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ABSTRACT

This paper presents the development of a custom SRAM island-style FPGA, covering the information needed 
and the steps involved in hardware implementation, bitstream configuration and design alternatives to facilitate 
the overall implementation effort from an academic point of view. To achieve the state of the art, commercial 
FPGAs can employ a large team, a high time-to-market, and high non-recurring engineering costs. In contrast, 
by taking the challenge of building a custom FPGA with a small team of researchers, the development of 
custom architecture and size focuses on the proof of concept. This baseline methodology result can be a start 
point for the development of new technologies or circuit enhancements.

Keywords: Field programmable gate arrays. Reconfigurable architectures. Circuit synthesis. Read-write 
memory. Design methodology.

RESUMO

Este artigo apresenta o desenvolvimento de um FPGA “island-style” com SRAM personalizado, contendo a 
informação necessária e os passos envolvidos na implementação em hardware, configuração por bitstream 
e alternativas de projeto para facilitar a implementação geral de um ponto de vista acadêmico. Para obter 
o estado da arte, FPGAs comerciais podem necessitar de um grande grupo, tempo de implementação e 
custos. Em contraste, ao aceitar o desafio de desenvolver um FPGA personalizado com um pequeno grupo 
de pesquisadores, o desenvolvimento do projeto é focado na prova de conceito. Resultados da metodologia 
apresentada podem ser o ponto de partida para o desenvolvimento de novas tecnologias ou aprimoramentos 
de circuito.

Palavras-chave: Portas programáveis em campo. Arquiteturas reconfiguráveis. Síntese de circuito. Memória 
de leitura e escrita. Metodologia de projeto.
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This paper goes through the custom FPGA building 
steps and challenges. Section 2 gives an overview 
of previous work on FPGA island-style architecture, 
considering optimal solutions for various circuit 
parameters and topology choices. Also, it describes 
a generic SRAM programmer which can be used in 
multiple FPGA architectures. Section 3 illustrates 
the work to implement the described architecture 
using robust commercial tools, highlighting design 
approaches and bottlenecks. Section 4 shows the 
bitstream generation process based on an open-
source tool (Verilog-to-Routing). In Section 5, the 
simulation results of a 4-bit counter programmed into 
the developed FPGA is presented for testing purposes. 
Finally, Section 6 concludes the paper.

2 Architecture reference

FPGA global routing (macroscopic allocation 
of wires) architectures can be characterized as 
either hierarchical or island-style. Depending on the 
architecture chosen, the designer will face trade-offs 
among VLSI implementation, CAD flow configuration, 
and device performance (KUON; TESSIER; ROSE, 
2008).

Most commercial SRAM-based FPGAs use 
the island-style architecture for its notable routing 
capabilities. This architecture is represented in 
Figure 1 and consists of Configurable Logic Blocks 
(CLB) surrounded by routing buses that are responsible 
for connecting the configured blocks signals together. 
In this FPGA architecture, other specific function 
blocks responsible for implementing the matrix are the 
Connection Block (CB), which consists of programmable 
switches used to connect the CLB ports to the routing 
bus; and the Switch Block (SB), that connects the 
routing busses together.

Among the distinct blocks that an FPGA has 
the structures responsible for implementing the 
programmable logic are most important, bringing the 
device reconfigurability to come true. Despite recent 
architectures that may have different names for their 
reconfigurable logic, most of them share a well-known 
soft logic block (KUON; TESSIER; ROSE, 2008), and the 
commonly used structure to implement this behavior is 
known as the Look-Up Table (LUT). A LUT consists of 
memory to hold programmable data and multiplexer 
(Mux) for realizing a configurable logic function. The 
Mux, shown in Figure 2a, uses its addresses as logic 
function inputs and its input channels as programmable 
data for realizing the respective truth table. Figure 

1 Introduction

With their introduction in 1984, Field-
Programmable Gate Arrays (FPGA) innovated the 
implementation of digital circuits, bringing flexibility 
and better design speed when compared to old 
methods such as prototyping using small-scale gates 
(TRIMBERGER, 2018). Since then, a large variety of 
applications have emerged with these advantages 
and the market has grown accordingly with the 
increased demand over the years. FPGA main benefits 
come from the fast design due to its reconfigurable 
behavior, decreasing the time-to-market solution and 
cost compared to the development of an Application 
Specific Integrated Circuit (ASIC) (PARVEZ; MEHREZ, 
2011).

The ASIC development goes through several 
processes before being integrated into a final 
product, and considers the expenses of engineering 
development time and fabrication facilities. The 
fabricated chip also has a chance of malfunction due 
to design mistakes or fabrication process variations, 
increasing overall expense. Conversely, Commercial 
Off-The-Shelf (COTS) FPGA devices can be used in 
a final project product and can be cheaper for small 
and medium volume applications. They are widely 
employed for educational purposes and data centers, 
broadcast, high-performance computing, medical, and 
aerospace applications (XILINX, 2019).

Despite not reconfigurable, ASICs are optimized 
for their specific purpose, allowing to achieve higher 
performance than FPGA for the same job. However, as 
the IC technology advances and dies shrink, the FPGA 
area increases, allowing multicore implementation, 
increasing computational performance, and the gap 
with ASIC becomes smaller for several applications, 
such as an accelerating unit for processors applications 
(TRIMBERGER, 2018). 

Unfortunately, the fierce competition in the industry 
hides the latest knowledge for economic purposes, 
which creates a gap between academic and industrial 
resources, as an example seen on Hung (2015). The 
importance of demystifying the FPGA knowledge then 
rises for its general behavior, and for improving the 
cost/benefit. The main building challenges of such 
architecture lies in the circuit design complexity and 
configuration with CAD tools, and the efforts involved 
to create an FPGA may require large teams, such as in 
industry. Therefore, developing methods to boost the 
process can be very welcome.
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Figure 3 – 6T SRAM cell schematic

Source: Self elaboration.

As the FPGA employs more LUTs the area tends to 
grow accordingly, leading to use small LUTs to reduce 
area and improve FPGA logic, allowing more CLBs to 
fit on the chip die. Figure 4 presents a LUT multiplexer 
implemented as a binary tree of transmission gates, 
which is a good approach for size optimization. 
Another possible implementation consists of using pass 
transistors that are well known to be employed in these 
structures, but they require extra circuitry to handle a 
higher level voltage that drives the gate. The work in 
Chiasson and Betz (2013) shows the trade-off between 
both approaches.

Figure 4 – Look-Up Table multiplexer implemented 
as a binary tree of transmission gates

Source: Self elaboration.

2b exemplifies a 2-input LUT programmed to be an 
AND gate.

Figure 1 – Illustration of an island-style FPGA. 
Adapted from: BETZ; ROSE; MARQUARDT (1999)

Source: Self elaboration.

Figure 2 – Mux implementing a Look-Up Table logic

Source: Self elaboration.

With a LUT defined, a memory is required to 
implement the programmable inputs (as well as 
controlling the routing switches). Implementing the 
memory as a Static RAM (SRAM) is an excellent 
approach since this memory will not be frequently 
changing after the circuit is placed (compared to a 
Dynamic RAM). Also, the SRAM cell can be designed 
to have only 6 transistors to store a bit value (Figure 3), 
saving circuit area and power if compared with other 
alternative memory implementations, like using a 
D-latch. 
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reduce the routing buses since they can take a huge 
portion of the final area. Internal CLB routing also has 
its limitations with scalability, principally when using a 
fully connected architecture, where all inputs to the CLB 
can connect to any BLE input and so for its outputs, as 
in Figure 5b (KUON; TESSIER; ROSE, 2008).

The study from Betz, Rose and Marquardt 
(1999) has shown that it is not necessary to have 
all BLEs inputs accessible from the CLB, because 
some inputs are open (not driven) by anything, and 
can share signals with each other or take outputs 
from a BLE within the cluster. A 98% logic utilization 
is achieved with approximately 60% of BLEs inputs 
individually accessible to the FPGA routing channels, 
or equivalently, 2N+2 inputs, where N is the number 
of BLEs in a cluster.

For the CB topology, the number of switches for 
routing tracks is another subject that needs to be well 
defined and optimized. A higher number of routing 
switches provide more flexibility but results in a bigger 
FPGA size and higher power consumption. On the 
other hand, a reduced number of switches turns the 
FPGA less routable and with a lower performance. The 
work of Betz, Rose and Marquardt (1999) shows that 
good flexibility is achieved when the percentage of the 
connected output () is , where is the number of routing 
tracks and is the number of BLEs in a CLB. The input 
connectivity should be somewhat larger.

A SB connects the FPGA routing buses between 
each other (Figure 6). The number of possible 
connections that a track can make to others inside a 
SB is known as SB flexibility. As this number changes, 
similar trade-offs with area and routability happen, as 
for the CB. Likewise, the wire length of a routing bus 
inside an FPGA represents how many CLBs a wire 
spans, meaning a SB can have some shorted tracks 
instead of switches to connect two wires apart. Shorted 
tracks can improve performance by removing the 
circuitry that comes with routing switches, but at the 
same time can decrease routability.

There are also different ways to connect the wires 
together inside the SB. Commonly used topologies 
such as Disjoint (WU; MAREK-SADOWSKA, 1995) 
and Wilton (WILTON, 1997) were investigated by 
its critical path delay (BETZ; ROSE; MARQUARDT, 
2012). For a wire length of 1 (spanning only one CB), 
both topologies present similar critical path delays. 
However, with bigger wire lengths, the Disjoint SB 
leads to faster circuits compared to Wilton SB.

The number of ports of a LUT is also a subject 
of optimization. The work in Ahmed and Rose (2004) 
explored the effect of a LUT number of inputs (K) on 
the area and speed performance of a configured circuit, 
comparing the number of LUTs required, the resulting 
area and the critical path delay for implementing 28 
different circuits using different LUT sizes. The results 
of the study have shown that a 4-input LUT is optimal 
considering a homogeneous FPGA.

Heterogeneous FPGA architectures can achieve 
higher performance than homogeneous ones (PARVEZ; 
MEHREZ, 2011). Commercial heterogeneous 
architectures focus on most demanded blocks such 
as adders and digital signal processing units (INTEL, 
2019a) to create hard logic blocks, optimizing speed and 
power of placed circuits. Such circuitry, if implemented 
by soft logic would be significantly bigger. Even when 
creating a homogeneous FPGA, it is common to use a 
hard logic D-type Flip-Flop (DFF) at the output of each 
LUT, making it easier to implement combinational or 
sequential logic. The structure composed of a LUT and 
a DFF is also known as a Basic Logic Element (BLE) 
and is represented in Figure 5a.

Figure 5 – FPGA Basic Logic Element and 
cluster.. Source: KUON; TESSIER; ROSE (2008)

BLEs can be interconnected to form FPGA 
Configurable Logic Blocks (CLB), as shown in Figure 
5b. It is important to pack BLEs together in a CLB to 
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bits words, which matches the number of SRAM cells 
required to implement a 4-input LUT.

Figure 7 – SRAM Manager diagram.

Source: Self elaboration.

Most commercial FPGAs are integrated with 
special circuitry to handle unexpected data on the 
SRAM cells. The errors may come from different 
sources such as the configuration flow itself, a Single-
Event Upset (VILLA, 2017) or soft errors (SRINIVASAN 
et al, 2004). A simple approach to handle those 
unexpected data is to keep checking the SRAM data 
with reading operations. If an error is observed, the 
SRAM manager reconfigures the specific part.

The sense amplifier circuit is used to read a 
SRAM array data (Figure 8). It can distinguish slight 
differences on the bitlines in a read operation, and is 
required to accelerate the reading since the SRAM 
cross-coupled inverters slowly drive the bitlines due 
to its capacitance. Pulling the “SE” signal down makes 
the cross-coupled inverters to float with the bitlines, 
when the “SE” is raised, the node with higher charge 
will drive the result (BAKER, 2011). Before the sense 
amplifier operates, pull-up transistors should raise both 
bitlines to a high level for a fair comparison.

Figure 9 shows an example of the SRAM Manager 
block operating one bit when there is both a write and 
read operation happening. At “t1”, the “Write Driver” 
is writing a logical ‘1’ to the selected cell when the 
respective “Word” is enabled. At “t2”, all the bitlines 
are pulled high with the “Pull Up Transistor” is set to a 
logical ‘0’, since they are controlled by pMOS. Finally, 
at “t3” a logical ‘0’ at the “Sense Enable” line permits 
the cell reading with pMOS access transistors. The 
sense amplifiers eventually measure which bitline is 
higher and show the logical value at the “Data” line.

Figure 6 –SB topologies. (a) Wilton. (b) Disjoint

Source: Self elaboration.

2. 1 SRAM manager

FPGA programmable logic and routing switches 
can be implemented using SRAM cells. Hence, the 
SRAM configuration and management circuitries 
compose important pieces on the FPGA itself.

There are some SRAM drawbacks that should 
be considered. For example, the SRAM volatility 
brings the need for external devices to keep a circuit 
configuration on the FPGA. This repeated programming 
exposes the system to a security issue where the 
information can be stolen (KUON; TESSIER; ROSE, 
2008). Also, the SRAM needs special circuitry to handle 
the analog nature of the signals for reading and writing 
data (Figure 3). The SRAM cell overall transistor size 
should be appropriately designed to avoid the noise on 
the bitlines to flip the stored bit, and at the same time, 
to let the access transistors drive the desired data on 
the cell (WESTE; HARRIS, 2015). 

To properly program SRAM cells, the SRAM 
Manager (Figure 7) holds four different structures: A 
driver block to write the desired data using buffers, a 
decoder to select which SRAM row to program, a pull-
up block, to prepare the bitlines to be read and a sense 
Amplifier block, to read the SRAM data.As experienced 
by our design construction, a common used SRAM flat 
addressing, where each SRAM connects directly with 
a specific routing or programmable cell using x and y 
coordinates, leads to a complex integration between 
the FPGA hardware description and synthesis tools. 
In our approach we implemented a resumed SRAM 
configuration system, which is especially suited to 
target specific FPGA locations by isolating each FPGA 
Tile with a decoder system. The different structures, 
such as LUTs, input multiplexers, and BLE output 
multiplexers, are selected by their specific address 
within a tile. The SRAM is programmed by using 16-
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This approach enhances the implementation speed of 
the Tile structure.

Figure 10 – Tile-based FPGA.

Source: Self elaboration.

The target CLB is composed of 4 BLEs cluster in a 
fully connected configuration (Figure 11), which means 
all the inputs and outputs of the CLB can be connected 
to any input of any LUT. Each LUT is implemented with 
4 possible inputs. The CLB ports are evenly distributed 
around the CLB perimeter, with 10 logical equivalent 
inputs and 4 outputs. To achieve optimal area, inner 
muxes are implemented either as a binary tree of 
transmission gates or as a bench of switches.

Figure 11 – Configurable Logic 
Block (CLB) schematic.

Source: Self elaboration.

Figure 12 shows the routing connection logic. For 
the CB, the connections are driven by the CLB ports. 
The CB can connect up to 25% of the wires in the 
routing channel to inputs and outputs of the CLB. The 
SB is a Wilton type, and each channel wire connects to 
three other wires from other channels. Tri-state buffers 
mainly compose the routing switches.

Figure 8 – Sense amplifier schematic.

Source: Self elaboration.

Figure 9 – SRAM programming waves.

Source: Self elaboration.

This subsection illustrated the configuration flow 
of a SRAM manager for a single tile. By multiplying 
this methodology on the FPGA array, direct tile 
configuration is possible. A large outer decoder with 
global “Word” lines can select the chosen SRAM 
manager to execute.

2. 2 Target architecture

In this work, we intend to rapidly implement an 
FPGA to get proof of concept, using common FPGA 
structures from the last decades (BETZ; ROSE; 
MARQUARDT, 1999; KUON; TESSIER; ROSE, 2008). 
We consider the island-style architecture, which can 
be easily divided into similar Tile structures. As seen 
in Figure 10, each Tile contains the blocks needed to 
implement both the reconfigurable logic and routing. A 
homogeneous FPGA architecture is chosen, meaning 
the same logic blocks distributed in the FPGA array. 
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Another issue that rises increasing the design 
size is that connecting various routing buses manually 
becomes very prone to human mistakes. These 
mistakes can only be found through analysis of 
simulation results from a programmed test bitstream, 
which can take several hours to find a single 
misconnected wire.

A small 4-CLB FPGA matrix was designed by 
hand, with a 3-metal layer 0.5 um technology, using the 
analog design flow to verify the functionality of several 
circuits. The main Tile was created with the essential 
blocks and considering different block connections in 
the FPGA IO pads perimeter. Figure 13 shows the SB 
schematic made on Virtuoso with each routing track 
connected by hand.

One of the main challenges for the layout is 
creating the core cells with similar height and proper 
width for port connections. Those choices influence 
how well the pieces couple together, possibly sparing 
design time. Sizing the cells is very important as they 
reflect directly on the final FPGA area. Conversely, 
smaller size cells make possible to include more logic 
cells in the matrix with the same die limitations. A CLB 
with a SRAM manager layout is shown in Figure 14 for 
design illustration.

Figure 12 – Routing channel schematic, with Switch Block in green and Connection Blocks in blue.

Source: Self elaboration.

For our purposes, the wires expand only to one 
Tile, though some advantages on the use of different 
wire lengths across the FPGA are reported in the 
references. The channel width (number of tracks in a 
routing bus) is chosen to be 16, a power of 2 for design 
easiness, which is beyond the needed for the routing 
worst case, based on these same references.

3 System implementation method

We firstly started building our design on a robust 
commercial environment such as Cadence Virtuoso, 
with a functionality test intent for each component with 
real MOSFET models from a 0.5 um process. Important 
analyses were made as verifying the SRAM analog 
behavior, observing the effect of transistor sizing 
for the read and write operations on the cells, and 
inspecting the effect of the transmission gate binary 
tree on the LUT muxes, and on the tri-state buffers in 
the routing buses. However, as the design gets bigger, 
more nets are integrated into the schematic, bringing 
more transistor variables to be taken into account, and 
increasing the simulation time.
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Figure 13 – Switch Block schematic

Source: Self elaboration.

Figure 14 – Configurable Logic Block with SRAM manager layout

Source: Self elaboration.
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may be degraded. Likewise, the chosen cell library 
does not support SRAM architectures but replaces the 
memory with latches. However, these discrepancies 
are accepted for academic proof-of-concept purposes.

Figure 15 – Basic Logic Element Verilog.

Source: Self elaboration.

The layout can then be generated from the 
synthesized Verilog. Cadence SoC Encounter takes 
the HDL description, and places and routes the cells 
automatically with its optimized algorithms. Figure 16 
shows the placed and routed custom FPGA using a 
top-down synthesis. Kim and Anderson (2015) discuss 
FPGA synthesis approaches which will be considered 
for future work.

To illustrate the differences between the “hand-
made” and automated approaches, Table 1 compares 
for a single CLB, the time and area. The obtained results 
are for the design implementation by one person, and 
the hand-made layout is not precisely optimized or do 
not use the minimum transistor size.

Table 1 – Design effort comparison

Work topic
Hand-made/ 

Schematic editor
Automated/ 

Verilog

Schematic 
implementation time

1 week 2 seconds

Layout placement time 2 months 30 seconds

Layout are 859000 λ2 302588 λ2

Source: Self elaboration.

The 3-metal layer technology brought high 
implementation effort and time but made by a small 
team. It is well visible in the figure that, still with a 
considerable attempt to optimize area, there are huge 
blank spaces on the layout, making it an inefficient area 
optimization.

3. 1 Design automation

A complex design can bring exhaustive work, 
high non-recurring engineering costs, and high 
time-to-market solutions (PARVEZ; MEHREZ, 2011). 
Nowadays FPGA can go over 5.5 million logic elements 
(INTEL, 2019b). Padalia et al (2003) reported that 
modern FPGAs could consume anywhere from 50 to 
200 man-years merely in the layout step.

A good way to reduce costs on the process is 
automating the design. The GILES project (PADALIA 
et al, 2003) demonstrated complete FPGA automation 
reducing significantly the manual labor. Kim and 
Anderson (2015) showed a CAD flow that takes 
information from an open-source tool and transforms it 
into a placed ASIC layout and a bitstream configuration. 
Both approaches use commercial tools and not 
necessarily include open-source products.

Parvez and Mehrez (2011) implemented various 
FPGA architectures based on Alliance and Coriolis 
open-source tools, by combining standard library 
cells and dynamic layout placement from subsequent 
software. This method has a high academic value, 
enabling the researcher to explore architectures 
without needing to spend extra money on commercial 
tools. However, the available standard library cells are 
not necessarily compatible with industry fabrication 
due to NDA reasons. The difficulty then rises from 
the effort of implementing the standard library using 
compatible software flow.

Our design was also built upon the Cadence 
digital environment. The design methodology begins 
by describing the architecture on structural Verilog, 
instantiating basic FPGA modules (such as multiplexers, 
d-flip-flops, tri-state buffers, and memory) and 
combining then to more complex FPGA structures. The 
HDL code can be generated from a custom software or 
directly written. Figure 15 shows a BLE Verilog sample.

The described circuit in Verilog then serves as 
input to the Encounter RTL compiler, which transforms 
a standard library cell in a synthesized Verilog, based 
on design constraints. The design uses a 0.5 um CMOS 
standard library cell and, since these cells are not 
specified for FPGA purpose, area and performance 
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VTR is an open source CAD flow intended for 
academic purposes and benchmarking. It outputs a 
high-level configuration files that are not ready for 
direct programming a custom FPGA, needing to be 
interpreted.

3. 3 VTR interpreter

Figure 17 illustrates the developed VTR 
interpreter flow, capable of reading files from the VTR 
and converting them into a bitstream configuration 
suitable for programming the designed custom FPGA. 
The VTR provides four different files, a .blif file in the 
Berkeley Logic Interchange Format (BLIF) that contains 
information about the LUTs netlist, truth table, and 
synchronization tags; a .net file that describes the 
logic elements cluster netlist in an XML structure; and 
a .place and a .route files that give information on how 
to place and route the HDL circuit, respectively.

Figure 17 – Custom Software flow chart.

Source: Self elaboration.

The VTR interpreter flow starts with an XML 
parser (VEILLARD, 2003) that is used to transform the 
.net file into a table with the tags name, value, and 
depth in the logic block hierarchy. Next, the BLIF file 
is read, getting the Boolean Algebra of each LUT and 
verifying whether the LUT output is registered or not. 

Figure 16 – 2x2 FPGA placed on 
Cadence SoC Encounter

Source: Self elaboration.

3. 2 FPGA bitstream configuration

The packing, placement, and routing planning for a 
given FPGA circuit are crucial for the resulting efficiency, 
and a significant power and speed improvement 
depends on how each path and logic is configured 
(BETZ; ROSE; MARQUARDT, 1999). The HDL high-
level circuit description must go through a series of 
algorithms and optimizations before the synthesizer 
is able to generate a final bitstream. Although there 
are some open-source tools capable of generating 
FPGA configuration bitstreams (LAGADEC et al, 2001; 
COOLE; STITT, 2010; SONI; STEINER; FRENCH, 2013), 
those are target-dependent on commercial FPGAs. 
While these tools are interesting to explore the state 
of art point of view configuration, they are not suited 
to the aim of this work architecture. Therefore, is 
necessary to develop a bitstream generator compatible 
with a custom FPGA architecture.

Verilog-to-Routing (VTR) is a good start point to 
begin studying HDL synthesis for a custom FPGA 
architecture. The VTR takes as input a circuit described 
in Verilog, and gives as output path and logic setting 
file, based on the FPGA architecture. It begins by 
converting the Verilog HDL design into a netlist of 
gates considering the different possible blocks the 
architecture can have. A logic optimization takes place 
to map the netlist into LUTs and flip-flops. The logic 
units are packed together into clusters, which will then 
be placed by using a customized simulated-annealing 
algorithm, achieving a quick solution close to the global 
best solution, and routed at the end (ROSE et al, 2012; 
LUU et al, 2014).
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solution could implement the Joint Test Action Group 
(JTAG) interface, which is widely used to program and 
test FPGAs and other digital systems (GRUWELL; 
ZABRISKIE; WIRTHLIN, 2016).

4 Functionality result

For the proof of concept, the following subsections 
will demonstrate the functionality of a small-sized FPGA 
developed. Both simulation and experimental results 
are presented, which validates the aforementioned 
methods. 

4. 1 Simulation result

The architecture of a 4-CLB FPGA, presented in 
Section 3, and the bitstream generation flow from 
Section 4 was put together to test all the procedures 
done so far. A test bench was created consisting of a 
4-bit digital counter, described in Verilog and presented 
in Figure 19, and a stimuli generator for the counter 
clock and reset, described in Cadence Virtuoso 
digital vector file. The counter routing visualization is 
presented in Figure 18, and the circuit was programmed 
into the FPGA, being simulated for the stimuli signals in 
the Cadence Virtuoso Analog Environment, for more 
accurate results in a real-scenario. Simulation results 
are shown in Figure 20, with the first two signals as 
stimuli and the last four signals as counter simulated 
output bits.

Figure 19 – Verilog counter description

Source: Self elaboration.

From the simulation results, was verified the 
correct 4-bit counter operation, indicating the correct 
functionality of the FPGA and programming flow. 
Some glitches can be observed on the output bits 
signals, which are revealed by the analog simulation. 

Our system then reads the placement file that has all 
the tile names and respective addresses in the format 
“Tile name, X coordinate, Y coordinate”, and merge 
these together with the BLIF and Net files information. 
The next step is the Route file interpretation, which 
gets information about the interconnections among 
routing blocks and their switches to an explicit low-level 
description for the FPGA. Finally, the VTR interpreter 
uses a custom auxiliary file, containing hardware 
association with the synthesized VTR output files, to 
generate the FPGA configuration bitstream.

To help making the link between the VTR and the 
target FPGA hardware, the developer can use the tool 
“VPR-Viewer” (BETZ; ROSE, 1997), available in the 
VTR package. This tool makes possible to verify how 
the described architecture given by the VTR flow will 
be implemented in the FPGA architecture. Figure 18 
shows an example of a counter circuit generated using 
the VPR Viewer.

Figure 18 – Counter circuit 
generated on VPR Viewer.

Source: Self elaboration.

3. 4 Configuration interface

As the number of parallel pins needed to configure 
the FPGA might be expressive, a custom serial-to-
parallel and a parallel-to-serial interface were built. 
The configuration bitstream is written to the FPGA 
SRAM through the serial-to-parallel interface and can 
be retrieved from the SRAM as an output bitstream, 
through the parallel-to-serial interface. Another elegant 
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Figure 21 – Single CLB die micrograph.

Source: Self elaboration.

Figure 22 – Measurement result for a 4-bit 
counter programmed into the fabricated chip.

Source: Self elaboration.

5 Conclusion

In this paper, the development of a custom SRAM 
island-style FPGA was proposed and achieved, by a 
small team. Various topics were considered, such 
as the steps involved in hardware implementation, 
bitstream configuration, and design alternatives to 
facilitate the overall effort.

Nevertheless, these “nonidealities” do not compromise 
the FPGA proper operation.

Figure 20 – Simulation results for a 4-bit 
counter programmed into the FPGA.

Source: Self elaboration.

4. 2 Measurement result

A single CLB architecture was synthesized and 
fabricated with the same specifications described 
in subsection 2.2. The die micrograph is shown in 
Figure 21. Guard rings, power stripes, and other 
routing techniques were added to improve the overall 
circuit performance. The National Instruments 6351 
(NI 6351) device was used as an interface to configure 
a 4-bit counter onto the chip, while also providing the 
appropriate inputs and managing the chip output for 
further analysis. The MATLAB software was employed 
to facilitate the NI 6351 device operation and chip data 
visualization. The data acquisition board was able to 
work under a frequency of 1 MHz. 

Figure 22 shows the measurement result for the 
4-bit counter programmed. It is possible to observe 
the good functionality of the configured circuit. The 
analog behavior seen in Figure 20 was suppressed 
in Figure 22 due to the low-frequency operation and 
additional interface circuitry.



97J O Ã O  P E S S O A ,  2 0 2 0

D I V U L G A Ç Ã O  C I E N T Í F I C A  E  T E C N O L Ó G I C A  D O  I F P B   |   N º  4 8

GRUWELL, A.; ZABRISKIE, P.; WIRTHLIN, M. 
High-speed FPGA configuration and testing through 
JTAG. In: 2016 IEEE AUTOTESTCON. 2016, Anaheim 
(United States), Proceedings...., 2016, p. 1-8.

HUNG, E. Mind the (synthesis) gap: Examining where 
academic FPGA tools lag behind industry. In: 2015 
25th International Conference on Field Programmable 
Logic and Applications (FPL). 2015, London (United 
Kingdom), Proceedings.... 2015, p. 1-4.

INTEL. Digital Signal Processing blocks in 
Stratix series FPGAs. Available in: <https://
intel.ly/2LkiHgy>. Accessed in: jul., 2019a.

INTEL. Intel Stratix 10 GX/SX device overview. Available 
in: < https://intel.ly/2PA5ykP>. Accessed in: jul., 2019b.

KIM, J. H.; ANDERSON, J. H. Synthesizable 
FPGA fabrics targetable by the Verilog-to-Routing 
(VTR) CAD flow. In: 2015 25th INTERNATIONAL 
CONFERENCE ON FIELD PROGRAMMABLE 
LOGIC AND APPLICATIONS (FPL). 2015, London 
(United Kingdom), Proceedings... 2015. p. 1-8.

KUON, I.; TESSIER, R.; ROSE, J. FPGA 
architecture: survey and challenges. Now 
Foundations and Trends, 2008.

LAGADEC, L. et al. Placing, routing, and editing 
virtual FPGAs. In: BREBNER, G.; WOODS, R. 
(eds). International Conference on Field 
Programmable Logic and Applications (FPL 
2001). Lecture Notes in Computer Science, 
vol 2147. Springer, p. 357-366, 2001.

LUU, J. et al. VTR 7.0: Next generation architecture 
and CAD system for FPGAs. ACM Transactions 
on Reconfigurable Technology and Systems 
(TRETS), v. 7, n. 2, p. 6:1-6:30, 2014.

PADALIA, K. et al. Automatic transistor and physical 
design of FPGA tiles from an architectural specification. 
In: 2003 ACM/SIGDA 11th INTERNATIONAL 
SYMPOSIUM ON FIELD PROGRAMMABLE 
GATE ARRAYS. 2003. Monterey (United 
States), Proceedings.... 2003, p. 164-172.

PARVEZ, H.; MEHREZ, H. Application-
specific mesh-based heterogeneous 
FPGA architectures. Springer, 2011.

ROSE, J. et al. The VTR project: architecture and CAD 
for FPGAs from verilog to routing. In: 2012 ACM/
SIGDA 11th INTERNATIONAL SYMPOSIUM ON FIELD 

Firstly, the FPGA CLBs schematic and layout 
were designed by hand. Although this procedure 
can be employed to achieve an optimized circuit, 
this proposed work presents a high design effort, 
especially considering a small team. Next, the same 
design was developed CAD automation synthesis from 
a description of the circuits in Verilog and presented an 
expressive reduction in design time.

The presented work can help and stimulate 
researchers to try new FPGA implementations and 
to make improvements on all steps involved by the 
main FPGA development flow. Designers can also 
implement custom FPGAs in new technologies such as 
those which integrate systems on chip (SoC) to achieve 
higher performance.

Although the results bring a functional FPGA, the 
available development resources still need custom 
integration tools. Future works include open-source 
hardware tools implementation that couples with 
synthesis software such as Verilog-To-Routing.
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