
J O Ã O P E S S O A , 2 0 1 9226

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 6

Free and customizable web application for
Internet of Things devices monitoring

Átila Camurça Alves [1], Jessé Perbelini Coutinho [2], Vinícius Ferreira da Silva [3],
Sandro César Silveira Jucá [4] e Renata Imaculada Soares Pereira [5]

[1] camurca.home@gmail.com. [2] jessecdm@gmail.com. [3] viniciusdasilva.ti@gmail.com. [4] sandrojuca@ifce.edu.br. Instituto Federal
do Ceará – Campus Maracanaú, Eixo de Computação. [5] renata@dee.ufc.br. Instituto Federal de Alagoas – Campus Arapiraca, Eixo de
Controle e Processos Industriais.

ABSTRACT

This paper presents the design and implementation of the free and customizable web application for Internet
of Things (IoT) named Wireless Monitor. Wireless Monitor main objective is to provide a solution for online and
real-time secure data visualization. The user can create a personalized web ambient using Wireless Monitor
to monitor IoT sensor devices. The data collected is stored on a cloud server databank and can be viewed as
real-time charts. The proposed Wireless Monitor has been developed to be extensible and can be adapted
to different types of sensors, thanks to the system of plugins. Its minimal set of endpoints for exchanging
information between the IoT device and the server makes the development simplified, without being limited,
thanks to the JSON information exchange protocol. Two different practical experiments were carried out and
the obtained results are shown. The first one uses Raspberry Pi, Arduino and a LM35 temperature sensor; and
the second one replaces both embedded systems with one ESP 8266 development board.

Keywords: Internet of Things. Monitoring. Data acquisition. Free software.

RESUMO

Este artigo apresenta a criação, o design e a implementação de um aplicativo gratuito e personalizável para
Internet das Coisas (IoT, do inglês Internet of Things) denominado Wireless Monitor. O objetivo principal do
Wireless Monitor é fornecer uma solução para aquisição e monitoramento de forma segura de dados de
sensores, de forma online e em tempo real. O usuário pode criar um ambiente web personalizado através
do Wireless Monitor com o objetivo de monitorar dispositivos IoT. Os dados coletados são armazenados em
um banco de dados do servidor na Nuvem e podem ser visualizados em forma de gráficos em tempo real. O
Wireless Monitor proposto foi desenvolvido para ser extensível e pode ser adaptado para diferentes tipos de
sensores, graças ao sistema de ‘plugins’. Seu conjunto mínimo de ‘endpoints’ para troca de informações entre
o dispositivo IoT e o servidor torna o desenvolvimento simplificado, porém sem limitações, graças ao protocolo
de troca de informações JSON. Dois experimentos práticos diferentes foram realizados e os resultados obtidos
são mostrados. O primeiro utiliza Raspberry Pi, Arduino e um sensor de temperatura LM35; e o segundo,
substitui ambos os sistemas embarcados por uma placa de desenvolvimento ESP 8266.

Palavras-chave: Internet da Coisas. Monitoramento. Aquisição de Dados. Software Livre.

SUBMETIDO 13/05 /2019 > APROVADO 23/09 /2019

mailto:pacheco.franklin9@gmail.com
mailto:pacheco.franklin9@gmail.com

227J O Ã O P E S S O A , 2 0 1 9

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 6

other intelligent computing, data processing and
analysis technologies (ASEMANI; ABDOLLAHEI;
JABBARI, 2019).

The main goal of Wireless Monitor is to provide
a simple, and secure API (Application Programming
Interface), since IoT equipment are limited regarding
its resources, to send and receive information from
the Cloud.

In order to have a better exchange of information
in receiving and sending the data, the communication
protocol chosen was JSON, where this is a lightweight
and independent language format for information
exchange (LIU et al., 2019).

The present paper is a continuation of a work
already started as can be seen in (ALVES; JUCÁ,
2017) with some adaptations and improvements that
are described throughout this article.

2 Bibliographic Review
There are many IoT equipment monitoring

solutions. We can mention the platforms: Oracle IoT,
AWS IoT, Google Cloud IoT, and Microsoft Azure IoT
Suite, that are developed by major companies such as
Oracle, Amazon, Google, and Microsoft, respectively;
and even free solutions such as Kaa and SiteWhere.
Table 1 shows a comparison between the Wireless
Monitor proposed and similar ones. The big challenge
is to allow the tool to be extended to specific needs.
Tools like Kaa allow you to create your own modules,
analysis systems, and data model, making the tool fit
your need (KHARBOUCH et al, 2018).

1 Introduction
With the increasing adoption of the Internet

of Things (IoT) in sensor monitoring systems and
load driving, there is a growing need for monitoring
environments for such measurements. To do this, one
of the best ways is to use the Cloud — on-demand
computing resource through the Internet (QIU et al,
2019) — for storage, since one of the characteristics
of IoT devices is access to the Internet.

Today, the Internet of Things is a term well
known in the media for presenting a real revolution
in the environments in which it is found, in order to
transform these environments, making them intelligent
by bringing together a network of physical objects
equipped with electronic components such as software
and sensors, which collect and exchange data between
themselves and with the user.

To meet this need, Wireless Monitor was
developed, as a free and web-based application for
acquisition and monitoring of sensor data in which
monitoring can be done from any device through an
Internet browser.

IoT devices are “things” with an Internet connection
that can interconnect and communicate with each
other (REVELL, 2013). As an example, Raspberry Pi
is used in many ways and in different areas, such as
education (KAMBOJ; KRISHNA; REDDY, 2018).

Also essential for an IoT system is the performance
of objects connected to data transmission securely,
processing through cloud computing (computer storage
services and servers connected to the Internet) and

Table 1 – Comparison between free similar systems.

Systems
Server

environment
Plugins
support

SDK Memory CPU HD Database Hosting Price

Kaa Java Yes Yes 4 GB 4 10 GB - 20 USD/Month

SiteWhere Java Yes Yes 16 GB 4 100 GB - 80 USD/Month

Wireless
Monitor

PHP Yes Yes 2 GB 1 5 GB PostgreSQL 10 USD/Month

Source: Elaborated by the authors

Similarly, other tools like macchina.io offer options
to create bundles, and ThingSpeak offers the option to
create apps (HILL, 2019), both of which can involve
visualization in graphics and decision making.

In Cantanhede and Silva (2014), a system for
monitoring in hospital environments is proposed where
the system aims to automate the process of collecting

and processing information such as monitoring of
temperature and humidity, for example where the user
can program the way of using the system according to
its necessity and scenario.

Shah and Mishra (2016) has developed a
customized wireless monitoring platform to monitor
temperature and relative humidity. In the system,

J O Ã O P E S S O A , 2 0 1 9228

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 6

Wireless Monitor is hardware-independent, as
it is just an aggregator of values transmitted from
any device, not necessarily IoT devices. It would
be possible, for example, to create an Android
application that will read its own sensors and send it
to Wireless Monitor.

Another feature to consider is the form of
authentication. Conventional authentication involves
exchanging of cookies between the server and
the client, which implies disk space to store such
information. In IoT systems, which are assumed to grow
rapidly, that is, the number of devices can increase, an
authentication system capable of scalability is required,
even under limited conditions. The JWT (JSON Web
Tokens) standard, which is an open standard (RFC
7519) (JONES; BRADLEY; SAKIMURA, 2015), is used
to define a compact and self-contained way of securely
transmitting information between peers through a
JSON object (PEYROTT, 2016). This information can
be verified and confirmed because it is digitally signed.
JWT information can be signed using a secret, with
the HMAC (Hash-based Message Authentication Code)
algorithm (KRAWCZYK; BELLARE; CANETTI, 1997)
or public and private key pair using RSA (JONSSON;
KALISKI, 2003). The authentication process via JWT
can be seen in Figure 1 (next page).

One of the most common practices for IoT’s
authentication is the creation of random tokens to
identify the user and the device, however, this technique
facilitates the Man-In-The-Middle (MITM) attack.

• This attack can be defined as “a security flaw on a
computer in which a malicious user intercepts — and
possibly alters — data over a network” (YADAV;
VENKATESAN; VERMA, 2018). In this sense the use
of JWT has advantages when compared to a random
token (ROMERO, 2015):

• Random API keys do not say anything about the
user, whereas JWTs contain information and metadata
that describe the user’s identity;

• JWT does not require the need for a centralized
token issuer or token revocation authority;

• It is compatible with Oauth2 (HARDT, 2012);

• JWT data can be inspected;

• JWTs have expiration controls, contains a validity for
a period or a maximum number of requests.

the data is sent to the receiver node and this data is
monitored and recorded in excel on a desktop through
a graphical interface created in LabVIEW.

Based on the concepts of Internet of Things (IoT),
a residential automation system for the control and
monitoring of electrical devices in Oliveira (2019) was
developed. The device measures the current and
alternating voltage of equipment connected to the
electric grid, as well as to carry out the approximate
calculation of the power consumed, in addition to
making the charging of loads. The user interface is
performed using ThingSpeak, where device data is
monitored, stored and exported to a worksheet, and
then an estimate is made for the power consumed.

In this sense, the proposed tool has a system of
plugins, which are developed as Laravel Packages
(BLANKENSHIP, 2019). Each new feature is created
through the Laravel tool and can be developed and
enabled locally.

The proposal is to have a monitoring screen of the
data collected from the equipment that can be viewed
in a specific way. The documentation in Brazilian
Portuguese to create a new plugin can be found in
Alves (2016a).

A Software Development Kit (SDK) is designed to
help developers use Wireless Monitor in the JavaScript
language, which should be used with NodeJS or directly
in the browser. Source code and documentation can be
found in a GitHub in Alves (2017a) repository.

Applications such as Kaa and SiteWhere run in
Java environment, which makes deployment expensive
because hosting costs more compared to hosting
PHP applications, as well as processing power must
be high since such an environment requires a more
robust server.

3 Methodology

As a GNU Public License (GPLv3) licensed source
code application, Wireless Monitor can be used by
teachers and undergraduates, or technicians for the
study of microcontrollers, embedded systems, and
related fields, as well as for business and designer
purposes. and enthusiasts as can be seen in Alves
(2016b). The programming language used was PHP,
originally derived from Personal Home Page Tools,
and now means PHP: Hypertext Preprocessor, usually
taught in both undergraduate and technical course
levels, with cheap hosting in relation to other languages
such as Java or Ruby.

229J O Ã O P E S S O A , 2 0 1 9

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 6

4 4 Architecture and Operating
Principle

The architecture of Wireless Monitor follows the
model of Figure 2, which consists of an IoT device
that communicates with the web server through the
Internet by sending a payload in the JSON format
and the client request the data stored on the Cloud
server displays in the browser using any computational
device like desktop, notebook or mobile phone with
Internet access.

Figure 2 – Wireless Monitor architecture.

Source: Elaborated by the authors.

On the server there must be a Wireless
Monitor instance, which works in conjunction with a
PostgreSQL database, where all the data collected is
stored. PostgreSQL is an ORDBMS (Object-relational
Database Management System) based on POSTGRES

It is recommended to use the SSL protocol in
the communication between the device and the
server through the HTTPS protocol (RESCORLA,
2000). Because, even though JWT is a protocol that
generates encrypted keys, it can also be used in MITM
attacks. It is true that JWT keys have expiration dates
and expire on a certain number of requests, but if the
key is intercepted by a third party, it can impersonate
the equipment and transmit fictitious data. However,
if the information is transmitted using HTTPS, this
type of attack becomes more difficult because the
transmission of the information is encrypted end-to-
end. In Porambage et al (2014), the authors declare
that a secure communication channel establishment
is crucial because IoT devices could carry private
information that should not be intercepted.

To ensure that the submitted data conforms to the
formatting expected, Wireless Monitor uses the JSON
Schema, a vocabulary that allows annotating and
validating JSON documents (JUCÁ; PEREIRA, 2018).
For each plug-in, there is an associated JSON Schema,
which indicates the fields the Wireless Monitor expects,
as well as their types. This ensures that the data sent
makes sense for the correct assembly of graphs
and tables, in addition to avoiding erroneous data
transmission, either due to the programmer’s error or
due to posting failures.

Figure 1 – Authentication process diagram via JWT.

Source: Elaborated by the authors.

J O Ã O P E S S O A , 2 0 1 9230

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 6

Figure 4 – Creating a new temperature monitor.

Source: Elaborated by the authors.

4.2 Device Authentication

To authenticate and identify the developer and
his Monitor, the user needs to send the API key and
monitor key via HTTP POST method to the endpoint
(or communication channel with the server) /api/
authenticate. If the information is correct, the system
returns a token. This token will serve for any future
exchange of information between the IoT equipment
and Wireless Monitor.

After getting the token, the developer should pass
it through the HTTP Header named Authorization using
Bearer schema (JONES; HARDT, 2012), in the format:
Authorization: Bearer <token>

• A token is formed by the following
information:

• Header;

• Payload;

• Signature.
In addition to the Header containing the token, the

IoT device must pass the values collected and sent to
the system. For this, it must send a POST request to
endpoint /api/send, with the data attribute containing
a JSON with the data collected. In the example of
temperature Monitor it is necessary to send only the
value, like:

{
“value”: 23.89
}

The flowchart of the process of authentication,
authorization and sending data can be seen in Figure 5.

version 4.2, developed at the University of California,
Berkeley, in the Department of Computer Science.

POSTGRES pioneered many concepts that only
became available in some commercial database
systems years later (MILANE, 2018).

The developer should initially make a simple
registry in Wireless Monitor as can be seen in Figure
3. This registry will create for him an API key, that is, a
unique key in the format UUID 4 (LEACH; MEALLING;
SALZ, 2005).

Figure 3 – Login screen.

Source: Elaborated by the authors.

4.1 Creating a personalized Monitor

A monitor is an internal component of the system
created by the developer according to his needs, it is
the instrument that characterizes the data collected and
presents them in the web interface.

Imagine that the developer wants to measure
the temperature of an environment and monitor
its variations. To do this, it must create a monitor
of temperature, which only receives a value in
time intervals.

In this way, the developer can monitor the sensor
and its variations as well as graphically view a set of
variations from an earlier period.

In the same way as creating a UUID key for the
developer, a UUID key is created for monitor - monitor
key. The information you need to create a temperature
monitor can be seen in Figure 4.

231J O Ã O P E S S O A , 2 0 1 9

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 6

Figure 5 – Flowchart: authentication, authorization, and data sending.

Source: Elaborated by the authors

5 First Experiment

In a first experiment, the Raspberry Pi platform was
used as the embedded system, which communicates
with the Wireless Monitor and the Arduino platform.
Raspberry Pi is an IoT device capable of interacting
with other devices and accessing the Internet.

The Arduino platform was chosen to serve as
a bridge between the temperature sensor and the
embedded system since the Raspberry Pi has only
digital pins and some sensors offer only analog
measurements (requiring Analog/Digital converter
(ADC) pins). Arduino is a free electronic platform based
on hardware and software easy to use. Arduino boards
can read inputs — digital or analog sensors, buttons
— and to operate outputs — driving motors, triggering
LEDs (BANZI; SHILOH, 2014).

The LM35 from Texas Instruments was used as the
temperature sensor. The LM35 series is composed of
integrated circuit devices for measuring with the output
voltage linearly proportional to the temperature in
degrees Celsius. The LM35 sensor has the advantage
over sensors of linear temperature, calibrated in Kelvin,
because it is not necessary to subtract a constant
voltage from the output to obtain a scale convenient
(TEXAS INSTRUMENTS, 2017).

In this experiment, the execution environment
chosen was the NodeJS, which is a wrapper around the

high-performance JavaScript execution environment
called V8, used in the Google Chrome browser. NodeJS
allows V8 to work in contexts different from the
browser, mainly by providing additional APIs which are
optimized for specific cases (HUGHES-CROUCHER;
WILSON, 2012). For example, in the case of an IoT
equipment, this fits well, as it is an event-driven device,
as well as the NodeJS.

To support the communication between NodeJS
and Arduino, the Johnny-Five tool, a free Javascript
platform for Robots and IoT was used (CRUZ;
PETRUCELLI; SOTTO, 2018).

NodeJS must be installed on Raspberry Pi as it
supports the ARM architecture. A NodeJS project
should be created with Johnny-Five dependencies
and the SDK developed to assist in integrating with the
server. This way the Johnny-Five will be responsible
for communicating with the Arduino requesting the
temperature of the LM35 sensor. With the response
received the NodeJS will send the measurements to
the Server through the SDK.

The source code for this example can be found in
a GitHub in repository (ALVES, 2016c) and the project
assembly can be seen in Figure 6, which consists
of a Raspberry Pi (1), an Arduino (2) and a LM35
temperature sensor (3).

J O Ã O P E S S O A , 2 0 1 9232

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 6

7 Results and discussion

After capturing and sending data from an IoT
device to the cloud, the user can search the results
view to be displayed by the system, where the view
depends on the plugin and not the data itself where the
hardware is just the transmission medium.

The data visualization is shown in Figure 8 (next
page). A Cloud server has been made available at
“https://wm.sanusb.org” so that the tool can be used
without the need for installation.

The project was developed using PHP language
and Laravel framework. Both are used in the backend
(server part) for the basic functionalities, that is,
authentication and authorization, data visualization and
management of the monitors.

For unit testing PHPUnit was used, a tool widely
used in PHP projects (BERGMANN, 2001). The tests
can be done locally throughout the development,
however whenever a pull request (GITHUB,
2017)”title”:”GitHub Help - About pull requests”,”t
ype”:”article”},”uris”:[“http://www.mendeley.com/
documents/?uuid=0cf33663-a461-4ba5-9296-a668b
4eb8c57”]}],”mendeley”:{“formattedCitation”:”(GITH
UB, 2017 is done in the official project repository on
GitHub, all tests are executed in a process called CI
(Continuous Integration), thanks to the Travis CI tool
(TRAVISCI, 2017)”title”:”Travis CI - Building Pull Reque
sts”,”type”:”article”},”uris”:[“http://www.mendeley.com/
documents/?uuid=bcc1acc7-a24c-4d51-b9d8-d8cedb4
59dd1”]}],”mendeley”:{“formattedCitation”:”(TRAVISCI,
2017, as can be seen in Figure 9 (next page). With this
tool, it is possible to set up specific environments and
test the tool in several ways, for example with several
different versions of PHP. In addition to the core of the
project, the plugins are also tested to ensure that the
tool works completely.

Database management is done through Eloquent
ORM (BEAN, 2015), which provides a single interface
in which it is possible to work with several different
databases by changing just the driver connection.

With this tool, the developer creates models that
define the data structure and can interact with database
tables. One of the possibilities was to allow the use of
the PostgreSQL database for production environments
— where robustness, stability and concurrent access
to data is required, and to use the SQLite database for
the test environment — where it is necessary to have
a fast environment that can be created and destroyed
locally, directly in RAM (ALLEN; OWENS, 2010).

Figure 6 – First experiment project assembly.

Source: Elaborated by the authors.

6 Second Experiment

In a second experiment, the device NodeMcu
ESP8266 was chosen. ESP8266 is a high-performance
wireless SoC (System on Chip) with integrated FTDI
(Technology Integrated Chip Devices). The FTDI chip
is used to power, simplify the communication process
as well as the assembly process (JUCÁ; CARVALHO;
PEREIRA, 2014).

The same temperature sensor LM35 from
the previous experiment was used. However, the
Arduino SDK with ESP8266 support was used for
development, which provides a set of libraries for
interaction with the network, as well as programming,
compiling and assembling through the Arduino IDE
(Integrated Development Environment) using the
setup and loop principles, characteristic of the Arduino
platform (BANZI; SHILOH, 2014). The source code
of experiment 2 can be found in a GitHub repository
(ALVES, 2017b) and the assembly can be seen in
Figure 7, which consists of a NodeMcu with ESP8266-
12F (1) and a LM35 temperature sensor (2).

Figure 7 – Second experiment project assembly.

Source: Elaborated by the authors.

233J O Ã O P E S S O A , 2 0 1 9

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 6

Figure 8 – View data in Wireless Monitor.

Source: Elaborated by the authors.

Figure 9 – Unit testing and integration into the TravisCI platform.

Source: Elaborated by the authors.

J O Ã O P E S S O A , 2 0 1 9234

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 6

most of the free tools are stable and well tested, as
well as the freedom to be able to customize the tool
to meet the needs of users and developers, unlike
proprietary tools.

The proposed project Wireless Monitor has been
developed to be extensible and can be adapted to
different types of sensors, thanks to the system of
plugins. Its minimal set of endpoints for exchanging
information between the IoT device and the server
makes development simplified, without being limited,
thanks to the JSON information exchange protocol.
In addition, the web platform has a set of instructions
through text and video, making the process of learning
and mastering the tool easier. Finally, the next step
would be to allow the sending of commands from the
browser to the device, thus being able to control some
functions remotely as the load driving, relay triggering,
among other functions.

REFERENCES

ALLEN, G.; OWENS, M. The definitive guide
to SQLite. New York: Apress, 2010.

ALVES, A. C. Desenvolvimento de plugins,
2016a. Available in: <https://bit.ly/2KPxSNA>.
Accessed in: fev. 2019, in portuguese.

ALVES, A. C. Wireless Monitor: aplicativo
web para receber e mostrar dados vindos de
equipamentos IoT, 2016b. Available in: <https://bit.
ly/2KEERtF>. Accessed in: fev. 2019, in portuguese.

ALVES, A. C. Sensor de temperatura
usando plataforma IoT Wireless Monitor,
2016c. Available in: <https://bit.ly/2jpzoJR>.
Accessed in: fev. 2019, in portuguese.

ALVES, A. C. JavaScript SDK for Wireless
Monitor, 2017a. Available in: <https://bit.
ly/2Nciiyg>. Accessed in: fev. 2019.

ALVES, A. C. wm-example-esp8266 - Example
using ESP8266 to send data to Wireless
Monitor, 2017b. Available in: <https://bit.
ly/2ZbmZyH>. Accessed in: fev. 2019.

ALVES, A. C. Demokit - app for building product
demos and tutorials using web technologies
with GNU/Linux support (Fork), 2017c. Available
in: <https://bit.ly/2Z4IZMJ>. Accessed in: fev. 2019.

ALVES, A. C. ; JUCÁ, S. C. S. Wireless Monitor -
aplicativo web livre para receber e mostrar dados

For the front-end (part referring to the client)
the tools Gulp (GULP, 2017) and Laravel Elixir
(BLANKENSHIP, 2019) were used for automation of
tasks involving:

• compression, add hash to the filename,
avoiding unwanted cache and concatenate
JavaSript and CSS files for production
environments;

• creation of new plugins in Laravel Packages
format;

• l ive reload for the development
environment, thanks to Browser-Sync
(BROWSERSYNC, 2017).

The documentation was created using the
Gitbook (GITBOOK, 2017), that transforms files in the
Markdown or AsciiDoc format into a Website in either
HTML or eBook format as PDF, ePUB or Mobi. The
same technology was used in the SDK documentation.

The proposed projectWireless Monitor was
developed 100% based on free projects, however, a
tool called demokit — application for building product
demos and tutorials using web technologies — has
only support for MacOS (ALVES, 2017c).

To allow the tool to work on GNU / Linux as well,
a fork was created so that the screen recording tool
responsible for screen recording (POUWERKERK,
2017) was replaced by the fluent-FFmpeg tool. It
has the same purpose but works multi-platform, just
needing to install FFmpeg which is a multiplatform
multimedia framework capable of decoding, encoding
and transmitting almost any kind of video and audio
source (JOYARD, 2017).

Another feature was the library used for the
mouse movement and control, originally written in
Objective-C. It has been replaced by the RobotJS
tool, that also works on all major Operating System
platforms (ROBOTJS, 2017).

The modified demokit tool was responsible for
creating the tutorial videos, in order to assist new users
of Wireless Monitor (ALVES, 2017c). In addition to be a
programmatic application, it can also be used to create
videos in different languages using localization tools
such as messageformat, that can switch text based on
a locale context (SEXTON; ARO, 2017).

8 Conclusions

From free tools, it is possible to create high-quality
environments for IoT device monitoring. Both because

235J O Ã O P E S S O A , 2 0 1 9

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 6

HILL S. Scalable IoT platforms, 2019. 141 f. Master
Thesis (Software Engineering)- Institute of Architecture
of Application Systems, University of Stuttgart, Stuttgart
(Germany), 2019. Available in: <https://elib.uni-stuttgart.
de/handle/11682/10483 >. Accessed in: mai. 2019.

HUGHES-CROUCHER, T.; WILSON, M.
Node: up and running: scalable server-side
code with JavaScript. O’Reilly, 2012.

JONES, M.; BRADLEY, J.; SAKIMURA, N. JSON
Web Token (JWT), Request for comments
7519, 2015. Available in: <https://tools.ietf.org/
html/rfc7519>. Accessed in: aug. 2018.

JONES, M. B.; HARDT, D. The OAuth 2.0 authorization
framework: bearer token usage, Request for
Comments 6750, 2012. Available in: <https://tools.
ietf.org/html/rfc6750>. Accessed in: mai. 2018.

JONSSON, J.; KALISKI, B. Public-Key
Cryptography Standards (PKCS) #1: RSA
cryptography specifications version 2.1, Request for
Comments 3447, 2003. Available in: <https://tools.
ietf.org/html/rfc3447>. Accessed in: jul. 2018.

JUCÁ, S.; CARVALHO, P. C. M.; PEREIRA,
R. I. S. Desenvolvimento de sistemas de
Aquisição de dados sem fio. Rio de Janeiro:
Ciência Moderna, 2014, in portuguese.

JUCÁ, S.; PEREIRA, R. Aplicações práticas de
sistemas embarcados Linux utilizando Raspberry
Pi. Rio de Janeiro: Pod Editora, 2018, in portuguese.

KAMBOJ, P.; KRISHNA, C. R.; REDDY, S. R. N. Real-time
implementation of scheduling policies for education using
Raspberry Pi: a review. In: KRISHNA, C.; DUTTA, M.;
KUMAR, R. (eds.) Proceedings of 2nd International
Conference on Communication, Computing and
Networking. Lecture Notes in Networks and
Systems, v. 46. Singapore: Springer, 2018. p. 127-134.

KHARBOUCH, A. et al. Towards an IoT and
Big Data analytics platform for the definition of
diabetes telecare services. 2nd INTERNATIONAL
CONFERENCE ON SMART APPLICATIONS AND
DATA ANALYSIS FOR SMART CITIES (SADASC’18),
2018, Casablanca (Morocco), Proceedings..., 2018.

KRAWCZYK, H.; BELLARE, M; CANETTI, R. HMAC:
Keyed-hashing for message authentication, Request
for Comments, 2104, 1997. Available in: <https://tools.
ietf.org/html/rfc2104>. Accessed in: mai. 2018.

provenientes de equipamentos IoT. III Escola Regional
de Informática do Piauí. Livro Anais - Artigos e
minicursos, v. 1, n. 1, p. 17-22, 2017, in portuguese.

ASEMANI, M.; ABDOLLAHEI, F.; JABBARI, F.
Understanding IoT platforms: towards a comprehensive
definition and main characteristic description. 2019 5th
INTERNATIONAL CONFERENCE ON WEB RESEARCH
(ICWR), 2019, Tehran (Iran), Proceedings... 2019.

BANZI M.; SHILOH M. Make: getting started
with Arduino. 3rd Ed. Make Media, 2014.

BEAN, M. Laravel 5 essentials: explore the
fundamentals of Laravel, one of the most expressive
and robust PHP frameworks. Packt, 2015.

BERGMANN, S. PHPUnit - The PHP Testing
Framework, 2001. Available in: <https://
phpunit.de/>. Accessed in: out. 2018.

BLANKENSHIP, G. Laravel 5 Official
Documentation. 2019. Available in: <https://
leanpub.com/laravel-5>. Accessed in: aug, 2019.

BROWSERSYNC. Browsersync: time-saving
synchronised browser testing, 2017. Available in:
<https://browsersync.io/>. Accessed in: mai. 2018.

CANTANHEDE, R. F.; SILVA, C. E. Uma proposta
de sistema de IoT para monitoramento de ambiente
hospitalar. VII Escola de Computação e suas
Aplicações (EPOCA 2014), Santa Cruz (Brazil),
Proceedings... p. 122–131, 2014, in portuguese.

CRUZ, V. S.; PETRUCELLI, E. E.; SOTTO, E.
C. S. A linguegem JavaScript como alternativa
para o desenvolvimento de aplicações
multiplataforma. Revista Interface Tecnológica,
v. 15, n. 2., p. 39-49, 2018, in portuguese.

GITBOOK. Gitbook: documentation made
easy, 2017. Available in: <https://www.
gitbook.com/>. Accessed in: jan. 2019.

GITHUB. GitHub help: about pull requests, 2017. Available
in: <https://bit.ly/2gbWIFR>. Accessed in: jun. 2018.

GULP. Gulp: Automate and enhance your
workflow, 2017. Available in: <http://gulpjs.
com/>. Accessed in: aug. 2019.

HARDT, D. The OAuth 2.0 authorization framework,
Request for Comments 6749, 2012. Available in: <https://
tools.ietf.org/html/rfc6749>. Accessed in: jun. 2018.

J O Ã O P E S S O A , 2 0 1 9236

D I V U L G A Ç Ã O C I E N T Í F I C A E T E C N O L Ó G I C A D O I F P B | N º 4 6

IoT Special Interest Group. Available in: <http://
bit.ly/2jeu4W5>. Accessed in: jun. 2018.

ROMERO, M. I. PHP Authorization with
JWT (JSON Web Tokens), 2015. Available in:
<https://bit.ly/2k3lCud>. Accessed in: jun. 2018.

SEXTON, A.; ARO, E. Messageformat, 2017.
Available in: <https://messageformat.github.io/
messageformat/>. Accessed in: jun. 2018.

SHAH, J.; MISHRA, B. Customized IoT
enabled wireless sensing and monitoring
platform for smart buildings. Procedia
Technology, v. 23, p. 256–263, 2016.

ROBOTJS. The only Node.js first desktop
automation library, 2017. Available in:
<http://robotjs.io/>. Accessed in: oct. 2018.

TEXAS INSTRUMENTS. LM35 precision
centigrade temperature sensors, 2017.
Available in: <http://www.ti.com/lit/ds/symlink/
lm35.pdf>. Accessed in: jun. 2018.

TRAVISCI. Travis CI: building pull requests,
2017. Available in: <https://docs.travis-ci.com/
user/pull-requests/>. Accessed in: nov. 2018.

LEACH, P.; MEALLING, M.; SALZ, R. A
Universally Unique IDentifier (UUID)
URN namespace, Request for Commands
4122, 2005. Available in: <https://tools.ietf.
org/html/rfc4122>. Accessed in: jun. 2018.

LIU, J. et al. An effective biomedical data migration
tool from resource description framework to
JSON. Database: The Journal of Biological
Databases and Curation, v. 2019, p. 1-9, 2019.

MILANE, A. PostgreSQL: guia do programador.
São Paulo: Novatec, 2018, in portuguese.

JOYARD, N. A fluent API to FFMPEG,
2017. Available in: <https://bit.
ly/2Zdalzo>. Accessed in: mai. 2018.

OLIVEIRA, I. F. Desenvolvimento de um
sistema de automação residencial baseado
em IoT para controle e monitoramento de
dispositivos elétricos. 70 f. Bachelor Thesis-
Universidade Federal de Ouro Preto (UFOP),
Ouro Preto (Brazil), 2019, in portuguese.

POUWERKERK, P. OS X screen recording
library for Node (Fork), 2017. Available
in: <https://github.com/pouwerkerk/screen-
recorder>. Accessed in: mai. 2018.

PEYROTT, S. E. JWT Handbook, version
0.14.1, 2016. Available in: <https://bit.
ly/2KMwKKA>. Accessed in: mai. 2018.

PORAMBAGE, P. et al. PAuthKey: a pervasive
authentication protocol and key establishment
scheme for wireless sensor networks in distributed
IoT applications. International Journal of
Distributed Sensor Networks, v. 10, n. 7, 2014.

QIU C. et al. Cloud computing assisted
blockchain-enabled Internet of Things. IEEE
Transaction on Cloud Computing, 2019.

RESCORLA, E. HTTP over TLS, Request for
Comments 2818, 2000. Available in: <https://tools.
ietf.org/html/rfc2818>. Accessed in: nov. 2018.

REVELL, S. Internet of Things (IoT) and
Machine to Machine Communications
(M2M): challenges and opportunities, 2013.

