
85J O Ã O P E S S O A , 2 0 2 0

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 8

On the development of an island-style FPGA

Yang Azevedo Tavares [1], Diomadson Rodrigues Belfort [2], Sebastian Yuri Cavalcanti
Catunda [3], Sabiniano Araújo Rodrigues [4], James Tandon [5]

[1] yangtavares@gmail.com. UFRN – Departamento de Engenharia de Computação e Automação. [2] diomadson@imd.ufrn.br. UFRN
– Departamento de Engenharia Elétrica. [3] catundaz@gmail.com. UFRN – Departamento de Engenharia de Computação e Automação.
[4] sabiniano@ifpb.edu.br. IFPB – Campus Santa Rita. [5] james.tandon@csueastbay.edu. California State University, East Bay – CSUEB
Department of Engineering.

ABSTRACT

This paper presents the development of a custom SRAM island-style FPGA, covering the information needed
and the steps involved in hardware implementation, bitstream configuration and design alternatives to facilitate
the overall implementation effort from an academic point of view. To achieve the state of the art, commercial
FPGAs can employ a large team, a high time-to-market, and high non-recurring engineering costs. In contrast,
by taking the challenge of building a custom FPGA with a small team of researchers, the development of
custom architecture and size focuses on the proof of concept. This baseline methodology result can be a start
point for the development of new technologies or circuit enhancements.

Keywords: Field programmable gate arrays. Reconfigurable architectures. Circuit synthesis. Read-write
memory. Design methodology.

RESUMO

Este artigo apresenta o desenvolvimento de um FPGA “island-style” com SRAM personalizado, contendo a
informação necessária e os passos envolvidos na implementação em hardware, configuração por bitstream
e alternativas de projeto para facilitar a implementação geral de um ponto de vista acadêmico. Para obter
o estado da arte, FPGAs comerciais podem necessitar de um grande grupo, tempo de implementação e
custos. Em contraste, ao aceitar o desafio de desenvolver um FPGA personalizado com um pequeno grupo
de pesquisadores, o desenvolvimento do projeto é focado na prova de conceito. Resultados da metodologia
apresentada podem ser o ponto de partida para o desenvolvimento de novas tecnologias ou aprimoramentos
de circuito.

Palavras-chave: Portas programáveis em campo. Arquiteturas reconfiguráveis. Síntese de circuito. Memória
de leitura e escrita. Metodologia de projeto.

SUBMETIDO 03/10 /2019 > APROVADO 10/12 /2019

mailto:pacheco.franklin9@gmail.com
mailto:pacheco.franklin9@gmail.com

J O Ã O P E S S O A , 2 0 2 086

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 8

This paper goes through the custom FPGA building
steps and challenges. Section 2 gives an overview
of previous work on FPGA island-style architecture,
considering optimal solutions for various circuit
parameters and topology choices. Also, it describes
a generic SRAM programmer which can be used in
multiple FPGA architectures. Section 3 illustrates
the work to implement the described architecture
using robust commercial tools, highlighting design
approaches and bottlenecks. Section 4 shows the
bitstream generation process based on an open-
source tool (Verilog-to-Routing). In Section 5, the
simulation results of a 4-bit counter programmed into
the developed FPGA is presented for testing purposes.
Finally, Section 6 concludes the paper.

2 Architecture reference

FPGA global routing (macroscopic allocation
of wires) architectures can be characterized as
either hierarchical or island-style. Depending on the
architecture chosen, the designer will face trade-offs
among VLSI implementation, CAD flow configuration,
and device performance (KUON; TESSIER; ROSE,
2008).

Most commercial SRAM-based FPGAs use
the island-style architecture for its notable routing
capabilities. This architecture is represented in
Figure 1 and consists of Configurable Logic Blocks
(CLB) surrounded by routing buses that are responsible
for connecting the configured blocks signals together.
In this FPGA architecture, other specific function
blocks responsible for implementing the matrix are the
Connection Block (CB), which consists of programmable
switches used to connect the CLB ports to the routing
bus; and the Switch Block (SB), that connects the
routing busses together.

Among the distinct blocks that an FPGA has
the structures responsible for implementing the
programmable logic are most important, bringing the
device reconfigurability to come true. Despite recent
architectures that may have different names for their
reconfigurable logic, most of them share a well-known
soft logic block (KUON; TESSIER; ROSE, 2008), and the
commonly used structure to implement this behavior is
known as the Look-Up Table (LUT). A LUT consists of
memory to hold programmable data and multiplexer
(Mux) for realizing a configurable logic function. The
Mux, shown in Figure 2a, uses its addresses as logic
function inputs and its input channels as programmable
data for realizing the respective truth table. Figure

1 Introduction

With their introduction in 1984, Field-
Programmable Gate Arrays (FPGA) innovated the
implementation of digital circuits, bringing flexibility
and better design speed when compared to old
methods such as prototyping using small-scale gates
(TRIMBERGER, 2018). Since then, a large variety of
applications have emerged with these advantages
and the market has grown accordingly with the
increased demand over the years. FPGA main benefits
come from the fast design due to its reconfigurable
behavior, decreasing the time-to-market solution and
cost compared to the development of an Application
Specific Integrated Circuit (ASIC) (PARVEZ; MEHREZ,
2011).

The ASIC development goes through several
processes before being integrated into a final
product, and considers the expenses of engineering
development time and fabrication facilities. The
fabricated chip also has a chance of malfunction due
to design mistakes or fabrication process variations,
increasing overall expense. Conversely, Commercial
Off-The-Shelf (COTS) FPGA devices can be used in
a final project product and can be cheaper for small
and medium volume applications. They are widely
employed for educational purposes and data centers,
broadcast, high-performance computing, medical, and
aerospace applications (XILINX, 2019).

Despite not reconfigurable, ASICs are optimized
for their specific purpose, allowing to achieve higher
performance than FPGA for the same job. However, as
the IC technology advances and dies shrink, the FPGA
area increases, allowing multicore implementation,
increasing computational performance, and the gap
with ASIC becomes smaller for several applications,
such as an accelerating unit for processors applications
(TRIMBERGER, 2018).

Unfortunately, the fierce competition in the industry
hides the latest knowledge for economic purposes,
which creates a gap between academic and industrial
resources, as an example seen on Hung (2015). The
importance of demystifying the FPGA knowledge then
rises for its general behavior, and for improving the
cost/benefit. The main building challenges of such
architecture lies in the circuit design complexity and
configuration with CAD tools, and the efforts involved
to create an FPGA may require large teams, such as in
industry. Therefore, developing methods to boost the
process can be very welcome.

87J O Ã O P E S S O A , 2 0 2 0

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 8

Figure 3 – 6T SRAM cell schematic

Source: Self elaboration.

As the FPGA employs more LUTs the area tends to
grow accordingly, leading to use small LUTs to reduce
area and improve FPGA logic, allowing more CLBs to
fit on the chip die. Figure 4 presents a LUT multiplexer
implemented as a binary tree of transmission gates,
which is a good approach for size optimization.
Another possible implementation consists of using pass
transistors that are well known to be employed in these
structures, but they require extra circuitry to handle a
higher level voltage that drives the gate. The work in
Chiasson and Betz (2013) shows the trade-off between
both approaches.

Figure 4 – Look-Up Table multiplexer implemented
as a binary tree of transmission gates

Source: Self elaboration.

2b exemplifies a 2-input LUT programmed to be an
AND gate.

Figure 1 – Illustration of an island-style FPGA.
Adapted from: BETZ; ROSE; MARQUARDT (1999)

Source: Self elaboration.

Figure 2 – Mux implementing a Look-Up Table logic

Source: Self elaboration.

With a LUT defined, a memory is required to
implement the programmable inputs (as well as
controlling the routing switches). Implementing the
memory as a Static RAM (SRAM) is an excellent
approach since this memory will not be frequently
changing after the circuit is placed (compared to a
Dynamic RAM). Also, the SRAM cell can be designed
to have only 6 transistors to store a bit value (Figure 3),
saving circuit area and power if compared with other
alternative memory implementations, like using a
D-latch.

J O Ã O P E S S O A , 2 0 2 088

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 8

reduce the routing buses since they can take a huge
portion of the final area. Internal CLB routing also has
its limitations with scalability, principally when using a
fully connected architecture, where all inputs to the CLB
can connect to any BLE input and so for its outputs, as
in Figure 5b (KUON; TESSIER; ROSE, 2008).

The study from Betz, Rose and Marquardt
(1999) has shown that it is not necessary to have
all BLEs inputs accessible from the CLB, because
some inputs are open (not driven) by anything, and
can share signals with each other or take outputs
from a BLE within the cluster. A 98% logic utilization
is achieved with approximately 60% of BLEs inputs
individually accessible to the FPGA routing channels,
or equivalently, 2N+2 inputs, where N is the number
of BLEs in a cluster.

For the CB topology, the number of switches for
routing tracks is another subject that needs to be well
defined and optimized. A higher number of routing
switches provide more flexibility but results in a bigger
FPGA size and higher power consumption. On the
other hand, a reduced number of switches turns the
FPGA less routable and with a lower performance. The
work of Betz, Rose and Marquardt (1999) shows that
good flexibility is achieved when the percentage of the
connected output () is , where is the number of routing
tracks and is the number of BLEs in a CLB. The input
connectivity should be somewhat larger.

A SB connects the FPGA routing buses between
each other (Figure 6). The number of possible
connections that a track can make to others inside a
SB is known as SB flexibility. As this number changes,
similar trade-offs with area and routability happen, as
for the CB. Likewise, the wire length of a routing bus
inside an FPGA represents how many CLBs a wire
spans, meaning a SB can have some shorted tracks
instead of switches to connect two wires apart. Shorted
tracks can improve performance by removing the
circuitry that comes with routing switches, but at the
same time can decrease routability.

There are also different ways to connect the wires
together inside the SB. Commonly used topologies
such as Disjoint (WU; MAREK-SADOWSKA, 1995)
and Wilton (WILTON, 1997) were investigated by
its critical path delay (BETZ; ROSE; MARQUARDT,
2012). For a wire length of 1 (spanning only one CB),
both topologies present similar critical path delays.
However, with bigger wire lengths, the Disjoint SB
leads to faster circuits compared to Wilton SB.

The number of ports of a LUT is also a subject
of optimization. The work in Ahmed and Rose (2004)
explored the effect of a LUT number of inputs (K) on
the area and speed performance of a configured circuit,
comparing the number of LUTs required, the resulting
area and the critical path delay for implementing 28
different circuits using different LUT sizes. The results
of the study have shown that a 4-input LUT is optimal
considering a homogeneous FPGA.

Heterogeneous FPGA architectures can achieve
higher performance than homogeneous ones (PARVEZ;
MEHREZ, 2011). Commercial heterogeneous
architectures focus on most demanded blocks such
as adders and digital signal processing units (INTEL,
2019a) to create hard logic blocks, optimizing speed and
power of placed circuits. Such circuitry, if implemented
by soft logic would be significantly bigger. Even when
creating a homogeneous FPGA, it is common to use a
hard logic D-type Flip-Flop (DFF) at the output of each
LUT, making it easier to implement combinational or
sequential logic. The structure composed of a LUT and
a DFF is also known as a Basic Logic Element (BLE)
and is represented in Figure 5a.

Figure 5 – FPGA Basic Logic Element and
cluster.. Source: KUON; TESSIER; ROSE (2008)

BLEs can be interconnected to form FPGA
Configurable Logic Blocks (CLB), as shown in Figure
5b. It is important to pack BLEs together in a CLB to

89J O Ã O P E S S O A , 2 0 2 0

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 8

bits words, which matches the number of SRAM cells
required to implement a 4-input LUT.

Figure 7 – SRAM Manager diagram.

Source: Self elaboration.

Most commercial FPGAs are integrated with
special circuitry to handle unexpected data on the
SRAM cells. The errors may come from different
sources such as the configuration flow itself, a Single-
Event Upset (VILLA, 2017) or soft errors (SRINIVASAN
et al, 2004). A simple approach to handle those
unexpected data is to keep checking the SRAM data
with reading operations. If an error is observed, the
SRAM manager reconfigures the specific part.

The sense amplifier circuit is used to read a
SRAM array data (Figure 8). It can distinguish slight
differences on the bitlines in a read operation, and is
required to accelerate the reading since the SRAM
cross-coupled inverters slowly drive the bitlines due
to its capacitance. Pulling the “SE” signal down makes
the cross-coupled inverters to float with the bitlines,
when the “SE” is raised, the node with higher charge
will drive the result (BAKER, 2011). Before the sense
amplifier operates, pull-up transistors should raise both
bitlines to a high level for a fair comparison.

Figure 9 shows an example of the SRAM Manager
block operating one bit when there is both a write and
read operation happening. At “t1”, the “Write Driver”
is writing a logical ‘1’ to the selected cell when the
respective “Word” is enabled. At “t2”, all the bitlines
are pulled high with the “Pull Up Transistor” is set to a
logical ‘0’, since they are controlled by pMOS. Finally,
at “t3” a logical ‘0’ at the “Sense Enable” line permits
the cell reading with pMOS access transistors. The
sense amplifiers eventually measure which bitline is
higher and show the logical value at the “Data” line.

Figure 6 –SB topologies. (a) Wilton. (b) Disjoint

Source: Self elaboration.

2. 1 SRAM manager

FPGA programmable logic and routing switches
can be implemented using SRAM cells. Hence, the
SRAM configuration and management circuitries
compose important pieces on the FPGA itself.

There are some SRAM drawbacks that should
be considered. For example, the SRAM volatility
brings the need for external devices to keep a circuit
configuration on the FPGA. This repeated programming
exposes the system to a security issue where the
information can be stolen (KUON; TESSIER; ROSE,
2008). Also, the SRAM needs special circuitry to handle
the analog nature of the signals for reading and writing
data (Figure 3). The SRAM cell overall transistor size
should be appropriately designed to avoid the noise on
the bitlines to flip the stored bit, and at the same time,
to let the access transistors drive the desired data on
the cell (WESTE; HARRIS, 2015).

To properly program SRAM cells, the SRAM
Manager (Figure 7) holds four different structures: A
driver block to write the desired data using buffers, a
decoder to select which SRAM row to program, a pull-
up block, to prepare the bitlines to be read and a sense
Amplifier block, to read the SRAM data.As experienced
by our design construction, a common used SRAM flat
addressing, where each SRAM connects directly with
a specific routing or programmable cell using x and y
coordinates, leads to a complex integration between
the FPGA hardware description and synthesis tools.
In our approach we implemented a resumed SRAM
configuration system, which is especially suited to
target specific FPGA locations by isolating each FPGA
Tile with a decoder system. The different structures,
such as LUTs, input multiplexers, and BLE output
multiplexers, are selected by their specific address
within a tile. The SRAM is programmed by using 16-

J O Ã O P E S S O A , 2 0 2 090

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 8

This approach enhances the implementation speed of
the Tile structure.

Figure 10 – Tile-based FPGA.

Source: Self elaboration.

The target CLB is composed of 4 BLEs cluster in a
fully connected configuration (Figure 11), which means
all the inputs and outputs of the CLB can be connected
to any input of any LUT. Each LUT is implemented with
4 possible inputs. The CLB ports are evenly distributed
around the CLB perimeter, with 10 logical equivalent
inputs and 4 outputs. To achieve optimal area, inner
muxes are implemented either as a binary tree of
transmission gates or as a bench of switches.

Figure 11 – Configurable Logic
Block (CLB) schematic.

Source: Self elaboration.

Figure 12 shows the routing connection logic. For
the CB, the connections are driven by the CLB ports.
The CB can connect up to 25% of the wires in the
routing channel to inputs and outputs of the CLB. The
SB is a Wilton type, and each channel wire connects to
three other wires from other channels. Tri-state buffers
mainly compose the routing switches.

Figure 8 – Sense amplifier schematic.

Source: Self elaboration.

Figure 9 – SRAM programming waves.

Source: Self elaboration.

This subsection illustrated the configuration flow
of a SRAM manager for a single tile. By multiplying
this methodology on the FPGA array, direct tile
configuration is possible. A large outer decoder with
global “Word” lines can select the chosen SRAM
manager to execute.

2. 2 Target architecture

In this work, we intend to rapidly implement an
FPGA to get proof of concept, using common FPGA
structures from the last decades (BETZ; ROSE;
MARQUARDT, 1999; KUON; TESSIER; ROSE, 2008).
We consider the island-style architecture, which can
be easily divided into similar Tile structures. As seen
in Figure 10, each Tile contains the blocks needed to
implement both the reconfigurable logic and routing. A
homogeneous FPGA architecture is chosen, meaning
the same logic blocks distributed in the FPGA array.

91J O Ã O P E S S O A , 2 0 2 0

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 8

Another issue that rises increasing the design
size is that connecting various routing buses manually
becomes very prone to human mistakes. These
mistakes can only be found through analysis of
simulation results from a programmed test bitstream,
which can take several hours to find a single
misconnected wire.

A small 4-CLB FPGA matrix was designed by
hand, with a 3-metal layer 0.5 um technology, using the
analog design flow to verify the functionality of several
circuits. The main Tile was created with the essential
blocks and considering different block connections in
the FPGA IO pads perimeter. Figure 13 shows the SB
schematic made on Virtuoso with each routing track
connected by hand.

One of the main challenges for the layout is
creating the core cells with similar height and proper
width for port connections. Those choices influence
how well the pieces couple together, possibly sparing
design time. Sizing the cells is very important as they
reflect directly on the final FPGA area. Conversely,
smaller size cells make possible to include more logic
cells in the matrix with the same die limitations. A CLB
with a SRAM manager layout is shown in Figure 14 for
design illustration.

Figure 12 – Routing channel schematic, with Switch Block in green and Connection Blocks in blue.

Source: Self elaboration.

For our purposes, the wires expand only to one
Tile, though some advantages on the use of different
wire lengths across the FPGA are reported in the
references. The channel width (number of tracks in a
routing bus) is chosen to be 16, a power of 2 for design
easiness, which is beyond the needed for the routing
worst case, based on these same references.

3 System implementation method

We firstly started building our design on a robust
commercial environment such as Cadence Virtuoso,
with a functionality test intent for each component with
real MOSFET models from a 0.5 um process. Important
analyses were made as verifying the SRAM analog
behavior, observing the effect of transistor sizing
for the read and write operations on the cells, and
inspecting the effect of the transmission gate binary
tree on the LUT muxes, and on the tri-state buffers in
the routing buses. However, as the design gets bigger,
more nets are integrated into the schematic, bringing
more transistor variables to be taken into account, and
increasing the simulation time.

J O Ã O P E S S O A , 2 0 2 092

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 8

Figure 13 – Switch Block schematic

Source: Self elaboration.

Figure 14 – Configurable Logic Block with SRAM manager layout

Source: Self elaboration.

93J O Ã O P E S S O A , 2 0 2 0

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 8

may be degraded. Likewise, the chosen cell library
does not support SRAM architectures but replaces the
memory with latches. However, these discrepancies
are accepted for academic proof-of-concept purposes.

Figure 15 – Basic Logic Element Verilog.

Source: Self elaboration.

The layout can then be generated from the
synthesized Verilog. Cadence SoC Encounter takes
the HDL description, and places and routes the cells
automatically with its optimized algorithms. Figure 16
shows the placed and routed custom FPGA using a
top-down synthesis. Kim and Anderson (2015) discuss
FPGA synthesis approaches which will be considered
for future work.

To illustrate the differences between the “hand-
made” and automated approaches, Table 1 compares
for a single CLB, the time and area. The obtained results
are for the design implementation by one person, and
the hand-made layout is not precisely optimized or do
not use the minimum transistor size.

Table 1 – Design effort comparison

Work topic
Hand-made/

Schematic editor
Automated/

Verilog

Schematic
implementation time

1 week 2 seconds

Layout placement time 2 months 30 seconds

Layout are 859000 λ2 302588 λ2

Source: Self elaboration.

The 3-metal layer technology brought high
implementation effort and time but made by a small
team. It is well visible in the figure that, still with a
considerable attempt to optimize area, there are huge
blank spaces on the layout, making it an inefficient area
optimization.

3. 1 Design automation

A complex design can bring exhaustive work,
high non-recurring engineering costs, and high
time-to-market solutions (PARVEZ; MEHREZ, 2011).
Nowadays FPGA can go over 5.5 million logic elements
(INTEL, 2019b). Padalia et al (2003) reported that
modern FPGAs could consume anywhere from 50 to
200 man-years merely in the layout step.

A good way to reduce costs on the process is
automating the design. The GILES project (PADALIA
et al, 2003) demonstrated complete FPGA automation
reducing significantly the manual labor. Kim and
Anderson (2015) showed a CAD flow that takes
information from an open-source tool and transforms it
into a placed ASIC layout and a bitstream configuration.
Both approaches use commercial tools and not
necessarily include open-source products.

Parvez and Mehrez (2011) implemented various
FPGA architectures based on Alliance and Coriolis
open-source tools, by combining standard library
cells and dynamic layout placement from subsequent
software. This method has a high academic value,
enabling the researcher to explore architectures
without needing to spend extra money on commercial
tools. However, the available standard library cells are
not necessarily compatible with industry fabrication
due to NDA reasons. The difficulty then rises from
the effort of implementing the standard library using
compatible software flow.

Our design was also built upon the Cadence
digital environment. The design methodology begins
by describing the architecture on structural Verilog,
instantiating basic FPGA modules (such as multiplexers,
d-flip-flops, tri-state buffers, and memory) and
combining then to more complex FPGA structures. The
HDL code can be generated from a custom software or
directly written. Figure 15 shows a BLE Verilog sample.

The described circuit in Verilog then serves as
input to the Encounter RTL compiler, which transforms
a standard library cell in a synthesized Verilog, based
on design constraints. The design uses a 0.5 um CMOS
standard library cell and, since these cells are not
specified for FPGA purpose, area and performance

J O Ã O P E S S O A , 2 0 2 094

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 8

VTR is an open source CAD flow intended for
academic purposes and benchmarking. It outputs a
high-level configuration files that are not ready for
direct programming a custom FPGA, needing to be
interpreted.

3. 3 VTR interpreter

Figure 17 illustrates the developed VTR
interpreter flow, capable of reading files from the VTR
and converting them into a bitstream configuration
suitable for programming the designed custom FPGA.
The VTR provides four different files, a .blif file in the
Berkeley Logic Interchange Format (BLIF) that contains
information about the LUTs netlist, truth table, and
synchronization tags; a .net file that describes the
logic elements cluster netlist in an XML structure; and
a .place and a .route files that give information on how
to place and route the HDL circuit, respectively.

Figure 17 – Custom Software flow chart.

Source: Self elaboration.

The VTR interpreter flow starts with an XML
parser (VEILLARD, 2003) that is used to transform the
.net file into a table with the tags name, value, and
depth in the logic block hierarchy. Next, the BLIF file
is read, getting the Boolean Algebra of each LUT and
verifying whether the LUT output is registered or not.

Figure 16 – 2x2 FPGA placed on
Cadence SoC Encounter

Source: Self elaboration.

3. 2 FPGA bitstream configuration

The packing, placement, and routing planning for a
given FPGA circuit are crucial for the resulting efficiency,
and a significant power and speed improvement
depends on how each path and logic is configured
(BETZ; ROSE; MARQUARDT, 1999). The HDL high-
level circuit description must go through a series of
algorithms and optimizations before the synthesizer
is able to generate a final bitstream. Although there
are some open-source tools capable of generating
FPGA configuration bitstreams (LAGADEC et al, 2001;
COOLE; STITT, 2010; SONI; STEINER; FRENCH, 2013),
those are target-dependent on commercial FPGAs.
While these tools are interesting to explore the state
of art point of view configuration, they are not suited
to the aim of this work architecture. Therefore, is
necessary to develop a bitstream generator compatible
with a custom FPGA architecture.

Verilog-to-Routing (VTR) is a good start point to
begin studying HDL synthesis for a custom FPGA
architecture. The VTR takes as input a circuit described
in Verilog, and gives as output path and logic setting
file, based on the FPGA architecture. It begins by
converting the Verilog HDL design into a netlist of
gates considering the different possible blocks the
architecture can have. A logic optimization takes place
to map the netlist into LUTs and flip-flops. The logic
units are packed together into clusters, which will then
be placed by using a customized simulated-annealing
algorithm, achieving a quick solution close to the global
best solution, and routed at the end (ROSE et al, 2012;
LUU et al, 2014).

95J O Ã O P E S S O A , 2 0 2 0

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 8

solution could implement the Joint Test Action Group
(JTAG) interface, which is widely used to program and
test FPGAs and other digital systems (GRUWELL;
ZABRISKIE; WIRTHLIN, 2016).

4 Functionality result

For the proof of concept, the following subsections
will demonstrate the functionality of a small-sized FPGA
developed. Both simulation and experimental results
are presented, which validates the aforementioned
methods.

4. 1 Simulation result

The architecture of a 4-CLB FPGA, presented in
Section 3, and the bitstream generation flow from
Section 4 was put together to test all the procedures
done so far. A test bench was created consisting of a
4-bit digital counter, described in Verilog and presented
in Figure 19, and a stimuli generator for the counter
clock and reset, described in Cadence Virtuoso
digital vector file. The counter routing visualization is
presented in Figure 18, and the circuit was programmed
into the FPGA, being simulated for the stimuli signals in
the Cadence Virtuoso Analog Environment, for more
accurate results in a real-scenario. Simulation results
are shown in Figure 20, with the first two signals as
stimuli and the last four signals as counter simulated
output bits.

Figure 19 – Verilog counter description

Source: Self elaboration.

From the simulation results, was verified the
correct 4-bit counter operation, indicating the correct
functionality of the FPGA and programming flow.
Some glitches can be observed on the output bits
signals, which are revealed by the analog simulation.

Our system then reads the placement file that has all
the tile names and respective addresses in the format
“Tile name, X coordinate, Y coordinate”, and merge
these together with the BLIF and Net files information.
The next step is the Route file interpretation, which
gets information about the interconnections among
routing blocks and their switches to an explicit low-level
description for the FPGA. Finally, the VTR interpreter
uses a custom auxiliary file, containing hardware
association with the synthesized VTR output files, to
generate the FPGA configuration bitstream.

To help making the link between the VTR and the
target FPGA hardware, the developer can use the tool
“VPR-Viewer” (BETZ; ROSE, 1997), available in the
VTR package. This tool makes possible to verify how
the described architecture given by the VTR flow will
be implemented in the FPGA architecture. Figure 18
shows an example of a counter circuit generated using
the VPR Viewer.

Figure 18 – Counter circuit
generated on VPR Viewer.

Source: Self elaboration.

3. 4 Configuration interface

As the number of parallel pins needed to configure
the FPGA might be expressive, a custom serial-to-
parallel and a parallel-to-serial interface were built.
The configuration bitstream is written to the FPGA
SRAM through the serial-to-parallel interface and can
be retrieved from the SRAM as an output bitstream,
through the parallel-to-serial interface. Another elegant

J O Ã O P E S S O A , 2 0 2 096

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 8

Figure 21 – Single CLB die micrograph.

Source: Self elaboration.

Figure 22 – Measurement result for a 4-bit
counter programmed into the fabricated chip.

Source: Self elaboration.

5 Conclusion

In this paper, the development of a custom SRAM
island-style FPGA was proposed and achieved, by a
small team. Various topics were considered, such
as the steps involved in hardware implementation,
bitstream configuration, and design alternatives to
facilitate the overall effort.

Nevertheless, these “nonidealities” do not compromise
the FPGA proper operation.

Figure 20 – Simulation results for a 4-bit
counter programmed into the FPGA.

Source: Self elaboration.

4. 2 Measurement result

A single CLB architecture was synthesized and
fabricated with the same specifications described
in subsection 2.2. The die micrograph is shown in
Figure 21. Guard rings, power stripes, and other
routing techniques were added to improve the overall
circuit performance. The National Instruments 6351
(NI 6351) device was used as an interface to configure
a 4-bit counter onto the chip, while also providing the
appropriate inputs and managing the chip output for
further analysis. The MATLAB software was employed
to facilitate the NI 6351 device operation and chip data
visualization. The data acquisition board was able to
work under a frequency of 1 MHz.

Figure 22 shows the measurement result for the
4-bit counter programmed. It is possible to observe
the good functionality of the configured circuit. The
analog behavior seen in Figure 20 was suppressed
in Figure 22 due to the low-frequency operation and
additional interface circuitry.

97J O Ã O P E S S O A , 2 0 2 0

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 8

GRUWELL, A.; ZABRISKIE, P.; WIRTHLIN, M.
High-speed FPGA configuration and testing through
JTAG. In: 2016 IEEE AUTOTESTCON. 2016, Anaheim
(United States), Proceedings...., 2016, p. 1-8.

HUNG, E. Mind the (synthesis) gap: Examining where
academic FPGA tools lag behind industry. In: 2015
25th International Conference on Field Programmable
Logic and Applications (FPL). 2015, London (United
Kingdom), Proceedings.... 2015, p. 1-4.

INTEL. Digital Signal Processing blocks in
Stratix series FPGAs. Available in: <https://
intel.ly/2LkiHgy>. Accessed in: jul., 2019a.

INTEL. Intel Stratix 10 GX/SX device overview. Available
in: < https://intel.ly/2PA5ykP>. Accessed in: jul., 2019b.

KIM, J. H.; ANDERSON, J. H. Synthesizable
FPGA fabrics targetable by the Verilog-to-Routing
(VTR) CAD flow. In: 2015 25th INTERNATIONAL
CONFERENCE ON FIELD PROGRAMMABLE
LOGIC AND APPLICATIONS (FPL). 2015, London
(United Kingdom), Proceedings... 2015. p. 1-8.

KUON, I.; TESSIER, R.; ROSE, J. FPGA
architecture: survey and challenges. Now
Foundations and Trends, 2008.

LAGADEC, L. et al. Placing, routing, and editing
virtual FPGAs. In: BREBNER, G.; WOODS, R.
(eds). International Conference on Field
Programmable Logic and Applications (FPL
2001). Lecture Notes in Computer Science,
vol 2147. Springer, p. 357-366, 2001.

LUU, J. et al. VTR 7.0: Next generation architecture
and CAD system for FPGAs. ACM Transactions
on Reconfigurable Technology and Systems
(TRETS), v. 7, n. 2, p. 6:1-6:30, 2014.

PADALIA, K. et al. Automatic transistor and physical
design of FPGA tiles from an architectural specification.
In: 2003 ACM/SIGDA 11th INTERNATIONAL
SYMPOSIUM ON FIELD PROGRAMMABLE
GATE ARRAYS. 2003. Monterey (United
States), Proceedings.... 2003, p. 164-172.

PARVEZ, H.; MEHREZ, H. Application-
specific mesh-based heterogeneous
FPGA architectures. Springer, 2011.

ROSE, J. et al. The VTR project: architecture and CAD
for FPGAs from verilog to routing. In: 2012 ACM/
SIGDA 11th INTERNATIONAL SYMPOSIUM ON FIELD

Firstly, the FPGA CLBs schematic and layout
were designed by hand. Although this procedure
can be employed to achieve an optimized circuit,
this proposed work presents a high design effort,
especially considering a small team. Next, the same
design was developed CAD automation synthesis from
a description of the circuits in Verilog and presented an
expressive reduction in design time.

The presented work can help and stimulate
researchers to try new FPGA implementations and
to make improvements on all steps involved by the
main FPGA development flow. Designers can also
implement custom FPGAs in new technologies such as
those which integrate systems on chip (SoC) to achieve
higher performance.

Although the results bring a functional FPGA, the
available development resources still need custom
integration tools. Future works include open-source
hardware tools implementation that couples with
synthesis software such as Verilog-To-Routing.

REFERENCES

AHMED, E.; ROSE, J. The effect of LUT and cluster size
on deep-submicron FPGA performance and density.
IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, v. 12, n. 3, p. 288-298, 2004.

BAKER, R. J. CMOS: circuit design, layout,
and simulation. 3rd Ed. Wiley-IEEE, 2011.

BETZ, V.; ROSE, J. VPR: A new packing, placement
and routing tool for FPGA research. In: LUK, W.;
CHEUNG, P. Y. K.; GLESNER, M. (eds). International
Conference on Field Programmable Logic and
Applications (FPL 1997). Lecture Notes in Computer
Science, vol 1304. Springer, p. 213-222, 1997.

BETZ, V.; ROSE, J.; MARQUARDT, A. Architecture and
CAD for deep-submicron FPGAs. Springer, 1999.

CHIASSON, C.; BETZ, V. Should FPGAs abandon the
pass-gate? In: 2013 23rd International Conference on
Field programmable Logic and Applications. 2013,
Porto (Portugal), Proceedings... 2013. p. 1-8.

COOLE, J.; STITT, G. Intermediate fabrics:
virtual architectures for circuit portability and
fast placement and routing. In: 2010 IEEE/ACM/
IFIP INTERNATIONAL CONFERENCE ON
HARDWARE/SOFTWARE DESIGN AND SYSTEM
SYNTHESIS (CODES+ISSS). 2010, Scottsdale
(United States), Proceedings.... 2010, p. 13-22.

J O Ã O P E S S O A , 2 0 2 098

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 8

PROGRAMMABLE GATE ARRAYS. 2012. Monterey
(United States), Proceedings.... 2003, p. 77-86.

SONI, R. L.; STEINER, N.; FRENCH, M. Open-source
bitstream generation. In: 2013 IEEE 21st ANNUAL
INTERNATIONAL SYMPOSIUM ON FIELD-
PROGRAMMABLE CUSTOM COMPUTING MACHINES.
2013, Seattle (United States), Proceedings... p. 105-112.

SRINIVASAN, S. et al. Improving soft-error tolerance
of FPGA configuration bits. In: 2004 IEEE/ACM
INTERNATIONAL CONFERENCE ON COMPUTER-
AIDED DESIGN (ICCAD 2004), 2004, San Jose
(United States), Proceedings... 2004, p. 107-110.

TRIMBERGER, S. M. S. Three ages of FPGAs:
a retrospective on the first thirty years of FPGA
technology: this paper reflects on how Moore’s
law has driven the design of FPGAs through three
epochs: the age of invention, the age of expansion,
and the age of accumulation. IEEE Solid-State
Circuits Magazine, v. 10, n. 2, p. 16-29, 2018.

VEILLARD, D. The XML C parser and toolkit
of Gnome. 2003. Available in: <http://
xmlsoft.org>. Accessed in: jul., 2019.

VILLA, P. R. C. et al. Analysis of single-event upsets
in a Microsemi ProAsic3E FPGA. In: 2017 18th IEEE
LATIN AMERICAN TEST SYMPOSIUM (LATS), 2017,
Bogota (Colombia), Proceedings... 2017. p. 1-4.

WESTE, N. H. E.; HARRIS, D. CMOS
VLSI design: a circuits and systems
perspective. 4th ed. Pearson India, 2015.

WILTON, S. J. E.. Architectures and algorithms
for field-programmable gate arrays with
embedded memory. 1997. 181 f. Thesis (Doctorate
in Electrical and Computer Engineering), Department
of Electrical and Computer Engineering, University
of Toronto, Toronto (Canada), 1997.

WU, Y. L.; MAREK-SADOWSKA, M. Orthogonal
greedy coupling-A new optimization approach to
2-D FPGA routing. In: 32nd DESIGN AUTOMATION
CONFERENCE. 1995, San Francisco (United
States), Proceedings.... 1995. p. 568-573.

XILINX. FPGA applications. Available in: <https://www.
xilinx.com/applications.html/>. Accessed in: jul., 2019.

	_GoBack

