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ABSTRACT

Wireless communication under 1 GHz is suitable for Internet of Things (IoT) applications due to larger coverage 
capability with less power consumption. Bearing in mind that people and elements contained in the environment 
can cause variations in the channel, this paper aims to evaluate the effect of the presence of people on a  
900-MHz indoor narrowband wireless channel, as we characterize the small-scale phenomena. With the 
increase in the number of people, a greater variation in the communication channel was noticed, which is 
reflected in the parameters of the probability distributions used in the characterization of the random part of the 
signal. In addition, second-order statistics were used to analyze the data and an adherence test was applied to 
confirm the behavior of the signal in relation to the distributions. 

Keywords: Wireless Channel.USRP. IoT. Small-scale Fading.

RESUMO

A comunicação sem fio usando frequências abaixo de 1 GHz é adequada para aplicativos de Internet das 
Coisas (IoT) devido à maior capacidade de cobertura com menor consumo de energia. Tendo em vista que 
pessoas e elementos contidos no ambiente podem causar variações no canal, este artigo tem como objetivo 
avaliar o efeito da presença de pessoas em um canal sem fio interno de banda estreita de 900 MHz, conforme 
caracterizamos os fenômenos de pequena escala .Com o aumento da quantidade de pessoas, percebeu-se uma 
maior variação no canal de comunicação que é refletida nos parâmetros das distribuições de probabilidades 
utilizadas na caracterização da parte aleatória do sinal. Além disso, estatísticas de segunda ordem foram 
utilizadas na análise dos dados e um teste de aderência foi aplicado para confirmar o comportamento do sinal 
em relação às distribuições.

Palavras-chave: Canal sem Fio. USRP. IoT. Desvanecimento de Pequena Escala.
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However, there is a lack of studies evaluating the effect 
on frequencies below 1 GHz, especially in IoT scenarios 
with the high occupation. This is the main scope of this 
contribution which aims to evaluate the effect of the 
presence of people on the indoor wireless channels 
through 900-MHz narrowband measurements. The 
measurements were carried out at the refectory of the 
Federal University of Juiz de Fora (UFJF), simulating 
a real IoT system operation in an environment with a 
high density of people.

The paper is organized as follows. Section 2 
describes our low-cost experimental setup. Both 
data capturing and post-processing are described in 
Section 3. Section 4 shows and discusses the results, 
and Section 5 presents the final comments.

2 Measuring System

Our experiment consists of a narrowband channel 
setup based on a RF generator as a transmitter. On 
the other side, a receiver based on Software-Defined 
Radio (SDR) platform tuned to this frequency allows 
interfacing with a computer for data collection and 
post-processing.

The Agilent RF generator N9310A (KEYSIGHT, 
2014) set for the transmission of a continuous wave 
(CW) at 900 MHz was used with a power of 0 dBm. 
A vertically polarized microstrip dipole antenna 
attached to a PVC rod was used to assure the antenna 
remained 1.60 m above the ground. On the receiver 
side, a SDR platform, composed of an Universal 
Software Radio Peripheral (USRP) N210 (ETTUS 
RESEARCH, 2020a) and a personal computer, replaced 
components commonly used in dedicated hardware. 
Thus, the computer is used to control the capture of 
measurements using the RF daughterboard WBX 50-
2200 MHz Rx/Tx (ETTUS RESEARCH, 2020b), at 10 
MHz sample rate, attached in the USRP. Transmitting 
and receiving antennas have the same specification 
in order to better capture the multipath effects due to 
their omnidirectional radiation pattern. The height and 
placement of the antennas were chosen to simulate IoT 
applications, such as wearables or sensors. A notebook 
computer with an Intel processor i5 6200U, using the 
Linux Manjaro distribution (LINUX, 2020), controls 
the USRP N210 and the measurement process. We 
developed a script for data measurement and storage. 
Figure 1 presents the transmitter and receiver setups.

We validated the USRP receptor using the Agilent 
N9310A RF generator. We connected both via RF cable 
with a 10 dB attenuator at the 900 MHz frequency. 

1 Introduction

Future wireless communication systems are required 
to provide access to a great number of terminals. This 
occurs not only because of the increasing number of 
computers and cellphones but also to the concept of 
connection of as many objects as possible to the Internet, 
the so-called Internet of Things (IoT). As a result, new 
proprietary technologies, e.g., LoRa (SEMTECH, 2020) 
and Sigfox (SIGFOX, 2020), have been developed to meet 
this increasing demand. Standardization organizations 
such as 3GPP (3rd Generation Partnership Project), IEEE 
and ITU (International Telecommunications Union) have 
also worked to define standards for Machine-to-Machine 
(M2M) communications, such as NB-IoT (Narrowband 
IoT) from 3GPP (3GPP, 2020), Wi-Fi HaLow 802.11ah 
from IEEE (WI-FI ALLIANCE, 2018) and the use case 5G 
massive Machine Type Communications from ITU (ITU-R, 
2015). Many of these technologies use narrowband 
channels of the Industrial, Scientific and Medical band 
(ISM), such as the 900 MHz frequency band.

The design and implementation of these 
technologies require the study and characterization of 
propagation in environments where they will operate. 
However, outdoor propagation or free space models 
are not always valid for indoor environments, since they 
impose a higher variability to the wireless channel even 
with smaller distances between transmitter and receiver 
(RAPPAPORT, 2002). Besides, the characteristics of the 
environment itself, such as walls, furniture, and the flow 
of people also affect the propagation.

Several works addressed the indoor propagation 
characterization. Some evaluate the propagation in the 
range of 2.4 GHz (WALKER; ZEPERNICK; WYSOCKI, 
1998; JANSSEN; PRASAD, 1992), others in the UHF 
range below 1 GHz (MAYER; WRULICH; CABAN, 2006; 
RAO; BALACHANDER; TIWARI, 2012; SCZYSLO; 
DORTMUND; ROLFES, 2012). Some studies assess 
the effects of people’s presence and movement in 
indoor propagation at 2 GHz, observing a high channel 
variability proportional to the increasing numbers of 
people in the environment (KARA; BERTONI, 2006; 
WANG; LU; ZHU, 2013).

Several recent studies have proposed human 
gesture recognition systems (SHAHZAD; ZHANG, 
2018; AHMED et al., 2019; LEE et al., 2019; REGANI 
et al., 2020), using the commercial Wi-Fi signal. It is 
possible to recognize the different influences produced 
by people and their movements in the communication 
channel, but it requires a large database that enables 
the system to learn how to recognize the commands. 
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2:00 p.m.). The refectory was operating at half of its 
capacity due to the undergraduate vacation period, 
with a daily flow of approximately 1200 people during 
the measurements. The number of people was counted 
each 30-minute interval, resulting in categories with 
different average numbers of people.

Figure 3 presents the refectory floor plan, 
indicating which tables were not being used during 
the measurement period (crosshatched tables), as 
well as a photography of the site with people. For all 
measurements, the transmitter and receiver were 
placed 35 m apart from each other at the points A 
and B, respectively. Antenna locations were configured 
to provide line-of-sight (LOS) propagation between 
transmitter and receiver. The sampling time was 0.5 s. 
Thus, we analyzed two scenarios: (i) Scenario 1: empty 
restaurant; and (ii) Scenario 2: crowded restaurant.

We use a sliding window filter to remove large-
scale variations from the measured signal, where the 
average value of the envelope signal is calculated for 
a group of adjacent samples of each measured sample 
(YACOUB, 1993). After that, the normalized envelope 
is obtained by dividing the measured envelope signal 
by envelope RMS value. The resultant signal denotes 
the small-scale normalized envelope signal, which 
we use to analyze the variations of small-scale fading 
(COTTON; SCANNLON, 2007).

As presented in Figure 2, there is linearity in signal 
reception in the range of -80 to 5 dBm of transmitting 
power variation.

Figure 2 – USRP N210 calibration graph

Source: Experimental data.

3 Data measurement and processing 
methods

Three measurement campaigns were carried 
out on three different days in February 2018, at the 
refectory during its opening hours (11:00 a.m. to 

Figure 1 – Experimental setup. (a) Transmitter and (b) receiver setups.

(a) (b)
Source: Authors.
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(3)

where α is related to the non-linearity of the 
propagation medium. The linear fading system 
can be obtained with α = 2, and the distribution 
equals to the Rayleigh distribution.

For the statistical analysis of the data, we applied 
the non-parametric Kolmogorov-Smirnov Statistical 
Test (KS Test). It quantifies the distance between the 
empirical CDF of the measurements and the reference 
CDF, informing if the hypothesis that the empirical CDF 
fits the analytic CDF is true or false.

There is a considerable number of parameter 
estimators for the evaluated models. Several works 
use the Maximum Likelihood Estimator (MLE) due to 
the feasibility of its estimation, even for large data sets 
(DUMOUCHEL, 1971; NOLAN, 2001). Additionally, 
there is a fast algorithm to compute the MLE, and it 
achieves the Cramer-Rao bound (BODENSCHATZ, 
1999). For these reasons, the MLE is used as the 
estimator for studies herein presented.

Generally speaking, the MLE method estimates 
the parameters θ which specifies a probability function 
f(xi ∨ θ) of a random variable X (MYUNG, 2003). The 
estimation is based on the independent and identically 
distributed (i.i.d.) samples xi (observations) from the 
distribution, and a log-likelihood function l (θ), which 
is given by

(4)

Thus, the MLE chooses the model parameters 
θ that maximize the likelihood function, yielding the 
most likely parameters to generate the observed data 
(MIURA, 2011).

The parameters k, m or α of each normalized CDF 
were estimated by MLE and the error of the KS Test is 
calculated as Dn = supx∨ Fn (x) – F(x)∨, where F(x) is 
the target CDF and Fn the empirical CDF.

4 Results and Discussions

For illustration purposes, Figure 4 depicts an 
example of the received power signal in a time interval 
of 450s (900 samples) for measurements with and 
without people. There is a difference of almost 10 
dB on the average power of each scenario even with 
LOS reception. We also observe almost insignificant 

Figure 3 – Measurement location: 
floor plan and photo.

Source: Authors.

We analyzed the empirical cumulative distribution 
function (CDF) of the small-scale fading samples with 
three well-known fading distributions, as described as 
follows (YACOUB, 1993; KATTENBACH; ENGLERT, 
1998; COTTON; SCALON, 2007):

1. Rice: the Rice distribution is used for small-scale 
fading modeling of environments that have LOS 
propagation. The CDF of the normalized envelope 
ρ is given by

(1)

where k is the Rice factor and Q1(·) the Marcum-Q 
function. The classic Rayleigh distribution, which 
assumes the absence of a deterministic LOS 
component, can be considered a particular case 
of Rice distribution when k = 0.

Nakagami: The Nakagami distribution models 
channel present multipath clusters, i.e. groups of 
multipath components with similar delays and phase 
differences. Its envelope CDF in the normalized form is

(2)

where Γ(·,·) is the incomplete Gamma function 
and m the Nakagami parameter. When m = 1, 
Nakagami and Rayleigh distributions are equivalent.

3. Weibull: The Weibull is used to model channels 
with multipath fading with non-linearities. The CDF 
of the normalized envelope is
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Figure 5 – Empirical and theoretical 
CDFs (parameters by the MLE).

Source: Experimental data.

4. 2 Analyzing the influence of people

The influence of the different quantity of people on 
three measurement campaigns of Scenario 2 (crowded 
restaurant) can be observed in Table 1. It presents the 
estimated parameters for all tested distributions for 
an average number of people. The results indicate 
a variation of the distribution parameters as the 
occupation of the restaurant changes. Table 1 shows 
an inverse dependence between the number of people 
and the value of the distribution parameters, indicating 
higher channel variability with the increase of the 
number of people.

Table 1 – Parameters obtained for distributions.

Campaign
Number 
of people

Parameters

k m α

1

56 61.835 30.584 11.569

116 62.587 31.321 10.800

171 30.621 15.645 8.139

212 21.758 11.366 6.462

2

100 49.896 24.631 9.447

133 43.137 21.813 8.973

233 27.281 13.598 7.621

272 27.762 14.136 7.780

3

111 93.406 45.971 11.482

133 69.600 33.195 11.733

138 56.080 27.921 9.867

264 49.175 24.542 10.249

Source: Authors data.

Figure 6 presents the KS test error of the 
estimated parameters for Campaign 1, i.e. the first day 
of measurements. The KS test indicates the Nakagami 

variation on samples obtained for Scenario 1. Thus, as 
described in Section 3, we extract small-scale samples 
from Scenario 2 samples and analyze them as follows.

Figure 4 – Samples of received power 
over 450 s for the two tested scenarios.

Source: Experimental data.

4. 1 Analyzing the complete dataset

In order to analyze the measured environment 
regardless of the number of people, we present the 
small-scale fading characterization for the whole 
collected data in the refectory to Scenario 2. Figure 5 
shows the empirical CDF as well as theoretical CDFs 
with the estimated parameters by MLE. We notice the 
difficulty to fit measured data to theoretical functions 
due mainly to the diversity of the measurement 
conditions. This result indicates that the measured data 
should be somehow categorized for a more accurate 
analysis. Thus, we analyze the measured data in 
function of the number of people at the restaurant.
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Quantity of people m Estimated mean fd

50 - 100 24.6314 0.1106

100 - 150 21.8132 0.1163

150 - 200 15.6451 0.1388

200 - 250 11.3655 0.1486

Source: Authors data.

4. 3 Second-order analysis

A time-varying small-scale fading could be 
experienced even when transceivers are stationary, 
mainly due to the movement of surrounding scattering 
objects (RAPPAPORT, 2002). An important second-
order statistic that characterizes the time-varying 
mobile channel is the Level Crossing Rate (LCR). The 
LCR corresponds to the rate at which the received 
signal envelope intensity crosses a certain threshold 
in the positive direction (YACOUB, 1993; COTTON; 
SCALLON, 2007). The LCR is closely related to the 
maximum Doppler shift, which is a classical parameter 
to model the time-varying channel phenomenon. Thus, 
LCR closed-form expressions can be used to estimate 
the maximum Doppler shift fd of fading sample data.

Based on the results of Section 4.2, we selected 
the Nakagami as the fading distribution that fits 
properly with the distribution of the measured data. 
Therefore, by analyzing the measured samples, we 
can empirically estimate the LCR, namely LCREmpirical. 
We can find the estimated maximum Doppler shift fd 
by means of

(5)

and

LCRTheoretical = (6)

where LCRTheoretical is given by normalized 
expressions (fd=1) of the LCR for the Nakagami 
distribution (YACOUB; BAUTISTA; GUEDES, 1999). 
Γ(m) is the Gamma function, m is the Nakagami 
distribution parameter and ρ is the normalized 
envelope.

Figure 8 presents the maximum Doppler shift 
estimated for some signal level thresholds using LCR. 
As expected, the estimation provides stable results 
for the specific region of signal levels where the 
threshold crossing is intense. Such a signal threshold 
region is close to zero, where we are analyzing the 

as the distribution which fits more properly with the 
empirical data. We also notice the smaller errors for a 
higher number of people due to a higher variation of 
power level, which yields different values of ρ. The KS 
test error is meaningfully sensible to distributions that 
exhibit heavy tails, especially when the collected data 
does not entirely span the domain of the distribution 
function. The other campaigns present the same 
qualitative tendency.

Figure 6 – KS error of each estimated 
distribution for Campaign 1.

Source: Authors data.

As we categorize the data in intervals of 50 
people, we also observe the best fit of the Nakagami 
distribution to measured data. The values of the m 
parameter for these intervals are shown in Table 2. For 
illustration purposes, Figure 7 depicts the comparison 
of theoretical distributions with measured data for the 
interval of 250 to 300 people.

Figure 7 – Empirical and theoretical 
CDFs for the interval of 250 to 300 people 
(parameters calculated using the MLE).

Source: Authors data.

Table 2 – Estimated fd according 
to quantity of people.
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5 Conclusions

With the advent of the Internet of Things, sub-1 
GHz wireless systems have been developed to provide 
such type of service. This paper presented an analysis 
of the effects of the presence of people on the reception 
of a RF narrowband 900 MHz signal. We realized 
measurements using low-cost SDR equipment in an 
environment with up to a few hundreds of people.

Analyzing measurement data collected over three 
days, we observed different channel variability when 
comparing the environment with and without people. 
We calculated the parameters of small-scale fading 
distributions that fit properly to measured data, and we 
noticed that the number of people in the environment 
significantly influences such parameters. We also 
noticed that the Nakagami distribution is the most 
suitable to describe the small-scale variations of our 
propagation scenario.

variation of the signal around the mean. We divided 
the measurement data into classes of 50 people. 
As the quantity of people increases, the value of fd 
becomes more stable, even for lower thresholds. It 
occurs because the envelope variation intensifies as the 
number of people increases, as discussed in Section 
4.2, and consequently we have more level crossings 
in lower thresholds.

Although the parameter of the distribution is 
influenced by the increase in the number of people, 

the same may not occur to the maximum Doppler shift 
fd. Table 2 shows the average values of the estimated fd 
for the signal level threshold for levels between -2 and 
2 dB. It can be noticed that, regardless of the number 
of people, the fd variation is not very significant, since 
the LCR curves tend to be similar for high values of 
m, as those presented in Table 2, and for signal levels 
near to 0 dB.

Figure 8 – Estimated  for some signal level thresholds.

Source: Experimental data.



J O Ã O  P E S S O A ,  2 0 2 0148

D I V U L G A Ç Ã O  C I E N T Í F I C A  E  T E C N O L Ó G I C A  D O  I F P B   |   N º  5 3

– FRONTIERS OF TECHNOLOGY. 1992. Denver 
(United States). Proceedings… 1992. p. 617-620.

KARA, A.; BERTONI, H. L. Effect of people 
moving near short-range indoor propagation 
links at 2.45 GHz. Journal of Communications 
and Networks, v. 8, n. 3, p. 286-289, 2006.

KATTENBACH, R.; ENGLERT, T. Investigation of short 
term statistical distributions for path amplitudes and 
phases in indoor environment. In: 48th IEEE VEHICULAR 
TECHNOLOGY CONFERENCE (VTC’98). PATHWAY 
TO GLOBAL WIRELESS REVOLUTION. 1998. Ottawa 
(Canada). Proceedings… 1998. p. 2114-2118.

KEYSIGHT. Keysight N9310A Signal Generator: 
User’s Guide. 3. ed. 2014. Available at: <https://
bit.ly/2YCYtVX>. Accessed in: Aug. 2020.

LEE, H. et al. The effects of housing environments 
on the performance of activity-recognition systems 
using Wi-Fi channel state information: an exploratory 
study. Sensors (Basel), v. 19, n. 5, p. 983, 2019.

LINUX. Manjaro. Available at: <https://
manjaro.org/> Accessed in: Aug. 2020.

MAYER, L. W.; WRULICH, M.; CABAN, S. 
Measurements and channel modeling for short range 
indoor UHF applications. In: 2006 FIRST EUROPEAN 
CONFERENCE ON ANTENNAS AND PROPAGATION. 
2006, Nice (France). Proceedings… 2006. p. 1-5.

MIURA, K. An introduction to maximum likelihood 
estimation and information geometry. Interdisciplinary 
Information Sciences, v. 17, n. 3, p. 155-174, 2011.

MYUNG, I. J. Tutorial on maximum likelihood 
estimation. Journal of Mathematical 
Psychology, v. 47, n. 1, p. 90-100, 2003.

NOLAN, J. P. Maximum likelihood estimation and 
diagnostics for stable distributions. In: BARNDOCH-
NIELSEN, O. E.; RESNICK, S. I.; MIKOSCH, T. 
(Eds). Lévy processes. Boston (United States): 
Birkhäuser, Boston, 2001. p. 379-400.

RAO, T. R.; BALACHANDER, D.; TIWARI, N. Short-
range near floor path gain measurements in indoor 
corridors at UHF for wireless sensor communications. 
In: 2012 IEEE INTERNATIONAL CONFERENCE ON 
COMMUNICATION SYSTEMS (ICCS). 2012. Singapore 
(Singapore). Proceedings… 2012. p. 189-193.
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