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A neighborhood search-based 
heuristic for the dynamic vehicle 
routing problem

ABSTRACT: The Vehicle Routing Problem (VRP) is a classical optimization 
problem focused on determining routes for a fleet of vehicles to fulfill the 
demands of a set of customers. Due to its wide applicability, particularly in 
the logistics sector, numerous variants of the VRP have been developed. One 
such variant is the Dynamic Vehicle Routing Problem (DVRP), characterized 
by the emergence of new customer demands after the initial routing 
has been established. The combinatorial complexity of the DVRP poses 
significant challenges in finding high-quality, feasible solutions within 
practical runtime limits for real-world, large-scale problems, thereby driving 
the development of heuristic approaches. This paper introduces a novel 
heuristic algorithm, Dynamic Search per Neighbors Routes (DSNR), which 
employs neighborhood search techniques based on the 2-Opt* operator to 
incorporate new delivery requests into existing routes. The DSNR algorithm 
was tested using instances from the Loggibud benchmark, representing real-
world data from three distinct Brazilian cities. In terms of distance and the 
number of vehicles required, the proposed approach demonstrated superior 
performance compared to two existing methods from the literature: the QRP 
Sweep (QRPS) and K-Means Greedy (KG). The DSNR achieved improvements 
of 15% to 17% in terms of distance and final delivery costs.

Keywords: 2-Opt*; DSNR; dynamic vehicle routing; K-means Greedy; local search 
heuristic; QRP Sweep.

Uma heurística baseada em busca 
de vizinhança para o problema de 
roteamento dinâmico de veículos
RESUMO: O Problema de Roteamento de Veículos (PRV) é um problema 
clássico de otimização focado em determinar rotas para uma frota de 
veículos visando atender às demandas de um conjunto de clientes. Dada 
sua ampla aplicabilidade, particularmente no setor de logística, inúmeras 
variantes do PRV foram desenvolvidas. Uma dessas variantes é o Problema 
de Roteamento Dinâmico de Veículos (PRDV), caracterizado pelo surgimento 
de novas demandas de clientes após o estabelecimento do roteamento 
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inicial. A complexidade combinatória do PRDV apresenta desafios significativos 
para encontrar soluções viáveis e de alta qualidade dentro de limites práticos de 
tempo de execução para problemas reais de grande escala, impulsionando assim 
o desenvolvimento de abordagens heurísticas. Este artigo apresenta um novo 
algoritmo heurístico, Busca Dinâmica por Rotas de Vizinhos (Dynamic Search 
per Neighbors Routes – DSNR), que emprega técnicas de busca de vizinhança 
baseadas no operador 2-Opt* para incorporar novas solicitações de entrega em 
rotas existentes. O algoritmo DSNR foi avaliado usando instâncias do benchmark 
Loggibud, representando dados do mundo real de três cidades brasileiras distintas. 
Em termos de distância e número de veículos necessários, a abordagem proposta 
demonstrou desempenho superior em comparação a dois métodos existentes na 
literatura: o QRP Sweep (QRPS) e o K-Means Greedy (KG). O DSNR obteve melhorias 
de 15% a 17% em termos de distância e custos de entrega final.

Palavras-chave: 2-Opt*; DSNR; heurísticas de busca local; K-Means Greedy; QRP 
Sweep; roteamento dinâmico de veículos.

1 Introduction 

The Vehicle Routing Problem (VRP) is a classical optimization problem first 
introduced by Dantzig and Ramser (1959). As described by Pillac et al. (2013), the VRP 
is typically formulated using a graph G = (V, E, D), where V = [0,1,..., N} represents the 
set of vertices. Vertex 0 denotes a depot serving as the starting point for a vehicle fleet, 
while nodes 1, ..., N represents the customers to be visited. The set of arcs is defined 
as E={(i,j)∈V² | i ≠ j), and D = (dif)(i, j)∈E is the cost matrix over the arc set, typically 
representing costs, times, or distances between vertices. The classical VRP seeks to 
determine routes for identical vehicles, ensuring each customer is visited exactly once 
while minimizing the associated routing costs, times, or distances.

The VRP is widely applicable to various logistical challenges in real-world 
contexts. For instance, Ralphs et al. (2003) addressed a capacitated VRP, Bräysy and 
Gendreau (2005) incorporated delivery time windows for visiting customers, and 
Koç et al. (2016) studied a heterogeneous vehicle fleet. This paper focuses on the 
Dynamic Vehicle Routing Problem (DVRP), a VRP variant where some packages 
(customers) to be delivered are not known in advance but are dynamically revealed 
during the execution of routes. Specifically, this scenario involves receiving new 
customer orders after the initial routes have been determined, necessitating route 
adjustments to accommodate these new demands.

Psaraftis (1988) first characterized the DVRP as a real-time service in which 
vehicles must satisfy evolving demands. According to Larsen (2000), the DVRP is 
more challenging to solve than the traditional VRP, which is already NP-hard, as 
demonstrated by Lenstra and Kan (1981). This inherent complexity requires the 
development of specialized solution methods to obtain high-quality feasible solutions 
within a reasonable runtime.

In this context, the present study introduces a new neighborhood search heuristic, 
Dynamic Search per Neighbors Routes (DSNR), designed to address the DVRP. 
The DSNR examines neighboring routes to schedule dynamic vehicle packages while 
adhering to time, distance, and cost constraints. The proposed approach is evaluated 
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using the Loggibud (2021) dataset, which includes thousands of georeferenced delivery 
points across the capitals of three Brazilian states (Pará – PA, Distrito Federal – DF, 
and Rio de Janeiro – RJ). The algorithm is compared against DVRP solutions proposed 
by Bertsimas and Van Ryzin (1993), Gillett and Miller (1974) (QRP Sweep – QRPS), 
and Comert et al. (2018) (K-Means Greedy – KG). DSNR outperforms QRPS and 
KG in distance and the number of vehicles used, achieving reductions of up to 17% 
in distance compared to the baseline approaches. The main contributions of this work 
are as follows:

• A novel heuristic approach for solving the DVRP using local search strategies 
to schedule new dynamic packages;

• A comprehensive evaluation and statistical analysis of the proposed method 
using a real-world, large-scale dataset of deliveries.

The remainder of this paper is organized as follows: Section 2 introduces the DVRP 
and its theoretical foundations; Section 3 reviews related work; Section 4 describes 
the DSNR algorithm in detail. Section 5 discusses the results and findings. Finally, 
Section 6 concludes the study and suggests directions for future research.

2 Dynamic Vehicle Routing Problem

The DVRP, also known as real-time or online VRP, involves scenarios in which 
input data is only partially available at the onset of route planning. This implies that 
the total number of packages to be delivered is unknown beforehand and progressively 
revealed over time.

In the literature, the DVRP is classified based on the type of dynamic information 
considered, such as new customer requests, demands, service times, and travel 
times. The DVRP was first investigated by Psaraftis (1988), and since then, various 
methodologies have been proposed to evaluate the dynamic degree of the problem, as 
outlined by Larsen, Madsen, and Solomon (2002).

A solution for the DVRP comprises policies for scheduling new packages 
arriving at the depot to the existing routes. Figure 1 provides an illustrative example 
of the DVRP:

• In the initial phase (A), there are seven known customers (vertices 1-7);

• The vehicles have already commenced their deliveries in the second phase 
(B). One vehicle is at customer 3, while the other is at customer 5. During 
this phase, two new customer demands (8 and 9) are received, required route 
inclusion. The initial routes are recalculated to incorporate these new demands, 
considering the current vehicles positions;

• In the final phase (C), all customers are served, and the vehicles return to 
the depot.
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The DVRP can be characterized by its dynamic degree (Equation 1), denotes as Ω, a 
computed using Equation 1. For example, in Figure 1, there are two dynamic packages 
(two new customers) out of a total of nine packages, resulting in:

(1)

Based on Ω, the system can be classified as either dynamic (Ω > 0) or 
static (Ω = 0). According to Larsen, Madsen, and Solomon (2002), dynamic systems are 
further categorized into three levels:

• Weakly dynamic: 0% < Ω ≤ 20%;

• Moderately dynamic: 20% ≤ Ω < 80%;

• Strongly dynamic: 80% ≤ Ω < 100%.

This study assumes that static packages may also be included in the routing process. 
Specifically, initial routes are created based on a set of known static customer demands. 
As new customer demands arrive at the depot, adjustments to the initial routes are 
required. The proposed heuristic addresses these scenarios by handling batches of 
up to 75 packages at the warehouse, necessitating route redefinition for the vehicles.

To conclude this section, the mathematical model used to define the DVRP is 
presented. Let N represents the total number of known customer demands, and K denotes 
the number of identical vehicles available to serve these customers. Furthermore, 
consider the graph G = (V, E, D) as introduced in Section 1, in which D = (dij) represents 
the distance matrix. The following decision variables are defined:

• xijk: = 1 if the vehicle k travels from the vertex i to vertex j, and 0 otherwise;

• zjk: = 1 if the vehicle k serves customer j, and 0 otherwise;

• yjk: = 1 if the customer j is the last visited by vehicle k, and 0 otherwise;

• vk: = 1 if the vehicle k is used to serve at least one customer, and 0 otherwise;

• ujk: =  represents the order in which the customer j is visited by vehicle k.

Figure 1 • 
An example of the dynamic 

vehicle routing problem.  
Source: Chen, Chen, 

and Gao (2017)
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The mixed integer programming model minimizes the objective function (Equation 2), 
subject to constraints defined in Equations 3 to 14.

(2)

subject to:

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

The objective function (2) seeks to minimize the total distance traveled to serve all 
customers. Constraints (3) ensure that each customer visits exactly one vehicle, while 
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constraints (4) limit customer assignments to utilized vehicles. Constraints (5) ensure 
that customers assigned to a vehicle appear on its respective route. Flow constraints are 
defined by (6), and constraints (7) ensure that vehicles leave the depot. Constraints (8) 
utilized the traditional Miller, Tucker, and Zemlin (MTZ) formulation (Miller; Tucker; 
Zemlin, 1960) to eliminate subroutes. Constraints (9) enforce the usage of vehicles in 
ascending index order, avoiding multiple equivalent solutions. Finally, constraints (10) 
through (14) define the domain of the decision variables.

3 Related works

As the VRP and its variants belong to the NP-hard class of problems, heuristic 
methods are commonly employed to address them. The literature encompasses a 
variety of approaches, including ant colony systems, genetic algorithms, particle swarm 
optimization algorithms, and combinations of data mining, classification, and ranking 
techniques. While this section highlights recent scientific contributions, a more detailed 
review can be found in Rios et al. (2021).

The papers discussed in this section were selected based on their proposals of 
heuristics and techniques for solving the DVRP. Another selection criterion was the 
application of these proposed solutions to instances or datasets for evaluation and 
comparison with other algorithms.

Numerous studies have applied Ant Colony Systems (ACS) to the VRP and its 
variants. Montemanni et al. (2005) proposed a strategy based on ACS to solve the DVRP. 
Their approach divided the working day into time slices of equal length, processing the 
arrival of new requests at its end of each time slice, effectively transforming the problem 
into a series of VRP instances. The quality of their algorithm was assessed using the 
dataset originally proposed by Kilby, Prosser, and Shaw (1998) and a real-case scenario in 
Lugano, Switzerland. The instances proposed by Kilby, Prosser, and Shaw (1998) feature 
problems involving 50 to 199 clients. The authors compared their results (minimum, 
maximum, and average travel times) with those obtained by the original GRASP (Greedy 
Randomized Adaptive Search Procedure) proposed by Resende and Ribeiro (2003). Their 
findings demonstrated that ACS produced higher-quality results over five runs of both 
algorithms. It was suitable for the proposed real-case scenario, with performance highly 
dependent on ACS parameter choices, particularly the number of time slices.

Gambardella, Taillard, and Agazzi (1999) proposed the Multiple Ant Colony System 
for Vehicle Routing Problem with Time Windows (MACS-VRPTW) to optimize the 
number of vehicles and total travel time. A separated colony system was proposed for 
each objective, with cooperation facilitated through pheromone updates. This strategy was 
evaluated on 56 instances from Solomon's VRPTW benchmark (Solomon, 1987), which 
includes six problem types with 100 nodes each. MACS-VRPTW produced competitive 
results, achieving the best-known solutions in most instances.

Barán and Schaerer (2003) introduced a multi-objective ant colony system to obtain 
Pareto optimal solutions by simultaneously: optimizing three objectives: the number of 
vehicles, total travel time, and total delivery time. The proposed algorithm is an extension 
of the MACS-VRPTW approach (Gambardella; Taillard; Agazzi, 1999) by ensuring 
no single objective took precedence. Evaluated using Solomon's instances, the results 
outperformed those of the MACS-VRPTW, although the authors only provided results 
for instance C101.
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Van Veen et al. (2013) developed MACS-DVRPTW, an approach inspired by MACS, 
for the dynamic version of VRPTW. Their benchmark was based on Solomon's VRPTW 
instances, with additional dynamic elements, such as clients being revealed progressively 
throughout the day. Their hybrid algorithm combined ACS with construction and local 
search methods. They also evaluated their approach using a real-case scenario from a 
Dutch security company (Yang et al., 2017).

Necula, Breaban, and Raschip (2017) addressed the DVRPTW and introduced 
DVRPTW-ACS, a novel algorithm that employs a single ant colony system to optimize 
both the number of vehicles and the total distance traveled. Based on Van Veen et al. (2013) 
approach, they divided the working day into equal-sized time slices, treating the dynamic 
problem as a series of consecutive static instances. DVRPTW-ACS outperformed 
MACS-DVRPTW in scenarios with higher levels of dynamicity, achieving better 
results for dynamicity levels ranging from 50% to 100%. However, it did not exceed 
MACS-DVRPTW at lower dynamicity levels (0% – 10%).

Several studies, including those by Hong (2012), Pillac, Guéret, and Medaglia (2012), 
and Silva Júnior, Leal, and Reimann (2021), addressed DVRPTW by considering client 
rejection. Hong (2012) proposed decomposing the dynamic problem into static instances 
based on new client arrivals and solving them using an improved Large Neighborhood 
Search (LNS) algorithm. Pillac, Guéret, and Medaglia (2012) developed a Parallel 
Adaptive Large Neighborhood Search (pALNS) algorithm to compute initial solutions and 
update them dynamically as new clients arrive. Silva Júnior, Leal, and Reimann (2021) 
presented a framework comprising seven algorithmic variants, incorporating insertion 
heuristics, ant colony systems, and neighborhood descent methods. Evaluated using 
Lackner’s (2004) instances – comprising 56 instances with 100 customers from 
Solomon's dataset – these works showed that while Pillac, Guéret, and Medaglia (2012) 
approach was more effective in less complex rejection scenarios. Silva Júnior, Leal, and 
Reimann (2021) algorithm minimized unserved clients more effectively under varying 
heuristic parameters.

Marinakis and Marinaki (2010) proposed a three-phase solution for DVRP, integrating 
a genetic algorithm with their Multiple Phase Neighborhood Search-Greedy Randomized 
Adaptive Search Procedure (MPNS-GRASP) (Marinakis; Migdalas; Pardalos, 2009) 
and a Particle Swarm Optimization (PSO) algorithm. This solution was evaluated using 
Solomon (1987) dataset.

Fonseca-Galindo et al. (2022) introduced a heuristic for DVRP involving limited-
capacity vehicles and stochastic clients. Their approach combined a multi-agent system 
with trajectory data mining techniques to identify territorial patterns. Using the FP-Growth 
algorithm for distributed computing, the method reduced data granularity by mapping 
client locations into of geographic areas, referred to as cells, using the Google S2 geometry 
library. The heuristic was applied to a real-world dataset of 136,000 packages delivered 
in Belo Horizonte, Brazil, in 2019.

This section has presented a range of approaches to addressing DVRP. 
Most solutions were tested on small instances, highlighting a gap in scalability. 
Fonseca-Galindo et al. (2022) applied their heuristic to a large dataset but did not compare 
the results to other algorithms. Consequently, there remains a need for scalable solutions 
capable of handling large instances and long distances while facilitating comparisons 
with other DVRP algorithms. The present work addresses this gap, demonstrating that 
the proposed heuristic surpasses classical algorithms regarding traveled distance and the 
number of vehicles allocated for delivery.
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4 Dynamic Search per Neighbor Route

The proposed algorithm processes package batches during specific periods, as 
illustrated in Figure 2. The first batch, received at the depot at time T0, can be considered 
a static problem (CVRP) as all the packages in the batch are known a priori. From the 
second batch (time T1), the problem becomes dynamic (dynamic degree ≤ 50%), as half 
of the packages already have routes from the first batch. At this time TN -1, the Nth batch 
is incorporated into the problem.

Figure 3 outlines the steps involved in applying the algorithm to a new package batch. 
Initially, a dynamic package is selected from the batch, and Algorithm 1 is executed. 
This algorithm determines whether to create a new route or insert the package into an 
existing neighboring route. If a new route is created, it must be balanced with the nearest 
existing one, resulting in an updated route solution. Delivery may begin once the vehicle 
assigned to the route is fully loaded.

The “Dynamic Solution” step in Figure 3 consists of two main components:

a. Select a dynamic package: a batch comprises a set of packages that can be sorted 
before dispatching them to the final distribution center. Equation 15 calculates the weight 
of each package. The weight wi represents the average distance (dij) between a given 

Figure 2 • 
Batch packages routing 

in TN periods.  
Source: elaborated 

by the authors

Figure 3 • 
Steps for routing dynamic 

packages.  
Source: elaborated 

by the authors
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packet i and the already routed packages j, including the depot. The set S includes all 
packages (including the depot):

(15)

The calculated weight can be utilized to sort the packages in either ascending or 
descending order.

The proposed algorithm is designed to handle new package batches and reusable 
routes. As depicted in Figure 4, the scenario includes dynamic packages (black circles), 
routed packages (white circles), and delivered packages (gray circles). Dynamic 
packages are those in those in the current batch. Routed packages are assigned to 
vehicles that have not yet departed the depot. Delivered packages, already allocated 
to vehicles that have left the depot, cannot have their routes modified.

b. Vehicle routing (DSNR): once a dynamic package is selected, the next task 
is to identify a neighboring route for its insertion. The routed packages are listed 
in ascending order of their distance to the dynamic package. After sorting, these 
routes are defined as neighboring routes of the dynamic package. There may be 
R neighboring routes, where 1 ≤ R ≤ N, and N represents the number of routed 
packages neighboring the dynamic package. Figure 4 provides an example with N = 3, 
where packages P5, P8 and P9 are selected. P3 is part of a closed route (the vehicle has 
already commenced delivery).

Figure 4 • 
A scenario with one new 
dynamic package (P13) to 

be allocated to a new or an 
existing route.  

Source: elaborated 
by the authors
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Given the dynamic packages’ neighboring routes, Algorithm 1 allows us to select 
the first route, R3.

function InsertPackage(p, route, routing_packages) {package p insert to route, routing packages is 
a list of packages that are in a route.}

auxroute  =  PackageInserted(p, route)
if CapacityExceeded(auxroute) then
        scenery1  = RouteWithDynamicNoWorst(route)
        scenery2 =  RouteNoDynamicWithWorst(route)
       if dist(scenery1) < dist(scenery2) then
               EjectsTheWorstPackage(route, routing_packages)
               InsertPackage(p, route, routing_packages)
               return scenery1
       else
                return scenery2 {Scenery 2 = Route without dynamic route}
      end if
 else
      return auxroute
end if
end function

The algorithm generates an auxiliary route, where the dynamic package is inserted at 
the optimal position. After insertion, the vehicle capacity of the auxiliary route is evaluated:

• If the capacity is exceeded, two scenarios are considered, as illustrated in Figure 5. 
In the first scenario, the dynamic package replaces the worst package in the 
route. The worst package is the one with the highest score (based on distance). 
Removing this package enhances the route, as demonstrated in Figure 6. In the 
second scenario, the dynamic package is not inserted into the route.

Algorithm 1 • 
Insert dynamic package into 

a neighboring route.  
Source: elaborated 

by the authors

Figure 5 • 
Scenarios for inserting a 

new package.  
Source: elaborated 

by the authors
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If scenario 1 results in a smaller total distance, the worst package is removed from the 
route and reclassified as dynamic package, to be inserted at the end of the batch. Otherwise, 
the dynamic package is evaluated for insertion into the next neighbor route. If no additional 
neighboring routes are available, a new route is created for the dynamic package.

If the route can accommodate the new dynamic package, the auxiliary route is 
accepted, allowing for the selection of another package from the batch.

After the dynamic package is inserted, any newly created route undergoes optimization 
with the nearest existing route. This optimization employs a novel exchange operator based 
on the 2-Opt* method. The operator is applied iteratively until no further improvements 
in the total distance of the routes can be achieved.

4.1 4C 2-Opt** Optimization

After package routing, two local search operators are applied to refine the solution. The 
first operator, 2-Opt* (Fahrion; Wrede, 1990), evaluates whether exchanging two packages 
from different routes improves the total travelled distance. The 2-Opt** operator identifies 
the optimal placement for a new package within a route. Figure 7 illustrates an example in 
which r1 represents the first route and r1 the second route, with packages 2 and 3 selected 
to explore new insertion possibilities for dynamic package.

Figure 6 • 
Score of a package 

on a route.  
Source: elaborated 

by the authors

Figure 7 • 
Initial route for 

applying 2-Opt*.  
Source: elaborated 

by the authors
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In the 2-Opt* operator, a single scenario is possible: the direct exchange between 
packages 2 and 3 (a. in Figure 8). The 2-Opt** operator extends the allocation possibilities 
by allowing both selected packages to be routed within the same route. The heuristic 
determines the optimal position for one of the selected packages in the alternative route.

5 Dataset and heuristics evaluation

The proposed routing solutions were tested and evaluated using the Loggibud 
urban routes benchmark (Loggibud, 2021). This repository provides historical delivery 
data from three Brazilian cities: Rio de Janeiro, Belém, and Brasília. Each package 
weighs between 1 and 10 load units, while each vehicle has a maximum capacity of 180 
load units. Furthermore, the repository includes georeferenced latitude and longitude 
data for each package, with distances calculated using the Open Search Routing 
Machine (OSRM) server.

Deliveries are organized into instances that take place within a single business day, 
with packages arriving at the warehouse unsorted. However, the system permits sorting 
into batches, with a maximum of 75 packages per batch. Each batch is assumed to arrive 
at the warehouse at full capacity.

The repository includes two algorithms designed to solve the dynamic routing 
problem. Both require parameter I, which defines the number of initial regions for training.

Two types of files are available in the Loggibud repository:

• Input file (CVRPInstance): contains data on the warehouse (depot) location and 
the georeferenced coordinates of all packages schedule for delivery within one 
business day;

• Output file (CVRPSolution): lists the sequence of packages deliveries for each 
vehicle departing from the depot.

The Loggibud repository implements two dynamic routing algorithms: QRP Sweep 
(QRPS) and K-Means Greedy (KG).

Figure 8 • 
Figure 8 – 2-Opt** example.  

Source: elaborated 
by the authors
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5.1 QRP Sweep

This algorithm segments the delivery regions using a scanning method, as described 
by Bertsimas and Van Ryzin (1993) and Gillett and Miller (1974). Initially, a training 
phase based on historical data is carried out, during which delivery demands points are 
transformed from planar coordinates (x, y) to polar coordinates (R, Θ), where Θ varies 
within the range [–180o, 180o] and , as depicted in Figure 9.

A K-Means clustering algorithm is applied to the training dataset in the polar 
coordinate system, with the depot serving as the central reference point. Once the regions 
are established, each package is assigned to its corresponding region. When a vehicle 
reaches its maximum package capacity or when no additional packages remain in the 
region, it is dispatched. Before dispatch, a Traveling Salesman Problem (TSP) is solved 
using the Branch-and-Cut algorithm implemented in a commercial high-performance 
Mixed-Integer Programming (MIP) solver, as detailed in Section 6.

5.2 K-Means Greedy (KG)

The KG algorithm also incorporates a training phase that utilizes historical data. 
Following the training, each package is allocated to the region with the nearest centroid, 
with each region linked to a specific vehicle. The corresponding vehicle is dispatched 
when a region reaches its predetermined limit (i.e., the vehicle’s capacity). Similar to 
the QRPS algorithm, a Branch-and-Cut algorithm from a commercial MIP solver is 
employed to determine the optimal routing sequence for the dispatched vehicle within 
the designated region.

6 Results and discussions

This section describes the experiments conducted to evaluate the DSNR 
algorithm. The proposed algorithm was analyzed and compared with the QRPS and 
KG implementations available in the Loggibud repository. All algorithms were run on 
a computer equipped with an AMD Ryzen 5600x processor (6 cores, 12 threads), a 
RTX 2080 Super, and 16 GB of RAM at 3200 MHz. The Branch-and-Cut algorithm from 
the IBM ILOG Cplex 20.1 commercial solver was utilized with default settings to solve 
the necessary mixed integer programming (MIP) subproblems.

Figure 9 • 
Converting planar to 

polar coordinates.  
Source: elaborated 

by the authors
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The DSNR to QRPS and KG comparison was motivated by the fact that all three 
algorithms utilize the same datasets (from the Loggibud benchmark) as inputs to solve 
the DVRP. Additionally, their solutions provide two key outputs: the number of vehicles 
required and the total distance traveled (in kilometers).

Subsection 6.1 characterizes each dataset instance (DF, PA, and RJ) based on the 
distances calculated by each algorithm. Subsection 6.2 describes how the DSNR algorithm 
functions regarding package ordering. Subsection 6.3 compares the three algorithms 
across the same instances, considering the number of vehicles required and the total 
traveled distance. The final delivery costs, computed based on vehicle usage and travel 
distances reported by each algorithm, are also presented.

6.1 Characterization of dataset instances

Figure 10 presents a boxplot of the distances calculated by each algorithm using the 
Loggibud benchmark. The results indicate that the distances computed by DSNR are 
consistently lower than those obtained by KG across all scenarios. In the DF dataset, the 
median of DSNR closely aligns with that of QRPS. However, in the PA and RJ datasets, 
DSNR exhibit a clear advantage, producing lower distances than both QRPS and KG. 
These findings suggest that DSNR performs particularly well in instances involving 
longer distances.

6.2 Ordering of the dynamic search per neighbor route

The DSNR approach accepts a package that is to be routed and delivered. Each 
package is part of a set, and the packages within a set can be ordered according to their 
weights. The weight of a package is determined by the average distance between that 
package and all others in the set (Equation 2). Once the package weights are assigned, 
they can be input into the algorithm based on the following approaches:

• Non-ordering (N): packages are processed in the original sequence as they appear 
in the set;

Figure 10 • 
Boxplot of distances 

calculated by each 
algorithm for the PA, DF, 

and RJ datasets.  
Source: https://www.kaggle.com/

datasets/wiltoncosta7/pesquisa-
por-rotas-vizinhas-dinamicas
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• Increasing ordering (I): packages are processed in ascending order of weight;

• Decreasing ordering (D): packages are processed in descending order of weight.

These three ordering approaches were compared to evaluate their effect on algorithm 
performance. Each set comprises 30 packages. Tables 1, 2, and 3 present the total distance 
travelled and the number of vehicles required for each ordering technique (N, I, D) 
across 10 dataset instances from three cities in Brazil: Belém (PA), Brasília (DF), and 
Rio de Janeiro (RJ). The results for all 30 instances are available at https://www.kaggle.
com/datasets/wiltoncosta7/pesquisa-por-rotas-vizinhas-dinamicas. For each instance, the 
optimal (lowest) distance and vehicles count are highlighted in bold.

Instance
Distance Vehicles

DSNR-N DSNR-I DSNR-D DSNR-N DSNR-I DSNR-D

pa-90 608 594 669 10 10 10

pa-91 706 699 769 10 10 10

pa-92 520 700 533 10 10 10

pa-93 552 593 513 10 10 10

pa-94 806 733 806 10 10 10

pa-95 675 854 804 10 10 10

pa-96 836 784 843 10 10 10

pa-97 649 721 698 10 10 10

pa-98 780 696 765 10 10 10

pa-99 761 908 806 10 10 10

Average 689.3 728.2 720.6 10 10 10

Instance
Distance Vehicles

DSNR-N DSNR-I DSNR-D DSNR-N DSNR-I DSNR-D

df-90 1,465 1,466 1,448 46 44 45

df-91 1,293 1,344 1,331 39 37 41

df-92 1,394 1,402 1,409 43 42 40

df-93 1,356 1,255 1,269 40 39 38

df-94 1,621 1,442 1,693 34 31 35

df-95 1,582 1,602 1,540 50 48 51

df-96 1,508 1,647 1,795 41 39 39

df-97 1,303 1,396 1,344 39 34 39

df-98 1,321 1,261 1,355 37 38 41

df-99 1,519 1,455 1,441 31 30 36

Average 1,436.2 1,427 1,462.5 40 38.2 40.5

Table 1 • 
Traveled distance and 

number of vehicles for the 
three ordering approaches 

(Belém – PA dataset).  
Source: https://www.kaggle.com/

datasets/wiltoncosta7/pesquisa-
por-rotas-vizinhas-dinamicas

Table 2 • 
Traveled distance and 

number of vehicles for the 
three ordering approaches 

(Brasília – DF dataset).  
Source: https://www.kaggle.com/

datasets/wiltoncosta7/pesquisa-
por-rotas-vizinhas-dinamicas
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Instance
Distance Vehicles

DSNR-N DSNR-I DSNR-D DSNR-N DSNR-I DSNR-D

rj-90 3,896 3,919 4,007 188 193 207

rj-91 4,192 3,978 4,134 220 205 213

rj-92 4,077 4,019 4,185 203 207 213

rj-93 4,017 3,963 4,118 172 158 162

rj-94 3,881 3,887 3,998 161 164 171

rj-95 3,455 3,451 3,432 113 117 121

rj-96 3,980 3,801 3,994 157 147 146

rj-97 3,371 3,227 3,498 171 156 170

rj-98 3,985 3,979 4,096 169 172 183

rj-99 4,221 4,241 4,385 215 217 230

Average 3,907.5 3,846.5 3,984.7 176.9 173.6 181.6

To estimate the cost of trips for each instance, the following constraints were applied:

• Distances are measured in kilometers (km);

• Each instance must be completed within a single workday;

• Each vehicle incurs an average cost of R$ 1.92 per km;

• The minimum cost for allocating a vehicle to a delivery is R$ 13.90.

All vehicles are assumed to be homogeneous, with identical capacity and operational 
costs. The total delivery cost is computed using Equation 16:

(16)

Table 4 presents the total costs (in thousands of reais, R$) for all instances in Belém, 
Brasília, and Rio de Janeiro, based on the distance and vehicle data from Tables 1, 2, and 3.

City - Nº samples DSNR-N (COST) DSNR-I (COST) DSNR-D(COST)

PA-300 R$ 43,954 R$ 45,115 R$ 44,080

DF-1000 R$ 105,181 R$ 105,335 R$ 104,850

RJ-4000 R$ 295,354 R$ 294,580 R$ 299,676

Depending on the ordering approach, costs differed. To determine whether this 
difference was statistically significant, tests were conducted. The Shapiro-Wilk test for 
normality was applied to the cost values for each dataset instance across the three cities. 
Assuming a confidence level of a α = 0.05, the test results showed p-values greater than α,  
indicating no grounds to reject the normality hypothesis.

Given that the normality was not rejected, an analysis of variance (ANOVA) test 
was performed to assess potential differences among the three ordering approaches. The 

Table 3 • 
Traveled distance and 

number of vehicles for the 
three ordering approaches 

(Rio de Janeiro – RJ dataset).  
Source: https://www.kaggle.com/

datasets/wiltoncosta7/pesquisa-
por-rotas-vizinhas-dinamicas

Table 4 • 
Total delivery 

costs (R$ × 1,000) for the 
three ordering approaches.  

Source: https://www.kaggle.com/
datasets/wiltoncosta7/pesquisa-

por-rotas-vizinhas-dinamicas
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lowest p-value obtained from ANOVA was 0.41, greater than α, suggesting no statistically 
significant effect from the ordering strategy. Consequently, the null hypothesis of no 
effects among the ordering approaches is accepted.

Based on this analysis, the non-ordering approach (N) was adopted for further 
evaluation and comparison with other dynamic routing techniques.

6.3 Comparison and data analysis

Tables 5, 6, and 7 show the results concerning distance and vehicle counts for 
the DSNR (non-ordering), QRPS, and KG algorithms. QRPS and KG were executed 
following task2 in the Loggibud benchmark repository1. All algorithms were applied to 
instances from PA, DF, and RJ, with each batch consisting of 75 packages.

Instance
Distance Vehicles

DSNR QRPS KG DSNR QRPS KG

pa-90 608 718 1,198 10 12 82

pa-91 706 876 1,255 10 12 81

pa-92 520 816 1,322 10 12 86

pa-93 552 622 1,182 10 12 81

pa-94 806 807 1,295 10 11 85

pa-95 675 917 1,548 10 13 88

pa-96 836 952 1,524 10 12 90

pa-97 649 754 1,135 10 13 76

pa-98 780 772 1,215 10 12 78

pa-99 761 912 1,564 10 12 88

Average 689.3 814.6 1,323.8 10 12.1 83.5

Instance
Distance Vehicles

DSNR QRPS KG DSNR QRPS KG

df-90 1,465 1,748 2,549 46 46 107

df-91 1,293 1,540 2,231 39 37 100

df-92 1,394 1,681 2,472 43 41 108

df-93 1,356 1,388 2,053 40 36 92

df-94 1,621 1,821 2,729 34 42 110

df-95 1,582 1,986 2,775 50 45 114

df-96 1,508 1,932 2,419 41 46 106

df-97 1,303 1,535 2,449 39 36 106

df-98 1,321 1,594 2,362 37 38 103

df-99 1,519 1,626 2,180 31 39 98

Average 1,436.2 1,685.1 2,421.9 40 40.6 104.4

[1] Available at: 
https://github.com/loggi/loggibud. 

Accessed on: 12 Feb. 2025.

Table 5 • 
Distance (km) and number 
of vehicles for the dynamic 

algorithms on instances 
from Belém (PA).  

Source: https://www.kaggle.com/
datasets/wiltoncosta7/pesquisa-

por-rotas-vizinhas-dinamicas

Table 6 • 
Distance (km) and number 
of vehicles for the dynamic 

algorithms on instances 
from Brasília (DF).  

Source: https://www.kaggle.com/
datasets/wiltoncosta7/pesquisa-

por-rotas-vizinhas-dinamicas
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Instance
Distance Vehicles

DSNR QRPS KG DSNR QRPS KG

rj-90 3,896 3,919 4,007 188 193 207

rj-91 4,192 3,978 4,134 220 205 213

rj-92 4,077 4,019 4,185 203 207 213

rj-93 4,017 3,963 4,118 172 158 162

rj-94 3,881 3,887 3,998 161 164 171

rj-95 3,455 3,451 3,432 113 117 121

rj-96 3,980 3,801 3,994 157 147 146

rj-97 3,371 3,227 3,498 171 156 170

rj-98 3,985 3,979 4,096 169 172 183

rj-99 4,221 4,241 4,385 215 217 230

Average 3,907.5 3,846.5 3,984.7 176.9 173.6 181.6

Table 8 shows the total delivery costs for each set of instances (DF, PA, RJ) using 
various dynamic algorithms. The parameters for QRPS and KG were optimized to find 
the best configuration for each algorithm. Both algorithms require an initial number of 
clusters. Furthermore, a case study was performed for the KG algorithm to identify the 
optimal I parameter. The empirically obtained values that provided the best results for 
each algorithm are presented below:

• For the PA instance, QRPS achieved optimal performance with 10 clusters, 
whereas KG performed best with 8 clusters;

• For the DF instance, QRPS excelled with 40 clusters, while KG obtained the 
best results with 10 clusters;

• For the RJ instance, the most effective performance was realized when the 
number of clusters equaled the number of vehicles.

Even with the optimal cluster configurations, DSNR achieved the lowest cost 
for DF and RJ instances. For the PA instance, there was a slight difference between 
DSNR and KG, which was not statistically significant.

City - Nº samples DSNR QRPS KG

PA-300 R$ 43,954 R$ 48,604 R$ 43,896

DF-1000 R$ 105,181 R$ 120,947 R$ 107,731

RJ-4000 R$ 295,354 R$ 395,411 R$ 342,507

The maximum cost reduction achieved by the DSNR algorithm, compared to the best 
cost obtained using the KG algorithm on the RJ instance, was 13.76%. The Shapiro-Wilk 
test was applied to analyze the normality of the cost data for each sample (Tables 9, 10, 
and 11). Most p-values were higher than α = 0.05, indicating no significant effect to reject 
the null hypothesis (normality).

Table 7 • 
Distance (km) and number 
of vehicles for the dynamic 

algorithms on instances 
from Rio de Janeiro (RJ).  

Source: https://www.kaggle.com/
datasets/wiltoncosta7/pesquisa-

por-rotas-vizinhas-dinamicas

Table 8 • 
Total cost of the 

dynamic approaches.  
Source: https://www.kaggle.com/

datasets/wiltoncosta7/pesquisa-
por-rotas-vizinhas-dinamicas
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Shapiro-Wilk DSNR QRPS KG

W 0.9889 0.9770 0.9768

p-value 0.7951 0.7425 0.7351

Shapiro-Wilk DSNR QRPS KG

W 0.9771 0.9610 0.9869

p-value 0.7448 0.3278 0.9644

Shapiro-Wilk DSNR QRPS KG

W 0.9572 0.8805 0.9768

p-value 0.2622 0.029 0.1284

The ANOVA test was applied to compare the differences in distance among the 
algorithms. All p-values were less than α (p-value < 2.2e-16), indicating significant 
differences in distance among DSNR, QRPS, and KG. The results presented in this 
section are available online2.

7 Conclusions

This study presents the design and development of a new heuristic for the Dynamic 
Vehicle Routing Problem (DVRP). The proposed algorithm, Dynamic Search per 
Neighbors Routes (DSNR), generates routes based on delivery regions, enabling new 
package batches to reuse previously established routes.

The DSNR approach was assessed using a set of routing instances from the Loggibud 
benchmark, which represents delivery points from three different cities in Brazil. The 
proposed method surpassed two other DVRP techniques, QRPS and KG, regarding 
distance and the number of vehicles required. Specifically, DSNR achieved distance 
savings ranging from 15% to 17%.

The advantages of the DSNR heuristic are also evident in cost reductions, as shorter 
distances lead to lower total operational costs. Furthermore, the proposed approach 
contributes to the sustainability of delivery operations, as reduced travel distances and 
fewer required vehicles directly affect greenhouse gas emissions.

One limitation of the DSNR approach lies in the pre-processing stage for package 
ordering. The data in Table 4 suggest that ordering may influence the final routing results 
and associated costs. This poses challenges for implementing DSNR in real-world systems 
with high dynamicity, where delivery distances frequently fluctuate.

Future research could explore integrating the K-Means clustering technique with 
DSNR to define delivery regions based on historical data. Another potential direction 
would involve initiating the dynamic algorithm with an optimized static approach for the 

Table 9 • 
Shapiro-Wilk normality test for 
distance data from Belém (PA).  
Source: https://www.kaggle.com/

datasets/wiltoncosta7/pesquisa-
por-rotas-vizinhas-dinamicas

Table 10 • 
Shapiro-Wilk normality test for 

distance data from Brasília (DF).  
Source: https://www.kaggle.com/

datasets/wiltoncosta7/pesquisa-
por-rotas-vizinhas-dinamicas

Table 11 • 
Shapiro-Wilk normality 

test for distance data from 
Rio de Janeiro (RJ).  

Source: https://www.kaggle.com/
datasets/wiltoncosta7/pesquisa-

por-rotas-vizinhas-dinamicas

[2] Available at: https://www.kaggle.
com/datasets/wiltoncosta7/pesquisa-

por-rotas-vizinhas-dinamicas. 
Accessed on: 12 Feb. 2025.
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initial package set before applying DSNR to subsequent packages. These enhancements 
could contribute to further advancements in the field of dynamic vehicle routing.

Financial Support

The authors acknowledge the financial support provided by the Brazilian Research 
Agency – CNPq (Process no 133954/2020-0) and the Federal University of Mato 
Grosso do Sul.

Conflict of Interest

The authors declare that they have no conflict of interest.

Note

This article is derived from a Master’s dissertation in Computer Science at the Federal 
University of Mato Grosso do Sul (UFMS), available at: https://repositorio.ufms.br/
handle/123456789/5173.

Contributions to the article

COSTA, W. G. G.; SANTOS, R.: conception or design of the study/research; data 
analysis and/or interpretation; final review with critical and intellectual contributions to 
the manuscript. SOLER, W. A. O.; DANTAS, B. A.: data analysis and/or interpretation; 
final review with critical and intellectual contributions to the manuscript. All authors 
participated in the writing, discussion, reading, and approval of the final version 
of the article.

References

BARÁN, B.; SCHAERER, M. A multiobjective ant colony system for vehicle routing 
problem with time windows. In: IASTED INTERNATIONAL CONFERENCE 
APPLIED INFORMATICS, 21., 2003, Innsbruck. Proceedings […]. Innsbruck: 
International Association of Science and Technology for Development, 2003. p. 97-102. 
Available at: https://www.cnc.una.py/publicaciones/1_75.pdf. Accessed on: 11 June 2024.

BERTSIMAS, D. J.; VAN RYZIN, G. Stochastic and dynamic vehicle routing with 
general demand and interarrival time distributions. Advances in Applied Probability, 
v. 25, n. 4, p. 947-978, 1993. DOI: https://doi.org/10.2307/1427801.

BRÄYSY, O.; GENDREAU, M. Vehicle routing problem with time windows, 
Part II: Metaheuristics. Transportation Science, v. 39, n. 1, p. 119-139, 2005. 
DOI: https://doi.org/10.1287/trsc.1030.0057.

2447-9187

https://creativecommons.org/licenses/by/4.0/deed.en
https://openaccessbutton.org/
https://repositorio.ufms.br/handle/123456789/5173
https://repositorio.ufms.br/handle/123456789/5173
https://www.cnc.una.py/publicaciones/1_75.pdf
https://doi.org/10.2307/1427801
https://doi.org/10.1287/trsc.1030.0057
https://periodicos.ifpb.edu.br/index.php/principia/index
https://portal.issn.org/resource/ISSN/2447-9187


R e v .  P r i n c i p i a ,  J o ã o  P e s s o a ,  v .  6 2 ,  e 8 2 9 7,  2 0 2 5 .        [   21  ]

CHEN, S.; CHEN, R.; GAO, J. A monarch butterfly optimization for the dynamic vehicle 
routing problem. Algorithms, v. 10, n. 3, 107, 2017. DOI: https://doi.org/10.3390/
a10030107.

COMERT, S. E.; YAZGAN, H. R.; KIR, S.; YENER, F. A cluster first-route second 
approach for a capacitated vehicle routing problem: a case study. International Journal 
of Procurement Management (IJPM), v. 11, n. 4, p. 399-419, 2018. DOI: https://dx.doi.
org/10.1504/IJPM.2018.092766.

DANTZIG, G. B.; RAMSER, J. H. The truck dispatching problem. Management 
Science, v. 6, n. 1, p. 80-91, 1959. Available at: https://www.jstor.org/stable/2627477. 
Accessed on: 18 May 2025.

FAHRION, R.; WREDE, M. On a principle of chain-exchange for vehicle-routing 
problems (1-VRP). Journal of the Operational Research Society, v. 41, n. 9, 
p. 821-827, 1990. DOI: https://doi.org/10.2307/2583497.

FONSECA-GALINDO, J. C.; SURITA, G. C.; MAIA NETO, J.; CASTRO, C. L.; 
LEMOS, A. P. A multi-agent system for solving the Dynamic Capacitated Vehicle Routing 
Problem with stochastic customers using trajectory data mining. Expert Systems with 
Applications, v. 195, 116602, 2022. DOI: https://doi.org/10.1016/j.eswa.2022.116602.

GAMBARDELLA, L. M.; TAILLARD, É.; AGAZZI, G. MACS-VRPTW: A 
multiple ant colony system for vehicle routing problems with time windows. 
In: CORNE, D.; DORIGO, M.; GLOVER, F. (ed.). New ideas in optimization. London: 
McGraw-Hill, 1999. p. 63-76.

GILLETT, B. E.; MILLER, L. R. A heuristic algorithm for the vehicle-dispatch problem. 
Operations Research, v. 22, n. 2, p. 340-349, 1974. Available at: https://www.jstor.org/
stable/169591. Accessed on: 18 May 2025.

HONG, L. An improved LNS algorithm for real-time vehicle routing problem with 
time windows. Computers & Operations Research, v. 39, n. 2, p. 151-163, 2012. 
DOI: https://doi.org/10.1016/j.cor.2011.03.006.

KILBY, P.; PROSSER, P.; SHAW, P. Dynamic VRPs: a study of 
scenarios. Report APES-06-1998. University of Strathclyde Technical 
Report, v. 1, n. 11, 1998. Available at: https://citeseerx.ist.psu.edu/
document?repid=rep1&type=pdf&doi=19df8728e4a9b273b6e0a6f84b7f39ff4543e565. 
Accessed on: 18 May 2025.

KOÇ, Ç.; BEKTAŞ, T.; JABALI, O.; LAPORTE, G. Thirty years of heterogeneous 
vehicle routing. European Journal of Operational Research, v. 249, n. 1, p. 1-21, 2016. 
DOI: https://doi.org/10.1016/j.ejor.2015.07.020.

LACKNER, A. Dynamische Tourenplanung mit ausgewählten metaheuristiken: eine 
untersuchung am beispiel des kapazitätsrestriktiven dynamischen tourenplanungsproblems 
mit zeitfenstern. Göttingen: Cuvillier Verlag, 2004. (Göttinger Wirtschaftsinformatik, v. 47). 
Available at: https://cuvillier.de/de/shop/publications/2964-dynamische-tourenplanung-
mit-ausgewahlten-metaheuristiken. Accessed on: 18 May 2025. In German.

2447-9187

https://creativecommons.org/licenses/by/4.0/deed.en
https://openaccessbutton.org/
https://doi.org/10.3390/a10030107
https://doi.org/10.3390/a10030107
https://dx.doi.org/10.1504/IJPM.2018.092766
https://dx.doi.org/10.1504/IJPM.2018.092766
https://www.jstor.org/stable/2627477
https://doi.org/10.2307/2583497
https://doi.org/10.1016/j.eswa.2022.116602
https://www.jstor.org/stable/169591
https://www.jstor.org/stable/169591
https://doi.org/10.1016/j.cor.2011.03.006
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=19df8728e4a9b273b6e0a6f84b7f39ff4543e565
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=19df8728e4a9b273b6e0a6f84b7f39ff4543e565
https://doi.org/10.1016/j.ejor.2015.07.020
https://cuvillier.de/de/shop/publications/2964-dynamische-tourenplanung-mit-ausgewahlten-metaheuristiken
https://cuvillier.de/de/shop/publications/2964-dynamische-tourenplanung-mit-ausgewahlten-metaheuristiken
https://periodicos.ifpb.edu.br/index.php/principia/index
https://portal.issn.org/resource/ISSN/2447-9187


R e v .  P r i n c i p i a ,  J o ã o  P e s s o a ,  v .  6 2 ,  e 8 2 9 7,  2 0 2 5 .        [   22  ]

LARSEN, A. The dynamic vehicle routing problem. 2000. Ph.D Thesis (Doctorate 
in Mathematical Modelling) – Technical University of Denmark, Lyngby, 2000. 
Available at: https://backend.orbit.dtu.dk/ws/portalfiles/portal/5261816/imm143.pdf. 
Accessed on: 18 May 2025.

LARSEN, A.; MADSEN, O.; SOLOMON, M. Partially dynamic vehicle routing: 
models and algorithms. Journal of the Operational Research Society, v. 53, n. 6, 
p. 637-646, 2002. DOI: https://doi.org/10.1057/palgrave.jors.2601352.

LENSTRA, J. K.; KAN, A. H. G. R. Complexity of vehicle routing and scheduling 
problems. Networks, v. 11, n. 2, p. 221-227, 1981. DOI: https://doi.org/10.1002/
net.3230110211.

LOGGIBUD. LoggiBUD: Loggi Benchmark for Urban Deliveries. 
GitHub Repository, 2021. Available at: https://github.com/loggi/loggibud. 
Accessed on: 11 June 2024.

MARINAKIS, Y.; MARINAKI, M. A hybrid genetic: Particle Swarm Optimization 
Algorithm for the vehicle routing problem. Expert Systems with Applications, v. 37, 
n. 2, p. 1446-1455, 2010. DOI: https://doi.org/10.1016/j.eswa.2009.06.085.

MARINAKIS, Y.; MIGDALAS, A.; PARDALOS, P. M. Multiple phase neighborhood 
search: GRASP based on Lagrangean relaxation, random backtracking Lin-Kernighan 
and path relinking for the TSP. Journal of Combinatorial Optimization, v. 17, n. 2, 
p. 134-156, 2009. DOI: https://doi.org/10.1007/s10878-007-9104-2.

MILLER, C. E.; TUCKER, A. W.; ZEMLIN, R. A. Integer programming formulation of 
traveling salesman problems. Journal of the ACM (JACM), v. 7, n. 4, p. 326-329, 1960. 
DOI: https://doi.org/10.1145/321043.321046.

MONTEMANNI, R.; GAMBARDELLA, L. M.; RIZZOLI, A. E.; DONATI, A. V. Ant colony 
system for a dynamic vehicle routing problem. Journal of Combinatorial Optimization, 
v. 10, n. 4, p. 327-343, 2005. DOI: https://doi.org/10.1007/s10878-005-4922-6.

NECULA, R.; BREABAN, M.; RASCHIP, M. Tackling dynamic vehicle routing problem 
with time windows by means of ant colony system. In: 2017 IEEE CONGRESS ON 
EVOLUTIONARY COMPUTATION (CEC), 2017, Donostia. Proceedings […]. 
Donostia: IEEE, 2017. p. 2480-2487. DOI: https://doi.org/10.1109/CEC.2017.7969606.

PILLAC, V.; GENDREAU, M.; GUÉRET, C.; MEDAGLIA, A. L. A review of dynamic 
vehicle routing problems. European Journal of Operational Research, v. 225, n. 1, 
p. 1-11, 2013. DOI: https://doi.org/10.1016/j.ejor.2012.08.015.

PILLAC, V.; GUÉRET, C.; MEDAGLIA, A. A fast re-optimization approach for 
dynamic vehicle routing: Research Report. Nantes: École des Mines de Nantes, 2012. 
Available at: https://hal.science/hal-00739782. Accessed on: 11 June 2024.

PSARAFTIS, H. N. Dynamic vehicle routing problems. In: GOLDEN, B. L.; 
ASSAD, A. A. (ed.). Vehicle routing: methods and studies. Amsterdam: North Holland: 
Elsevier, 1988. v. 16, p. 223-248.

2447-9187

https://creativecommons.org/licenses/by/4.0/deed.en
https://openaccessbutton.org/
https://backend.orbit.dtu.dk/ws/portalfiles/portal/5261816/imm143.pdf
https://doi.org/10.1057/palgrave.jors.2601352
https://doi.org/10.1002/net.3230110211
https://doi.org/10.1002/net.3230110211
https://github.com/loggi/loggibud
https://doi.org/10.1016/j.eswa.2009.06.085
https://doi.org/10.1007/s10878-007-9104-2
https://doi.org/10.1145/321043.321046
https://doi.org/10.1007/s10878-005-4922-6
https://doi.org/10.1109/CEC.2017.7969606
https://doi.org/10.1016/j.ejor.2012.08.015
https://hal.science/hal-00739782
https://periodicos.ifpb.edu.br/index.php/principia/index
https://portal.issn.org/resource/ISSN/2447-9187


R e v .  P r i n c i p i a ,  J o ã o  P e s s o a ,  v .  6 2 ,  e 8 2 9 7,  2 0 2 5 .        [   23  ]

RALPHS, T. K.; KOPMAN, L.; PULLEYBLANK, W. R.; TROTTER, L. E. On 
the capacitated vehicle routing problem. Mathematical Programming, v. 94, n. 2, 
p. 343-359, 2003. DOI: https://doi.org/10.1007/s10107-002-0323-0.

RESENDE, M. G. C.; RIBEIRO, C. C. Greedy randomized adaptive search procedures. 
In: GLOVER, F.; KOCHENBERGER, G. A. (ed.). Handbook of metaheuristics. Boston: 
Springer, 2003. p. 219-249. DOI: https://doi.org/10.1007/0-306-48056-5_8.

RIOS, B. H. O.; XAVIER, E. C.; MIYAZAWA, F. K.; AMORIM, P.; CURCIO, E.; 
SANTOS, M. J. Recent dynamic vehicle routing problems: a survey. Computers 
& Industrial Engineering, v. 160, 107604, 2021. DOI: https://doi.org/10.1016/j.
cie.2021.107604.

SILVA JÚNIOR, O. S.; LEAL, J. E.; REIMANN, M. A multiple ant colony system 
with random variable neighborhood descent for the dynamic vehicle routing 
problem with time windows. Soft Computing, v. 25, n. 4, p. 2935-2948, 2021. 
DOI: https://doi.org/10.1007/s00500-020-05350-4.

SOLOMON, M. M. Algorithms for the vehicle routing and scheduling problems with 
time window constraints. Operations Research, v. 35, n. 2, p. 254-265, 1987. Available 
at: https://www.jstor.org/stable/170697. Accessed on: 18 May 2025.

VAN VEEN, B.; EMMERICH, M.; YANG, Z.; BÄCK, T.; KOK, J. Ant colony algorithms 
for the dynamic vehicle routing problem with time windows. In: VICENTE, J. M. F.; 
SÁNCHEZ, J. R. Á.; LÓPEZ, F. P.; MOREO, F. J. T. (ed.). Natural and Artificial 
Computation in Engineering and Medical Applications. Berlin: Springer, 2013. p. 1-10. 
DOI: https://doi.org/10.1007/978-3-642-38622-0_1.

YANG, Z.; VAN OSTA, J.-P.; VAN VEEN, B.; VAN KREVELEN, R.; 
VAN KLAVEREN, R.; STAM, A.; KOK, J.; BÄCK, T.; EMMERICH, M. Dynamic 
vehicle routing with time windows in theory and practice. Natural Computing, v. 16, 
n. 1, p. 119-134, 2017. DOI: https://doi.org/10.1007/s11047-016-9550-9.

2447-9187

https://creativecommons.org/licenses/by/4.0/deed.en
https://openaccessbutton.org/
https://doi.org/10.1007/s10107-002-0323-0
https://doi.org/10.1007/0-306-48056-5_8
https://doi.org/10.1016/j.cie.2021.107604
https://doi.org/10.1016/j.cie.2021.107604
https://doi.org/10.1007/s00500-020-05350-4
https://www.jstor.org/stable/170697
https://doi.org/10.1007/978-3-642-38622-0_1
https://doi.org/10.1007/s11047-016-9550-9
https://periodicos.ifpb.edu.br/index.php/principia/index
https://portal.issn.org/resource/ISSN/2447-9187

