A neighborhood search-based heuristic for the dynamic vehicle routing problem

Wilton Gustavo Gomes da Costa!'!, Ricardo Santosm, Willy Alves de Oliveira Soler B , Bianca de
Almeida Dantas™”

M wilton costa@trimble.com, 2 ricardo.santos @ufms.br, B3] willy.oliveira@ufms.br, 41
bianca.dantas @ufms.br. Federal University of Mato Grosso do Sul (UFMS), Federal University of
Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil

" Corresponding author

Abstract
The Vehicle Routing Problem (VRP) is a classical optimization problem that aims to find m@)r a

fleet of vehicles to meet the demands of a set of customers. Due to its wide applicability, 01ally in
the logistics sector, numerous VRP variants exist. One such variant is the Dynami V Routing
Problem (DVRP), where new customer demands may arise after the initial rouj“$a een defined.
The combinatorial nature of the DVRP makes it challenging to find high-quality feasible solutions

within a reasonable runtime for real-world large-sized problems, motivating the development of
heuristic approaches to address this issue. This paper presents a new uﬁ% algorithm, Dynamic
Search per Neighbors Routes (DSNR), which uses neighborhood sear %pr ches based on the 2-
Opt* operator to allocate new delivery packages to existing routési The DSNR algorithm was
evaluated on instances from the Loggibud benchmark, represénti al data from three different
Brazilian cities. Regarding distance and number of vehicles, roposed approach outperforms two
other techniques from the literature: the QRP Sweep (QRPS) the K-Means Greedy (KG). The
DSNR achieved gains ranging from 15% to 17% in distance and final delivery costs.
Keywords: 2-Opt*; DSNR; dynamic vehicle routing; local search heuristic; k-means greedy; QRP
sweep. ?b‘

Uma heuristica baseada em busca local para o problema de roteamento dindmico de

C’;Kel’qulos

Resumo ® 9
O Problema de Roteamento de & s (VRP) é um problema cldssico de otimizacdo no qual se
objetiva determinar as rot is ‘econdmicas para uma frota de veiculos, visando atender as
demandas de um conjun clientes. Devido a sua aplicabilidade, principalmente na drea de
logistica, existem intimeras variantes do VRP na literatura. Em particular, o Problema de Roteamento
Dindmico de Veiculos P) é uma variante do VRP em que algumas demandas de clientes surgem
apos as rotas dos veiculos jd terem sido determinadas. A natureza combinatoria do problema torna
dificil encontrar oes de boa qualidade, em tempo computacional aceitdvel, para instdncias de
grande porte ,oviupidas de cendrios reais. Esse fato motiva o desenvolvimento de abordagens
heuristicas a solugdo do DVRP. Nesse contexto, o presente artigo propée um novo algoritmo
para o W , intitulado "Dynamic Search per Neighbors Routes (DSNR)", em que estratégias de
bu@e zinhanga, baseadas no operador 2-Opt¥*, sdo aplicadas para alocar novos pacotes de

en as rotas existentes. O algoritmo DSNR foi avaliado em um conjunto de instdncias do
benchmark Loggibud, representando dados reais de pontos de entrega referentes a trés cidades
brasileiras. Considerando a distdncia e o niimero de veiculos utilizados, a abordagem proposta
supera o desempenho de duas outras técnicas existentes na literatura, a saber, o QRP Sweep (ORPS)
e 0 K-Means Greedy (KG). Os ganhos em distdncia e custos de entrega final variam de 15% a 17 %.
Palavras-chave: 2-Opt*; DSNR; heuristicas de busca local; K-Means Greedy; QRP Sweep;
roteamento dindmico de veiculos.

1 Introduction
The Vehicle Routing Problem (VRP) is a classical optimization problem, introduced in the
literature by Dantzig and Ramser (1959). According to Pillac et al. (2013), the VRP is usually



formulated considering a graph G = (V,E,D), where V = {0,1,...,N} is the set of vertices, with
vertex 0 denoting a depot that is the starting point for a vehicle fleet and nodes 1, ..., N, denoting the
customers to be visited. E = {(i,j) € V?|i # j} is the set of arcs; and D = (dij)i,peE is the cost
matrix defined over the arc set, usually representing the costs, times, or distances to move between
different vertices. The classical VRP consists of finding routes for identical vehicles, ensuring each
customer is visited exactly once while minimizing the incurred routing costs, times, or distances.

The VRP finds applicability in various logistic problems arising in different real-world contexts.
For example, Ralphs et al. (2003) addressed a VRP considering capacitated vehicles; Brdysy and
Gendreau (2005) considered delivery time windows to visit the customers; and Kog et al. (2016)
considered a heterogeneous vehicle fleet. This paper focuses mainly on the Dynamic Vehicle Routing
Problem (DVRP), a particular VRP in which some packages (customers) to be delivered ma be
available in advance, being revealed dynamically during the execution of the routes. Specifi , this
scenario considers that new customer orders may be received after the routes have n chosen
requiring some routes to be adjusted to meet these new demands. %

Psaraftis (1988) first characterized the DVRP as a service in which % ust satisfy
demands that evolve in real time. According to Larsen (2000), the DVRP is more challenging to solve
than the traditional VRP, which is NP-hard as stated by Lenstra and Kan (4981). This complexity
necessitates the development of specialized solution methods capable o vﬂ% high-quality feasible
solutions in a reasonable runtime. In this context, this paper presentssa neighborhood search
heuristic approach to address the DVRP, aiming to provide feasib %,utions for large-sized real-
world test instances.

The proposed heuristic, Dynamic Search per Neighbor tés (DSNR), examines neighboring
routes to schedule dynamic packages to vehicles while consideringtime, distance, and cost constraints.
The approach is evaluated using the dataset proposed ilyLOGGIBUD (2021), which consists of
thousands of georeferenced delivery points covering capitals from three states (PA, DF, and RJ) of
Brazil. The algorithm has been compared to theOD\‘@blgorithms proposed by Bertsimas and Van
Ryzin (1993), Gillett and Miller (1974) (QRP Sweep — QRPS), and Comert et al. (2018) (K-means
Greedy - KG). DSNR outperforms both QRPS @ in terms of distance and the number of vehicles
used, achieving up to 17% less distance than QRPS and KG. The main contributions of this work are:

* A new heuristic approach to @ss the DVRP using local search strategies to schedule

new dynamic packages;, Q
* A comprehensive evalu d statistical analysis of the proposed technique on real-world

and large-scale d iveries.

The rest of this paper 1sZtgamzed as follows: Section 2 introduces the DVRP and the theoretical
concepts; Section 3 pr s the related work; Section 4 describes the DSNR algorithm; Section 5
discusses the results& dings; and Section 6 concludes the paper and proposes directions for future
work.

2 Dynamlc% e Routing Problem
P, also known as real-time or online VRP, involves input data that is only partially

v the beginning of the routes planning. This means the total number of packages to be
d%&ls not known a priori and is revealed over time.

n the literature, the DVRP is categorized on the type of dynamic information considered, such
as new customer requests, demands, service times, and travel times. The DVRP was first explored by
Psaraftis (1988), and since then, researchers have proposed various methods to evaluate the dynamic
degree of the problem, as suggested by Larsen, Madsen, and Solomon (2002).

A solution for the DVRP consists of policies to schedule new packages arriving at the depot to
the existing routes. Figure 1 illustrates an example of the DVRP:
e There are seven known customers (vertices 1-7) in the first phase (A);
* The vehicles have already started their deliveries in the second phase (B). One vehicle is at
customer 3 and the other at customer 5. Two new customer demands (8 and 9) are received



and should be added to the routes. The initial routes are recalculated to accommodate the
new customer demands given the current positions of the vehicles;
e The third phase (C) shows that all the customers were served and the vehicles returned to

the depot.
Figure 1 — An example of the dynamic vehicle routing problem
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The DVRP can be characterized by the dynamic degree ( tion 1), represented by variable (2.
As an example, Figure 1 has two dynamic packages (two nfy customers) and a total of nine packages,
so that:

®
Number of dynamic pac @ 2

— = — = . 0 1
0 Total of packa 9 22.22% 1)

Given (2, one can evaluate if the syst
Larsen, Madsen, and Solomon (2092) are three categories of dynamic systems:

*  Weakly dynamic: 0 < 0%;

*  Moderately dynamie: 20%°'< 2 < 80%;

* Strongly dynami %’< 2 < 100%.

is dynamic ({2 > 0) or static ({2 = 0). According to

This work assu%at static packages may be included in the routing. More specifically, we
consider that initia& es are created considering a set of known static customer demands.
Subsequently,.ne\%s mer demands arrive at the depot, requiring adjustments in the initial routes. In
this paper, we ed a heuristic solution that handles batches of up to 75 packages in the warehouse
and require efining the routes of the vehicles.

T clude this section, we present the mathematical model used to define the addressed
DV. mr;se that NV customer demands are known and K identical vehicles are used to meet these
C . Moreover, consider the graph ¢ = (V, E, D) introduced in Section 1, in which D = (d; j)
represents the distance matrix, and the following decision variables:

* Xxjji: = 1if the vehicle k travels from i to j, and 0 otherwise;

* Zzj: = 1if the vehicle k serves customer j, and 0 otherwise;
* Yjk: = lif the customer j is the last visited by vehicle k, and 0 otherwise;
* v,: = 1ifthe vehicle k is used to serve at least one customer, and 0 otherwise;

*  wj: representing the order in which the customer j is visited by vehicle k.

The mixed integer programming model consists of minimizing the objective function (Equation
2), subject to constraints, Equations 3 to 14.
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The objective fi ion (2) aims to minimize the sum of distances traveled to serve the
customers. Constraj ensure that each customer is visited by a single vehicle, while constraints
(4) ensure that:cu ers can only be assigned to utilized vehicles. Constraints (5) guarantee that the
customers assi to each vehicle appear in their respective routes. Constraints (6) are flow
constraints reas constraints (7) ensure that the utilized vehicles leave the depot. Constraints (8) are

the tradi@sl Miller, Tucker, and Zemlin — MTZ- constraints (Miller; Tucker; Zemlin, 1960) to
eli te“stibroutes. Constraints (9) are valid constraints traditionally used for VRP problems with
h/(;%ﬁous vehicle fleets, to avoid multiple solutions with the same objective function value. More
specifically, these constraints ensure that the vehicles are used in ascending order of indexes. Finally,
constraints (10) to (14) define the domain of the decision variables.

3 Related work

As the VRP and its variants belong to the NP-hard class of problems, heuristic methods are
often used to tackle them. The literature comprises various approaches, including ant colony systems,
genetic algorithms, particle swarm optimization algorithms, and combinations of data mining,
classification, or ranking techniques. Some recent scientific work is presented in this section, but for a
more detailed review, refer to Rios et al. (2021).



The papers in this section were selected based on their proposals of heuristics and techniques to
solve the DVRP. Another criterion was the application of the proposed solution to instances or
datasets to evaluate and compare it with other algorithms.

Many research works have applied Ant Colony Systems (ACS) to the VRP and its variants.
Montemanni et al. (2005) described a strategy based on ACS to solve the DVRP. Their strategy splits
the working day into time slices of equal length and processes the arrivals of each time slice only at its
end; this approach allows them to deal with a VRP instance at each time slice. The authors assessed
the quality of their algorithm results using the dataset originally proposed by Kilby, Prosser, and Shaw
(1998) and a real-case scenario in Lugano, Switzerland. The instances proposed by Kilby, Prosser, and
Shaw (1998) are problems with 50 to 199 clients. The authors compared their results (minimum,
maximum, and average travel time) with those obtained from the original GRASP edy
Randomized Adaptive Search Procedure) proposed by Resende and Ribeiro (2003). They hat
ACS could achieve better quality results over five runs of both algorithms. They also clairr@hat their
approach was suitable for the proposed real-case scenario, emphasizing that perfor ag s highly
dependent on the parameter choices of the ACS, mainly the number of considere%tim% slices.

The Multiple Ant Colony System for Vehicle Routing Problem with Time dows (MACS-
VRPTW) was proposed by Gambardella, Taillard, and Agazzi (1999) to optimize the number of
vehicles and the total travel time. The authors proposed a colony syst r each objective and
implemented cooperation between both colonies through pheromone updating. They evaluated their
approach on 56 instances of Solomon's benchmark for VRPTW (So&o , 1987), divided into six
different problem types with 100 nodes each. The results were n%('v
MACS-VRPTW achieving the best-known results in most ins .

The research conducted by Bardn and Schaerer (2003) fgned a multi-objective ant colony
system to obtain a set of Pareto optimal solutions, considering three objectives simultaneously: the
number of vehicles, the total traveling time, and the total delivery time. The proposed algorithm is an
extension of the MACS-VRPTW approach (Gambarc? Taillard; Agazzi, 1999), with the difference
that no objective had precedence over the others. strategy was also evaluated using Solomon's
instances, and the results outperformed those t e MACS-VRPTW. However, the authors only
presented the results for a specific instance, (&

Van Veen et al. (2013) propose CS-DVRPTW, a strategy inspired by MACS that
considered the dynamic version of W. They created a benchmark based on Solomon's
benchmark for VRPTW, using the’ instances but with some clients being revealed throughout the
day. Their approach is a hybrid %(; m that combines an ACS with specific construction and local
search methods. Besides tl)s ewrdynamic instances, the authors extended their work and evaluated
their strategy in a real-case scenario of a working day in a Dutch security company (Yang et al., 2017).

Necula, Breaban, ,and Raschip (2017) also considered DVRPTW and proposed a novel approach
with a single ant col )‘&em to optimize the number of vehicles and the total distance traveled. The
algorithm they developéd, DVRPTW-ACS, was based on the approach of Van Veen et al. (2013),
which involveaﬁé%ng a working day into equal-sized time slices. The dynamic problem was then
viewed as a sé€ries’of consecutive instances of the static problem. DVRPTW-ACS was evaluated using

e with previous work, with

the same j es proposed by Van Veen et al. (2013) and found that DVRPTW-ACS outperformed
MACS- PTW as the dynamicity of the problem increased. Although their approach did not
S ACS-DVRPTW in most instances with dynamicity levels between 0% and 10%, it achieved

bett sults with 50% to 100% dynamicity levels on both objectives.

Different authors, such as Hong (2012), Pillac, Guéret, and Medaglia (2012), and Silva Junior,
Leal, and Reimann (2021), proposed strategies to solve the DVRPTW that considered the possibility
of rejecting a customer. Hong (2012) proposed a strategy that decomposes the dynamic problem into a
series of static instances based on the arrival of a new client and uses an improved Large
Neighborhood Search (LNS) algorithm to solve the static problem. Pillac, Guéret, and Medaglia
(2012) proposed a Parallel Adaptive Large Neighborhood Search (pALNS) algorithm to compute an
initial solution and update the solution each time a new customer arrives. Silva Junior, Leal, and
Reimann (2021) described a framework to solve DVRPTW using seven algorithmic variants based on
an insertion heuristic, ant colony systems, variable neighborhood descent, and random variable
neighborhood descent. All three works evaluated their algorithms using instances proposed by Lackner



(2004) that consist of 56 instances with 100 customers from Solomon's dataset. Silva Junior, Leal, and
Reimann (2021) evaluated the influence of the variability of each heuristic's hyperparameters on the
quality of the results and found that their algorithm effectively minimized the number of unserved
clients. In situations where the rejection of clients is less complex, the approach of Pillac, Guéret, and
Medaglia (2012) achieved better results.

The work of Marinakis and Marinaki (2010) proposed a solution to DVRP with three phases.
The solution was based on the combination of a genetic algorithm with their Multiple Phase
Neighborhood Search-Greedy Randomized Adaptive Search Procedure (MPNS-GRASP) (Marinakis;
Migdalas; Pardalos, 2009) and a Particle Swarm Optimization (PSO) algorithm. The approach was
evaluated using the dataset instances proposed by Solomon (1987).

In Fonseca-Galindo et al. (2022), a heuristic strategy for DVRP is described, which takesiinto
account limited capacity vehicles and stochastic clients. The proposed heuristic combine Iti-
agent system with trajectory data mining techniques to obtain territorial patterns. The I%eurgc? uses the
FP-Growth algorithm, allowing distributed computing to mine large databases. .& ocessing
phase, mapping a sequence of points (clients' locations) into a sequence of geg% aghic areas called
cells, is proposed to reduce the granularity of information processed by the FP-Gro algorithm. The
Google S2 geometry library is then used to represent these points and cells. The algorithm was
evaluated using a real-world dataset with 136,000 packages delivered i Zﬁ%from three expedition

o

the solutions are applied to small instances, thus mitigating thessc ity of the approach. Fonseca-
Galindo et al. (2022) ran their heuristic on a large set of i of short distances and did not
compare the results to other algorithms. One may observe a gap 1gh scalability proposals that could
work on large instances of long distances and, mainly, compare the results to other DVRP algorithms.
This work focuses on this gap, showing that the proposed heuristic outperforms classical algorithms
when looking at the traveled distance and the number hicles allocated to the delivery.

centers in Belo Horizonte, Brazil
This section presented a set of different approaches proposin% s’%,\ ns to the DVRP. Most of

4 Dynamic search per neighbor route

The proposed algorithm processes pa% atches in specific periods, as shown in Figure 2.
The first batch received at the depot at ti an be considered a static problem (CVRP) since all the
packages in the batch are known a om the second batch (time T;), the problem becomes
dynamic (dynamic degree < 50%) alf of the packages already have routes from the first batch.
At time Ty_4, the Ny, batch is 1rémto the problem.

re 2 — Batch packages routing in Ty periods

TO T]_ T2 © " TN—l TN

First batch, Degree of dynamism Degree of dynamism
all known packages 50% =20%

DI S S S S S

Time interval for static problem

= = = Time interval for dynamic problem € —BATCH RECEIVED

Source: authors



Figure 3 shows the steps of applying the algorithm to a new package batch. First, a dynamic
package is selected from the batch and Algorithm 1 is executed. The algorithm selects whether to
create a new route or insert the package into a neighboring route. If a new route is created, it must be
balanced with the nearest existing one, generating a new route solution. Delivery can start if the
vehicle responsible for that route is filled.

Figure 3 — Steps for routing dynamic packages

ﬁynamic Solutioh

rBatch distribution \ Nehicle Loadina

Select a (Vehicle Routingw
Batch receipt dynamic »| Ready-to-ship packages
package DSNR S
Source: authors. \ﬁ

The “Dynamic Solution” step presented in Figure 3 has two main égmponents:
a. Select a dynamic package: a batch has a set of packages thatcan be sorted before being
kﬁ%ess)t

sent to the final distribution center. Equation 15 ca e weight of each package.
weight; is the average distance (d;;) that a given packer1 has to the already routed
packages j, including the depot. The set S includes?all packages (including the depot):

weight; = 3@ (15)

®
The weight can be used to sort ages in ascending or descending order.

The application context e proposed algorithm involves new package batches and
available routes that can be g . Consider the scenery in Figure 4, where there are dynamic
packages (black circle ted"packages (white circles), and delivered packages (gray circles).
Dynamic packages ose in the current batch. Routed packages have been scheduled to a
vehicle that has not leftithe depot yet. Delivered packages have been allocated to a vehicle that
has left the depo@cannot have their routes modified.

b. Velﬁcl%&ng (DSNR): once a dynamic package has been selected, the next challenge is
to fi 1ghboring route to insert it. The routed packages will be listed in ascending order
Q@is‘[ance to the dynamic package. After sorting the package, their routes are defined

neighboring routes of the dynamic package. There may be R neighboring routes, where
@S R < N, with N being the number of routed packages neighboring the dynamic

package. Figure 4 presents an example with N = 3. Packages Ps, Pg, and Py are selected. P
is in a closed route (the vehicle started the delivery).

Figure 4 — A scenario with one new dynamic package (P,;) to be allocated to a new or an existing route
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Given the neighboring routes of the dynamic pacKets, st route R3 can be selected
according to Algorithm 1.

Algorithm 1 — Insert dynamic package ingd a neighboring route

O ROUTED PACKAGE

function InsertPackage(p, route, routing_packages) {package p insert to route, routing packages is
a list of packages that are in a route. }

auxroute = Packagelnserted(p, route)
if CapacityExceeded(auxroute) then
sceneryl = RouteWithDynamicNoWorst(route)
scenery2 = RouteNoDynamicWithWorst(route)
if dist(sceneryl) < dist(scenery2) then
EjectsTheWorstPackage(route, routing_packages)
InsertPackage(p, route, routing_packages)
return sceneryl
else
return scenery2 {Scenery 2 = Route without dynamic route}
end if
else
return auxroute
end if
end function

The first step of the algorithm is to generate an auxiliary route by inserting the dynamic package
into the best position. Once the insertion is done, the vehicle capacity of the auxiliary route is
evaluated:

» If the capacity is exceeded, two scenarios are generated, as shown in Figure 5. The first
scenario assumes that the dynamic package replaces the worst package in the route. The
worst package is the one with the highest score (highest distance). Removing this package
will improve the route, as shown in Figure 6. The second scenario occurs when the dynamic
package is not inserted into the route.



Figure 5 — Scenarios to insert a new package
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Given both scenario cepario 1 has a smaller distance, the worst package is extracted from

the route, becoming a dynamic package inserted at the end of the batch. Otherwise, the dynamic
package looks for the next neighbor route; if no more neighbor routes exist, a new route is generated

for the dynamic pac]&ga
» If the routéscan accommodate the new dynamic package, the auxiliary route is returned,
alloﬁv@r the selection of a new package from the batch.

Aft rting the dynamic package, if a new route is created, an optimization is performed
betweenithe new route and the nearest existing route. The optimization uses a new exchange operator
ba @r on. the 2-Opt* optimization, called 2-Opt**. The operator is applied until no further
impregyements in the total distance of the routes can be made.

4.1 4C 2-Opt** Optimization

After package routing, two local search operators are applied to find better solutions. The first
operator, 2-Opt* (Fahrion; Wrede, 1990), checks if exchanging two packages, each in a different
route, improves the traveled distance. The 2-Opt** operator finds the best placement for a new
package in a route. Figure 7 shows an example where ry is the first route and r, the second route, with
packages 2 and 3 selected to explore new possibilities for inserting the new dynamic package.

Figure 7 — Initial route for applying 2-Opt*
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In 2-Opt*, a single scenario is possible: the exchange between 2 and 3 (a. in Figure 8). 2-Opt**
increases the possibility of allocating a package into a route, as both selected packages can be routed
into only one route. The heuristic evaluates the best position where one ofithe selected packages could
be allocated to the other route.

Figure 8 — 2-Opt** examplc/; ‘b
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from three different cities in Brazil: Rio de Janeiro (RJ), Belém (PA), and Brasilia (DF). Each package
varies between 1-10 load units, and each available vehicle is capable of carrying up to 180 load units.
Additionally, each package has its latitude and longitude location, and distances are calculated using
the Open Search Routing Machine (OSRM) server. The deliveries are organized into instances
delivered in one business day, and there is no specific order in which the packages arrive at the
warehouse. However, the designer can sort the packages into batches, assuming a maximum of 75
packages per batch. Each batch is assumed to arrive at the warehouse with this quantity.

The repository provides two algorithms to solve the dynamic approach, both requiring a
parameter /, which denotes the number of initial regions for training.

In the Loggibud repository, there are two types of files:



e Input file (CVRPInstance): this file contains information about the warehouse (depot)
location and the georeferenced coordinates of each package that should be delivered within
one business day;

*  Output file (CVRPSolution): this file has the sequence of packages that will be delivered by
each vehicle departing from the depot.

The Loggibud repository provides two dynamic routing algorithms: QRP Sweep (QRPS) and K-
means Greedy (KG).

5.1 QRP Sweep
This algorithm separates enabled regions with a scan method as discussed in Bertsimas and‘Van

Ryzin (1993) and Gillett and Miller (1974). First, there is a training phase based on histo ata,
where delivery demands have their planar coordinates (x,y) converted to polar coqrdinates (R, ©),

with the angles @ in the range of [-180°, 180°] and R = /x? + y2, as shown in Fiir K-means

algorithm is applied to the training set with polar coordinates, with the dep e center. After
generating the regions, each package is assigned to a region. Once a vehicle reaches its maximum
package capacity, or there are no more packages to be shipped in that region;ithe vehicle responsible
for the region is dispatched. Before each vehicle is dispatched, a TSP (T A%Salesman Problem) is
solved using the Branch-and-Cut algorithm from a commercial hlgh pe nee MIP (Mixed-Integer
Programming) solver, as detailed in Section 6.

Figure 9 — Converting planar to pola‘@dﬁates
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The Kq also uses a training set based on historical data. After the training, the
algorithm assi package to the region with the closest centroid, with each region having its own
vehicle. W eglon reaches a limit (i.e., the vehicle capacity), the vehicle from that region is
dlspatch w1th QRPS, a Branch-and-Cut algorithm from a commercial MIP solver is used to

ages for each dispatched vehicle within the generated region.
6 Re&ts and discussions

In this section, we present the experiments evaluating the DSNR algorithm. The proposed
algorithm was analyzed and compared to the QRPS and KG implementations in the Loggibud
repository. All algorithms were executed on a computer with a 6-core AMD Ryzen 5600x processor,
12 threads, GPU RTX 2080 Super, and 16 GB of RAM at 3200MHz. We used the Branch-and-Cut
algorithm of the commercial MIP solver IBM ILOG Cplex 20.1 with default settings to solve the
necessary mixed integer programming (MIP) sub-problems. The motivation for comparing DSNR to
QRPS and KG is that all algorithms can use the same datasets (from the Loggibud benchmark) as
inputs to solve the DVRP. Additionally, they all provide the number of vehicles and distance (in
kilometers) as outcomes of their solutions.



Subsection 6.1 presents a characterization of each instance (DF, PA, and RJ) of the datasets,
considering the distance calculated by each algorithm. Subsection 6.2 outlines how the DSNR
algorithm works according to the ordering of the packages. Subsection 6.3 compares the three
algorithms in the same instances, considering the number of vehicles and the distance. We also present
the final costs of the deliveries based on the number of vehicles and distances reported by each
algorithm.

6.1 Characterization of the Instances

Figure 10 presents a boxplot of distances calculated by each algorithm using the Loggibud
benchmark. It can be observed that the distances calculated by DSNR are lower than those by KG in
all scenarios. In the DF dataset, the median of DSNR is quite similar to that of QRPS but is clearly
lower than both QPRS and KG in the PA and RJ datasets, indicating that DSNR achieves be esults
on instances with large distances. . 6

Figure 10 — Distances calculated by each algorithm in the packages of PA, DF an mltasets
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6.2 Ordering of the dynamic seaff@leighbor route
The input of the DSNR apptoaeh is a package to be routed and delivered. Each package can be
part of a set of packages. 'Ll ges in a set can be sorted according to their weights. A package
weight is given by the average. of the distances from the package to each other package (Equation 2).
Once the packages in a set have their weights, they can be passed to the algorithm as follows:

* Non-orde g& : the packages are inputs to the algorithm as they are in the set;

. Incrgas“%&dering (I): the packages are passed to the algorithm in increasing order of

c &(ng ordering (D): the packages are passed to the algorithm in decreasing order of

se three ordering approaches were compared to check if the package ordering impacts the
algorithm results. Each set has 30 packages. Tables 1, 2, and 3 present the distance and number of
vehicles for each ordering technique (&, /, D) on 10 instances from three different cities (Belem — PA,
Brasilia — DF, and Rio de Janeiro — RJ) in Brazil. The results for all 30 instances are available at
https://www.kaggle.com/datasets/wiltoncosta7/pesquisa-por-rotas-vizinhas-dinamicas. For each
instance, the best (smallest) results for distance and number of vehicles are highlighted in bold.

Table 1 — Distance and number of vehicles for the three ordering approaches on instances of Belem (PA)

Distance Vehicles

DSNR-N DSNR-I DSNR-D | DSNR-N DSNR-I DSNR-D
pa-90 608 594 669 10 10 10

Instance




pa-91 706 699 769 10 10 10
pa-92 520 700 533 10 10 10
pa-93 552 593 513 10 10 10
pa-94 806 733 806 10 10 10
pa-95 675 854 804 10 10 10
pa-96 836 784 843 10 10 10
pa-97 649 721 698 10 10 10
pa-98 780 696 765 10 10 10
pa-99 761 908 806 10 10 10
Average 689.3 728.2 720.6 10 10 10
Source: https://www.kaggle.com/datasets/wiltoncosta7/pesquisa-por-rotas-vizinhas-dinamicas S
Table 2 — Distance and number of vehicles for the three ordering approaches on instances of Distri ral
or) -
Inst Distance Vehicles
"N | DSNR-N_ DSNR-I_DSNR-D | DSNR-N_ DSNR-I_DSNR.D _
df-90 1,465 1,466 1,448 46 44 45
df-91 1,293 1,344 1,331 39 3 41
df-92 1,394 1,402 1,409 43 A&V 40
df-93 1,356 1,255 1,269 40 38
df-94 1,621 1,442 1,693 34 35
df-95 1,582 1,602 1,540 5 8 51
df-96 1,508 1,647 1,795 39 39
df-97 1,303 1,396 1,344 39 34 39
df-98 1,321 1,261 1,355 #37 38 41
df-99 1,519 1,455 1,441 31 30 36
Average | 1,436.2 1,427 40 38.2 40.5

Source: https://www.kaggle.com/datasets/wiltoncosta7/pesquisa-| assvizinhas-dinamicas

Table 3 — Distance and number of vehicles for théithreg ordering approaches on instances of Rio de Janeiro (RJ)

Distaice ) Vehicles
Instance
DSNR-N ]&;1& DSNR-D | DSNR-N DSNR-I DSNR-D
rj-90 3,896 x& 9 4,007 188 193 207
rj-91 4 978 4,134 220 205 213
rj-92 4,019 4,185 203 207 213
rj-93 4, 3,963 4,118 172 158 162
rj-94 3,881 3,887 3,998 161 164 171
rj-9K ,455 3,451 3,432 113 117 121
N r% 3,980 3,801 3,994 157 147 146
- 3,371 3,227 3,498 171 156 170
4%98 3,985 3,979 4,096 169 172 183
rj-99 4,221 4,241 4,385 215 217 230
@ Average | 3,907.5 3,846.5  3,984.7 176,9 173,6 181.6
»@ psv//www.kaggle.com/datasets/wiltoncosta7/pesquisa-por-rotas-vizinhas-dinamicas

To calculate a cost for the trips of each instance, the following constraints are applied:
¢ Distances are measured in kilometers (km);

* Trips for an instance must be completed within one workday;

» Each vehicle incurs an average cost of R$ 1.92 per km;

* The minimum cost for a vehicle to be allocated to a delivery is R$ 13.90.

The vehicles are assumed to be homogeneous, meaning they have the same capacity and costs.
Equation 16 is used to calculate the cost for a delivery:



Cost = R$ 1.92 X Distance + R$ 13.90 x Vehicles (16)

Table 4 presents the costs (in thousands of reais, R$) for all instances of Belem, Distrito
Federal, and Rio de Janeiro based on the data presented in Tables 1, 2 and 3.

Table 4 — Costs (R$ x 1,000) of the three ordering approaches
City - N° samples DSNR-N (COST) DSNR-I(COST) DSNR-D(COST)

PA-300 R$ 43,954 R$ 45,115 R$ 44,080
DF-1000 R$ 105,181 R$ 105,335 R$ 104,850 A$
RJ-4000 R$ 295,354 R$ 294,580 R$ 299,676

Source: https://www.kaggle.com/datasets/wiltoncosta7/pesquisa-|

or-rotas-vizinhas-dinamicas
One can observe a difference in costs based on the ordering approach. TeA re conducted to
determine if there was a statistical difference among these costs. The Shapiro-Wilk test for normality
was applied to the costs for each instance in the three cities. Assuming a confidence level (a = 0.05)
and a p — value > a, the test results indicated no grounds to reject th%m ity hypothesis. Given
that the normality hypothesis was not rejected, an analysis of varianc A) test was conducted

to determine if there were significant differences among the three gr g approaches. The smallest
p — value from ANOVA was 0.41, which is greater than indicating no statistically significant
effects from the orderings. Therefore, the null hypothesis o effects among the approaches is

accepted. Based on this analysis, the non-ordering approach was-adopted to evaluate and compare the
results with other dynamic techniques. /

6.3 Comparison and data analysis

Tables 5, 6 and 7 present the results (dlS d number of vehicles) of DSNR (non-ordering),
QRPS and KG algorithms. QRPS and KG W chted following task2 in the Loggibud benchmark
repository (https://github.com/loggi/loggibiid). All"algorithms were run on instances PA, DF, and RJ,

with each batch containing 75 package
@
Table 5 — Results of distance (km) r@er of vehicles of the dynamic algorithms on instances of Belem

(PA)
Distance Vehicles
Instance
SNR QRPS KG DSNR QRPS KG
} 608 718 1,198 10 2 s
K‘) 706 876 1,255 10 12 81
92 520 816 1,322 10 12 86
pa-93 552 622 1,182 10 12 81
4 pa-94 806 807 1,295 10 11 85
@ pa-95 675 917 1,548 10 13 88
pa-96 836 952 1,524 10 12 90
’%’ pa-97 649 754 1,135 10 13 76
pa-98 780 772 1,215 10 12 78
pa-99 761 912 1,564 10 12 88
Average 689.3 8146  1,323.8 10 12.1 83.5

Source: https://www.kaggle.com/datasets/wiltoncosta7/pesquisa-por-rotas-vizinhas-dinamicas

Table 6 — Results of distance (km) and number of vehicles of the dynamic algorithms on instances of Distrito
Federal (DF)

Distance Vehicles

DSNR QRPS KG DSNR  QRPS KG
df-90 1,465 1,748 2,549 46 46 107

Instance




df-91 1,293 1,540 2,231 39 37 100
df-92 1,394 1,681 2,472 43 41 108
df-93 1,356 1,388 2,053 40 36 92
df-94 1,621 1,821 2,729 34 42 110
df-95 1,582 1,986 2,775 50 45 114
df-96 1,508 1,932 2,419 41 46 106
df-97 1,303 1,535 2,449 39 36 106
df-98 1,321 1,594 2,362 37 38 103
df-99 1,519 1,626 2,180 31 39 98
Average 1,436.2 1,685.1 2,421.9 40 40.6 104.4
Source: https://www.kaggle.com/datasets/wiltoncosta7/pesquisa-por-rotas-vizinhas-dinamicas
Table 7 — Results of distance (km) and number of vehicles of the dynamic algorithms on instances de
Janeiro (RJ) @
Instance Distance Vehicles I E \,
DSNR QRPS KG DSNR QRPS
rj-90 3,896 3,919 4,007 188 193 207
rj-91 4,192 3,978 4,134 220 205 13
rj-92 4,077 4,019 4,185 203 2 3
rj-93 4,017 3,963 4,118 172 1& 2
rj-94 3,881 3,887 3,998 161 6 171
rj-95 3,455 3,451 3,432 121
rj-96 3,980 3,801 3,994 147 146
rj-97 3,371 3,227 3,498 171 156 170
rj-98 3,985 3,979 4,096 172 183
rj-99 4,221 4,241 4,385 215 217 230

Average | 3,907.5 3,846.5

Source: https://www.kaggle.com/datasets/wiltoncosta7/pesquisa-|

176.9 173.6  181.6

izinhas-dinamicas

Table 8 presents the total delivery %, each set of instances (DF, PA, RJ) using each
dynamic algorithm. Parameters for QR KG were optimized to find the best setup for each
algorithm. Both algorithms require Qtlal number of clusters. Additionally, a case study was
conducted for the KG algorithm to ine the optimal I parameter. The values that yielded the best
results for each algorithm are aﬁq below and were found empirically:
e For the PA inst S performed best with 10 clusters, while KG performed best with
8 clusters;
*  For the DF i{@ce, QRPS performed best with 40 clusters, while KG performed best with
10 cluster;
* Forasth nstance, the best performance was achieved when the number of clusters

eq the number of vehicles
E\@vith the best cluster configurations, DSNR achieved the lowest cost for DF and RJ. There
is‘@l{, atistically insignificant difference between DSNR and KG using the PA instance.

Table 8 — Total cost of the dynamic approaches

City - N° samples DSNR QRPS KG
PA-300 R$ 43,954 R$ 48,604 R$ 43,896
DF-1000 R$ 105,181 R$ 120,947 R$ 107,731
RJ-4000 R$ 295,354 R$ 395,411 R$ 342,507

Source: https://www.kaggle.com/datasets/wiltoncosta7/pesquisa-por-rotas-vizinhas-dinamicas




The maximum cost reduction (in percentage) achieved by the DSNR algorithm compared to the
best cost from the KG algorithm using the RJ instance is 13.76%. The Shapiro-Wilk test was also
applied to the costs for each sample (Tables 9, 10, and 11). Most p-values were higher than o = 0.05,
indicating no significant effects to reject the null (normality) hypothesis.

Table 9 — Shapiro’s normality test on the distance data of Belem (PA)

SHAPIRO DSNR QRPS KG

w 0.9889 0.9770 0.9768

P-VALUE 0.7951 0.7425 0.7351

Source: https://www.kaggle.com/datasets/wiltoncosta7/pesquisa-por-rotas-vizinhas-dinamicas $—
Table 10 — Shapiro’s normality test on the distance data of Distrito Federal ( F.) @

SHAPIRO DSNR QRPS ,@

A% 0.9771 0.9610 0.9869

P-VALUE 0.7448 0.3278 0.9644

Source: https://www.kaggle.com/datasets/wiltoncosta7/pesquisa-por-rotas-vizinhas-dinamicas

Table 11 — Shapiro’s normality test on the distance.data®of; ao de Janeiro (RJ)

SHAPIRO DSNR QRPS KG
W 0.9572 O.SS(g 0.9768
P-VALUE 0.2622 ‘ %29 0.1284

Source: https://www.kaggle.com/datasets/wiltoncosta7/pesquisa-| as-vizinhas-dinamicas

The ANOVA test was applied to th@}' data to compare the differences in distance among the
algorithms. All p-values were less t -value < 2.2¢"%), indicating significant differences in
distance among DSNR, QRPS, afi he results presented in this section are available online at
https://www.kaggle.com/datasets, costa7/pesquisa-por-rotas-vizinhas-dinamicas.

7 Conclusions

This paper presented the design and development of a new heuristic for the Dynamic Vehicle
Routing Problem ( he proposed algorithm, Dynamic Search per Neighbors Routes (DSNR),
creates routes bas delivery regions so that new package batches may reuse previously created

routes. ¢

The Rﬁl}\vas evaluated using a set of routing instances from the Loggibud benchmark,
representi ivery points from three different cities in Brazil. Our approach outperformed two other
DV t@iques, QRPS and KG, regarding distance and the number of vehicles used. Specifically,
D 1eved distance savings ranging from 15% to 17%.

he DSNR heuristic's impacts can also be observed in the cost savings once less distance

reduces the total delivery operational cost. Consequently, the proposed approach also has an original
benefit on the sustainability of the delivery operation considering that less distance or fewer vehicles
has a straight effect on greenhouse gas emissions.

One observable limitation of the DSNR approach relies on the package ordering pre-processing.
The data in Table 4 revealed that the ordering may have a consequence in the routing final results
(costs) so that this a challenge to adopt DSNR in real-world systems where the dynamic degree could
be high and there is a dynamic behavior on the delivery distances.

Future work could involve using the K-means technique alongside DSNR to create regions
based on historical data. Another potential direction would be to start the dynamic algorithm with a set
of packages using a more efficient static approach before applying DSNR to subsequent packages.



These opportunities could lead to further advancements and improvements in the dynamic vehicle
routing field.
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