
API
specificatio
ns are
useful for
many
software
engineering
tasks, such
as test case
generation.
In practice,
however,
APIs are
rarely
formally
specified,
inspiring
researchers
to develop
tools that
infer or
mine
specificatio
ns
automaticall
y.
Traditional
specificatio
n miners
infer likely
temporal
properties
by statically
analyzing
the source
code or by
analyzing
program
runtime
traces.
These
approaches
are
frequently
confounded
by the
complexity
of modern
software
and by the
unavailabilit
y of
representati
ve and
correct
traces.
Formally
specifying
software is
traditionally
an expert
task. We
hypothesize
that human
crowd
intelligence
provides a
scalable
and high-
quality
alternative
to experts,
without
compromisi
ng on
quality. In
this work
we present
CrowdSpec
, an
approach to
use
collective
intelligence
of crowds
to generate
or improve
automaticall
y mined
specificatio
ns.
CrowdSpec
uses the
observation
that APIs
are often
accompani
ed by
natural
language
documentat
ion, which
is a more
appropriate
resource for
humans to
interpret
and is a
complemen
tary source
of
information
to what is
used by
most
automated
specificatio
n miners.

10.1109
/SANE

R.
2019.86
68025

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
668025

Specificatio
n mining;
crowdsourci
ng;Java
APIs

O artigo trata da importância da
especificação correta do

comportamento de APIs de
software para serem usadas

por vários programas clientes.
São apresentados métodos

automatizados de inferência de
especificações a partir da
execução de programas
clientes, mas estes são
incompletos e requerem

revisão humana.
É proposto o CrowdSpec, uma

metodologia que utiliza a
inteligência da multidão para

criar especificações de API de
alta qualidade, de forma leve e

escalável.

Conceitos do artigo
englobam:

Especificação de API:
descrição do

comportamento
esperado de uma API,
que deve ser seguida

pelos programas clientes
que a utilizam.
Inferência de

especificação: processo
automatizado de
descoberta da

especificação de API a
partir da execução de

programas clientes.
CrowdSpec: metodologia
que combina inferência

de especificação
automatizada com

revisão humana por meio
da inteligência da

multidão.

Métodos
abordados no

artigo:

O CrowdSpec
utiliza a

documentação da
API e verifica

especificações
temporais em
relação a essa
documentação.
A verificação é
realizada por
trabalhadores

humanos em uma
plataforma de

crowdsourcing,
seguindo um
processo de

triagem
automatizado para

identificar
trabalhadores
competentes.

A abordagem do
CrowdSpec é

escalável por usar
a multidão em vez
de especialistas, e

é leve por
aproveitar

recursos de
linguagem natural,
em vez de código-
fonte ou traços de

execução.

IEEE Inglês CE1 Excluido

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9402598
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/2560683.2560695;http://dx.doi.org/10.1145/2560683.2560695
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990153
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9256782
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9760016
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8730195
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9773894
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9159928
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9105761
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3357231;http://dx.doi.org/10.1145/3357231
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8953028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9920159
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3550355.3552449;http://dx.doi.org/10.1145/3550355.3552449
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9672396
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8867453
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8668025

Low-Cost Optical
Tracking Controller
System for Fine Motor
Rehabilitation in
Children with Brain
Damage: Formal
Specification and
Validation

E. E.
Saavedra
Parisaca; E.
Enriqueta
Vidal Duarte

2021

Acquired
brain
damage in
children is
increasingly
frequent,
and as
main deficit
produces
motor
alterations
that
manifest as
the child
grows,
affecting
muscle
tone,
coordinatio
n and motor
control, in
order to
influence
these
aspects,
fine motor
skills are
intervened,
since these
involve a
coordinated
effort of the
brain and
muscles,
having a
direct
impact on
the learning
capacity of
children
and can
improve
their
independen
ce and
autonomy.
Although
traditional
therapies
have been
proven with
great
effectivenes
s, there are
also
different
rehabilitatio
n systems
that make
use of
tracking
devices,
however
not all of
them are
accessible
due to their
high cost or
the lack of
specialists
who master
them. That
is the
reason a
low-cost
optical
tracking
Controller
System is
proposed to
complemen
t fine motor-
oriented
rehabilitatio
n, allowing
movements
to be
captured
with
precision
and to
obtain
feedback
on the
accuracy of
the
exercises.
In this
paper we
focus on
the first
stage
referring to
the formal
specificatio
n of the
requirement
s and their
validation.
The
proposal is
based on
the Leap
Motion
optical
tracking
device and
limited to
exercises
with a fine
motor and
wrist. The
controller
system
aims to
provide a
better
environmen
t for users
to run their
rehabilitatio
n process,
in addition
to
considering
the
rehabilitatio
n progress.
The
proposal
uses formal
specificatio
ns to
reduce
possible
ambiguities
in the face
of a system
that may
cause
future
damage to
its users if
the
rehabilitatio
n is not
carried out
correctly, in
the same
way they
are used to
validate the
main
properties
of the
functional
requirement
s. The
formal
specificatio
n language
VDM ++ is
used to
describe
the system
properties
for later
modeling
and
validation
through the
VDMToolB
ox tool. As
a result, a
formal
specificatio
n of 4
requirement
s and a
100%
coverage
analysis
were
achieved.

10.2391
9

/CISTI5
2073.

2021.94
76615

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
476615

Virtual
Rehabilitati
on;Formal
Specificatio
n;Validation
and
Verification

O artigo aborda sobre
características do dano

cerebral adquirido em crianças,
como problemas motores,

cognitivos e comportamentais
que se manifestam com o

tempo. O principal déficit é a
alteração motora, que pode ser

fina ou grossa.

O artigo aborda o
conceito de reabilitação
para crianças com dano

cerebral adquirido, sendo
necessário realizar a
reabilitação em uma

etapa inicial. A falta de
tratamento pode

prejudicar a criança no
futuro.

A metodologia
envolve um meio
para desenvolver
um sistema que

possa
proporcionar um

seguimento e
retroalimentação
inteligente em um

processo de
recuperação do
paciente. Utiliza

métodos formais e
notações

matemáticas para
reduzir

ambiguidades no
sistema.

IEEE Espanhol CE1 Excluido

JGuard: Programming
Misuse-Resilient APIs

Binder S,
Narasimhan K,
Kernig S,
Mezini M

2022

APIs
provide
access to
valuable
features,
but studies
have shown
that they
are hard to
use
correctly.
Misuses of
these APIs
can be
quite costly.
Even
though
documentat
ions and
usage
manuals
exist,
developers
find it hard
to integrate
these in
practice.
Several
static and
dynamic
analysis
tools exist
to detect
and
mitigate
API
misuses.
But it is
natural to
wonder if
APIs can
be made
more
difficult to
misuse by
capturing
the
knowledge
of domain
experts (,
API
designers).
Approaches
like
CogniCrypt
have made
inroads into
this
direction by
offering API
specificatio
n
languages
like CrySL
which are
then
consumed
by static
analysis
tools. But
studies
have shown
that
developers
do not
enjoy
installing
new tools
into their
pipeline. In
this paper,
we present
jGuard, an
extension
to Java that
allows API
designers
to directly
encode
their
specificatio
ns while
implementi
ng their
APIs. Code
written in
jGuard is
then
compiled to
regular
Java with
the checks
encoded as
exceptions,
thereby
making
sure the
API user
does not
need to
install any
new tooling.
Our
evaluation
shows that
jGuard can
be used to
express the
most
commonly
occuring
misuses in
practice,
matches
the
accuracy of
state of the
art in API
misuse
detection
tools, and
introduces
negligible
performanc
e overhead.

10.1145
/356751

2.
356752

6

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35675
12.
3567526;
http://dx.doi.
org/10.
1145/35675
12.3567526

DSL, API,
Java - - - ACM Inglês CE5 Excluido

Interactive Behavior-
driven Development: a
Low-code Perspective

N. Patkar; A.
Chiş; N.
Stulova; O.
Nierstrasz

2021

Within
behavior-
driven
developme
nt (BDD),
different
types of
stakeholder
s
collaborate
in creating
scenarios
that specify
application
behavior.
The current
workflow for
BDD
expects
non-
technical
stakeholder
s to use an
integrated
developme
nt
environmen
t (IDE) to
write textual
scenarios in
the Gherkin
language
and verify
application
behavior
using test
passed/faile
d reports.
Research
to date
shows that
this
approach
leads non-
technical
stakeholder
s to
perceive
BDD as an
overhead in
addition to
the testing.
In this
vision
paper, we
propose an
alternative
approach to
specify and
verify
application
behavior
visually,
interactively
, and
collaborativ
ely within
an IDE.
Instead of
writing
textual
scenarios,
non-
technical
stakeholder
s compose,
edit, and
save
scenarios
by using
tailored
graphical
interfaces
that allow
them to
manipulate
involved
domain
objects.
Upon
executing
such
interactively
composed
scenarios,
all
stakeholder
s verify the
application
behavior by
inspecting
domain-
specific
representati
ons of run-
time
domain
objects
instead of a
test run
report.
Such a low
code
approach to
BDD has
the
potential to
enable
nontechnic
al
stakeholder
s to engage
more
harmonious
ly in
behavior
specificatio
n and
validation
together
with
technical
stakeholder
s within an
IDE. There
are two
main
contribution
s of this
work: (i) we
present an
analysis of
the features
of 13 BDD
tools, (ii) we
describe a
prototype
implementa
tion of our
approach,
and (iii) we
outline our
plan to
conduct a
large-scale
developer
survey to
evaluate
our
approach to
highlight
the
perceived
benefits
over the
existing
approach.

10.1109
/MODE

LS-
C53483

.
2021.00

024

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
643783

bdd;
behavior-
driven
developmen
t;
collaborativ
e
developmen
t;
acceptance
testing;
visual
programmin
g;end-user
programmin
g

O artigo propõe uma
abordagem alternativa para a
especificação e verificação de
comportamento de aplicativos

dentro do desenvolvimento
orientado por comportamento

(BDD).
A abordagem proposta é visual,

interativa e colaborativa,
usando interfaces gráficas

personalizadas para que os
stakeholders não técnicos

possam manipular objetos de
domínio.

O artigo trata de uma
abordagem alternativa

para o desenvolvimento
orientado por

comportamento (BDD),
que se concentra na

especificação e
verificação do

comportamento do
aplicativo por meio da

colaboração de
diferentes stakeholders.

O objetivo é tornar o
processo de BDD mais
acessível e colaborativo
para stakeholders não

técnicos, permitindo que
eles participem da

especificação e
validação do

comportamento do
aplicativo juntamente
com os stakeholders

técnicos.

O artigo propõe
uma abordagem

visual, interativa e
colaborativa para
a especificação e

verificação do
comportamento
do aplicativo. A
abordagem usa

interfaces gráficas
personalizadas

para que os
stakeholders não
técnicos possam
manipular objetos

de domínio e
representa o

comportamento
do aplicativo

usando
representações
específicas do
domínio dos

objetos em tempo
de execução.

IEEE Inglês CE1 Excluido
Integration of Formal
Proof into Unified
Assurance Cases with
Isabelle/SACM

Foster S,
Nemouchi Y,
Gleirscher M,
Wei R,Kelly T

2021

Assurance
cases are
often
required to
certify
critical
systems.
The use of
formal
methods in
assurance
can
improve
automation,
increase
confidence,
and
overcome
errant
reasoning.
However,
assurance
cases can
never be
fully
formalised,
as the use
of formal
methods is
contingent
on models
that are
validated by
informal
processes.
Consequen
tly,
assurance
techniques
should
support
both formal
and
informal
artifacts,
with
explicated
inferential
links
between
them. In
this paper,
we
contribute a
formal
machine-
checked
interactive
language,
called
Isabelle/SA
CM,
supporting
the
computer-
assisted
constructio
n of
assurance
cases
compliant
with the
OMG
Structured
Assurance
Case Meta-
Model. The
use of
Isabelle/SA
CM
guarantees
well-
formedness
,
consistency
, and
traceability
of
assurance
cases, and
allows a
tight
integration
of formal
and
informal
evidence of
various
provenance
. In
particular,
Isabelle
brings a
diverse
range of
automated
verification
techniques
that can
provide
evidence.
To validate
our
approach,
we present
a
substantial
case study
based on
the
Tokeneer
secure
entry
system
benchmark.
We embed
its
functional
specificatio
n into
Isabelle,
verify its
security
requirement
s, and form
a modular
security
case in
Isabelle/SA
CM that
combines
the
heterogene
ous
artifacts.
We thus
show that
Isabelle is a
suitable
platform for
critical
systems
assurance.

10.1007
/s00165

-021-
00537-4

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1007/s0016
5-021-
00537-4;
http://dx.doi.
org/10.
1007/s0016
5-021-
00537-4

Assurance
cases,
Safety
cases,
Integrated
formal
methods,
Common
criteria,
Proof
assistants

- - - ACM Inglês CE5 Excluido
Integrated Automotive
Requirements
Engineering with a
SysML-Based Domain-
Specific Language

R. Maschotta;
A. Wichmann;
A.
Zimmermann;
K. Gruber

2019

The rising
overall
complexity
of modern
cars as a
special
case of
mechatroni
c systems
leads to an
increasing
number of
functions
implemente
d by electric
and
electronic
(E/E-)
systems.
Well-known
design
problems of
complex
modular
systems
arise out of
this. To
achieve
high-quality
standards
along the
whole
product life
cycle,
modern
systems
and
software
engineering
methods
and
techniques
are
necessary.
Model-
based
approaches
are widely
used in the
automotive
domain,
based on
different
types of
models
used in
developme
nt phases
at different
abstraction
levels. The
Unified
Modeling
Language
and the
Systems
Modeling
Language
are
general-
propose
modeling
languages
that are
widely used
in the
automotive
domain.
However,
there are
several
domain-
specific
languages
that support
the
automotive
domain
more
specifically.
A domain-
specific
SysML
profile for
functional
and
nonfunction
al
requirement
s in
automotive
technical
systems
has been
proposed in
our
previous
work. This
paper
describes
our model-
driven
approach to
specify
domain-
specific
languages
and
correspondi
ng domain-
specific
tools. The
specificatio
ns are
based on
UML
extensions
using
profiles
only, which
is a
lightweight
approach
compared
to other
proposals.
This allows
the reuse
and
extension
of existing
UML or
SysML
models. A
domain-
specific
graphical
editor is
presented
in this
paper
based on
the
specified
extensions.
The
resulting
graphical
editor is
used to
model an
automotive
technical
system as
an
example.

10.1109
/ICMEC

H.
2019.87
22951

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
722951

Automotive
system
design;
integrated
mechatronic
design;
model
analysis;
model
queries;
UML;
SysML;
validation;
model-
driven
engineering
;Eclipse
Sirius

O artigo aborda a
complexidade crescente de

sistemas eletrônicos e elétricos
em carros modernos.

Explorando a importância de
métodos e técnicas para

garantir a qualidade e
segurança desses sistemas.

Discute também a necessidade
de diferentes grupos de

designers (E/E, mecânica,
funcionalidade) trabalharem
juntos para evitar conflitos e

retrabalho.

Conceitos abordados no
artigo:

Automotive SPICE:
conceito de melhoria de
processos de software

específico para a
indústria automotiva.

Model-driven systems
engineering: abordagem

de engenharia de
sistemas que utiliza

modelos para a
implementação de

sistemas.
UML: linguagem de

modelagem geral para
software amplamente

utilizada.
SysML: linguagem de
modelagem geral para

engenharia de sistemas,
com uma abordagem
específica para a área

automotiva.
Domain-specific

language: linguagem de
modelagem específica

para uma área de
conhecimento.

Métodos
apresentados no

artigo:

Utilização de
diferentes
modelos e

linguagens de
modelagem para
engenharia de

sistemas na área
automotiva,

incluindo UML,
SysML e

linguagens
específicas de

domínio.
Abordagem de
engenharia de

sistemas
orientada a

modelos (model-
driven systems

engineering).
Integração de
aspectos de

diferentes grupos
de designers (E/E,

mecânica,
funcionalidade)

para evitar
conflitos e
retrabalho.

IEEE Inglês CE1 Excluido
Instrumenting
Microservices for
Concurrent Audit
Logging: Beyond Horn
Clauses

N. D. Ahn; S.
Amir–
Mohammadian 2022

Instrumenti
ng legacy
code is an
effective
approach to
enforce
security
policies.
Formal
correctness
of this
approach in
the realm of
audit
logging
relies on
semantic
frameworks
that
leverage
information
algebra to
model and
compare
the
information
content of
the
generated
audit logs
and the
program at
runtime.
Previous
work has
demonstrat
ed the
applicability
of
instrumenta
tion
techniques
in the
enforcemen
t of audit
logging
policies for
systems
with
microservic
es
architecture
. However,
the
specified
policies
suffer from
the limited
expressivity
power as
they are
confined to
Horn
clauses
being
directly
used in
logic
programmin
g engines.
In this
paper, we
explore
audit
logging
specificatio
ns that go
beyond
Horn
clauses in
certain
aspects,
and the
ways in
which these
specificatio
ns are
automaticall
y enforced
in
microservic
es. In
particular,
we explore
an
instrumenta
tion tool
that
rewrites
Java-based
microservic
es
according
to a JSON
specificatio
n of audit
logging
requirement
s, where
these
logging
requirement
s are not
limited to
Horn
clauses.
The
rewritten
set of
microservic
es are then
automaticall
y enabled
to generate
audit logs
that are
shown to
be formally
correct.

10.1109
/COMP
SAC54

236.
2022.00

280

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
842470

Audit logs;
concurrent
systems;
microservic
es;
programmin
g
languages;
security

 O artigo propõe uma
abordagem para a auditoria de
sistemas de microservices que

leva em consideração a
concorrência e a escalabilidade

desses sistemas.

Microservices
Auditoria de sistemas

Instrumentação
Logs de auditoria

Concurrencia
Escalabilidade

Modelos formais
Lógica de primeira ordem

Lógica de Horn
Restrições de integridade

Políticas de auditoria
Sobrecarga de
processamento

Não há uma
metodologia
específica

mencionada no
artigo, mas os

autores
descrevem a

implementação e
avaliação

experimental da
abordagem

proposta em um
ambiente de

microserviços em
nuvem, visando

melhorar a
escalabilidade e

eficiência da
auditoria de

sistemas
distribuídos.

IEEE Inglês CE1 Excluído
Hierarchical Formal
Modeling of Internet of
Things System
Oriented to User
Behavior

L. Yu; Y. Lu;
B. Zhang; L.
Shi; F. Huang;
Y. Li; Y. Shen

2020

Ensuring
the
correctness
and
reliability of
the Internet
of Things
system is
the key to
the
advanceme
nt of the
Internet of
Things
project. It is
very
necessary
to fully
inspect the
Internet of
Things
system
before it is
actually
deployed,
so as to
find the
errors and
defects in
the system
design as
soon as
possible
and make
improveme
nts.
Compared
with
convention
al
simulation
and testing,
the formal
method has
the
advantages
of low cost,
short cycle
and simple
steps,
which
provides
efficient
support for
the
inspection
and
analysis of
the Internet
of Things
system
before
deployment
. Based on
the stateful
timed
communica
tion
sequence
process
(STCSP),
we consider
the formal
modeling
framework
for the
Internet of
things
system
from the
perspective
of external
environmen
t input and
system
architecture
. We then
propose a
hierarchical
formal
modeling
method for
the Internet
of things
system
oriented to
user
behavior.
Taking the
elderly
home
monitoring
application
scene as
an
example,
as the input
of the
external
environmen
t, the user
behavior
and its
implementa
tion object
are
combined
into a whole
for
modeling,
so as to
keep the
two states
in sync,
restrict
each other,
and avoid
unrealistic
sequence
of activities.
From the
perspective
s of
perception
mode,
communica
tion mode,
predefined
rules and
application
services,
we have
completed
the
hierarchical
modeling of
the three-
layer
architecture
of the
Internet of
Things
system,
that is,
perception
layer,
middle
layer and
application
layer.
Finally, the
model
verification
tool PAT
analyzes
and verifies
the above
model from
the aspects
of security,
accessibility
, and
system
consistency
. This
method
provides
scientific
basis for
the
correctness
inspection
and
reliability
analysis of
the Internet
of Things
system
before
deployment
in the
Internet of
Things
project.

10.1109
/SmartI
oT4996

6.
2020.00

050

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
192003

Internet of
things
system;
Formal
modeling;
User
behavior;
STCSP;
PAT;Home
monitoring
for the
elderly

O objetivo do artigo é fornecer
uma metodologia para projetar
e verificar sistemas da IoT de
maneira mais eficiente, com
foco no comportamento do

usuário.

Internet das coisas (IoT)
Modelagem formal

Comportamento do
usuário

Modelo hierárquico
Verificação

Correção e segurança
Sistema de IoT

Sistemas críticos
Formalismo matemático

Redes de Petri
Modelagem de estados

finitos
Verificação de modelo

Ferramentas de
verificação

Automação de
verificação

Casos de uso
Modelagem de caso de

uso
Modelagem de

requisitos.

Em resumo, a
metodologia

utilizada no artigo
envolve uma
abordagem

sistemática e
formal para

projetar, validar e
verificar sistemas
de IoT orientados

ao
comportamento
do usuário. A

modelagem formal
hierárquica é

usada como uma
técnica eficaz

para modelar o
comportamento

do usuário e
interações do

sistema,
permitindo a

verificação formal
e validação do

sistema.

IEEE Inglês CE1 Excluído
Generating Test Cases
from Requirements: A
Case Study in Railway
Control System
Domain

H. Zheng; J.
Feng; W.
Miao; G. Pu 2021

Requireme
nts-based
testing is
one of the
most
commonly
used ways
to ensure
the
correctness
of software,
especially
for
embedded
control
software in
safety-
critical
domains
such as
spacecraft
and railway
systems.
Many
industrial
standards
such as the
DO-333
and
EN50128
also
request
rigorous
requirement
s-based
software
testing. To
test
embedded
control
software
effectively
and
efficiently,
generating
high-quality
test cases
automaticall
y is
extremely
important.
However,
existing
methods for
generating
test cases
from
requirement
s require
intensive
manual
efforts and
expertise.
To address
this
problem,
we
proposed
an
automatic
requirement
s-based
software
testing
method for
embedded
control
software.
To obtain
automatic
test case
generation
and precise
test oracles
derivation,
requirement
s
specificatio
n should be
precise and
readable for
the
industrial
practitioner
s.
Therefore,
we use the
light-weight
domain-
specific
formal
description
language,
CASDL
(Casco
Accurate
Specificatio
n
Description
Language)
for the
industrial
practitioner
s to define
software
requirement
s into
formal
specificatio
ns at the
first step.
Based on
the formal
specificatio
n, we
propose an
algorithm to
automaticall
y generate
test inputs
that satisfy
the MC/DC
criteria
suggested
by typical
industrial
standards
and precise
test oracles
can be
derived by
“running”
the
specificatio
n with such
test inputs.
To this end,
we
proposed
an
algorithm
for
simulating
the formal
specificatio
n to
generate
the test
oracles, i.
e., the
expected
outputs
correspondi
ng to the
test inputs.
To facilitate
the
application
of this
method in
the
industry, we
have built a
tool that
can
automaticall
y perform
the overall
testing
process. To
validate
and
evaluate its
effectivenes
s in real
industrial
projects, we
have
applied it in
testing a
real
Automatic
Train
Protection
(ATP)
system
provided by
our
industrial
partner, the
Casco
Signal Co.,
Ltd (one of
the largest
railway
control
system
companies
in China).
In the case
study on
ATP
requirement
s, our
approach
generated
test cases
for 129
requirement
items
following
MC/DC
criteria and
caught 40
inconsisten
cies
between
Casco’s
requirement
s and
implementa
tion.

10.1109
/TASE5
2547.

2021.00
029

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
546822

Test cases;
software
testing;
requirement
s validation
and
verification;
requirement
s modeling

O artigo aborda a geração de
casos de teste a partir de

requisitos em um estudo de
caso no domínio de sistemas

de controle ferroviário.
Utiliza uma abordagem

baseada em modelo para criar
diagramas de atividades a

partir dos requisitos, que são
transformados em casos de

teste através de uma
ferramenta de automação.

O artigo propõe uma
abordagem sistemática

para gerar casos de teste
a partir de requisitos,

com o objetivo de
aumentar a qualidade e a

eficácia dos testes em
sistemas de controle

ferroviário. A abordagem
é baseada em modelos,
que são criados a partir

dos requisitos e
transformados em casos

de teste. O estudo de
caso demonstra a

viabilidade e a eficácia
da abordagem proposta.

A abordagem
proposta consiste
em criar modelos
de atividades a

partir dos
requisitos,

utilizando uma
ferramenta de
modelagem.

Os modelos são
então

transformados em
casos de teste,
utilizando uma
ferramenta de

automação.
Os casos de teste

gerados são
avaliados em

termos de
cobertura de
requisitos e

eficácia, utilizando
uma ferramenta

de análise.
O estudo de caso
é conduzido em
um sistema de

controle
ferroviário,
utilizando

requisitos reais
como entrada

para a abordagem
proposta.

IEEE Inglês CE1 Excluído

From Real-Time Logic
to Timed Automata

Ferrère T,
Maler O,
Ničković D,
Pnueli A

2019

We show
how to
construct
temporal
testers for
the logic
MITL, a
prominent
linear-time
logic for
real-time
systems. A
temporal
tester is a
transducer
that inputs
a signal
holding the
Boolean
value of
atomic
proposition
s and
outputs the
truth value
of a formula
along time.
Here we
consider
testers over
continuous-
time
Boolean
signals that
use clock
variables to
enforce
duration
constraints,
as in timed
automata.
We first
rewrite the
MITL
formula into
a “simple”
formula
using a
limited set
of temporal
modalities.
We then
build
testers for
these
specific
modalities
and show
how to
compose
testers for
simple
formulae
into
complex
ones.
Temporal
testers can
be turned
into
acceptors,
yielding a
composition
al
translation
from MITL
to timed
automata.
This
constructio
n is much
simpler
than
previously
known and
remains
asymptotica
lly optimal.
It supports
both past
and future
operators
and can
easily be
extended.

10.1145
/328697

6

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/32869
76;http://dx.
doi.org/10.
1145/32869
76

formal
verification,
timed
automata,
real-time,
Temporal
logic, model
checking

ACM Inglês CE5 Excluido
Formalization of Robot
Skills with Descriptive
and Operational
Models

C. Lesire; D.
Doose; C.
Grand 2020

In this
paper, we
propose a
formal
language to
specify
robot skills,
i.e. the
elementary
behaviours
or functions
provided by
the robot
platform in
order to
perform an
autonomou
s mission.
The
advantage
of the
language
we propose
is that it
integrates a
wide range
of elements
that allows
to define
and provide
automatic
translation
both to
operational
models,
used online
to control
the skill
execution,
and
descriptive
models,
allowing to
reason
about the
expected
skill
execution,
and then
apply
automated
planning or
model-
checking
taking skill
models into
account.

10.1109
/IROS4
5743.

2020.93
40698

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
340698

-

O artigo aborda sobre a
utilização de sistemas robóticos

inteligentes e autônomos,
mostrando como inevitável em
condições reais de operação.

Cita também, como necessário
programar esses sistemas para
customizar o serviço do robô,
especificar como o robô deve

reagir a perigos em uma
missão de vigilância, ou

colaborar com outros robôs ou
humanos em tarefas de

fabricação.

Os conceitos
mencionados pelo artigo

englobam:
Programação de nível de
tarefa: abordagem para
programação de robôs

que consiste em montar
comportamentos
elementares ou

habilidades para projetar
a tarefa completa ou
missão do sistema

robótico.
Modelos de habilidades:

são usados para
raciocinar sobre as

capacidades dos robôs e
podem ser descritivos

(definir o comportamento
da habilidade) ou

operacionais (definir
como a habilidade deve

ser executada).

A metodologia do
artigo envolve:

Desenvolvimento
de modelos de

habilidades: são
necessários para
raciocinar sobre
as capacidades

dos robôs e
podem ser

descritivos ou
operacionais.

Consistência entre
modelos

descritivos e
operacionais: é

uma preocupação
quando se projeta
uma arquitetura
deliberativa que

integra
planejamento de
longo prazo das

atividades do robô
e execução online

de
comportamentos

ou quando se
realiza verificação

com base em
model-checking.
Proposição de
uma definição

formal de
habilidades para
derivar modelos

descritivos e
operacionais: isso
permite garantir a
consistência entre

esses modelos.
Ferramentas para

automatizar a
construção de
modelos: são

propostas para
facilitar a

construção de
modelos de
habilidades.

IEEE Inglês CE1 Excluido
Formal Verification of
SDN-Based Firewalls
by Using TLA+

Y. -M. Kim; M.
Kang 2020

Software-
defined
networking
(SDN) has
generated
increased
interest due
to the rapid
growth in
the amount
of data
generated
by the
developme
nt of the
Internet and
communica
tions, the
commerciali
zation of
5G, and
increasingly
complex
networks.
While SDN
is more
advantageo
us than
traditional
networks in
terms of
efficient
network
manageme
nt, rapid
deployment
, and
dynamic
scalability,
the
correctness
of a
network
configuratio
n must be
ensured in
advance. In
other
words, SDN
component
s such as
network
devices,
SDN
controllers,
and
applications
need to be
deployed
correctly
and must
be free of
rule
conflicts,
particularly
between
various
application
policies;
otherwise, it
may result
in network
paralysis in
the worst
case. This
paper
assumes
that the
SDN
network is
free of rule
conflicts
when the
rules in the
SDN
switches
correctly
obey
firewall
application
or policies.
To solve
this
problem,
this paper
proposes a
verification
framework
for SDN
using TLA+.
We show
that the
firewall rule
behavior of
switches
can be
formalized
using TLA+,
and this is
verified with
the TLC
model
checker
that uses
TLA+ as
the model
description
language.
We check
two
different
types of
topology
models
through our
verification
framework
to ensure
that the
same
firewall
rules are
maintained
even if the
topology
changes.
The
findings
show that
the firewall
rules may
be
inconsistent
as the
topology
changes.

10.1109
/ACCE

SS.
2020.29
79894

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
031323

Firewall;
formal
methods;
software-
defined
networking;
TLA+

O artigo apresenta a
importância da garantia da

correção das configurações de
rede em SDN. Destaca-se a

necessidade de evitar conflitos
de regras entre as políticas de

aplicação para evitar a paralisia
da rede. É proposto um

framework de verificação
usando a linguagem TLA+ para

formalizar e verificar o
comportamento das regras de

firewall nos switches SDN.

Os principais conceitos
envolvem:

Software-defined
networking (SDN): rede
que permite a gestão

centralizada e
programável de

dispositivos de rede.
Firewall: sistema que
monitora e controla o
tráfego de rede com

base em um conjunto de
regras.

TLA+ (Temporal Logic of
Actions): uma linguagem

formal usada para
modelar e verificar

sistemas concorrentes e
distribuídos.

A metodologia
descrita pelo

artigo, propõe um
framework

baseado em TLA+
para verificar a

consistência das
regras de firewall

em SDN. O
modelo de

comportamento
de regras é

formalizado em
TLA+ e verificado

com o modelo
TLC (The TLA+
model checker).
Dois modelos de

topologia
diferentes são
usados para

verificar a
consistência das
regras de firewall

sob diferentes
condições.

IEEE Inglês CE1 Excluido
Formal Verification and
Performance Analysis
of a New Data
Exchange Protocol for
Connected Vehicles

S. Chouali; A.
Boukerche; A.
Mostefaoui; M.
A. Merzoug

2020

In this
article, we
focus on
the usage
of MQTT
(Message
Queuing
Telemetry
Transport)
within
Connected
Vehicles
(CVs).
Indeed, in
the original
version of
MQTT
protocol,
the broker
is
responsible
“only” for
sending
received
data to
subscribers
;
abstracting
then the
underlying
mechanism
of data
exchange.
However,
within CVs
context,
subscribers
(i.e., the
processing
infrastructur
e) may be
overloaded
with
irrelevant
data, in
particular
when the
requirement
is real or
near real-
time
processing.
To
overcome
this issue,
we propose
MQTT-CV;
a new
variant of
MQTT
protocol, in
which the
broker is
able to
perform
local
processing
in order to
reduce the
workload at
the
infrastructur
e; i.e.,
filtering
data before
sending
them. In
this article,
we first
validate
formally the
correctness
of MQTT-
CV protocol
(i.e., the
three
component
s of the
proposed
protocol are
correctly
interacting),
through the
use of
Promela
language
and its
system
verification
tool; the
model
checker
SPIN.
Secondly,
using real-
world data
provided by
our car
manufactur
er partner,
we have
conducted
real
implementa
tion and
experiment
s. The
obtained
results
show the
effectivenes
s of our
approach in
term of data
workload
reduction at
the
processing
infrastructur
e. The
mean
improveme
nt, besides
the fact that
it is
dependent
of the target
application,
was in
general
about 10
times less
in
comparison
to native
MQTT
protocol.

10.1109
/TVT.

2020.30
40817

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
272870

Connected
vehicles;
data
filtration;
formal
analysis;
formal
verification;
MQTT;
promela;
SPIN

O artigo aborda o conceito de
Internet das Coisas (IoT), que
está cada vez mais presente

em diversos setores da
sociedade. Destaca a

importância do protocolo de
comunicação para as

aplicações em IoT, uma vez
que ele abstrai a troca de

dados entre os dispositivos
conectados. O foco principal do

artigo é no protocolo MQTT,
que é amplamente utilizado em

aplicações reais,
especialmente no setor

automotivo.

O artigo apresenta o
conceito de IoT, que

consiste na conexão de
objetos inteligentes
capazes de coletar,

processar e transmitir
dados. Destaca o papel

do protocolo de
comunicação na

abstração da troca de
dados entre os

dispositivos conectados.
Apresenta o protocolo
MQTT, que é baseado

no modelo de
mensagens

publish/subscribe e é
amplamente utilizado em
aplicações IoT. Explica

como o MQTT é utilizado
na indústria automotiva
para coletar dados de
veículos conectados e
processá-los em tempo

real.

O artigo não
apresenta um

método
específico, mas

descreve como o
MQTT é utilizado

na indústria
automotiva para
coletar dados de

veículos
conectados e

processá-los em
tempo real.

Também destaca
algumas

limitações do
MQTT em relação

ao papel do
broker na

transmissão de
dados, que podem
ser problemáticas

no contexto de
veículos

conectados.

IEEE Inglês CE1 Excluido
Formal Methods for the
Security Analysis of
Smart Contracts M. Maffei 2021

Smart
contracts
consist of
distributed
programs
built over a
blockchain
and they
are
emerging
as a
disruptive
paradigm to
perform
distributed
computatio
ns in a
secure and
efficient
way. Given
their nature,
however,
program
flaws may
lead to
dramatic
financial
losses and
can be hard
to fix. This
motivates
the need for
formal
methods
that can
provide
smart
contract
developers
with
correctness
and
security
guarantees,
ideally
automating
the
verification
task. This
tutorial
introduces
the
semantic
foundations
of smart
contracts
and reviews
the state-of-
the-art in
the field,
focusing in
particular
on the
automated,
sound,
static
analysis of
Ethereum
smart
contracts.
We will
highlight
the
strengths
and
drawbacks
of different
methods,
suggesting
open
challenges
that can
stimulate
new
research
strands.
Finally, we
will
overview
eThor, an
automated
static
analysis
tool that we
recently
developed
based on
rigorous
semantic
foundations
.

10.3472
7

/2021/is
bn.978-

3-
85448-
046-4_3

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
617687

- - - - IEEE Inglês CE5 Excluido
Explaining Boolean-
Logic Driven Markov
Processes using
GSPNs

S. Khan; J. -P.
Katoen; M.
Bouissou 2020

Boolean-
logic driven
Markov
processes
(BDMPs) is
a graphical
language
for reliability
analysis of
dynamic
repairable
systems.
BDMPs are
capable of
defining
complex
interdepend
encies
among
failure
modes
such as
functional
dependenci
es and
state-
dependent
failures.
The
interpretatio
n of BDMPs
is non-trivial
due to the
many
possible
complex
interactions
of activation
and failure
mechanism
s. This
paper
presents a
formal
semantics
of
repairable
BDMPs by
using
generalized
stochastic
Petri nets
(GSPNs).
Our
semantics
is modular
and thus
easily
extendable
to other
elements,
e.g., leaves
dedicated
to security
applications
. Priorities
on GSPN
transitions
are used to
impose a
partial order
on various
possible
interleaving
of activation
and failure
mechanism
s. The
semantics
is realized
by the
prototypical
tool
BDMP2GS
PN that
converts a
Figaro
description
of a BDMP
into a
GSPN. The
reliability
and
availability
metrics of
BDMPs are
obtained
using the
probabilistic
model-
checking
capability of
the existing
GreatSPN
tool.
Experiment
s show that
our GSPN
semantics
correspond
s to the
BDMP
interpretatio
n by the
tool yet
another
Monte
Carlo
simulator
(YAMS).

10.1109
/EDCC5
1268.

2020.00
028

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
236784

Dependabili
ty, formal
methods,
probabilistic
model
checking,
Monte Carlo
simulation,
Petri nets

O artigo aborda o uso de Fault
Trees (árvores de falhas) para
investigar a confiabilidade de
sistemas, destaca a limitação
dos FTs estáticos em capturar
interdependências temporais

entre os modos de falha, o que
levou ao desenvolvimento de

várias extensões dos FTs,
como DFTs, SEFTs, BDMPs,

entre outros.

Os principais conceitos
abordados no artigo

incluem:

Fault Trees (árvores de
falhas)

Eventos básicos (BEs)
Portas lógicas (AND, OR,

VOT)
Static Fault Trees (SFTs)

Dynamic Fault Trees
(DFTs)

State Event Fault Trees
(SEFTs)

Boolean-logic driven
Markov processes

(BDMPs)
Generalized Stochastic

Petri Nets (GSPNs)
Markov automata (MA)

Model checking

Métodos utilizados
no artigo:

Análise de FTs
com BEs

associados a
probabilidades de

falha;
Definição da

semântica de FT
extensions em
termos de Petri

nets;
Exploração das
prioridades de
transição de
GSPNs para
fornecer uma

semântica
baseada em
GSPN para

BDMPs e facilitar
a análise baseada

em model
checking.

IEEE Inglês CE1 Excluido
Efficient Memory
Arbitration in High-
Level Synthesis From
Multi-Threaded Code

J. Cheng; S.
T. Fleming; Y.
T. Chen; J.
Anderson; J.
Wickerson; G.
A.
Constantinides

2022

High-level
synthesis
(HLS) is an
increasingly
popular
method for
generating
hardware
from a
description
written in a
software
language
like C/C++.
Traditionall
y, HLS
tools have
operated on
sequential
code,
however in
recent
years there
has been a
drive to
synthesise
multi-
threaded
code. In
this context,
a major
challenge
facing HLS
tools is how
to
automaticall
y partition
memory
among
parallel
threads to
fully exploit
the
bandwidth
available on
an FPGA
device and
minimise
memory
contention.
Existing
partitioning
approaches
require
inefficient
arbitration
circuitry to
serialise
accesses to
each bank
because
they make
conservativ
e
assumption
s about
which
threads
might
access
which
memory
banks. In
this article,
we design a
static
analysis
that can
prove
certain
memory
banks are
only
accessed
by certain
threads,
and use
this
analysis to
simplify or
even
remove the
arbiters
while
preserving
correctness
. We show
how this
analysis
can be
implemente
d using the
Microsoft
Boogie
verifier on
top of
satisfiability
modulo
theories
(SMT)
solver, and
propose a
tool named
EASY using
automatic
formal
verification.
Our work
supports
arbitrary
input code
with any
irregular
memory
access
patterns
and indirect
array
addressing
forms. We
implement
our
approach in
LLVM and
integrate it
into the
LegUp HLS
tool. For a
set of
typical
application
benchmark
s our
results
have shown
that EASY
can achieve
0.13× (avg.
0.43×) of
area and
1.64× (avg.
1.28×) of
performanc
e compared
to the
baseline,
with little
additional
compilation
time
relative to
the long
time in
hardware
synthesis.

10.1109
/TC.

2021.30
66466

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
380343

High-level
synthesis;
HLS;formal
methods;
multi-
threaded
code;FPGA

O artigo trata do uso de
dispositivos FPGAs para

computação personalizada em
datacenters. Embora esses

dispositivos tenham um grande
potencial, eles exigem

conhecimento em design digital
em um nível de abstração

baixo, o que dificulta o seu uso
por aqueles que não têm
experiência em hardware.

O conceito principal
discutido no artigo é a

otimização da arquitetura
de memória em FPGA

para melhorar o
throughput.

Especificamente, o artigo
aborda o desafio de

escalar a arbitragem de
acesso à memória em
sistemas com muitos
bancos de memória e

threads de computação.
Propondo que a edição

manual do programa
para especificar regiões
de memória disjuntas

pode melhorar a
escalabilidade ao permitir
a otimização da lógica de

arbitragem.

O artigo descreve
um método para

otimizar a
arquitetura de
memória em
FPGA para
melhorar a

escalabilidade.
Esse método

envolve a edição
manual do

programa para
especificar
regiões de
memória
disjuntas,

permitindo a
otimização da

lógica de
arbitragem.

Descreve também
os resultados de

experimentos para
demonstrar a

eficácia do
método proposto
em melhorar a
escalabilidade.

IEEE Inglês CE1 Excluido
Efficient Algorithms for
Finding Differences
between Process
Models

A. Skobtsov;
A. Kalenkova 2019

Information
systems
from
various
domains
record their
behavior in
a form of
event logs.
These
event logs
can be
further
analyzed
and formal
process
models
describing
hidden
processes
can be
discovered.
In order to
relate real
and
expected
process
behavior,
discovered
(constructe
d from
event logs)
and
reference
(manually
created by
analysts)
process
models can
be
compared.
The result
of
comparison
should
clearly
present
commonaliti
es and
differences
between
these
models.
Since most
process
models are
represented
by graph-
based
languages,
a graph
comparison
technique
can be
applied. It is
worth
known that
graph
comparison
techniques
are
computatio
nally
expensive.
In this
paper, we
adapt
different
heuristic
graph
comparison
algorithms
to compare
BPMN
(Business
Process
Model and
Notation)
models.
These
algorithms
are
implemente
d and
tested on
large
BPMN
models
discovered
from event
logs. We
show that
some of the
heuristic
algorithms
allow to find
nearly
optimal
solutions in
a
reasonable
amount of
time.

10.1109
/ISPRA
S47671

.
2019.00

015

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
991151

process
comparison;
process
mining;
BPMN
(Business
Process
Model and
Notation);
heuristic
algorithms;
graph edit
distance

O artigo apresenta uma técnica
de verificação de conformidade
para modelos de processos, a

técnica proposta é baseada em
comparação de grafos. Discute

também a utilização da
linguagem BPMN para

representar os modelos de
processos. O estudo é baseado
em experimentos com modelos

de processos descobertos a
partir de logs de eventos, tanto
artificiais quanto da vida real.

Os principais conceitos
abordados no artigo

incluem: Process Mining:
uma ciência que combina

análise de dados de
eventos e modelagem de

processos. Process
Discovery: uma das
tarefas de Process

Mining que visa construir
modelos de processos a

partir de dados de
eventos. Conformance

Checking: uma das
tarefas de Process

Mining que visa
encontrar desvios entre o
comportamento real (logs

de eventos) e o
comportamento

esperado (modelos de
processos de referência).
BPMN: uma linguagem

de modelagem de
processos amplamente
utilizada e um padrão de
fato na modelagem de

processos.

A metodologia
utilizada no artigo

propõe uma
técnica de

verificação de
conformidade
baseada em

comparação de
grafos. Para
encontrar a

distância mínima
de edição de
grafos, foram

adaptados
algoritmos
heurísticos

existentes. A
técnica proposta
foi implementada

como uma
extensão para

uma ferramenta
de comparação de
modelos BPMN. A
técnica foi testada

em modelos de
processos

descobertos a
partir de logs de
eventos artificiais

e da vida real.

IEEE Inglês CE1 Excluido

Domain Specific
Program Synthesis

P. Archana; P.
B. Harish; N.
Rajan; S. P; N.
S. Kumar

2021

Program
Synthesis
refers to the
task of
constructin
g a
program in
a specific
programmin
g language,
given its
intent in a
particular
format. This
emerging
field can be
applied in
diverse
domains
and is
currently
being
investigated
with
different
techniques.
A program
synthesizer
would
simplify the
efforts of
programme
rs and help
them focus
on the
program's
core logic,
without
worrying
about
language
syntax and
other
domain
specifics.
We applied
the
concepts of
program
synthesis in
the context
of solving a
proposition
al logic
word
problem.
We have
developed
a tool that
is capable
of
understandi
ng, parsing
and
evaluating
a
proposition
al logic
word
problem.
With the
user's
natural
language
input, this
tool
processes
the query
and
evaluates
truth values
of the
question
expressions
. The
working of
the tool can
be
explained in
three major
phases:
natural
language
processing,
machine
learning to
obtain
postfix
notations of
the Boolean
expressions
involved,
and further
evaluation
of the
postfix
notations to
determine
the
answers.
Our goal
was to
explore the
domain
agnostic
capabilities
of our
program-
synthesis-
based
techniques
of learning
used in the
implementa
tion of this
tool.

10.1109
/ASIAN
CON51

346.
2021.95
44738

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
544738

propositiona
l logic;
program
synthesis;
boolean;
natural
language
processing;
sequence-
to-
sequence
model

 O artigo aborda a síntese de
programas específicos de

domínio, destacando a
importância do conhecimento

do domínio, apresentando
diferentes abordagens e

técnicas, discutindo desafios e
limitações, fornecendo

exemplos e estudos de caso, e
contribuindo para o avanço da
área de síntese de programas.

O artigo explora
conceitos-chave

relacionados à síntese
de programas

específicos de domínio,
destacando a

importância do
conhecimento do
domínio, o uso de

linguagens de domínio
específico, a

consideração de
requisitos e restrições do
domínio, as técnicas de

síntese utilizadas, a
avaliação das

abordagens e as
aplicações práticas da
síntese de programas.

A metodologia
proposta consiste

em três etapas
principais:

especificação de
requisitos,
geração de
programa

candidato e
validação. Na

primeira etapa, o
usuário especifica
os requisitos do

programa em uma
linguagem de

domínio
específico. Na

segunda etapa, a
geração de
programas

candidatos é
realizada através
de um processo
de busca em um

espaço de
programas,

utilizando técnicas
de programação

genética e
aprendizado de

máquina.
Finalmente, na

terceira etapa, a
validação é feita

por meio de testes
automáticos,

análise estática e
interação com o

usuário.

IEEE Inglês CE1 Excluido

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9476615
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3567512.3567526;http://dx.doi.org/10.1145/3567512.3567526
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643783
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://doi-org.ez13.periodicos.capes.gov.br/10.1007/s00165-021-00537-4;http://dx.doi.org/10.1007/s00165-021-00537-4
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8722951
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9842470
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9192003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9546822
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3286976;http://dx.doi.org/10.1145/3286976
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9340698
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9031323
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9272870
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9617687
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9236784
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9380343
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8991151
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9544738

Documentation-based
functional constraint
generation for library
methods

R. Jiang; Z.
Chen; Y. Pei;
M. Pan; T.
Zhang; X. Li

2022

Although
software
libraries
promote
code reuse
and
facilitate
software
developme
nt, they
increase
the
complexity
of
programme
analysis
tasks. To
effectively
analyse
programme
s built on
top of
software
libraries, it
is essential
to have
specificatio
ns for the
library
methods
that can be
easily
processed
by analysis
tools.
However,
the
availability
of such
specificatio
ns is
seriously
limited at
the
moment.
Manually
writing the
specificatio
ns can be
prohibitively
expensive
and error-
prone,
while
existing
automated
approaches
to inferring
the
specificatio
ns seldom
produce
results that
are strong
enough to
be used in
programme
analysis. In
this work,
we propose
the
DOC2SMT
approach to
generating
strong
functional
constraints
in SMT for
library
methods
based on
their
documentat
ions.
DOC2SMT
first applies
natural
language
processing
(NLP)
techniques
and a set of
rules to
translate a
method's
natural
language
documentat
ion into a
large
number of
candidate
constraint
clauses in
OCL. Then,
it utilises a
manually
enhanced
domain
model to
identify
OCL
candidate
constraint
clauses that
comply with
the problem
domain in
static
validation,
translates
well-formed
OCL
constraints
into the
SMT-LIB
format, and
checks
whether
each 5MB-
LIB
constraint
rightly
abstracts
the
functionaliti
es of the
method
under
considerati
on via
testing in
dynamic
validation.
In the end,
it reports
the first
functional
constraint
that
survives
both
validations
to the user
as the
result. We
have
implemente
d the
approach
into a
supporting
tool with the
same
name. In
experiment
s
conducted
on 451
methods
from the
Java
Collections
Framework
and the
Java IO
library,
DOC2SMT
generated
correct
constraints
for 309
methods,
with the
average
generation
time for
each
correct
constraint
being
merely 2.7
min. We
have also
applied the
generated
constraints
to facilitate
symbolic-
execution-
based test
generation
with the
Symbolic
Java
PathFinder
(SPF) tool.
For 24
utility
methods
manipulatin
g Java
container
and IO
objects,
SPF with
access to
the
generated
constraints
produced
51.2 times
more test
cases than
SPF
without the
access.

10.1109
/ICST53

961.
2022.00

056

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
787888

documentati
on analysis;
domain
model;OCL;
SMT;
specificatio
n
generation

O artigo aborda a geração de
restrições funcionais para

métodos de bibliotecas com
base na documentação. A

abordagem proposta utiliza
informações da documentação,
como descrições e exemplos
de uso, para inferir restrições

funcionais. O artigo descreve a
implementação de uma
ferramenta de suporte e
apresenta uma avaliação

experimental. A abordagem
oferece benefícios na

automatização do processo de
geração de restrições

funcionais, mas também possui
limitações relacionadas à

qualidade da documentação.

O artigo aborda a
geração automatizada de

restrições funcionais
para métodos de

bibliotecas com base na
documentação
disponível. São

propostas técnicas para
análise e inferência das
restrições funcionais, e

uma ferramenta é
implementada para
automatizar esse

processo. A validação da
abordagem é realizada
em bibliotecas reais,
demonstrando a sua

aplicabilidade e
benefícios potenciais.

 A metodologia do
artigo envolve a
coleta e análise

da documentação,
a identificação de
padrões e regras,

o
desenvolvimento

de uma
ferramenta para

geração
automatizada de

restrições, a
validação da

abordagem em
métodos de

bibliotecas reais e
a análise dos

resultados
obtidos. Essa

metodologia visa
oferecer uma
abordagem

prática e
automatizada para

a geração de
restrições

funcionais com
base na

documentação
disponível.

IEEE Inglês CE1 Excluido
Diversity-Driven
Automated Formal
Verification

E. First; Y.
Brun 2022

Formally
verified
correctness
is one of
the most
desirable
properties
of software
systems.
But despite
great
progress
made via
interactive
theorem
provers,
such as
Coq, writing
proof
scripts for
verification
remains
one of the
most effort-
intensive
(and often
prohibitively
difficult)
software
developme
nt activities.
Recent
work has
created
tools that
automaticall
y
synthesize
proofs or
proof
scripts. For
example,
CoqHamme
r can prove
26.6% of
theorems
completely
automaticall
y by
reasoning
using
precompute
d facts,
while
TacTok and
ASTactic,
which use
machine
learning to
model proof
scripts and
then
perform
biased
search
through the
proof-script
space, can
prove
12.9% and
12.3% of
the
theorems,
respectively
. Further,
these three
tools are
highly
complemen
tary;
together,
they can
prove
30.4% of
the
theorems
fully
automaticall
y. Our key
insight is
that control
over the
learning
process
can
produce a
diverse set
of models,
and that,
due to the
unique
nature of
proof
synthesis
(the
existence of
the theorem
prover, an
oracle that
infallibly
judges a
proof's
correctness
), this
diversity
can
significantly
improve
these tools'
proving
power.
Accordingly
, we
develop
Diva, which
uses a
diverse set
of models
with
TacTok's
and
ASTactic's
search
mech-
anism to
prove
21.7% of
the
theorems.
That is,
Diva proves
68% more
theorems
than
TacTok and
77% more
than
ASTactic.
Compleme
ntary to
CoqHamme
r, Diva
proves 781
theorems
(27%
added
value) that
CoqHamme
r does not,
and 364
theorems
no existing
tool has
proved
automaticall
y. Together
with
CoqHamme
r, Diva
proves
33.8% of
the
theorems,
the largest
fraction to
date. We
explore
nine
dimensions
for learning
diverse
models,
and identify
which
dimensions
lead to the
most useful
diversity.
Further, we
develop an
optimization
to speed up
Diva's
execution
by 40×. Our
study
introduces
a
completely
new idea
for using
diversity in
machine
learning to
improve the
power of
state-of-
the-art
proof-script
synthesis
techniques,
and
empirically
demonstrat
es that the
improveme
nt is
significant
on a
dataset of
68K
theorems
from 122
open-
source
software
projects.

10.1145
/351000

3.
351013

8

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
793984

Automated
formal
verification;
language
models;
Coq;
interactive
proof
assistants;
proof
synthesis

 O artigo aborda a aplicação da
diversidade como uma

abordagem para melhorar a
verificação formal

automatizada. Ele propõe a
geração de casos de teste
diversificados e o uso de
técnicas de otimização e

aprendizado de máquina para
aprimorar o processo de

verificação. Através de uma
avaliação experimental, o artigo

demonstra os benefícios e a
eficácia dessa abordagem na

descoberta de falhas e na
garantia da confiabilidade dos

sistemas verificados
formalmente.

O artigo aborda a
aplicação da diversidade

na verificação formal
automatizada, visando
aumentar a cobertura e
descobrir uma ampla

gama de falhas e
propriedades violadas.

Ele discute a geração de
casos de teste

diversificados, o uso de
técnicas de otimização e
aprendizado de máquina,

e apresenta uma
avaliação experimental

para demonstrar a
eficácia da abordagem

proposta.

 A metodologia do
artigo envolve a
definição dos
objetivos de

verificação, a
seleção das
técnicas de

verificação formal,
a identificação das

fontes de
diversidade, a

implementação da
diversidade no
processo de
verificação, a
execução da

verificação formal,
a avaliação dos
resultados e os
refinamentos
iterativos da
abordagem.

IEEE Inglês CE2 Excluido
Design Ontology
Supporting Model-
Based Systems
Engineering
Formalisms

J. Lu; J. Ma;
X. Zheng; G.
Wang; H. Li;
D. Kiritsis

2022

Model-
based
systems
engineering
(MBSE)
provides an
important
capability
for
managing
the
complexitie
s of system
developme
nt. MBSE
empowers
the
formalism
of system
architecture
s for
supporting
model-
based
requirement
elicitation,
specificatio
n, design,
developme
nt, testing,
fielding, etc.
However,
the
modeling
languages
and
techniques
are
heterogene
ous, even
within the
same
enterprise
system,
which leads
to
difficulties
for data
interoperabi
lity. The
discrepanci
es among
data
structures
and
language
syntaxes
make
information
exchange
among
MBSE
models
more
difficult,
resulting in
considerabl
e
information
deviations
when
connecting
data flows
across the
enterprise.
Therefore,
this article
presents an
ontology
based upon
graphs,
objects,
points,
properties,
roles, and
relationship
s with
extensions
(GOPPRRE
), providing
metamodel
s that
support the
various
MBSE
formalisms
across
lifecycle
stages. In
particular,
knowledge
graph
models are
developed
to support
unified
model
representati
ons to
further
implement
ontological
data
integration
based on
GOPPRRE
throughout
the entire
lifecycle.
The
applicability
of the
MBSE
formalism is
verified
using
quantitative
and
qualitative
approaches
. Moreover,
the
GOPPRRE
ontologies
are used to
create the
MBSE
formalisms
in a
domain-
specific
modeling
tool,
MetaGraph,
for
evaluating
its
availability.
The results
demonstrat
e that the
proposed
ontology
supports
the formal
structures
and
descriptive
logic of the
systems
engineering
lifecycle.

10.1109
/JSYST.
2021.31
06195

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
534721

Formalism;
interoperabi
lity;
knowledge
graph;
model-
based
systems
engineering
;ontology

O artigo apresenta uma
ontologia de projeto que pode

ajudar a melhorar a eficácia da
engenharia de sistemas
baseada em modelos,

suportando a interoperabilidade
entre ferramentas de

modelagem e simulação e
permitindo que os modelos

sejam representados em um
nível mais alto de abstração.

Principais conceitos
apresentados no artigo

incluem: Ontologia: Uma
ontologia é uma

especificação formal e
explícita de uma

conceituação
compartilhada.

Engenharia de sistemas:
Engenharia de sistemas

é um processo
interdisciplinar que

envolve a concepção,
desenvolvimento,

operação e manutenção
de sistemas complexos.

Formalismo: Um
formalismo é uma

linguagem matemática
ou lógica usada para

representar sistemas ou
conceitos.

Interoperabilidade: A
interoperabilidade é a

capacidade de diferentes
sistemas ou ferramentas

se comunicarem e
compartilharem

informações de forma
eficiente.

Modelagem de sistemas:
A modelagem de

sistemas envolve a
criação de modelos que
representam o sistema
em diferentes níveis de
abstração. Reutilização

de modelos e
informações: A ontologia
de projeto proposta pelos
autores pode aumentar a
reutilização de modelos e

informações em
engenharia de sistemas,

permitindo que os
modelos sejam

representados em um
nível mais alto de

abstração e
compartilhados entre

diferentes ferramentas
de modelagem e

simulação.

A metodologia
utilizada pelos

autores envolveu
a identificação de

requisitos, a
criação da

ontologia de
projeto, a

validação da
ontologia através
de um estudo de

caso e a avaliação
da ontologia em
comparação com
outras ontologias
existentes. Essa

metodologia
permitiu que os

autores
desenvolvessem
uma ontologia de

projeto que
suporta

formalismos de
engenharia de

sistemas
baseados em

modelos e que
possa aumentar a

eficiência e a
eficácia do

processo de
modelagem e
simulação em
engenharia de

sistemas.

IEEE Inglês CE1 Excluido
Design Ontology in a
Case Study for
Cosimulation in a
Model-Based Systems
Engineering Tool-Chain

J. Lu; G.
Wang; M.
Törngren 2020

Cosimulatio
n is an
important
system-
level
verification
approach
aimed at
integrating
multidomai
n and multi-
physics
models
during
complex
system
developme
nt.
Currently,
the lack of
integrating
system
developme
nt process
with
cosimulatio
ns leads to
gaps
between
them,
decreasing
the
effectivenes
s and
efficiency of
system
developme
nt. Model-
based
systems
engineering
(MBSE)
tool-chains
have been
proposed to
facilitate the
integration
of complex
system
developme
nt and
automated
verification
using a
model-
based
approach.
However,
due to the
lack of
formal and
structured
specificatio
ns,
developme
nt
information
sharing is
difficult for
supporting
MBSE
facilitating
automated
cosimulatio
ns. In order
to formalize
cosimulatio
n in an
MBSE tool-
chain, a
scenario-
based
ontology is
developed
in this
paper,
using
formal web
ontology
language
(OWL).
Ontology
refers to a
specificatio
n
expressing
the
cosimulatio
n
implementa
tions as
well as the
developme
nt
information
represented
in the
models
supporting
the MBSE.
It is
illustrated
by a case
study of a
cosimulatio
n based on
Simulink.
Protocol
and
resource
description
framework
(RDF)
query
language
(SPARQL)
and
semantic
query-
enhanced
web rule
language
queries are
proposed
for
evaluating
the
ontology's
completene
ss and logic
for
supporting
cosimulatio
ns. The
result
demonstrat
es that the
scenario-
based
ontology
formalizes
the
information
related to
automated
cosimulatio
n
developme
nt and
configuratio
ns while
using the
proposed
MBSE tool-
chain.

10.1109
/JSYST.
2019.29
11418

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
734748

Cosimulatio
n;model-
based
systems
engineering
(MBSE);
ontology
design;
simulation
automation;
tool-chain

As principais características do
artigo incluem: Ontologias de

projeto: As ontologias de
projeto são modelos

conceituais que capturam os
conceitos e relações envolvidos

no projeto de um sistema.
Modelagem baseada em

modelos (MBSE): A MBSE é
uma abordagem para o projeto
de sistemas que usa modelos
em vez de documentos para

capturar os requisitos,
especificações, arquitetura e
outros aspectos do sistema.

Cosimulação: A cosimulação é
uma técnica de simulação que
envolve a execução de vários

modelos de simulação
independentes em conjunto

para simular o comportamento
de um sistema complexo.
Cadeia de ferramentas de
engenharia de sistemas

baseada em modelos: A cadeia
de ferramentas de engenharia

de sistemas baseada em
modelos é uma abordagem
para a integração de várias
ferramentas de simulação e
modelagem em uma única

cadeia de ferramentas.

Principais conceitos do
artigo incluem:

Modelagem baseada em
modelos (MBSE),

Ontologias de projeto,
Cadeia de ferramentas

de engenharia de
sistemas baseada em
modelos, Cosimulação.

A metodologia
utilizada no artigo

envolveu uma
abordagem

iterativa, na qual a
ontologia de

projeto foi refinada
com base na
análise dos

resultados da
cosimulação. Isso
permitiu que os

autores
ajustassem a
ontologia para

melhor refletir os
requisitos do

sistema e
melhorar a

eficácia da cadeia
de ferramentas de

engenharia de
sistemas baseada

em modelos.

IEEE Inglês CE1 Excluido
Design and
Implementation of
SysML Activity
Diagram Simulation
Function Based on
fUML Specification

B. Huang; Y.
Liu; X. Wu; J.
Lv; Y. Liu 2022

With the
rapid
developme
nt of
computer
science and
technology,
Model-
Based
Systems
Engineering
(MBSE)
has been
widely used
in the field
of system
design and
simulation,
gradually
replacing
traditional
text-based
systems
engineering
methods.
As a
standard
modeling
language in
the field of
systems
engineering
, SysML,
together
with
modeling
tools and
modeling
methods, is
called the
three pillars
of MBSE.
Activity
diagram is
a kind of
behavior
diagram of
SysML, and
its
simulation
plays an
important
role in
MBSE
practice.
Aiming at
the problem
that the
activity
diagram
simulation
capability of
domestic
SysML
modeling
software is
insufficient,
this paper
implements
the
simulation
function of
SysML
activity
diagram
based on
the fUML
specificatio
n.

10.1109
/CRC55

853.
2022.10
041232

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=1
0041232

MBSE;
fUML;
SysML;
Activity
Diagram;
System
Simulation

O artigo descreve a
implementação de uma função
de simulação para diagramas

de atividades do SysML
baseada na especificação

fUML. A abordagem permite a
execução dinâmica e a análise
do comportamento do sistema,

proporcionando uma
ferramenta prática para a
simulação e validação de

modelos de sistemas
complexos.

O artigo explora a
simulação de diagramas
de atividades do SysML
usando a especificação
fUML como base. Ele

apresenta os conceitos
fundamentais do SysML
e do fUML, descreve a
função de simulação

implementada e
demonstra a utilidade
prática da abordagem

para a análise e
simulação de sistemas
modelados em SysML.

A metodologia do
artigo envolve a

revisão dos
requisitos e

especificações, o
estudo da

especificação
fUML, o design e

implementação da
função de

simulação, os
testes e validação,

a avaliação e
refinamento, e a

documentação de
todo o processo.

IEEE Inglês CE1 e CE2 Excluido
CyberGSN: A Semi-
formal Language for
Specifying Safety
Cases

T. A. Beyene;
C. Carlan 2021

The use of
safety
cases to
explicitly
present
safety
considerati
ons and
decisions is
a common
practice in
the safety-
critical
domain. A
safety case
can be
used to
scrutinize
the safety
assessment
approach
used by
practitioner
s internally,
or as an
input for the
certification
process for
an external
certifying
authority.
However,
safety
cases are
still created
manually to
explicate
the followed
safety
assessment
and
assurance
measures.
In addition,
although
safety
cases may
be created
in a
modular
way by
multiple
entities,
and it may
be critical
for each
entity to
digitally
sign its part
of the
assurance
for
accountabili
ty, the
common
notations
are not
expressive
enough to
include the
notion of
entity.
Especially
in cyber-
security
applications
, the notion
of entity is
very critical.
In this
paper, we
propose a
formal logic
based
language
called
CyberGSN,
with an
explicit
notion of
entity, that
can be
used for
specifying
safety
cases and
safety case
patterns,
enabling
the
automated
creation
and
maintenanc
e of safety
cases.

10.1109
/DSN-
W5286

0.
2021.00

021

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
502448

Safety
Case;
Pattern;
Entity;
Decentraliz
ation

 O artigo introduz o CyberGSN
como uma linguagem semi-

formal para especificação de
casos de segurança. Ele
destaca a flexibilidade, a

estruturação e a adaptabilidade
da linguagem, bem como sua

integração com ferramentas de
análise. A aplicação prática do
CyberGSN em casos reais de

segurança é apresentada como
uma característica importante

da abordagem.

O artigo apresenta o
conceito de casos de
segurança e propõe o

uso da linguagem semi-
formal CyberGSN para

especificar e argumentar
a segurança de

sistemas. Os conceitos
de metas de segurança,
evidências, argumentos

e integração com
ferramentas de análise
são fundamentais na
abordagem proposta.

A metodologia do
artigo envolve a
identificação dos

requisitos de
segurança, a

especificação das
metas de

segurança, o
desenvolvimento
dos argumentos
de segurança, a

representação dos
casos de

segurança em
CyberGSN, a

análise e
verificação dos

casos, a revisão e
atualização dos

casos, e a
documentação e
comunicação dos

casos de
segurança.

IEEE Inglês CE2 Excluido
Context-Aware IoT
Device Functionality
Extraction from
Specifications for
Ensuring Consumer
Security

U. Paudel; A.
Dolan; S.
Majumdar; I.
Ray

2021

Internet of
Thing (IoT)
devices are
being
widely used
in smart
homes and
organizatio
ns. An IoT
device has
some
intended
purposes,
but may
also have
hidden
functionaliti
es.
Typically,
the device
is installed
in a home
or an
organizatio
n and the
network
traffic
associated
with the
device is
captured
and
analyzed to
infer high-
level
functionality
to the
extent
possible.
However,
such
analysis is
dynamic in
nature, and
requires the
installation
of the
device and
access to
network
data which
is often
hard to get
for privacy
and
confidentiali
ty reasons.
We
propose an
alternative
static
approach
which can
infer the
functionality
of a device
from vendor
materials
using
Natural
Language
Processing
(NLP)
techniques.
Information
about IoT
device
functionality
can be
used in
various
applications
, one of
which is
ensuring
security in a
smart
home. We
demonstrat
e how
security
policies
associated
with device
functionality
in a smart
home can
be formally
represented
using the
NIST Next
Generation
Access
Control
(NGAC)
model and
automaticall
y analyzed
using Alloy,
which is a
formal
verification
tool. This
will provide
assurance
to the
consumer
that these
devices will
be
compliant
to the home
or
organizatio
nal policy
even before
they have
been
purchased.

10.1109
/CNS53

000.
2021.97
05050

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
705050

IoT;Smart
Home;
Device
Functionalit
y;NLP

O artigo apresenta uma
abordagem para extrair a

funcionalidade dos dispositivos
IoT a partir de especificações,
levando em consideração o

contexto em que os
dispositivos são utilizados para

garantir a segurança do
consumidor.

Principais conceitos do
artigo são: Abordagem

para extrair a
funcionalidade dos

dispositivos IoT a partir
de especificações;
Consideração do

contexto em que os
dispositivos são

utilizados;
Foco na garantia da

segurança do
consumidor;

Apresentação de um
estudo de caso para
validar a eficácia da
abordagem proposta

A metodologia
apresentada no
artigo: Coleta de
especificações:
Nessa etapa, as
especificações
dos dispositivos

IoT são coletadas
a partir de

diversas fontes,
como manuais do

usuário,
documentação

técnica e
informações

disponíveis na
web. Extração de
funcionalidade:

Utilizando
técnicas de

processamento de
linguagem natural

(PLN), a
funcionalidade

dos dispositivos é
extraída das

especificações
coletadas na

primeira etapa.
Além disso, a
abordagem

proposta leva em
consideração o

contexto em que
os dispositivos
são utilizados

para garantir que
todas as

funcionalidades
relevantes sejam

extraídas.
Verificação de

segurança:
Finalmente, a
funcionalidade

extraída é
utilizada para
verificar se o
dispositivo é

seguro para o
consumidor.

Nessa etapa, são
aplicadas técnicas

de análise de
segurança para

identificar
possíveis

vulnerabilidades e
garantir que o

dispositivo atenda
aos requisitos de

segurança. O
artigo também
apresenta um

estudo de caso
para validar a

eficácia da
abordagem

proposta, no qual
a metodologia foi

aplicada a
diferentes

dispositivos IoT
para verificar sua

segurança.

IEEE Inglês CE2 Excluido
Composable Finite
State Machine-Based
Modeling for Quality-of-
Information-Aware
Cyber-Physical
Systems

Rosales R,
Paulitsch M 2021

Time plays
a major role
in the
specificatio
n of Cyber-
physical
Systems
(CPS)
behavior
with
concurrenc
y,
timeliness,
asynchrony
, and
resource
limits as
their main
characterist
ics. In
addition to
timeliness,
the
specificatio
n of CPS
needs to
assess and
unambiguo
usly define
its behavior
with respect
to the other
Quality-of-
Information
(QoI)
properties:
(1)
Correctnes
s, (2)
Completen
ess, (3)
Consistenc
y, and (4)
Accuracy.
Very often,
CPS need
to handle
these QoI
properties,
and any
combinatio
n thereof,
multiple
times when
performing
computatio
n and
communica
tion
processes.
However, a
model-
driven and
systematic
approach to
specify
CPS
behavior
that jointly
considers
combined
QoI aspects
is possible
but missing
in existing
methodolog
ies.As the
first
contribution
of this work,
we provide
an
extension
to an
established
model of
computatio
n (MoC)
based on
“Functions
driven by
Finite State
Machine”
(FunState)
to enable a
model-
driven
composition
mechanism
to create
CPS
behavior
specificatio
ns from
reusable
component
s.Second,
we present
a novel set
of design
patterns to
illustrate
the
modeling of
QoI-aware
CPS
specificatio
ns that can
be applied
in several
state-of-
the-art
Electronic
System
Level (ESL)
methodolog
ies. The
time
semantics
of the MoC
are
formalized
using the
tagged-
signal-
model, and
the
presented
model-
driven
approach
enables the
composition
of multiple
design
patterns.
The main
benefits of
the
presented
model-
driven
approach
and design
patterns to
create CPS
specificatio
ns are as
follows: (a)
reduce
modeling
effort,
errors, and
time
through the
reuse of
known
recipes to
re-incurring
tasks and
allow to
automaticall
y generate
repetitive
control
flows based
on
extended
Finite State
Machines;
(b) increase
system
robustness
and
facilitate the
creation of
holistic QoI
manageme
nt allowing
to
unambiguo
usly define
system
behavior for
scenarios
with
single/multi
ple QoI
requirement
violations in
different
models of
computatio
n; (c)
dynamically
validate
timing
behavior of
system
implementa
tions to
enable a
multi-
objective
optimization
of
nonfunction
al
properties
that
influence
CPS timing.
We
demonstrat
e the
aforementio
ned
benefits
through the
modeling
and
evaluation
of an
infrastructur
e-assisted
automated
driving case
study using
Infrastructur
e-to-Vehicle
(I2V)
communica
tions to
distribute
QoI critical
road
environmen
t
information.

10.1145
/338624

4

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/33862
44;http://dx.
doi.org/10.
1145/33862
44

moc,
model-
driven
design,
timeliness,
design
patterns,
quality-of-
information,
cyber-
physical
systems,
model of
computation
,
performanc
e, Time

Principais características do
artigo incluem: Introdução de

um novo método de
modelagem baseado em

máquinas de estados finitos
compostos que pode ser usado

para modelar sistemas
ciberfísicos. Enfatiza a

importância da qualidade da
informação (QoI) em sistemas
ciberfísicos e como isso pode
afetar o desempenho geral do
sistema. Apresenta um estudo

de caso para demonstrar a
eficácia do método de

modelagem proposto e como
ele pode ser usado para

melhorar o desempenho de um
sistema ciberfísico. O artigo

também discute como o
método proposto pode ser

usado para aprimorar a
segurança de um sistema
ciberfísico, identificando

possíveis pontos fracos no
sistema.

Principais conceitos
abordados no artigo :
Máquinas de estados

finitos compostos: Uma
técnica de modelagem
de sistemas ciberfísicos
que combina múltiplas
máquinas de estados

finitos menores para criar
um modelo mais

complexo e completo.
Sistemas ciberfísicos:

Sistemas que integram
computação e

comunicação com
processos físicos para
monitorar e controlar

sistemas do mundo real.
Qualidade da informação

(QoI): Uma medida da
utilidade e precisão da

informação que é
coletada e transmitida

em um sistema
ciberfísico. A QoI pode
incluir a precisão dos

dados, a taxa de
transmissão, o tempo de

entrega, entre outros
fatores. Segurança

ciberfísica: A proteção de
sistemas ciberfísicos

contra ameaças
cibernéticas, como

ataques de hackers e
malwares. Estudo de
caso: Um exemplo de

como a técnica de
modelagem de máquinas

de estados finitos
compostos pode ser

aplicada em um sistema
ciberfísico para melhorar

a QoI e a segurança.

A metodologia
utilizada no artigo

envolveu uma
combinação de

revisão da
literatura
existente,

desenvolvimento
de uma nova

técnica de
modelagem,

implementação da
técnica em um

estudo de caso e
avaliação dos

resultados.

ACM Inglês CE1 Excluido
Combining Model-
Based Testing and
Automated Analysis
of Behavioural
Models using
GraphWalker and
UPPAAL

S. Tiwari; K.
Iyer; E. P.
Enoiu 2022

Model-
based
Testing
(MBT) has
been
proposed to
create test
cases more
efficiently
and
effectively.
In contrast,
analysis
techniques
(e.g., model
checking)
have been
used
separately
from testing
and have
shown
great
potential
when
applied
early in the
developme
nt process.
Still, these
are
confronted
by
applicability
and
scalability
issues and
work on
specific
modeling
languages.
The
combined
use of MBT
and
analysis
techniques
can support
engineers
in using
both
dynamic
and static
techniques.
This paper
proposes a
hybrid
approach
by
combining
MBT using
GraphWalk
er (GW)
with Model-
Based
Analysis
using
UPPAAL by
transformin
g the GW
model into
UPPAAL
timed
automata
and
supporting
a combined
analysis
and testing
process.
The
approach
enables the
automatic
verification
of both
reachability
and
deadlock
freedom
properties
to exploit
the results
obtained
from this
analysis
step to
improve the
test model
before
generating
and
executing
test cases
on the
system
under test.
The
proposed
approach
can
improve the
combinatio
n of
analysis
and testing
using a
promising
open-
source
MBT tool
and is
currently
being
evaluated
in the
context of
actual use
cases.

10.1109
/APSEC
57359.

2022.00
061

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=1
0043283

Model-
Based
Testing;
analysis;
behavioural
models;
model
checking;
GraphWalk
er;UPPAAL

O artigo apresenta uma
abordagem que combina testes

baseados em modelos e
análise automatizada de

modelos comportamentais. Ele
utiliza as ferramentas

GraphWalker e UPPAAL para
gerar casos de teste

automatizados e realizar
verificações automatizadas,

proporcionando uma
abordagem abrangente e

eficiente para a verificação de
sistemas. A aplicação prática e

os resultados experimentais
demonstram a eficácia da

abordagem proposta.

O artigo aborda os
conceitos de testes

baseados em modelos,
análise automatizada de

modelos
comportamentais, a

ferramenta GraphWalker,
a ferramenta UPPAAL, a
combinação de técnicas

e a integração de
ferramentas. Através da

combinação dessas
técnicas e ferramentas, a

abordagem proposta
oferece uma solução

abrangente e eficiente
para a verificação de

sistemas, melhorando a
cobertura e a precisão na

detecção de defeitos.

A metodologia
proposta no artigo

enfatiza a
integração das

técnicas de testes
baseados em

modelos e análise
automatizada para

obter uma
abordagem

abrangente de
verificação de

sistemas.

IEEE Inglês CE1 Excluido
Cerberus: Query-
Driven Scalable
Vulnerability Detection
in OAuth Service
Provider
Implementations

Rahat TA,
Feng Y,Tian Y 2022

OAuth
protocols
have been
widely
adopted to
simplify
user
authenticati
on and
service
authorizatio
n for third-
party
applications
. However,
little effort
has been
devoted to
automaticall
y checking
the security
of the
libraries
that service
providers
widely use.
In this
paper, we
formalize
the OAuth
specificatio
ns and
security
best
practices,
and design
Cerberus,
an
automated
static
analyzer, to
find logical
flaws and
identify
vulnerabiliti
es in the
implementa
tion of
OAuth
service
provider
libraries. To
efficiently
detect
security
violations in
a large
codebase
of service
provider
implementa
tion,
Cerberus
employs a
query-
driven
algorithm
for
answering
queries
about
OAuth
specificatio
ns. We
demonstrat
e the
effectivenes
s of
Cerberus
by
evaluating it
on datasets
of popular
OAuth
libraries
with
millions of
downloads.
Among
these high-
profile
libraries,
Cerberus
has
identified
47
vulnerabiliti
es from ten
classes of
logical
flaws, 24 of
which were
previously
unknown.
We got
acknowledg
ed by the
developers
of eight
libraries
and had
three
accepted
CVEs.

10.1145
/354860

6.
355938

1

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35486
06.
3559381;
http://dx.doi.
org/10.
1145/35486
06.3559381

vulnerability
detection,
authorizatio
n attacks,
oauth
security,
static
analysis,
automata
theory,
automated
analysis

- - - ACM Inglês CE5 Excluido
CCSpec: A
Correctness
Condition
Specification Tool

C. Peterson;
P. LaBorde; D.
Dechev 2019

Concurrent
libraries
provide
data
structures
whose
operations
appear to
execute
atomically
when
invoked
individually.
Although
these
libraries
guarantee
safety for
the data
structure
operations,
the
composition
of
operations
may be
vulnerable
to
undefined
behavior.
The
difficulty of
reasoning
about
safety
properties
in a
concurrent
environmen
t has led to
the
developme
nt of tools
to verify
that a
concurrent
data
structure
meets a
correctness
condition.
The
disadvanta
ge of these
tools is that
they cannot
verify that
the
composition
of
concurrent
data
structure
operations
respects
the
intended
semantics
of the
algorithm.
Formal
logic has
been
proposed to
enable the
verification
of
correctness
specificatio
ns for a
concurrent
algorithm.
However, a
large
amount of
manual
labor is
required to
fully
mechanize
the
correctness
proofs of
the
concurrent
algorithm
and each
concurrent
data
structure
invoked in
the
algorithm.
In this
research,
we propose
Correctnes
s Condition
Specificatio
n
(CCSpec),
the first tool
that
automaticall
y checks
the
correctness
of a
composition
of
concurrent
multi-
container
operations
performed
in a non-
atomic
manner. In
addition to
checking
the
correctness
of a
composition
of data
structure
operations
in a
concurrent
algorithm,
CCSpec
also checks
the
correctness
of each
concurrent
data
structure
utilized in
the
algorithm. A
reference to
a container
is
associated
with each
method
called in a
concurrent
history to
enable the
evaluation
of
correctness
for a
composition
of multiple
containers.
We develop
a
lightweight
custom
specificatio
n language
that allows
the user to
define a
correctness
condition
associated
with the
concurrent
algorithm
and a
correctness
condition
associated
with the
concurrent
data
structures.
We
demonstrat
e the
practical
application
of CCSpec
by checking
the
correctness
of a
concurrent
depth-first
search
utilizing a
non-
blocking
stack, a
concurrent
breadth-first
search
utilizing a
non-
blocking
queue, a
concurrent
shortest
path
algorithm
utilizing a
non-
blocking
priority
queue, and
a
concurrent
adjacency
list utilizing
non-
blocking
sets.

10.1109
/ICPC.

2019.00
041

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
813298

concurrency
;verification;
correctness
condition

O artigo destacam a utilidade e
funcionalidade do CCSpec
como uma ferramenta para

especificar e verificar
condições de correção em
sistemas. O artigo fornece

insights valiosos para
pesquisadores e profissionais

interessados em verificar a
corretude de sistemas

complexos.

o artigo incluem a
importância das

condições de correção, a
especificação formal, a
ferramenta CCSpec, a
sintaxe e semântica da
linguagem, a verificação
automática, a integração
com outras ferramentas,

estudos de caso,
exemplos e a

comparação com
abordagens
relacionadas.

A metodologia do
artigo apresentam

uma revisão da
literatura sobre as

abordagens e
ferramentas

existentes para a
especificação e
verificação de
condições de
correção em
sistemas. Em
seguida, eles
introduzem o
CCSpec, a

ferramenta de
especificação de

condições de
correção

desenvolvida no
artigo, descrevem

a sintaxe e
semântica da

linguagem
CCSpec em

detalhes,
explicando os
elementos e
construções

utilizados para
expressar as
condições de

correção,
apresentam
exemplos de

especificações
CCSpec para

ilustrar a forma
como a linguagem
pode ser utilizada

na prática.

IEEE Inglês CE1 Excluido
Business Process
Modeling and
Simulation with
DPMN: Processing
Activities

G. Wagner 2021

The
Business
Process
Modeling
Notation
(BPMN)
has been
established
as a
modeling
standard in
Business
Process
(BP)
Manageme
nt.
However,
BPMN
lacks
several
important
elements
needed for
BP
simulation
and is not
well-aligned
with the
Queueing
Network
paradigm of
Operations
Research
and the
related BP
simulation
paradigm
pioneered
by the
Discrete
Event
Simulation
(DES)
languages/t
ools GPSS
and
SIMAN/Are
na. The
Discrete
Event
Process
Modeling
Notation
(DPMN)
proposed
by Wagner
(2018) is
based on
Event
Graphs
(Schruben
1983),
which
capture the
DES
paradigm of
Event-
Based
Simulation.
By allowing
to make
flowchart
models of
queueing/pr
ocessing
networks
with a
precise
semantics,
DPMN
reconciles
(the
flowchart
approach
of) BPMN
with DES.
DPMN is
the first
visual
modeling
language
that
supports all
important
DES
approaches
: event-
based
simulation,
activity-
based DES
and
Processing
Network
models,
providing a
foundation
for
harmonizin
g and
unifying the
many
different
terminologi
es/concepts
and
diagram
languages
of
established
DES tools.

10.1109
/WSC5
2266.

2021.97
15457

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
715457

-

O artigo destaca o uso do DMN
para modelar e simular

atividades de processamento
em um contexto de negócios. O

artigo apresenta exemplos
práticos, descreve como os

modelos podem ser simulados
e discute a aplicação do DMN
para processos de negócios.

O artigo incluem a
introdução ao DMN, a

modelagem de
atividades de

processamento usando
DMN, a simulação de

modelos, a comparação
com outras abordagens e
a aplicação do DMN em
processos de negócios.

O artigo e
ilustradas com

exemplos práticos
de modelagem e

simulação de
atividades de

processamento
usando o DMN. O

artigo fornece
informações úteis
para quem está
interessado em
utilizar o DMN
para modelar e

analisar
processos de

negócios.

IEEE Inglês CE1 Excluido
Building Devs Models
with the Cadmium
Tool

L. Belloli; D.
Vicino; C.
Ruiz-Martin;
G. Wainer

2019

Discrete
Event
System
Specificatio
n (DEVS) is
a
mathematic
al
formalism
to model
and
simulate
discrete-
event
dynamic
systems.
The
advantages
of DEVS
include a
rigorous
formal
definition of
models and
a well-
defined
mechanism
for modular
composition
. In this
tutorial, we
introduce
Cadmium,
a new
DEVS
simulator.
Cadmium is
a C++17
header only
DEVS
simulator
easy to
include and
to integrate
into
different
projects.
We discuss
the tool's
Application
Programmi
ng
Interface,
the
simulation
algorithms
used and
its
implementa
tion. We
present a
case study
as an
example to
explain how
to
implement
DEVS
models in
Cadmium.

10.1109
/WSC4
0007.

2019.90
04917

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
004917

-

O artigo fornece uma visão
geral da ferramenta Cadmium e

da abordagem DEVS,
destacando suas aplicações e
benefícios na construção de

modelos de sistemas discretos
baseados em eventos.

O artigo incluem a
abordagem DEVS, a

ferramenta Cadmium, o
processo de modelagem
e simulação, exemplos

práticos de aplicação e a
discussão sobre

vantagens e limitações
do uso do Cadmium.

 A metodologia
envolve desde a
compreensão do

sistema até a
simulação,

análise, validação
e documentação
do modelo DEVS

construído
utilizando a
ferramenta.

IEEE Inglês CE1 Excluido
Bounded Verification
of State Machine
Models

Kahani N,
Cordy JR 2020

In this work,
we propose
a bounded
verification
approach
for state
machine
(SM)
models that
is
independen
t of any
model
checking
tools. This
independen
ce is
achieved by
encoding
the
execution
semantics
of SM
models as
Satisfiability
Modulo
Theories
(SMT)
formulas
that reduce
the
verification
of a SM to
the
satisfiability
problem for
its
correspondi
ng formula.
More
specifically,
our
approach
takes as
input a SM
model, a
depth
bound, and
the system
properties
(as
invariants),
and then
automaticall
y verifies
models of
systems in
a three-
phase
process: (1)
First it
generates
all possible
execution
paths of the
model to
the
specified
bound, and
encodes
each of the
execution
paths as
SMT
formulas;
(2) It then
augments
the SMT
formulas
with the
negation of
the given
invariants;
and (3)
Finally, it
uses an
SMT solver
to check
the
satisfiability
of the
instrumente
d formula.
We have
applied our
approach in
the context
of UML-RT
(the UML
profile for
modeling
real-time
embedded
systems)
and
assessed
the
applicability
,
performanc
e, and
scalability
of our
approach
using
several
case
studies.

10.1145
/341980

4.
342026

3

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/34198
04.
3420263;
http://dx.doi.
org/10.
1145/34198
04.3420263

State
Machine,
Bounded
Verification,
MDE, MDD

 O artigo apresenta uma
abordagem inovadora para a

verificação de modelos de FSM
usando a técnica de BMC, e

oferece uma ferramenta prática
para aplicar essa abordagem

em cenários reais.

O artigo explora a
aplicação da técnica de
verificação de modelo

limitado em modelos de
máquina de estado finita,

apresentando um
algoritmo e uma

ferramenta prática para
facilitar o processo de
verificação e análise

desses modelos.

A metodologia
proposta pode ser
dividida em várias

etapas.
Primeiramente, o

modelo de
máquina de
estados é

formalizado e
descrito usando

uma linguagem de
modelagem

específica, como
a Unified Modeling
Language (UML).
São definidas as
propriedades que

devem ser
verificadas no
modelo. Essas
propriedades
podem incluir

requisitos
funcionais,

restrições de
segurança ou

propriedades de
corretude. A
verificação
limitada é

realizada. Isso
envolve a geração

automática de
casos de teste ou
a análise direta do

modelo,
considerando os

limites
estabelecidos. Os

resultados da
verificação são

então analisados
e interpretados.

Se todas as
propriedades

forem satisfeitas
dentro dos limites
estabelecidos, o

modelo é
considerado
válido com
relação às

propriedades
verificadas. Caso

contrário, são
identificadas as

violações ou
falhas e são

tomadas ações
corretivas para

modificar o
modelo. O

processo de
verificação pode
ser repetido com
limites diferentes

ou refinados,
dependendo das
necessidades do

projeto.

ACM Inglês CE1 e CE2 Excluido
Bigraphical Modelling
and Design of Multi-
Agent Systems

Dib AT,
Maamri R 2021

Multi-agent
systems
are
recognized
as a major
area of
distributed
artificial
intelligence.
In fact,
MAS have
found
multiple
applications
, including
the design
and
developme
nt of
complex,
hierarchical
and critical
systems.
However,
ensuring
the
accuracy of
complex
interactions
and the
correct
execution
of activities
of a MAS is
becoming a
tedious
task. In this
work, we
focus on
the formal
specificatio
n of
interaction,
holonic and
sociotechni
cal
concepts to
the BRS-
MAS
model. The
proposed
approach,
is based on
Bigraphical
reactive
systems.
Bigraphs,
provide
means to
specify at
same time
locality and
connectivity
of different
type of
system
ranging
from soft
systems to
cyber
physical
systems. In
addition, to
its intuitive
graphical
representati
on, it
provides
algebraic
definition.
This,
makes the
resulted
specificatio
ns more
precise.
Further, it
enables the
verification
of the
specified
system at
the design
time (before
the
implementa
tion) using
verification
tools.

10.1145
/346770

7.
346776

2

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/34677
07.
3467762;
http://dx.doi.
org/10.
1145/34677
07.3467762

Computing
methodologi
es, Holonic,
Algebraic
language
theory,
Multi-agent
system,
Formal
specificatio
n, Theory of
computation

O artigo apresenta uma
abordagem inovadora e formal
baseada em modelos bigráficos

para o design de sistemas
multiagentes, oferecendo uma

perspectiva interessante e
promissora nessa área de

pesquisa.

O artigo apresenta os
principais conceitos da
modelagem bigráfica
aplicada a sistemas

multiagentes,
destacando sua
capacidade de

representar interações
complexas entre agentes
e fornecendo uma base

sólida para análise e
verificação de

propriedades do sistema.

A abordagem
proposta permite
uma modelagem
mais precisa e

formal dos
sistemas

multiagentes,
possibilitando a

detecção de
problemas de

design e a
verificação de

propriedades do
sistema de forma

mais eficiente.

ACM Inglês CE1 Excluido
Better Development
of Safety Critical
Systems: Chinese
High Speed Railway
System Development
Experience Report

Z. Wu; J. Liu;
X. Chen 2019

Ensure the
correctness
of safety
critical
systems
play a key
role in the
worldwide
software
engineering
. Over the
past years
we have
been
helping
CASCO
Signal Ltd
which is the
Chinese
biggest
high speed
railway
company to
develop
high speed
railway
safety
critical
software.
We have
also
contributed
specific
methods for
developing
better
safety
critical
software,
including a
search-
based
model-
driven
software
developme
nt approach
which uses
SysML
diagram
refinement
method to
construct
SysML
model and
SAT solver
to check
the model.
This talk
aims at
sharing the
challenge
of
developing
high speed
railway
safety
critical
system,
what we
learn from
develop a
safety
critical
software
with a
Chinese
high speed
railway
company,
and we use
ZC
subsystem
as a case
study to
show the
systematic
model-
driven
safety
critical
software
developme
nt method.

10.1109
/ASE.

2019.00
143

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
952294

SysML;
Formal
Method;
Model-
Driven;SAT

O artigo apresenta um estudo
de caso sobre o

desenvolvimento do sistema de
trem de alta velocidade da

China. O principal objetivo é
descrever as práticas de
engenharia de software
utilizadas para garantir a

segurança do sistema em um
ambiente crítico e complexo.

Principais conceitos
abordados no artigo

estão: Sistemas críticos
de segurança: sistemas
que, se falharem, podem

causar danos
significativos à vida
humana, ao meio

ambiente ou à economia;
Análise de requisitos:

processo de identificação
e documentação das

necessidades e
expectativas dos

usuários e das partes
interessadas em relação

ao sistema;
Verificação e validação:
processo de avaliação

sistemática e
documentada de um

sistema ou componente
para garantir que ele
atenda aos requisitos

especificados;
Teste de aceitação: teste
final realizado antes da
entrega do sistema ao

cliente, com o objetivo de
verificar se o sistema
atende aos requisitos

acordados e está pronto
para uso;

Monitoramento e
manutenção: atividades

realizadas após a
implantação do sistema,

para garantir que ele
continue a funcionar

conforme o esperado e
para corrigir eventuais
problemas que possam

surgir.

A metodologia
adotada consistiu

em uma
abordagem de
engenharia de

requisitos, com a
definição clara
dos requisitos

funcionais e não-
funcionais e a
utilização de

técnicas formais
de análise,
incluindo

modelagem formal
e verificação de

modelo, para
garantir a

qualidade e
segurança do
sistema. Além
disso, o artigo

também destaca a
importância da
colaboração

interdisciplinar e
do envolvimento
de especialistas
em segurança e

gerenciamento de
riscos desde as
fases iniciais do

projeto.

IEEE Inglês CE1 Excluido
Automatic Formal
Model Generation
from UML Diagrams –
An Implementation
Experience

K. KH; S.
Mansoor; S. G 2022

This paper
discusses
the
implementa
tion of a
formal
method
integrated
Unified
Modeling
Language
(UML)
modelling
methodolog
y for the
verification
of
embedded
software
specificatio
ns. The
methodolog
y generates
mathematic
ally
verifiable
models,
synergising
UML visual
models with
formal
methods.
The
implementa
tion is
carried out
using
Umbrello
UML
Modeller
and Qt. It
provides a
Graphical
User
Interface-
based tool
and a
model
checking
engine,
integrated
into
Umbrello
UML
Modeller,
which can
interpret
UML
diagrams
and
generate a
formal
model
automaticall
y. The tool
architecture
has three
distinct
layers: the
UML,
Interface,
and Formal
layers; the
Interface
layer is the
innovative
one. GUI is
developed
for this
layer, and
all the
actions
associated
with the
Interface
layer are
made
available
through
interactive
menus and
toolbars.

10.1109
/DELC
ON540

57.
2022.97
53518

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
753518

Computatio
nal Tree
Logic;
Formal
Verification;
Linear
Temporal
Logic;
Property
Specificatio
n;State
Chart
Diagram;
State
Transition
Matrix;UML
Modelling

 O artigo apresenta uma
abordagem para gerar

automaticamente modelos
formais a partir de diagramas

UML, destacando os benefícios
da geração automática, a
implementação prática da
abordagem, os desafios

encontrados e os resultados
obtidos.

O artigo explora a
geração automática de

modelos formais a partir
de diagramas UML,

destacando a
importância da

modelagem formal, a
transformação dos

diagramas em modelos
formais, a

implementação prática
da abordagem, a
experiência de

implementação, a
avaliação e validação
dos modelos gerados.

A metodologia do
artigo envolve a

análise dos
diagramas UML,
identificação dos
elementos-chave,
mapeamento para

a linguagem
formal,

desenvolvimento
de algoritmos de
transformação,

implementação da
ferramenta,

experimentação,
avaliação e
análise dos
resultados.

IEEE Inglês CE1 Excluido

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9787888
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9793984
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9534721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8734748
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10041232
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9502448
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9705050
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3386244;http://dx.doi.org/10.1145/3386244
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10043283
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3548606.3559381;http://dx.doi.org/10.1145/3548606.3559381
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8813298
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9715457
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9004917
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3419804.3420263;http://dx.doi.org/10.1145/3419804.3420263
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3467707.3467762;http://dx.doi.org/10.1145/3467707.3467762
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8952294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9753518

Automated Model-
Based Test Case
Generation for Web
User Interfaces (WUI)
From Interaction Flow
Modeling Language
(IFML) Models

N. Yousaf; F.
Azam; W. H.
Butt; M. W.
Anwar; M.
Rashid

2019

Since the
emergence
of web 2.0,
the
architecture
of web
applications
has been
transformed
significantly
and its
complexity
has grown
enormously
. In such
web
applications
, the user
interface
(UI) is an
important
ingredient
and with
the
increased
complexity,
its testing is
getting
increasingly
complex
and
cost/time-
consuming
process.
Recently
introduced,
interaction
flow
modeling
language
(IFML) is an
object
manageme
nt group
(OMG)
standard.
IFML is
gaining
popularity
for
developing
web
applications
, primarily,
because of
its excellent
features for
modeling UI
elements,
their
content,
and their
interaction
capturing
capabilities.
However,
despite its
superior UI
modeling
features, its
UI testing is
accomplish
ed through
traditional
time-
consuming
techniques,
which are
employed
after
implementi
ng the UI
code.
Hence, to
overcome
these
limitations,
this paper
introduces
a novel
model-
based
testing
approach
for IFML UI
elements.
The
proposed
approach
provides
complete
navigation
testing
using
formal
models.
Moreover,
the
approach
transforms
the IFML
models to
all
necessary
UI testing
artifacts by
generating
state
transition
matrix plus
detailed UI
test case
document.
As a part of
a research,
model-
based user
interface
test case
(MBUITC)
generator
tool is
implemente
d to
automaticall
y generate
navigation
model for
formal
verification,
test case
document,
and
transition
matrices
from IFML
models.
The
applicability
of the
proposed
approach is
validated
through two
benchmark
case
studies.
The results
have shown
that the
proposed
approach
provides
test cases
at the early
stages of
developme
nt, i.e.,
specificatio
n and
analysis,
which
eventually
helps in
building a
right
product at
the right
time at a
comparativ
ely lower
cost.

10.1109
/ACCE

SS.
2019.29
17674

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
718593

Formal
verification;
IFML;MBT;
model-
based
testing;UI;
web
applications
;WUI

Principais características do
artigo são: Foco em geração
automatizada de casos de

teste; Uso de modelos IFML:
Os autores usam modelos

IFML para descrever a
estrutura e comportamento da
WUI, que são então utilizados

para gerar casos de testes;
Utilização de técnicas de
modelagem: Os autores

utilizam técnicas de
modelagem para criar os

modelos IFML, o que ajuda a
evitar ambiguidades e

inconsistências na descrição da
WUI; Avaliação experimental:

Os autores realizam uma
avaliação experimental do

método proposto, comparando-
o com outras técnicas de

geração de casos de teste;
Potencial para aplicação

prática: O método proposto tem
potencial para ser aplicado em
ambientes de desenvolvimento
de software reais, melhorando
a eficiência e qualidade dos

testes de WUI.

Principais conceitos
abordados no artigo

incluem: Modelagem de
interfaces de usuário;

Casos de teste; Geração
automatizada de casos
de teste; Cobertura de

teste; Avaliação
experimental.

A metodologia
pode ser dividida
em várias etapas,

como :
Modelagem da
WUI utilizando

IFML; Geração de
grafo de fluxo de
eventos (EFG);

Seleção de
caminhos de

teste; Geração de
casos de teste;
Avaliação de
redundância;
Execução de

casos de teste; O
artigo inclui uma

avaliação
experimental da

metodologia
proposta,

comparando-a
com outras
técnicas de

geração de casos
de teste. Os
resultados

indicam que o
método IFML é
capaz de gerar
casos de teste

com maior
cobertura e menor
redundância em
relação às outras

técnicas
avaliadas.

IEEE Inglês CE1 Excluido
Automated Goal
Model Extraction
from User Stories
Using NLP

T. Güneş; F.
B. Aydemir 2020

User stories
are
commonly
used to
capture
user needs
in agile
methods
due to their
ease of
learning
and
understandi
ng. Yet, the
simple
structure of
user stories
prevents us
from
capturing
relations
among
them. Such
relations
help the
developers
to better
understand
and
structure
the backlog
items
derived
from the
user
stories.
One
solution to
this
problem is
to build
goal
models that
provide
explicit
relations
among
goals but
require time
and effort to
build. This
paper
presents a
pipeline to
automaticall
y generate
a goal
model from
a set of
user stories
by applying
natural
language
processing
(NLP)
techniques
and our
initial
heuristics to
build
realistic
goal
models. We
first parse
and identify
the
dependenci
es in the
user
stories, and
store the
results in a
graph
database to
maintain
the
relations
among the
roles,
actions,
and objects
mentioned
in the set of
user
stories. By
applying
NLP
techniques
and several
heuristics,
we
generate
goal
models that
resemble
human-built
models.
Automatical
ly
generating
models
significantly
decreases
the time
spent on
this tedious
task. Our
research
agenda
includes
calculating
the
similarity
between
the
automaticall
y generated
models and
the expert-
built
models.
Our
overarching
research
goals are to
provide i.
an NLP-
powered
framework
that
generates
goal
models
from a set
of user
stories, ii.
several
heuristics to
generate
goal
models that
resemble
human-built
models,
and iii. a
repository
that
includes
sets of user
stories, with
correspondi
ng human-
built and
automaticall
y generated
goal
models.

10.1109
/RE485

21.
2020.00

052

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
218185

natural
language
processing;
requirement
s
engineering
;model
driven
developmen
t;user
stories;agile
developmen
t;goal
models

O artigo aborda a extração
automatizada de modelos de
metas a partir de histórias de
usuário, utilizando técnicas de
Processamento de Linguagem

Natural. A validação e o
refinamento do modelo de

metas também são aspectos
abordados no artigo, além dos

benefícios da abordagem
proposta.

O artigo propõe uma
abordagem automatizada

que utiliza técnicas de
Processamento de

Linguagem Natural para
extrair informações das
histórias de usuário e

construir um modelo de
metas. A validação e o
refinamento do modelo

são realizados para
garantir sua qualidade e

relevância.

A metodologia do
artigo consiste em
coletar histórias
de usuário, pré-
processá-las,
analisar sua
estrutura e

significado com
técnicas de NLP,

extrair
informações
relevantes,

construir um
modelo de metas
e validar/refinar o
modelo com base
nas informações

extraídas.

IEEE Inglês CE1 Excluido
Automated Generation
of LTL Specifications
For Smart Home IoT
Using Natural
Language

S. Zhang; J.
Zhai; L. Bu; M.
Chen; L.
Wang; X. Li

2020

Ordinary
users can
build their
smart home
automation
system
easily
nowadays,
but such
user-
customized
systems
could be
error-prone.
Using
formal
verification
to prove the
correctness
of such
systems is
necessary.
However, to
conduct
formal
proof,
formal
specificatio
ns such as
Linear
Temporal
Logic (LTL)
formulas
have to be
provided,
but ordinary
users
cannot
author LTL
formulas
but only
natural
language.
To address
this
problem,
this paper
presents a
novel
approach
that can
automaticall
y generate
formal LTL
specificatio
ns from
natural
language
requirement
s based on
domain
knowledge
and our
proposed
ambiguity
refining
techniques.
Experiment
al results
show that
our
approach
can achieve
a high
correctness
rate of
95.4% in
converting
natural
language
sentences
into LTL
formulas
from 481
requirement
s of real
examples.

10.2391
9

/DATE4
8585.

2020.91
16374

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
116374

- - - - IEEE Inglês CE5 Excluido
Automated Assertion
Generation from
Natural Language
Specifications

S. J.
Frederiksen; J.
Aromando; M.
S. Hsiao

2020

We explore
contempora
ry natural
language
processing
(NLP)
techniques
for
converting
NL
specificatio
ns found in
design
documents
directly to
an temporal
logic-like
intermediat
e
representati
on (IR).
Generally,
attempts to
use NLP for
assertion
generation
have relied
on
restrictive
sentence
formats and
grammars
as well as
being
difficult to
handle new
sentence
formats.
We tackle
these
issues by
first
implementi
ng a
system that
uses
commonse
nse
mappings
to process
input
sentences
into a
normalized
form. Then
we use
frame
semantics
to convert
the
normalized
sentences
into an IR
based on
the
information
and context
contained
in the
Frames.
Through
this we are
able to
handle a
large
number of
sentences
from real
datasheets
allowing for
complex
formats
using
temporal
conditions,
property
statements,
and
compound
statements;
all order
agnostic.
Our system
can also be
easy
extended
by
modifying
an external,
rather than
internal,
commonse
nse
knowledge-
base to
handle new
sentence
formats
without
requiring
code
changes or
intimate
knowledge
of the
algorithms
used.

10.1109
/ITC447

78.
2020.93
25264

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
325264

NLP;
Verification;
Specificatio
n

O artigo propõe uma
abordagem automatizada para

gerar asserções a partir de
especificações em linguagem

natural. A utilização de técnicas
de processamento de
linguagem natural e a

verificação de consistência são
características-chave da
abordagem. A avaliação
experimental confirma a
viabilidade e eficácia da

abordagem proposta.

O artigo aborda a
geração automatizada de

asserções a partir de
especificações em
linguagem natural,

utilizando técnicas de
processamento de
linguagem natural e

mapeamento de
informações. A
verificação de

consistência e os
benefícios da abordagem

também são aspectos
destacados no artigo.

Metodologia do
artigo: Coleta e

análise de
especificações em
linguagem natural,

Processamento
de linguagem
natural (NLP),

Mapeamento das
informações para

asserções,
Verificação e

validação,
Refinamento e

iteração.

IEEE Inglês CE1 Excluido
Automated Analysis of
Inter-Parameter
Dependencies in Web
APIs

A. Martin-
Lopez 2020

Web
services
often
impose
constraints
that restrict
the way in
which two
or more
input
parameters
can be
combined
to form
valid calls
to the
service, i.e.
inter-
parameter
dependenci
es. Current
web API
specificatio
n
languages
like the
OpenAPI
Specificatio
n (OAS)
provide no
support for
the formal
description
of such
dependenci
es, making
it hardly
possible to
interact with
the services
without
human
intervention
. We
propose
specifying
and
automaticall
y analyzing
inter-
parameter
dependenci
es in web
APIs. To
this end, we
propose a
domain-
specific
language to
describe
these
dependenci
es, a
constraint
programmin
g-aided tool
supporting
their
automated
analysis,
and an
OAS
extension
integrating
our
approach
and easing
its
adoption.
Together,
these
contribution
s open a
new range
of
possibilities
in areas
such as
source
code
generation
and testing.

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
270345

Web
service;
DSL;
interdepend
ency;CSP;
automated
analysis

Características principais do
artigo incluem: Identificação

automática de dependências,
Utilização de técnicas de

análise estática, Avaliação
experimental, Contribuição

para a área de segurança de
software, Limitações e

trabalhos futuros. Os autores
também discutem as limitações
de sua abordagem e possíveis
trabalhos futuros, incluindo a
extensão da abordagem para

lidar com outras formas de
dependências e a integração

da abordagem em ferramentas
de teste de segurança.

Principais conceitos
discutidos no artigo

incluem: Inter-Parameter
Dependencies; Análise

estática; Grafo de
dependência; Avaliação

experimental; Segurança
de software; O artigo
também discute as

limitações da abordagem
proposta e possíveis

direções para trabalhos
futuros, como lidar com

outras formas de
dependências e integrar

a abordagem em
ferramentas de teste de

segurança.

A metodologia
utilizada no artigo

envolveu as
seguintes etapas:
Coleta de dados;
Análise estática;
Construção do

grafo de
dependência;

Avaliação
experimental;
Análise dos

resultados: Os
autores

concluíram que
sua abordagem
pode ser uma
ferramenta útil
para identificar
dependências

entre parâmetros
em APIs da web e

melhorar a
segurança do
software. No
entanto, eles

também
apontaram
algumas

limitações, como a
necessidade de

melhorar a
precisão da

análise estática e
a necessidade de
lidar com outras

formas de
dependências.

IEEE Inglês CE1 Excluido
Automated analysis
of e-learning web
applications

F. Škopljanac-
Mačina; B.
Blašković; i. I.
Zakarija

2019

In our
paper we
are
exploring
the use of
formal
methods for
testing and
verification
of
interactive
e-learning
web
applications
. These
programs
can be
highly
interactive
and are
often used
for
knowledge
assessment
and on-line
tutoring
purposes.
They are
written in
web
standard
languages
and
executed in
client
browsers.
Even
simpler web
applications
can have
various
different
interaction
scenarios
which
makes
them hard
to test
reliably.
Therefore,
we are
using
formal
methods
tools such
as SPIN
model
checker
and its
Promela
language to
improve
web
application
testing
process.
We create
semi-
automaticall
y Promela
process
models
from web
application
source
code, and
run their
simulations,
as well as
verification
using SPIN.
Using these
techniques,
we want to
identify
flaws in
web
application
design, and
find and
visualize all
interaction
scenarios
using finite
state
automata.
We will
present use
case
example
based on
tutoring
web
application
from our e-
learning
system
used on our
course
Fundament
als of
Electrical
Engineering
.

10.2391
9

/MIPRO
.

2019.87
56749

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
756749

e-learning
web
applications
;testing;
verification;
SPIN;
Promela

O artigo "Automated analysis of
e-learning web applications"

destaca a importância da
análise automatizada para a

segurança das aplicações web
de e-learning. Ele propõe uma

abordagem que combina
técnicas de análise estática e

dinâmica para identificar
vulnerabilidades e contribuir

para a proteção dos usuários e
dados nessas plataformas

educacionais online.

O artigo aborda a
importância da

segurança em aplicações
web de e-learning e

propõe uma abordagem
automatizada para a
análise de segurança

nessas plataformas. Os
principais conceitos

incluem a aplicação de
análise automatizada, a

identificação de
diferentes tipos de

vulnerabilidades, o uso
de técnicas de análise

estática e dinâmica, e os
benefícios da abordagem

automatizada.

A metodologia do
artigo envolve a

coleta de
requisitos, seleção
de ferramentas e

técnicas,
preparação e
execução dos

testes
automatizados,

análise dos
resultados,
correção e

mitigação das
vulnerabilidades e

monitoramento
contínuo da

segurança. Esses
passos permitem

a identificação
eficiente de

problemas de
segurança nas

aplicações web de
e-learning e a

implementação de
medidas de

proteção
adequadas.

IEEE Inglês CE1 Excluido
Auditing a Software-
Defined Cross
Domain Solution
Architecture

N. Daughety;
M. Pendleton;
R. Perez; S.
Xu; J. Franco

2022

In the
context of
cybersecuri
ty systems,
trust is the
firm belief
that a
system will
behave as
expected.
Trustworthi
ness is the
proven
property of
a system
that is
worthy of
trust.
Therefore,
trust is
ephemeral,
i.e. trust
can be
broken;
trustworthin
ess is
perpetual, i.
e.
trustworthin
ess is
verified and
cannot be
broken. The
gap
between
these two
concepts is
one which
is,
alarmingly,
often
overlooked.
In fact, the
pressure to
meet with
the pace of
operations
for mission
critical
cross
domain
solution
(CDS)
developme
nt has
resulted in
a status
quo of high-
risk, ad hoc
solutions.
Trustworthi
ness,
proven
through
formal
verification,
should be
an essential
property in
any
hardware
and/or
software
security
system. We
have
shown, in
"vCDS: A
Virtualized
Cross
Domain
Solution
Architecture
", that
developing
a formally
verified
CDS is
possible.
virtual CDS
(vCDS)
additionally
comes with
security
guarantees,
i.e.
confidentiali
ty, integrity,
and
availability,
through the
use of a
formally
verified
trusted
computing
base
(TCB). In
order for a
system,
defined by
an
architecture
description
language
(ADL), to
be
considered
trustworthy,
the
implemente
d security
configuratio
n, i.e.
access
control and
data
protection
models,
must be
verified
correct. In
this paper
we present
the first and
only
security
auditing
tool which
seeks to
verify the
security
configuratio
n of a CDS
architecture
defined
through
ADL
description.
This tool is
useful in
mitigating
the risk of
existing
solutions by
ensuring
proper
security
enforcemen
t.
Furthermor
e, when
coupled
with the
agile nature
of vCDS,
this tool
significantly
increases
the pace of
system
delivery.

10.1109
/CSR54

599.
2022.98
50321

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
850321

Cross
Domain
Solution;
Architecture
Description
Language;
Trustworthi
ness;
Configuratio
n Security;
Data
Protection;
Access
Control;
Trusted
Systems;
Security
Analysis

O artigo enfoca a auditoria de
uma arquitetura de solução de
domínio cruzado definida por

software, com ênfase na
avaliação de requisitos de
segurança, métodos de

auditoria, análise de
vulnerabilidades, boas práticas
de segurança, conformidade e

recomendações para
melhorias.

O artigo explora os
conceitos de arquitetura
de solução de domínio
cruzado, auditoria de

segurança, requisitos de
segurança, controles de
segurança, análise de
riscos, conformidade e
regulamentações, além

de oferecer
recomendações para

aprimoramento da
arquitetura. O objetivo é

garantir a segurança,
conformidade e proteção

dos sistemas em uma
arquitetura de solução de

domínio cruzado.

A metodologia
inclui os seguintes
passos: Definição
dos objetivos da
auditoria, Coleta
de informações,

Análise de
requisitos de
segurança,

Análise de riscos,
Avaliação dos
controles de
segurança,

Identificação de
vulnerabilidades.

IEEE Inglês CE1 Excluido
ArTu: A Tool for
Generating Goal
Models from User
Stories

T. Günes; C.
A. Öz; F. B.
Aydemir 2021

User stories
are widely
used to
capture the
desires of
the users in
agile
developme
nt. A set of
user stories
is easy to
read and
write but
incapable
of
representin
g the
hierarchical
relations
and
synergies
among the
user
stories. By
contrast,
goal
models are
uncommon
in industrial
projects
however
they can
express the
structure
and other
relations
among
requirement
s captured
as goals.
This paper
presents
ArTu, a tool
for
generating
goal
models
from user
stories to
effortlessly
benefit from
both. Given
a set of
user
stories, our
tool
generates
goal
models with
different
structures
depending
on the
heuristic
selected by
the user.
Users can
import, edit,
and export
model data
in different
formats.

10.1109
/RE517

29.
2021.00

058

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
604615

requirement
s
engineering
;model–
driven
developmen
t;user
stories;agile
developmen
t;goal
models;
natural
language
processing

 O artigo descreve a ArTu
como uma ferramenta que
automatiza o processo de

geração de modelos de metas
a partir de histórias de

usuários. A ferramenta integra
as histórias de usuários com os

modelos de metas, suporta
diferentes linguagens de

modelagem, automatiza o
processo de modelagem, gera
documentação associada e foi
avaliada por meio de estudos

de caso.

Os principais conceitos
abordados incluem user

stories, modelos de
metas, geração

automática, linguagens
de modelagem,

integração entre user
stories e modelos,

documentação
automática e avaliação

da ferramenta.

A metodologia do
artigo envolve a
definição dos
requisitos da
ferramenta,

análise de user
stories, escolha
da linguagem de

modelagem,
implementação da
ferramenta, testes

e avaliação,
estudos de caso e

análise dos
resultados.

IEEE Inglês CE1 Excluido
Analyzing the
Validation Flaws of
Online Shopping
Systems Based on
Coloured Petri Nets

W. Yu; L. Liu;
Y. An; X. Zhai 2019

Online
shopping
systems
integrating
multiple
participants
have
rapidly
developed
worldwide.
The
complex
business
interactions
among the
multiple
participants
introduce
new
security
problems,
and the
validation
flaw is one
of the main
issues. A
legal user
can utilize
the
validation
flaws, by
some
special
behaviours,
to obtain
illegal
interests.
To deal
with above
issue, we
propose the
process to
analyze
validation
flaws by
formal
methods
based on
CPN
(Coloured
Petri nets).
The
modeling
method is
based on
CPN
Modeling
Language,
and the
analyzing
process
utilizes the
transaction
properties
of online
shopping
systems.
CPN tools
can provide
the basic
support to
the
analyzing
process. A
case study
throughout
this work is
used to
illustrate
the
proposed
methodolog
y.

10.1109
/Smart
World-
UIC-
ATC-

SCALC
OM-
IOP-
SCI.

2019.00
304

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
060216

formal
model;Petri
net;online
shopping;
validation;
security

 O artigo destaca as
características principais de

analisar as falhas de validação
em sistemas de compras

online, utilizando a modelagem
com Coloured Petri Nets. Ele
identifica as vulnerabilidades
comuns e propõe melhorias

para fortalecer a segurança e a
validação nesses sistemas. Os

estudos de caso fornecem
exemplos concretos de

aplicação da abordagem
proposta.

 O artigo aborda os
principais conceitos

relacionados à análise
das falhas de validação

em sistemas de compras
online. Ele utiliza os
modelos CPN para

representar o
comportamento dos
sistemas e identificar

vulnerabilidades. A partir
dessas análises, são
propostas melhorias e

soluções para fortalecer
a segurança e a

validação nos sistemas
de compras online.

A metodologia
adotada no artigo

combina a
modelagem com
Coloured Petri

Nets, a análise de
cenários e

simulações para
identificar e

avaliar as falhas
de validação nos

sistemas de
compras online.

As soluções
propostas são

validadas e visam
melhorar a

segurança e a
eficiência dos
processos de

validação nesses
sistemas.

IEEE Inglês CE1 Excluido
A Systematic
Identification of Formal
and Semi-Formal
Languages and
Techniques for
Software-Intensive
Systems-of-Systems
Requirements
Modeling

C. A. Lana; M.
Guessi; P. O.
Antonino; D.
Rombach; E.
Y. Nakagawa

2019

Software-
intensive
systems-of-
systems
(SoS) refer
to an
arrangeme
nt of
manageriall
y and
operationall
y
independen
t systems (i.
e.,
constituent
systems),
which work
collaborativ
ely toward
the
achieveme
nt of global
missions.
Because
some SoS
are being
developed
for critical
domains,
such as
healthcare
and
transportati
on, there is
an
increasing
need to
attain
higher
quality
levels,
which often
justifies the
additional
costs that
can be
incurred by
adopting
formal and
semi-formal
approaches
(i.e.,
languages
and
techniques)
for
modeling
requirement
s. Various
approaches
have been
employed,
but a
detailed
landscape
is still
missing,
and it is not
well known
whether
these
approaches
are
appropriate
for
addressing
the inherent
characterist
ics of SoS.
The main
contribution
of this
paper is to
present this
landscape
by reporting
on the state
of the art in
SoS
requirement
s modeling.
This
landscape
was built by
means of a
systematic
mapping
and shows
formal and
semi-formal
approaches
grouped
from model-
based to
property-
oriented
ones. Most
of them
have been
tested in
safety-
critical
domains,
where
formal
approaches
such as
finite-state
machines
are aimed
at critical
system
parts,
whereas
semi-formal
approaches
(e.g.,
unified
modeling
language
and i*)
address
non-critical
parts.
Although
formal and
semi-formal
modeling is
an essential
activity, the
quality of
SoS
requirement
s does not
rely solely
on the
formalism
that is
used, but
also on the
availability
of
supporting
tools/mech
anisms that
enable, for
instance,
requirement
s
verification
along the
SoS life
cycle.

10.1109
/JSYST.
2018.28
74061

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
514059

Formal
languages;
requirement
s modeling;
semi-formal
languages;
systematic
mapping;
systems-of-
systems
(SoS)

O artigo apresenta uma revisão
sistemática de literatura

abrangente e bem estruturada,
com identificação e

classificação de linguagens e
técnicas formais e semi-formais

utilizadas na modelagem de
requisitos de sistemas

intensivos em software, além
de uma discussão crítica e

exemplos de aplicação prática.

Principais conceitos
abordados no artigo são:
Requisitos de sistemas
intensivos em software;

Linguagens formais;
Linguagens semi-

formais; Modelagem de
objetivos;

Modelagem de cenários;
Modelagem de

requisitos; Modelagem
formal.

O artigo utiliza
uma metodologia

sistemática de
revisão da

literatura para
identificar e
analisar as

linguagens e
técnicas formais e

semi-formais
utilizadas na

modelagem de
requisitos de

sistemas
intensivos em

software, visando
fornecer uma

visão geral sobre
as principais
ferramentas

disponíveis e suas
limitações.

IEEE Inglês CE1 Excluido
A Survey on Network
Verification and Testing
With Formal Methods:
Approaches and
Challenges

Y. Li; X. Yin;
Z. Wang; J.
Yao; X. Shi; J.
Wu; H. Zhang;
Q. Wang

2019

Networks
have grown
increasingly
complicated
. Violations
of intended
policies can
compromis
e network
availability
and
network
reliability.
Network
operators
need to
ensure that
their
policies are
correctly
implemente
d. This has
inspired a
research
field,
network
verification
and testing,
that
enables
users to
automaticall
y detect
bugs and
systematica
lly reason
their
network.
Furthermor
e,
techniques
ranging
from formal
modeling to
verification
and testing
have been
applied to
help
operators
build
reliable
systems in
electronic
design
automation
and
software.
Inspired by
its success,
network
verification
has
recently
seen
increased
attention in
the
academic
and
industrial
communitie
s. As an
area of
current
interest, it is
an
interdiscipli
nary
subject
(with fields
including
formal
methods,
mathematic
al logic,
programmin
g
languages,
and
networks),
making it
daunting for
a
nonprofessi
onal. We
perform a
comprehen
sive survey
on well-
developed
methodolog
ies and
tools for
data plane
verification,
control
plane
verification,
data plane
testing and
control
plane
testing.
This survey
also
provides
lessons
gained from
existing
solutions
and a
perspective
of future
research
developme
nts.

10.1109
/COMS

T.
2018.28
68050

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=8
453007

Network
verification;
network
testing;
formal
methods;
network
reliability;
software-
defined
network

O artigo abrange uma ampla
gama de abordagens e

desafios na verificação e teste
de redes de computadores
usando métodos formais. O
artigo apresenta diferentes

abordagens de verificação e
teste de redes de

computadores usando métodos
formais, incluindo model

checking, teoria de tipos, lógica
temporal e análise estática de

programas.

Os principais conceitos
abordados no artigo

incluem:
Verificação formal: um
processo de análise
matemática de um

sistema para garantir que
ele atenda a um conjunto
de especificações. Teste
formal: uma técnica de

teste que utiliza métodos
formais para gerar casos
de teste, executar esses
casos de teste e verificar

se o comportamento
observado está de

acordo com as
especificações.

Modelagem: uma técnica
usada para representar o

comportamento de um
sistema, permitindo sua
análise formal. O artigo
também discute alguns
dos principais desafios
associados à aplicação
de métodos formais à
verificação de redes,

incluindo escalabilidade,
complexidade,

expressividade e
adequação de modelos.

A metodologia
utilizada no artigo

é baseada em
uma revisão

sistemática da
literatura, que

envolveu a busca
por artigos

relevantes em
bases de dados
científicas como

ACM, IEEE,
Springer e

ScienceDirect,
usando palavras-

chave
relacionadas ao

tema

IEEE Inglês CE1 Excluido
A Survey on Formal
Specification of
Security
Requirements

A. D. Mishra;
K. Mustafa 2021

Formalizati
on of
security
requirement
s ensures
the
correctness
of any
safety-
critical
system,
software
system,
and web
applications
through
specificatio
n and
verification.
Although
there is a
gap
between
security
requirement
s
expressed
in natural
language
and formal
language.
Formal
language is
a more
powerful
tool based
on higher-
order
mathematic
s to
express
unambiguo
us and
concise
security
requirement
s.it remains
an active
research
challenge
to express
precise,
concrete,
and correct
security
requirement
s.
Identificatio
n of
security
requirement
s is also a
challenging
task
because
requirement
inherent in
the
software
changes
frequently.
Specificatio
n through
formal
methods is
possible
only after
fixing the
security
requirement
s. In this
study, we
propose a
formal
specificatio
n software
process
model
(FSSPM).
The
proposed
model
indicates
the use of
formal
specificatio
n at the
early phase
of software
developme
nt is cost-
effective,
time saving,
and
reduces the
possibility
of error at
the later
phase of
software
developme
nt.

10.1109
/ICAC3
N53548

.
2021.97
25779

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
725779

Security
Requiremen
ts;Formal
Specificatio
n;Formal
Verification;
Security
Property

- - - IEEE Inglês CE1 Excluido
A Solicitous Approach
to Smart Contract
Verification

Otoni R,
Marescotti M,
Alt L,Eugster
P,Hyvärinen
A,Sharygina N

2023

Smart
contracts
are
tempting
targets of
attacks, as
they often
hold and
manipulate
significant
financial
assets, are
immutable
after
deployment
, and have
publicly
available
source
code, with
assets
estimated
in the order
of millions
of dollars
being lost in
the past
due to
vulnerabiliti
es. Formal
verification
is thus a
necessity,
but smart
contracts
challenge
the existing
highly
efficient
techniques
routinely
applied in
the
symbolic
verification
of software,
due to
specificities
not present
in general
programmin
g
languages.
A common
feature of
existing
works in
this area is
the attempt
to reuse off-
the-shelf
verification
tools
designed
for general
programmin
g
languages.
This reuse
can lead to
inefficiency
and
potentially
unsound
results, as
domain
translation
is required.
In this
article, we
describe a
carefully
crafted
approach
that directly
models the
central
aspects of
smart
contracts
natively,
going from
the contract
to its logical
representati
on without
intermediar
y steps. We
use the
expressive
and highly
automatabl
e logic of
constrained
Horn
clauses for
modeling
and
instantiate
our
approach to
the Solidity
language. A
tool
implementi
ng our
approach,
called
Solicitous,
was
developed
and
integrated
into the
SMTCheck
er module
of the
Solidity
compiler
solc. We
evaluated
our
approach
on an
extensive
benchmark
set
containing
22,446 real-
world smart
contracts
deployed
on the
Ethereum
blockchain
over a 27-
month
period. The
results
show that
our
approach is
able to
establish
safety of
significantly
more
contracts
than
comparable
, publicly
available
verification
tools, with
an order of
magnitude
increase in
the
percentage
of formally
verified
contracts.

10.1145
/356469

9

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35646
99;http://dx.
doi.org/10.
1145/35646
99

Smart
contracts,
direct
modeling,
vulnerability
detection

- - - ACM Inglês CE5 Excluido
A Rule-Based
Language for
Configurable N-way
Model Matching

M. -S. Kasaei;
M. Sharbaf; B.
Zamani 2022

To build
complex
software-
intensive
systems,
different
stakeholder
s from
diverse
domains
must
collaborate
to create
and modify
models.
Model
matching is
a
fundamenta
l
preconditio
n of
collaborativ
e
developme
nt, which is
concerned
with
identifying
common
elements in
input
models.
When
stakeholder
s work on
multiple
models,
they need
to
simultaneo
usly
compare all
models to
better
understand
differences
and
similarities.
However,
the
literature
shows no
consensus
on how to
specify
comparison
criteria for
matching
multiple
models,
especially
in a form
that is
independen
t of
modeling
language,
which
hampers
their reuse
and
adoption. In
this paper,
we present
a rule-
based
formalism
that
enables the
user to
specify their
comparison
criteria for
multiple
models at a
high level of
abstraction.
We also
introduce
an N-way
matching
algorithm
for
comparing
both
homogeneo
us and
heterogene
ous
models. As
the tool
support, we
implemente
d a syntax-
aware
editor and a
parser for
specifying
comparison
rules for
EMF-based
models.
The
evaluation
of our
formalism
shows that
it is
applicable
in real
modeling
scenarios.

10.1109
/ICCKE
57176.

2022.99
60014

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
960014

Model
Comparison
;N-way
Matching;
Formal
Specificatio
n
Language;
Model-
Driven
Engineering

Características principais do
artigo, é apresentar uma

linguagem baseada em regras
configuráveis para a

correspondência de modelos
N-way. A linguagem proposta
visa abordar os desafios e as
limitações encontradas em

abordagens existentes,
fornecendo uma solução mais

flexível e explicável.

Os principais conceitos
abordados no artigo

incluem:
Correspondência de
modelos, Linguagem
baseada em regras,

Configurabilidade, N-way
Model Matching,

Explicabilidade, Caso de
uso, Comparação com
abordagens existentes.

A primeira etapa
da metodologia

envolve a
identificação e
definição dos

requisitos para a
linguagem de

correspondência
de modelos N-

way. Com base
nos requisitos

identificados, a
linguagem de

correspondência
de modelos é

projetada. Isso
envolve a

definição de sua
sintaxe, semântica

e estruturas de
regras. Nesta

etapa, a
linguagem de

correspondência
de modelos é

implementada. A
validação da
linguagem é

realizada para
verificar se ela

atende aos
requisitos

estabelecidos. O
desempenho e a

eficácia da
linguagem são
avaliados em
relação aos
requisitos
definidos.

IEEE Inglês CE1 Excluido
A multi-view and
programming
language agnostic
framework for model-
driven engineering

R. Jordão; F.
Bahrami; R.
Chen; I.
Sander

2022

Model-
driven
engineering
(MDE)
addresses
the
complexity
of modern-
day
embedded
system
design.
Multiple
MDE
frameworks
are often
integrated
into a
design
process to
use each
MDE
framework’
s state-of-
the-art tools
for
increased
productivity.
However,
this
integration
requires
substantial
developme
nt effort.In
this paper,
we propose
an MDE
framework
based on a
formalism
of system
graphs and
trait
hierarchies
for
programmin
g-language-
agnostic
integration
between
tools within
our frame-
work and
with tools of
other MDE
frameworks
.
Implementi
ng our
framework
for each
programmin
g language
is a one-
time
developme
nt effort.We
evaluate
our
proposal in
an MDE
design
process by
developing
a Java
supporting
library and
an
AMALTHE
A
connector.
Then we
perform an
MDE
industrial
avionics
case study
with both.
The
evaluation
shows that
our
framework
facilitates
the
integration
of different
tools and
the
independen
t
developme
nt of
different
system
parts.
Therefore,
our
framework
is a reliable
MDE
framework
that lowers
the effort of
integrating
tools to
benefit from
their
combined
state-of-
the-art.

10.1109
/FDL56

239.
2022.99
25666

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
925666

Model-
driven
Engineering
;System
Modelling;
Collaborativ
e Tools

O artigo descreve um
framework abrangente e

flexível que busca melhorar a
prática da engenharia dirigida

por modelos, fornecendo
suporte para múltiplas visões e

diferentes linguagens de
programação. Ele oferece uma

abordagem sistemática e
ferramentas integradas para

facilitar o desenvolvimento de
sistemas complexos de forma

eficiente.

Os principais conceitos
discutidos no artigo

incluem: Engenharia
dirigida por modelos

(MDSE), Múltiplas visões
do sistema, Agnosticismo

de linguagem de
programação,

Transformações de
modelos, Ferramentas e
suporte, Estudos de caso

e avaliação.

O primeiro passo
é identificar os

requisitos e
necessidades

para o framework
proposto. Isso

envolve entender
os desafios e as

lacunas existentes
na engenharia de
software baseada
em modelos em

um ambiente com
múltiplas visões e

linguagens de
programação.
Definição da

arquitetura: Com
base nos
requisitos

identificados, a
arquitetura do
framework é
definida. Isso

inclui a
identificação dos

componentes
principais, suas
interações e a

estrutura geral do
framework.

Projeto detalhado:
Nesta etapa, o
framework é
projetado em

detalhes. Cada
componente é
especificado e

suas
funcionalidades
são descritas.

Implementação:
Com base no

projeto detalhado,
o framework é
implementado

usando a
linguagem de
programação

escolhida. Isso
pode envolver o
desenvolvimento
de bibliotecas,
APIs e outras
ferramentas

necessárias para
suportar a

engenharia de
software baseada
em modelos em
um ambiente de
múltiplas visões.

Avaliação e
validação: Nesta

fase, o framework
é avaliado e
validado em
relação aos
requisitos

identificados
anteriormente.

Isso pode incluir a
realização de

testes,
comparação com

outras
abordagens
existentes e
avaliação do

desempenho e
usabilidade do

framework.

IEEE Inglês CE1 Excluido

A Model Checkable
UML Soccer Player

Besnard V,
Teodorov C,
Jouault F,Brun
M,Dhaussy P

2021

This paper
presents a
UML
implementa
tion of the
MDETools'
19
challenge
problem
with EMI
(our
Embedded/
Experiment
al Model
Interpreter).
EMI is a
model
interpreter
that can be
used to
execute,
simulate,
and
formally
verify UML
models on
host or
embedded
targets. The
tool's main
specificity
relies on a
single
implementa
tion of the
language
semantics
such that
consistency
is ensured
between all
developme
nt phases:
from design
to
verification
and
execution
activities.
Using this
approach,
we have
succeeded
in (i)
designing a
UML model
for the
challenge
problem, (ii)
applying
formal
verification
using
model-
checking on
the design
model, and
(iii)
executing
this model
in order to
participate
in the
challenge.

10.1109
/MODE
LS-C.

2019.00
035

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1109/MOD
ELS-C.
2019.00035
;http://dx.
doi.org/10.
1109/MOD
ELS-C.
2019.00035

UML,
model-
driven
engineering
, tool

- - - ACM Inglês CE5 Excluído
A DSL for Integer
Range Reasoning:
Partition, Interval and
Mapping Diagrams

Eriksson,
Johannes;
Parsa,
Masoumeh

2020

Continuous
verification
of network
security
compliance
is an
accepted
need.
Especially,
the analysis
of stateful
packet
filters plays
a central
role for
network
security in
practice.
But the few
existing
tools which
support the
analysis of
stateful
packet
filters are
based on
general
applicable
formal
methods
like
Satifiability
Modulo
Theories
(SMT) or
theorem
prover and
show
runtimes in
the order of
minutes to
hours
making
them
unsuitable
for
continuous
compliance
verification.
In this work,
we address
these
challenges
and present
the concept
of state
shell
interweavin
g to
transform a
stateful
firewall rule
set into a
stateless
rule set.
This allows
us to reuse
any fast
domain
specific
engine from
the field of
data plane
verification
tools
leveraging
smart, very
fast, and
domain
specialized
data
structures
and
algorithms
including
Header
Space
Analysis
(HSA).
First, we
introduce
the formal
language
FPL that
enables a
high-level
human-
understand
able
specificatio
n of the
desired
state of
network
security.
Second, we
demonstrat
e the
instantiation
of a
compliance
process
using a
verification
framework
that
analyzes
the
configuratio
n of
complex
networks
and
devices-
including
stateful
firewalls-for
compliance
with FPL
policies.
Our
evaluation
results
show the
scalability
of the
presented
approach
for the well
known
Internet2
and
Stanford
benchmark
s as well as
for large
firewall rule
sets where
it outscales
state-of-
the-art tools
by a factor
of over 41.

10.1007
/978-3-
030-

39197-
3_13

- -

O artigo fala sobre a criação de
uma linguagem de domínio

específico (DSL) para
raciocínio sobre intervalos de

números inteiros. A DSL é
baseada em três diagramas: o

diagrama de partição, o
diagrama de intervalo e o
diagrama de mapeamento.

DSL (Linguagem
Específica do Domínio)

Raciocínio com
intervalos de números

inteiros
Diagramas de partição
Diagramas de intervalo

Diagramas de
mapeamento

Aritmética de intervalo
Modelos de expressão

Geração de código
Verificação de programa

Satisfatibilidade de teoria
(SMT) solvers

Prova automatizada de
teoremas.

A metodologia
inclui a definição

da sintaxe e
semântica da
linguagem, a

implementação de
uma biblioteca de

expressões
templates para

geração de
código, a

utilização de SMT
solvers para
verificação

automática de
programas

gerados, e a
realização de

estudos de caso
para validar a
abordagem
proposta.

Web of science Inglês CE1 Excluido

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8718593
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9218185
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9116374
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9325264
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9270345
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756749
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9850321
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9604615
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9060216
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8514059
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8453007
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9725779
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3564699;http://dx.doi.org/10.1145/3564699
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9960014
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9925666
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035
https://doi-org.ez13.periodicos.capes.gov.br/10.1109/MODELS-C.2019.00035;http://dx.doi.org/10.1109/MODELS-C.2019.00035

A Deep Reinforcement
Learning Framework
with Formal Verification

Boudi Z,
Wakrime AA,
Toub M,
Haloua M

2023

Artificial
Intelligence
(AI) and
data are
reshaping
organizatio
ns and
businesses.
Human
Resources
(HR)
manageme
nt and
talent
developme
nt make no
exception,
as they
tend to
involve
more
automation
and
growing
quantities
of data.
Because
this brings
implications
on
workforce,
career
transparenc
y, and
equal
opportunitie
s,
overseeing
what fuels
AI and
analytical
models,
their quality
standards,
integrity,
and
correctness
becomes
an
imperative
for those
aspiring to
such
systems.
Based on
an ontology
transformati
on to B-
machines,
this article
presents an
approach to
constructin
g a valid
and error-
free career
agent with
Deep
Reinforcem
ent
Learning
(DRL). In
short, the
agent's
policy is
built on a
framework
we called
Multi State-
Actor
(MuStAc)
using a
decentraliz
ed training
approach.
Its purpose
is to predict
both
relevant
and valid
career
steps to
employees,
based on
their
profiles and
company
pathways
(observatio
ns).
Observatio
ns can
comprise
various
data
elements
such as the
current
occupation,
past
experience
s,
performanc
e, skills,
qualification
s, and so
on. The
policy takes
in all these
observation
s and
outputs the
next
recommend
ed career
step, in an
environmen
t set as the
combinatio
n of an HR
ontology
and an
Event-B
model,
which
generates
action
spaces with
respect to
formal
properties.
The Event-
B model
and formal
properties
are derived
using OWL
to B
transformati
on.

10.1145
/357720

4

https://doi-
org.ez13.
periodicos.
capes.gov.
br/10.
1145/35772
04;http://dx.
doi.org/10.
1145/35772
04

Formal
Verification,
Safe RL,
Model
Transformat
ion, AI
Control,
Safe AI,
Atelier B,
Event-B

- - - ACM Inglês CE5 Excluido
A Categorical
Framework for
Collaborative Design
of Safety Critical
Mechatronic Systems

N.
Abdeljabbar;
F. Mhenni; J. -
Y. Choley

2021

Systems
engineering
relies on a
diversity of
views of the
same
mechatroni
c system
built by
different
design
teams from
several
domains at
different
abstraction
levels and
using
different
modeling
languages
and tools.
These
views must
be and
remain
consistent
throughout
the
engineering
process. To
this end, a
collaboratio
n
methodolog
y based on
a unique
and formal
collaborativ
e
framework
is needed
to connect
these views
while
ensuring
their
consistency
. The aim of
this paper
is to
introduce
such
collaborativ
e
methodolog
y. The
category
theory is
chosen as
formal
basis to
enhance
collaboratio
n between
different
design
teams and
help them
maintain
consistency
between
their
correspondi
ng models.
The main
objective of
applying
category
theory in
the current
research is
to model
collaboratio
n and
consistency
via
interaction,
transformati
on and
synchroniza
tion,
considering
that all
these
model
manageme
nt
scenarios
can be
implemente
d by the
category
theory.
Moreover,
our
proposed
methodolog
y is mainly
focused on
the
constructio
n of a
model that
merges the
different
model
elements
according
to three
systems
engineering
aspects:
requirement
s and
constraints,
behavior,
and
structure.
To this
purpose, a
category
based
Meta-Model
is
established
for the
collaboratio
n between
systems
engineering
(SE) and
safety
assessment
(SA). In this
categorical
framework,
each model
is
represented
by a
category
and, in
order to link
and
maintain
connection
between
these
models,
functors will
be used.
The
proposed
methodolog
y was
applied to a
case study
from the
aeronautics
domain,
namely an
Electro-
Mechanical
Actuator
(EMA)
modeled
using
SysML,
Modelica
and
AltaRica
languages.
Therefore,
the
proposed
collaborativ
e
methodolog
y
implemente
d in a
categorical
framework
may be
generalized
and
enhanced
to take into
account
any other
model
involved in
systems
engineering
, such as a
3D model
for
geometrical
modeling.

10.1109
/ISSE51

541.
2021.95
82486

https:
//ieeexplore.
ieee.
org/stamp/s
tamp.jsp?
arnumber=9
582486

-

O artigo apresenta uma
abordagem baseada em
categorias para o design
colaborativo de sistemas
mecatrônicos críticos de

segurança. O trabalho propõe
uma estrutura matemática que

permite a formalização de
aspectos importantes do

design, tais como a
composição de sistemas, a
validação de requisitos e a

análise de falhas.

Framework Categórico
Sistemas Mecatrônicos
Sistemas Críticos de

Segurança
Modelos de

Comportamento
Teoria das Categorias
Morfismos de Sistema

Categoria de
Comportamento

Modelos
Comportamentais

Abstratos
Modelos

Comportamentais
Concretos

Colaboração na
Engenharia de Sistemas

O artigo apresenta
uma nova

abordagem
baseada em teoria
de categorias para

o projeto
colaborativo de

sistemas
mecatrônicos

críticos de
segurança, mas
não especifica

uma metodologia
específica.

IEEE Inglês CE1 Excluido

https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://doi-org.ez13.periodicos.capes.gov.br/10.1145/3577204;http://dx.doi.org/10.1145/3577204
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9582486

TÍTULO AUTORES ANO PALAVRAS-
CHAVE

CARACTERÍSTICAS
PRINCIPAIS

PRINCIPAIS
CONCEITOS MÉTODOS

QUAL O PROPOSITO DO
TRABALHO (LINGUAGEM ,
ABORDAGEM, FERRAMENTA,
OUTRO)?

RECURSOS UTLIZADOS
(LINGUAGENS,
FERRAMENTAS,
BIBLIOTECA E OUTROS)

PROCEDIMENTO
ADOTADO PARA VALIDAR
A SOLUÇÃO

QUAIS AS
LIMITAÇÕES
IDENTIFICADAS?

CRITÉRIOS STATUS FONTE DE BUSCA

A Formal
Methods
Approach to
Security
Requirements
Specification
and Verification

Q. Rouland; B.
Hamid; J. -P.
Bodeveix; M.
Filali

2019 Engineering secure
systems;Security
properties;Formal
methods;
Metamodel

O artigo aborda a utilização de
métodos formais na especificação

e verificação de requisitos de
segurança em sistemas de

software. Ele apresenta uma
abordagem que usa

especificações formais para
modelar os requisitos de
segurança e verificações

automáticas para garantir que o
sistema implementa esses

requisitos de maneira correta e
segura.

Métodos formais
Requisitos de

segurança
Idiomas de

Especificação
Verificação

Árvores de ataque
Verificação de modelo

Protocolos de
segurança

Propriedades de
segurança

Propriedades de
segurança

lógica temporal

Metodologia
descrita no artigo:

Definição dos
requisitos de
segurança,
Modelagem

formal,
Especificação

formal dos
requisitos,

Verificação formal
dos requisitos,

Análise e
correção,

Validação e
avaliação,

Documentação.
Por fim, os

resultados da
especificação e

verificação formal
dos requisitos de
segurança são

documentados de
forma clara e

precisa. A
documentação

inclui a descrição
dos requisitos, a

modelagem
formal, os

resultados da
verificação e as
ações corretivas

realizadas.

Abordagem Linguagens formais de
especificação, como a linguagem
Z e a linguagem Alloy, para definir
precisamente os requisitos de
segurança.
Ferramentas de apoio à
verificação formal, como model
checkers e provadores de
teoremas, para verificar a
consistência e a corretude dos
requisitos especificados.
Bibliotecas de especificação de
segurança, como a Security
Property Library (SPL), para
auxiliar na especificação dos
requisitos de segurança.
Técnicas de análise de risco, para
identificar potenciais ameaças e
vulnerabilidades em sistemas
críticos.

Estudos de caso, para avaliar a
aplicabilidade e a eficácia da
abordagem proposta em sistemas
reais.

 As limitações incluem a
necessidade de
conhecimento prévio em
engenharia de requisitos e
métodos formais, a
validação limitada em um
único estudo de caso, e o
esforço significativo
necessário para a
especificação e verificação
formal. No entanto, os
autores consideram que
sua abordagem e
ferramenta ainda são
importantes contribuições
para a engenharia de
requisitos de segurança e
sugerem oportunidades
para trabalhos futuros.

CI1 Incluído IEEE

An Educational
Case Study of
Using SysML
and TTool for
Unmanned
Aerial Vehicles
Design

L. Apvrille; P. de
Saqui-Sannes; R.
Vingerhoeds

2020
Educational case
study;model formal
verification;model
simulation;systems
modeling language
(SysML);unmanned
aerial vehicle (UAV)

O artigo apresenta uma
abordagem educacional para o

uso do SysML e do TTool no
design de VANTs, com um estudo

de caso detalhado e uma
discussão sobre os resultados e

as contribuições para a educação
em engenharia de sistemas.

Principais conceitos
abordados no artigo

são: System Modeling
Language (SysML): O

SysML é uma
linguagem de

modelagem de
sistemas que permite
representar, analisar e

simular sistemas
complexos, incluindo
hardware, software e
processos. TTool: O

TTool é uma
ferramenta de
modelagem e

simulação de sistemas
baseada no SysML,

que permite criar
modelos de sistemas,
realizar simulações,

validar e verificar
requisitos, e gerar
código a partir do
modelo. Veículos

Aéreos Não Tripulados
(VANTs): Os VANTs

são sistemas
complexos que

combinam hardware,
software e sistemas de
controle para permitir a

operação de um
veículo aéreo sem a

presença de um piloto
a bordo. Modelagem

de Requisitos: A
modelagem de

requisitos é uma
atividade essencial no
processo de design de
sistemas, que consiste

em identificar,
documentar e analisar

os requisitos do
sistema, a fim de

garantir que o sistema
desenvolvido atenda
às necessidades e

expectativas do
usuário. Simulação e

Validação: A simulação
e a validação são

etapas importantes no
processo de design de

sistemas, que
permitem verificar se o
sistema desenvolvido
atende aos requisitos

especificados e se
comporta de acordo

com o esperado.

A metodologia
adotada no

estudo de caso
incluiu as

seguintes etapas:
Identificação dos

requisitos do
sistema;

Modelagem do
sistema no TTool;

Simulação do
sistema; Análise
dos resultados;

Geração de
código; O estudo

de caso foi
conduzido em um

ambiente
educacional, com
a participação de

estudantes de
engenharia. O

objetivo do estudo
foi demonstrar a

utilidade do
SysML e do TTool

no design de
sistemas

complexos, e
proporcionar aos
estudantes uma

experiência
prática em

modelagem e
simulação de

sistemas.

Outro - Metodologia
Utiliza a linguagem SysML e a
ferramenta TTool para a
modelagem e simulação de um
sistema de controle de um veículo
aéreo não tripulado (VANT).
Também são utilizados o ambiente
de desenvolvimento Eclipse, o
plugin Papyrus e a biblioteca de
comunicação ROS (Robot
Operating System).

Estudo de caso educacional que
foi conduzido com o uso de SysML
e TTool para o projeto de um
veículo aéreo não tripulado
(VANT). A validação foi feita por
meio da implementação do projeto
em um VANT real e do teste do
sistema em um ambiente
controlado

o estudo de caso é
baseado em uma situação
educacional específica,
pois pode não apresentar
bons resultados para
outras situações
educacionais

CI1 Incluído IEEE

Artifact of
Bounded
Exhaustive
Search of Alloy
Specification
Repairs

S. Gutiérrez
Brida; G. Regis;
G. Zheng; H.
Bagheri; T.
Nguyen; N.
Aguirre; M. Frias

2021 -
As principais características do

artigo incluem: Descrição
detalhada da ferramenta: O artigo

descreve em detalhes a
ferramenta de busca exaustiva
com limites para a identificação

automatizada e correção de erros
em especificações Alloy. Estudo

experimental, Disponibilização do
código fonte, Acessibilidade da
ferramenta, Contribuição para a

área de Engenharia de Software.
O artigo contribui para a área de

Engenharia de Software, ao
apresentar uma ferramenta

automatizada para a identificação
e correção de erros em

especificações Alloy. A ferramenta
pode ser útil para projetistas de

software, pesquisadores e
estudantes que trabalham com
especificações Alloy em seus

projetos.

Principais conceitos
apresentados no artigo

incluem:
Especificações Alloy,

Erros em
especificações Alloy,

Ferramentas de reparo
de especificações,

Avaliação
experimental.

 A metodologia
usada pelos

autores envolveu
os seguintes
passos: Os

autores
implementaram a
ferramenta BELT

em Java. A
ferramenta usa
uma abordagem

de busca
exaustiva com

limites para
encontrar reparos
em especificações

Alloy.
Selecionaram um

conjunto de
especificações de
teste com erros
conhecidos para
avaliar a eficácia

da ferramenta
BELT.

Executaram uma
série de

experimentos
para avaliar a

eficácia da
ferramenta BELT
em comparação

com outras
ferramentas de

reparo de
especificações.
Analisaram os
resultados dos
experimentos

para determinar a
eficácia da

ferramenta BELT
em comparação

com outras
ferramentas de

reparo de
especificações.

Ferramenta
os autores utilizam a ferramenta
Alloy e o framework Bounded
Exhaustive Search para realizar a
busca por reparações em
especificações defeituosas de
modelos Alloy. O processo de
busca foi executado em um cluster
de computadores utilizando a
linguagem Java e as bibliotecas
relacionadas ao Alloy e ao
Bounded Exhaustive Search.

 O artefato foi validado por meio
de testes e experimentos
computacionais para demonstrar a
eficácia da técnica proposta na
identificação de reparos de
especificações Alloy.

Não foi realizado estudos
de caso, para testar a
ferramenta proposta

CI1 Incluído IEEE

Towards Formal
Modeling and
Analysis of
SystemJ GALS
Systems using
Coloured Petri
Nets

W. Zhang; Z.
Salcic; A. Malik 2019

Petri Nets;Coloured
Petri Nets;GALS;
formal modeling;
formal analysis

O artigo apresenta uma
abordagem baseada em CPN para

modelagem e análise formal de
sistemas GALS desenvolvidos em

SystemJ. O artigo descreve a
proposta de um modelo formal, a

utilização do ambiente de
modelagem e simulação CPN

Tools, um estudo de caso e uma
comparação com outras
abordagens existentes.

O artigo descreve a
proposta de uma
abordagem para

modelar e analisar
formalmente sistemas
GALS desenvolvidos

em SystemJ utilizando
Redes de Petri

Coloridas (CPN) e
CPN Tools. Essa

abordagem permite a
descrição precisa das
interações entre os

componentes do
sistema e a verificação
da correção do sistema
em relação a requisitos

formais. O artigo
apresenta um estudo

de caso que demonstra
a aplicação da

abordagem proposta e
compara a abordagem

com outras técnicas
existentes.

O artigo propõe
uma abordagem

baseada em
Redes de Petri

Coloridas (CPN)
para modelar e

analisar sistemas
GALS

desenvolvidos em
SystemJ. A
metodologia

envolve a criação
de um modelo

formal, a
implementação do

modelo no
ambiente CPN

Tools, um estudo
de caso e a

comparação com
outras técnicas

existentes. A
abordagem é
aplicada na

verificação de
requisitos formais

de um sistema
GALS com dois
componentes. A

comparação com
outras técnicas

considera critérios
como precisão,
escalabilidade e
facilidade de uso.

Abordagem
Os autores utlizaram a linguagem
SystemJ , o GALS que é um
modelo formal de computação e
CPN .

Os autores propoe um paradigma
que utiliza CPN para modelar
formalmente e utlizar GALS com
SystemJ.

Complexidade
exponencial de pior caso
que resulta em baixa
eficiiencia de tempo,
requer frequente
transferencia de controle e
operações.

CI1 Incluido IEEE

Verification of a
Rule-Based
Expert System
by Using SAL
Model Checker

M. U. Siregar; S.
Abriani 2019

verification;expert
system;rule-based
system;Z2SAL;SAL
model checker

o artigo apresenta uma
abordagem sistemática e formal
para a verificação de sistemas

especialistas baseados em regras,
que utiliza o verificador de

modelos SAL e a representação
formal do sistema

 o artigo aborda
conceitos relacionados
à verificação formal de

sistemas, incluindo
model checking, lógica

simbólica e
representação formal

do sistema. Ele
também descreve a
aplicação desses

conceitos na
verificação de um

sistema especialista
baseado em regras

usando o verificador de
modelos SAL

a metodologia
envolveu a

modelagem e
formalização do

sistema, a
especificação de

requisitos formais,
a geração do

modelo do
sistema, a

verificação formal
do sistema
usando o

verificador de
modelos SAL e a

análise dos
resultados da
verificação. A
metodologia

utilizada
demonstra uma

abordagem
sistemática para a
verificação formal

de sistemas
baseados em

regras.

Ferramenta Utilizam a linguagem Z para
especificar modelos em SAL.

O autores propoe que o verificador
Z2SAL irá traduzir a especificação
Z que representam partes do
sistema.

Não foi apresentada
nenhuma dificuldade de
validar a abordagema

CI1 Incluido IEEE

Formal Analysis
of Language-
Based Android
Security Using
Theorem
Proving
Approach

W. Khan; M.
Kamran; A.
Ahmad; F. A.
Khan; A. Derhab

2019
Mobile devices are
an indispensable
part of modern-day
lives to support
portable
computations and
context-aware
communication.
Android
applications within a
mobile device share
data to support
application
operations and
better user
experience, which
also increases
security risks to
device's data
integrity and
confidentiality. To
analyze the security
provided by the
Android
permissions,
modern security
techniques, based
on the programming
languages, have
been used to
enforce best
practices for
developing the
secure Android
applications.
Android security
assessment, based
on the language-
based techniques in
an informal setting
without formal tool
support, is tedious
and error-prone.
Furthermore, the
lack of proof of the
soundness of the
language-based
techniques raises
questions about the
validity of the
analysis. To enable
computer-aided
formal verification in
Android security
domain, we have
developed a
mathematical model
of language-based
Android security
using computer-
based proof
assistant Coq. One
of the main
challenges for
mechanizing the
language-based
security in theorem
prover relates to the
complexity of
variable bindings in
language-based
security techniques.
As the main
contributions of the
paper: 1) the
language-based
security, including
variable binding, is
formalized in
theorem prover
Coq; 2) a formal
type checker is built
to type check
(capture safe data
flows within)
Android
applications using
computer; and 3)
the soundness of
the language-based
security technique
(type system) is
mechanically
verified. The formal
model of the
Android type
system and their
proof of soundness
are machine-
readable, and their
correctness can be
checked in the
computer using Coq
proof and type
checkers.

O artigo destaca a importância da
análise formal na segurança
baseada em linguagem em

dispositivos Android. Ele
apresenta uma abordagem de

análise formal, utilizando teoremas
e provas, para verificar a eficácia
dos mecanismos de segurança de

linguagem. A contribuição do
artigo está em fornecer uma

metodologia sólida e resultados
experimentais que podem ajudar a

melhorar a segurança dos
aplicativos Android.

 O artigo discute a
análise formal da
segurança baseada em
linguagem em
dispositivos Android.
Ele aborda conceitos
como segurança
baseada em
linguagem, análise
formal, teoremas e
provas, formalização
de propriedades de
segurança, prova de
corretude e avaliação
experimental. Esses
conceitos são
fundamentais para a
compreensão da
abordagem proposta
pelo artigo para
verificar a segurança
dos mecanismos de
segurança de
linguagem em
dispositivos Android.

A metodologia
descrita no artigo
combina a
formulação de
propriedades de
segurança, a
formalização
dessas
propriedades, a
modelagem do
sistema Android,
a prova de
corretude e a
avaliação
experimental.
Essa abordagem
visa fornecer uma
análise formal da
segurança
baseada em
linguagem em
dispositivos
Android, utilizando
técnicas de prova
para verificar a
corretude dos
mecanismos de
segurança de
linguagem.

Abordagem
Utilizam tecnica baseada em

linguagem formal para provar a
segurança em sistemas android

Os autores propoe uma
abordagem utilizando conceitos
como segurança baseada em

linguagem, análise formal, verificar
a segurança em aplizações

andorid.

Não foi apresentada
nenhuma dificuldade de
validar a abordagema

CI1 Incluido IEEE

Certified
Embedding of
B Models in an
Integrated
Verification
Framework

A. Halchin; Y. Ait-
Ameur; N. K.
Singh; A.
Feliachi; J.
Ordioni

2019
To check the
correctness of
heterogeneous
models of a
complex critical
system is
challenging to meet
the certification
standard. Such
guarantee can be
provided by
embedding the
heterogeneous
models into an
integrated
modelling
framework. This
work is proposed in
the B-PERFect
project of RATP
(Parisian Public
Transport Operator
and Maintainer), it
aims to apply formal
verification using
the PERF approach
on the integrated
safety-critical
software related to
railway domain
expressed in a
single modelling
language: HLL. This
paper presents a
certified translation
from B formal
language to HLL.
The proposed
approach uses HOL
as a unified logical
framework to
describe the formal
semantics and to
formalize the
translation relation
of both languages.
The developed
Isabelle/HOL
models are proved
in order to
guarantee the
correctness of our
translation process.
Moreover, we have
also used weak-
bisimulation relation
to check the
correctness of
translation steps.
The overall
approach is
illustrated through a
case study issued
from a railway
software system:
onboard localization
function.
Furthermore, it
discusses the
integrated
verification at
system level.

O artigo apresenta uma
abordagem para a verificação de

sistemas baseados em modelos B
usando um framework de
verificação integrado. A

abordagem inclui a certificação de
modelos B por meio da verificação

formal, integração de diferentes
técnicas de verificação, aplicação

em sistemas críticos e uma
ferramenta de suporte com
interface gráfica de usuário.

O artigo incluem os
modelos B, a

verificação formal, o
framework de

verificação integrado, a
certificação de

modelos B, a aplicação
em sistemas críticos.

 A metodologia
descrita no artigo

envolve a
especificação do

modelo B, a
verificação formal,

a geração de
provas e a

certificação do
modelo. O

framework de
verificação

integrado fornece
suporte para

essas etapas,
garantindo a

confiabilidade e
corretude dos

modelos B usados
na especificação

e
desenvolvimento

de sistemas
críticos.

Abordagem
Foi utilizdo a linguagem B,

Linguagem HLL , abordagem
PERF, isabelle/HOL, B2HLL.

Os autores utilizam a abordagem
PERF para modelos B gerando
certificados semanticos em HLL .

Não foi apresentada
nenhuma dificuldade de
validar a abordagema

CI1 Incluido IEEE

Conception of
a formal
model-based
methodology
to support
railway
engineers in
the
specification
and
verification of
interlocking
systems

G. Lukács; T.
Bartha 2022

The use of formal
modeling is gaining
popularity in the
development of
safety-critical
transport
applications, in
particular railway
interlocking
systems, due to its
ability to specify the
functionality of
systems using
mathematically
precise logical
rules. The goal of
the research
described here is to
con-ceptualize a
methodology that
provides a
specification/verifica
tion environment
supporting the
developers (domain
engineers) in the
construction and
verification of formal
specifications. The
aim of the
methodology is to
decrease the need
for mathematical-
computer science
background/knowle
dge at the system
engineering level.
The proposed
approach includes a
set of well-known
and widely used
methods,
techniques, and
tools to specify and
verify the
functionality related
to the development
of railway
interlocking
systems, such as
structured and
object-oriented
formalisms (e.g.,
the Unified
Modeling
Language), model-
driven
development,
model checking,
etc. The application
of the methodology
facilitates the
construction of
correct, complete,
consistent, and
verifiable functional
specifications of a
given component.
This in turn brings a
significant
improvement of
quality, and
distributes the
development costs
more evenly among
the related life-cycle
phases.

O artigo descreve uma
metodologia baseada em modelos
formais para apoiar engenheiros
de ferrovias na especificação e

verificação de sistemas de
intertravamento. A metodologia

promove a especificação formal, a
verificação automática e a

integração com ferramentas de
modelagem e verificação. Ela visa
garantir a corretude e a segurança

dos sistemas ferroviários,
fornecendo suporte efetivo aos

engenheiros de ferrovias em seus
processos de trabalho.

Os principais conceitos
envolvem a

modelagem formal, a
verificação formal, o

suporte aos
engenheiros, a
integração de

ferramentas e técnicas,
e a aplicação prática

por meio de estudos de
caso. A metodologia

visa melhorar a
precisão, a segurança

e a eficiência dos
sistemas de

intertravamento
ferroviário.

 A metodologia
proposta no artigo

inclui etapas
como definição de

requisitos,
modelagem

formal, verificação
formal,

refinamento
iterativo do

modelo,
documentação,
rastreabilidade,
integração de
ferramentas e

validação.

Abordagem
Foi utilizado

métodos formais , técnicas de
formalismo, UML, modelos V.

Os autores utilizaram uma
abordagem que usa linguagem

natural estruturada para
especificar requisitos, Diagramas

de componentes UML para
definições de interface,método

tabular para especificar
parâmetros e UML, e

máquinas de estado para
descrever os aspectos

comportamentais.

Não foi apresentada
nenhuma dificuldade de
validar a abordagema

CI1 Incluido IEEE

Formal
Simulation and
Verification of
Solidity
contracts in
Event-B

J. Zhu; K. Hu; M.
Filali; J. -P.
Bodeveix; J. -P.
Talpin; H. Cao

2021
Smart contracts are
the artifact of the
blockchain that
provides immutable
and verifiable
specifications of
physical
transactions.
Solidity is a domain-
specific
programming
language with the
purpose of defining
smart contracts. It
aims at reducing
the transaction
costs occasioned
by the execution of
contracts on the
distributed ledgers
such as Ethereum.
However, Solidity
contracts need to
adhere to safety
and security
requirements that
require formal
verification and
certification. This
paper proposes a
method to meet
such requirements
by translating
Solidity contracts to
Event-B models,
supporting
certification. To that
purpose, we define
a restrained Solidity
subset and a
transfer function
that translates
Solidity contracts to
Event-B models.
Besides, we have
implemented a
translator to
improve the
conversion
efficiency. As a
case study, we take
advantage of Event-
B method
capabilities to
simulate models at
different levels of
abstraction and to
express the
properties of a
typical smart
contract: Honeypot
contract. Lastly, we
verify the generated
proof obligations of
the Event-B model
with the help of the
Rodin platform.

O trabalho apresentado no artigo é
motivado pela necessidade de

construir ferramentas e técnicas
para melhorar a segurança de

contratos inteligentes por meio da
verificação formal. Introduzindo

conceitos de blockchain,
Ethereum, contratos inteligentes e

Solidity.

O artigo introduz o
conceito de blockchain,

Ethereum, contratos
inteligentes e Solidity.
Ele também destaca a

importância da
segurança e da

verificação formal em
contratos inteligentes
devido aos riscos de
vulnerabilidades de

segurança que podem
ser explorados por

hackers.

O método
mencionado no

artigo é a
verificação formal,
que usa técnicas

matemáticas
rigorosas para
provar que um

sistema é correto.
EventB é

mencionado como
uma linguagem de

modelagem de
verificação formal
para especificar e

implementar
algoritmos e

sistemas como
sistemas de

transição
discretos

baseados em uma
teoria de
conjuntos
digitados.

Ferramenta
Conceitos de blockchain,

Ethereum, contratos inteligentes e
Solidity, Event-B

Os autores utilizam a conversão
da função de transferência de um
subconjunto da linguagem Solidity

para o Event-B, preservando a
semântica original. Para destacar

a viabilidade da nossa abordagem,
realizamos a tradução de um

honeypot de contrato Solidity para
o Event-B, de acordo com as

regras de tradução definidas. Além
disso, desenvolvemos um tradutor

que automatiza a geração do
modelo traduzido, tornando o

processo mais eficiente e
econômico. Demonstramos com

sucesso a detecção de uma
vulnerabilidade lógica esperada
utilizando um refinamento formal

no Event-B. Identificamos que esta
abordagem é especialmente

valiosa ao aplicá-la a contratos
Solidity envolvendo grandes

transações de fundos.

Dificuldade está
relacionado à
conhecimentos previos de
metodos formais,
linguagem e ferramentas
utlizadas.

CI1 Incluido IEEE

Formal
Verification of
Blockchain
Smart Contract
Based on
Colored Petri
Net Models

Z. Liu; J. Liu 2019
A smart contract is
a computer protocol
intended to digitally
facilitate and
enforce the
negotiation of a
contract in
undependable
environment.
However, the
number of attacks
using the
vulnerabilities of the
smart contracts is
also growing in
recent years. Many
solutions have been
proposed in order to
deal with them,
such as
documenting
vulnerabilities or
setting the security
strategies. Among
them, the most
influential progress
is made by the
formal verification
method. In this
paper, we propose
a formal verification
method based on
Colored Petri Nets
(CPN) to verify
smart contracts in
blockchain system.
First, we develop
the smart contract
models with
possible attacker
models based on
hierarchical CPN
modeling, then the
smart contract
models are
executed by step-
by-step simulation
to validate their
functional
correctness, and
finally we utilize the
branch timing logic
ASK-CTL based
model checking
technology in the
CPN tools to detect
latent vulnerabilities
in smart contracts.
We demonstrate
that our CPN
modeling based
verification method
can not only detect
the logical
vulnerabilities of the
smart contract, but
also consider the
impacts of users
behavior to find out
potential non-logical
vulnerabilities in the
contracts, such as
the vulnerabilities
caused by the
limitations of the
Solidity language.

O artigo fala sobre smart
contracts e sua aplicação em

ambientes não confiáveis.
Trazendo propostas de soluções

para lidar com as vulnerabilidades,
incluindo a verificação formal.
Além da apresentação de um
método de verificação formal

baseado em Colored Petri Nets
(CPN) para verificar smart

contracts em sistemas blockchain.

O artigo apresenta o
conceito de smart

contracts e sua
aplicação em

ambientes não
confiáveis, bem como

a importância da
verificação formal para

lidar com as
vulnerabilidades
existentes nesse

contexto. Além disso, o
texto introduz a

abordagem baseada
em CPN como um

método de verificação
formal para smart

contracts em sistemas
blockchain, que

permite detectar não
só vulnerabilidades

lógicas, mas também
não lógicas.

A metodologia
proposta envolve

o
desenvolvimento
de modelos de
smart contracts
com possíveis

modelos de
atacantes usando

modelagem
hierárquica de

CPN. Os modelos
são validados por

meio de
simulação passo

a passo para
verificar a
correção

funcional. A
tecnologia de
verificação de

modelo baseada
em lógica de
ramificação

temporal ASKCTL
nas ferramentas
CPN é utilizada
para detectar

vulnerabilidades
latentes nos smart

contracts. A
abordagem

também considera
os impactos do
comportamento
dos usuários na

detecção de
potenciais

vulnerabilidades
não lógicas.

Abordagem
Utiliza contratos inteligente,

lingugem solidy,CPN, e conceitos
de metodos formais.

Os autores apresentão um método
de verificação formal baseado em

Colored Petri Nets (CPN) para
verificar smart contracts em

sistemas blockchain.

Dificuldade está
relacionado à
conhecimentos previos de
metodos formais,
linguagem e ferramentas
utlizadas.

CI1 Incluido IEEE

From BPMN2 to
Event B: A
Specification
and Verification
Approach of
Workflow
Applications

A. Ben Younes;
Y. Ben Daly
Hlaoui; L. Ben
Ayed; M. Bessifi

2019
The BPMN2
language suffers
from the absence of
a precise formal
semantics of the
various notations
used, which often
leads to
ambiguities. In
addition, this
language does not
have a proof
system that
validates a BPMN2
specification.
Consequently, the
use of a formal
method, such as
Event B, is a
solution for dealing
with the
shortcomings found
in the BPMN2
language. We
propose in this
paper a model-
driven approach
based on meta-
model and meta-
model
transformation
implemented in
KerMeta to specify
and formally verify
workflows.

O artigo aborda a modelagem de
processos de negócios, utilizando
a notação BPMN 2.0 como base.

O BPMN 2.0 é uma proposta
amplamente aceita e utilizada,

devido à sua versatilidade,
cobertura de todos os padrões de
fluxo de trabalho e capacidade de
execução direta da especificação.

No entanto, o BPMN 2.0 ainda
sofre com a ausência de uma
semântica formal precisa das

várias notações usadas, levando a
ambiguidades e inconsistências.

O artigo trata da
modelagem de
processos de

negócios, que é um
processo fundamental
para a organização e
gestão eficaz de uma

empresa.
A notação BPMN 2.0 é

utilizada como base
para a modelagem,

sendo uma proposta
amplamente aceita e

utilizada.
Os métodos formais,

como o método Event
B, são apresentados
como uma alternativa
para a validação da
especificação BPMN

2.0.

O artigo propõe
um framework

orientado a
modelos que

transforma uma
especificação

BPMN em uma
especificação

formal usando a
notação Event B.
A proposta busca
combinar técnicas

semi-formais e
métodos formais

para
desenvolvimento

de software
prático e rigoroso.

Abordagem Utiliaza Event B, BPMN2,
verificação formal.

Os autores propõe um framework
orientado a modelos que

transforma uma especificação
BPMN em uma especificação

formal usando a notação Event B.

Não foi apresentada
nenhuma dificuldade de
validar a abordagema

CI1 Incluido IEEE

Modeling and
Verifying Storm
Using CSP

H. Zhao; H. Zhu;
Y. Fang; L. Xiao 2019

Due to the higher
pursuit of
information
timeliness, a
number of
distributed stream
processing
computation
frameworks have
emerged, among
which the most
successful and
widely used at
present is Storm.
Storm is a stream-
only processing
computation
framework which
can deal with
continuous
streaming data.
This paper applies
Communicating
Sequential
Processes (CSP), a
formal language in
process algebra, to
analyze and model
the communication
behaviors in the
workflow of Storm.
Then, we transform
the established
model and use the
refinement checking
tool Failures-
Divergences
Refinement (FDR)
to verify whether it
satisfies deadlock-
free and sequential
consistency
properties.

O artigo trata do Storm, um
framework de processamento de
fluxo de dados em tempo real,
programado em Clojure e Java.
Ele é capaz de lidar com o fluxo
de dados de entrada em milhões

de vezes por segundo, com
tolerância a falhas e

escalabilidade.

O artigo aborda os
seguintes conceitos:

A modelagem formal é
uma abordagem para

especificar sistemas de
forma matemática e

rigorosa.
Communicating

Sequential Processes
(CSP) é uma

linguagem formal para
descrever a

comunicação entre
processos

concorrentes.
Failures-Divergences
Refinement (FDR) é
uma ferramenta de

verificação de
refinamento para

verificar propriedades
de modelos CSP.

Com a
metodologia

aplicada ao artigo,
os autores
aplicaram a

linguagem formal
CSP para modelar

formalmente o
comportamento
de comunicação
entre processos

no fluxo de
trabalho do Storm

após o usuário
enviar Topology.
Eles usaram a

ferramenta FDR
para verificar se o

modelo CSPM
estabelecido
satisfaz as

propriedades de
ausência de
deadlock e

consistência
sequencial.

Ferramenta Utlizado o framework Storm,e os
modelos CPS , FDR.

 Os autores aplicaram a linguagem
formal CSP para modelar

formalmente o comportamento de
comunicação entre processos no
fluxo de trabalho do Storm após o

usuário enviar Topology.

Não foi apresentada
nenhuma dificuldade de
validar a abordagema

CI1 Incluido IEEE

NFA Based
Formal
Modeling of
Smart Parking
System Using
TLA +

S. Latif; A.
Rehman; N. A.
Zafar

2019
The smart objects
are used to sense,
communicate, send
and to share
information within a
network. Everything
which is connected
directly or indirectly
within a network for
the sake of getting,
analyze or
interpreting data
known as IoT.
There are many
proposed
applications of IoT
infrastructure in
smart city. We have
proposed model of
smart parking
system in this paper
which is based on
UML, automata-
based model and
formal methods.
The depiction of
real-world parking
system is done in
UML based models
to indicate the flow
and working of the
system. Automata
models are used to
convert UML
diagram into
automated system
which provides
smart mechanism
of parking system.
Automated model of
automata is
represented in
terms of states and
transitions. Every
state has unique
identity and defined
functionality. There
are many
operations of
parking system
which are modeled
in this paper
including find free
spaces, search
shortest path
towards empty slot,
car entrance and
exit with in a region.
A region is an area
of parking system
which is automated
and use to sense a
vehicle, car
entrance, exit or to
find a location. The
formal method
techniques are
used to formally
verify system
properties using
available facilities
available in formal
method tools. We
have used
Temporal Logic of
Actions (TLA+)
formal language to
validate and verify
system properties
using formal
techniques. TLA+ is
mathematical based
notation to describe
a system using
discrete
mathematics
concepts. We have
integrated these
three approaches to
model parking
system from
depiction side,
automation side
and from the angle
of verification and
validation of the
model.

O artigo aborda a aplicação da
Internet das Coisas (IoT) na
criação de um sistema de

estacionamento inteligente em
uma cidade. São utilizados

modelos UML e automata para
representar o sistema de

estacionamento e sua automação.
São empregadas técnicas de

métodos formais para validar e
verificar as propriedades do

sistema.

O artigo engloba os
conceitos de:

Internet das Coisas
(IoT): conceito que se

refere a objetos
conectados em rede e
capazes de enviar e
receber informações.

Modelagem UML:
linguagem gráfica

utilizada para modelar
sistemas de software.
Autômatos: modelo

matemático de sistema
que possui estados e
transições entre esses

estados.
Métodos Formais:

conjunto de técnicas
matemáticas e lógicas

para especificar,
desenvolver e verificar

sistemas.

A metodologia do
artigo engloba:

Modelagem UML:
utilizada para
representar o
sistema de

estacionamento
de forma gráfica.

Autômatos:
utilizados para
automatizar o

sistema de
estacionamento e

criar um
mecanismo

inteligente de
gerenciamento.

Técnicas de
Métodos Formais:

utilizadas para
validar e verificar
as propriedades

do sistema,
utilizando a

linguagem TLA+.

Abordagem Utiliza tecnicas de metodos
formais, Diagrama UML , TLA+.

Os autores abordam a aplicação
da Internet das Coisas (IoT) na

criação de um sistema de
estacionamento inteligente em

uma cidade. São utilizados
modelos UML e automata para

representar o sistema de
estacionamento e sua automação.

Não foi apresentada
nenhuma dificuldade de
validar a abordagema

CI1 Incluido IEEE

On
Complementing
an
Undergraduate
Software
Engineering
Course with
Formal Methods

B. Westphal 2020
Software systems
continue to pervade
day-to-day life and
so it becomes
increasingly
important to ensure
the dependability,
safety, and security
of software. One
approach to this
end can be
summarised under
the broad term of
formal methods, i.
e., the formal
analysis of
requirements,
software models, or
programs. Formal
methods in this
sense are today
used in many
branches of the
software industry,
such as the huge
internet companies,
aerospace,
automotive, etc.
and even made
their way into small
to medium sized
enterprises. In this
article, we argue
the opinion that
today's students
(and tomorrow's
engineers) need to
be provided with a
basic understanding
of formal methods
in the broad sense
(what is it, how
does it feel to use it,
what are
advantages and
limitations) already
in undergraduate
introductions to
software
engineering. We
propose a generic
course design that
complements
(otherwise
completely
ordinary)
undergraduate
introductions to
software
engineering with
formal semantics
and analyses of
(visual) software
description
languages. We
report on five years
of teaching an
implementation of
the course design
that indicate the
feasibility of
teaching without
sacrificing classical
software
engineering topics
and without over-
straining students
wrt. level or
workload.

 O artigo discute a importância
crescente de aspectos como
confiabilidade, segurança e

segurança no desenvolvimento de
software e como as metodologias

formais podem aumentar a
confiança nessas áreas. Ele

fornece uma definição abrangente
de métodos formais, que inclui

formalização de requisitos,
modelagem formal e verificação

de programas dedutivos, e
destaca a mudança recente na
indústria em relação à adoção

desses métodos.

O artigo aborda o
conceito de métodos

formais, que são
definidos como

técnicas e ferramentas
matematicamente

explicáveis. Ele discute
a ampla variedade de

significados que o
termo "métodos

formais" pode ter e
adota uma definição

ligeiramente mais
estreita, que exclui

esboços informais. O
artigo também destaca

a necessidade de
complementar os

cursos de engenharia
de software existentes

com aspectos de
métodos formais para

melhor preparar os
alunos para suas
carreiras futuras.

 O artigo propõe
novos objetivos
de aprendizado
para métodos

formais e
apresenta uma

abordagem para
complementar as

introduções de
graduação à

engenharia de
software com uma

introdução
abrangente aos

métodos formais.
A ideia básica é

oferecer
experiência com
métodos formais

em uma
formalização o
mais simples

possível (mas não
trivial) e completar
todas as áreas de

tópicos (ou
conhecimento)

com
sublinguagens

totalmente
definidas de

linguagens de
descrição de

software formais.

Abordagem Utilização de conceitos, tecnicas e
feramenta de metodos formais.

 os autores propõe novos objetivos
de aprendizado para métodos

formais e apresenta uma
abordagem para complementar as

introduções de graduação à
engenharia de software com uma

introdução abrangente aos
métodos formais.

Não foi apresentada
nenhuma dificuldade de
validar a abordagema

CI1 Incluido IEEE

Proposal of an
Approach to
Generate
VDM++
Specifications
from Natural
Language
Specification by
Machine
Learning

Y. Shigyo; T.
Katayama 2020

A natural language
contains ambiguous
expressions. The
VDM++ is one of
the methodotogies
on the formal
methods to write
the specification
without ambiguity. It
is difficult to write a
VDM++
specification,
because VDM++ is
written by strict
grammar. This
research proposes
an approach to
automatically
generate the
VDM++
specification by
machine learning.
This approach
defines four data
structures and has
four processes. In
this paper, variables
and only real type in
the VDM++
specification are
generated
automatically by
this approach. In
order to generate
the variables and
real type, it is
necessary to extract
the noun
corresponding to
the variable from
the natural
language
specification.
Consequently, our
proposed approach
can generate a
VDM++
specification and
we have confirmed
that the generated
VDM++
specification is
grammatically
correct.

O artigo aborda a importância do
uso de métodos formais no

desenvolvimento de software para
evitar bugs decorrentes da
ambiguidade presente na

linguagem natural utilizada na
especificação do software. A
proposta do artigo é gerar

automaticamente especificações
VDM++ a partir de especificações

em linguagem natural usando
aprendizado de máquina, a fim de

superar as dificuldades de
descrever especificações em

linguagem natural de acordo com
a gramática restrita do VDM++.

O conceito central do
artigo é o uso de

métodos formais para
melhorar a qualidade
do software, evitando
bugs decorrentes da

ambiguidade na
linguagem natural

usada nas
especificações do
software. O uso de

VDM++ é apresentado
como um dos métodos

formais para o
desenvolvimento de
software, e o artigo

propõe uma
abordagem para gerar

automaticamente
especificações VDM++

a partir de
especificações em
linguagem natural

usando aprendizado de
máquina.

O método
proposto no artigo

consiste em
quatro processos:

o pré-
processamento de

aprendizado de
máquina, o

aprendizado de
máquina em si, o

processo de
inserção de

identificadores e o
processo de
geração da

especificação
VDM++. A

abordagem de
aprendizado de

máquina é usada
para extrair os

nomes de
variáveis e

predicados das
especificações em
linguagem natural,
que são usados

para gerar a
especificação

VDM++.

Metodologia Foi utilizado o VDM++ e coneitos
de metodos formais.

Os autores propoe uso de
métodos formais para melhorar a
qualidade do software, evitando

bugs decorrentes da ambiguidade
na linguagem natural usada nas

especificações do software. O uso
de VDM++ é apresentado como
um dos métodos formais para o

desenvolvimento de software, e o
artigo propõe uma abordagem
para gerar automaticamente

especificações VDM++ a partir de
especificações em linguagem

natural usando aprendizado de
máquina.

Linguagens de
especificação formal como
VDM++ são
difíceis de descrever
porque eles têm a
gramática estrita.

CI1 Incluido IEEE

Formal UML-
based Modeling
and Analysis for
Securing
Location-based
IoT Applications

H. Cardenas; R.
Zimmerman; A.
R. Viesca; M. Al
Lail; A. J. Perez

2022 alloy;sat solving
O artigo apresenta a integração

com a ferramenta USE: O plug-in
é adicionado ao USE, uma
ferramenta que permite aos

usuários especificar sistemas de
informação usando UML e OCL.

Métodos Formais,
Modelagem de
Segurança,
Ferramenta Plug-in de
Análise,
Transformação de
modelo, Técnica de
Otimização, Integração
com ferramenta USE,
Modelos de aplicativos
baseados em
localização, Elementos
de Segurança IoT.

Os métodos
utilizados
apresentam uma
abordagem
sistemática para
modelagem
formal, análise e
validação de
aplicações IoT
seguras baseadas
em localização,
enfatizando a
importância de
incorporar
elementos de
segurança e
aproveitar
técnicas formais
para o projeto de
sistemas.

Ferramenta Ferramenta USE, liguagens UML,
OCL

Os autores apresentaram uma
integração com a ferramenta USE

que permite aos usuários
especificar sistemas de

informação usando UML e OCL.

Não foi apresentada
nenhuma dificuldade de

validar a abordagema
CI1 Incluido IEEE

FASTEN: An
Open
Extensible
Framework to
Experiment with
Formal
Specification
Approaches

Ratiu, Daniel;
Gario, Marco;
Schoenhaar,
Hannes

2019
Formal specification
approaches have
been successfully
used to specify and
verify complex
systems.
Verification
engineers so far
either directly use
formal specification
languages which
can be consumed
by verification tools
(e.g. SMV,
Promela) or main
stream modeling
languages which
are then translated
into formal
languages and
verified (e.g.
SysML, AADL). The
first approach is
expressive and
effective but difficult
to use by non-
experts. The
second approach
lowers the entry
barrier for novices
but users are
limited to the
constructs of the
chosen modeling
languages and
thereby end up
abusing the
language to encode
behaviors of
interest.In this
paper, we introduce
a third approach
that we call
FASTEN, in which
modular and
extensible Domain
Specific Languages
(DSLs) are used to
raise the
abstraction level of
specification
languages towards
the domain of
interest. The
approach aims to
help novice users to
use formal
specification,
enable experts to
use multi-paradigm
modeling, and
provide tools for the
developers of
verification
technologies to
easily experiment
with various types
of specification
approaches. To
show the feasibility
of the approach, we
release an open-
source tool based
on Jetbrains' MPS
language
workbench that
provides an
extensible stack of
more than ten
DSLs, situated at
different levels of
abstraction, built on
top of the SMV
language. We use
the NuSMV model
checker to perform
verification, to
simulate the models
and lift the traces at
the abstraction level
of the DSLs. We
detail on the
experience with
designing and
developing the
DSLs stack and
briefly report on
using the DSLs in
practice for the
study of a
communication
protocol of a safety
critical system.

o artigo apresenta um framework
aberto e extensível para

experimentar com abordagens de
especificação formal. Ele destaca
a flexibilidade e adaptabilidade do
framework, o suporte a múltiplas
abordagens de especificação, a
experimentação e avaliação de

técnicas, a integração com
ferramentas existentes, a

colaboração na comunidade e os
casos de uso e estudos
experimentais realizados.

O artigo introduz o
framework FASTEN e

explora conceitos
como especificação

formal,
experimentação,

integração de
ferramentas,

extensibilidade,
compartilhamento de

conhecimento e casos
de uso. Ele oferece

uma visão abrangente
sobre a utilidade e

aplicação do
framework na área de
especificação formal.

 A metodologia do
artigo abrange

desde a definição
dos requisitos até
a implementação,

validação,
documentação e

promoção da
colaboração em

torno do
framework

FASTEN. Essa
metodologia visa

garantir que o
framework seja
adequado às

necessidades dos
usuários e facilite
a experimentação

e o avanço da
área de

especificação
formal.

Metodologia Utiliza o framwork FASTEN, DSLs
e modelo NuSMV.

Os autores apresentam o
framework FASTEN e explora
conceitos como especificação

formal, experimentação,
integração de ferramentas,

extensibilidade, compartilhamento
de conhecimento e casos de uso.

 Desafio da
compreensibilidade das
especificações formais no
contexto da manutenção e
evolução de sistemas.

CI1 Incluido Web of science

