revista

Análises dos efeitos da interação solo-estrutura em edifícios altos com lajes protendidas

Élcio Cassimiro Alves [1], Kamila Madeira Fiorotti [2], Marcos Oliveira Carvalho Junior [3]

[1] elcio.calves1@gmail.com. [2] kamila_fitt@hotmail.com. [3] marcos.ocjr@gmail.com. Universidade Federal do Espírito Santo (UFES) / Departamento de Engenharia Civil.

RESUMO

A interação solo-estrutura (ISE) busca analisar a estrutura como uma só, ou seja, sua análise deixa de ser separada para infraestrutura e para superestrutura e passa a ser uma verificação da influência de ambas as partes funcionando simultaneamente. Portanto, este trabalho tem por objetivo analisar e comparar o cálculo de uma edificação com lajes protendidas pelo método tradicional com o cálculo utilizando a ISE em fundações superficiais. Para isso, realizou-se um estudo da melhor distribuição dos cabos na laje de modo a determinar a melhor distribuição quando utilizada a interação solo estrutura. Para a análise, utilizou-se o *software* CAD/TQS para comparar o parâmetro γ_z , o parâmetro de instabilidade α e os deslocamentos horizontais globais das estruturas. De forma a obter uma sensibilidade real no projeto, avaliou-se também uma redistribuição das cargas na fundação nos dois processos. Os resultados dessa comparação mostraram que o emprego da ISE piora os parâmetros de estabilidade, ou seja, deixa de atender os limites impostos pela norma NBR 6118 (ABNT, 2014).

Palavras-chave: Estabilidade global. Lajes protendidas. CAD/TQS. Interação solo-estrutura.

ABSTRACT

The Soil-Structure Interaction (SSI) searches to analyze the structure as one so that analysis is no longer separated for infrastructure and superstructure and becomes a verification of the influence of these two parts working simultaneously. This work aims to analyze and compare the calculation of a building with prestressed slabs by the traditional method with the calculation using ISE on surface foundations. A study of the best cable distribution on the slab was carried out to determine the best distribution when using the soil-structure interaction method. For analysis, the CAD / TQS software was used to compare the parameter γ_z , the instability parameter α , and the global horizontal displacements of structures. To obtain real sensitivity in the project was analyzed the redistribution loads in the foundation of the two processes. The results of this comparison showed that the use of the ISE worsens the stability parameters. In other words, it fails to meet the limits imposed by the Brazilian Standard ABNT NBR 6118:2014.

Keywords: Global Stability. Prestressed Slabs. CAD/TQS. Soil-Structure Interaction

1 Introdução

revista

Considerando que a construção de edificações mais altas e esbeltas cresce à medida que o tempo passa, novas tecnologias de construções são incorporadas, como as lajes protendidas. Esse sistema possui como vantagens o aumento dos vãos livres, a eliminação das vigas, a economia em fôrmas e a flexibilidade arquitetônica, porém como desvantagem, apresenta uma menor rigidez devido a não utilização de vigas, que é um elemento que garante rigidez a estrutura. Com essa redução, nota-se cada vez mais a necessidade de analisar a estabilidade global dessas estruturas. Geralmente, a estrutura é dividida em infraestrutura e superestrutura, e a estabilidade é considerada somente na análise da superestrutura. Porém, na realidade, tudo trabalha em conjunto, percebe-se, então, a importância da análise da estrutura completa. Com a interação solo-estrutura (ISE) é possível analisar a infraestrutura e a superestrutura trabalhando em conjunto, o que se aproxima mais da realidade. Estudos como os de Feitosa e Alves (2015), Passos et al. (2016), Alves e Passos (2019), Alves e Feitosa (2020), Ritter et al. (2020) mostram que a consideração da interação soloestrutura torna a estrutura mais conservadora guando comparada à análise sem a consideração.

Nota-se que Ge *et. al.* (2019), Saragi *et al.* (2019), Galvín, Romero e Domínguez (2010) apresentam em seus estudos a importância da interação soloestrutura considerando efeitos de cargas dinâmicas em diferentes escalas.

Bem como Guerdouh e Khalfallah (2019) expõem um estudo sobre a performance de estruturas de pórticos sob o efeito de terremotos levando em consideração a análise da interação solo-estrutura.

Além disso, Damgaard, Andersen, Ibsen (2014), Lombardi, Bhattacharya e Wood (2013), Bhattacharya *et al.* (2013) mostram diferentes análises para diferentes tipos de projetos, nos quais apontou-se a importância da consideração da interação soloestrutura para os modelos estruturais estudados.

Assim como Su e Wang (2013) exibem um modelo de elementos finitos para um estudo com carga dinâmica equivalente considerando a interação soloestrutura, e Papadopoulos *et al.* (2018) apresentam, em seu estudo, a determinação das características modais de estruturas considerando a interação soloestrutura.

E Ge et al. (2019) fazem uma análise da interação solo-estrutura considerando o movimento do solo

em projetos de edifício e os impactos em edificações vizinhas. Por outro lado, Alves e Feitosa (2020), Danziger *et al.* (2005), Feitosa e Alves (2015), Gusmão (1990), Savaris, Hallak e Maia (2010), Pavan, Costella e Guarnieri (2014), Agrawal e Harne (2020) estudam o ISE para edificações em sistema convencional em concreto armado. Embora existam vários trabalhos na literatura abordando o tema da interação solo-estrutura, não foram encontrados trabalhos envolvendo a análise de sistemas com lajes protendidas.

O objetivo deste trabalho é apresentar um estudo de dimensionamento de edifícios altos com lajes protendidas levando em consideração a influência da interação solo-estrutura na estabilidade global segundo a NBR 6118 (ABNT, 2014). Para isso, realizouse uma análise da disposição dos cabos de modo a avaliar se haveria influência ou não nos parâmetros de estabilidade global da edificação. Avaliaram-se modelos numéricos com o auxílio do *software* CAD/ TQS v21 de modo a analisar os impactos da interação solo-estrutura neste tipo de sistemas de lajes.

2 Breve revisão bibliográfica

2.1 Estabilidade Global

A análise da estabilidade global tem como objetivo garantir a segurança estrutural da edificação, sendo um requisito muito importante para a elaboração de projetos em concreto armado.

Para a elaboração dos projetos estruturais, usualmente, analisam-se os elementos, como pilares, vigas, e lajes de forma isolada, porém, é indispensável avaliar o comportamento da estrutura quando todos esses elementos estiverem conectados e recebendo cargas. Logo, estabilidade é a capacidade de um sistema manter-se em equilíbrio mediante a uma força externa (FÉODOSIEV, 1977).

2.2 Parâmetros de estabilidade

Para a análise da estrutura nem sempre é necessário o cálculo dos efeitos de 2ª ordem, por ser um cálculo mais complicado. A NBR 6118 (ABNT, 2014) apresenta alguns parâmetros práticos para determinar se os efeitos de 2ª ordem serão considerados ou não, sendo eles o parâmetro α (alfa) e o coeficiente γ_z (gama z).

O parâmetro de instabilidade α permite classificar a estrutura quanto à deslocabilidade lateral dos nós, podendo ser de nós fixos ou nós móveis. Já o coeficiente γ_z é utilizado para avaliar a estabilidade global das estruturas, pois além de definir se a estrutura é de nós fixos ou móveis, ele permite estimar os efeitos globais de segunda ordem a partir dos efeitos de primeira ordem para cada carregamento. A NBR 6118 (ABNT, 2014), no item 15.5.3, restringe o seu uso para estruturas reticuladas de no mínimo 4 andares. O valor de γ_z para cada combinação de carregamento é dado pela Equação (1).

$$\gamma_z = \frac{1}{1 - \frac{\Delta M_d}{M_{1d}}} \tag{1}$$

Sendo:

 ΔM_d : a soma dos produtos de todos as forças verticais que atuam na estrutura, pelos deslocamentos horizontais aplicados em seus respectivos pontos, os quais são obtidos na análise de 1ª ordem;

 M_{id} : momento de tombamento, ou seja, a soma dos momentos de todas as forças horizontais da combinação considerada, com seus valores de cálculo, em relação à base da estrutura.

A estrutura é considerada de nós fixos se $\gamma_z \le 1,1$ e de nós móveis se 1,1< $\gamma_z \le 1,3$ (CHINEM, 2010).

O FAVt (fator de amplificação de esforços horizontais) é um coeficiente criado pelo sistema CAD/TQS. Ele usa a mesma formulação do γ_{z} , sendo diferente a consideração dos deslocamentos horizontais provocados pelas cargas verticais e o resultado depende da magnitude das forças horizontais. Caso o edifício seja simétrico esperase que o γ_z e o FAVt sejam idênticos, uma vez que não existirá o deslocamento horizontal devido ao carregamento vertical. O FAVt é maior que o γ_{z} quando os deslocamentos horizontais provocados pelas cargas verticais atuarem no mesmo sentido do vento presente na combinação analisada. Por outro lado, o FAVt é menor que o γ_z quando os deslocamentos causados pelas cargas verticais atuarem em sentido oposto ao vento. No caso do FAVt menor que o γ_z , o sistema adota um valor mínimo que é igual ao correspondente γ_z calculado para o vento isolado presente na combinação (TQS INFORMÁTICA LTDA, 2013).

O coeficiente RM2M1 também foi criado pelo sistema CAD/TQS uma vez que a análise da estrutura com o processo P-Delta não gera um coeficiente que permita avaliar a estabilidade da edificação. O coeficiente RM2M1 utiliza combinações de várias ações como o peso próprio, as cargas permanentes, as cargas acidentais, entre outras.

Esse coeficiente também segue os mesmos princípios do cálculo do γ_z , a Equação 2 apresenta como o cálculo do coeficiente RM2M1 é feito.

$$RM2M1 = 1 + \frac{M_2}{M_1}$$
 (2)

revista

Drin

cipia

Sendo:

M1: o momento das forças horizontais em relação à base do edifício;

M2: o somatório das forças verticais multiplicado pelo deslocamento dos nós das estruturas sob ação das forças horizontais, resultante do cálculo de P-Delta em uma combinação não linear.

Assim, obtém-se uma estimativa dos efeitos de segunda ordem com os efeitos de primeira ordem, como o γ_z .

2.3 Interação solo-estrutura

Usualmente, o cálculo da estrutura é feito supondo que os apoios são indeslocáveis, resultando num conjunto de cargas que são posteriormente passadas ao engenheiro geotécnico. De posse desses valores, o engenheiro geotécnico dimensiona os elementos de fundação considerando as características do solo, como se esses elementos funcionassem de forma isolada do restante da estrutura. Esse tipo de consideração faz com que haja uma disparidade entre o modelo e a realidade, uma vez que na prática toda a estrutura trabalha em conjunto.

Sabe-se que Marques, Alves e Feitosa (2018) observaram, em seu estudo com lajes lisas convencionais, que o parâmetro de instabilidade γ_z , os deslocamentos horizontais máximos absolutos e o consumo de materiais sofreram um aumento considerável quando utilizada a interação soloestrutura.

Além disso, Alves e Passos (2019) e Alves e Feitosa (2020) concluem que o valor de coeficiente γ_z aumenta consideravelmente quando analisada a interação solo-estrutura em edifícios altos em lajes lisas e em lajes nervuradas.

Por outro lado, Pavan, Costella e Guarnieri (2014) comprovam que a interação solo-estrutura gera variações nos esforços atuantes. Os pesquisadores mencionam que desconsiderar a influência dos recalques de apoio pode conduzir a esforços irreais, que podem vir a prejudicar a segurança e durabilidade das edificações. Essas conclusões contemplam edificações construídas em concreto armado simétricas e com fundações superficiais.

revista

E Rosa, Danziger e Carvalho (2018) realizaram uma análise da interação solo-estrutura com foco na fluência e retração do concreto. Nesse estudo, os pesquisadores produzem uma comparação de uma edificação real com uma modelagem no *software* SAP2000. A edificação não simétrica, em concreto armado, com fundação mista, apresentou resultados calculados consistentes com os medidos em campo.

O modelo para análise dos recalques do terreno foi proposto por Schmertmann (1978), que utiliza

o cálculo do módulo de elasticidade estimado pelas sondagens realizados no subsolo. O coeficiente de reação vertical representa a resistência do solo em relação a um deslocamento imposto, análogo a um coeficiente de mola.

3 Metodologia

Neste trabalho analisou-se a estabilidade global de um edifício em lajes planas protendidas com a consideração da interação solo-estrutura (ISE) em comparação a este mesmo edifício sem a consideração da ISE. Na Figura 1 pode-se ver a planta baixa da edificação.

Figura 1 – Layout arquitetônico do pavimento tipo

Fonte: Guimarães (2018)

Inicialmente, realizou-se uma análise da distribuição de cabos de forma a verificar qual a melhor configuração para a disposição dos cabos e sua influência nos parâmetros de instabilidade global. Os 4 modelos analisados são os apresentados na Figura 2.

Figura 2 – Vista 3D das distribuições de cabos dos modelos – (a) Cabos concentrados em x e distribuídos em y; (b) Cabos concentrados em y e distribuídos em x; (c) Cabos concentrados em x e concentrados em y; (d) Cabos distribuídos em x e distribuídos em y

Figura 3 – Distribuição de cabos do pavimento tipo

revista

Segundo Guimarães e Alves (2018), a escolha da distribuição de cabos não é um fator primordial para a estabilidade da estrutura e sim para a facilidade de execução, consumo de materiais e custos. Devido a isso, adotou-se para análise dos novos modelos, o modelo (a), sendo o mais utilizado na prática. A distribuição dos cabos do pavimento tipo está representada conforme a Figura 3.

Na Figura 4, pode-se conferir a simbologia utilizada no desenho de distribuição de cabos.

Com esse resultado, elaborou-se 3 modelos, o MOD0100, no qual não foi considerada a ISE, o MOD0200, em que se levou em consideração a ISE e se manteve as mesmas dimensões dos elementos estruturais para efeito comparativo, e, por último, o MOD0300, no qual realizaram-se as modificações necessárias para que fosse possível atender as exigências de norma para a estabilidade global e o dimensionamento dos elementos. Esse processo de modelagem foi feito com auxílio do software CAD/TQS.

Fonte: Guimarães (2018)

3.1 Características da edificação

O projeto consiste em uma edificação composta por três pavimentos de embasamento: tipo (x14), cobertura, barrilete e caixa d'água. Foram usados como base o projeto arquitetônico do pavimento tipo e as dimensões de pilares desenvolvidos por Guimarães e Alves (2018). A Figura 5 apresenta um corte esquemático da edificação estudada.

Fonte: Guimarães (2018)

As características gerais adotadas para os modelos são:

- Pé direito de todos os pavimentos com exceção do barrilete e caixa d'água: 3,06 m;
- Pé direito barrilete: 1,70 m;
- Pé direito caixa d'água: 1,80 m;
- Altura total da edificação: 55,52 m;
- Altura até o último pavimento habitado: 48,96 m;
- Classe de agressividade: Classe II;
- Elementos de fundação direta: sapatas;
- Resistência característica do concreto para lajes, vigas, pilares e fundação: fck = 45 Mpa;
- Armadura ativa: CP 190 RB, diâmetro 12,7 mm;
- Força de protensão inicial: P_{i = 150 kN}.

Figura 5 – Corte esquemático - Edifício

		+5552
CX D'AGUA	19	<u>+5372</u> – –
BARRILETE	18	<u>+5202</u>
COBERTURA	17	
14* TIPO	16	+4896
		+4590
13* TIP0	15	-\$ 4284
12* TIP0	14	$-\nabla_{-}$
11* TIPO	13	+ <u>3978</u>
10° TIPO	12	+3672
		+3366
9* T1P0	11	+3060
8* T1P0	10	
7* T1P0	9	
6* T1P0	8	+2448
5* T1P0	7	+ <u>2142</u>
4* T1P0		+1836
		+1530
3* T1P0	5	
2* T1P0	4	
1* TIPO	3	
GARAGEM 2	2	<u>+612</u>
GARAGEM 1	1	+306
TÉRREO	0	+0 √

Fonte: Autores

As Tabelas 1, 2, 3 e 4 ilustram os demais parâmetros adotados na análise.

Tabela 1 – Composição dos materiais

Componente ou elemento	Cobrimento nominal (mm)	
Laje maciça	25	
Laje protendida	30	
Viga/pilar	30	
Sapatas	30	

Fonte: Autores

Tabela 2 – Cargas distribuídas por área

Pavimento	Permanente (kN/m²)	Acidental (kN/m²)
Embasamento	1,00	3,00
Pavimento tipo	1,15	1,50
Cobertura	1,00	0,50

Fonte: Autores

Tabela 3 – Cargas lineares

Elementos	Permanente (kN/m)	Acidental (kN/m)
Paredes externas e internas	5,50	-
Paredes internas de <i>drywall</i>	1,60	-
Peitoril de varandas e cobertura	2,00	2,00

Fonte: Autores

Tabela 4 – Parâmetros de cargas de vento

Parâmetros	
V0 – Velocidade Básica	30 m/s
S2 – Categoria de rugosidade	IV
S2 – Classe da edificação	С
S3 — Fator estatístico	1
Turbulência	alta

A Figura 6 apresenta o perfil de solo adaptado utilizado para dimensionamento dos elementos de fundação e nos modelos com a consideração da ISE.

O modelo de cálculo utilizado foi o Modelo VI do CAD/TQS. Esse modelo calcula a estrutura como sendo um pórtico espacial, composto por elementos que simulam as vigas, pilares e lajes. Nesse modelo, as lajes também ajudam a resistir aos esforços solicitantes juntamente com as vigas e pilares, contribuindo, assim, para a estabilidade global da estrutura. Os esforços provenientes do vento foram analisados nas direções: 0°, 90°, 180° e 270°.

Segundo a NBR 6118 (ABNT, 2014) para lajes em concreto armado, pode-se utilizar o coeficiente de não linearidade física (NLF) de 0,3. Feitosa (2016) propõe a utilização de 0,5 para o coeficiente que simula a não linearidade física (NLF) das lajes protendidas, uma vez que essas lajes dispõem de armaduras passivas e ativas, e que seu nível de fissuração é menor do que as lajes convencionais.

Fonte: Autores

3.2 Modelos Analisados

A Figura 7 e Figura 8 apresentam as plantas de fôrmas dos modelos MOD0100/MOD0200 e MOD0300.

revista

Drin

cipia

Fonte: Autores

- MOD0100: Edifício base com fundação engastada;
- MOD0200: Edifício base com utilização da ISE;
- MOD0300: Edifício modificado com utilização do ISE.

Fonte: Autores

3.3 Listagem de casos e combinações analisados

Para a análise das estruturas, bem como o dimensionamento dos seus elementos, deve-se definir as ações que atuarão na edificação, entre elas pode-se citar o peso próprio, a sobrecarga vertical, o vento, o empuxo, o desaprumo global, entre outras. Com essas ações definidas, torna-se necessário combinálas de modo a garantir que a estrutura solicitada resista aos efeitos mais influentes. O programa CAD/ TQS realiza diversos tipos de combinações em seus processamentos, sendo elas montadas de forma automática ou manual.

3.3.1 Casos simples de vento

As combinações referentes a aplicação da carga de vento são as definidas na sequência:

7 - VENT1 – Vento (1) 90° 8 - VENT2 – Vento (2) 270° 9 - VENT3 – Vento (3) 0° 10 - VENT4 – Vento (4) 180° A Figura 9 e a Figura 10 apresentam as fôrmas da fundação dos modelos MOD0100, MOD0200 e MOD0300.

Fonte: Autores

3.3.2 Combinações ELU - Vigas, Lajes, Pilares e Fundação

As combinações ELU (Estado limite último) referem-se ao dimensionamento das armaduras e visam garantir a segurança estrutural da edificação. Para essas combinações são utilizadas as ações acidentais (ACID), permanentes (PERM), peso próprio (PP), vento (VENT) e o hiperestático de protensão (HIPER). As combinações utilizadas são listadas a seguir:

- 17 ELU1/ACIDCOMB/PP+PERM+ 0.86HIPER+ACID+0.6VENT1
- 18 ELU1/ACIDCOMB/PP+PERM+ 0.86HIPER+ACID+0.6VENT2
- 19 ELU1/ACIDCOMB/PP+PERM+ 0.86HIPER+ACID+0.6VENT3
- 20 ELU1/ACIDCOMB/PP+PERM+ 0.86HIPER+ACID+0.6VENT4
- 21 ELU1/ACIDCOMB/PP+PERM+ 0.64HIPER+ACID+0.6VENT1

- 22 ELU1/ACIDCOMB/PP+PERM+ 0.64HIPER+ACID+0.6VENT2
- 23 ELU1/ACIDCOMB/PP+PERM+ 0.64HIPER+ACID+0.6VENT3
- 24 ELU1/ACIDCOMB/PP+PERM+ 0.64HIPER+ACID+0.6VENT4
- 25 ELU1/ACIDCOMB/PP+PERM+ 0.86HIPER+0.8ACID+VENT1
- 26 ELU1/ACIDCOMB/PP+PERM+ 0.86HIPER+0.8ACID+VENT2
- 27 ELU1/ACIDCOMB/PP+PERM+ 0.86HIPER+0.8ACID+VENT3
- 28 ELU1/ACIDCOMB/PP+PERM+ 0.86HIPER+0.8ACID+VENT4
- 29 ELU1/ACIDCOMB/PP+PERM+ 0.64HIPER+0.8ACID+VENT1
- 30 ELU1/ACIDCOMB/PP+PERM+ 0.64HIPER+0.8ACID+VENT2
- 31 ELU1/ACIDCOMB/PP+PERM+ 0.64HIPER+0.8ACID+VENT3
- 32 ELU1/ACIDCOMB/PP+PERM+ 0.64HIPER+0.8ACID+VENT4
- 48 ELU1/ACIDCOMB/PP_V+PERM_V+ 0.86HIPER+ACID_V+0.6VENT1
- 49 ELU1/ACIDCOMB/PP_V+PERM_V+ 0.86HIPER+ACID_V+0.6VENT2
- 50 ELU1/ACIDCOMB/PP_V+PERM_V+ 0.86HIPER+ACID_V+0.6VENT3
- 51 ELU1/ACIDCOMB/PP_V+PERM_V+ 0.86HIPER+ACID_V+0.6VENT4
- 52 ELU1/ACIDCOMB/PP_V+PERM_V+ 0.64HIPER+ACID_V+0.6VENT1
- 53 ELU1/ACIDCOMB/PP_V+PERM_V+ 0.64HIPER+ACID_V+0.6VENT2
- 54 ELU1/ACIDCOMB/PP_V+PERM_V+ 0.64HIPER+ACID_V+0.6VENT3
- 55 ELU1/ACIDCOMB/PP_V+PERM_V+ 0.64HIPER+ACID_V+0.6VENT4
- 56 ELU1/ACIDCOMB/PP_V+PERM_V+ 0.86HIPER+0.8ACID_V+VENT1
- 57 ELU1/ACIDCOMB/PP_V+PERM_V+ 0.86HIPER+0.8ACID_V+VENT2

58 - ELU1/ACIDCOMB/PP_V+PERM_V+ 0.86HIPER+0.8ACID_V+VENT3

revista

- 59 ELU1/ACIDCOMB/PP_V+PERM_V+ 0.86HIPER+0.8ACID_V+VENT4
- 60 ELU1/ACIDCOMB/PP_V+PERM_V+ 0.64HIPER+0.8ACID_V+VENT1
- 61 ELU1/ACIDCOMB/PP_V+PERM_V+ 0.64HIPER+0.8ACID_V+VENT2
- 62 ELU1/ACIDCOMB/PP_V+PERM_V+ 0.64HIPER+0.8ACID_V+VENT3
- 63 ELU1/ACIDCOMB/PP_V+PERM_V+ 0.64HIPER+0.8ACID_V+VENT4

3.3.3 Combinações ELU - Protensão

Durante o processamento da protensão também são feitas diversas combinações totais não majoradas (CTNM), onde utilizam-se as ações acidentais (ACID), as cargas permanentes (PERM), o peso próprio (PP) e a carga de vento (VENT). As combinações da protensão são listadas na sequência.

- 38 CTNM/ACIDCOMB/PP+PERM+ ACID+0.6VENT1
- 39 CTNM/ACIDCOMB/PP+PERM+ ACID+0.6VENT2
- 40 CTNM/ACIDCOMB/PP+PERM+ ACID+0.6VENT3
- 41 CTNM/ACIDCOMB/PP+PERM+ ACID+0.6VENT4
- 42 CTNM/ACIDCOMB/PP+PERM+ 0.8ACID+VENT1
- 43 CTNM/ACIDCOMB/PP+PERM+ 0.8ACID+VENT2
- 44 CTNM/ACIDCOMB/PP+PERM+ 0.8ACID+VENT3
- 45 CTNM/ACIDCOMB/PP+PERM+ 0.8ACID+VENT4
- 69 CTNM/ACIDCOMB/PP_V+ PERM_V+ACID_V+0.6VENT1
- 70 CTNM/ACIDCOMB/PP_V+ PERM_V+ACID_V+0.6VENT2

71 - CTNM/ACIDCOMB/PP_V+ PERM_V+ACID_V+0.6VENT3

revista

orincipia

- 72 CTNM/ACIDCOMB/PP_V+ PERM_V+ACID_V+0.6VENT4
- 73 CTNM/ACIDCOMB/PP_V+ PERM_V+0.8ACID_V+VENT1
- 74 CTNM/ACIDCOMB/PP_V+ PERM_V+0.8ACID_V+VENT2
- 75 CTNM/ACIDCOMB/PP_V+ PERM_V+0.8ACID_V+VENT3
- 76 CTNM/ACIDCOMB/PP_V+ PERM_V+0.8ACID_V+VENT4

4 Resultados e análises

4.1 Estabilidade Global

Durante a modelagem do MOD0100 buscou-se aproximar do valor de 1,30 estipulado pela NBR6118 (ABNT, 2014) como valor limite para o parâmetro de estabilidade γ_z . Como exposto anteriormente, durante a análise da estrutura com o processo P-Delta não é gerado um coeficiente que permita analisar a estabilidade global da edificação, portanto, analisouse o coeficiente RM2M1, gerado pelo TQS, com esse intuito.

Na Tabela 5, Tabela 6 e Tabela 7 pode-se observar os resultados obtidos para os parâmetros γ_z , α e o deslocamento global da estrutura para os três modelos.

Tabela 5 – Parâmetros γ_z para os todos os modelos

	γ_z			
Caso	MOD 0100	MOD 0200	MOD 0300	
7 – Vento 90° (1)	1,106	1,157	1,138	
8 – Vento 270° (2)	1,106	1,157	1,138	
9 – Vento 0° (3)	1,205	1,284	1,223	
10 – Vento 180° (4)	1,205	1,284	1,223	

Fonte: Autores

	α			
Caso	MOD 0100	MOD 0200	MOD 0300	
7 – Vento 90° (1)	0,963	1,118	1,066	
8 – Vento 270° (2)	0,963	1,118	1,066	
9 – Vento 0° (3)	1,109	1,269	1,158	
10 – Vento 180° (4)	1,109	1,269	1,158	

Fonte: Autores

Como pode-se observar na Tabela 5 e na Tabela 6, o modelo 0200 apresentou um aumento considerável tanto do γ_z e do α quando comparado com o modelo 0100 para o vento a 0° e 180°. Esses valores aproximam-se dos prescritos pela NBR 6118 (ABNT, 2014). Por outro lado, o modelo 0300 foi redimensionado de modo a atender todos os requisitos de norma.

Tabela 7 – Deslocamento global para todos os modelos

_	Deslocamento global (10 ⁻² m)			
Caso	MOD	MOD	MOD	
	0100	0200	0300	
7 – Vento 90° (1)	0,74	0,91	0,82	
	(H/7551)	(H/6537)	(H/7242)	
8 – Vento 270° (2)	0,74	0,91	0,82	
	(H/7551)	(H/6537)	(H/7242)	
9 – Vento 0° (3)	1,29	1,65	1,36	
	(H/4293)	(H/3599)	(H/4369)	
10 – Vento 180° (4)	1,29	1,65	1,36	
	(H/4293)	(H/3599)	(H/4369)	

Fonte: Autores

Na Tabela 8, Tabela 9, Tabela 10 e Tabela 11 verificam-se os valores obtidos do parâmetro RM2M1 e do parâmetro de instabilidade para as combinações de ELU de vigas, lajes, pilares e fundações e as combinações de ELU de protensão.

Tabela 8 – Parâmetros de estabilidade RM2M1

Tabela 9 – Parâmetros de instabilidade a

revista

cipia

Combinações ELU – Vigas, Lajes, Pilares e Fundação RM2M1 Caso Ang MOD MOD MOD 0100 0200 0300 17 90° 1,072 1,120 1,081 18 270° 1,166 1,219 1,211 19 0° 1,142 1,211 1,176 20 180° 1,279 1,366 1,276 21 90° 1,074 1,122 1,082 22 270° 1,164 1,217 1,210 23 0° 1,180 1,145 1,214 24 180° 1,275 1,363 1,272 25 90° 1,092 1,141 1,109 26 270° 1,143 1,195 1,181 1,240 27 0° 1,169 1,194 28 180° 1,249 1,331 1,254 29 90° 1,093 1,142 1,110 30 270° 1,194 1,142 1,180 0° 1,171 1,242 31 1,197 32 180° 1,247 1,329 1,252 90° 1,079 48 1,071 1,118 270° 49 1,167 1,221 1,213 0° 50 1,137 1,204 1,173 51 180° 1,283 1,279 1,373 52 90° 1,072 1,119 1,081 53 270° 1,219 1,165 1,212 54 0° 1,141 1,207 1,177 55 180° 1,280 1,369 1,275 56 90° 1,091 1,140 1,108 57 270° 1,144 1,196 1,182 0° 58 1,166 1,236 1,193 180° 59 1,254 1,335 1,256 60 90° 1,093 1,141 1,109 61 270° 1,143 1,195 1,181 62 0° 1,168 1,238 1,195 1,333 180° 1,249 1,253 63

		α		
Caso	Ang	MOD 0100	MOD 0200	MOD 0300
17	90°	0,840	1,065	0,829
18	270°	1,309	1,477	1,469
19	0°	0,963	1,181	1,078
20	180°	1,455	1,670	1,467
21	90°	0,857	1,050	0,840
22	270°	1,298	1,466	1,463
23	0°	0,979	1,195	1,096
24	180°	1,444	1,660	1,453
25	90°	0,961	1,144	1,003
26	270°	1,212	1,382	1,347
27	0°	1,078	1,290	1,163
28	180°	1,364	1,575	1,393
29	90°	0,969	1,152	1,008
30	270°	1,205	1,375	1,343
31	0°	1,087	1,298	1,173
32	180°	1,357	1,568	1,384
48	90°	0,832	1,024	0,818
49	270°	1,313	1,484	1,474
50	0°	0,929	1,142	1,058
51	180°	1,477	1,697	1,482
52	90°	0,849	1,040	0,829
53	270°	1,302	1,473	1,468
54	0°	0,945	1,156	1,076
55	180°	1,466	1,687	1,468
56	90°	0,957	1,139	0,998
57	270°	1,215	1,385	1,350
58	0°	1,061	1,270	1,152
59	180°	1,377	1,591	1,401
60	90°	0,965	1,147	1,003
61	270°	1,207	1,378	1,346
62	0°	1,070	1,278	1,162
63	180°	1,371	1,585	1,393
Fonte: Autor	es			

Tabela 10 – Parâmetros de estabilidade RM2M1

Combinações ELU – Protensão					
Casa		RM2M1			
Caso	Allg	MOD0100	MOD0200	MOD0300	
38	90°	1,079	1,127	1,085	
39	270°	1,158	1,211	1,207	
40	0°	1,155	1,224	1,192	
41	180°	1,265	1,353	1,259	
42	90°	1,097	1,146	1,112	
43	270°	1,139	1,190	1,179	
44	0°	1,177	1,248	1,204	
45	180°	1,241	1,323	1,244	
69	90°	1,078	1,125	1,084	
70	270°	1,160	1,213	1,209	
71	0°	1,151	1,217	1,189	
72	180°	1,270	1,359	1,262	
73	90°	1,096	1,144	1,111	
74	270°	1,140	1,191	1,179	
75	0°	1,174	1,244	1,203	
76	180°	1,243	1,327	1,246	
Fonte: Autore	20				

Tabela 11 – Parâmetros de instabilidade a

Combinações ELU – Protensão RM2M1 Caso Ang MOD0100 MOD0200 MOD0300 38 90° 0,904 1,093 0,871 39 270° 1,265 1,434 1,444 40 0° 1,023 1,234 1,148 41 180° 1,413 1,631 1,413 0,994 42 90° 1,176 1,023 43 270° 1,184 1,355 1,331 0° 44 1,111 1,319 1,202 45 180° 1,337 1,550 1,359 69 90° 0,896 1,083 0,861 270° 70 1,270 1,441 1,449 71 0° 0,991 1,197 1,129 72 180° 1,436 1,658 1,428 73 90° 0,990 1,170 1,019 74 270° 1,187 1,358 1,334 75 0° 1,094 1,191 1,300 76 180° 1,351 1,567 1,368

revista

Fonte: Autores

É possível observar que os valores do coeficiente RM2M1 apresentados nas Tabela 8 e Tabela 10 se aproximam mais do limite de 1,30 para o MOD0100 do que o parâmetro γ_z da Tabela 5. Isso se deve ao fato de, no cálculo do valor de RM2M1 considerar-se a combinação dos esforços de vento com os esforços permanentes e acidentais enquanto para o cálculo de γ_{z} serem considerados apenas os esforços de vento.

Pode-se verificar também que, ao se considerar a ISE, obteve-se um aumento do parâmetro RM2M1 para todos os casos fazendo com que os casos correspondentes ao vento 180° ultrapassem o valor limite de norma. No MOD0300, nota-se que, após um redimensionamento dos pilares, chegou-se a um valor bem próximo dos obtidos no MOD0100 considerando a base como engastada.

4.2 Variação das cargas

Na Tabela 12, Tabela 13, Tabela 14 e Tabela 15 é possível observar a variação das cargas verticais e dos momentos em cada pilar após a consideração da ISE.

D'I.	Fz (kN)			
Pilar	MOD0100	MOD0200		
P1	4596	4986		
P2	7110	7447		
P3	4425	4781		
P4	5808	6054		
P5	5522	5871		
P6	14626	15355		
P7	3947	4133		
P8	4967	5342		
P9	8250	8612		
P10	4738	5082		
P101	268	364		
P102	340	441		
P103	359	458		
P104	370	489		
P105	281	375		
P106	865	1118		
P107	600	667		
P108	693	973		
P109	1006	1306		
P110	667	863		
P111	807	1062		
P112	901	1164		
P113	552	686		
P114	774	1027		
P115	258	354		
P116	382	494		
P117	386	497		
P118	411	529		
P119	297	398		

	Mx (kN.m)			
Pilar	MOD0100	MOD0200		
P1	85	125		
P2	194	272		
P3	43	63		
P4	12	15		
P5	10	15		
P6	4936	3554		
P7	4	6		
P8	85	125		
P9	194	302		
P10	42	63		
P101	2	1		
P102	2	1		
P103	2	0		
P104	1	0		
P105	0	0		
P106	22	10		
P107	5	2		
P108	3	2		
P109	22	2		
P110	10	3		
P111	4	2		
P112	22	10		
P113	7	2		
P114	3	2		
P115	3	1		
P116	2	1		
P117	2	1		
P118	1	0		
P119	0	0		
Fonte: Autores				

Fonte Autores

revista

DLIU

cipia

Tabela 14 – Variação dos momentos na direção y dos pilares

Tabela 15 – Variação percentual das cargas e momentos dos pilares

Pilar -	My (I	(N.m)	Pilar	Fz	Mx	Му
	MOD0100	MOD0200	P1	+8%	+47%	+63%
P1	16	26	P2	+5%	+40%	+81%
P2	36	65	P3	+8%	+47%	+63%
P3	16	26	P4	+4%	+25%	+55%
P4	296	458	P5	+6%	+50%	+57%
P5	291	458	P6	+5%	-28%	-30%
P6	4442	3100	P7	+5%	+50%	+1%
P7	187	189	P8	+8%	+47%	+69%
P8	16	27	P9	+4%	+56%	+89%
P9	36	68	P10	+7%	+50%	+69%
P10	16	27	P101	+36%	-50%	-88%
P101	33	4	P102	+30%	-50%	-88%
P102	33	4	P103	+28%	-100%	-88%
P103	33	4	P104	+32%	-100%	-82%
P104	33	6	P105	+33%	0%	-88%
P105	32	4	P106	+29%	-55%	-17%
P106	6	5	P107	+11%	-60%	-56%
P107	9	4	P108	+40%	-33%	-17%
P108	6	5	P109	+30%	-45%	0%
P109	6	6	P110	+29%	-70%	0%
P110	6	6	P111	+32%	-50%	0%
P111	5	5	P112	+29%	-55%	0%
P112	5	5	P113	+24%	-71%	-33%
P113	6	4	P114	+33%	-33%	0%
P114	5	5	P115	+37%	-67%	-88%
P115	34	4	P116	+29%	-50%	-83%
P116	36	6	P117	+29%	-50%	-83%
P117	36	6	P118	+29%	-100%	-84%
P118	37	6	P119	+34%	0%	-89%
P119	36	4	Fonte: Autores			

É possível observar nas Tabela 12 e Tabela 15 que, após a consideração da ISE, as cargas verticais Fz tiveram aumento entre 4% e 40%. Os valores percentuais de variações mais altas nos pilares P101 a P109 deve-se ao fato destes serem pilares de embasamento, com cargas verticais baixas comparadas aos pilares P1 a P10, fazendo com que a sensibilidade nos valores seja maior.

Também é possível observar que os pilares de embasamento e o pilar P6 (em U) sofreram uma redução dos seus valores de momento, em contrapartida, os pilares de torre sofreram um aumento, de modo que houve um rebalanceamento dos esforços de acordo com o esperado.

5 Conclusões

Ao analisar a estrutura com a consideração da ISE pode-se verificar um aumento das cargas verticais dos pilares e uma redistribuição dos esforços de momento. Essa modificação das cargas atuantes acarretou um aumento dos parâmetros de estabilidade global em todos os casos analisados e parte deles passou do limite de 1,30 estipulado pela NBR 6118 (ABN, 2014). Além disso, esse aumento de cargas e redistribuição dos esforços também afeta diretamente o dimensionamento da fundação.

Com o aumento das cargas causado pela consideração da ISE tornou-se necessário um redimensionamento dos pilares, aumentando-se a seção transversal, para, assim, atender aos parâmetros de estabilidade; aumentou-se também as dimensões dos elementos de fundação de modo que atendesse os critérios geotécnicos. Esse acréscimo da seção dos pilares e dimensões de sapatas consequentemente elevou o consumo de fôrmas e concreto, causando um aumento no custo geral da obra.

De maneira geral, conclui-se que a consideração da ISE na análise global de edificações de ordem de esbeltez parecidas ou superiores com a estudada pode levar a uma análise mais conservadora da estrutura.

AGRADECIMENTOS

Os autores gostariam de agradecer a TQS Informática pelo apoio ao disponibilizar a licença do *software* CAD/TQS para o desenvolvimento do estudo.

REFERÊNCIAS

AGRAWAL, N. S.; HARNE, V. R. Analysis of reinforced concrete structure considering the influence of soil structure interaction. **Helix Journal**, Telanganá, v. 10, n. 1, p.98-104, fev. 2020. Disponível em: https://helixscientific.pub/index.php/home/artarti/ view/69. Acesso em: 16 de set. de 2021.

revista

ALVES, E. C.; FEITOSA, L.A. Análise da estabilidade global de edifícios altos em lajes lisas considerando a interação solo-estrutura. **Revista IBRACON de Estruturas e Materiais**, São Paulo, v. 13, n. 1, p. 183-199, jan./fev. 2020. DOI: https://doi.org/10.1590/ S1983-41952020000100013. Disponível em: https:// www.scielo.br/j/riem/a/3fLgGTWQP8fycRxt93LyvrM/ abstract/?lang=pt. Acesso em: 16 de set. de 2021.

ALVES, E.C.; PASSOS, V.M. Análise da estabilidade de edifícios altos em lajes lisas e nervuradas com efeito da interação solo-estrutura. **Revista Portuguesa de Engenharia de Estruturas**, Lisboa, série III, n. 10, p. 85-100, jul. 2019. Disponível em: http://rpee.lnec.pt/. Acesso em: 16 de set. de 2021.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118 – Projeto de estruturas de concreto. Rio de Janeiro: ABNT, 2014.

BHATTACHARYA, S.; NIKITAS, N.; GARNSEY, J.; ALEXANDER, N. A.; COX, J.; LOMBARDI, D.; MUIR WOOD, D.; NASH, D. F. T. Observed dynamic soilstructure interaction in scale testing of offshore wind turbine foundations. **Soil Dynamics and Earthquake Engineering**, [s.l.], v. 54, p. 47-60, nov. 2013.

CHINEM, R. M. **Avaliação da estabilidade global de edifícios.** 2010. Monografia (Graduação em Engenharia Civil) — Escola de Engenharia, Universidade de Goiás, Goiânia, 2010.

DAMGAARD, M.; ANDERSEN, L. V.; IBSEN, L. B. Computationally efficient modelling of dynamic soil-structure interaction of offshore wind turbines on gravity footings. **Renewable Energy**, [s.l.], v. 68, p. 289-303, ago. 2014.

DANZIGER, B. R.; CARVALHO, E. M. L.; COSTA, R. V.; DANZIGER, F. A. B. Estudo de caso de obra com análise da interação solo estrutura. **Revista Engenharia Civil**, [s.l.], n. 23, p. 43-54, 2005.

FEITOSA, L. A.; ALVES, E. C. Estudo da estabilidade global de edifícios altos com lajes protendidas. **Revista IBRACON de Estruturas e Materiais**, Vitória, v. 8, n. 2, p. 196-224, 2015. DOI: https://doi.org/10.1590/ S1983-41952015000200008. Disponível em: https:// www.scielo.br/j/riem/a/tNqz5vCyfVKL97W9dcHj sNt/?lang=pt. Acesso em: 16 de set. de 2021.

FEITOSA, L. A. **Estudo da estabilidade global de edifícios de múltiplos andares com lajes lisas.** 2016. Dissertação (Mestrado em Engenharia) — Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Espírito Santo, Vitória, 2016. Disponível em: https://repositorio.ufes.br/ handle/10/9517. Acesso em: 16 de set. de 2021.

FÉODOSIEV, V. I. **Resistência dos Materiais.** Ed. Lopes da Silva: Porto, 1977.

GALVÍN, P.; ROMERO, A.; DOMÍNGUEZ, J. Fully threedimensional analysis of high-speed train–track–soilstructure dynamic interaction. **Journal of Sound and Vibration**, [s.l.], v. 324, n.24, p.5147-5163, nov. 2010.

GE, O.; XIONG, F.; XIE, L.; CHEN, J.; YU, M. Effects of soil–structure cluster interactions on ground motions. **The Structural Design of Tall and Special Buildings**, [s.l.], v. 29, n. 2, nov. 2019.

GUERDOUH, D.; KHAFALLAH, S. Soil-structure interaction effects on the seismic performance of frame structures. **Revista de la Construccíon**, [s.l.], v. 18, n. 2, p.349-363, 2019. DOI: http://dx.doi.org/10.7764/ rdlc.18.2.349. Disponível em: https://scielo.conicyt.cl/ scielo.php?script=sci_abstract&pid=S0718-915X20190002 00349&lng=en&nrm=iso. Acesso em: 16 de set. de 2021.

GUIMARÃES, S. A.; ALVES, E. C. Análise da influência da distribuição da armadura ativa para a estabilidade global de edifícios com lajes planas protendidas. *In*: XIII SIMMEC - SIMPÓSIO DE MECÂNICA COMPUTACIONAL, 2018, Vitória. **Anais** [...]. Vitória: XIII SIMMEC - Simpósio de Mecânica Computacional, 2018. Disponível em: https://doity.com.br/anais/xiiisimmec2018/ trabalho/68177. Acesso em: 16 de set. de 2021.

GUIMARÃES, S. A. **Análise da influência da distribuição da armadura ativa para a estabilidade global de edifícios com lajes planas protendidas.** 2018. Monografia (Graduação em Engenharia Civil) – Escola de Engenharia, Universidade Federal do Espírito Santo, Vitória, 2018.

GUSMÃO, A. D. **Estudo da interação solo-estrutura e sua influência em recalques de edificações**. 1990. 189 f. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação de Engenharia,

Universidade do Rio de Janeiro, Rio de Janeiro,

1990. Disponível em: https://pantheon.ufrj.br/ handle/11422/3934. Acesso em: 16 de set. de 2021.

LOMBARDI, D.; BHATTACHARYA, S.; WOOD, D. M. Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil. **Soil Dynamics and Earthquake Engineering**, [s.l.], v. 49, p.165-180, jun. 2013. DOI: https://doi.org/10.1016/j.soildyn.2013.01.01

MARQUES, O. C.; ALVES, E. C; FEITOSA, L. A. Análise dos parâmetros de instabilidade considerando efeito construtivo e interação solo estrutura em projeto de edifícios altos. *In*: 60° CONGRESSO BRASILEIRO DE CONCRETO, 2018, Foz do Iguaçu. **Anais** [...]. Foz do Iguaçu: IBRACON, 2018.

PAPADOPOULOS, M.; VAN BEEUMEN, R.; FRANÇOIS, S.; DEGRANDE, G.; LOMBAERT, G. Modal characteristics of structures considering dynamic soil-structure interaction effects. **Soil Dynamics and Earthquake Engineering**, [s.l.], v.105, p.114-118, fev. 2018. DOI: https://doi.org/10.1016/j.soildyn.2017.11.01

PASSOS, V. M.; FEITOSA, L. A.; ALVES, E. C.; AZEVEDO, M. S. Analysis of instability of tall buildings with prestressed and waffle slabs. **Revista IBRACON de Estruturas e Materiais**, São Paulo, v. 9, p. 244-262, 2016. DOI: https://doi.org/10.1590/ S1983-41952016000200006. Disponível em: https:// www.scielo.br/j/riem/a/kPG6SZpX56TQKcFDtHB3 4nv/?lang=en. Acesso em: 16 de set. de 2021.

PAVAN, R. C.; COSTELLA, M. F.; GUARNIERI, G. Soil-structure interaction for frame structures on shallow foundations. **Revista IBRACON de Estruturas e Materiais**, São Paulo, v. 7, n. 2, p. 260-285, abr. 2014. DOI: https://doi.org/10.1590/ S1983-41952014000200005. Disponível em: https:// www.scielo.br/j/riem/a/zJJrRGXLLcvv7QN9y89rG Ny/?lang=en. Acesso em: 16 de set. de 2021.

RITTER, M. G.; MENEGOTTO, M. L.; COSTELLA, M. F.; PAVAN, R. C.; PILZ, S. E. Analysis of soil-structure interaction in buildings with deep foundation. **Revista IBRACON de Estruturas e Materiais**, São Paulo, v. 13, n.2, abr. 2020. DOI: https://doi.org/10.1590/ S1983-41952020000200005. Disponível em: https:// www.scielo.br/j/riem/a/P6Z93ZR9KXGx86QDnBtf FqC/?lang=en. Acesso em: 16 de set. de 2021.

ROSA, L. M. P.; DANZIGER, B. R.; CARVALHO, E. M. L. Soil-structure interaction analysis considering concrete creep and shrinkage. **Revista IBRACON de Estruturas e Materiais**, São Paulo, v. 11, n. 3, p. 564-585, jun. 2018. DOI: https://doi.org/10.1590/

principia

S1983-41952018000300008. Disponível em: https:// www.scielo.br/j/riem/a/3dLsRCLMFDxZNBFQrZyT 9sN/?lang=en. Acesso em: 16 de set. de 2021.

SARAGI, Y.; IRSYAM, M.; ROESYANTO; HENDRIYAWAN. Nonlinear dynamic soil structure interaction in adjacent basement, **IOP Conference Series: Materials Science and Engineering**, [s.l.], v. 725, 2019. DOI:10.1088/1757-899X/725/1/012031. Disponível em: https://iopscience. iop.org/article/10.1088/1757-899X/725/1/012031. Acesso em: 16 de set. de 2021.

SAVARIS, G.; HALLAK, P. H.; MAIA, P. C. A. Influence of foundation settlements in load redistribution on columns in a monitoring construction – case study. **Revista IBRACON de Estruturas e Materiais**, São Paulo, v. 3, n. 3, p. 346-356, set. 2010. DOI: https://doi.org/10.1590/ S1983-41952010000300006. Disponível em: https:// www.scielo.br/j/riem/a/vgxmQkw6LRTbxMJhyHM4G3w/ abstract/?lang=en. Acesso em: 16 de set. de 2021.

SCHMERTMANN, J. H. **Guidelines for cone penetration test performance and design.** Report FHWA-TS-78-209, US. Dept. of Transportation: Federal Highway Adm: Washington D.C., 1978.

SU, J.; WANG, Y. Equivalent dynamic infinite element for soil-structure interaction. **Finite Elements in Analysis & Design**, [s.l.], v.63, p.1-7, jan. 2013. DOI: https://doi.org/10.1016/j.finel.2012.08.006.

TQS INFORMÁTICA LTDA. **Manual projeto** de lajes protendidas. São Paulo, 2013.